Environmental Reconnaissance of the Salton Sea: Sediment Contaminants Riverside and Imperial Counties, California

> July 2, 1999 6824.00-03

Prepared For Mr. Tom Kirk, Executive Director Salton Sea Authority 78-035 Calle Estado La Quinta, California 92253-2930

As part of the NEPA/CEQA process for the Salton Sea Restoration Project

NOTICE

This report was submitted in fulfillment of a contract with the Salton Sea Authority under the (partial) sponsorship of the U.S. Environmental Protection Agency. This report covers the period from November 1998 to May 1999, and work was completed as of May 1999.

Prepared by: Richard A. Vogl, R.G., C.H.G., C.E.G., R.E.A. Steven C. Beadle, Ph.D., R.G., C.H.G., C.E.G. Ryan N. Henry Douglas S. Lipton, Ph.D. LFR Levine-Fricke Inc. 1920 Main Street, Suite 750 Irvine, California 92614-7211 Telephone (949) 955-1390 Fax (949) 955-0683

http://www.lfr.com/

PREFACE

Extensive research has been performed in and around Salton Sea to characterize water quality and evaluate biological impacts, namely, migratory and resident birds and their habitats, from agricultural drainage contaminants. Even more geotechnical research has been conducted on the tectonics and geologic setting of the Salton Trough. However, information on the bottom sediment characteristics and contaminants of Salton Sea is limited.

Previous studies on Salton Sea bottom sediments have identified a variety of inorganic and organic chemicals, including organochlorine pesticide residues of banned DDT (1,1,1-trichloro-2,2-bis [p-chlorophenyl]-ethane) and its derivatives, DDD (1,1-dichloro-2,2-bis [p-chlorophenyl]-ethane) and DDE (1,1-dichloro-2,2-bis [p-chlorophenyl] ethylene). Many of these same chemicals, plus some additional ones, have been identified in the riverbeds feeding into the Sea, including DDT, DDD, DDE, dichloromethane, polychlorinated biphenyls, polynuclear aromatic hydrocarbons, pesticides, selenium, and boron. Prior to our study, little was known about the current concentrations and distribution of these contaminants in sediments in Salton Sea.

LFR reviewed the records contained in the archives of the University of Redlands Salton Sea Database Program pertaining to the bottom sediments of Salton Sea. This information was incorporated into the design of our field study.

ABSTRACT

An investigation of the physical and chemical characterization of sediments in and around Salton Sea, Imperial and Riverside Counties, California, was undertaken in the winter of 1998–1999. This field investigation was one of the first comprehensive studies completed at Salton Sea to evaluate the distribution of sediment types and chemical contaminants throughout the entire Sea and its main tributaries. The study was implemented in two phases. The first phase sampled sediments on December 15 through 22, 1998, and analyzed contaminant concentrations and particle size distribution in the bottom sediment of the Sea plus approximately 1 mile up each of three of its main tributaries: the Whitewater, the Alamo, and the New rivers. Phase I sediment samples were collected from 42 grab sampling sites and six core sampling sites.

Based on results of the first phase of investigation, a second phase of sediment sampling was conducted from January 19 through 22, 1999, to further assess and measure contaminant concentrations and evaluate particle size distribution in the bottom sediment. This second sampling phase focused on the significant areas of interest identified during Phase I and included sediment sampling at 15 grab sites and 10 core sites.

Sediments sampled on the bottom of the Sea consisted of a range of silt, clay, and finer grained sands. The shallow sediment near the shoreline also included abundant barnacle shells and occasional fish bones. The surface sediment composition included a high percentage of sand outside Salton City on the western bank of the Sea and extending into the central, deeper parts of the Sea. Sand percentages near the mouths of the New and Alamo rivers were also high, likely from deposition of the heavier particles from the high-velocity flows into the Sea. The lower velocity Whitewater River delta, on the other hand, was found to be predominantly silt. Silt was also abundant along the southwest near-shore area and along the shallow water bays near the New and Alamo rivers. A shallow layer of clay blankets the southwestern corner of the Sea and extends toward the center near the deepest part of the Sea. Clay is also abundant near shore and offshore just north of Desert Shores. The majority of the deeper sediment sampled in the central and southern parts of the Sea consisted predominantly of varied amounts of silt and clay with lesser amounts of fine sand.

The sediment samples were analyzed for 17 inorganic chemicals, including metals and metalloids, and organic chemicals, including volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and agricultural pesticides, herbicides, and their major breakdown products.

In general, concentrations of inorganic chemicals in the sediments were found to be higher in the northern part of the Sea. Concentrations were generally in the upper 30 centimeters (1 foot) of the sediment than at depth. The chemical concentrations were compared against background and available sediment quality screening criteria commonly used in sediment assessment studies of saline environments: NOAA effects range low (ERL) and effects range medium (ERM). For selenium, California Regional Water Quality Control Board, San Francisco Region criteria for wetlands creation were used because no ERLs or ERMs exist. Based on these screening criteria, the following chemicals were determined to be of potential ecological concern: cadmium, copper, molybdenum, nickel, zinc, and selenium, with the most elevated inorganic constituent being selenium.

Concentrations of cadmium ranged from 0.67 to 5.8 milligrams per kilogram (mg/kg). The highest reported concentrations of cadmium were found in the north-central part of the Sea. Concentrations of copper ranged from 8.1 to 53 mg/kg. The highest concentrations were found near the mouth of the Whitewater River. Concentrations of molybdenum detected in the north and central part of the Sea ranged from approximately 11 to 194 mg/kg. The range of reported concentrations for nickel was from 3.3 to 33 mg/kg. The highest concentrations of nickel were detected at the mouth of the Whitewater River and in the deeper portion of the Sea. The range of concentrations for zinc was from 5.4 to 190 mg/kg. The highest concentrations of zinc were found at the mouths of the Whitewater River and Salt Creek. Concentrations of selenium detected at the Sea ranged from 0.086 to 8.5 mg/kg. The highest concentrations of selenium were found just offshore of Desert Shores. In general, inorganic and organic chemical concentrations were elevated over much of the northern half of the Sea.

Elevated concentrations of organic chemicals were detected in sediment predominately in the northern part of the Sea and were limited to predominately VOCs. Of the 118 sediment samples analyzed for VOCs, 114 samples contained detectable concentrations of acetone, carbon disulfide, and/or 2-butanone. These three detected chemicals could possibly be present as a result of natural biological processes occurring within Salton Sea sediment. Acetone concentrations of acetone were located near the mouth of the New River. Carbon disulfide concentrations ranged from 15 to 1,800 μ g/kg. The highest concentrations ranged from 15 to 1,800 μ g/kg. The highest concentration of 2-butanone ranged from 11 to 150 μ g/kg. The highest concentration of 2-butanone ranged from 11 to 150 μ g/kg. The highest concentration of 2-butanone ranged from 11 to 150 μ g/kg. The highest concentration of 2-butanone ranged from 11 to 150 μ g/kg. The highest concentration of 2-butanone ranged from 11 to 150 μ g/kg. The highest concentration of 2-butanone ranged from 11 to 150 μ g/kg. The highest concentration of 2-butanone ranged from 11 to 150 μ g/kg. The highest concentration of 2-butanone was located in the northern portion of the Sea, offshore from Salton Sea State Park. Only a few other sediment samples contained detectable concentrations of other VOCs, including o-xylenes, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, naphthalene, and n-propylbenzene.

Organic chemicals not detected in any sediment samples include SVOCs, chlorinated pesticides, PCBs, organophosphate and nitrogen pesticides, and chlorinated herbicides.

This preliminary study indicates that some inorganic chemicals, notably selenium, are present at elevated concentrations in Salton Sea. However, more detailed sediment assessments are required to determine if these chemicals pose a potentially significant human and/or ecological risk. A determination of the forms of the contaminants, especially selenium, would be valuable in evaluating its potential mobility and bioavailability. Additionally, near-shore sediment sampling and a higher sampling density would be required to determine baseline chemical concentrations for Salton Sea.

CONTENTS

NOTIO	СЕ		i		
PREFA	ACE				
ABST	RACI	Γ	V		
ACRO	NYM	IS AND	ABBREVIATIONS xiii		
1.0	INTRODUCTION				
	1.1	Purpose of the Report1			
	1.2	Objectives of the Sediment Contaminants Investigation			
	1.3	Background2			
	1.4	History of the Site and Geologic Setting			
2.0	PREVIOUS INVESTIGATIONS				
	2.1	Sediment Characteristics and Sedimentation			
	2.2	Previous Chemical Data			
3.0	METHODOLOGIES AND PROCEDURES				
	3.1	Field Sampling Plan and Sampling Rationale7			
	3.2	Sedim	ent Sampling Methodology9		
		3.2.1	Sampling Documentation10		
		3.2.2	Field Custody Procedures10		
		3.2.3	Sample Identification		
		3.2.4	Laboratory Custody Procedures		
	3.3	Field F	Field Procedures		
		3.3.1	Field Method for Grab Sediment Samples11		
		3.3.2	Field Method for Core Sediment Samples12		
	3.4	Quality	y Assurance / Quality Control		
		3.4.1	Equipment Cleaning		
		3.4.2	Instrument / Equipment Calibration and Frequency13		

		3.4.3	Instrument and Equipment Testing, Inspection, and Maintenance Requirements	14	
		3.4.4	Duplicate and Equipment Blank Samples	14	
		3.4.5	GPS Data to Locate Sampling Sites	14	
		3.4.6	Office Documentation Procedures	14	
		3.4.7	Laboratory QC Checks	15	
		3.4.8	Laboratory Calibration Procedures	16	
		3.4.9	Inspection and Acceptance for Supplies and Consumables	16	
4.0	FIEL	D CON	IDITIONS	16	
5.0	RESULTS AND DISCUSSION 17				
	5.1	Laboratory Analysis of Sediment Samples 1			
	5.2	2 Results of Sediment Contaminants Investigations			
		5.2.1	Sediment Composition	19	
		5.2.2	Inorganic Chemicals	19	
		5.2.3	Organic Chemicals	21	
	5.3	Quality Assurance / Quality Control Results			
	5.4	Discussion			
6.0	SUM	IMARY	7	27	
7.0	REFERENCES			31	

TABLES

- 1 Historic Concentrations of Inorganic Chemicals in Sediment from the Salton Sea and Surrounding Tributaries Determined To Be of Concern
- 2 Historic Concentrations of Organic Chemicals in Sediment from the Salton Sea and Surrounding Tributaries Determined To Be of Concern
- 3 Physical Composition of Phase I and Phase II Sediment Samples
- 4 Inorganic Chemicals Detected in Phase I and Phase II Sediment Samples
- 5 Organic Chemicals Detected in Phase I and Phase II Sediment Samples
- 6 Summary of Statistical Analyses on Phase I and Phase II Sediment Samples
- 7 Summary of Equipment Blank Samples Collected During Phase I and Phase II

FIGURES

- 1 Historic Sediment Sampling at the Salton Sea
- 2 Sediment Sampling Locations for Phase I and Phase II
- 3 Distribution of Sands in Sediment Sampled
- 4 Distribution of Silts in Sediment Sampled
- 5 Distribution of Clays in Sediment Sampled
- 6 Graph of Cadmium Concentrations Detected in Sediment Samples
- 7 Graph of Copper Concentrations Detected in Sediment Samples
- 8 Graph of Molybdenum Concentrations Detected in Sediment Samples
- 9 Graph of Nickel Concentrations Detected in Sediment Samples
- 10 Graph of Zinc Concentrations Detected in Sediment Samples
- 11 Graph of Selenium Concentrations Detected in Sediment Samples
- 12 Graph of Acetone Concentrations Detected in Sediment Samples
- 13 Graph of Carbon Disulfide Concentrations Detected in Sediment Samples
- 14 Graph of 2-Butanone Concentrations Detected in Sediment Samples
- 15 LFR Phase I and Phase II Distribution of Cadmium Concentrations in December 1998 and January 1999
- 16 LFR Phase I and Phase II Distribution of Copper Concentrations in December 1998 and January 1999
- 17 LFR Phase I and Phase II Distribution of Molybdenum Concentrations in December 1998 and January 1999
- 18 LFR Phase I and Phase II Distribution of Nickel Concentrations in December 1998 and January 1999
- 19 LFR Phase I and Phase II Distribution of Zinc Concentrations in December 1998 and January 1999
- 20 LFR Phase I and Phase II Distribution of Selenium Concentrations in December 1998 and January 1999
- 21 LFR Phase I and Phase II Distribution of Acetone Concentrations in December 1998 and January 1999
- 22 LFR Phase I and Phase II Distribution of Carbon Disulfide Concentrations in December 1998 and January 1999
- 23 LFR Phase I and Phase II Distribution of 2-Butanone Concentrations in December 1998 and January 1999

APPENDICES

- A Daily Tailgate Safety Meeting Forms
- B Field Activities Logbook Entry Forms
- C Field Boring Logs of Sediment Lithology
- D Chain-of-Custody Forms
- E Core Photographs
- F Sediment Laboratory Analysis Data

ACRONYMS AND ABBREVIATIONS

Authority	Salton Sea Authority
bgs	below ground surface
CCR	California Code of Regulations
cfs	cubic feet per second
cm	centimeters
COC	chain-of-custody
DDT	1,1,1-trichloro-2,2-bis (p-chlorophenyl)-ethane
DDD	1,1-dichloro-2,2-bis (p-chlorophenyl)-ethane
DDE	1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene
DGPS	Differential Global Positioning System
DMG	Data Management Group (LFR)
DQO	Data Quality Objective
GIS	Geographic Information System
GPS	Global Positioning System
GLP	Good Laboratory Practices
kg	kilograms
km/km ²	kilometers per kilometer squared
LFR	LFR Levine-Fricke Inc.
µg/kg	micrograms per kilogram
mg/kg	milligrams per kilograms
ppt	parts per thousand

PAHs	polynuclear aromatic hydrocarbons
PCBs	polychlorinated biphenyls
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
Sea	Salton Sea
SCUBA	self-contained underwater breathing apparatus
SFRWQCB	California Regional Water Quality Control Board, San Francisco Region
SVOCs	semivolatile organics compounds
U.S. EPA	U.S. Environmental Protection Agency
SSDP	University of Redlands Salton Sea Database Program
VOCs	volatile organic compounds

1.0 INTRODUCTION

On behalf of the Salton Sea Authority ("Authority"), LFR Levine-Fricke (LFR) has prepared this reconnaissance investigation report for sediment contaminants at the Salton Sea in Riverside and Imperial Counties, California ("the Sea"; Figure 1). This report discusses and presents the results obtained during Phase I and Phase II sampling activities conducted under contract with the Salton Sea Authority and in accordance with LFR's "Proposal for Environmental Reconnaissance of the Salton Sea: Sediment Contaminants," dated November 12, 1998; the "Quality Assurance Project Plan for Environmental Reconnaissance of the Salton Sea: Sediment Contaminants," dated December 11, 1998; and "Health and Safety Plan for Sediment Contaminants Investigation Activities at the Salton Sea, Riverside and Imperial Counties, California," dated December 11, 1998.

The following documents were reviewed and elements incorporated, as appropriate, during preparation of this report:

- LFR Levine Fricke. 1998a. Proposal for Environmental Reconnaissance of the Salton Sea: Sediment Contaminants. November 12.
- LFR Levine Fricke. 1998b. Quality Assurance Project Plan for Environmental Reconnaissance of the Salton Sea: Sediment Contaminants. December 11.
- LFR Levine Fricke. 1998c. Health and Safety Plan for Sediment Contaminants Investigation Activities at the Salton Sea, Riverside and Imperial Counties, California. December 11.
- U.S. Environmental Protection Agency. 1998. EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations. External Review Draft Final Document.
- U.S. Environmental Protection Agency. 1995. Handbook for Preparing Office of Research and Development Reports.

1.1 Purpose of the Report

This study was conducted to strengthen the limited current information on the Salton Sea's bottom sediment. Specifically, LFR evaluated the physical and chemical characteristics of the sediments present at the Sea, including metals, metalloids, nonmetals, and organic compounds (and their residues) over a range of depths and distances from Sea inflows. The present study represents a reconnaissance-level characterization of bottom sediment throughout the Salton Sea without interpretation of potential ecological risk associated with the contaminants. The results, analyses, and interpretation of data contained within this reconnaissance investigation will provide a scientific foundation for the final restoration project on the Salton Sea ecosystem. Salton Sea's long-term, natural resource management concerns include high salinity (now at about 25 percent greater than seawater), bird disease epidemics, fish kills, and contaminants.

1.2 Objectives of the Sediment Contaminants Investigation

Based upon a review of information regarding Salton Sea, there are numerous areas where environmental data are lacking. The information currently available is limited in its applicability and outdated due to the significant changes in the environment affecting the Sea's ecology and biota. LFR's specific goals for the sediment contaminant study were as follows:

- Provide physical characterization data of Salton Sea sediment.
- Collect significant and defensible data on the concentrations of contaminants in the bottom sediment of Salton Sea.
- Specifically evaluate inorganic chemicals (metals and metalloids to include selenium) and anthropogenic organic compounds and their residues at a range of depths and distances from the Sea inflows.

1.3 Background

Salton Sea is the largest lake in California, with current measurements of 56.35 kilometers (km; 35 miles) long and 24.15 km (15 miles) wide and a maximum depth of approximately 15 meters (m; 50 feet). It is approximately 278 feet below mean sea level and its salinity is 44 parts per thousand (ppt), compared to ocean water at 34.9 ppt, according to the Salton Sea National Wildlife Refuge. The Sea has a surface coverage of 240,000 acres and a watershed of 8,360 square miles. It has no outlets and lies in an area that receives only 5.84 centimeters (cm; 2.3 inches) of rain a year with temperatures reaching 120 degrees Fahrenheit. However, drainage from the 500,000 acres of heavily watered and fertilized growing fields of Imperial Valley has kept it alive. Agricultural wastewater carries nitrates, pesticides, selenium, and other metals, as well as salt leached from agricultural fields.

Sources of pollution into the Sea are from the maquiladoras in Mexicali, Mexico, agricultural runoff in Mexicali Valley, and runoff in Imperial Valley. Pollution in the New River consists of industrial, municipal, and agricultural runoff and raw sewage, making it a serious, acute health risk to humans and animals. Furthermore, the pollution collects in Salton Sea and threatens the wildlife that depends on this ecosystem.

Some of the chemicals known and expected to exist in the rivers feeding into the Salton Sea are selenium, boron, DDT (1,1,1-trichloro-2,2-bis [p-chlorophenyl]-ethane), DDE

(1,1-dichloro-2,2-bis [p-chlorophenyl] ethylene), dichloromethane, Dieldrin, hexachlorobenzene, polychlorinated biphenyls (PCBs), Toxaphene, and other pesticides.

1.4 History of the Site and Geologic Setting

Salton Sea is located in an area known as the Salton Trough. Some of the major contributors to the understanding of the tectonic systems present within the Salton Trough include Moran (1977), Babcock (1974), Thornton and Seyfried (1975), and Johnson et al. (1994). Babcock (1974) noted that prior to deposition of the Borrego Formation, beds of the Shavers Well Formation were tilted and eroded, creating an unconformity upon which the Borrego lacustrine sediments were deposited and resulting in the current formation of the Salton Trough. It underwent repeated periods of desiccation interspersed with influxes of clayey/silty sediments, largely derived from the Colorado River. Thornton and Seyfried (1975) noted that the sediments of the Salton Trough and the Gulf Coast region contain detritus and organic matter.

2.0 PREVIOUS INVESTIGATIONS

LFR reviewed records contained within the archives of the University of Redlands Salton Sea Database Program (SSDP) for previous investigations of the Salton Sea's sediment characteristics. All of the information presented in this section and its subsections was obtained from the references listed.

Previous studies on Salton Sea bottom sediments identified a variety of inorganic and organic chemicals, including organochlorine pesticide residues of banned DDT and its derivatives, DDD (1,1-dichloro-2,2-bis [p-chlorophenyl]-ethane) and DDE. Many of these same chemicals, plus some additional ones, have been identified in the riverbeds feeding into the Sea, including DDT, DDD, DDE, dichloromethane, PCBs, polynuclear aromatic hydrocarbons (PAHs), pesticides, selenium, and boron. Limited chemical data were collected by Bechtel (1997) at the Salton Sea Test Base, which comprises 13,462 acres of water located along Highway 86 at the southwest corner of the Sea and approximately 6 miles south of Salton City, and from Setmire and Stroud's (1990) irrigation study of the deltas and tributaries of the New and Alamo rivers. Other documents that provide the best available information on bottom sediment contaminants include Bechtel (1997), Eccles (1979), Hogg (1963), and Setmire [et al.] (1993). Summaries of historic concentrations of inorganic and organic chemicals of concern in sediment from the Salton Sea and surrounding tributaries are presented in Tables 1 and 2, respectively.

The report prepared by Bechtel National, Inc., for the U.S. Navy's removal site evaluation at the Salton Sea Test Base provided information regarding historic use of the Salton Sea Test Base property. The aeroballistic marine target area was reportedly used for testing inert atomic weapons. Approximately 3,750 test units were dropped into the Sea. These inert (nonexplosive, nonradioactive) test units were usually stainless steel casings filled with arming, fusing, and firing components (containing nickel/cadmium [until the 1950s] or lead/acid batteries batteries, minor amounts of aluminum, copper, brass, and rubber), as well as concrete, lead, and/or stainless steel ballast. Most units weighed between 5,000 and 40,000 pounds. Nickel/cadmium and lead/acid batteries were used for firing/fusing tests. The test units reportedly broke apart upon impact, scattering debris across the Sea floor. Approximately 10,000 pounds of material was recovered from one area investigated, but the majority of the debris still lies buried in the sediment of the Sea. An MK-6 "fly-around" radioactive test unit that contained 120 pounds of uranium was also reportedly lost in the Sea.

Ferrari and Weghorst (1997) completed a detailed survey to develop underwater topography, compute area-capacity relationships, and develop detailed bathymetry for design analysis. The bathymetric survey was run using sonic depth recording equipment interface with Differential Global Positioning System (DGPS; accuracy of 1 to 2 meters), creating an above-average quality map of the Sea.

Sufficient data have been collected over the past 26 years to show that Salton Sea and surrounding tributary bottom sediments include a variety of metals, metalloids, radioactive elements, pesticides, and organic compounds. Little was known about the sediment types in the Sea below depths of approximately 91 cm. Data regarding current concentrations of sediment contaminants in the Sea were also quite limited.

2.1 Sediment Characteristics and Sedimentation

In 1997, Bechtel obtained extensive sediment core data from approximately 107 sediment samples collected offshore from the Navy's Salton Sea Test Base property (Bechtel, 1997). This study revealed that sediments consist of predominantly sands to depths greater than 91 cm (3 feet) within 152 m (166 yards) offshore, predominantly clay to depths greater than 91 cm (3 feet) between 152 m (166 yards) and 3,658 m (2.27 miles) offshore, and predominantly clay to a depth of 84 cm underlain by sand beyond 3,658 m offshore. Core depths varied from 30 to 91 cm (1 foot to 3 feet). The three offshore areas sampled included a shoreline disposal area (25 sediment samples), an offshore area (14 sediment samples).

In 1996, James Walker conducted sediment sampling at 59 sites using a Wildco coring device that measured 5 cm (1.95 inches) in diameter and 51 cm (19.89 inches) long (Walker, 1996). One sampling transect was conducted along a north-south baseline, and five sampling transects were conducted along an east-west baseline. Although the cores were shallow and no chemical analyses were run, these cores provide a representation of the grain sizes found in the bottom sediment. A summary of the grain size distribution for bottom sediments from this study is presented on Figure 1.

In 1968, Van de Kamp (1973) investigated all the major facies within outcrops of the entire basin, including lacustrine deposits, meandering channel deposits, alluvial fans and braided-stream deposits, and Aeolian sand deposits. Although none of the 18 core borings

were collected from the Salton Sea bottom sediment, these cores provide information about the distribution and sources of sand and sediments within the Salton Sea watershed. The two major sources of sediments identified include the Colorado River and the basin margins. The Colorado River carried eroded debris from the Colorado Plateau to the southern part of the basin, depositing sand and mud in deltaic and lacustrine facies. The sediment deposits from sources at the basin margins were deposited in alluvial fans, braided streams, barrier beaches, and lacustrine beds.

Stephen (1972) investigated the New River delta and found it to have an extent greater than 15 square kilometers (km²⁾, draining 6,500 km² over its 150-km length. The suspended sediment load carried within the New River was estimated to be approximately 5.0 by 108 kg per year. This document provides descriptions of sediment mineralogy and grain size, and elaborates on the correlation of sediment size distribution with distributary patterns. Three years later, Stephen and Gorsline (1975) revisited the New River and reported on subaerial deposits comprising distributary channel, levee, and interdistributary subaerial flat and crevasse deposits. The investigators identified subaqueous deposits as largely prodelta clay and delta-front fine silt.

General conditions that affect sediments and distribution were best presented in Arnal (1961). Historically, the Sea's lowest elevation has been 276.7 feet below sea level, with an annual temperature range from 10 to 34.5 degrees Celsius (°C). The Sea's currents move in a counterclockwise, gyral motion around the lake due to the influence of prevailing winds. Sand, silts, and clays are deposited in that order from the shore toward the center of the lake, where more fine sediments accumulate. The water content, amount of calcium carbonate, and natural characteristics indicate that most of the sediments (75 percent) were derived from the suspended load of the Colorado River, whereas the mineralogy suggests that some of the sediments have a local origin. The water content of the sediments varies in inverse ratio to the grain size, high (>50 percent) in clay depositions (the deepest lake sediment; grain size less than 4 microns) and low (approximately 20 percent) where sand is deposited. The water content decreases with depth. The pH of the sediments is regulated by a variety of physical and chemical properties and reactions including carbonates, organic matter, carbon dioxide, and organic acids from the decomposition of plant and animal matter. The distribution of the organic content of the sediments is influenced by phytoplankton, the texture of the sediments, and currents. The distribution shows a low organic content (<1 percent) along the shore, with higher values (4 to 6 percent) found in the central part, and a maximum content (>6 percent) found 3 miles offshore, near Fish Spring. In all sediments, quartz and plagioclases are the dominant primary minerals.

Inflow rates to the Sea were calculated using limited suspended sampling data and historical suspended sediment sampling data observed from other major reservoirs in the southwestern United States (U.S. Department of the Interior, 1970). The Salton Sea watershed is approximately 8,360 square miles. The long-term average sediment inflow volume calculated was 4,000 acre-feet of sediment per year. Over a 50-year period, this would amount to less than 4 percent of the gross water storage volume of the Salton Sea. A quarterly sediment sampling program carried out by the Imperial Irrigation District since 1952 reported a flow rate ranging from 1,508 to 385 cubic feet per second (cfs) for

the Alamo River, and 964 to 315 cfs for the New River. The total average annual sediment contribution from the Alamo River and New River is estimated to be 340 acrefeet and 370 acrefeet, respectively. (Both estimates include an average flow rate and a 10 percent bedload pickup.) Sedimentation rates from 1928 through 1958 estimated at least 5 feet of sediments being deposited within the deltas of the Alamo and New rivers. The sedimentation rate at the deltas was estimated to be 2 inches per year, as opposed to a rate of 0.02 inch per year for the central part of the lake (Arnal, 1961).

2.2 Previous Chemical Data

Setmire and Stroud's (1990) document, which focused on agricultural runoff and drainage, measured sediment concentrations of "trace elements" (i.e., inorganic compounds) and organochlorine compounds in and around Salton Sea. Seventeen sediment samples were collected from the upper 5 to 10 cm (1.95 to 3.9 inches) of sediments in 1986 and were analyzed for "trace elements," organochlorine pesticides, and (to a limited extent) organophosphorous pesticides. These data are summarized in Tables 1 and 2. The laboratory procedures document that samples were air dried, pulverized with a mortar and pestle, then split and sieved separately to eliminate sand particles that did not pass a 100-mesh and 230-mesh sieve (Stephen, 1972). Data were reported in dry weight. Chemicals detected above the maximum "baseline value" for soils of the western United States (Shacklette and Boerngen, 1984) were identified as being of concern. Setmire and Stroud concluded that the following chemicals were of concern: chromium, nickel, selenium, thorium, uranium, and zinc. Silver and cadmium were not detected in the bottom sediment samples. Median concentrations of Setmire and Stroud's "trace elements" were reported as 5.6 mg/kg arsenic, 0.7 mg/kg selenium, <2 mg/kg silver, 550 mg/kg barium, <2 mg/kg cadmium, 58 mg/kg chromium, 28 mg/kg copper, 21 mg/kg lead, <2 mg/kg molybdenum, 25 mg/kg nickel, 77 mg/kg vanadium, 78 mg/kg zinc, 10.6 mg/kg thorium, and 4.9 mg/kg uranium.

In this same 1990 Setmire and Stroud study, DDT, DDD, DDE, and PCBs were detected in bottom sediments. Other chemicals found included Chlordane in the New River at the international boundary, Toxaphene at Trifolium Drain 4, and Methoxychlor at Vail Drain 4. Table 2 summarizes these findings.

Three years later, Setmire [et al.] (1993) published another study that focused more on surface and subsurface water quality and on biotic tissue concentrations of "trace elements," heavy metals, and organochlorine pesticides (Setmire [et al.], 1993). Of particular interest to the sedimentology of the Sea, this study investigated a naturally occurring "selenium removal process" at the mouth of the Alamo River. In August 1988 and February 1989, 16 samples of the bottom sediment were collected at the Alamo River delta and analyzed for selenium content. Selenium concentrations were between 0.2 and 0.3 mg/kg in the river sediment samples, and varied from 0.2 to 2.5 mg/kg at sites throughout the Alamo River delta. Relatively high levels of selenium (1.3 to 2.5 mg/kg) were found in the embayments, without any discernable pattern of distribution. This area of investigation is depicted in Figure 1. Analytical results are summarized in Table 2.

The Bechtel report (1997) stated that organochlorine pesticides, PAHs, and VOCs (acetone, carbon disulfide, ethylbenzene, toluene, and xylenes) were detected in sediment samples collected from the shoreline disposal area. Elevated concentrations of copper (68.7 mg/kg), barium, and thallium were also detected.

Elevated concentrations of cadmium (maximum concentration of 1.6 mg/kg), arsenic (maximum concentration of 27.4 mg/kg), antimony (maximum concentration of 9.9 mg/kg), molybdenum (maximum concentration of 14.5 mg/kg), selenium (maximum concentration of 8.4 mg/kg), and vanadium (maximum concentration of 52.5 mg/kg) were detected in the offshore aeroballistic marine target area sediment. A localized area of elevated uranium (maximum concentration of 14.2 mg/kg) was also identified. The report concluded that: (1) these contaminants were naturally occurring, with the exception of cadmium; and (2) based on the limited source and nature of the cadmium release (nickel/cadmium battery), no further action was warranted.

Organochlorine pesticides (DDE, Dieldrin, gamma-Chlordane, and/or Heptachlor) were detected in 3 of the 14 sediment samples collected from the Imhoff Tank area. Phenol was also detected in one of the samples, and thallium (maximum concentration of 0.26 mg/kg) was detected in two samples. Bechtel concluded that except for the organochlorine pesticides (attributed to irrigation drainage), the presence of these contaminants in sediment did not present a significant risk. It is unclear if the data presented in Bechtel (1997) were reported in dry or wet weights. Table 2 summarizes these findings.

Hogg (1973) performed some of the earliest pesticide work on the bottom sediments. Hogg collected six substratum samples using SCUBA gear and 16 mm (inner diameter) by 23-cm-long (8.97 inches) coring tubes. Mean values (reported in micrograms per kilogram, or μ g/kg) for pesticide residues of Dieldrin, DDT, DDD, DDE, and combined samples for the upper and lower layers of the core samples are summarized in Table 2. Based on his small data set for sediment contaminants, Hogg calculated the presence of 10,400 pounds of total DDT and its metabolites in the upper 12 cm (4.68 inches) for the entire Sea.

Eccles (1979) provided values for DDE concentrations in bottom sediment samples collected in tributaries to the Salton Sea. Eccles collected samples in 1977 and found concentrations of DDE at Avenue 64 Evacuation Channel (67 μ g/kg) and at Trifolium Drain 1 (110 μ g/kg).

3.0 METHODOLOGIES AND PROCEDURES

3.1 Field Sampling Plan and Sampling Rationale

The work tasks, which include project planning, field activities, sample analyses, sample and data handling, and data evaluation and interpretation, were outlined in the Quality

Assurance Project Plan (QAPP) to be of such quality as to allow complete fulfillment of the project's objectives. To achieve valid, reliable, appropriate, and complete data during all phases of work, quality control measures were developed for both field and laboratory procedures within a data quality objective (DQO) process. The strategic planning approach of the DQO process defined pertinent criteria for the sampling program including:

- where to collect samples
- how to collect samples
- tolerable levels of decision errors
- how many samples to collect

According to U.S. EPA documents, DQOs are developed using a seven-step process: (a) state the problem; (b) identify decisions that address the problem; (c) identify inputs to the decision; (d) identify the boundaries; (e) develop decision rules; (f) specify limits on decision error tolerances; and (g) optimize the design of the data collection program. The following letters present the seven-step DQO development process that was implemented during this project's sampling activities.

- (a) <u>Problem statement:</u> As stated in the Objectives section, the data collected will be used to quantify sediment contaminant levels in the Sea and assist in preparation of the Environmental Impact Report/Environmental Impact Statement (EIR/EIS).
- (b) <u>Decisions to address problem</u>: Decisions that will address the problem include identifying representative lake bottom sediment sampling sites and incorporating sediment analytical data with historic contaminant levels.
- (c) <u>Inputs to decision</u>: Inputs for decision making include field observations and sediment analytical results.
- (d) <u>Boundaries:</u> Boundaries for data collection are based on the surface water borders of Salton Sea and up to 183 cm (6 feet) below the water-sediment interface. Additionally, the boundary extends up to 1.61 km (1 mile) within the three main tributaries of the Salton Sea.
- (e) <u>Decision rule:</u> If refusal occurs during sediment core sampling, a different location will be selected within a 152-cm (5-foot) radius of the original location. If refusal occurs at the second sampling site, a third location will be selected within a 152-cm (5-foot) radius. If refusal occurs again, the deepest of the three cores will be selected for laboratory analysis.
- (f) <u>Decision error limits</u>: Decision error limits are based on the use of general observations of site conditions during the time of sampling.

(g) <u>Data collection program</u>: The sediment sampling component of data to be collected during this investigation consists of field and laboratory data. The field investigation includes the depth to bottom sediment from surface water at each sampling location and the latitude and longitude of each sampling site recorded on a hand-held global positioning system (GPS). Laboratory analysis for each method generated the desired sediment quality data.

As outlined in the QAPP, LFR collected duplicate samples at various sites and processed equipment blanks as quality assurance/quality control (QA/QC) measures. During Phase I, LFR collected four duplicate samples and processed five equipment blanks. During Phase II, two duplicate samples were collected and four equipment blanks were processed. Duplicates were not collected from cores since the entire length of each core was required for laboratory analysis, with each sample number representing approximately 30 cm (1-foot interval).

3.2 Sediment Sampling Methodology

The proposed study revolved around a phased, nonseasonal sampling work schedule that was accomplished during the winter. The phased approach allowed for the refinement and subsequent additional investigation of areas of concern identified during Phase I. The objective of the first phase of sediment sampling was to assess and measure contaminant concentrations and evaluate particle size distribution in the bottom sediment of Salton Sea. After this preliminary investigation, the objective of the second phase of sediment sampling was to further assess and measure contaminant concentrations and evaluate particle size distribution for the second phase of sediment sampling was to further assess and measure contaminant concentrations and evaluate particle size distribution in the bottom sediment of Salton Sea, focusing on the significant areas of interest identified during Phase I.

LFR's initial Phase I sampling was conducted on December 15 through December 22, 1998. The first phase of the sampling effort encompassed the entire Sea plus approximately 1 mile up each of three of its main tributaries: the Whitewater, the Alamo, and the New rivers. Phase I sediment samples were collected from 42 grab sampling sites (GB#) and six core sampling sites (CR#). Sites that showed elevated concentrations of contaminants became the focus of Phase II sampling activities.

Phase II sediment sampling began on January 19, 1999, and continued through January 22, 1999. Phase II sediment samples were collected from 15 grab sampling sites and 10 core sampling sites. The locations of both Phase I and Phase II sampling sites are shown in Figure 2.

Sample stations in the Sea can be categorized as either near-shore or deeper water. The near-shore site samples reflect information on a relatively short time scale, with influences associated with inflow velocities of heavier particles and runoff contaminants. Deep stations located over the deepest points of the Sea provide seasonal, longer time-frame information about the water column, such as conditions associated with silt/clay suspension.

3.2.1 Sampling Documentation

Daily morning briefings were held to cover safety procedures and contingency plans in the event of an emergency along with a discussion of the day's activities. These daily meetings were recorded on LFR's Daily Tailgate Safety Meeting Forms. A debriefing to cover the activities was held upon completion of the work. Copies of the Daily Tailgate Safety Meeting Forms are included in Appendix A.

The field documentation included the use of field activities logbook entry forms, lithologic logs, sample labels, and chain-of-custody (COC) analyses request forms. These documents were completed using indelible ink and corrections followed Good Laboratory Practices (GLP) procedures. Copies of LFR's Field Activities Logbook Entry Forms, Field Boring Logs of Sediment Lithology, Chain-of-Custody Forms, Core Photographs, and Sediment Laboratory Analysis Data are included in Appendices B through F, respectively.

3.2.2 Field Custody Procedures

Strict chain-of-custody protocol was followed throughout all sample transfers. COC forms were filled out by the sampler on a daily basis as samples were collected. The COC documents were completed in triplicate. One copy accompanied the samples to the laboratory, one was retained by the LFR sampler, and the third was forwarded to the LFR data management system. The COC form was signed over to the laboratory or courier relinquishing custody of the samples. If a courier was used, possession was relinquished by the courier to the laboratory. Copies of the COC forms are included in Appendix D.

3.2.3 Sample Identification

All samples were identified and labeled at the time of collection. Sample identification followed a specific format to ensure that all sample numbers were unique. Grab samples were given the prefix GB, followed by the site number, followed by the depth in feet, followed by the six-digit date (example: GB4-2-111098). Core samples were given the prefix CR, followed by the site number, followed by the depth in feet, followed by the site number, followed by the depth in feet, followed by the six-digit date (example: CR4-2-111098). Duplicate samples were given the same name as above, followed by "-0" (example: GB4-2-111098-0). Equipment blank samples were given the prefix EB, followed by a consecutive number, followed by the six-digit date (example: EB4-111098).

3.2.4 Laboratory Custody Procedures

The laboratory custody procedures designated a sample custodian who accepted custody of the shipped samples and checked that the information on the sample labels matched that on the COC form(s). The custodian then entered the appropriate data into the laboratory's sample tracking system. The custodian used the sample number on the

sample label and assigned a unique laboratory number to each sample. As a record of sample receipt, the analytical laboratory mailed a copy of the COC form, with the assigned laboratory numbers, to LFR. The custodian then transferred the samples to the proper analysts or stored the samples under refrigeration until they were extracted and analyzed. Material remaining after completion of the requested analyses was stored until the end of the investigation. Disposal of unused samples complied with all applicable federal, state, and local environmental regulations. Data sheets and laboratory records will be retained as permanent documentation.

3.3 Field Procedures

Bottom sediment studies were conducted from a 6.4-m (21-foot) motorized boat furnished by LFR. Bottom sediment samples were collected using a modified Birge-Ekman-style box sediment sampler and the AMS soft sediment corer. The only exceptions to these sampling techniques were the use of a hand trowel for collecting a sample at site GB42, approximately 1 mile up the New River, and the use of a stainlesssteel hand-auger with a flapper-valve during the second sampling event at location 24.

The bottom sediment consisted of predictable soil compositions (Quaternary deposits of lacustrine silts and clays) based on previous reports by Setmire and Stroud (1990). The proposed sampling sites were selected to provide representative coverage of Salton Sea. Water depth measurements were taken to ensure adequate cable length for operation of the samplers and proper execution. This important consideration controlled the speed of entry of the sampler into the sediment, increasing its recovery and decreasing any shock waves.

3.3.1 Field Method for Grab Sediment Samples

A stainless-steel modified Birge-Ekman-style box sediment sampler, 15.24 cm by 15.24 cm in size (6 inches by 6 inches by 6 inches), was used to collect samples at 57 of the 73 sampling sites. This stainless-steel apparatus was chosen because it is less likely to corrode or affect metal concentrations in sediment samples. The apparatus was tied to a nylon rope and lowered from the side of the boat. The flaps on the top of the sampler open during descent, allowing water to flow through until impact with the bottom sediment. A stainless-steel weighted messenger was sent down the nylon rope to activate the shovel-like jaws to close. The sampler was then pulled up by the rope, forcing the top flaps to close during ascent and maintaining the sample during retrieval. Grab sediment samples were collected each day with varied recoveries within the top 15 cm (6 inches) throughout the Sea. The sediment was accessed through the top flaps to identify acceptable recovery of sediment and then subsampled. The percent recovery for each sample is represented in Table 3.

For each grab sample, up to 24 ounces of material was retained for inorganic and organic chemical analyses, depending on sample recovery. Sediment samples were transferred directly from the sampling equipment into clean, laboratory-grade glass jars using a

stainless-steel trowel. Wearing a clean pair of nitrile gloves, the sampler cleaned the threads of each jar and then capped and sealed the jar. The filled jars were subsequently labeled and stored in a chilled cooler on board pending delivery to the analytical laboratory. Strict COC protocol was followed throughout all phases of the sample handling process.

3.3.2 Field Method for Core Sediment Samples

The core samples were collected using an AMS stainless-steel soft sediment sampler that can produce a 5-cm (6-inch) diameter by 182-cm (6-foot) long square core. The corer can take up to 182 cm of undisturbed samples from soft sediment, provided that rocks or dense materials are not encountered. The AMS soft sediment sampler consists of:

- Two stainless steel, 182-cm (6-foot) long, right-angle-shaped sampler halves, each with a pointed lower end, that create a 5.08-cm (6-inch) square when locked together. One half contains a riveted sediment trap that engages when the sampler is pulled from the sediment.
- Ten hollow aluminum extension guiding rods with hollow steel connections (each approximately 152.4 cm (5 feet) long).
- One 24-pound stainless-steel drop weight with chain and 100-foot rope.

After sediment depth measurements were obtained, the sampler half with the primary head was lower into the water and extension rods were added as the sampler was lowered. The corer was lowered until it rested on the undisturbed sediment. The drop weight was then lowered down the extension rods by rope, and the sampler was driven into the sediment by repeated hammering until the desired depth was reached. The weight was then retrieved and the second cutting blade was gently lowered down the guiding rods with a safety wire line securely fastened to the sampler and boat. Once contact was made with the sampler, the weight was gently lowered once again until contact was made. The weight was lifted 15 to 25 cm (6 to 10 inches) and allowed to drop, shearing a Teflon fastener and allowing the blade to advance. The hammering was then repeated until the desired depth was reached. The drop weight was retrieved and the sampler pulled straight up. Once out of the water, the cutting blades were slid apart to expose the sediment sample contained inside.

Sediment samples obtained using the stainless steel corer were collected from a boring advanced down to a maximum of 182 cm (6 feet) below ground surface (bgs), with samples for laboratory analyses taken at 30-cm (1-foot) intervals. The cores were carefully measured for total length and different layers of sediment without disturbing the sediment-water interface. Cored samples were lithologically described and classified using the Unified Soil Classification System. A lithologic log was prepared for each boring, with photographs documenting most of the collection (Appendix C and E, respectively). Boring and logging were performed under the direction of Richard Vogl, a GLP-trained, LFR California Registered Geologist. As with the grab samples, these

samples were transferred to clean, laboratory-grade glass jars using a stainless steel trowel that was cleaned between samples. The labeled jars were then stored in a chilled cooler on board pending delivery to the analytical laboratory with a COC form.

3.4 Quality Assurance / Quality Control

The Quality Assurance (QA) and Quality Control (QC) procedures are detailed in LFR's QAPP (1998b) and were designed so that the technical data generated during investigative activities at Salton Sea were precise, unbiased, accurate, complete, and representative of actual field conditions. QA is defined as an integrated system of management activities involving planning, implementation, documentation, assessment, reporting, and quality improvement to ensure that a process, item, or service is of the type and quality needed and expected by the client. QC is defined as the overall system of technical activities that measure the attributes and performance of a process, item, or service against defined standards to verify that they meet the stated requirements established by the customer. QC includes the operational techniques and activities that are used to fulfill requirements for quality.

3.4.1 Equipment Cleaning

To reduce the potential for cross contamination between borings, soil sampling equipment was scrubbed with a laboratory-grade, nonphosphate detergent and doublerinsed with distilled water between sampling intervals.

3.4.2 Instrument / Equipment Calibration and Frequency

During the investigation, calibration of field sampling, measuring, and test equipment for sediment sampling included checks on the modified Birge-Ekman-style box sediment sampler, the AMS soft sediment corer, and the boat-mounted depth finder.

Preventative maintenance and cleaning was performed on the modified Birge-Ekmanstyle box sediment sampler and the AMS soft sediment corer after each day. The sediment sampler and corer were used to collect sediment only and had no other calibration requirements.

The water depth measurements were taken by a boat-mounted depth finder and verified by a calibrated plumb line. Calibration of the boat-mounted depth finder was performed by using the calibrated plumb line to verify its accuracy. The average difference in depths recorded by the on-board depth finder and the manual plumb line was 0.78 meters (2.5 feet), with the larger depths found using the manual plumb line. This difference is attributed to the angled measurement of the plumb line under the influence of underwater currents and boat movement. The Field Activities Logbook Entry forms contain the information recorded and can be found in Appendix B.

According to the manufacturer, calibration of the GPS instrument is not required for instrument use. Calibration of the GPS instrument was not necessary for this reconnaissance.

3.4.3 Instrument and Equipment Testing, Inspection, and Maintenance Requirements

Equipment operation was routinely checked to minimize breakdowns in the field. Due to the calibration of equipment to ensure proper functioning of field instrumentation, sampling equipment remained fully functional and required only minor repairs without the need to remove equipment from service. The soft sediment corer's headpiece was bent slightly during coring activities through dense clay. Repairs consisted of minor straightening of the sampler blade with a hammer, which occurred on shore later that day.

3.4.4 Duplicate and Equipment Blank Samples

Duplicate sediment samples were collected from approximately 10 percent of the total sample number. These samples were used for assessing the reproducibility of analytical procedures. In addition, approximately one equipment blank was also collected per day to verify sampling equipment decontamination procedures. The equipment blank sample was labeled with the prefix EB, followed by the six-digit date. Section B5 of the QAPP (LFR, 1998b) describes the duplicate and blank samples in more detail.

3.4.5 GPS Data to Locate Sampling Sites

To ensure consistent sample location identification, all sampling sites were identified using standard GPS equipment. The model used for this project was a hand-held Garmin 112XL, which uses up to 12 satellites to simultaneously locate position. This allowed all data to be submitted in a GIS-compatible format according to the metadata standards set forth by the Federal Geographic Data Committee. GPS coordinates for each sample location are summarized in Table 3 and documented in the Field Activities Logbook Entry Forms located in Appendix B.

3.4.6 Office Documentation Procedures

Samples and data were tracked and archived at LFR's office in Irvine, California. LFR's Data Management Group (DMG) was responsible for ensuring that correct management practices were followed for proper documentation and for linking all samples with data. The project file was used in data tracking and documentation, as discussed below.

The field log, COC forms, and sampling information forms are all stored in the project file, in addition to several other documents (e.g., work orders, proposals, sampling plans, assessment reports, and correspondence). This system provides a common location for all

information that was required for data evaluation and interpretation and report preparation. The file is organized for easy retrieval and long-term storage of information.

3.4.7 Laboratory QC Checks

The types of laboratory QC samples that were analyzed by the three laboratories include reagent and method blanks, calibration blanks, split duplicates, laboratory control standards and laboratory control standard duplicates, matrix spikes, and matrix spike duplicates.

Reagent or method blanks are samples prepared from distilled, deionized water that has been treated with all of the reagents and manipulations (i.e., digestions or extractions) to which samples are subjected. Positive results in the reagent or method blank may indicate either contamination of the chemical reagents or the glassware and other implements used to store or prepare the sample and resulting solutions.

Calibration blanks are samples prepared from distilled, deionized water that are directly introduced into an instrument without having been treated with reagents appropriate to the analytical method used to analyze samples. Positive results in the calibration blank may indicate contamination of an instrument or of the water used in the laboratory.

Matrix spikes and matrix spike duplicates are samples prepared using the batch sample matrix (i.e., sediment) and adding a predetermined quantity of target compounds. Following analysis, percent recovery of the "spikes" and the relative percent difference of the two spikes are calculated.

Control samples are samples of a well-characterized matrix (such as blank water or sand) that are spiked with certain target parameters and analyzed at approximately 10 percent of the sample load to establish method-specific control limits.

Laboratory quality control checks were conducted as follows:

- Duplicates, spikes (matrix or similar type), and blanks (reagent and method) were analyzed on at least 10 percent of the total samples submitted for analysis.
- A method blank was performed for every batch of samples analyzed.
- Surrogates and internal standards were added to each individual sample when applicable.
- Spikes were conducted on the matrix in the case of water samples and on the method blank in the case of sediment samples.

3.4.8 Laboratory Calibration Procedures

Calibration of laboratory instruments is necessary to ensure that the analytical system is operating correctly and functioning at the proper sensitivity to meet established detection limits. Each instrument was calibrated with standard solutions appropriate for the type of instrument and the linear range established for the analytical method. Daily calibration checks and standards for relevant constituents fell within the laboratory control limits.

For EPA Methods 8240/8260 and 8270 analyses using a combined gas chromatograph/ mass spectrometer (GC/MS) method, the mass calibration standard was analyzed daily to demonstrate that the instrument met the standard mass spectra abundance criteria. Whenever any action was taken that may have affected the tuning parameter of the instrument (e.g., source cleaning or other maintenance), the mass calibration was immediately checked. Mass calibration criteria using U.S. EPA protocols were met before any analysis was run (standards, blanks, or samples).

For metals analysis (EPA Method Series 7000S) using atomic absorption and inductively coupled plasma, spectrophotometers were calibrated daily or at least once per batch of samples.

3.4.9 Inspection and Acceptance for Supplies and Consumables

Sample containers vary with each type of analytical parameter. Container types and materials were selected to be nonreactive with the particular analytical parameter being tested. All sampling jars were provided by Apollo Analytics in a sealed container and had already passed batch quality control inspection. Final inspection of such containers was the responsibility of the on-site quality assurance officer.

4.0 FIELD CONDITIONS

Throughout the sampling events which began on December 15, 1998, and ended on January 22, 1999, weather conditions at Salton Sea ranged from gusty (winds of 30 to 40 mph) to calm, and from cloudy to sunny. Gusty winds on January 21 limited the number of samples collected due to the 3- to 4-foot waves produced throughout the day. Unexpected setbacks during Phase I and Phase II activities included severe weather conditions, poor recovery from both samplers as a result of dense, compacted sediments, and a collision with an unmarked underwater rock jetty.

The only boat ramp identified as being able to accommodate LFR's 6.4-meter (21-foot) Bayliner Trophy with walk-around cuddy cabin and 120-hp outboard motor was at Desert Shores Marina. This marina was used for the majority of Phase I sampling and all the Phase II sampling. Sample recovery for both the modified Birge-Ekman-style box sediment sampler and the AMS corer was typically less than 100 percent. Generally, core samples gave the greatest percent recovery, except for sites 39 and 73 (located near the mouth of the New River) and site 63 (located in the central-northern part of the Sea). This uncharacteristically low recovery for sites 39 and 73 was due to the compacted nature of the fine-grained sediment, which resulted in the core apparatus splitting apart within the sediment and releasing the sample upon retrieval. The low recovery for site 63 was due to similar equipment difficulties compounded by depths of 14.7 m (48 feet). The greatest recovery for a core sample during this phase of work was at site 60. Grab sample recoveries were lowest for sites located in the southern end of the Sea near the mouth of the Alamo River, and greatest for sites at the northwestern end (sites 1 and 3), at the middle (sites 17, 18, 64), and near the mouth of San Felipe Creek (site 46) in the southwestern part of the Sea.

The difference in recoveries was due to the sediment composition observed in the field. These included fine-grained sand to silty sand in the southern part of the Sea and more of a silty, dark greenish gray (1 Gley), soft, gelatinous, organic material found in the northern part and middle of the Sea. Percent recoveries for each sample site and the type of sampler used to collect the sample are documented in the Field Activities Logbook Entry Forms located in Appendix B. The percent recoveries for each sample are also included in summary form as Table 3.

5.0 RESULTS AND DISCUSSION

5.1 Laboratory Analysis of Sediment Samples

Sediment samples were submitted to the following laboratories for chemical analysis: Apollo Analytics Laboratory (Apollo) in Irvine, California; Truesdail Laboratories, Inc., in Tustin, California; and PTS Laboratories, Inc., in Santa Fe Springs, California. All are certified by Cal-EPA for the relevant test methods. Apollo received all samples and analyzed them for VOCs and SVOCs by GC/MS and California Code of Regulations (CCR) metals. Samples were subcontracted to PTS Laboratories, Inc., for particle size using ASTM D4464M methodology. Samples were subcontracted to Truesdail Laboratories, Inc., for mercury, pesticides/PCBs, chlorinated herbicides, and organophosphate and nitrogen pesticides.

Samples collected in the field were stored on ice and delivered to the laboratory regularly and remained at a constant temperature of at least 4°C. Each sample with a sufficient amount of sediment was analyzed for:

- total inorganic metals consisting of the CCR 17 metals series (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc) using EPA Method 7000S
- VOCs using EPA Method 8260

- SVOCs using EPA Method 8270
- chlorinated pesticides and PCBs using EPA Method 8081; confirmation of selected chlorinated pesticides using EPA Method 8270
- organophosphate and nitrogen pesticides using EPA Method 8141
- chlorinated herbicides using EPA Method 8151

EPA methods 8080, 8140, and 8150B, proposed in LFR's QAPP (1998b), were substituted by the laboratories analyzing the samples for newer EPA methods 8081, 8141, and 8151. The associated analyte list and detection limits are included in Appendix F.

Samples which did not contain enough sediment for analysis by all of these methods were subject to the analyses starting with total inorganic metals. Additionally, the samples having enough sediment (except for the duplicates and blanks) were evaluated in the laboratory for particle size using sieves for the coarse-grained materials and a hydrometer for the fine-grained materials, along with evaluation for moisture content.

For most of the sediment samples, as noted in the field notes, a strong sulfur odor was present. Sulfur is a commonly found constituent known to be present in large concentrations in Salton Sea sediments and can mask the presence of low concentrations of many of the target analytes in pesticide and PCB analyses unless a sulfur cleanup is successfully implemented in the laboratory. To reduce the potential interferences from sulfur compounds, both laboratories performing chemical analyses on the sediment samples (Apollo Analytics and Truesdail Laboratories) took every step necessary to clean up and prepare these samples. For pesticide analysis, the samples were extracted by sonication using EPA Method 3550. For organochlorine pesticides, the extracts were cleaned up by Florisil using EPA Method 3620B. For organophos-phorous pesticides and herbicides, cleanup was not performed on the extracts because it was determined to have minimal effect on changing the detection limits (established in SW 846) with the available sample size and matrix interference.

5.2 Results of Sediment Contaminants Investigations

Analytical results for the sediment samples were reported in both wet and dry weights. The samples were run for wet weight concentrations first. The dry weight concentrations were calculated by correcting for the moisture content of each sample. This method, as opposed to drying, was necessary for analyses involving volatile and semivolatile organic compounds. Concentrations were reported on a dry and wet weight basis for inorganic chemicals in units of mg/kg and for organic chemicals in units of μ g/kg. Percentages of particle size and moisture content for each sediment sample are presented in Table 3, along with percent sand, silt, and clay. Tables 4 and 5 represent the detected concentrations of inorganic and organic chemicals, respectively. Chronologically arranged laboratory reports for the sediment samples are contained in Appendix F.

5.2.1 Sediment Composition

PTS Laboratories, Inc., was subcontracted by Apollo to perform analysis of particle size (ASTM D4464M). Percent moisture was determined by Apollo. Sediment samples were analyzed for these physical characteristics only if sample recovery was high enough to permit conducting the inorganic and organic chemical analyses.

5.2.1.1 Particle Size

Sediments sampled on the bottom of the Sea consisted of silt, clay, and relatively fine-grained sands. The shallow sediment also included abundant barnacle shells and occasional fish bones. The surface sediment composition included a high percentage of sand outside Salton City and extending into the central, deeper parts of the Sea. Sand percentages near the mouths of the New River and Alamo River were also high, as expected from deposition of these heavier particles from higher velocity inflows into the Sea. The lower velocity Whitewater River delta, on the other hand, was predominantly silt. Silt was also abundant along the southwest near shore area and along the shallow water bays near the New and Alamo rivers. A shallow layer of clay blankets the southwestern corner of the Sea and extends toward the center near the deepest part of the Sea. Clay is also abundant near shore and offshore just north of Desert Shores. The majority of the deeper sediment sampled consisted predominantly of varied amounts of silt and clay with lesser amounts of fine sand.

Sand, silt, and clay distribution as determined from the results of this study are represented in Figures 3, 4, and 5, respectively. These data, along with the remaining sediment composition of core data, are summarized in Table 3.

5.2.1.2 Percent Moisture

All sediment samples were analyzed for moisture content. The percent moisture for sediment samples ranged from 17 to 87 percent. Analytical results for percent moisture are presented in Table 3.

5.2.2 Inorganic Chemicals

In general, concentrations of inorganic chemicals were relatively high in the northern part of the Sea. Elevated concentrations were usually limited to the upper 30 cm (1 foot) of sediment. Table 4 summarizes the inorganic chemicals detected in Phase I and Phase II sediment samples. Concentrations are reported in dry weight.

Twelve of the 17 inorganic chemical analytes were detected during this investigation. These included arsenic, barium, cadmium, chromium, cobalt, copper, lead, molybdenum, nickel, selenium, vanadium, and zinc. Antimony, beryllium, mercury, silver, and thallium were not detected above the laboratory detection limit during this study. The following is a discussion of the inorganic chemicals that were detected in the sediment of the Sea at elevated concentrations. It should be noted that lead was also detected at an elevated concentration of 50 mg/kg at only one location (GB1) near Desert Shores.

5.2.2.1 Cadmium

Reported concentrations for cadmium ranged from 0.67 to 5.8 mg/kg. The highest reported concentrations of cadmium were 5.8 mg/kg (grab site 10) and 5.6 mg/kg (grab site 9). These elevated levels of cadmium were detected near the center, deeper portion of the Sea at the northern end. Analytical results are summarized in Table 4, graphically depicted in Figure 6, and spatially depicted in Figure 15.

5.2.2.2 Copper

Reported concentrations of copper ranged from 3.3 to 53 mg/kg. The highest reported concentrations of copper were 53 mg/kg (core site 6), 46 mg/kg (grab site 4), and 41 mg/kg (grab site 7). These elevated levels of copper were found near the mouth of the Whitewater River. Analytical results are summarized in Table 4, graphically depicted in Figure 7, and spatially depicted in Figure 16.

5.2.2.3 Molybdenum

Concentrations of molybdenum detected in the northern part of Salton Sea above the laboratory detection limit ranged from 11 to 194 mg/kg. The highest reported concentrations of molybdenum were 194 mg/kg (grab site 10), 138 mg/kg (grab site 11), and 120 mg/kg (grab site 1). Analytical results are summarized in Table 4, graphically depicted in Figure 8, and spatially depicted in Figure 17.

5.2.2.4 Nickel

Reported concentrations of nickel ranged from 3.3 to 33 mg/kg. The highest reported concentrations were 33 mg/kg (core site 6), 31 mg/kg (grab sites 34, 11, and 4), 29 mg/kg (grab site 16), and 29 mg/kg (grab site 17). These locations are along the north-south transect. Analytical results are summarized in Table 4, graphically depicted in Figure 9, and spatially depicted in Figure 18.

5.2.2.5 Zinc

Reported concentrations of zinc ranged from 5.4 to 190 mg/kg. The highest reported concentrations were 190 mg/kg (grab site 4), 176 mg/kg (core site 13), and 130 mg/kg (core site 6). These elevated levels were found at the mouths of the Whitewater River and Salt Creek. Analytical results are summarized in Table 4, graphically depicted in Figure 10, and spatially depicted in Figure 19.

5.2.2.6 Selenium

Concentrations of selenium detected at the Sea above the laboratory detection limit generally ranged from approximately 0.086 to 8.5 mg/kg. This latter concentration was found at site 1 outside the Desert Shores marina. Other high concentrations of selenium were 6.7 mg/kg (core site 66), 5.8 mg/kg (grab site 59), and 5.0 mg/kg (grab sites 3 and 65). Core site 13 was the only core sample to have a selenium concentration above 1 mg/kg for sediment below the first 30 cm (1 foot). This core had selenium concentrations of 4.3 mg/kg for the first 30 cm (1 foot) of sediment sampled, decreasing to 1.2 mg/kg for the next 30 cm (1 foot) sampled, and further decreasing to 0.66 mg/kg at a depth of 90 cm (3 feet) below the sea floor and 0.34 mg/kg at 120 cm (4 feet) below the sea floor. These elevated selenium concentrations were detected in the northern and central parts of the Sea. Analytical results are summarized in Table 4, graphically depicted in Figure 11, and spatially depicted in Figure 20.

5.2.3 Organic Chemicals

Elevated concentrations of organic chemicals were detected predominately in the northern part of the Sea and were limited to VOCs. Of the 118 sediment samples analyzed for VOCs using EPA method 8260, 114 samples contained one or more of the following compounds at concentrations above laboratory detection limits: acetone, o-xylenes, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, carbon disulfide, naphthalene, n-propylbenzene, and 2-butanone. Chemicals not detected in sediment samples include SVOCs, chlorinated pesticides, PCBs, organophosphate and nitrogen pesticides, and chlorinated herbicides. LFR reanalyzed a number of samples for chlorinated hydrocarbon pesticides using a lower detection limit with mass spectrometer positive confirmation (EPA Method 8270). This additional analysis was conducted at no additional charge to verify that these compounds were not present, and confirmed the absence of the selected pesticides in the sediment samples at a much lower detection limit. The laboratory reports for these additional confirmatory analyses, along with the other sample analytical results, are included in Appendix F. Table 5 summarizes the organic chemical concentrations detected in Phase I and Phase II sediment samples (wet and dry weight). Concentrations reported in this section are in dry weight.

Although organochlorine pesticides may not have been detected in this study because of elevated reporting detection limits, a number of previously detected concentrations for these pesticides (see Section 2.2; Table 2) were above the laboratory detection limits for this study, yet nothing was detected even from our much larger data set. Adding to the detection limit problem are the unique characteristics of Salton Sea sediments, which have a high organic carbon and sulfur content. For each analysis, the laboratory attempted to achieve the lowest detection limit possible based on the available sample size and matrix interference present.

Included below is a discussion of the VOCs detected during this investigation. Acetone, carbon disulfide, and 2-butanone are believed to be present as a result of naturally occurring biological processes within the organic rich sediment on the bottom of the Sea.

The other VOCs were only detected at two locations and were not pervasive throughout the sediments sampled.

5.2.3.1 Acetone

The highest reported concentrations of acetone (1,526 and 1,300 μ g/kg) were at grab sites 64 and 65, respectively, in the middle of the Sea. The lowest reported concentration of acetone above the laboratory detection limit was 37 μ g/kg, found below depths of 60 cm at core site 73, near the mouth of the New River. Analytical results are summarized in Table 5, graphically depicted in Figure 12, and spatially depicted in Figure 21.

5.2.3.2 Carbon Disulfide

The highest reported concentrations of carbon disulfide (5,000 and 3,400 μ g/kg) were at grab sites 3 and 8, respectively, near the mouth of the Whitewater River. The lowest reported concentration of carbon disulfide above the laboratory detection limit was 18 μ g/kg, found within the top 30 cm (1 foot) at core site 73, near the mouth of the New River. Analytical results are summarized in Table 5, graphically depicted in Figure 13, and spatially depicted in Figure 22.

5.2.3.3 2-Butanone

Reported concentrations of 2-butanone ranged from 14 to 536 μ g/kg. The highest reported concentration of 2-butanone was 536 μ g/kg at grab site 61, located in the northern portion of the Sea, offshore from Salton Sea State Recreation Area. The lowest reported concentration of 2-butanone above detection limits was 14 μ g/kg, found below depths of 30 cm (1 foot) at core site 73. Analytical results are summarized in Table 4, graphically depicted in Figure 14, and spatially depicted in Figure 23.

5.2.3.4 Other VOCs

The remaining VOCs were detected only at grab site 8 (located 5 miles from the mouth of the Whitewater River), except for benzene, which was detected at grab site 56 (also located at the mouth of the Whitewater River). Dry weight concentrations for benzene, o-xylenes, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, naphthalene, and n-propylbenzene were reported as 43, 45, 230, 700, 110, and 77 μ g/kg, respectively. The concentrations of these compounds detected at grab site 8 appear to be very localized, since none of the compounds were detected at grab site 54, which was placed adjacent to grab site 8 during Phase II sampling.

5.3 Quality Assurance / Quality Control Results

The LFR project team and management structure provide for direct and constant operational responsibility and the integration of QA activities. Project management, field operations, quality assurance, and analytical laboratory responsibilities are outlined in Section A3 of the QAPP (LFR, 1998b).

The field QA program is a systematic process that, together with the laboratory and data storage QA programs, ensured a high degree of reliability and confidence in the data collected for this survey. An example of the applicability of this process included reanalyzing a number of samples for chlorinated hydrocarbon pesticides using a lower detection limit with mass spectrometer positive confirmation (EPA Method 8270). This additional analysis was conducted at no additional charge to verify that these compounds were not present, and confirmed the absence of the selected pesticides in the sediment samples at a much lower detection limit.

5.3.1 Equipment Blanks

LFR collected five equipment blank samples during Phase I sampling activities and four equipment blank samples during Phase II. Equipment blank sample EB7, collected during Phase II sampling activities, was submitted to the laboratory but not analyzed as a result of the low number of samples collected for that day.

5.3.2 Duplicate Samples

Four duplicate samples were collected during Phase I sampling activities and two duplicate samples were collected during Phase II. Analytical results for duplicate samples were in general agreement with the primary samples collected. The duplicate samples analyzed were within acceptable ranges of the primary samples, especially when considering the heterogeneity of sediment samples collected at the Sea and the variability of detection limits for dry weight as a result of variation in moisture content between samples.

5.3.3 Laboratory Quality Control Measures

No analytes were detected above the laboratory detection limit in the laboratory method blank samples analyzed by the laboratory for any analysis performed during this study. In addition, the other laboratory quality control checks such as matrix spikes, matrix spike duplicates, relative percent difference, and laboratory control samples were all checked by LFR data management personnel for each laboratory report and were within the acceptable range of tolerance as specified in the laboratory reports.

In order to maintain the integrity of analytical results, strict custody procedures and adherence to sample holding times were carried out. Following collection in the field,

samples were packed upright in the cooler with at least two times as much ice pack weight as the total volume of the samples. The cooler was sealed with heavy-duty packing tape to reduce the possibility of it accidentally opening and to prevent tampering with the samples. Samples were shipped in such a manner that no more than 24 hours elapsed from the time of shipment to the time of receipt by the analytical laboratory. The method of shipment included hand-delivery by the field personnel, laboratory courier, and a commercial shipping service. Laboratory personnel were responsible for the care and custody of samples from the time they were received until the sample was exhausted or until disposal was determined. In the event of disposal, all disposal activities complied with all applicable federal, state, and local environmental regulations. Material remaining after completion of the requested analyses was stored. All data sheets and laboratory records will be retained as permanent documentation.

Holding times for the various laboratory analyses (EPA Methods) are as follows:

- 8260 14 days for liquid (with preservative) and sediment
- 8270 7 days for liquid extraction / 14 days for sediment, 40 days thereafter
- 8081 7 days for liquid extraction / 14 days for sediment, 40 days thereafter
- 8141 7 days for liquid extraction / 14 days for sediment, 40 days thereafter
- 8151 7 days for liquid extraction / 14 days for sediment, 40 days thereafter
- 7000S 6 months for liquid and sediment, except for the 28 days for mercury (liquid)

All of the samples analyzed during this investigation were within their respective holding times. The exception to this was when some of the samples were reanalyzed for chlorinated hydrocarbon pesticides using a lower detection limit with mass spectrometer positive confirmation (EPA Method 8270). These additional analyses confirmed the absence of the selected pesticides in the sediment samples listed below at a much lower detection limit. LFR believes that these data are still valid as a result of the extremely low half-life of the specific compounds being analyzed for. Although most of these samples were analyzed within their holding times, the following samples exceeded their prospective recommended holding times for EPA Method 8270:

- 76 days for sample GB1-34.5-121598
- 75 days for samples GB7-25.4-121698, GB5-1-121698, and GB12-40-121698
- 73 days for samples GB45-32.8-121798 and GB44-16.8-121798
- 72 days for samples GB21-31-121898, GB29-17.2-121898, and GB32-36.5-121898
- 69 days for samples GB30-4.9-122198 and GB42-1-122198
- 68 days for samples CR13-38-122298 and CR20-25-122298

Those samples which confirmed the absence of EPA Method 8270 analytes and were within their holding times included:

- 43 days for samples CR50-39-11999, GB53-33-11999, GB54-28.2-11999, GB56-17.4-11999, GB57-25.8-11999, and GB58-45-11999
- 44 days for sample CR63-49-12199
- 45 days for samples GB68-47.2-12199, GB69-42.7-12199, CR73-9-12199, and GB71-34.2-12199

5.4 Discussion

The inorganic and organic chemicals of concern were identified using available comparative values (e.g., maximum "baseline value" for soils of the western United States (Severson et al., 1987; modified from Shacklette and Boerngen, 1984). The NOAA biological effects range low (ERL) and effects range medium (ERM) values (Long et al., 1995) were also used as comparative values on Phase I sample results to identify which contaminants should be the focus of additional sampling efforts in Phase II and any follow-up studies. The ERL and ERM values are guidelines used to evaluate whether sediment chemical concentrations were within ranges that have been reported to be associated with biological effects. These guidelines were generated from a large national sediment database and are currently the most widely used and accepted sediment effects guidelines available. ERMs are the concentrations at which 50 percent of the studies for a particular chemical showed biological effects, and ERLs are the concentrations at which 10 percent of the studies showed biological effects. Since sediment chemical concentrations below ERLs are interpreted as being "rarely" associated with adverse effects, exceedances of ERM values and maximum baseline values were used to identify chemicals of potential concern. However, use of these criteria for evaluating ecological risk was beyond the scope of this assessment. Also, as a result of the Sea's unique ecosystem, whose characteristics (high salinity) put it well outside the database used to determine the ERLs and ERMs, these values may not be applicable for evaluating ecological risk at the Sea. A number of the chemicals of concern (including selenium and molybdenum) do not currently have ERM or ERL values for comparison. For selenium, SFRWQCB guidelines for sediment suitable for cover (0.7 mg/kg) and noncover (1.4 mg/kg) sediment in wetlands creation projects were used for comparisons purposes. For molybdenum, a baseline value of 4.0 mg/kg (Severson et al., 1987; modified from Shacklette and Boerngen, 1984) was used as a comparative value.

Cadmium, copper, lead, nickel, and zinc were present at concentrations exceeding their respective ERL values. The ERL value of lead was only slightly exceeded at one sampling location (50 mg/kg). None of these chemicals were detected at concentrations above their respective ERM values.

Selenium and molybdenum did not have established ERL or ERM values, but did regularly exceed their corresponding screening values (0.7 mg/kg and 1.4 mg/kg, and 4.0 mg/kg, respectively). Selenium, a naturally occurring element in the region's soils and waters, is also known to be leached into Salton Sea as a result of current irrigated agricultural practices. The selenium concentrations found during this investigation appear to be elevated with respect to previously reported background concentrations and Salton

Sea data. For example, Shacklette and Boerngen (1984) analyzed 733 samples of undisturbed soil collected throughout the western United States. A comparison of their selenium data with the 118 selenium concentrations measured in this study reveals a 78 percent increase in this element's geometric mean. The Shacklette and Boerngen (1984) data can be used to calculate a "maximum baseline level" of 1.4 mg/kg (based on the geometric mean times the geometric deviation squared). Assuming a log normal distribution of only approximately 5 percent of natural background, selenium values should exceed this level. However, this value was equaled or exceeded by 18 of the 118 (or 15%) collected in this study. The maximum concentration of selenium reported by Shacklette and Boerngen (1984) was 4.3 mg/kg. This value was equaled or exceeded by seven of the 118 samples collected during this study. The highest measured concentration in this study (8.5 mg/kg) is nearly twice the maximum concentration reported by Shacklette and Boerngen and slightly higher than the previous maximum value measured in the Salton Sea of 8.4 mg/kg reported in Bechtel (1984).

The other chemicals were detected at low and generally narrow ranges of concentrations in the sediment samples collected during this investigation and are therefore not discussed further. Graphs 6 through 14 represent the detected concentrations of potentially elevated concentrations of inorganic and organic chemicals detected during this study.

The potential for the observed contaminant concentrations to adversely affect benthic organisms can be assessed preliminarily by comparison with available sediment guidelines (ERLs and ERMs) developed by Long et al. (1995). However, as a result of the Sea's unique ecosystem, whose characteristics (especially high salinity) put it well outside the database used to develop the ERLs and ERMs, these comparative values may not be applicable for evaluating ecological risks at the Sea. The biota of the Salton Sea's high salinity waters also differ from the organisms found in estuarine areas for which the ERLs and ERMs were developed. However, evaluating ecological risk at the Salton Sea was beyond the scope of our contaminants study.

Statistical Evaluation

A statistical analysis of the laboratory results was conducted to evaluate possible correlations between the various sediment characteristics and chemicals. A statistical analysis was conducted on all surface grab samples and the uppermost samples from each core, for a statistical sample population representing 74 samples; it did not include duplicate samples or the deeper core samples. The following parameters were considered in the statistical analysis:

- Sediment type: The analysis considered percent clay, percent silt, percent total fines (silt plus clay), and percent sand.
- **VOCs:** The analysis considered the reported concentrations of acetone, 2-butanone, and carbon disulfide, which were the only commonly detected VOCs.

• **Inorganic chemicals:** The analysis considered the concentrations of 12 metals and metalloids detected during this study (arsenic, barium, cadmium, chromium, cobalt, copper, lead, molybdenum, nickel, selenium, vanadium, and zinc).

In a substantial number of cases, metals and VOCs were present at concentrations below the applicable laboratory detection limits. These nondetected, or "ND," values included the results for five metals: antimony, beryllium, mercury, silver, and thallium. Furthermore, the laboratory detection limits for each analyte were subject to wide variation. Since the use of ND values can introduce uncertainties and possible spurious correlations, the statistical analysis considered only those results that were above laboratory detection limits.

The Pearson correlation coefficient (r) was calculated for each pair of analytes. The statistical significance of each r value was then computed based on the number of valid data pairs. Positive and negative correlations that were significant at the 95 percent and 99 percent confidence levels are shown in Table 6, along with the applicable r^2 values.

Interpretation of the observed correlations is largely speculative. Further work would be required to definitively establish the significance and cause of these correlations.

The correlation between certain volatile organic compounds in sediments is probably related to the biodegradation and decomposition of the sediment organic matter. Acetone (C_3H_6O) and 2-butanone (C_4H_8O) are chemically similar, and therefore they may have similar environmental origins and fates. The distribution maps (Figures 21 and 23) suggest that these two compounds tend to be associated with deeper water, and it may be that these compounds are being produced as byproducts of organic matter decomposition.

Many of the metallic elements, such as chromium and copper, are positively correlated with each other. These elements also tend to be positively correlated with fine-grained sediments (i.e., percent clay, percent silt or percent total fines). Fine-grained sediments and sedimentary rocks are commonly enriched in metallic elements relative to coarse-grained sediments and sedimentary rocks (American Geological Institute, 1982).

Certain other elements such as selenium, molybdenum, and cadmium are positively correlated with coarse-grained, sandy sediments (and with each other). The reason for this phenomenon is not obvious. However, G.R. Bradford et al. (1996) also found significant selenium/cadmium and molybdenum/cadmium relationships in a survey of 50 representative California soils.

6.0 SUMMARY

Prior to this investigation, there was limited information about the current concentrations of contaminants in sediments in the Salton Sea and surrounding tributaries. This investigation was one of the first comprehensive studies completed to evaluate the distribution of sediment types and contaminants throughout the Sea. Phase I sediment

samples were collected from 42 grab sampling sites and 6 core sampling sites. The second phase of sampling focused on the significant areas of interest identified during Phase I and included sediment sampling at 15 grab sites and 10 core sites.

Sediments sampled on the bottom of the Sea consisted of silt, clay, and finer grained sands. The shallow sediment also included abundant barnacle shells and occasional fish bones. The surface sediment composition included a high percentage of sand outside Salton City and extending into the central, deeper parts of the Sea. Sand percentages near the mouths of the New and Alamo rivers were also high, as expected, from deposition of these heavier particles from higher velocity inflows into the Sea. The lower velocity Whitewater River delta, on the other hand, was predominantly silt. Silt was also abundant along the southwest near-shore area and along the shallow water bays near the New and Alamo rivers. A shallow layer of clay blankets the southwestern corner of the Sea and extends toward the center, near the deepest part of the Sea. Clay is also abundant near shore and offshore just north of Desert Shores. The majority of the deeper sediment sampled consisted predominantly of varied amounts of silt and clay, with lesser amounts of fine sand.

Concentrations of inorganic chemicals in the sediments were found to be higher in the northern part of the Sea. Concentrations were generally higher in the upper 30 cm (1 foot) of sediment. The chemical concentrations were compared against background and available sediment quality screening criteria commonly used in sediment assessment studies of saline environments: maximum "baseline value" for soils of the western United States (Severson and others, 1987; modified from Shacklette and Boerngen, 1984) and NOAA effects range low (ERL) and effects range medium (ERM). For selenium, SFRWQCB criteria for wetlands creation were used because no ERLs or ERMs exist. NOAA ERL and ERM levels were used as a preliminary screening tool to define apparent elevated concentrations within the Sea. These values were not used for the purpose of determining ecological risk, and such an evaluation was beyond the scope of this reconnaissance level assessment. Based on these screening criteria, the following chemicals were determined to be elevated and of potential ecological concern: cadmium, copper, molybdenum, nickel, zinc, and selenium, with the most elevated inorganic constituent being selenium.

Concentrations of cadmium ranged from 0.67 to 5.8 mg/kg. The highest reported concentrations of cadmium were found in the north-central part of the Sea. Concentrations of copper ranged from 8.1 to 53 mg/kg. The highest concentrations were found near the mouth of the Whitewater River. Concentrations of molybdenum detected in the north and central part of the Sea ranged from approximately 11 to 194 mg/kg. The range of reported concentrations for nickel was from 3.3 to 33 mg/kg. The highest concentrations of nickel were detected at the mouth of the Whitewater River and in the deeper portion of the Sea. The range of concentrations for zinc was from 5.4 to 190 mg/kg. The highest concentrations of zinc were found at the mouths of the Whitewater River and Salt Creek. Concentrations of selenium detected at the Sea ranged from 0.086 to 8.5 mg/kg. The highest concentrations of selenium were found just offshore of Desert Shores. In general, inorganic and organic chemical concentrations were elevated over much of the northern half of the Sea.

A cursory comparison of historic data with those obtained during this investigation show a broad decrease in maximum levels detected in sediment concentrations for many of the inorganic and organic chemicals, particularly pesticides, copper, and zinc. It should be noted that the majority of the previous studies focused on specific areas (including areas known to be "hot spots") and are not as comprehensive as this study, thus potentially skewing the range of concentrations detected. For example, the concentration ranges for copper (23-68.7 mg/kg), nickel (2-170 mg/kg), and zinc (8.6-510 mg/kg) in the historical data are higher than the concentration ranges observed in this study for copper (3.3–53 mg/kg), nickel (<5.1–31 mg/kg), and zinc (5.4–190 mg/kg). Chemicals showing increased concentration ranges in this current study were cadmium (<0.96–5.8 mg/kg) and selenium (<0.046-8.5mg/kg) compared to their historical range of <2-1.6 mg/kg and 0.1-8.4 mg/kg, respectively. The concentration ranges for DDE (0.6–110 µg/kg) and Dieldrin (0.6–880 μ g/kg) in the historical data are higher than the concentration ranges observed in this study for DDE ($<47-<90 \text{ }\mu\text{g/kg}$) and Dieldrin ($<47-<90 \text{ }\mu\text{g/kg}$). Although low concentrations of organochlorine pesticides may not have been detected in this study because of elevated reporting detection limits, a number of previously detected concentrations for these pesticides were above the laboratory detection limits for this study, yet nothing was detected even from our much larger data set. The detection limit problem likely resulted from the characteristics of Salton Sea sediments, which contain very high levels of organic carbon and sulfur. For each analysis, the laboratory attempted to achieve the lowest detection limit possible based on the available sample size and matrix sampled.

Elevated concentrations of organic chemicals were detected in sediment predominately in the northern part of the Sea and were limited to predominately VOCs. Of the 118 sediment samples analyzed for VOCs, 114 samples contained detectable concentration of acetone, carbon disulfide, and/or 2-butanone. These three detected chemicals could possibly be present as a result of natural biological processes occurring within Salton Sea sediment. Acetone concentrations ranged from 32 to 840 μ g/kg. The highest concentrations of acetone were located near the mouth of the New River. Carbon disulfide concentrations ranged from 15 to 1,800 μ g/kg. The highest concentrations of 2-butanone ranged from 11 to 150 μ g/kg. The highest concentrations of 2-butanone was located in the northern portion of the Sea, offshore from Salton Sea State Park.

Only two other sediment samples contained other detectable concentrations of VOCs, including o-xylenes, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, naphthalene, and n-propylbenzene. These chemicals appeared to be very localized and nonpervasive.

One of the most significant findings of this study was that SVOCs, chlorinated pesticides, PCBs, organophosphate and nitrogen pesticides, and chlorinated herbicides were not detected in the sediment samples analyzed.

This preliminary study indicates that some inorganic chemicals, notably selenium, are present at elevated concentrations in Salton Sea. However, more detailed sediment assessments are required to determine if these chemicals pose a potentially significant human and/or ecological risk. A determination of the forms of the contaminants,

especially selenium, would be valuable in evaluating its potential mobility and bioavailability. Additionally, near-shore sediment sampling and sampling at a greater density, especially for identified chemicals of potential concern, would be required to determine baseline chemical concentrations for Salton Sea.

7.0 REFERENCES

- American Geological Institute. 1982. AGI Data Sheets. 2nd Edition. Data Sheet 42.2.
- Arnal, Robert E. 1954. Preliminary Report on the Sediments and Foraminifera from the Salton Sea, Southern California [Abstracts]. Geological Society of America Bulletin, Vol. 65, Issue 12, p. 2, pp. 1227–1228.

————. 1961. Limnology, Sedimentation, and Microorganisms of the Salton Sea, California. Geological Society of America Bulletin, Vol. 72, Issue 3, pp. 427–78.

- Babcock, E.A. 1974. Geology of northeast margin of the Salton Trough, Salton Sea, California. Geological Society of America Bulletin, Volume 85, Issue 3, pp. 321–332.
- Bechtel National, Inc. 1997. Final Addendum to the Removal Site Evaluation Report, Salton Sea Test Base Report, Salton Sea Test Base, Imperial County, CA. 1 v.
- Bradford, G.R., et al. 1996. Background Concentrations of Trace and Major Elements in California Soils. Kearney Foundation Special Report. Kearney Foundation of Soil Science.
- Eccles, L.A. 1979. Pesticide residues in agricultural drains, southeastern desert area, California. U.S. Geological Survey Water Resources Investigation Report 79–16, 60 pp.
- Ferrari, R.L., and P. Weghorst. 1997. Salton Sea: 1995 Hydrographic GPS Survey (Revised May 1997). NTIS Accession # PB97 – 164677, 30 pp.
- Hogg, N.D. 1973. Chlorinated Hydrocarbon Pesticide Residues, Salton Sea, California. M.S. Thesis. California Polytechnic University, Pomona. 47 pp.
- Johnson, H., D. Agnew, and F. Wyatt. 1994. Present-day crustal deformation in southern California. Journal of Geophysical Research, Vol. 99, Issue B12, pp. 23951– 23974.
- LFR Levine-Fricke Inc. 1998a. Proposal for Environmental Reconnaissance of the Salton Sea: Sediment Contaminants. November 12.

- —. 1998c. Health and Safety Plan for Sediment Contaminants Investigation Activities at the Salton Sea, Riverside and Imperial Counties, California. December 11.
- Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments: Environmental Management. V. 19:1, pp. 81–87.
- Morton, P. 1977. Geology and mineral resources of Imperial County, California. Sacramento, CA. California Division of Mines & Geology. 104 pp.
- National Oceanic and Atmospheric Administration (NOAA). 1991. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Status and Trends Program. NOAA, Office of Oceanography and Marine Assessment, Seattle, WA. Technical Memorandum NOS OMA 52. (Also cited as Long and Morgan, 1990.)
- Setmire, J. [et al.] 1993. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1988–90. Prepared in cooperation with the California Regional Water Quality Control Board, Colorado River Basin Region. Sacramento, Calif.: U.S. Geological Survey 93-4014, 102 pp.
- Setmire, J., and R. Stroud. 1990. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1986–87. [Sacramento, Calif.]: Dept. of the Interior, U.S. Geological Survey, 89-4102, 68 pp.
- Severson, R.C., S.A. Wilson, and J.M. McNeal. 1987. Analyses of bottom material collected at nine areas in the Western United States for the DOI irrigation drainage task group: U.S. Geological Survey, Open-File Report 87-490, 24 pp.
- Shacklette, H., and J. Boerngen. 1984. Element concentrations in soils and other surficial materials of the conterminous United States: U.S. Geological Survey Professional Paper 1270, 105 pp.
- Stephen, M. 1972. Sedimentary aspects of the New River Delta, Salton Sea, Imperial County, California. University of Southern California.
- Stephen, Michael F., and Donn S. Gorsline. 1975. Sedimentary aspects of the New River Delta, Salton Sea, Imperial County, California. Deltas, models for exploration. Martha Lou Broussard, ed. [Houston] Houston Geological Society. Pp. 267–282.
- Stewart, K., D. Fey, P. Hageman, K. Kennedy, A. Love, R. McGregor, C. Papp, T. Peacock, J. Sharkey, R. Vaughn, and E. Welsch. 1992. Results of chemical

analysis for sediments from Department of the Interior National Irrigation Water Quality Program Studies, 1988–1990. Department of the Interior, U.S. Geological Survey, Open-File Report 92443.

- Thornton, E., and W. Seyfried, Jr. 1975. Sediment-sea-water interaction at 200 and 300'SUP o'C, 500 bars pressure: the role of sediment composition in diagenesis and low-grade metamorphism of marine clay. Geological Society of America Bulletin. Pp. 1287–1295.
- United States Department of the Interior. 1970. Federal Water Quality Administration. Southwest Regional Office. Salton Sea, California. Water Quality and Ecological Management Considerations. NTIS Accession # PB - 253 691/0/XAB, 54 pp. San Francisco, California.
- Van de Kamp, P. 1973. Holocene continental sedimentation in the Salton Basin, California: a reconnaissance. Geological Society of America Bulletin. Shell Oil Company Investigation. Vol. 84, pp. 827–48.
- Vonder Haar, S., and I. Cruz. 1979. Fault intersections and hybrid transform faults in the southern Salton Trough geothermal area, Baja California, Mexico. Expanding the geothermal frontier / Geothermal Resources Council Annual Meeting, 24– 27 September 1979, Reno, Nevada. Pp. 761–764.
- Walker, J. 1996. Fresh-Water Inflow and Distribution of Laminated Sediments in the Salton Sea, California. Loma Linda University.
- Wolfenden, J., and M. Carlin. 1992. Interim Screening Criteria and Testing Requirements for Wetland Creation and Upland Beneficial Reuse Projects. San Francisco Regional Water Quality Control Board.

TABLES

Table 1: Historic Concentrations of Inorganic Chemicals in Sediment From Salton Sea and Surrounding Tributaries Determined to be of Concern LFR 6824.00

Results reported in milligrams per kilogram (mg/kg), dry weight

							Chemica	I (metals)						
Location	Antimony	Arsenic	Barium	Cadmium	Chromium	Copper	Molybdenum	Nickel	Selenium	Thallium	Thorium	Uranium	Vanadium	Zinc
Max. Baseline Value mg/kg (a)		22	1,700		200	90	4	66	1.4		20	5.3	270	180
Salton Sea median conc. (mg/kg) <i>(b)</i>		5.6	550		58	28		25	0.7		10.6	4.9	77	78
Whitewater River upstream from HWY 111 (b)		2.4	690	<2	81	34	<2	30	0.1		56	14.6	140	110
Whitewater River at outlet (b)		5	710	<2	210	64	3	170	0.5		18.9	5.5	130	510
Alamo River at international boundary (b)		6.3	510	<2	58	26	<2	26	1.6		12.2	4.8	77	97
Trifolium Drain 1 (b)		5.8	550	<2	53	28	<2	24	1.9		9	4.4	72	78
Ave 64 Evacuation Channel at HWY 195 (b)		4.4	620	<2	75	<mark>61</mark>	2	2	0.4		21.3	5.1	120	130
New River at midpoint (08/11/86, 08/14/86) (b)		5.4, 11.0	580, 780	<2, <2	63, 73	30, 27	<2, 2	25, 35	0.6, <mark>1.3</mark>		10.6, 12.0	6.1, 7.5	77, 96	75, 120
New River at outlet (b)		4.7	720	<2	70	23	<2	22	0.6		19.2	7.7	82	71
East Highline Canal (b)		4.5	690	<2	50	23	<2	22	0.9		12.7	5.9	60	70
Alamo River delta <i>(c)</i>									0.2 - <mark>2.5</mark>					
Shoreline Disposal Area (d)		0.9	315		33.9	68.7				0.31			2.6	8.6
Offshore aeroballistic marine target SSTB (d)	9.9	27.4		1.6			14.5		8.4			14.2	52.5	
Imhoff Tank (d)										0.26				
Maximum Baseline Values ¹	-	22	1,700	-	200	90	4.0	66	1.4	-			270	180
Effects Range - Low ²	2 ³	8.2	-	1.2	81	34	-	20.9	0.7 ³	-			-	150
Effects Range - Medium ²	25 ³	70	-	9.6	370	270	-	51.6	1.4 ³	-			-	410

NOTES:

¹ = from Severson & others, 1987: modified by Shacklette & Boerngen, 1984

Bold = Values exceeding ERL **Bold** = Values exceeding ERM

² = from Long & others, 1995

³ = Wolfenden & Carlin (SFRWQCB), 1992 ("surrogate" ERL & ERM values for comparison purposes) (a) Shacklette & Boerngen, 1984

(c) Setmire [et al.], 1993

(b) Setmire & Stroud, 1990

(d) Bechtel, 1997 (maximum concentrations reported)

Table 2:

Historic Concentrations of Organic Chemicals in Sediment

From Salton Sea and Surrounding Tributaries Determined to be of Concern

LFR 6824.00

Results reported in micrograms per kilogram (µg/kg), dry weight

								Chem	icals							
Location	Acetone	Carbon disulfide	Chlordane	DDT	aaa	DDE	Dieldrin	Ethylbenzene	gamma- Chlordane	Heptachlor	Methoxychlor	PAHs *	PCBs	Toluene	Toxaphene	Xylenes
Whitewater River upstream from HWY 111 <i>(b)</i>			<1.0		<0.1	0.6					<0.1		<1		10	
Alamo River outlet (b)			<1.0		20	64					<0.1		<1		<10	
Alamo River at international boundary <i>(b)</i>			<1.0		2.3	18					<0.1		9		<10	
Trifolium Drain 1 <i>(b)</i>			<1.0		3.7	41					<0.1		<1		<10	
Trifolium Drain 1 <i>(e)</i>						110										
Trifolium Drain 4 (b)			<1.0		12	56					<0.1		<1		40	
Vail Drain 4 <i>(b)</i>			<1.0		7.8	57					45		<1		<10	
Ave 64 Evacuation Channel at HWY 195 <i>(b)</i>			1		5.8	56					<0.1		<1		<10	
Ave 64 Evacuation Channel at HWY 195 <i>(e)</i>						67										
New River at midpoint (08/14/86) <i>(b)</i>			5		3.5	7.4					<0.1		4		<10	
New River at international boundary (b)			20		24	7.6					<0.1		24		<10	
East Highline Canal (b)			<1.0		2.3	18					<0.1		9		<10	
Shoreline Disposal Area (d)	23	2		3.1	4.9	6.6	3	2	3.4	3.5	14	85		15		11
Imhoff Tank <i>(d)</i>						3.2	0.6		190	290						
1 mile from Whitewater River 0-11.5 outlet (f) cm				<25	5	5	<5									
11.5-23 cm				<25	<5	<5	<5									

Table 2:

Historic Concentrations of Organic Chemicals in Sediment

From Salton Sea and Surrounding Tributaries Determined to be of Concern

LFR 6824.00

Results reported in micrograms per kilogram (µg/kg), dry weight

									Chem	icals							
Location		Acetone	Carbon disulfide	Chlordane	DDT	aaa	DDE	Dieldrin	Ethylbenzene	gamma- Chlordane	Heptachlor	Methoxychlor	PAHs *	PCBs	Toluene	Toxaphene	Xylenes
2.5 miles from Whitewater River outlet (f)	0-11.5 cm				<25	5	5	<5									
	11.5-23 cm				25	20	23	<5									
5 miles from Whitewater River (f)	0-11.5 cm				<25	12	14	<5									
	11.5-23 cm				25	5	5	5									
1 mile from Alamo River outlet (f)	0-11.5 cm				25	5	5	92									
	11.5-23 cm				25	5	5	100									
2.5 miles from Alamo River outlet <i>(f)</i>	0-11.5 cm				25	5	16	49									
5 miles from Alamo River	11.5-23 cm				82	5	18	880									
outlet <i>(f)</i>	0-11.5 cm				25	5	5	60									
F ((, , , , , , , , , , , , , , , , , , ,	11.5-23 cm				25	5	5	43					004	00.7			
Effects Range Effects Range - M		-	-	-	1 ² 7 ²	2 ² 20 ²	2.2 27	0.02 ² 8 ²	-	-	-	-	261 1,600	22.7 180	-	-	-

Notes:

* Polycyclic Aromatic Hydrocarbon (PAHs) values are for Benzo(a)anthracene and Chrysene

¹ from Long and others, 1995

² from Long and Morgan, 1990

(a) Shacklette & Boerngen, 1984

- (b) Setmire & Stroud, 1990
- (c) Setmire [et al.], 1993

(d) Bechtel, 1997 (maximum data reported)(e) Eccles, 1979(f) Hogg, 1973

Bold= Values exceeding ERLBold= Values exceeding ERM

Table 3:Physical Composition of Phase I & II Sediment SamplesFrom Salton Sea and Surrounding Tributaries Determined to be of ConcernLFR 6824.00

LFR	Sample ID	Depth	Date	Sand%	Silt%	Clay%	Percent Moisture	Sampler Percent Recovery	Longitude	Latitude
1	GB1-34.5-121598	34.5	12/15/98	52	35	13	80	50	-116.0220	33.412
2	GB2-12.4-121598	12.4	12/15/98	36	55	9	59	30	-116.0430	33.453
3	GB3-19.5-121598	19.5	12/15/98	44	43	13	76	50	-116.0550	33.479
4	GB4-7.2-121698	7.2	12/16/98	18	67	15	52	30	-116.0560	33.501
4D	GB4-7.2-121698-0	7.2	12/16/98				57	30	-116.0560	33.501
5	GB5-1-121698	1.0	12/16/98	98	2	0	27	10	-116.0790	33.525
6	CR6-18-122198	18	12/16/98	21	60	19	64	85*	-116.0460	33.492
6	CR6-19-122198	19	12/16/98	28	61	11	46	85*	-116.0460	33.492
6	CR6-20-122198	20	12/16/98	11	64	25	39	85*	-116.0460	33.492
6	CR6-21-122198	21	12/16/98	9	64	27	45	85*	-116.0460	33.492
6	CR6-22-122198	22	12/16/98	2	61	37	43	85*	-116.0460	33.492
7	GB7-25.4-121698	25.4	12/16/98	22	62	16	71	30	-116.0300	33.495
8	GB8-27.3-121698	27.3	12/16/98	37	49	14	78	30	-116.0290	33.481
9	GB9-39.3-121798	39.3	12/17/98	55	33	12	84	2	-115.9920	33.486
10	GB10-47.4-121798	47.4	12/17/98	61	35	4	84	40	-115.9480	33.429
11	GB11-45.9-121798	45.9	12/17/98	65	26	9	87	25	-115.8870	33.418
12	GB12-40-121698	40	12/16/98	53	33	14	79	30	-115.8810	33.447
13	CR13-33-122298	33	12/22/98	27	44	29	51	100*	-115.8690	33.436
13	CR13-34-122298	34	12/22/98	27	44	29	38	100*	-115.8690	33.436
13	CR13-35-122298	35	12/22/98	4	40	56	27	100*	-115.8690	33.436
13	CR13-36-122298	36	12/22/98	33	45	22	25	100*	-115.8690	33.436
13	CR13-37-122298	37	12/22/98	47	37	16	20	100*	-115.8690	33.436
13	CR13-38-122298	38	12/22/98	4	40	56	27	100*	-115.8690	33.436
14	GB14-11-121698	11	12/16/98	30	54	16	50	-	-115.8520	33.445
15	GB15-38.2-121698	38.2	12/16/98	48	39	13	64	20	-115.8530	33.423
16	GB16-45.3-121898	45.3	12/18/98	66	25	9	84	-	-115.8530	33.361
17	GB17-40.8-121898	40.8	12/18/98	69	21	10	79	50	-115.8020	33.314

Table 3:Physical Composition of Phase I & II Sediment SamplesFrom Salton Sea and Surrounding Tributaries Determined to be of ConcernLFR 6824.00

LFR	Sample ID	Depth	Date	Sand%	Silt%	Clay%	Percent Moisture	Sampler Percent Recovery	Longitude	Latitude
18	GB18-46.8-121898	46.8	12/18/98	61	28	11	82	50	-115.7660	33.258
19	CR19-46-122298	46	12/22/98	9	36	55	41	60*	-115.7290	33.248
19	CR19-47-122298	47	12/22/98	9	36	55	48	60*	-115.7290	33.248
19	CR19-48-122298	48	12/22/98	1	55	44	43	60*	-115.7290	33.248
20	CR20-21-122298	21	12/22/98	25	51	24	54	90*	-115.6580	33.314
20	CR20-22-122298	22	12/22/98	25	51	24	49	90*	-115.6580	33.314
20	CR20-23-122298	23	12/22/98	26	52	22	52	90*	-115.6580	33.314
20	CR20-24-122298	24	12/22/98	13	63	24	40	90*	-115.6580	33.314
20	CR20-25-122298	25	12/22/98	0	35	65	43	90*	-115.6580	33.314
20	CR20-26-122298	26	12/22/98	1	50	49	39	90*	-115.6580	33.314
21	GB21-31-121898	31	12/18/98	39	44	17	61	35	-115.6490	33.276
22	GB22-23.4-121898	23.4	12/18/98	40	45	15	66	10	-115.6320	33.253
23	GB23-34.8-121898	34.8	12/18/98	55	33	12	65	25	-115.6630	33.244
24	GB24-20.4-121898	20.4	12/18/98	98	1	1	17	<1	-115.6530	33.241
24-20.5	GB24-20.5-122298	20.5	12/22/98	86	11	3	26	5	-115.6520	33.240
25	GB25-16.2-121898	16.2	12/18/98	56	33	11	35	2	-115.6410	33.235
26	CR26-17-122298	17	12/22/98	33	48	19	35	50*	-115.6340	33.228
26	CR26-18-122298	18	12/22/98	13	61	27	30	50*	-115.6340	33.228
26	CR26-19-122298	19	12/22/98	33	47	20	29	50*	-115.6340	33.228
27	GB27-12-121898	12	12/18/98	86	10	4	26	<2	-115.6250	33.232
28	GB28-14.2-121898	14.2	12/18/98	48	38	14	41	2	-115.6270	33.220
29	GB29-17.2-121898	17.2	12/18/98	62	29	9	29	<2	-115.6390	33.222
30	GB30-4.9-122198	4.9	12/21/98	64	30	6	30	30	-115.5970	33.199
31	GB31-25.2-121898	25.2	12/18/98	59	33	8	45	5	-115.6630	33.216
32	GB32-36.5-121898	36.5	12/18/98	58	31	11	72	20	-115.6870	33.221
32D	GB32-36.5-121898-0	36.5	12/18/98				66	20	-115.6870	33.221
33	GB33-33-121898	33	12/18/98	51	36	13	68	15	-115.6980	33.204

Table 3:Physical Composition of Phase I & II Sediment SamplesFrom Salton Sea and Surrounding Tributaries Determined to be of ConcernLFR 6824.00

LFR	Sample ID	Depth	Date	Sand%	Silt%	Clay%	Percent Moisture	Sampler Percent Recovery	Longitude	Latitude
34	GB34-33-121898	33	12/18/98	56	32	12	73	20	-115.7150	33.191
35	GB35-24-121898	24	12/18/98	43	47	10	46	5	-115.6800	33.185
36	GB36-20.4-121798	20.4	12/17/98	41	37	22	37	2	-115.6850	33.163
37	GB37-23.4-121798	23.4	12/17/98	23	57	20	56	-	-115.7050	33.171
38	GB38-24-121798	24	12/17/98	15	65	20	63	30	-115.7350	33.164
39	CR39-21-122298	21	12/22/98	5	54	41	32	10	-115.7050	33.159
40	GB40-13.2-121798	13.2	12/17/98	62	29	9	40	2	-115.7180	33.149
41	GB41-12-121798	12	12/17/98	75	18	7	28	2	-115.6950	33.142
42	GB42-1-122198	1.0	12/21/98	24	64	12	35	100	-115.6840	33.110
42D	GB42-1-122198-0	1.0	12/21/98				32	100	-115.6840	33.110
43	GB43-11.4-121798	11.4	12/17/98	13	62	25	55	35	-115.7490	33.119
44	GB44-16.8-121798	16.8	12/17/98	14	60	26	64	25	-115.7360	33.133
45	GB45-32.8-121798	32.8	12/17/98	31	49	20	69	30	-115.7590	33.183
46	GB46-15-121798	15	12/17/98	10	63	27	51	50	-115.8060	33.179
47	GB47-24.4-121798	24.4	12/17/98	66	27	7	56	10	-115.8520	33.284
48	GB48-24.5-121798	24.5	12/17/98	73	22	5	52	25	-115.9560	33.355
48D	GB48-24.5-121798-0	24.5	12/17/98				57	25	-115.9560	33.355
49	CR49-39-12099	39	01/20/99	9	60	31	26	33*	-115.9760	33.377
49	CR49-40-12099	40	01/20/99	1	53	46	37	33*	-115.9760	33.377
50	CR50-39-11999	39	01/19/99	15	57	28	50	50*	-116.0100	33.402
50	CR50-40-11999	40	01/19/99	4	48	48	38	50*	-116.0100	33.402
50	CR50-41-11999	41	01/19/99	4	48	48	26	50*	-116.0100	33.402
51	CR51-29-12099	29	01/20/99	64	28	8	50	33*	-116.0280	33.413
51	CR51-30-12099	30	01/20/99	31	55	14	34	33*	-116.0280	33.413
51	CR51-31-12099	31	01/20/99	8	50	42	27	33*	-116.0280	33.413
52	CR52-41-12099	41	01/20/99	56	31	13	54	70*	-116.0140	33.421
52	CR52-42-12099	42	01/20/99	8	58	34	39	70*	-116.0140	33.421

Table 3:Physical Composition of Phase I & II Sediment SamplesFrom Salton Sea and Surrounding Tributaries Determined to be of ConcernLFR 6824.00

LFR	Sample ID	Depth	Date	Sand%	Silt%	Clay%	Percent Moisture	Sampler Percent Recovery	Longitude	Latitude
52	CR52-43-12099	43	01/20/99	2	53	45	33	70*	-116.0140	33.421
52	CR52-44-12099	44	01/20/99	16	54	30	31	70*	-116.0140	33.421
53	GB53-33-11999	33	01/19/99	56	32	12	74	30	-116.0270	33.425
54	GB54-28.2-11999	28.2	01/19/99	34	51	15	75	30	-116.0310	33.477
55	CR55-14-12099	14	01/20/99	23	63	14	41	33*	-116.0680	33.484
55	CR55-15-12099	15	01/20/99	23	63	14	30	33*	-116.0680	33.484
56	GB56-17.4-11999	17.4	01/19/99	43	45	12	66	40	-116.0280	33.510
56D	GB56-17.4-11999-0	17.4	01/19/99				77	40	-116.0280	33.510
57	GB57-25.8-11999	25.8	01/19/99	44	42	14	39	30	-115.9930	33.507
58	GB58-45-11999	45	01/19/99	58	30	12	78	40	-115.9400	33.480
59	GB59-45-11999	45	01/19/99	64	27	9	83	30	-115.9690	33.449
60	CR60-48-12099	48	01/20/99	33	49	18	40	95*	-115.9490	33.427
60	CR60-49-12099	49	01/20/99	7	69	24	31	95*	-115.9490	33.427
60	CR60-50-12099	50	01/20/99	6	71	23	28	95*	-115.9490	33.427
60	CR60-51-12099	51	01/20/99	10	66	24	36	95*	-115.9490	33.427
60	CR60-52-12099	52	01/20/99	12	64	24	31	95*	-115.9490	33.427
61	GB61-44-11999	44	01/19/99	46	47	7	72	45	-115.8980	33.466
62	GB62-44-12099	44	01/20/99	50	37	13	74	10	-115.8970	33.429
63	CR63-49-12299	49	01/22/99	16	58	26	36	19	-115.9190	33.393
64	GB64-46.2-12099	46.2	01/20/99	70	23	7	81	75	-115.8660	33.390
65	GB65-46.2-12099	46.2	01/20/99	75	18	7	80	-	-115.8860	33.360
66	CR66-42-12299	42	01/21/99	45	42	13	52	69*	-115.8360	33.321
66	CR66-43-12299	43	01/21/99	18	32	50	27	69*	-115.8360	33.321
66	CR66-44-12299	44	01/21/99	45	42	13	35	69*	-115.8360	33.321
66	CR66-45-12299	45	01/21/99	13	41	46	36	69*	-115.8360	33.321
67	GB67-43.6-12199	44	01/21/99	60	30	10	79	25	-115.7880	33.277
68	GB68-47.2-12199	47.2	01/21/99	37	45	18	76	25	-115.7430	33.282

Table 3:Physical Composition of Phase I & II Sediment SamplesFrom Salton Sea and Surrounding Tributaries Determined to be of ConcernLFR 6824.00

LFR	Sample ID	Depth	Date	Sand%	Silt%	Clay%	Percent Moisture	Sampler Percent Recovery	Longitude	Latitude
69	GB69-42.7-12199	42.7	01/21/99	16	41	43	59	20	-115.7730	33.231
70	GB70-35.4-12299	35.4	01/21/99	49	33	18	60	20	-115.7680	33.345
71	GB71-34.2-12199	34.2	01/21/99	33	47	20	60	20	-115.6760	33.295
72	CR72-11-12199	11	01/21/99	17	62	21	37	66*	-115.6280	33.193
72	CR72-12-12199	12	01/21/99	3	66	31	39	66*	-115.6280	33.193
72	CR72-13-12199	13	01/21/99	2	67	31	39	66*	-115.6280	33.193
72	CR72-14-12199	14	01/21/99	3	37	60	31	66*	-115.6280	33.193
73	CR73-8-12199	8.0	01/21/99	54	35	11	21	12*	-115.7100	33.115
73	CR73-9-12199	9.0	01/21/99	53	33	14	19	12*	-115.7100	33.115
73	CR73-10-12199	10	01/21/99	89	8	3	18	12*	-115.7100	33.115

NOTES:

Particle size analysis conducted by PTS Laboratories, Inc., Santa Fe Springs, California using ASTM D4464M/D422 methodology. Percent moisture analysis conducted by Apollo Analytics, Inc., Costa Mesa, California.

- = Not reported.

--- = Not analyzed.

GB = Grab sediment sample.

CR = Core sediment sample.

"-0" = Duplicate sediment sample.

* Represents the percent recovery for the whole core, not for the individual intervals within the core.

Table 4:

Inorganic Chemicals Detected in Phase I & II Sediment Samples

Salton Sea LFR 6824.00

Results reported in milligrams per kilogram (mg/kg) dry weight and wet weight

Sample Number	Sample Date	Δn	timony	4	Arsenic		Bari	ium	Bery	llium	Cad	mium	Chro	omium	Co	balt	Cor	pper		ead	Me	rcury	Molyh	denum	Nic	kel	Sele	nium	Si	lver	The	allium	Van	adium	Zir	
	Sample Date				- Seriic		Dan		Dery		Cat		onic			,bait	00	рреі	<u> </u>	cau	Wiel		WOIYD	uenum			Jeici						Valia			
GB1-34.5-121598	15-Dec-98	< 63	< 12.5	4.2	0	0.84	225	45	< 4.0	< 0.8	4.5	0.9	< 16	< 3.25	< 13	< 2.5	23	4.6	50	10	< 1.0	< 0.2	120	24	23	4.6	8.5	1.7	< 13	< 2.5	< 62	< 12.5	< 94	< 18.8	39	7.8
GB2-12.4-121598	15-Dec-98	< 30	< 12.5	6.1	2	2.5	240	99	< 2.0	< 0.8	2.1	0.88	10	4.3	< 6.1	< 2.5	16	6.7	20	8.1	< 0.49	< 0.2	< 30	< 12.5	14	5.9	1.5	0.61	< 6.1	< 2.5	< 30	< 12.5	< 46	< 18.8	44	18
GB3-19.5-121598	15-Dec-98	< 52	< 12.5	4.6	1	1.1	190	45	< 3.3	< 0.8	< 3.7	< 0.88	17	4.0	< 10	< 2.5	29	7.0	38	9.0	< 0.83	< 0.2	< 52	< 12.5	21	5.0	5.0	1.3	< 10	< 2.5	< 52	< 12.5	< 78	< 18.8	63	15
GB4-7.2-121698	16-Dec-98	< 26	< 12.5	4.4	2	2.1	230	110	< 1.7	< 0.8	1.9	0.91	33	16	15	7.1	46	22	29	14	< 0.42	< 0.2	< 26	< 12.5	31	15	0.58	0.28	< 5.2	< 2.5	< 26	< 12.5	108	52	190	91
GB4-7.2-121698-0	16-Dec-98	< 29	< 12.5	5 1.1	0	0.46	165	71	< 1.9	< 0.8	< 2.0	< 0.88	26	11	12	5.0	37	16	23	10	< 0.46	< 0.2	< 29	< 12.5	26	11	1.0	0.45		< 2.5	< 29	< 12.5	74	32	102	44
GB5-1-121698	16-Dec-98	< 17				0.29	25	18	< 1.1	< 0.8	< 1.2	< 0.88	5.1	3.7	< 3.4	< 2.5	< 4.4	< 3.25	< 8.6	< 6.25		< 0.2	< 17	< 12.5	< 5.1	< 3.75	< 0.11			< 2.5	< 17	< 12.5	< 26	< 18.8	21	15
CR6-18-122198	21-Dec-98	< 35	< 12.5	5 1.1	0	0.39	500	180	< 2.2	< 0.8	< 2.4	< 0.88	31	11	18	6.5	53	19	36	13	< 0.56	< 0.1	< 35	< 12.5	33	12	1.1	0.39	< 6.9	< 2.5	< 35	< 12.5	120	43	130	47
CR6-19-122198	21-Dec-98	< 23		0.74	-	0.4	260	140	< 1.5	< 0.8	< 1.6	< 0.88	22	12	12	6.6	24	13	15	8.0	< 0.37	< 0.1	< 23	< 12.5	24	13	0.83	0.45	< 4.6	< 2.5	< 23	< 12.5	72	39	98	53
CR6-20-122198	21-Dec-98	< 20		1.5	0	0.93	310	190	< 1.3	< 0.8	< 1.4	< 0.88	25	15	13	8.2	28	17	18	11	< 0.16	< 0.1	< 20	< 12.5	26	16	0.7	0.43	< 4.1	< 2.5	< 20	< 12.5	84	51	102	62
CR6-21-122198	21-Dec-98	< 23		0.6	0	0.33	450	250	< 1.4	< 0.8	2.0	1.1	27	15	15	8.4	40	22	29	16	< 0.36	< 0.1	< 23	< 12.5	33	18	0.75	0.41	< 4.6	< 2.5	< 23	< 12.5	107	59	115	63
CR6-22-122198	21-Dec-98	< 22		5 1.9	1	1.1	510	290	< 1.4	< 0.8	< 1.5	< 0.88	21	12	12	6.7	35	20	28	16	< 0.18	< 0.1	< 22	< 12.5	28	16	0.9	0.52	< 4.4		< 22	< 12.5	82	47	88	50
GB7-25.4-121698	16-Dec-98	< 43	< 12.5	6.6	_	1.9	210	61	< 2.8	< 0.8	< 3.0	< 0.88	25	7.3	11	3.3	41	12	34	10	< 0.69	< 0.2	< 43	< 12.5	28	8.1	4.1	1.2	< 8.6	< 2.5	< 43	< 12.5	83	24	86	25
GB8-27.3-121698	16-Dec-98	< 57		6.8	1	1.5	160	35	< 3.6	< 0.8	4.0	0.88	< 15	< 3.25	< 11	< 2.5	27	5.9	33	7.3	< 0.91	< 0.2	< 57	< 12.5	22	4.9	2.0	0.43	< 11	< 2.5	< 57	< 12.5	< 85	< 18.8	55	12
GB9-39.3-121798	17-Dec-98	< 78	< 12.5	3.7	0	0.59	200	32	< 5.0	< 0.8	5.6	0.9	< 20	< 3.25	< 16	< 2.5	< 20	< 3.25	< 39	< 6.25	< 1.2	< 0.2	< 78	< 12.5	26	4.1	1.6	0.26	< 16	< 2.5	< 78	< 12.5	< 120	< 18.8	34	5.4
GB10-47.4-121798	17-Dec-98	< 78	< 12.5	i 4.1	0	0.65	188	30	< 5.0	< 0.8	5.8	0.93	< 20	< 3.25	< 16	< 2.5	< 20	< 3.25	< 39	< 6.25	< 1.2	< 0.2	194	31	26	4.2	3.1	0.5	< 16	< 2.5	< 78	< 12.5	< 120	< 18.8	28	4.5
GB11-45.9-121798	17-Dec-98	< 96	< 12.5	5.0	0	0.65	238	31	< 6.2	< 0.8	< 6.8	< 0.88	< 25	< 3.25	< 19	< 2.5	< 25	< 3.25	< 48	< 6.25	< 1.5	< 0.2	138	18	31	4.0	3.4	0.44	< 19	< 2.5	< 96	< 12.5	< 140	< 18.8	35	4.5
GB12-40-121698	16-Dec-98	< 60	< 12.5	4.4	0	0.92	157	33	< 3.8	< 0.8	4.7	1.0	< 16	< 3.25	< 12	< 2.5	< 16	< 3.25	45	9.5	< 0.95	< 0.2	71	15	20	4.3	2.1	0.46	< 12	< 2.5	< 60	< 12.5	< 90	< 18.8	20	4.3
CR13-33-122298	22-Dec-98	< 15		5 1.7	0	0.81	290	140	< 0.96	< 0.8	2.0	1.0	8.6	4.2	< 3.0	< 2.5	12	6.0	31	15		< 0.1	< 15	< 12.5	18	9.0	4.3	2.1	< 3.0	< 2.5	< 15	< 12.5	39	19	176	86
CR13-34-122298	22-Dec-98	< 20		3.7	-	2.3	360	230	< 1.3	< 0.8	1.9	1.2	16	10	8.7	5.5	19	12	21	13	< 0.32	< 0.1	< 20	< 12.5	27	17	1.2	0.73	< 4.0		< 20	< 12.5	52	33	70	44
CR13-35-122298	22-Dec-98	< 17		2.7	2	2.0	310	230	< 1.1	< 0.8	< 1.2	< 0.88	13	9.3	5.8	4.2	15	11	19	14	< 0.27	< 0.1	< 17	< 12.5	19	14	0.66	0.48	< 3.4	< 2.5	< 17	< 12.5	47	34	45	33
CR13-36-122298	22-Dec-98	< 17		1.3		0.99	410	310	< 1.1	< 0.8	1.2	0.93	19	14	8.0	6.0	15	11	17	13	< 0.13	< 0.1	< 17	< 12.5	24	18	0.48	0.36	< 3.3	< 2.5	< 17	< 12.5	51	38	59	44
CR13-37-122298	22-Dec-98	< 16		3.1		2.5	270	220	< 1.0	< 0.8	< 1.1	< 0.88	9.8	7.8	5.1	4.1	10	8.3	16	13	< 0.13	< 0.1	< 16	< 12.5	16	13	0.34	0.27	< 3.1		< 16	< 12.5	38	30	41	33
CR13-38-122298	22-Dec-98	< 17		1.5		1.1	230	170	< 1.1	< 0.8	1.3	0.91	13	9.2	6.7	4.9	16	12	22	16	< 0.27	< 0.1	< 17	< 12.5	19	14	0.45	0.33		< 2.5	< 17	< 12.5	49	36	53	39
GB14-11-121698	16-Dec-98	< 25		5.8	-	2.9	200	100	< 1.6	< 0.8	2.8	1.4	10	5.1	< 5.0	< 2.5	15	7.5	30	15	< 0.4	< 0.2	< 25	< 12.5	19	9.7	0.46	0.23		< 2.5	< 25	< 12.5	< 38	< 18.8	40	20
GB15-38.2-121698	16-Dec-98	< 35				0.79	100	36	< 2.2	< 0.8	2.8	1.0	< 9.0	< 3.25	< 6.9	< 2.5	< 9.0	< 3.25	26	9.3	< 0.56	< 0.2	< 35	< 12.5	13	4.6	0.86	0.31	< 6.9		< 35	< 12.5	< 52	< 18.8	16	5.7
GB16-45.3-121898	18-Dec-98	< 78		4.3		0.68	375	60	< 5.0	< 0.8	< 5.5	< 0.88	63	10	< 16	< 2.5	< 20	< 3.25	44	7.0	< 1.2	< 0.2	88	14	29	4.7	0.69	0.11	< 16	< 2.5	< 78	< 12.5	< 120	< 18.8	34	5.5
GB17-40.8-121898	18-Dec-98	< 60	< 12.5	2.8	0	0.59	329	69	< 3.8	< 0.8	< 4.2	< 0.88	< 16	< 3.25	< 12	< 2.5	20	4.3	44	9.2	< 0.95	< 0.2	< 60	< 12.5	29	6.1	0.76	0.16	< 12	< 2.5	< 60	< 12.5	< 90	< 18.8	47	9.9
GB18-46.8-121898	18-Dec-98	< 69	< 12.5	2.7		0.49	233	42	< 4.4	< 0.8	< 4.9	< 0.88	< 18	< 3.25	< 14	< 2.5	< 18	< 3.25	36	6.4	< 1.1	< 0.2	< 69	< 12.5	25	4.5	1.4	0.26	< 14	< 2.5	< 69	< 12.5	< 100	< 18.8	37	6.7
CR19-46-122298	22-Dec-98	< 21				0.58	360	210	< 1.4	< 0.8	1.6	0.94	15	9.1	7.5	4.4	20	12	20	12		< 0.1	< 21	< 12.5	20	12	0.3	0.17		< 2.5	< 21	< 12.5	51	30	66	39
CR19-47-122298	22-Dec-98	< 24		5.0		2.6	420	220	< 1.5	< 0.8	< 1.7	< 0.88	13	6.9	6.4	3.3	16	8.2	25	13		< 0.1	48	25	19	10	0.7	0.36		< 2.5	< 24	< 12.5	63	33	54	28
CR19-48-122298	22-Dec-98	< 22		2.3		1.3	350	200	< 1.4	< 0.8	< 1.5	< 0.88	14	7.9	6.1	3.5	16	8.9	23	13		< 0.1	< 22	< 12.5	19	11	0.75	0.43		< 2.5	< 22	< 12.5	58	33	53	30
CR20-21-122298	22-Dec-98	< 27		1.5		0.67	280	130	< 1.7	< 0.8	< 1.9	< 0.88	9.6	4.4	< 5.4	< 2.5	14	6.6	30	14		< 0.1	< 27	< 12.5	19	8.6	0.7	0.32	< 5.4		< 27	< 12.5	< 41	< 18.8	46	21
CR20-22-122298	22-Dec-98	< 24		1.7	-	0.85	230	120	< 1.6	< 0.8	2.0	1.0	7.1	3.6	< 4.9	< 2.5	12	6.3	25	13	< 0.2	< 0.1	< 24	< 12.5	16	8.1	0.63	0.32	< 4.9	< 2.5	< 24	< 12.5	< 37	< 18.8	37	19
CR20-23-122298	22-Dec-98	< 26	< 12.5	1.4		0.66	290	140	< 1.7	< 0.8	2.3	1.1	8.1	3.9	< 5.2	< 2.5	14	6.8	31	15	< 0.42	< 0.1	< 26	< 12.5	18	8.8	0.92	0.44	< 5.2		< 26	< 12.5	< 39	< 18.8	42	20
CR20-24-122298	22-Dec-98	< 21			-	2.2	200	120	< 1.3	< 0.8	< 1.5		9.2	5.5	< 4.2	< 2.5	13	7.6	18	11	< 0.33	< 0.1	< 21	< 12.5	13	7.9	0.9	0.54	< 4.2		< 21	< 12.5	32	19	35	21
CR20-25-122298	22-Dec-98	< 22		3.7		2.1	250	140	< 1.4	< 0.8	< 1.5	< 0.88	11	6.4	6.1	3.5	25	14	25	14	< 0.18	< 0.1	< 22	< 12.5	19	11	0.4	0.22	< 4.4		< 22	< 12.5	39	22	56	32
CR20-26-122298	22-Dec-98	< 20				1.4).54	280 282	170	< 1.3	< 0.8	< 1.4	< 0.88	15 10	9.2	6.4	3.9	21 15	13	25 31	15	< 0.16	< 0.1	< 20	< 12.5	20	12 8.0	0.46	0.28	< 4.1	< 2.5	< 20	< 12.5	46	28	62	38 17
GB21-31-121898	18-Dec-98	< 32	< 12.5	1.4	-			110	< 2.0	~ 0.0	2.8	1.1		3.9	< 6.4	< 2.5		5.7	•	12	1 0.01	< 0.2	< 32	< 12.5	21	0.0	< 0.21	< 0.08	< 6.4	< 2.5	< 32	< 12.5	< 48	< 18.8	44	
GB22-23.4-121898	18-Dec-98	< 37				0.46	274	93	< 2.4	< 0.8		< 0.88	12	4.1	< 7.4	< 2.5	15	5.2	25	8.4	< 0.59	< 0.2	< 37	< 12.5	22	7.6	0.32	0.11	< 7.4		< 37	< 12.5	< 55	< 18.8	50	17
GB23-34.8-121898	18-Dec-98		< 12.5		-).62 1.8	249	87 120	< 2.3	< 0.8		< 0.88	10	3.6	< 7.1	< 2.5	15	5.3	28	9.9		< 0.2	< 36	< 12.5 < 12.5	21 6 5	7.3 5.4	0.46	0.16		< 2.5	< 36	< 12.5 < 12.5	< 54	< 18.8 < 18.8	49 24	17 20
GB24-20.4-121898	18-Dec-98		< 12.5				145			< 0.8	1.6	1.3	< 3.9	< 3.25	< 3.0	< 2.5	< 3.9		18	15		< 0.2			6.5			< 0.08		< 2.5			< 23		-	
GB24-20.5-122298	22-Dec-98		< 12.5			1.2	42	31		< 0.8		< 0.88	< 4.4	< 3.25	< 3.4	< 2.5	< 4.4		14			< 0.1		< 12.5	< 5.1	< 3.75	0.3	0.22		< 2.5		< 12.5	< 25	< 18.8	5.4	4.0
GB25-16.2-121898	18-Dec-98		< 12.5			1.9	215	140		< 0.8	1.5	1.0	7.8	5.0	4.9	3.2	12	7.7	20	13		< 0.2		< 12.5	15	9.5		< 0.08		< 2.5	< 19		31	20	37	24
CR26-17-122298 CR26-18-122298	22-Dec-98		< 12.5		-	1.6	210	140	< 1.2		-	< 0.88	11	6.9	5.1	3.3	17	11	22	14		< 0.1			15	10	0.42	0.27		< 2.5		< 12.5	35	23	51	33
	22-Dec-98		< 12.5			0.55	230	160	< 1.1			< 0.88	7.3	5.1	< 3.6	< 2.5	13	8.8	19	13		< 0.1	< 18	< 12.5	13	8.9	0.41	0.29		< 2.5	< 18		29	20	41	29
CR26-19-122298	22-Dec-98		< 12.5			2.1	320	230	< 1.1			< 0.88	12	8.7	5.2	3.7	20	14	24	17		< 0.1	< 18	< 12.5	18	13	0.27	0.19		< 2.5	< 18	< 12.5	38	27	56	40
GB27-12-121898	18-Dec-98		< 12.5			1.0	81	60	< 1.1	< 0.8		< 0.88	< 4.4	< 3.25	< 3.4	< 2.5	< 4.4	< 3.25	8.6	6.4		< 0.2	< 17	< 12.5	5.3	3.9		< 0.08		< 2.5	< 17	< 12.5	< 25	< 18.8	8.6	6.4
GB28-14.2-121898	18-Dec-98		< 12.5			0.42	158	93	< 1.4		1.6	0.96	7.1	4.2	< 4.2	< 2.5	11	6.5	20	12		< 0.2	< 21	< 12.5	13	7.8		< 0.08		< 2.5	< 21		32	19	32	19
GB29-17.2-121898	18-Dec-98		< 12.5			0.83	115	82		< 0.8	1.7	1.2	3.4	2.4	< 3.5	< 2.5	< 4.6	< 3.25	17	12		< 0.2		< 12.5	8.5	6.0		< 0.08		< 2.5	< 18		< 26	< 18.8	11	7.6
GB30-4.9-122198	21-Dec-98		< 12.5			0.43	170	120	< 1.1	< 0.8	1.3	0.89	< 4.6	< 3.25	< 3.6	< 2.5	7.1	5.0	10	7.0		< 0.1	< 18	< 12.5	9.6	6.7	0.27	0.19		< 2.5	< 18		< 27	< 18.8	26	18
GB31-25.2-121898	18-Dec-98		< 12.5			0.94	218	120	< 1.4		2.2	1.2	5.3	2.9	< 4.6	< 2.5	8.2	4.5	24	13		< 0.2	< 23	< 12.5	13	7.3		< 0.08		< 2.5		< 12.5	< 34	< 18.8	22	12
GB32-36.5-121898	18-Dec-98		< 12.5			1.1	346	97	< 2.9	< 0.8	4.3	1.2	11	3.0	< 8.9	< 2.5	20	5.6	43	12		< 0.2	< 45	< 12.5	28	7.9	< 0.29			< 2.5	< 45	< 12.5	< 67	< 18.8	50	14
GB32-36.5-121898-0	18-Dec-98	< 37	< 12.5	2.2	0	0.76	229	78	< 2.4	< 0.8	2.9	1.0	9.7	3.3	< 7.4	< 2.5	15	5.0	32	11	< 0.59	< 0.2	< 37	< 12.5	21	7.0	0.38	0.13	< 1.4	< 2.5	< 37	< 12.5	< 55	< 18.8	41	14

Table 4:

Inorganic Chemicals Detected in Phase I & II Sediment Samples

Salton Sea LFR 6824.00

Results reported in milligrams per kilogram (mg/kg) dry weight and wet weight

		<u> </u>		<u> </u>										1		(mg/kg) ary		_																	
Sample Number	Sample Date	An	timony	Ar	senic	Bai	rium	Bery	llium	Cad	mium	Chro	mium	Co	balt	Сор	per	L	ead	Me	rcury	Molyb	denum	Nic	ckel	Sele	nium	Si	lver	Tha	Illium	Vana	dium	Zir	IC
GB33-33-121898	18-Dec-98	< 39	< 12.5	2.5	0.79	281	90	< 2.5	< 0.8	3.0	0.96	12	3.7	< 7.8	< 2.5	18	5.6	38	12	< 0.63	< 0.2	< 39	< 12.5	25	7.9	0.5	0.16	< 7.8	< 2.5	< 39	< 12.5	< 59	< 18.8	47	15
GB34-33-121898	18-Dec-98	< 46	< 12.5	2.9	0.77	359	97	< 3.0	< 0.8	< 3.3	< 0.88	13	3.5	< 9.3	< 2.5	25	6.8	41	11	< 0.74	< 0.2	< 46	< 12.5	31	8.4	0.44	0.12	< 9.3	< 2.5	< 46	< 12.5	70	19	70	19
GB35-24-121898	18-Dec-98	< 23	< 12.5	1.3	0.71	185	100	< 1.5	< 0.8	< 1.6	< 0.88	< 6.0	< 3.25	< 4.6	< 2.5	11	5.7	18	9.9	< 0.37	< 0.2	< 23	< 12.5	16	8.4	< 0.15	< 0.08	< 4.6	< 2.5	< 23	< 12.5	< 35	< 18.8	33	18
GB36-20.4-121798	17-Dec-98	< 20	< 12.5	1.1	0.72	127	80	< 1.3	< 0.8	3.5	2.2	5.6	3.5	< 4.0	< 2.5	6.2	3.9	33	21	< 0.32	< 0.2	< 20	< 12.5	13	8.0	< 0.13	< 0.08	< 4.0	< 2.5	< 20	< 12.5	< 30	< 18.8	13	7.9
GB37-23.4-121798	17-Dec-98	< 28	< 12.5	5.5	2.4	173	76	< 1.8	< 0.8	2.7	1.2	8.4	3.7	6.4	2.8	14	6.3	27	12	< 0.45	< 0.2	< 28	< 12.5	19	8.3	0.43	0.19	< 5.7	< 2.5	< 28	< 12.5	< 43	< 18.8	43	19
GB38-24-121798	17-Dec-98	< 34	< 12.5	6.0	2.2	195	72	< 2.2	< 0.8	2.6	0.96	10	3.7	7.8	2.9	17	6.4	24	8.7	< 0.54	< 0.2	< 34	< 12.5	19	7.0	0.59	0.22	< 6.8	< 2.5	< 34	< 12.5	< 51	< 18.8	51	19
CR39-21-122298	22-Dec-98	< 18	< 12.5	1.8	1.2	220	150	< 1.2	< 0.8	< 1.3	< 0.88	13	9.0	5.6	3.8	16	11	24	16	< 0.15	< 0.1	< 18	< 12.5	16	11	0.35	0.24	< 3.7	< 2.5	< 18	< 12.5	38	26	54	37
GB40-13.2-121798	17-Dec-98	< 21	< 12.5	1.7	0.72	72	43	< 1.3	< 0.8	2.5	1.5	< 5.4	< 3.25	< 4.2	< 2.5	< 5.4	< 3.25	23	14	< 0.33	< 0.2	< 21	< 12.5	9.7	5.8	< 0.13	< 0.08	< 4.2	< 2.5	< 21	< 12.5	< 31	< 18.8	12	7.1
GB41-12-121798	17-Dec-98	< 17	< 12.5	0.69	0.5	49	35	< 1.1	< 0.8	1.5	1.1	< 4.5	< 3.25	< 3.5	< 2.5	< 4.5	< 3.25	11	8.0	< 0.28	< 0.2	< 17	< 12.5	6.9	5.0	< 0.11	< 0.08	< 3.5	< 2.5	< 17	< 12.5	< 26	< 18.8	9.7	7.0
GB42-1-122198	21-Dec-98	< 19	< 12.5	0.94	0.61	180	120	< 1.2	< 0.8	1.5	1.0	8.2	5.3	45	2.9	9.8	6.4	15	10	< 0.31	< 0.1	< 19	< 12.5	14	8.9	0.28	0.18	< 3.8	< 2.5	< 19	< 12.5	< 29	< 18.8	38	25
GB42-1-122198-0	21-Dec-98	< 18	< 12.5	0.5	0.34	250	170	< 1.2	< 0.8	1.3	0.9	8.5	5.8	4.1	2.8	9.6	6.5	14	9.3	< 0.15	< 0.1	< 18	< 12.5	18	8.6	0.12	0.084	< 3.7	< 2.5	< 18	< 12.5	< 28	< 18.8	37	25
GB43-11.4-121798	17-Dec-98	< 28	< 12.5	3.1	1.4	156	70	< 1.8	< 0.8	2.1	0.93	11	5.1	6.7	3.0	15	6.9	21	9.6	< 0.44	< 0.2	< 28	< 12.5	18	8.0	0.47	0.21	< 5.6	< 2.5	< 28	< 12.5	< 42	< 18.8	49	22
GB44-16.8-121798	17-Dec-98	< 35	< 12.5	3.9	1.4	150	54	< 2.2	< 0.8	2.5	0.91	9.2	3.3	7.5	2.7	16	5.6	22	7.8	< 0.56	< 0.2	< 35	< 12.5	18	6.6	0.67	0.24	< 6.94	< 2.5	< 35	< 12.5	< 52	< 18.8	44	16
GB45-32.8-121798	17-Dec-98	< 40	< 12.5	7.1	2.2	187	58	< 2.6	< 0.8	3.2	1.0	< 10	< 3.25	8.1	2.5	17	5.4	25	7.7	< 0.65	< 0.2	< 40	< 12.5	20	6.3	0.9	0.28	< 8.1	< 2.5	< 40	< 12.5	< 61	< 18.8	45	14
GB46-15-121798	17-Dec-98	< 26	< 12.5	1.7	0.82	169	83	< 1.6	< 0.8	2.4	1.2	13	6.4	7.3	3.6	17	8.2	20	10	< 0.41	< 0.2	< 26	< 12.5	19	9.3	< 0.16	< 0.08	< 5.1	< 2.5	< 26	< 12.5	39	19	61	30
GB47-24.4-121798	17-Dec-98	< 28	< 12.5	1.3	0.55	116	51	< 1.8	< 0.8	2.7	1.2	< 7.4	< 3.25	< 5.7	< 2.5	< 7.4	< 3.25	16	7.1	< 0.45	< 0.2	< 28	< 12.5	11	4.7	< 0.18	< 0.08	< 5.7	< 2.5	< 28	< 12.5	< 43	< 18.8	19	8.3
GB48-24.5-121798	17-Dec-98	< 26	< 12.5	0.4	0.19	154	74	< 1.7	< 0.8	2.5	1.2	7.7	3.7	< 5.2	< 2.5	8.3	4.0	19	9.1	< 0.42	< 0.2	< 26	< 12.5	11	5.2	< 0.17	< 0.08	< 5.2	< 2.5	< 26	< 12.5	< 39	< 18.8	27	13
GB48-24.5-121798-0	17-Dec-98	< 29	< 12.5	1.1	0.47	142	61	< 1.9	< 0.8	2.1	0.9	< 7.6	< 3.25	< 5.8	< 2.5	7.9	3.4	15	6.3	< 0.46	< 0.2	< 29	< 12.5	9.1	3.9	0.7	0.3	< 5.8	< 2.5	< 29	< 12.5	< 44	< 18.8	28	12
CR49-39-12099	20-Jan-99	< 9	< 6.3	2.4	1.8	162	120	< 1	< 0.38	1.3	0.94	11	8.3	3.9	2.9	10	7.7	12	9.1	< 0.27	< 0.2	< 9	< 6.3	11	8.5	0.1	0.077	< 2	< 1.3	< 9	< 6.3	42	31	42	31
CR49-40-12099	20-Jan-99	< 10	< 6.3	3.3	2.1	222	140	< 1	< 0.38	1.9	1.2	11	6.8	4.3	2.7	13	8.3	19	12	< 0.32	< 0.2	< 10	< 6.3	15	9.4	0.14	0.087	< 2	< 1.3	< 10	< 6.3	43	27	38	24
CR50-39-11999	19-Jan-99	< 13	< 6.3	3.6	1.8	400	200	< 1	< 0.38	2.0	1.0	10	5.2	6.6	3.3	19	9.7	22	11	< 0.4	< 0.2	20	10	17	8.4	0.4	0.2	< 3	< 1.3	< 13	< 6.3	48	24	50	25
CR50-40-11999	19-Jan-99	< 10	< 6.3	3.2	2.0	194	120	< 1	< 0.38	1.9	1.2	7.9	4.9	4.0	2.5	13	8.3	21	13	< 0.32	< 0.2	< 10	< 6.3	13	8.2	0.088	0.055	< 2	< 1.3	< 10	< 6.3	27	17	32	20
CR50-41-11999	19-Jan-99	< 9	< 6.3	1.0	0.72	324	240	< 1	< 0.38	1.4	1.0	15	11	7.3	5.4	19	14	14	10	< 0.27	< 0.2	< 9	< 6.3	15	11	0.2	0.15	< 2	< 1.3	< 9	< 6.3	51	38	73	54
CR51-29-12099	20-Jan-99	< 13	< 6.3	3.4	1.7	340	170	< 1	< 0.38	2.4	1.2	11	5.3	4.4	2.2	16	7.8	24	12	< 0.4	< 0.2	< 13	< 6.3	17	8.5	2.6	1.3	< 3	< 1.3	< 13	< 6.3	42	21	40	20
CR51-30-12099	20-Jan-99	< 10	< 6.3	6.4	4.2	379	250	< 1	< 0.38	1.7	1.1	14	9.3	5.5	3.6	17	11	20	13	< 0.3	< 0.2	< 10	< 6.3	17	11	0.21	0.14	< 2	< 1.3	< 10	< 6.3	62	41	52	34
CR51-31-12099	20-Jan-99	< 9	< 6.3	2.9	2.1	315	230	< 1	< 0.38	1.4	1.0	11	7.8	4.8	3.5	23	17	18	13	< 0.27	< 0.2	< 9	< 6.3	16	12	0.16	0.12	< 2	< 1.3	< 9	< 6.3	53	39	47	34
CR52-41-12099	20-Jan-99	< 14	< 6.3	3.9	1.8	370	170	< 1	< 0.38	1.8	0.84	12	5.5	6.3	2.9	21	9.7	22	10	< 0.43	< 0.2	43	20	20	9.1	2.6	1.2	< 3	< 1.3	< 14	< 6.3	57	26	48	22
CR52-42-12099	20-Jan-99	< 10	< 6.3	6.4	3.9	311	190	< 1	< 0.38	1.5	0.89	9.5	5.8	3.4	2.1	13	8.0	20	12	< 0.33	< 0.2	< 10	< 6.3	14	8.6	0.34	0.21	< 2	< 1.3	< 10	< 6.3	33	20	33	20
CR52-43-12099	20-Jan-99	< 9	< 6.3	1.1	0.76	269	180	< 1	< 0.38	1.1	0.76	6.7	4.5	3.4	2.3	11	7.2	15	10	< 0.3	< 0.2	< 9	< 6.3	13	8.3	0.37	0.25	< 2	< 1.3	< 9	< 6.3	24	16	33	22
CR52-44-12099	20-Jan-99	< 9	< 6.3	2.8	1.9	217	150	< 1	< 0.38	1.3	0.91	11	7.5	4.5	3.1	14	10	19	13	< 0.29	< 0.2	< 9	< 6.3	16	11	0.26	0.18	< 2	< 1.3	< 9	< 6.3	41	28	41	28
GB53-33-11999	19-Jan-99	< 24	< 6.3	1.6	0.42	200	52	< 1	< 0.38	3.2	0.83	8.1	2.1	5.4	1.4	16	4.1	28	7.3	< 1	< 0.2	28	7.2	15	4.0	0.85	0.22	< 5	< 1.3	< 24	< 6.3	< 36	< 9.4	30	7.9
GB54-28.2-11999	19-Jan-99	< 25	< 6.3	3.4	0.86	164	41	< 2	< 0.38	3.0	0.74	15	3.7	11	2.7	28	7.0	26	6.5	< 1	< 0.2	< 25	< 6.3	20	4.9	0.8	0.2	< 5	< 1.3	< 25	< 6.3	56	14	60	15
CR55-14-12099	20-Jan-99	< 11	< 6.3	2.5	1.5	3.05	180	< 1	< 0.38	1.6	0.94	3.6	2.1	5.3	3.1	17	10	20	12	< 0.34	< 0.2	< 11	< 6.3	16	9.6	0.68	0.4	< 2	< 1.3	< 11	< 6.3	49	29	54	32
CR55-15-12099	20-Jan-99	< 9	< 6.3	2.3	1.6	443	310	< 1	< 0.38	1.6	1.1	9.7	6.8	4.3	3.0	16	11	20	14	< 0.29	< 0.2	< 9	< 6.3	16	11	0.17	0.12	< 2	< 1.3	< 9	< 6.3	41	29	30	21
GB56-17.4-11999	19-Jan-99	< 19	< 6.3	3.2	1.1	159	54	< 1	< 0.38	2.5	0.85	9.4	3.2	6.8	2.3	17	5.8	21	7.2	< 1	< 0.2	< 19	< 6.3	16	5.3	0.71	0.24	< 4	< 1.3	< 19	< 6.3	32	11	47	16
GB56-17.4-11999-0	19-Jan-99	< 27	< 6.3	3.6	0.83	200	46	< 2	< 0.38	3.8	0.88	11	2.5	9.6	2.2	21	4.9	25	5.8	< 1	< 0.2	< 27	< 6.3	18	4.2	1.2	0.28	< 6	< 1.3	< 27	< 6.3	< 41	< 9.4	48	11
GB57-25.8-11999	19-Jan-99	< 10	< 6.3	2.3	1.4	180	110	< 1	< 0.38	2.0	1.2	6.9	4.2	3.3	2.0	8.4	5.1	20	12	< 0.33	< 0.2	11	6.6	11	6.8	0.19	0.12	< 2	< 1.3	< 10	< 6.3	21	13	23	14
GB58-45-11999	19-Jan-99	< 29	< 6.3	2.7	0.6	145	32	< 2	< 0.38	4.0	0.89	1.6	< 1.6	< 6	< 1.3	11	2.4	29	6.4	< 1	< 0.2	64	14	14	3.0	0.73	0.16	< 6	< 1.3	< 29	< 6.3	< 43	< 9.4	16	3.5
GB59-45-11999	19-Jan-99	< 37	< 6.3	3.1	0.53	224	38	< 2	< 0.38	5.1	0.87	< 9	< 1.6	< 8	< 1.3	18	3.0	31	5.2	< 1	< 0.2	76	13	17	2.9	5.8	0.98	< 8	< 1.3	< 37	< 6.3	< 55	< 9.4	26	4.5
CR60-48-12099	20-Jan-99	< 11	< 6.3	5.3	3.2	450	270	< 1	< 0.38	1.2	0.72	12	7.0	4.0	2.4	12	7.2	14	8.6	< 0.33	< 0.2	22	13	14	8.1	0.3	0.18	< 2	< 1.3	< 11	< 6.3	47	28	33	20
CR60-49-12099	20-Jan-99	< 9	< 6.3	1.6	1.1	449	310	< 1	< 0.38	1.2	0.82	11	7.7	3.3	2.3	10	7.0	12	8.4	< 0.29	< 0.2	< 9	< 6.3	12	8.1	0.17	0.12	< 2	< 1.3	< 9	< 6.3	29	20	30	21
CR60-50-12099	20-Jan-99	< 9	< 6.3	2.4	1.7	129	93	< 1	< 0.38	1.0	0.73	10	7.5	3.3	2.4	11	8.2	11	7.8	< 0.27	< 0.2	< 9	< 6.3	12	8.3	0.26	0.19	< 2	< 1.3	< 9	< 6.3	31	22	29	21
CR60-51-12099	20-Jan-99	< 10	< 6.3	6.7	4.3	102	65	< 1	< 0.38	1.7	1.1	10	6.7	3.8	2.4	13	8.0	16	10	< 0.31	< 0.2	69	44	14	9.0	0.2	0.13	< 2	< 1.3	< 10	< 6.3	44	28	30	19
CR60-52-12099	20-Jan-99	< 9	< 6.3	2.2	1.5	203	140	< 1	< 0.38	1.6	1.1	8.3	5.7	3.5	2.4	12	8.2	16	11	< 0.29	< 0.2	< 9	< 6.3	14	9.5	0.42	0.29	< 2	< 1.3	< 9	< 6.3	32	22	32	22
GB61-44-11999	19-Jan-99	< 23	< 6.3	1.5	0.43	154	43	< 1	< 0.38	3.6	1.0	5.7	1.6	< 5	< 1.3	10	2.8	29	8.0	< 1	< 0.2	43	12	14	3.9	0.23	0.064	< 5	< 1.3	< 23	< 6.3	36	10	19	5.4
GB62-44-12099	20-Jan-99	< 24	< 6.3	3.8	1.0	158	41	< 1	< 0.38	2.9	0.76	5.4	1.4	2.8	0.72	12	3.1	20	5.2	< 1	< 0.2	88	23	15	3.8	3.8	0.98	< 5	< 1.3	< 24	< 6.3	42	11	18	4.7
CR63-49-12299	22-Jan-99	< 10	< 6.3	3.6	2.3	105	67	< 1	< 0.38	1.7	1.1	8.8	5.6	3.9	2.5	13	8.2	17	11	< 0.31	< 0.2	27	17	12	7.6	0.086	0.055	< 2	< 1.3	< 10	< 6.3	31	20	31	20
GB64-46.2-12099	20-Jan-99	< 33	< 6.3	5.1	0.97	174	33	< 2	< 0.38	3.1	0.58	7.4	1.4	3.4	0.64	13	2.5	21	3.9	< 1	< 0.2	89	17	17	3.2	4.3	0.82	< 7	< 1.3	< 33	< 6.3	< 49	< 9.4	27	5.1
GB65-46.2-12099	20-Jan-99	< 32	< 6.3	7.0	1.4	180	36	< 2	< 0.38	3.0	0.6	6.0	1.2	2.6	0.52	15	2.9	21	4.2	< 1	< 0.2	90	18	16	3.1	5	1.0	< 7	< 1.3	< 32	< 6.3	< 47	< 9.4	27	5.3
CR66-42-12299	22-Jan-99	< 13	< 6.3	6.5	3.1	250	120		< 0.38	1.7	0.8	11	5.5	6.0	2.9	19	9.0	20	9.5	< 0.42	< 0.2	< 13	< 6.3	16	7.8	6.7	3.2	< 3	< 1.3	< 13	< 6.3	44	21	46	22
CR66-43-12299	22-Jan-99	< 9	< 6.3	4.4	3.2	19	14	< 1	< 0.38	1.1	0.79	5.2	3.8	2.5	1.8	6.6	4.8	11	7.9	< 0.27	< 0.2	< 9	< 6.3	7.3	5.3	< 0.052	< 0.038	< 2	< 1.3	< 9	< 6.3	18	13	21	15
CR66-44-12299	22-Jan-99	< 10	< 6.3	2.6	1.7	292	190	< 1	< 0.38	1.4	0.93	7.8	5.1	4.8	3.1	18	12	15	9.8	< 0.31	< 0.2	< 10	< 6.3	14	8.9	0.62	0.4	< 2	< 1.3	< 10	< 6.3	38	25	35	23
CR66-45-12299	22-Jan-99	< 10	< 6.3	3.3	2.1	102	65	< 1	< 0.38	2.3	1.5	11	7.3	4.8	3.1	13	8.0	19	12	< 0.31	< 0.2	< 10	< 6.3	15	9.4	0.1	0.066	< 2	< 1.3	< 10	< 6.3	47	30	45	29

Table 4:

Inorganic Chemicals Detected in Phase I & II Sediment Samples

Salton Sea LFR 6824.00

Results reported in milligrams per kilogram (mg/kg) dry weight and wet weight

Sample Number	Sample Date	Antir	nony	Ars	enic	Bai	rium	Bery	/llium	Cad	mium	Chro	mium	Co	balt	Co	pper	Le	ead	Mer	cury	Molybe	denum	Nie	ckel	Sele	enium	Si	ilver	Tha	llium	Vana	dium	z	inc
GB67-43.6-12199	21-Jan-99	< 30	< 6.3	4.2	0.88	233	49	< 2	< 0.38	3.2	0.68	< 8	< 1.6	< 6	< 1.3	11	2.4	25	5.3	< 1	< 0.2	67	14	12	2.5	1.3	0.27	< 6	< 1.3	< 30	< 6.3	< 45	< 9.4	23	4.8
GB68-47.2-12199	21-Jan-99	< 26	< 6.3	3.8	0.92	208	50	< 2	< 0.38	2.6	0.63	< 7	< 1.6	< 5	< 1.3	11	2.6	20	4.8	< 1	< 0.2	63	15	13	3.0	1.3	0.31	< 5	< 1.3	< 26	< 6.3	46	11	27	6.4
GB69-42.7-12199	21-Jan-99	< 15	< 6.3	6.6	2.7	229	94	< 1	< 0.38	1.8	0.75	11	4.5	5.9	2.4	17	6.8	22	8.9	< 0.49	< 0.2	< 15	< 6.3	16	6.7	0.36	0.15	< 3	< 1.3	< 15	< 6.3	39	16	51	21
GB70-35.4-12299	22-Jan-99	< 16	< 6.3	2.8	1.1	115	46	< 1	< 0.38	2.3	0.93	8.8	3.5	< 3	< 1.3	8.3	3.3	23	9.0	< 1	< 0.2	< 16	< 6.3	12	4.6	0.78	0.31	< 3	< 1.3	< 16	< 6.3	35	14	25	9.8
GB71-34.2-12199	21-Jan-99	< 16	< 6.3	4.0	1.6	275	110	< 1	< 0.38	2.1	0.84	12	4.7	5.3	2.1	14	5.4	22	8.6	< 1	< 0.2	< 16	< 6.3	16	6.4	0.17	0.067	< 3	< 1.3	< 16	< 6.3	43	17	43	17
CR72-11-12199	21-Jan-99	< 10	< 6.3	3.2	2.0	154	97	< 1	< 0.38	1.7	1.1	6.8	4.3	3.7	2.3	8.1	5.1	19	12	< 0.32	< 0.2	< 10	< 6.3	11	7.1	0.38	0.24	< 2	< 1.3	< 10	< 6.3	21	13	30	19
CR72-12-12199	21-Jan-99	< 10	< 6.3	4.1	2.5	246	150	< 1	< 0.38	1.5	0.94	15	9.1	6.9	4.2	18	11	25	15	< 0.33	< 0.2	< 10	< 6.3	18	11	0.093	0.057	< 2	< 1.3	< 10	< 6.3	46	28	59	36
CR72-13-12199	21-Jan-99	< 10	< 6.3	3.8	2.3	262	160	< 1	< 0.38	1.5	0.93	11	6.9	6.2	3.8	18	11	25	15	< 0.33	< 0.2	< 10	< 6.3	16	10	0.11	0.066	< 2	< 1.3	< 10	< 6.3	41	25	52	32
CR72-14-12199	21-Jan-99	< 9	< 6.3	1.6	1.1	246	170	< 1	< 0.38	1.2	0.85	10	7.1	5.9	4.1	14	10	22	15	< 0.29	< 0.2	< 9	< 6.3	14	10	0.28	0.19	< 2	< 1.3	< 9	< 6.3	32	22	49	34
CR73-8-12199	21-Jan-99	< 8	< 6.3	1.4	1.1	190	150	< 0.48	< 0.38	1.0	0.8	5.3	4.2	3.4	2.7	8.6	6.8	12	9.5	< 0.25	< 0.2	< 8	< 6.3	9	7.1	0.095	0.075	< 2	< 1.3	< 8	< 6.3	18	14	29	23
CR73-9-12199	21-Jan-99	< 8	< 6.3	0.8	0.65	116	94	< 0.47	< 0.38	0.81	0.66	3.6	2.9	2.2	1.8	3.3	2.7	6.4	5.2	< 0.25	< 0.2	< 8	< 6.3	4.8	3.9	< 0.047	< 0.038	< 2	< 1.3	< 8	< 6.3	12	9.7	15	12
CR73-10-12199	21-Jan-99	< 8	< 6.3	0.6	0.5	85	70	< 0.46	< 0.38	0.67	0.55	2.7	2.2	< 2	< 1.3	< 2	< 1.6	4.9	4.0	< 0.24	< 0.2	< 8	< 6.3	3.3	2.7	< 0.046	< 0.038	< 2	< 1.3	< 8	< 6.3	< 11	< 9.4	9	7.4
Maximun	m Baseline Values ¹			2	22	17	700					2	00			9	90		55		-	4	0		66	1	.4		-		-	2	70	1	80
Eff	fects Range - Low ²	2	3	8	.2		-		-		1.2	8	31		-	:	34	4	6.7	0.	15			2	0.9	0	.7 ³		1.0		-		-	1	50
Effects	s Range - Medium ²	25	5 3	7	70		-		-		9.6	3	70		-	2	70	2	18	0.	71			5	1.6	1	.4 ³	;	3.7		-		-	4	10

NOTES:

Analysis conducted by Apollo Analytics, Inc., Costa Mesa, CA using EPA Method 7000S. (Mercury analysis conducted by Truesdale)

¹ = from Severson & others, 1987: modified by Shacklette & Boerngen, 1984

² = from Long & others, 1995

³ = Wolfenden & Carlin (SFRWQCB), 1992 ("surrogate" ERL & ERM values for comparison purposes)

- = not reported

GB = grab sediment sample

CR = core sediment sample

" - 0 " = duplicate sediment sample

Bold = Detected values

Bold = Values exceeding ERL

Bold = Values exceeding ERM

Table 5:

Organic Chemicals Detected in Phase I & II Sediment Samples

Salton Sea LFR 6824.00

Results reported in micrograms per kilogram (µg/kg) dry weight and wet weight

Sample Number	Sample Date	1,2,4-Trime	thylbenzene	1,3,5-Trime	thylbenzene	2-But	anone	Ace	etone	Ben	izene	Carbon	Disulfide	n-Propy	lbenzene	Naph	thalene	o-X	ylene
GB1-34.5-121598	15-Dec-98	< 50	< 10	< 50	< 10	185	37	455	91	< 50	< 10	1,600	320	< 50	< 10	< 50	< 10	< 50	< 10
GB2-12.4-121598	15-Dec-98	< 24	< 10	< 24	< 10	< 24	< 10	< 49	< 20	< 24	< 10	32	54	< 24	< 10	< 24	< 10	< 24	< 10
GB3-19.5-121598	15-Dec-98	< 42	< 10	< 42	< 10	190	45	530	127	< 42	< 10	5,000	1,200	< 42	< 10	< 42	< 10	< 42	< 10
GB4-7.2-121698	16-Dec-98	< 21	< 10	< 21	< 10	< 21	< 10	< 42	< 20	< 21	< 10	2,300	1,100	< 21	< 10	< 21	< 10	< 21	< 10
GB4-7.2-121698-0	16-Dec-98	< 23	< 10	< 23	< 10	< 23	< 10	< 47	< 20	< 23	< 10	1,700	720	< 23	< 10	< 23	< 10	< 23	< 10
GB5-1-121698	16-Dec-98	< 14	< 10	< 14	< 10	< 14	< 10	< 27	< 20	< 14	< 10	< 14	< 10	< 14	< 10	< 14	< 10	< 14	< 10
CR6-18-122198	21-Dec-98	< 28	< 10	< 28	< 10	110	41	350	125	< 28	< 10	2,300	840	< 28	< 10	< 28	< 10	< 28	< 10
CR6-19-122198	21-Dec-98	< 18	< 10	< 18	< 10	50	25	170	91	< 18	< 10	930	500	< 18	< 10	< 18	< 10	< 18	< 10
CR6-20-122198	21-Dec-98	< 16	< 10	< 16	< 10	50	28	150	92	< 16	< 10	720	440	< 16	< 10	< 16	< 10	< 16	< 10
CR6-21-122198	21-Dec-98	< 18	< 10	< 18	< 10	70	40	230	125	< 18	< 10	840	460	< 18	< 10	< 18	< 10	< 18	< 10
CR6-22-122198	21-Dec-98	< 18	< 10	< 18	< 10	60	32	180	105	< 18	< 10	250	140	< 18	< 10	< 18	< 10	< 18	< 10
GB7-25.4-121698	16-Dec-98	< 34	< 10	< 34	< 10	130	38	520	150	< 34	< 10	2,700	790	< 34	< 10	< 34	< 10	< 34	< 10
GB8-27.3-121698	16-Dec-98	700	154	230	51	160	36	480	105	< 45	< 10	3,400	750	77	17	110	25	45	10
GB9-39.3-121798	17-Dec-98	< 62	< 10	< 62	< 10	< 62	< 10	220	35	< 62	< 10	690	110	< 62	< 10	< 62	< 10	< 62	< 10
GB10-47.4-121798	17-Dec-98	< 62	< 10	< 62	< 10	110	17	220	35	< 62	< 10	1,400	230	< 62	< 10	< 62	< 10	< 62	< 10
GB11-45.9-121798	17-Dec-98	< 77	< 10	< 77	< 10	< 77	< 10	150	< 20	< 77	< 10	420	55	< 77	< 10	< 77	< 10	< 77	< 10
GB12-40-121698	16-Dec-98	< 48	< 10	< 48	< 10	< 48	< 10	< 95	< 20	< 48	< 10	490	102	< 48	< 10	< 48	< 10	< 48	< 10
CR13-33-122298	22-Dec-98	< 20	< 10	< 20	< 10	55	27	160	78	< 20	< 10	1,200	570	< 20	< 10	< 20	< 10	< 20	< 10
CR13-34-122298	22-Dec-98	< 16	< 10	< 16	< 10	40	25	130	80	< 16	< 10	490	310	< 16	< 10	< 16	< 10	< 16	< 10
CR13-35-122298	22-Dec-98	< 14	< 10	< 14	< 10	20	17	60	44	< 14	< 10	70	48	< 14	< 10	< 14	< 10	< 14	< 10
CR13-36-122298	22-Dec-98	< 13	< 10	< 13	< 10	20	17	60	47	< 13	< 10	40	30	< 13	< 10	< 13	< 10	< 13	< 10
CR13-37-122298	22-Dec-98	< 12	< 10	< 12	< 10	15	12	60	49	< 12	< 10	20	19	< 12	< 10	< 12	< 10	< 12	< 10
CR13-38-122298	22-Dec-98	< 14	< 10	< 14	< 10	30	23	110	82	< 14	< 10	< 14	< 10	< 14	< 10	< 14	< 10	< 14	< 10
GB14-11-121698	16-Dec-98	< 20	< 10	< 20	< 10	< 20	< 10	< 40	< 20	< 20	< 10	650	326	< 20	< 10	< 20	< 10	< 20	< 10
GB15-38.2-121698	16-Dec-98	< 28	< 10	< 28	< 10	110	39	360	130	< 28	< 10	860	310	< 28	< 10	< 28	< 10	< 28	< 10
GB16-45.3-121898	18-Dec-98	< 62	< 10	< 62	< 10	210	33	510	81	< 62	< 10	1,300	200	< 62	< 10	< 62	< 10	< 62	< 10
GB17-40.8-121898	18-Dec-98	< 48	< 10	< 48	< 10	130	27	460	96	< 48	< 10	1,200	260	< 48	< 10	< 48	< 10	< 48	< 10
GB18-46.8-121898	18-Dec-98	< 56	< 10	< 56	< 10	190	35	500	91	< 56	< 10	1,200	213	< 56	< 10	< 56	< 10	< 56	< 10
CR19-46-122298	22-Dec-98	< 17	< 10	< 17	< 10	50	29	220	130	< 17	< 10	60	34	< 17	< 10	< 17	< 10	< 17	< 10
CR19-47-122298	22-Dec-98	< 19	< 10	< 19	< 10	50	25	330	170	< 19	< 10	580	300	< 19	< 10	< 19	< 10	< 19	< 10
CR19-48-122298	22-Dec-98	< 18	< 10	< 18	< 10	50	27	210	120	< 18	< 10	160	91	< 18	< 10	< 18	< 10	< 18	< 10
CR20-21-122298	22-Dec-98	< 22	< 10	< 22	< 10	70	31	190	89	< 22	< 10	1,200	560	< 22	< 10	< 22	< 10	< 22	< 10
CR20-22-122298	22-Dec-98	< 20	< 10	< 20	< 10	40	23	120	59	< 20	< 10	1,600	840	< 20	< 10	< 20	< 10	< 20	< 10
CR20-23-122298	22-Dec-98	< 21	< 10	< 21	< 10	60	29	170	84	< 21	< 10	2,900	1,410	< 21	< 10	< 21	< 10	< 21	< 10
CR20-24-122298	22-Dec-98	< 17	< 10	< 17	< 10	30	21	110	67	< 17	< 10	920	548	< 17	< 10	< 17	< 10	< 17	< 10
CR20-25-122298	22-Dec-98	< 18	< 10	< 18	< 10	60	33	210	120	< 18	< 10	390	220	< 18	< 10	< 18	< 10	< 18	< 10
CR20-26-122298	22-Dec-98	< 16	< 10	< 16	< 10	60	36	220	135	< 16	< 10	200	120	< 16	< 10	< 16	< 10	< 16	< 10
GB21-31-121898	18-Dec-98	< 26	< 10	< 26	< 10	< 26	< 10	360	140	< 26	< 10	1,000	390	< 26	< 10	< 26	< 10	< 26	< 10
GB22-23.4-121898	18-Dec-98	< 29	< 10	< 29	< 10	< 29	< 10	230	79	< 29	< 10	560	190	< 29	< 10	< 29	< 10	< 29	< 10
GB23-34.8-121898	18-Dec-98	< 29	< 10	< 29	< 10	< 29	< 10	220	76	< 29	< 10	570	200	< 29	< 10	< 29	< 10	< 29	< 10
GB24-20.4-121898	18-Dec-98	< 12	< 10	< 12	< 10	< 12	< 10	110	91	< 12	< 10	< 12	< 10	< 12	< 10	< 12	< 10	< 12	< 10
GB24-20.5-122298	22-Dec-98	< 14	< 10	< 14	< 10	20	15	40	32	< 14	< 10	150	110	< 14	< 10	< 14	< 10	< 14	< 10
GB25-16.2-121898	18-Dec-98	< 15	< 10	< 15	< 10	< 15	< 10	< 30	< 20	< 15	< 10	110	70	< 15	< 10	< 15	< 10	< 15	< 10

Table 5:

Organic Chemicals Detected in Phase I & II Sediment Samples

Salton Sea LFR 6824.00

Results reported in micrograms per kilogram (µg/kg) dry weight and wet weight

Sample Number	Sample Date	1,2,4-Trime	thylbenzene	1,3,5-Trime	thylbenzene	2-But	anone	Ace	tone	Ben	izene	Carbon	Disulfide	n-Propy	Ibenzene	Naph	thalene	o-X	ylene
CR26-17-122298	22-Dec-98	< 15	< 10	< 15	< 10	40	24	100	66	< 15	< 10	460	300	< 15	< 10	< 15	< 10	< 15	< 10
CR26-18-122298	22-Dec-98	< 14	< 10	< 14	< 10	40	27	120	85	< 14	< 10	430	300	< 14	< 10	< 14	< 10	< 14	< 10
CR26-19-122298	22-Dec-98	< 14	< 10	< 14	< 10	30	20	80	55	< 14	< 10	50	39	< 14	< 10	< 14	< 10	< 14	< 10
GB27-12-121898	18-Dec-98	< 14	< 10	< 14	< 10	< 14	< 10	< 28	< 20	< 14	< 10	< 14	< 10	< 14	< 10	< 14	< 10	< 14	< 10
GB28-14.2-121898	18-Dec-98	< 17	< 10	< 17	< 10	< 17	< 10	70	42	< 17	< 10	270	160	< 17	< 10	< 17	< 10	< 17	< 10
GB29-17.2-121898	18-Dec-98	< 14	< 10	< 14	< 10	< 14	< 10	< 28	< 20	< 14	< 10	< 14	< 10	< 14	< 10	< 14	< 10	< 14	< 10
GB30-4.9-122198	21-Dec-98	< 14	< 10	< 14	< 10	< 14	< 10	< 28	< 10	< 14	< 10	< 14	< 10	< 14	< 10	< 14	< 10	< 14	< 10
GB31-25.2-121898	18-Dec-98	< 18	< 10	< 18	< 10	< 18	< 10	85	47	< 18	< 10	130	74	< 18	< 10	< 18	< 10	< 18	< 10
GB32-36.5-121898	18-Dec-98	< 36	< 10	< 36	< 10	< 36	< 10	140	40	< 36	< 10	240	67	< 36	< 10	< 36	< 10	< 36	< 10
GB32-36.5-121898-0	18-Dec-98	< 29	< 10	< 29	< 10	< 29	< 10	180	61	< 29	< 10	340	117	< 29	< 10	< 29	< 10	< 29	< 10
GB33-33-121898	18-Dec-98	< 31	< 10	< 31	< 10	< 31	< 10	200	64	< 31	< 10	500	160	< 31	< 10	< 31	< 10	< 31	< 10
GB34-33-121898	18-Dec-98	< 37	< 10	< 37	< 10	110	29	280	75	< 37	< 10	520	140	< 37	< 10	< 37	< 10	< 37	< 10
GB35-24-121898	18-Dec-98	< 18	< 10	< 18	< 10	< 18	< 10	120	63	< 18	< 10	220	120	< 18	< 10	< 18	< 10	< 18	< 10
GB36-20.4-121798	17-Dec-98	< 16	< 10	17	11	< 16	< 10	< 32	< 20	< 16	< 10	35	22	< 16	< 10	< 16	< 10	< 16	< 10
GB37-23.4-121798	17-Dec-98	< 23	< 10	< 23	< 10	< 23	< 10	80	36	< 23	< 10	180	79	< 23	< 10	< 23	< 10	< 23	< 10
GB38-24-121798	17-Dec-98	< 27	< 10	< 27	< 10	80	30	140	53	< 27	< 10	570	210	< 27	< 10	< 27	< 10	< 27	< 10
CR39-21-122298	22-Dec-98	< 15	< 10	< 15	< 10	30	24	140	95	< 15	< 10	160	110	< 15	< 10	< 15	< 10	< 15	< 10
GB40-13.2-121798	17-Dec-98	< 17	< 10	< 17	< 10	28	17	< 33	< 20	< 17	< 10	90	56	< 17	< 10	< 17	< 10	< 17	< 10
GB41-12-121798	17-Dec-98	< 14	< 10	< 14	< 10	25	18	47	34	< 14	< 10	140	99	< 14	< 10	< 14	< 10	< 14	< 10
GB42-1-122198	21-Dec-98	< 15	< 10	< 15	< 10	< 15	< 10	70	43	< 15	< 10	40	26	< 15	< 10	< 15	< 10	< 15	< 10
GB42-1-122198-0	21-Dec-98	< 15	< 10	< 15	< 10	< 15	< 10	80	56	< 15	< 10	60	40	< 15	< 10	< 15	< 10	< 15	< 10
GB43-11.4-121798	17-Dec-98	< 22	< 10	< 22	< 10	50	24	120	56	< 22	< 10	1,000	460	< 22	< 10	< 22	< 10	< 22	< 10
GB44-16.8-121798	17-Dec-98	< 28	< 10	< 28	< 10	60	21	190	70	< 28	< 10	1,000	360	< 28	< 10	< 28	< 10	< 28	< 10
GB45-32.8-121798	17-Dec-98	< 32	< 10	< 32	< 10	100	32	230	73	< 32	< 10	840	260	< 32	< 10	< 32	< 10	< 32	< 10
GB46-15-121798	17-Dec-98	< 20	< 10	< 20	< 10	60	31	160	77	< 20	< 10	1,200	590	< 20	< 10	< 20	< 10	< 20	< 10
GB47-24.4-121798	17-Dec-98	< 23	< 10	< 23	< 10	60	25	130	57	< 23	< 10	290	126	< 23	< 10	< 23	< 10	< 23	< 10
GB48-24.5-121798	17-Dec-98	< 21	< 10	< 21	< 10	50	25	120	57	< 21	< 10	420	200	< 21	< 10	< 21	< 10	< 21	< 10
GB48-24.5-121798-0	17-Dec-98	< 23	< 10	< 23	< 10	40	17	90	39	< 23	< 10	370	160	< 23	< 10	< 23	< 10	< 23	< 10
CR49-39-12099	20-Jan-99	< 14	< 10	< 14	< 10	23	17	130	96	< 14	< 10	103	76	< 14	< 10	< 14	< 10	< 14	< 10
CR49-40-12099	20-Jan-99	< 16	< 10	< 16	< 10	76	48	889	560	< 16	< 10	< 16	< 10	< 16	< 10	< 16	< 10	< 16	< 10
CR50-39-11999	19-Jan-99	< 20	< 10	< 20	< 10	32	16	158	79	< 20	< 10	1280	640	< 20	< 10	< 20	< 10	< 20	< 10
CR50-40-11999	19-Jan-99	< 16	< 10	< 16	< 10	27	17	115	71	< 16	< 10	323	200	< 16	< 10	< 16	< 10	< 16	< 10
CR50-41-11999	19-Jan-99	< 14	< 10	< 14	< 10	19	14	61	45	< 14	< 10	23	17	< 14	< 10	< 14	< 10	< 14	< 10
CR51-29-12099	20-Jan-99	< 20	< 10	< 20	< 10	92	46	1100	550	< 20	< 10	680	340	< 20	< 10	< 20	< 10	< 20	< 10
CR51-30-12099	20-Jan-99	< 15	< 10	< 15	< 10	48	32	439	290	< 15	< 10	818	540	< 15	< 10	< 15	< 10	< 15	< 10
CR51-31-12099	20-Jan-99	< 14	< 10	< 14	< 10	56	41	205	150	< 14	< 10	33	24	< 14	< 10	< 14	< 10	< 14	< 10
CR52-41-12099	20-Jan-99	< 22	< 10	< 22	< 10	152	70	565	260	< 22	< 10	1174	540	< 22	< 10	< 22	< 10	< 22	< 10
CR52-42-12099	20-Jan-99	< 16	< 10	< 16	< 10	93	57	541	330	< 16	< 10	344	210	< 16	< 10	< 16	< 10	< 16	< 10
CR52-43-12099	20-Jan-99	< 15	< 10	< 15	< 10	91	61	328	220	< 15	< 10	57	38	< 15	< 10	< 15	< 10	< 15	< 10
CR52-44-12099	20-Jan-99	< 14	< 10	< 14	< 10	94	65	304	210	< 14	< 10	28	19	< 14	< 10	< 14	< 10	< 14	< 10
GB53-33-11999	19-Jan-99	< 38	< 10	< 38	< 10	100	26	538	140	< 38	< 10	577	150	< 38	< 10	< 38	< 10	< 38	< 10
GB54-28.2-11999	19-Jan-99	< 40	< 10	< 40	< 10	56	14	352	88	< 40	< 10	840	210	< 40	< 10	< 40	< 10	< 40	< 10
CR55-14-12099	20-Jan-99	< 17	< 10	< 17	< 10	93	55	475	280	< 17	< 10	898	530	< 17	< 10	< 17	< 10	< 17	< 10

Table 5:

Organic Chemicals Detected in Phase I & II Sediment Samples

Salton Sea LFR 6824.00

Results reported in micrograms per kilogram (µg/kg) dry weight and wet weight

Sample Number	Sample Date	1,2,4-Trime	thylbenzene	1,3,5-Trime	thylbenzene	2-But	anone	Ace	tone	Ben	Benzene		Carbon Disulfide		n-Propylbenzene		thalene	o-X	ylene
CR55-15-12099	20-Jan-99	< 14	< 10	< 14	< 10	86	60	257	180	< 14	< 10	200	140	< 14	< 10	< 14	< 10	< 14	< 10
GB56-17.4-11999	19-Jan-99	< 29	< 10	< 29	< 10	< 29	< 10	218	74	< 29	< 10	1059	360	< 29	< 10	< 29	< 10	< 29	< 10
GB56-17.4-11999-0	19-Jan-99	< 43	< 10	< 43	< 10	309	71	1130	260	43	10	4957	1140	< 43	< 10	< 43	< 10	< 43	< 10
GB57-25.8-11999	19-Jan-99	< 16	< 10	< 16	< 10	< 16	< 10	< 16	< 20	< 16	< 10	162	99	< 16	< 10	< 16	< 10	< 16	< 10
GB58-45-11999	19-Jan-99	< 45	< 10	< 45	< 10	273	60	1000	220	< 45	< 10	1636	360	< 45	< 10	< 45	< 10	< 45	< 10
GB59-45-11999	19-Jan-99	< 59	< 10	< 59	< 10	294	50	1235	210	< 59	< 10	2706	460	< 59	< 10	< 59	< 10	< 59	< 10
CR60-48-12099	20-Jan-99	< 17	< 10	< 17	< 10	233	140	983	590	< 17	< 10	2217	1330	< 17	< 10	< 17	< 10	< 17	< 10
CR60-49-12099	20-Jan-99	< 14	< 10	< 14	< 10	100	69	420	290	< 14	< 10	449	310	< 14	< 10	< 14	< 10	< 14	< 10
CR60-50-12099	20-Jan-99	< 14	< 10	< 14	< 10	117	84	889	640	< 14	< 10	944	680	< 14	< 10	< 14	< 10	< 14	< 10
CR60-51-12099	20-Jan-99	< 16	< 10	< 16	< 10	89	57	688	440	< 16	< 10	281	180	< 16	< 10	< 16	< 10	< 16	< 10
CR60-52-12099	20-Jan-99	< 14	< 10	< 14	< 10	57	39	1217	840	< 14	< 10	783	540	< 14	< 10	< 14	< 10	< 14	< 10
GB61-44-11999	19-Jan-99	< 36	< 10	< 36	< 10	536	150	929	260	< 36	< 10	43	12	< 36	< 10	< 36	< 10	< 36	< 10
GB62-44-12099	20-Jan-99	< 38	< 10	< 38	< 10	208	54	962	250	< 38	< 10	423	110	< 38	< 10	< 38	< 10	< 38	< 10
CR63-49-12299	22-Jan-99	< 16	< 10	< 16	< 10	84	54	641	410	< 16	< 10	2813	1800	< 16	< 10	< 16	< 10	< 16	< 10
GB64-46.2-12099	20-Jan-99	< 53	< 10	< 53	< 10	395	75	1526	290	< 53	< 10	658	125	< 53	< 10	< 53	< 10	< 53	< 10
GB65-46.2-12099	20-Jan-99	< 50	< 10	< 50	< 10	310	62	1300	260	< 50	< 10	500	100	< 50	< 10	< 50	< 10	< 50	< 10
CR66-42-12299	22-Jan-99	< 21	< 10	< 21	< 10	67	32	417	200	< 21	< 10	2000	960	< 21	< 10	< 21	< 10	< 21	< 10
CR66-43-12299	22-Jan-99	< 14	< 10	< 14	< 10	22	16	103	75	< 14	< 10	21	15	< 14	< 10	< 14	< 10	< 14	< 10
CR66-44-12299	22-Jan-99	< 15	< 10	< 15	< 10	46	30	277	180	< 15	< 10	231	150	< 15	< 10	< 15	< 10	< 15	< 10
CR66-45-12299	22-Jan-99	< 16	< 10	< 16	< 10	19	12	72	46	< 16	< 10	64	41	< 16	< 10	< 16	< 10	< 16	< 10
GB67-43.6-12199	21-Jan-99	< 48	< 10	< 48	< 10	100	21	424	89	< 48	< 10	157	33	< 48	< 10	< 48	< 10	< 48	< 10
GB68-47.2-12199	21-Jan-99	< 42	< 10	< 42	< 10	179	43	583	140	< 42	< 10	383	92	< 42	< 10	< 42	< 10	< 42	< 10
GB69-42.7-12199	21-Jan-99	< 24	< 10	< 24	< 10	44	18	163	67	< 24	< 10	805	330	< 24	< 10	< 24	< 10	< 24	< 10
GB70-35.4-12299	22-Jan-99	< 25	< 10	< 25	< 10	120	48	400	160	< 25	< 10	350	140	< 25	< 10	< 25	< 10	< 25	< 10
GB71-34.2-12199	21-Jan-99	< 25	< 10	< 25	< 10	118	47	525	210	< 25	< 10	675	270	< 25	< 10	< 25	< 10	< 25	< 10
CR72-11-12199	21-Jan-99	< 16	< 10	< 16	< 10	27	17	92	58	< 16	< 10	365	230	< 16	< 10	< 16	< 10	< 16	< 10
CR72-12-12199	21-Jan-99	< 16	< 10	< 16	< 10	52	32	180	110	< 16	< 10	508	310	< 16	< 10	< 16	< 10	< 16	< 10
CR72-13-12199	21-Jan-99	< 16	< 10	< 16	< 10	51	31	180	110	< 16	< 10	492	300	< 16	< 10	< 16	< 10	< 16	< 10
CR72-14-12199	21-Jan-99	< 14	< 10	< 14	< 10	36	25	87	60	< 14	< 10	58	40	< 14	< 10	< 14	< 10	< 14	< 10
CR73-8-12199	21-Jan-99	< 13	< 10	< 13	< 10	22	17	49	39	< 13	< 10	18	14	< 13	< 10	< 13	< 10	< 13	< 10
CR73-9-12199	21-Jan-99	< 12	< 10	< 12	< 10	14	11	37	30	< 12	< 10	< 12	< 10	< 12	< 10	< 12	< 10	< 12	< 10
CR73-10-12199	21-Jan-99	< 12	< 10	< 12	< 10	23	19	38	31	< 12	< 10	< 12	< 10	< 12	< 10	< 12	< 10	< 12	< 10
Effects	s Range - Low ¹		-		-		-		-		-		-		-		160		-
Effects Ra	nge - Medium ¹		-		-		-		-		-		-		-	2	,100		-

Analysis conducted by Apollo Analytics, Inc., Costa Mesa, CA using EPA Method 8260

 1 = from Long and others, 1995.

= not reported

GB = grab sediment sample

CR = core sediment sample

" - 0 " = duplicate sediment sample

Table 6: Summary of Statistical Analyses on Phase I & Phase II Sediment Samples Salton Sea

LFR 6824.00

	Percent Clay	Percent Silt	Percent Total Fines	Percent Sand	Acetone	2- Butanone	Carbon Disulfide	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Vanadium	Zinc
Percent						-			++	-					-		-		++
Clay						0.10			0.10	0.08					0.27		0.07		0.12
Percent								+		-		+	+		-		-		++
Silt								0.07		0.08		0.15	0.08		0.24		0.09		0.22
Percent						-			+	-					-		-		++
Total Fines						0.10			0.06	0.11					0.32		0.12		0.23
Percent						+			-	+					+		+		-
Sand						0.10			0.06	0.11					0.32		0.12		0.23
Acetone						++	+	++									+		
						0.86	0.08	0.21									0.13		
2-Butanone	-		-	+	++			++		+				+		+	++		
	0.10		0.10	0.10	0.86			0.26		0.13				0.11		0.09	0.20		
Carbon					+			++			+		++	+		++	+	++	++
Disulfide					0.08			0.12			0.15		0.35	0.11		0.13	0.13	0.27	0.15
Arsenic		+			++	++	++							+		++	++		
		0.07			0.21	0.26	0.12							0.06		0.12	0.14		
Barium	++		+	-							++		++	++		++		++	++
	0.10		0.06	0.06							0.23		0.16	0.18		0.35		0.22	0.20
Cadmium	-	-	-	+		+								++	++	++	++		
	0.08	0.08	0.11	0.11		0.13								0.66	0.58	0.30	0.16		
Chromium							+		++				++	++		++		++	++
							0.15		0.23				0.84	0.26		0.45		0.82	0.18
Cobalt		+																++	
		0.15																0.84	
Copper		+					++		++		++			++		++		++	++
••		0.08					0.35		0.16		0.84			0.23		0.66		0.90	0.48
Lead						+	+	+	++	++	++		++		+	++	+	++	++
						0.11	0.11	0.06	0.18	0.66	0.26		0.23		0.32	0.61	0.10	0.40	0.10
Molybdenum	-	-	-	+						++				+		++	++		
-	0.27	0.24	0.32	0.32						0.58				0.32		0.51	0.36		
Nickel			_	-		+	++	++	++	++	++		++	++	++	-		++	++
						0.09	0.13	0.12	0.35	0.30	0.45		0.66	0.61	0.51			0.83	0.31
Selenium	-	-	-	+	+	++	+	++		++				+	++				
	0.07	0.09	0.12	0.12	0.13	0.20	0.13	0.14		0.16				0.10	0.36				
Vanadium							++		++		++	++	++	++		++			
							0.27		0.22		0.82	0.84	0.90	0.40		0.83			
Zinc	++	++	++				++		++		++		++	++		++			
	0.12	0.22	0.23	0.23			0.15		0.20		0.18		0.48	0.10		0.31			

NOTES:

0.22 = Posted results are the r^2 values for the analyte pairs. See text for explanation of sample and analyte selection.

++ = Positive correlation, significant at the 99% confidence level

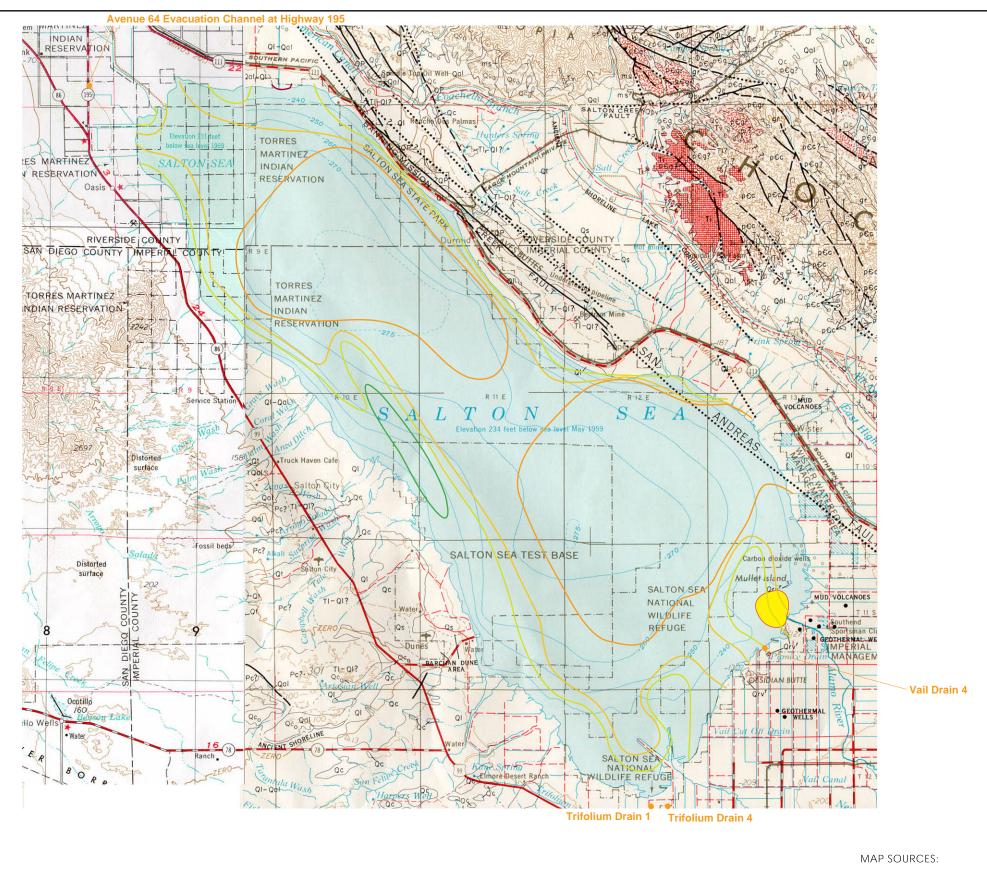
+ = Positive correlation, significant at the 95% confidence level

-- = Negative correlation, significant at the 99% confidence level

- = Negative correlation, significant at the 95% confidence level

Table 7:

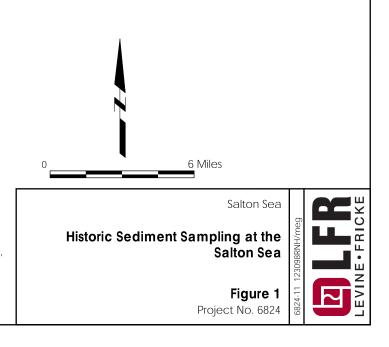
Summary of Equipment Blank Samples Collected During Phase I & Phase II Activities LFR 6824.00

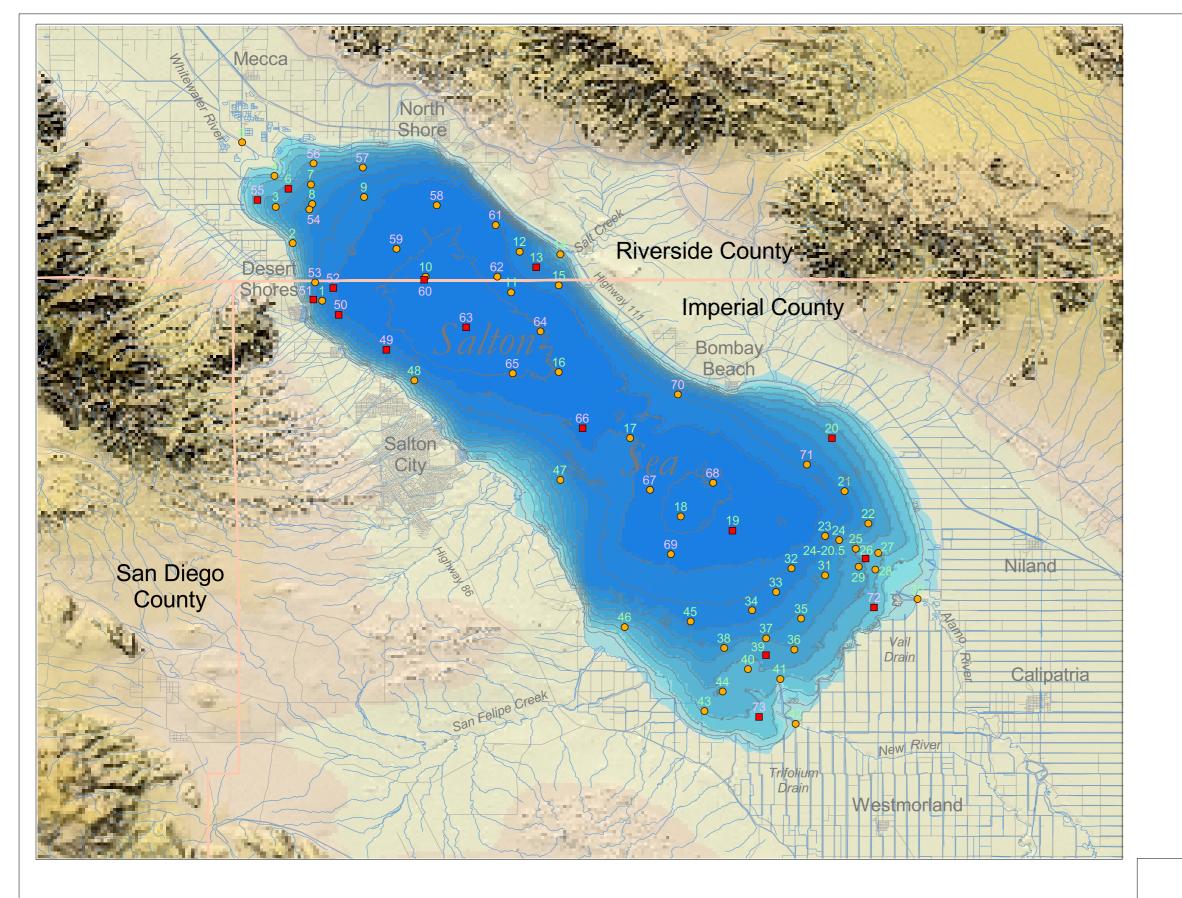

Sample ID	Sample Date	Number of Containers	Sampler Used	Performed EPA Methods	Analyte Detected	Result (mg/l)
EB1-121698	12/16/98	2 ambers	Grab sampler	8260	None	ND
EB2-121798	12/17/98	3 ambers	Grab sampler	8260	None	ND
EB3-121898	12/18/98	5 ambers 2 plastic 3 VOAs	Stainless-steel trowel	8081, 8141, 8151, 8260, 8270, CAM17	None	ND
EB4-122198	12/21/98	5 ambers 2 plastic 3 VOAs	Stainless-steel trowel	8081, 8141, 8151, 8260, 8270, CAM17	None	ND
EB5-122298	12/22/98	5 ambers 2 plastic 3 VOAs	Stainless-steel trowel	8081, 8141, 8151, 8260, 8270, CAM17	None	ND
EB6-011999	1/19/99	3 ambers 1 plastic 3 VOAs	Corer	8081, 8141, 8151, 8260, 8270, CAM17	None	ND
EB7-012099	1/20/99	3 ambers 1 plastic 3 VOAs	Grab sampler			
EB8-12199	1/21/99	4 ambers 1 plastic 3 VOAs	Stainless-steel trowel	8081, 8141, 8151, 8260, 8270, CAM17	None	ND
EB9-12299	1/22/99	4 ambers 1 plastic 3 VOAs	Stainless-steel trowel	8081, 8141, 8151, 8260, 8270, CAM17	None	ND

Notes:

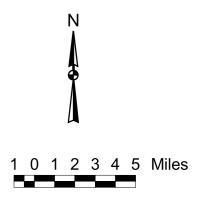
ND = Not Detected

--- = Sample not analyzed by laboratory

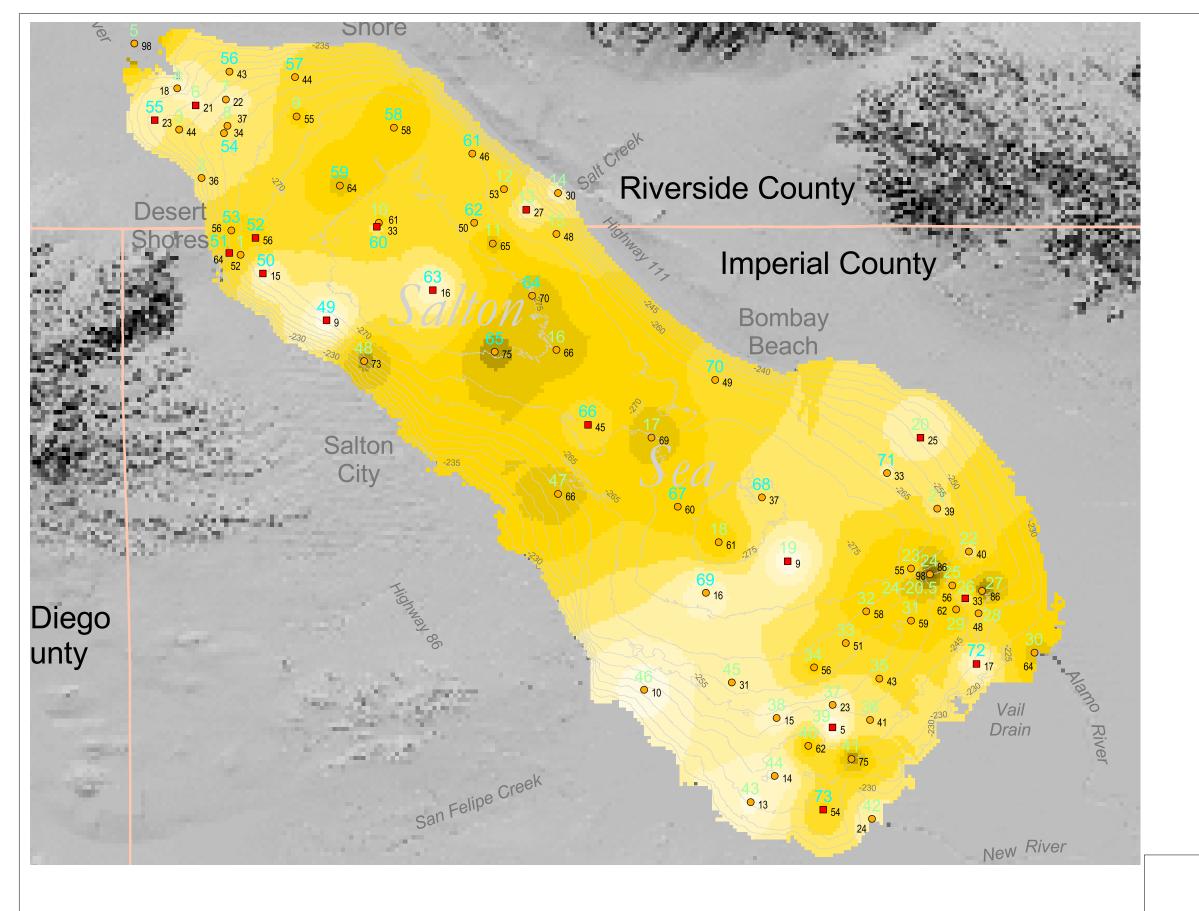

FIGURES



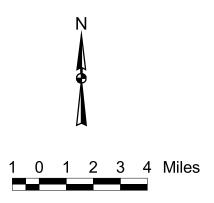
- State of California *Division of Mines and Geology*, Geologic Map of California (Jenkins), Salton Sea Sheet, 1977.
- U.S.G.S Topographic Map, 1:250,000', Santa Ana, California, 1981.


EXPLANATION

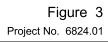
- Selenium Assessment Area Setmire [et al], 1993.
- Sediment Investigation, Setmire and Stroud, 1990.
- Sediment Grain Size
- ----- Sand 256-1,000 μm
- ----- Fine Sand 64-256 μm
- Fine Sand 16-64 µm
- Silt 4-16 µm
- Clay <_4 µm
- NOTE: Grain Size of lake bottom sediments (after Arnal, 1961)



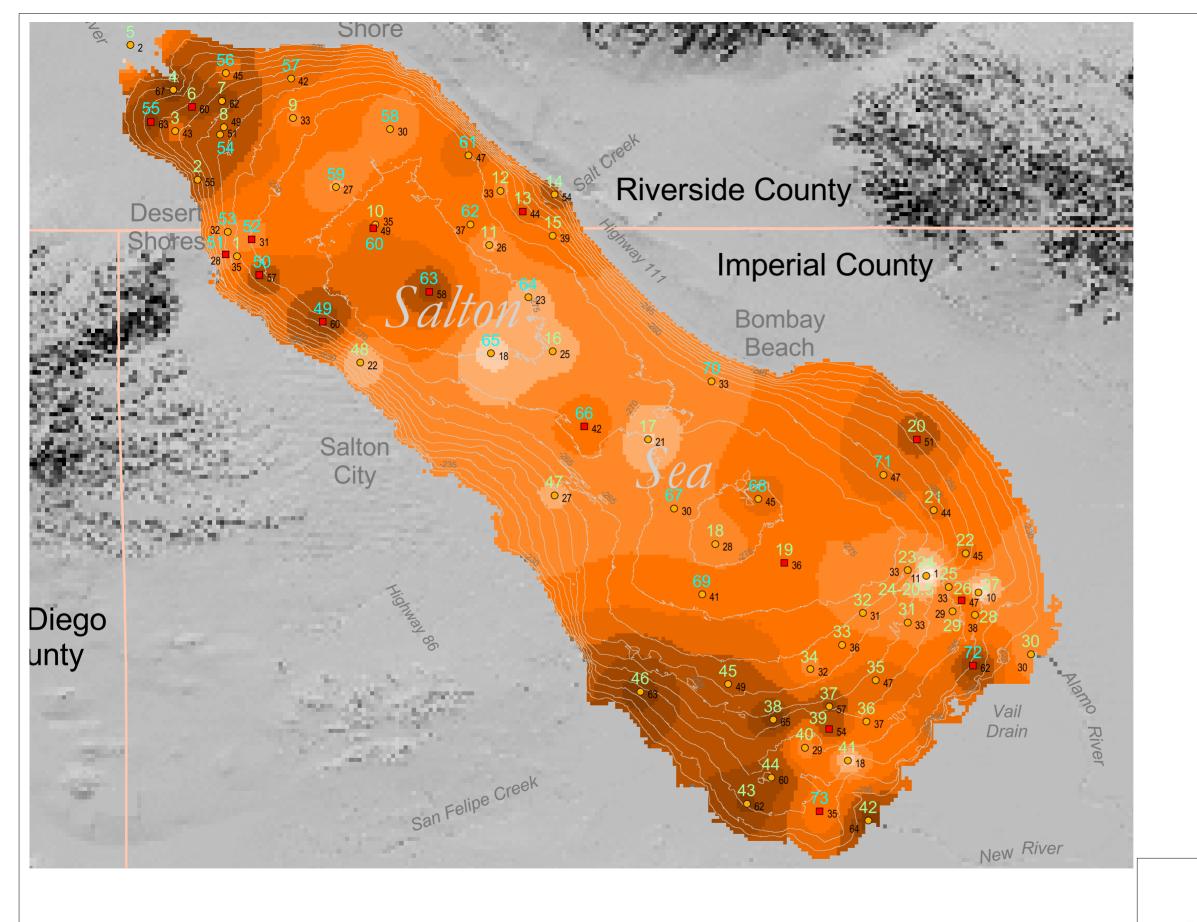
1-48	Phase I Sediment Sample Locations (December, 1998)
49-73	Phase II Sediment Sample Locations (January, 1999)
•	Sediment Grab Sample Locations
•	Sediment Core Sample Locations
	River and Stream Networks
	Transportation Network
	County Lines


Salton Sea

LFR Phase I and Phase II Sediment Sampling Locations Figure 2 Project No. 6824.00


1-48	Phase I Sediment Sample Locations
1-40	(December, 1998)
40.7	Phase II Sediment Sample Locations
49-73	³ (January, 1999)
Se	diment Sample Type
	Core 0 - 30 cm
C	Grab 0 - 15 cm
	SANDS
	Bathymetric Contours (5 ft. interval)
Sa	nd Percentage per Sediment Sample
	5 - 15
	15 - 24
	24 - 33
	33 - 42
	42 - 52
	52 - 61
	61 - 70
	70 - 79
	79 - 89
	89 - 98

Riverside County Line
San Diego County Line
Shoreline

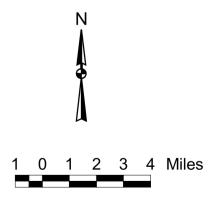


Salton Sea

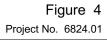
LFR Phase I and Phase II **Distribution of Surface Sediments** SANDS

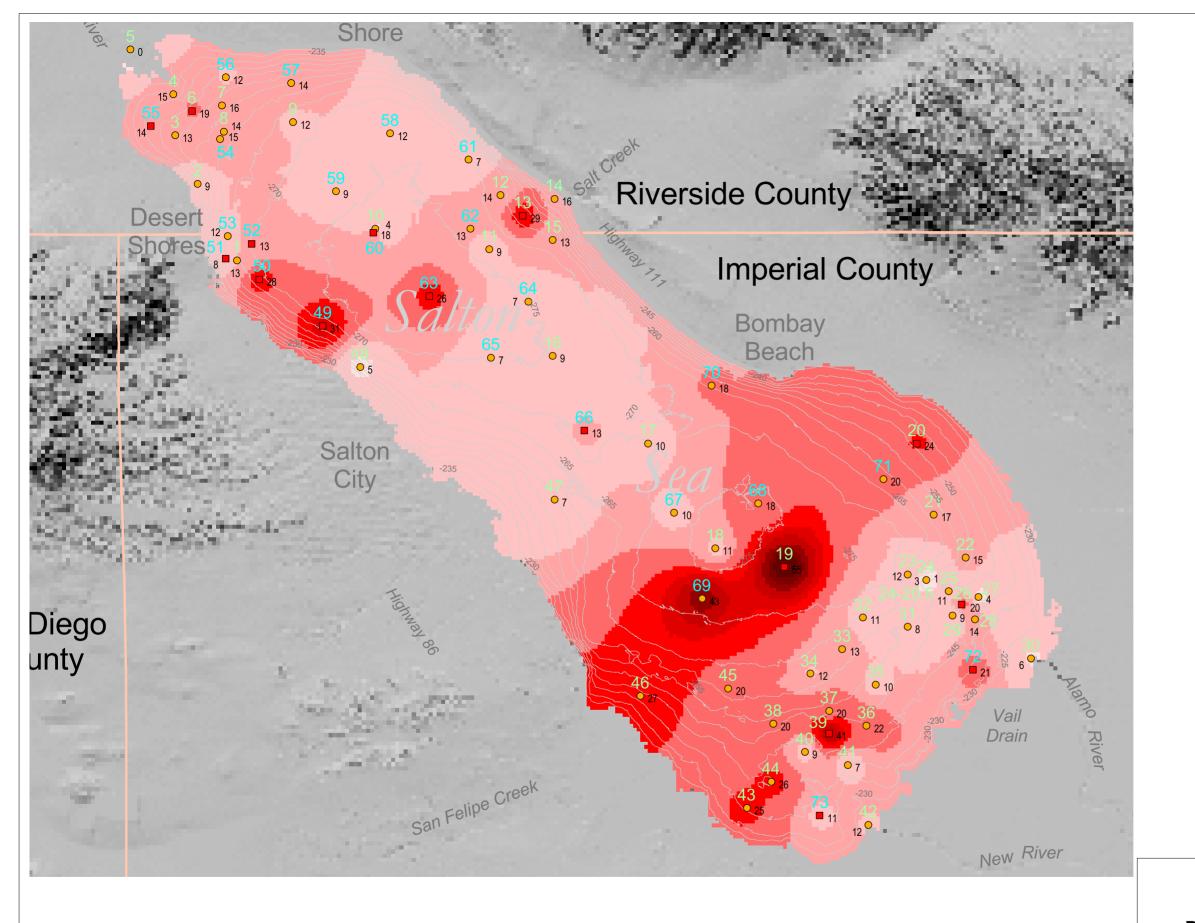
Phase I Sediment Sample Locations (December, 1998)

Phase II Sediment Sample Locations (January, 1999) 49-73


Sediment Sample Type Core 0 - 30 cm

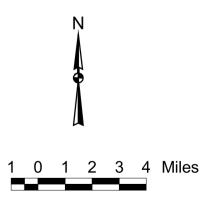
- Grab 0 15 cm 0 SILTS


Bathymetric Contours (5 ft. interval) Silt Percentage per Sediment Sample


Riverside County Line San Diego County Line Shoreline

Salton Sea LFR Phase I and Phase II **Distribution of Surface Sediments** SILTS

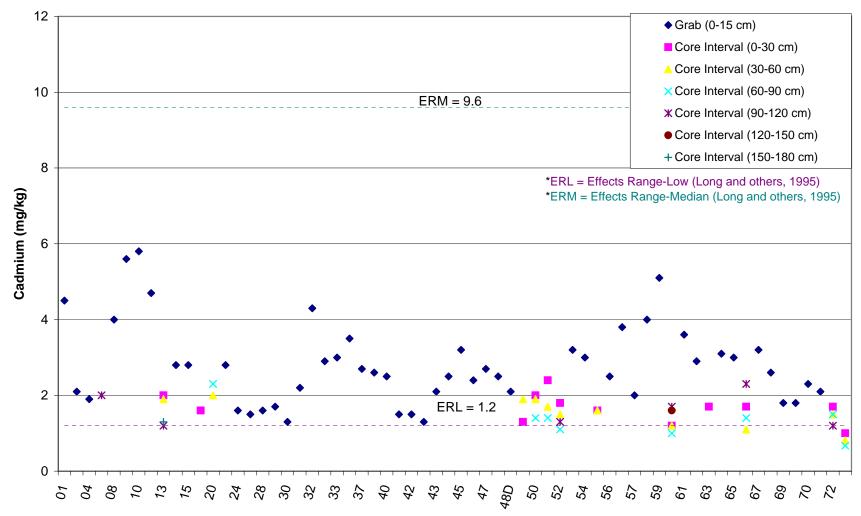
1 40	Phase I Sediment Sample Locations
1-48	(December, 1998)

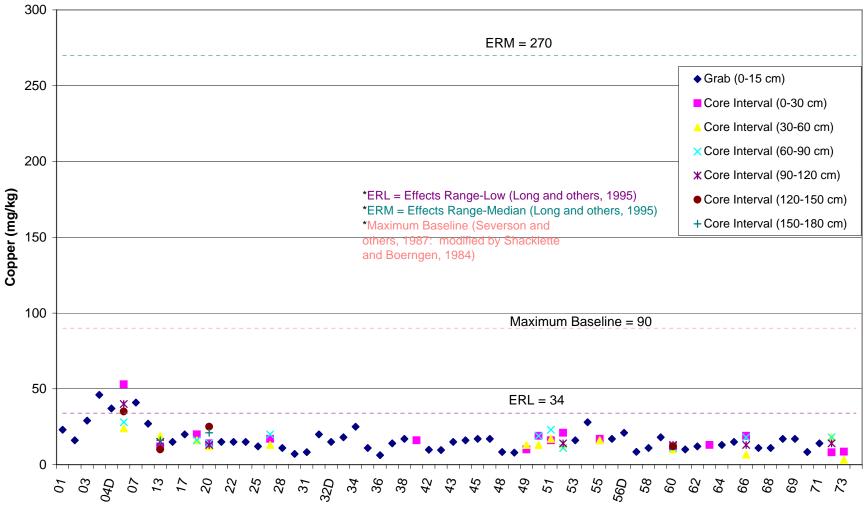

49-73 (January, 1999)
Sediment Sample Type
Core 0 - 30 cm
Grab 0 - 15 cm 49-73

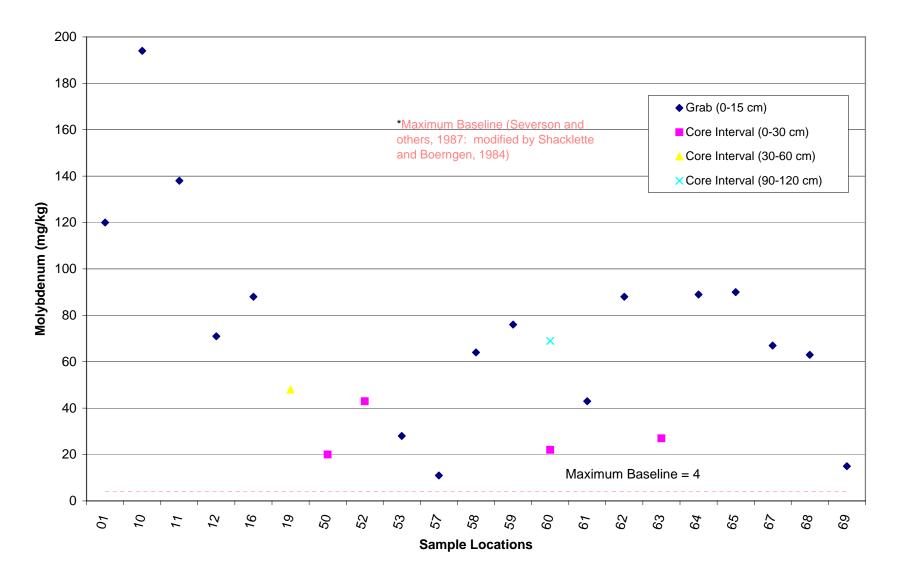
CLAYS

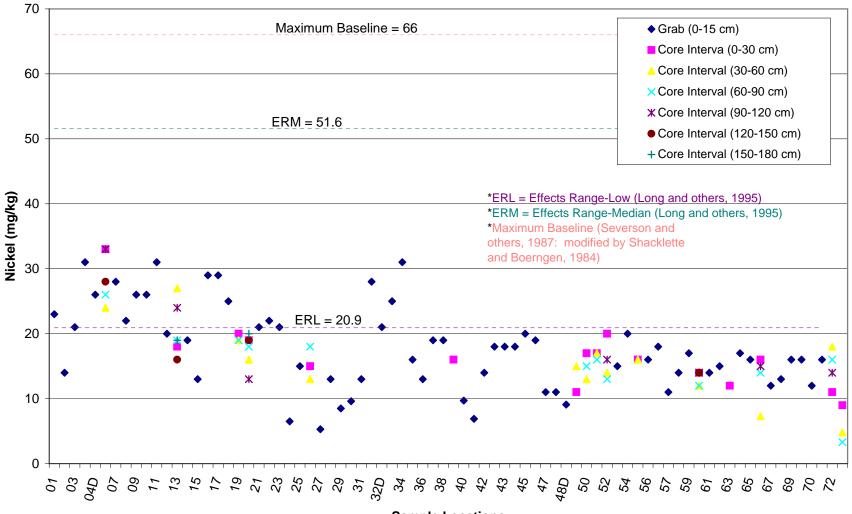
Bathymetric Contours (5 ft. interval) Clay Percentage per Sediment Sample

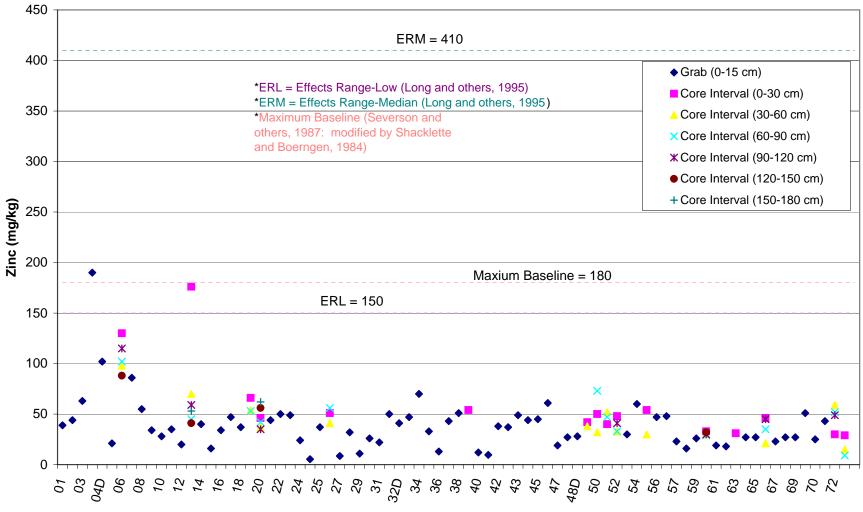
<i>-</i> ,~,	1 0100110
	1 - 6
	6 - 12
	12 - 17
	17 - 23
	23 - 28
	28 - 33
	33 - 39
	39 - 44
	44 - 49
	49 - 55

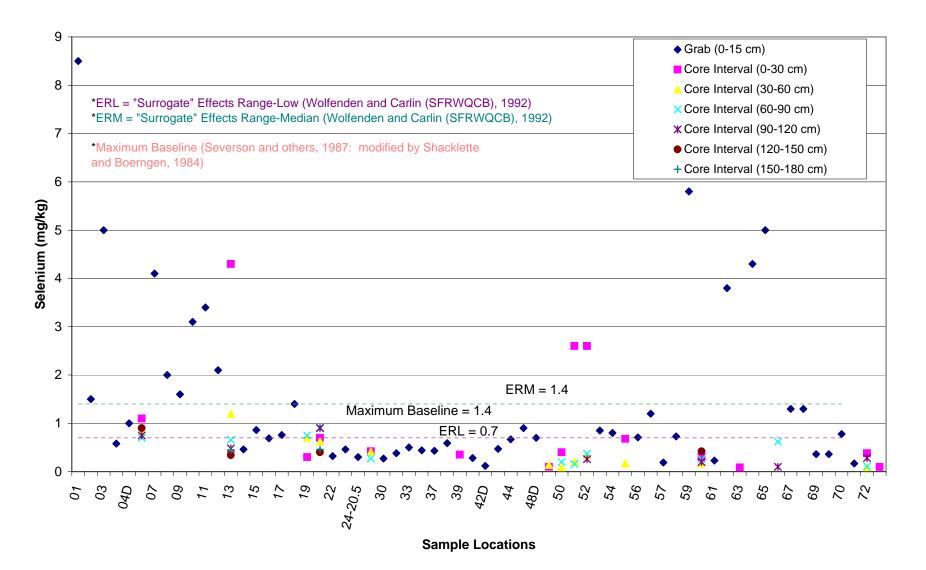

Riverside County Line
San Diego County Line
Shoreline


Salton Sea LFR Phase I and Phase II **Distribution of Surface Sediments** CLAYS




Figure 6: Graph of Cadmium Concentrations Detected in Sediment Samples


Figure 7: Graph of Copper Concentrations Detected in Sediment Samples



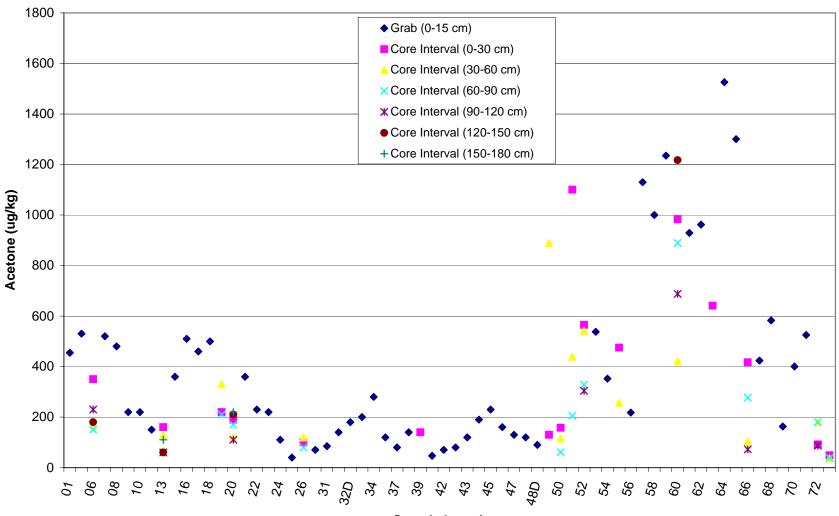
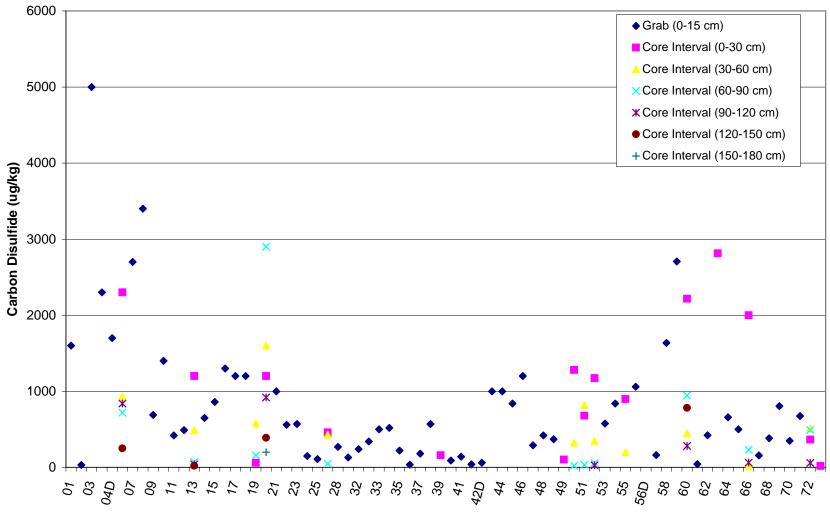
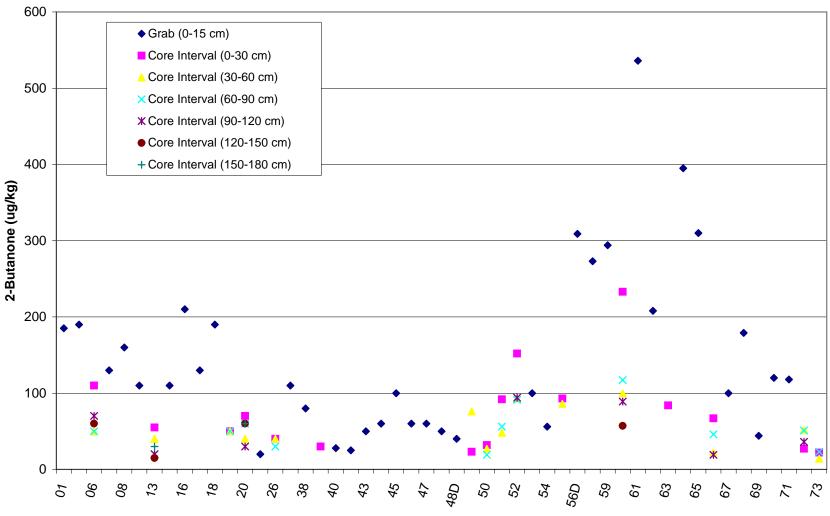
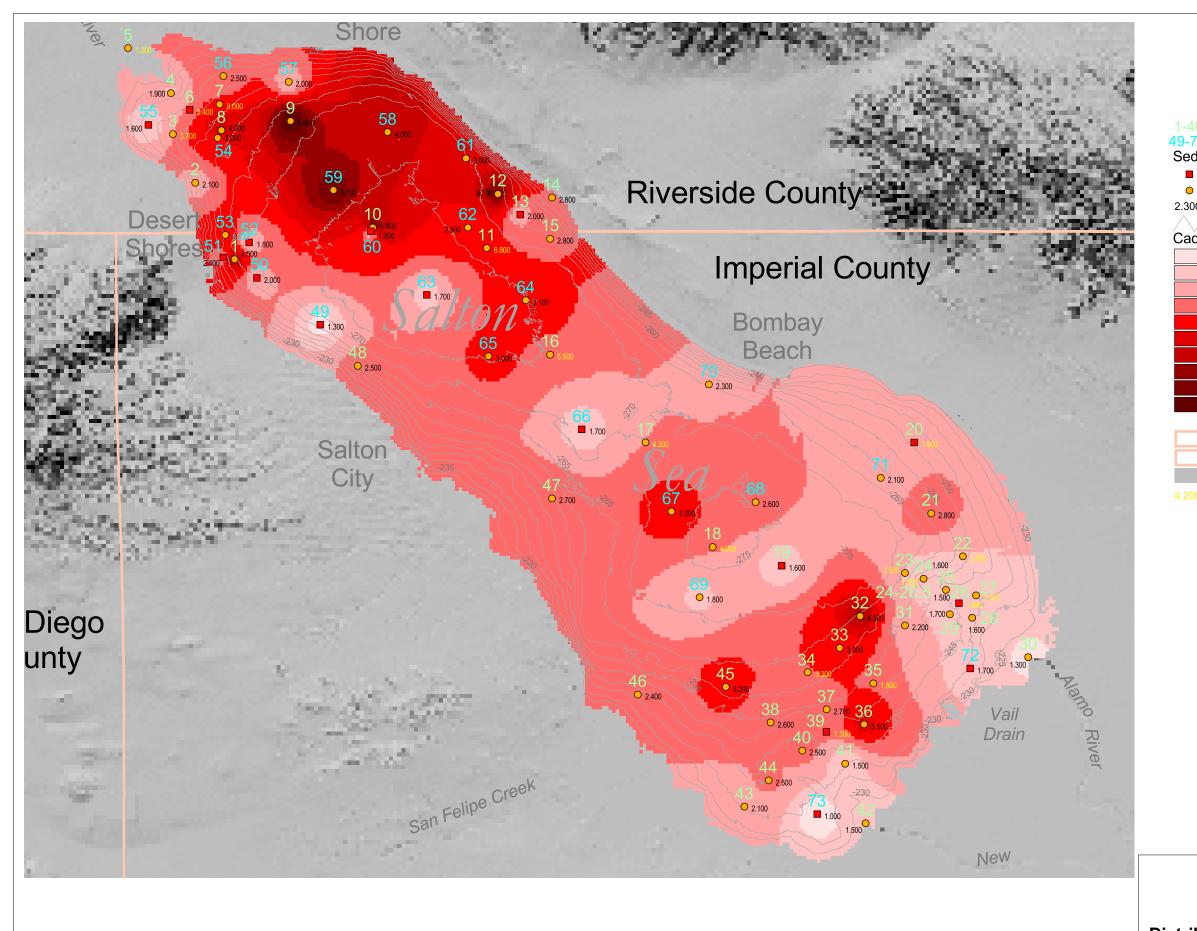

Figure 9: Graph of Nickel Concentrations Detected in Sediment Samples

Figure 10: Graph of Zinc Concentrations Detected in Sediment Samples

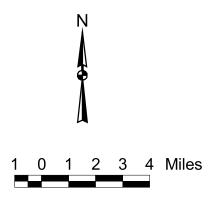



Figure 12: Graph of Acetone Concentrations Detected in Sediment Samples

Sample Locations


Figure 13: Graph of Carbon Disulfide Concentrations Detected in Sediment Samples

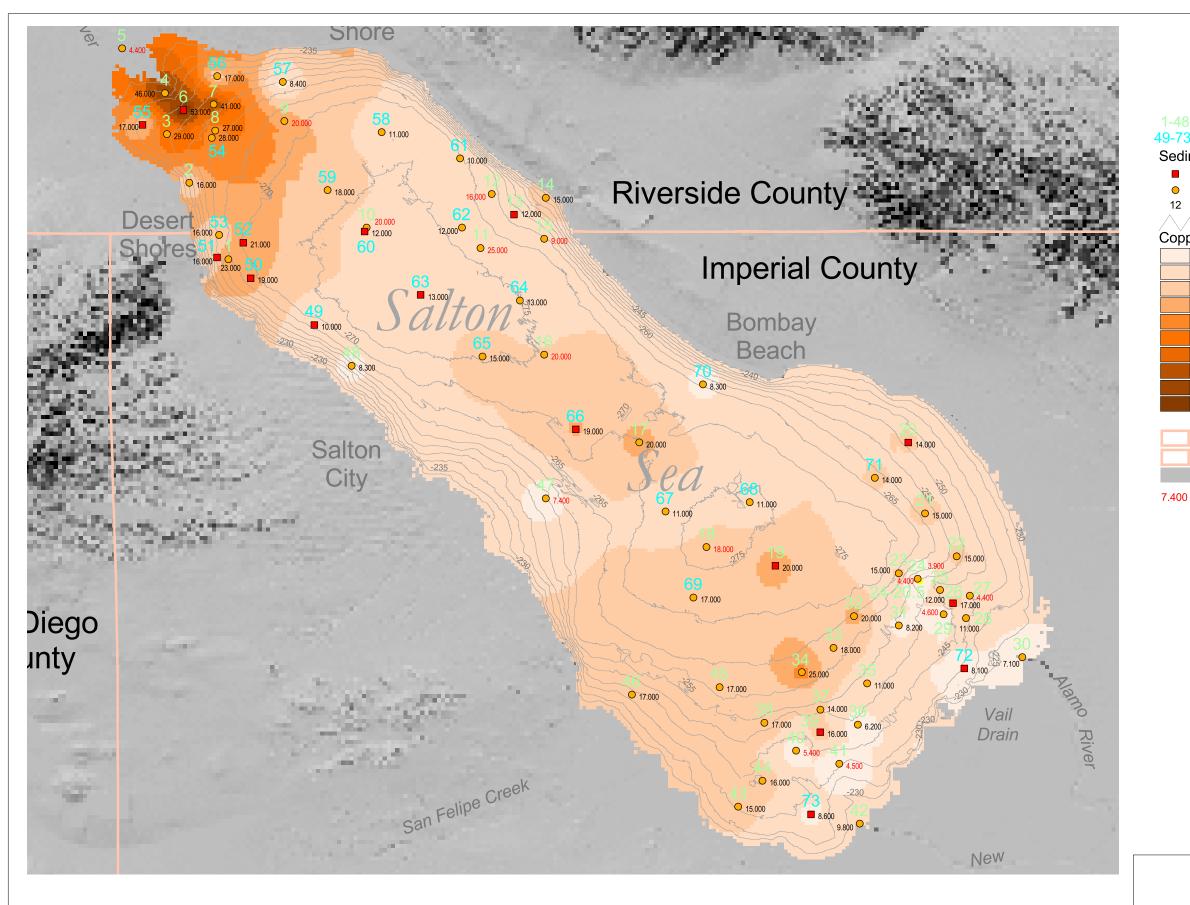
Sample Locations


Figure 14: Graph of 2-Butanone Concentrations Detected in Sediment Samples

Sample Location

73	Phase I Sediment Sample Locations (December, 1998) Phase II Sediment Sample Locations (January, 1999) ment Sample Type
	Core 0 - 30 cm
	Grab 0 - 15 cm
0	Cadmium Concentrations (mg/kg, dry weight)
	Bathymetric Contours (5 ft. interval)
	nium Concentrations (mg/kg, dry weight)
	1.007 - 1.466
	1.466 - 1.925
	1.925 - 2.384
_	2.384 - 2.843
	2.843 - 3.302
	3.302 - 3.761
	3.761 - 4.22
	4.22 - 4.679
	4.679 - 5.139
	5.139 - 5.700
٦	Riverside County Line
٦	San Diego County Line
	Shoreline

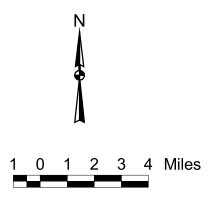
4.200 Analyte not detected above laboratory detection limit posted. These concentrations were not considered for the purposes of preparing this map.



Salton Sea

LFR Phase I and Phase II Distribution of Cadmium Concentrations

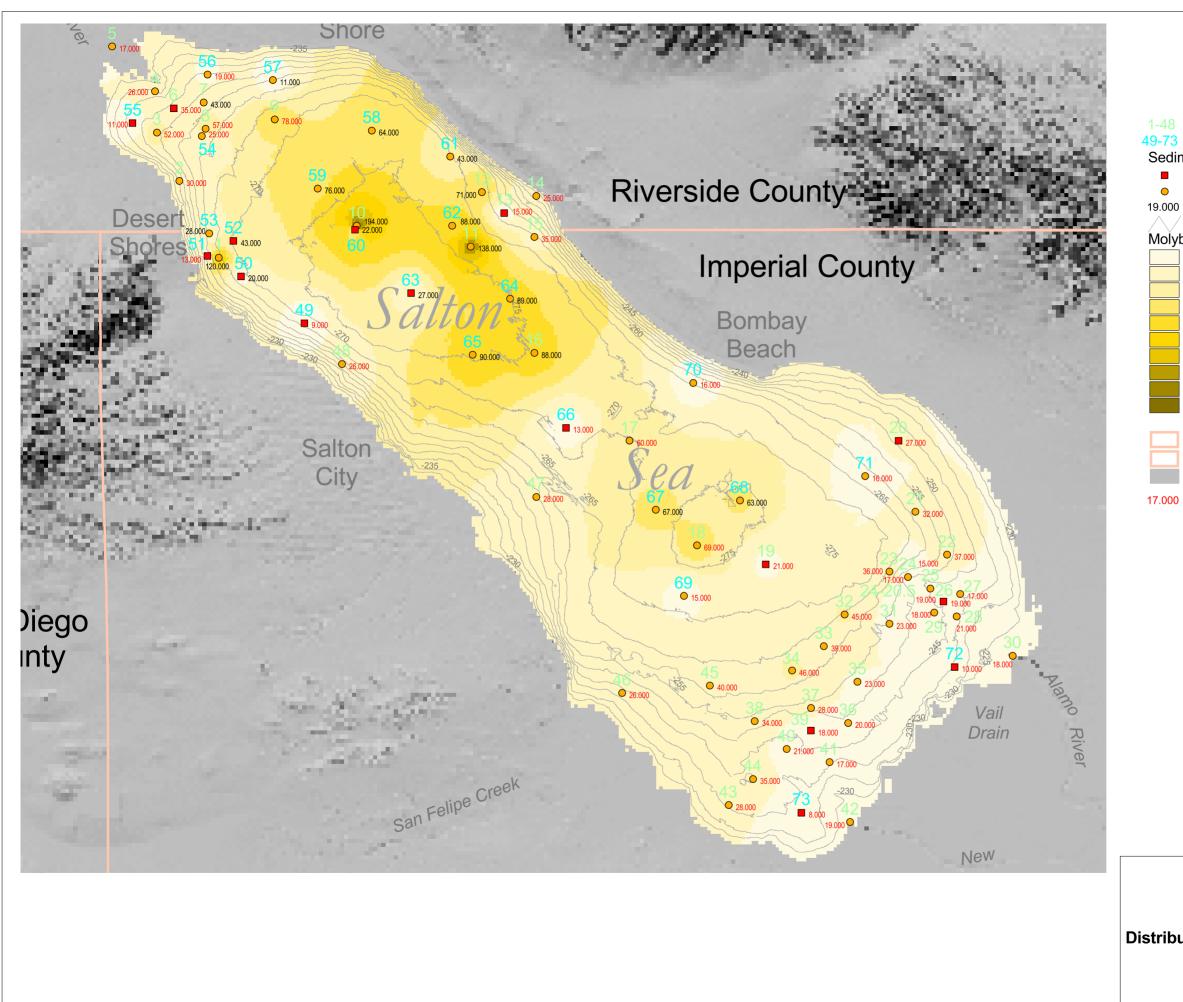
Figure 15 Project No. 6824.01



1-48 Phase I Sediment Sample Locations (December, 1998) 49-73 Phase II Sediment Sample Locations (January, 1999) Sediment Sample Type Core 0 - 30 cm Grab 0 - 15 cm 12 Copper Concentrations (mg/kg, dry weight) Bathymetric Contours (5 ft. interval) Copper Concentrations (mg/kg, dry weight) 4.162 - 9.02 9.02 - 13.878 13.878 - 18.737 18.737 - 23.595 23.595 - 28.453 28.453 - 33.311 33.311 - 38.17 38.17 - 43.028 43.028 - 47.886 47.886 - 52.744

Riverside County Line San Diego County Line Shoreline

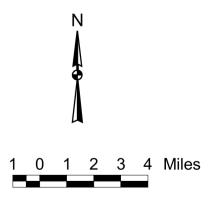
7.400 Analyte not detected above laboratory detection limit posted. Laboratory detection limit concentrations below 7.401 mg/kg were not considered for the purposes of preparing this map.



Salton Sea

LFR Phase I and Phase II **Distribution of Copper Concentrations**

Figure 16 Project No. 6824.01

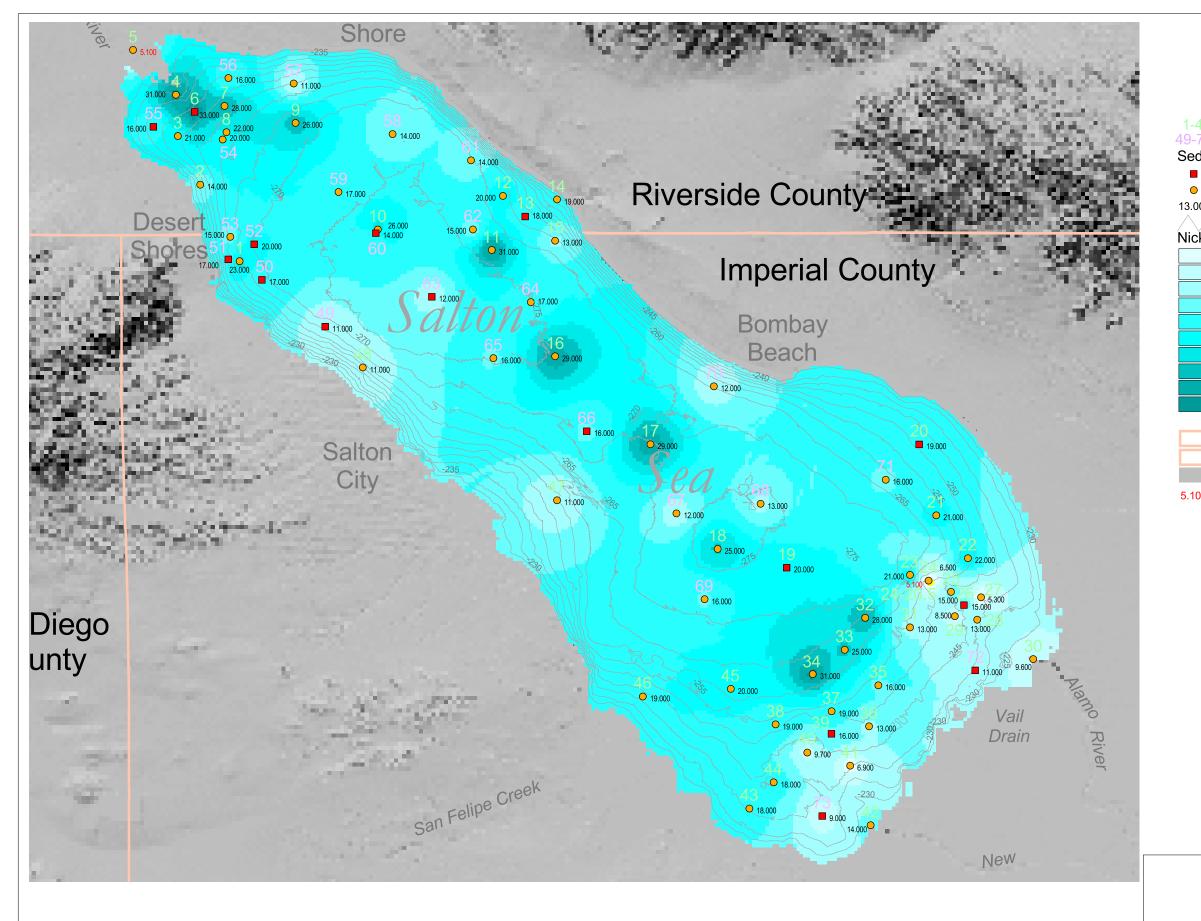


R:\saltonsea\saltonsea.apr

1-48 Phase I Sediment Sample Locations (December, 1998) 49-73 Phase II Sediment Sample Locations (January, 1999) Sediment Sample Type Core 0 - 30 cm • Grab 0 - 15 cm Molybdenum Concentrations (mg/kg, dry weight)
Bathymetric Contours (5 ft. interval)
Molybdenum Concentrations (mg/kg, dry weight) 8.06 - 25.29 25.29 - 42.51 42.51 - 59.74 59.74 - 76.97 76.97 - 94.19 94.19 - 111.42 111.42 - 128.65 128.65 - 145.87 145.87 - 163.1 163.1 - 194.00

Riverside County Line San Diego County Line Shoreline

17.000 Analyte not detected above laboratory detection limit posted. These concentrations were assumed to be the detected concentrations for the purposes of preparing this map.



Salton Sea

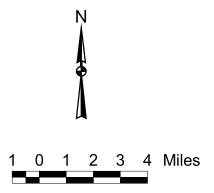
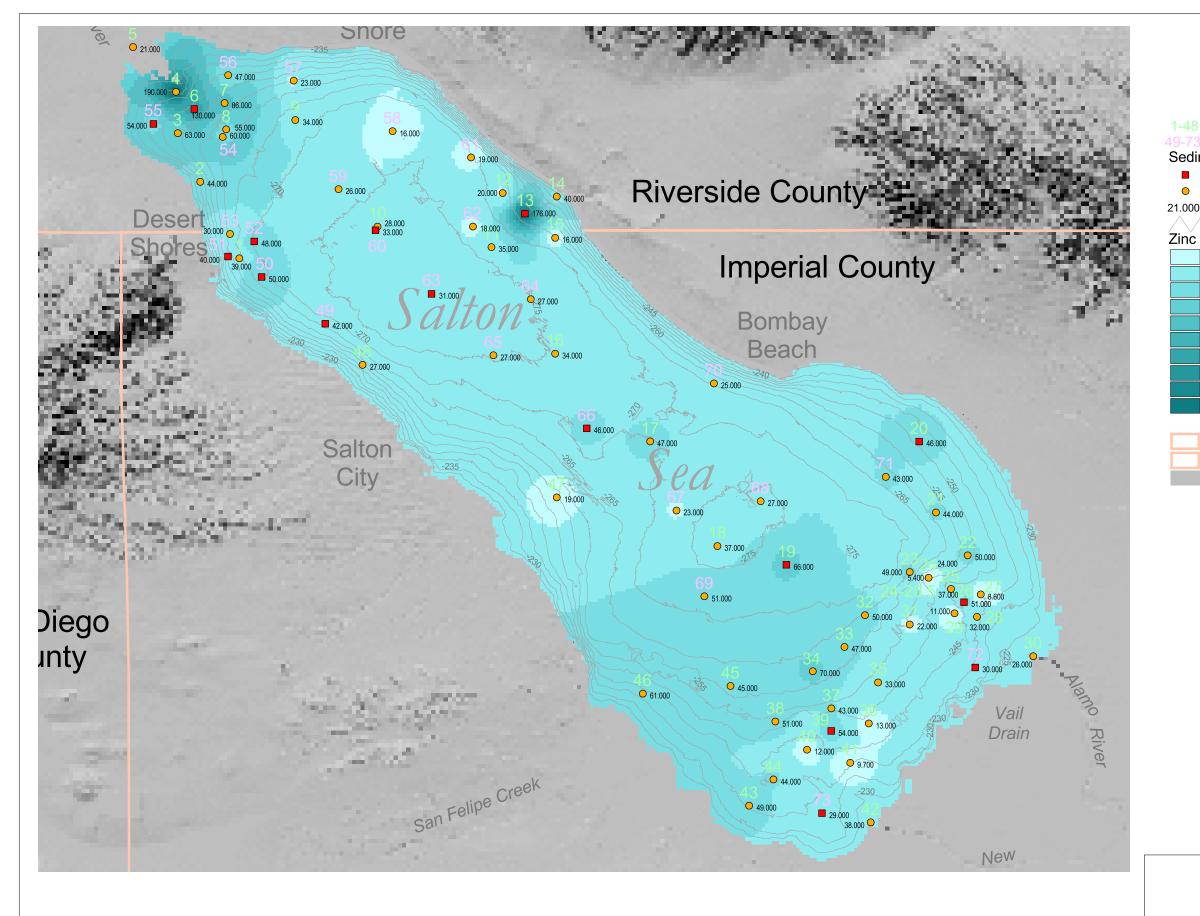

LFR Phase I and Phase II Distribution of Molybdenum Concentrations

Figure 17 Project No. 6824.01

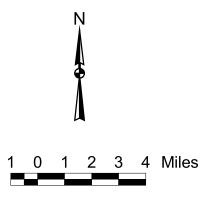
1-48 Phase I Sediment Sample Locations (December, 1998) 49-73 Phase II Sediment Sample Locations (January, 1999) Sediment Sample Type Core 0 - 30 cm
 Grab 0 - 15 cm 13.000 Nickel Concentrations (mg/kg, dry weight) Bathymetric Contours (5 ft. interval) Nickel Concentrations (mg/kg, dry weight) 5.1 - 7.94 7.94 - 10.723 10.723 - 13.507 13.507 - 16.29 16.29 - 19.074 19.074 - 21.857 21.857 - 24.64 24.64 - 27.424 27.424 - 30.207 30.21 - 33 Riverside County Line San Diego County Line Shoreline 5.100 Analyte not detected above laboratory detection limit posted. These concentrations were assumed to be the detected concentrations for the purposes of preparing this map.



Salton Sea

LFR Phase I and Phase II **Distribution of Nickel Concentrations**

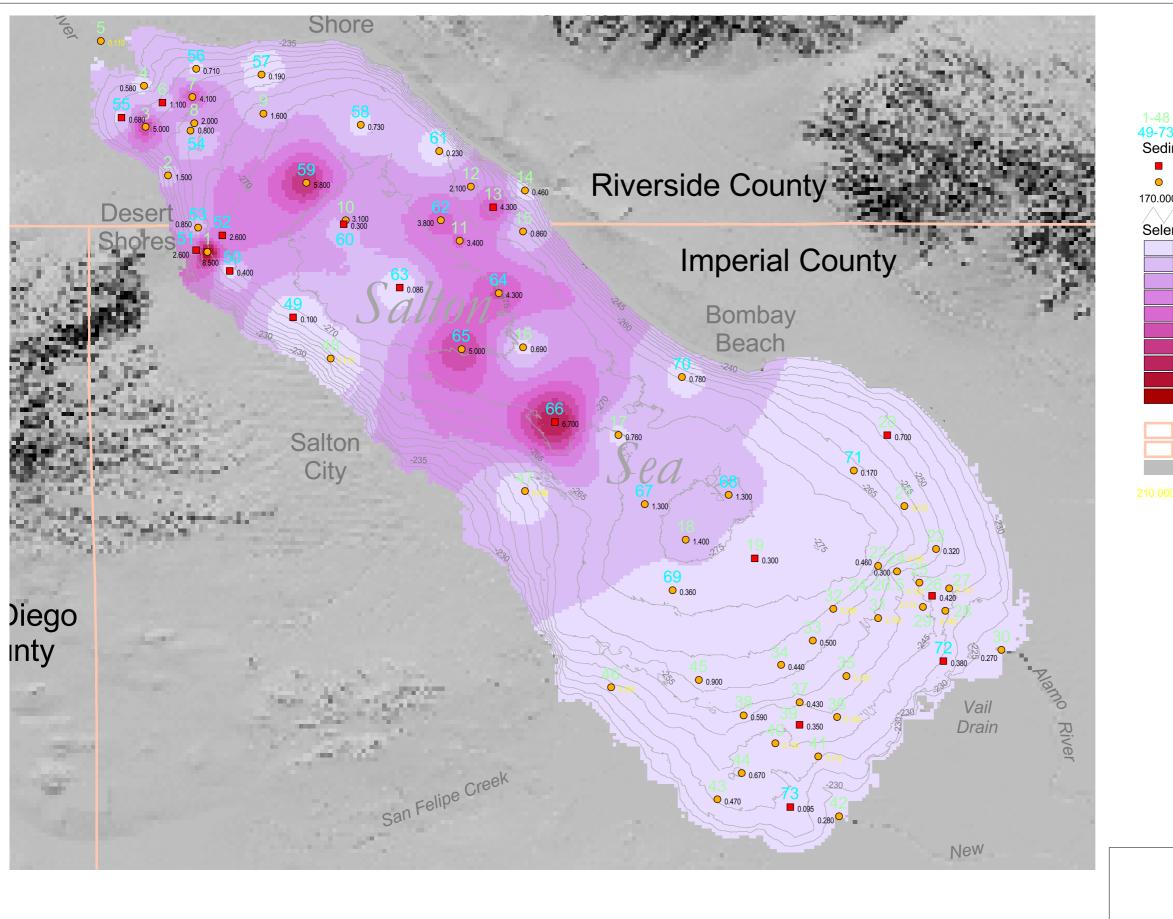
Figure 18 Project No. 6824.01



R:\saltonsea\saltonsea.apr

1-48 Phase I Sediment Sample Locations (December, 1998) 49-73 Phase II Sediment Sample Locations (January, 1999) Sediment Sample Type Core 0 - 30 cm Grab 0 - 15 cm 21.000 Zinc Concentrations (mg/kg, dry weight) Bathymetric Contours (5 ft. interval) Zinc Concentrations (mg/kg, dry weight) 5.4 - 24.26 24.256 - 42.575 42.575 - 60.894 60.894 - 79.213 79.213 - 97.533 97.533 - 115.852 115.852 - 134.171 134.171 - 152.49 152.49 - 170.81 170.81 - 190 **Riverside County Line**

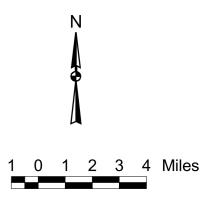
San Diego County Line Shoreline



Salton Sea

LFR Phase I and Phase II **Distribution of Zinc Concentrations**

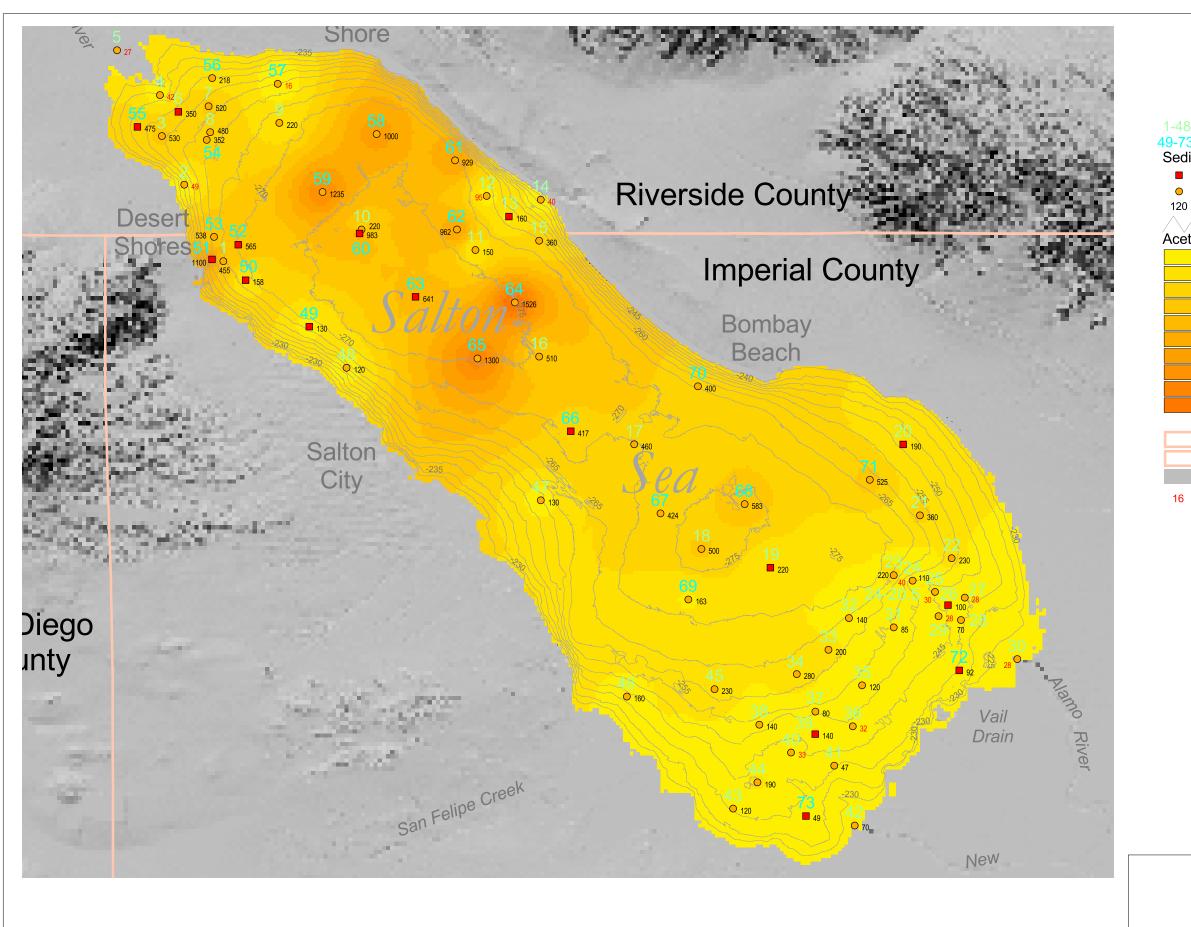
Figure 19 Project No. 6824.01



1-48 Phase I Sediment Sample Locations (December, 1998) Phase II Sediment Sample Locations (January, 1999) Sediment Sample Type Core 0 - 30 cm • Grab 0 - 15 cm 170.000 Selenium Concentrations (mg/kg, dry weight) Bathymetric Contours (5 ft. interval) Selenium Concentrations (mg/kg, dry weight) 0.086 - 0.901 0.901 - 1.715 1.715 - 2.53 2.53 - 3.344 3.344 - 4.159 4.159 - 4.973 4.973 - 5.787 5.787 - 6.602 6.602 - 7.416 7.416 - 8.500

Riverside County Line San Diego County Line Shoreline

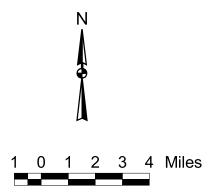
Analyte not detected above laboratory detection limit posted. These concentrations were assumed to be the detected concentrations for the purposes of preparing this map.



Salton Sea

LFR Phase I and Phase II **Distribution of Selenium Concentrations**

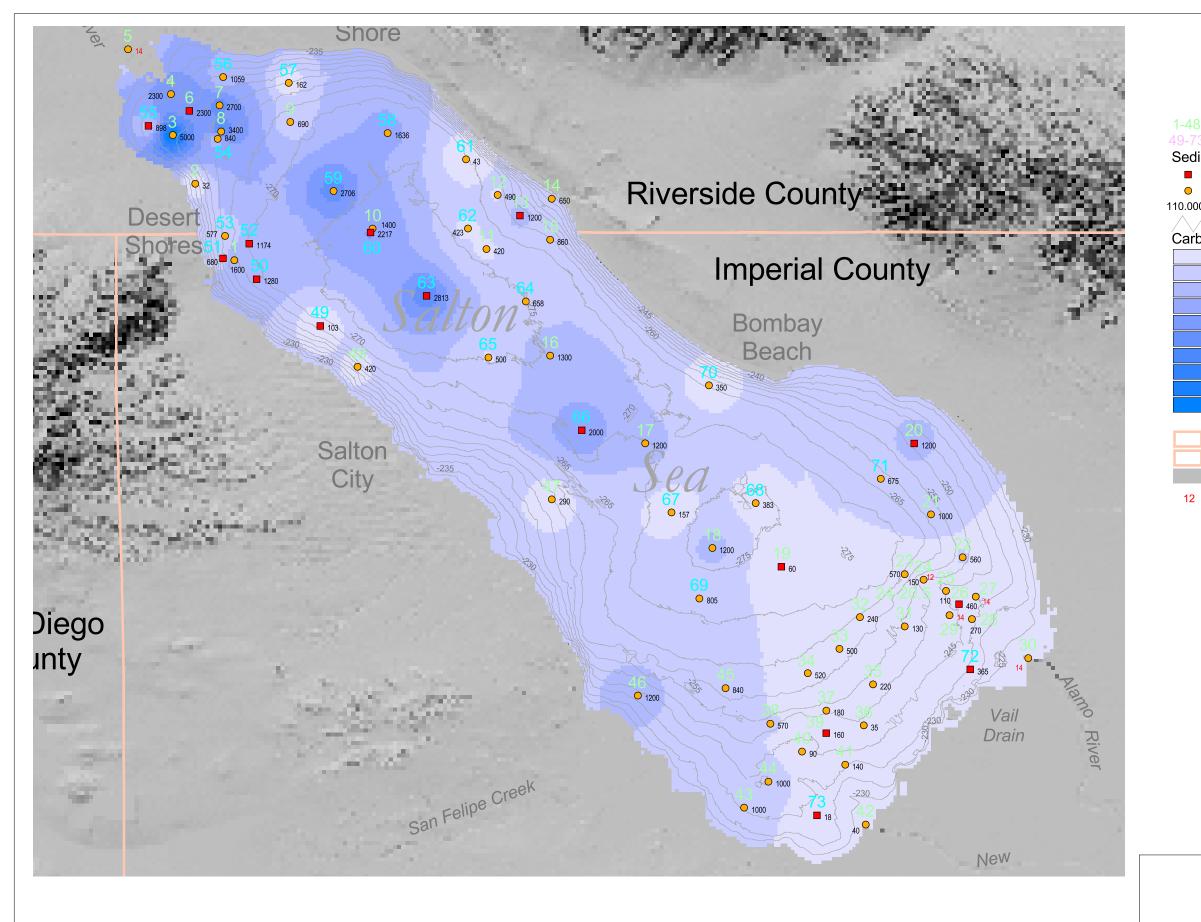
Figure 20 Project No. 6824.01



1-48 Phase I Sediment Sample Locations (December, 1998) 49-73 Phase II Sediment Sample Locations (January, 1999) Sediment Sample Type Core 0 - 30 cm Grab 0 - 15 cm Acetone Concentrations (ug/kg, dry weight) Bathymetric Contours (5 ft. interval) Acetone Concentrations (ug/kg, dry weight) 16 - 170 170 - 320 320 - 470 470 - 620 620 - 770 770 - 920 920 - 1080 1080 - 1230 1230 - 1380 1380 - 1530 Riverside County Line San Diego County Line

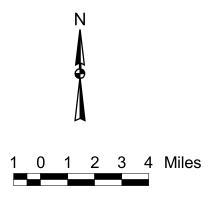

16 Analyte not detected above laboratory detection limit posted. These concentrations were assumed to be the detected concentrations for the purposes of preparing this map.

Shoreline



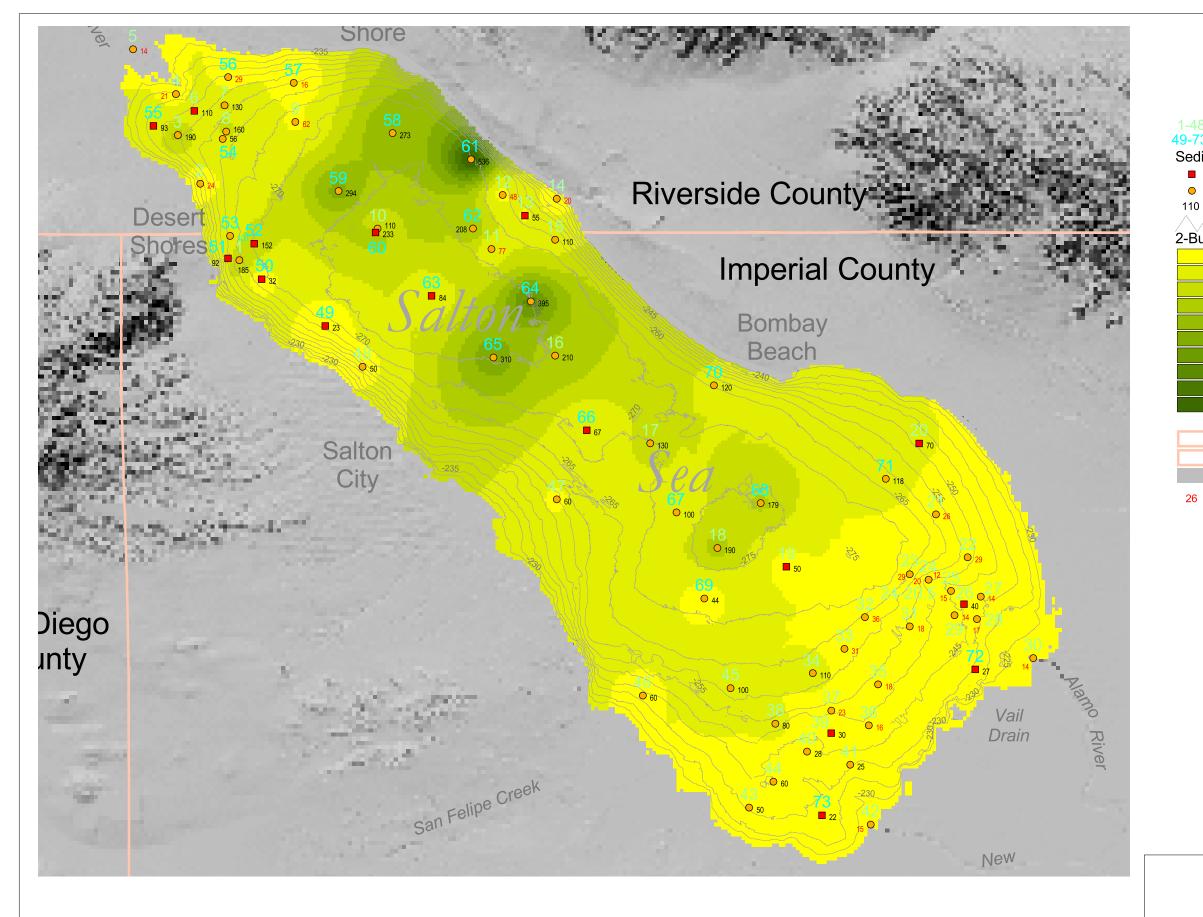
Salton Sea

LFR Phase I and Phase II **Distribution of Acetone Concentrations**



 Phase I Sediment Sample Locations (December, 1998) Phase II Sediment Sample Locations (January, 1999) liment Sample Type Core 0 - 30 cm Grab 0 - 15 cm Carbon disulfide Concentrations (ug/kg, dry weight) / Bathymetric Contours (5 ft. interval) bon disulfide Concentrations (ug/kg, dry weight)
10 - 510
510 - 1010
1010 - 1510
1510 - 2000
2000 - 2500
2500 - 3000
3000 - 3500
3500 - 4000
4000 - 4500
4500 - 5000
Riverside County Line
San Diego County Line
Shoreline
Analyte not detected charge laboratory detection

Analyte not detected above laboratory detection limit posted. These concentrations were assumed to be the detected concentrations for the purposes of preparing this map.



Salton Sea

LFR Phase I and Phase II Distribution of Carbon disulfide Concentrations

Figure 22 Project No. 6824.01



R:\saltonsea\saltonsea.apr

3	Phase I Sediment Sample Locations (December, 1998) Phase II Sediment Sample Locations (January, 1999) ment Sample Type
	Core 0 - 30 cm
	Grab 0 - 15 cm
	2-Butanone Concentrations (ug/kg, dry weight)
/	Bathymetric Contours (5 ft. interval)
u	tanone Concentrations (ug/kg, dry weight)
	10 - 60
	60 - 120
	120 - 170
	170 - 220
	220 - 270
	270 - 330
	330 - 380
	380 - 430
	430 - 490
_	490 - 540
	I
1	Riverside County Line

Riverside County Line	
San Diego County Line	
Shoreline	

26 Analyte not detected above laboratory detection limit posted. These concentrations were assumed to be the detected concentrations for the purposes of preparing this map.

Salton Sea

LFR Phase I and Phase II **Distribution of 2-Butanone Concentrations**

Figure 23 Project No. 6824.01

APPENDIX A

Daily Tailgate Safety Meeting Forms

Date: 12/16/98 Time: 0700 Project Number: 6824.00.02
Project Name: SALTON SEA
Specific Location: RIVERSIDES IMPERIAL CONTRES
Type of Work: SEDIMENT SAMPLING
Chemicals Present: SE, B, DDT, DDE, PCBS, OTHER PESTICIDES
SAFETY TOPICS DISCUSSED
Protective Clothing/Equipment: MODIFIED LEVELD - polytywelc, gloves, boots
Hazards of Chemicals Present: INGESTION /INHALATION OF ANY CHEMICAL FOUND
IN WATER / SEDIMENT COULD BE CARCINOGENIC
Physical Hazards: STF, HEAT STRESS, NAUTICAL TRAFFIC
Special Hazards: BIOLOGKAL HAZARDS - Pathogens, disease camping bin
Other Topics: DD, DDE - carcinogente teratogenic Organochlorine pesticides - bicaccubulates, carcinogenic
ATTENDEES

Name (printed)	Signature
RYAN HENRY	and from
RICHARD VEGL	Martin S
WAYNE VOGLER	UM DELET
RAY DIRLING	Kompo hiti
141 20120	

.

Date: 12/17/98 Time: 0700 Project Number: 6824.00.02
Project Name: SALTON SEA
Specific Location: RIVERSIDE (MPERIAL COUNTIES
Type of Work: SEDIMENT SAMPLING
Chemicals Present: Se, B, DDT, DDE, PCBS, other pesticides
SAFETY TOPICS DISCUSSED
Protective Clothing/Equipment: Modified Level D-pdytweek, gloves, boots
Hazards of Chemicals Present: Ingestion / Inhabition of any chemicals
Physical Hazards: S.T.F., Neat stress
Special Hazards: Biological hazards - pathogenis, disease carrying birds
Other Topics: DDT, DDE - Carcinegenic, teratogenic - use PDE
Other Topics: DDT, DDE - Carcinogenic, teratogenic - use PDE Organochlonne pesticides-carcingenic, bioacanonulates; Drink lots of ATTENDEES

Name (printed)	Signature
RYAN HENRY	Evan dems
RICHARD VOGL	Entras
WAYNE VOGLER	Way re ignized
RAY DIRLING	Roman & That The
	1. 3 0

Date: 12/18/98 Time: 0700 Project Number: 6824.00.02
Project Name: SALTON SEA
Specific Location: RIVERSIDE / IMPERIAL COUNTIES Type of Work: SEDIMENT SAMPLING
Type of work
Chemicals Present: Se, B, DDT, DDE, PCBS, other pesticides
SAFETY TOPICS DISCUSSED
Protective Clothing/Equipment: Modified Level D - polytyvek, gloves, boots
Hazards of Chemicals Present: Injection / in balation of Carcinogenic teratogen compounds in nater / sediment
Physical Hazards: S.T.F., heat stress, nautical fratite
Special Hazards: Biological hazards-pathozens, disease camping birds raw sewage in southern end of sea (near New River) Other Topics: DDT, DDE, organochlorine pesticides - Carcinogenic, terothe Drink lots of water
Other Topics: DDT, DDE, organochlonne pesticides - Carcinogenic, teroto
ATTENDEES

Signature	
scand en	
6	
inverse bailes	
the dial and the	
,	

Date: 12/21/98 Time: 1000 Project Number: 6824.00.02
Project Name: SALTON SEA
Specific Location: RIVERSIDE/IMPERIAL COVATIES
Type of Work: SEDIMENT SAMPLING /CORE
Chemicals Present: DDT, DDE, Se, B, PCBs, other Pesticides
SAFETY TOPICS DISCUSSED
Protective Clothing/Equipment: Modified Level D - polytyvek, gloves, boots, Mask
Hazards of Chemicals Present: Ingestion / Inhalation of Carcinogenic/teratogenic Compounds in Sediment/water
Compounds in Sediment/water
Physical Hazards: S.T.F., heats tress nautical tradic
Special Hazards: Biological hazards - pathogens, disease cornying birds
Other Topics: DDT, DDE, organochlorine pesticides - Carcinogenic teratogenic - Drink lots of unter
ATTENDEES

Name (printed)	Signature
RVAN HENRY	Evan Sens
RICHARD VOGL	AUN KAL
RAY DIRLING	the Blant

Date: 12/22/98 Time: 0700 Project Number: 6824.00.02
Project Name: SALTON SEA Specific Location: RIVERSIDE / IMPERIAL COUNTIES Type of Work: SEDIMENT SAMPLING / CORE
Chemicals Present: Se, B, DDT, DE, PCBS, other pesticides SAFETY TOPICS DISCUSSED
Protective Clothing/Equipment: Modified Level D-polytyvek, goves, bats, mask
Hazards of Chemicals Present: Ingestion/ inhalation of carcinoguic/teratogenic compounds in water sediment Physical Hazards: S.T.F., heat stress, nautical traffic
Special Hazards: Biological hazards - pathogent, disease carrying birds, raw Sewage Other Topics: DT, DDE organechlorine pesticides - carcinogenic teratogeni Drink lots of water - Dress warm

ATTENDEES

Signature	
Lugan dans	
tul, us	
R. B.C. H.	

Levine-Fricke-Recon DAILY TAILGATE SAFETY MEETING	FORM			/
Date: 1/19/99 Time: 9:20 ;	AM Pro	oject Number:	6824.00.0	3
Project Name: SALTON SEA				
Specific Location: RIVERSIDE \$ IM	PERIAL	COUNTES		
Type of Work: SEDIMENT SAM	PLING			
Chemicals Present: METALS, -	TRACE P	resticides		
SAFETY TOPICS DISCUSSED				
Protective Clothing/Equipment:	LD	- POLYTY	VEK, CLOVES	, 8005
Hazards of Chemicals Present: NESTION	EF TOPIC	S		
Physical Hazards: SURS, TRIR, i TRAFFIC	FALLS	HEAT ST	TZESS, NAUT	TCAL
Special Hazards: BIOLOGICAL HAZ	ARDS - P	AttoGENS	PISEASE C	ARRYING
BIRDS	- Antonio -	DR	4	
Other Topics: ACTHOUGH TRACE AN	NOOPTS OF	DDE, DD	T, THESE AN	۷Ę.
ARCINOGEDIC, TERATOGENIC ORGANO	DEHURINE	PETTUDES	THAT BOACCU	MULATE
ATTENDEES				
Name (printed)		Signa	ture	
RYAN HENRY		Engi	dia	
RICHARD VOGL		Par	Ting	
WAYNE VOSLER		11/1	w land	-
		No.		

Name (printed)	Signature
RYAN HENRY	Enger Acun
RICHARD VOGL	Pinting
WAYNE VOGLER	Way we wanter
James Adams	Janey adams
BARRY GUMP	Borry Here
	[-]
	1

Date: Jan 20,99 Time: 07:45 Project Number: 6824.00-003
Project Name: Salton Sea Sediment Sampling
Specific Location: Ziverside & Imperial Counties Type of Work: Sediment Sam Pling
Type of Work: Sediment Sam Pling
Chemicals Present: Metals, Trace Pesticibes
SAFETY TOPICS DISCUSSED
Protective Clothing/Equipment: Level D - Poly Tyrek, Gloves, Bosts
Hazards of Chemicals Present: Incestion/Inhalation of any chemical found in water/sediment see other topics Physical Hazards: Slips, Trips, Falls Heat stress Naotical
Physical Hazards: Slips, Trips, Falls Heat stress Naotical
Special Hazards - Pathogens, dizease carrying birds
Other Topics: Although trace amounts of DDE, PDT; These are Carcinogenic, territogenicorgane chloride pesticides that ATTENDEES bio accomulate
ATTENDEES bio accomulate

Signature
Eyen Alun
Sul P.
Wayre T
Tette

Levine-Fricke-Recon
DAILY TAILGATE SAFETY MEETING FORM
Date: Jan 21,99 Time: 09:30 Project Number: 6824.00-003
Project Name: Salton Sea
Specific Location: Pirerside & Imperial Counties
Type of Work: Sediment sampling
Chemicals Present: motels, trace posticides
SAFETY TOPICS DISCUSSED
Protective Clothing/Equipment: Level D - Joly typek, gloves, boots
Hazards of Chemicals Present: Ingestion/Inhalation of any chemical
Physical Hazards: Slips, trips & talls Heat stress, neutical
Special Hazards: Bielogical hazards - Pathogens, disease carrying
Other Topics: Although trace amonts of DDE DDT, these are carcinogenic, teratogenic organo chlorides respicides
ATTENDEES that bis accumulate

Name (printed)	Signature
Ryan Henry	Franklin
Richard Ubg1	hit ling
Star Friet	Mas
Wayne Voyler	Wryte

Levine-Fricke-Recon DAILY TAILGATE SAFETY MEETING FORM
Date: 1/22/99 Time: 800 Project Number: 6824.00-03
Project Name: SALTON SET Specific Location: AVERSIDE / IMPERIAL COUNTIES Type of Work: SEDIMENT SAMPLING
Chemicals Present: METALS, TRACE PESTICIDES SAFETY TOPICS DISCUSSED Protective Clothing/Equipment: LEVELD - POLYTYVEK, GLOVES, BOOTS
Hazards of Chemicals Present: NEESTEN/ WHALATION OF ANY CHEMICAL IN WATER SENIMENT - SEE OTHER TOPICS
Physical Hazards: JLIPS, TRIPS, FALLS - HEAT STRESS, NAUTICAL TRAFFIC
Special Hazards: BIOLOGICAL HAZARDS, PATHODONS, DUELSES CAPPIED BY BIRDS
Other Topics: ALTHOUGH TRACE AMOUNT OF DOE, PDT, DDD, THESE ARE CARLING GENIC, TERATOGENIC OREANDCHLORENE PESTICIDES THAT BU ACCUMULATE
ATTENDEES

Name (printed)	Signature
RYAN HENRY	agan Aluzo
RICHTED VOGL	an1169
WAYNE UDGLER	Name V
STEVE FRIET	The

APPENDIX B

Field Activities Logbook Entry Forms

Project Name: Salton Sen	LFR Project No.: 6824.00.02
Sample Number: GB1-34.5 -	21598
Equipment Blank:	Duplicate:
Date 2-15-98	Time 1:50 pm
Latitude 33° 24 ' 42,9"	Longitude 116° 01' 17.6"
Weather/Site Conditions Windy Cland	4
Project Investigators RAV, RNH, JU	νλ.
Depth to Sediment/Water Interface 34.5 dep	Feet 10.35 Feet Meters (Feet x 0.30)
Manuel 37	/1.10 Benthic Grab Sample Percent Recovery 50 %
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment(Lab Name)	Courier Hand Deliver
Field Observations/ Comments: 54	
used feet for Sam	ple number
2012 DESCRIPTION: SI	LT : DARK GREENISH GRAY (IGLEY 4/1) FINES, STRONG SULFUR ODOR
000 10110/ 900	the start flag

Z	I FR
-	
LEVIN	E+FRICKE

Project Name: Salfon Sea	LFR Project No.: 6824.00.02
Sample Number: 682-12.4-12	1598
Equipment Blank:	Duplicate:
Date 12-15-98	Time 2:47
Latitude 33° 27 / 11.5"	Longitude 116° 02' 34.1"
Weather/Site Conditions Breeze, Clos	dy
Project Investigators RAV, RNH, Ju	•
Depth to Sediment/Water Interface	dern Frider 3,72 Meters (Feet x 0.30)
Sampling Method: Benthic Grab Sample	137 Benthic Grab Sample Percent Recovery 30 %
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment(Lab Name)	Courier Hand Deliver
Field Observations/ Comments:	o yats for she
Field Observations/ Comments: App 300	: Dark granich gray (16kg 4/1)
~ 80% fires , ~ 20 % u	engine sand
- Survey	tend the second commenced

Ø	I FR
	E.FRICKE

Project Name: Salton Gen	LFR Project No .: 6824.00.02
Sample Number: 603-19.5-121598	
Equipment Blank:	Duplicate:
Date 12-15-98	Time 3:28
Latitude 33° 28' 45.5"	
Weather/Site Conditions Slight Breeze	, cloudy
Project Investigators RAV ANH JWU	, J
Depth to Sediment/Water Interface 20.6 war	Feet 6.18 Meters (Feet x 0.30)
Sampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery 50 %
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment(Lab Name)	Courier Hand Deliver
Field Observations/ Comments:	
Non flastic Fires (mL)	: Dark grenish grey (16ky 4/1),
1/00% Fines String	
) ////
	Q
- 39/0/21	and the second constraints
	0

	FIELD ACTIVITIES LOGBOOK ENTRY FORM
Project Name: Golton &a	LFR Project No .: 6824.00.02
Sample Number: 684 - 7.2 - 12	1618
Equipment Blank:	Time 4:15 664-54-12/698
Date 12-16-98	Time 4:15 66
Latitude 33° 30' 04.1''	
Weather/Site Conditions _ calm; clear	/
Project Investigators RAV, KNU, JWV,	
Depth to Sediment/Water Interface	Feet Meters (Feet x 0.30)
Sampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery 30 %
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment	Courier
(Lab Name)	Hand Deliver
Field Observations/ Comments: low plasti	ic fires (mu): Black (1 gley 2.5),
~ 100% fires, sult	
- 10 they , sure	my onar .
17 116 Ave.	a strat
	Manatures (12-34 12-34)

FIELD	ACTIVITIES	LOG	BOOK
	EN	TRY	FORM

	Falton Sen	LFR Project No.: 6824.00.02
Sample Number:	685-1-121698	
Equipment	t Blank:	Duplicate:
Date [2-16	5-98	Time 9:37 am
Latitude 35°	31' 28.8"	Longitude 116° 04' 44.6"
Weather/Site Conditio	ns	
Project Investigators _	MAN, PNH, 3	ωV
Depth to Sediment/W.	ater Interface 1 Manua	A Feet Meters (Feet x 0.30)
Sampling Method:	Benthic Grab Sample	Benthic Grab Sample Percent Recovery 10 %
	Sediment Core	Sediment Core Sample Percent Recovery %
Method of Shipment	(Lab Name)	Courier Hand Deliver
Field Observations/ Co Vier), Both bridge we bridge we bridge bill bridge fill scient	(Lab Name) omments: Dredging Ju neads closed to whe fincols much only just gents of all & javo. Fille brutet. Percention :	Hand Deliver
Field Observations/ Co Vice, bot bridge we bridge we bridge we bridge we to hill srind Goil 1 We	(Lab Name) omments: Dredging Ju neads closed to whe fined meet all to jours. Fille brutet. (PSCN. phine: U sorted sand (SW)	Hand Deliver St South on coaclula disin (wheter the vehicle ackess. Supled at 3 main disin ' Supled along gold bridge. Hod to collect gened Sample d 5.5 on first builet, filled 1.5 from (2.5 y 4/1) 1.
Field Observations/ Co Vice, bot bridge we bridge we bridge we bridge we to hill srind Goil 1 We	(Lab Name) omments: Dredging Ju neads closed to whe fined meet all to jours. Fille brutet. (PSCN. phine: U sorted sand (SW)	Hand Deliver

80

rioject Mame.	Sultin Sea	LFR Project No.:	_6B24	00.02
Sample Number:	C.R.6-1	8-122198		
Equipme	nt Blank:	Duplica	ate:	
Date 8-8	1-96	Time 4.	00	
Latitude N 33	· 29' 30.0"	Longitude	1160 02'	46.4"
Weather/Site Conditi Project Investigators	RAJ, fibD,	Cloudy, Breeze RHN		
Depth to Sediment/V	Vater Interface But 1	il 19.2'		Meters (Feet x 0.30)
Sampling Method:	Benthic Grab San	nple Benthic Grab Sa	mple Percent Reco	overy%
	Sediment Core	Sediment Core S	ample Percent Re	covery_ <u>85</u> %
Method of Shipment	(Lab Name)		Deliver	
Field Observations/ (Comments: ~	5' core lecover	bo	
Field Observations/ (5' core (clover CR6-16-122198	ed	6 j4-s
Field Observations/ (18-19/			6 jans
Field Observations/ (105-191	CR6-16-122198	4:00 4:37	•
Field Observations/ (18-19' 19-20 20'-21	CR6-16-122198 CR6-19-122198	4:00 4:37 4:48	6 jars

OLFR
LEVINE · FRICKE

Project Name: Galton Ser	LFR Project No.: 6824.00.02
Sample Number: CB7 - 25.4	-12/898
Equipment Blank:	Duplicate:
Date 12-16-98	Time 4:45 PM
Latitude 33° 29' 40 ,9."	Longitude 116001 48,0"
Weather/Site Conditions Celen	,
Project Investigators Alan, RAD, RMA	, JUV
Depth to Sediment/Water Interface	AE AU Feet Seet x 0.30
Sampling Method:	Benthic Grab Sample Percent Recovery 30 %
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment (Lab Name)	Courier Hand Deliver
Field Observations/ Comments: Mr plast	2 frieg (me): Dark greentje 2 100% fines "sultur oda
gray (1 coney 4/1),	~ 100 vetices sultir oda
See 10 Martine	and the

	I FR	2
LEVIN	E.FRICK	E

	Galdon Sen	LFR Project No .: 6824.00.02
mple Number:	668- 17.3	- 121698
Equipme	nt Blank:	Duplicate:
ate 12-	16-98	Time 5:05 pm
titude N 33º	20'50.4	Longitude W 116° 01143.5
	ions cating, cle	en, Gright Breno
	1	EWV, RIST &
		10 m 17.3
epth to Sediment/V	Vater Interface Mound 29.	Heet 27.3 Meters (Feet x (
	Benthic Grab Sample	Benthic Grab Sample Percent Recovery 30
	Sediment Core	Sediment Core Sample Percent Recovery
ethod of Shipment		Courier
lethod of Shipment	(Lab Name)	Courier Hand Deliver
	(Lab Name)	
	(Lab Name)	Hand Deliver

		FIELD ACTIVITIES LOGBOO ENTRY FOR
		LFR Project No.: 6824.60
Sample Number:	3B9-39.3'-12	1798
Equipmer	nt Blank:	Duplicate:
Date 12/17/0		Time4:00
Latitude N 33°	29'09.6"	_ Longitude _ W 115° 59' 31.3"
Weather/Site Condition	ons Caln, Sunn	y
Project Investigators	ZAV, 2BD, JUSN,	RNH
Depth to Sediment/W	Vater Interface dest / 1. 3	
Sampling Method:	Benthic Grab Sample	Benthic Grab Sample Percent Recovery
	Sediment Core	Sediment Core Sample Percent Recovery
	_	
Method of Shipment	(Lab Name)	Courier Hand Deliver
Field Observations/ (Comments: 7 Sad	ellity.
	Now Platre Fines	(me): dark granise gray,
	(due low W	a coop fire alor do
	(1 gring 104 4/	i), ~ 100% fres subur oto
		N. A.
13/17/18	Dates	and the superior

.FR
FRICKE

Project Name: Salton Sen	LFR Project No.: 6824.00.02
Sample Number: 6310 - 47.4	-121798
Equipment Blank:	Duplicate:
Date 12-17-98	Time 4:23pm
Latitude W 33° 25' 43.7"	Longitude W 115 56 52.0"
Weather/Site Conditions _ Calm Clear	/
Project Investigators AM RBD A	1H, JWU
Depth to Sediment/Water Interface depth find 4	9.57 7.4 Feet Meters (Feet x 0.30)
Sampling Method: 🛛 Benthic Grab Sample	Benthic Grab Sample Percent Recovery 40 %
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment(Lab Name)	Courier Hand Deliver
Field Observations/ Comments: None for low plastic	c Fires (m): Dark queenish group
	~ 100% fires, sulfer odor
Date 14-12.00	and the second sec

Project Name: Galton Sen	LFR Project No .: 6824.00.02
Sample Number: GBU - 45.9 -	121798
Equipment Blank:	Duplicate:
Date 12-17-98	Time 4140
Latitude N 33° 25' 05.9"	Longitude w 115° 53' 13.8"
Weather/Site Conditions 9/ight bree	ze, Clear
Project Investigators RM, RMH, R	BD, JWV
Depth to Sediment/Water Interface 42.7	Feet
Sampling Method: 🕅 🕅 Sample	Benthic Grab Sample Percent Recovery 25 %
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment(Lab Name)	Courier Hand Deliver
Field Observations/ Comments: bow plast	ne fries (mc): Dark greenish
Gray (Icley 104	3/1), ~ 100% fines,
Sultur Odor	
	and the first and the second

(D)	IER
Щ	LFN
LEVIN	E · FRICKE

Project Name: Galton Sea	LFR Project No.: 6824.00.02
Sample Number: 6312-40-1	21698
Equipment Blank:	Duplicate:
Date 12-16-98	Time fi 50 pm
Latitude 33° 26' 49,2"	
Weather/Site Conditions Sunny, wi	ndy
Project Investigators RM RNH,	-
Depth to Sediment/Water Interface 40.0 M	Meters (Feet x 0.30)
Sampling Method: 🕅 Benthic Grab Sample	Benthic Grab Sample Percent Recovery 30 %
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment	Courier
(Lab Name)	Hand Deliver
Field Observations/ Comments: 100 plath (1 cleg 4/1), ~100 R	ie Fires (mc): Dark greenish gray

98
Time
ongitude <u>W 115° 52′ 07.1″</u> <u>'</u> FeetMeters (Feet x 0.30) Benthic Grab Sample Percent Recovery%
Meters (Feet x 0.30 Benthic Grab Sample Percent Recovery%
Feet Meters (Feet x 0.30 Benthic Grab Sample Percent Recovery%
Benthic Grab Sample Percent Recovery%
Benthic Grab Sample Percent Recovery%
Sediment Core Sample Percent Recovery _/ 00_%
Courier Hand Deliver
9:15 6jans
6 10:30 6 jars
E /0:00
man she to be

Project Name: Sulton Sea	LFR Project No .: 6824.00.02.
Sample Number:GB14 [- 121698
Equipment Blank:	Duplicate:
Date 12-16-98	Time /:00
Latitude 33° 26' 41.2"	Longitude 115° 51' 7.8"
Weather/Site Conditions _ Sunny (Win	dy
Project Investigators RAV, RNH, St	
Depth to Sediment/Water Interface 11.0	Feet
Sampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery%
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment(Lab Name)	Courier Courier Hand Deliver
(Lab Name)	Hand Deliver
(Lab Name) Field Observations/ Comments: fla	
(Lab Name) Field Observations/ Comments: fla	Hand Deliver
(Lab Name) Field Observations/ Comments: fla	Hand Deliver
(Lab Name) Field Observations/ Comments: fla	Hand Deliver
(Lab Name) Field Observations/ Comments: fla	Hand Deliver

6	ICD
щ	LFR
LEVIN	E+FRICKE

Project Name: 54	How Sea	LFR Project No .: 6827.00.02
Sample Number:	GB15-38,2	-12/69B
Equipme	nt Blank:	Duplicate:
Date 12-1	6-98	Time 12:35 pm
Latitude 33	°25'27.6"	. / //
Weather/Site Condit	ions gunny wind	dy
Project Investigators	RAN, RNH,	SWV
Depth to Sediment/	Water Interface 38,2	Feet Meters (Feet x 0.30)
Sampling Method:	Benthic Grab Sample	Benthic Grab Sample Percent Recovery%
	Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipmen	t	Courier
	(Lab Name)	Hand Deliver
for	Comments: Dil degen Plagtic frie, (mc) 0/0 fries, trace	2 Dank Counish Groy (1 cty 4/1), 21% very fine Sal, Sulfur oder
12111196	1916-03	manua fler light

	Jacom Jea	LFR Project No .: 6824.000 02
Sample Number:	GB16-45,3-	121898
Equipme	nt Blank:	Duplicate:
Date 12-1	8-98	Time 4:48
Latitude N.	33° 21' 39.5"	Longitude W 115° 51' 12.4"
Weather/Site Conditi	ions Oulm, par	they Clondy
Project Investigators	RAV, ROD, KNH	, JWV
Depth to Sediment/V	Water Interface month 46.0	Feet 50 Meters (Feet x
	Benthic Grab Sample	Benthic Grab Sample Percent Recovery
	Sediment Core	Sediment Core Sample Percent Recovery
Method of Shipment	(Lab Name)	Courier Hand Deliver
	(Lab Name)	Hand Deliver
	(Lab Name) Comments: Los plastic	Hand Deliver frieg (mc): greenish blach
	(Lab Name) Comments: Los plastic	Hand Deliver
	(Lab Name) Comments: Los plastic	Hand Deliver frieg (mc): greenish blach
	(Lab Name) Comments: Los plastic	Hand Deliver frieg (mc): greenish blach
	(Lab Name) Comments: Los plastic	Hand Deliver frieg (mc): greenish blach
	(Lab Name) Comments: Los plastic	Hand Deliver frieg (mc): greenish blach
	(Lab Name) Comments: Los plastic	Hand Deliver frieg (mc): greenish blach
	(Lab Name) Comments: Los plastic	Hand Deliver frieg (mc): greenish blach

Project Name: Gelton Sen	LFR Project No .: 6827.00.02
Sample Number:6817 - 40.8	-121898
Equipment Blank:	Duplicate:
Date 12-18-98	Time 4:27
Latitude N 35° 18' 51.2"	Longitude W 115° 48' 07.2"
Weather/Site Conditions Shirt Bre	up, Partly cloudy
Project Investigators _ LAV, RBD,	RNH, JWV
Depth to Sediment/Water Interface mand	40.8 43.0 Feet
Sampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery 50
Sampling method:	Sediment Core Sample Percent Recovery
Method of Shipment	Courier
(Lab Name)	Hand Deliver
Field Observations/ Comments:	istic fines (me): byour greens
gray (Gay	ing still a colo dees,
	the odor

Project Name: Sultin Sen	LFR Project No .: 6824.00.02
Sample Number:	21898
Equipment Blank:	Duplicate:
Date 12-18-98	Time 4:02 pm
Latitude N 33° 15' 29.5"	
Weather/Site Conditions _ Slight Bree	-Je
Project Investigators RAN RBD, RNH	1, JWV
Depth to Sediment/Water Interface dyn holy 46	
ampling Method: Benthic Grab Sample	Benthic Crab Sample Percent Recovery 50 %
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment	Courier
(Lab Name)	Hand Deliver
1	i chies (mc): gyveenist black ! cley), ~ 100% figer, sulfur
000 - B 7 -	

Project Name:	Salten gen	LFR Project No.: 6824,00.02
Sample Number:	CR19-45 -	122298
Equipme	ent Blank:	Duplicate:
		Time 1:27 pm
		Longitude W 115° 43' 43.9"
Weather/Site Condi	tions commy bree	34
Project Investigators	RAN, RNH, R.	3D
Depth to Sediment/	Water Interface Septembider	.0 <u>44.2</u> Feet
		Benthic Grab Sample Percent Recovery9
	Sediment Core	Sediment Core Sample Percent Recovery 60
Method of Shipmen	t	Courier
	(Lab Name)	Hand Deliver
Field Observations/	Comments:	
	CR19 - 45- 122	29B lost fell out of sayelen
	CR19- 46-122	2.9B 1:27 pm 6 jars
	CR19-47-12	2298 1:36 pm 6 jars
	CR19-48- 12	2298 1:46 4.5 jans
	Sampley com	e apart on way up?
		I a staff

		FIELD ACTIVITIES LOGBOO ENTRY FOR			
Project Name: South		LFR Project No.:	6824.	00.02	
Sample Number:					
Equipment Blank:		Duplicate	e:		
Date 12-22-	26	Time2:52	0 39 2	8.6"	
Latitude N 33° /	1 51.0"	Longitude	3010	51.0"	
Weather/Site Conditions					
Project Investigators	1			Meters	(Feet x 0.30)
Sampling Method: 🗌 Bent		Benthic Grab Sam			%
Sedi	ment Core	Sediment Core Sa	mple Percent	Recovery	90 %
Method of Shipment		Courier			
(Lab Name)			liver		
Field Observations/ Comments	k				
	CR20 - 21	-122298 2	:52	6 je	- 3
	CR 20 - 22	- 1222.98 2	:58		

CR20 - 22 - 122298 - 3:00 CR20 - 24 - 122298 - 3:06 CR20 - 25 - 122298 - 3:12 - 122298 - 3:14 - 12228 - 3:14 - 12228 - 3:14 - 12228 - 3:14 - 12228 - 3:14 - 12228 - 3:14 - 12228 - 3:14 - 12228 - 3:14 - 12228 - 3:14 - 12228 - 3:14 - 12228 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:14 - 3:

Project Name: Sollon Sen	LFR Project No .: 6624.00.02
Sample Number:	12189
Equipment Blank:	Duplicate:
Date 12-18-96	Time 10:07
Latitude N 33º 14' 28.3"	Longitude 115° 39' 09.4"
Weather/Site Conditions Calm, Cloud	my
Project Investigators RIN RNH, CUSD	,Jwv
22.0 Manual	
Depth to Sediment/Water Interface 2014 Lyn La	
Sampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery%
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment (Lab Name)	Courier Hand Deliver
Field Observations/ Comments: Hurd bottom halt jor with ten trips Only collected 1/2 jary Silty sand (sna): go ~ 80 v. the to the 720/h	×

Project Name: Gulhon Sca	LFR Project No .: 6824.00,02
Sample Number: GB23 - 34.8	- 121698
Equipment Blank:	Duplicate:
Date 12-18-98	Time 9:55
Latitude N 33º 14 '37,2"	Longitude 115° 39 46.7
Weather/Site Conditions _ condig , col	~
Project Investigators AUN, RNH, KBD,	Twv
37.5' manual	Feet Meters (Feet x 0.30)
Depth to Sediment/Water Interface 34.8 depter fits	Benthic Grab Sample Percent Recovery%
Sampling Method: Benthic Grab Sample	
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment(Lab Name)	Courier Hand Deliver
Field Observations/ Comments: bow plustic	fies (me): Dark greenise gray 95% fies, ~ 5% fie good.
Date 12-19-29	and all days

Project Name: Galton Sea	LFR Project No .: 6824-00.02
Sample Number: GB22 - 23.4	-121898
Equipment Blank:	Duplicate:
Date 12-18-98	Time 9:42
Latitude N 33° 15' 10.8"	Longitude W 1150 37' 55.5"
Project Investigators RM, CMH, Ju	SU, RBD
Depth to Sediment/Water Interface 23.4 depth Li	A Foot Motors (Foot x 0.30
Sampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recover? 7/0 % Sediment Core Sample Percent Recovery%
Method of Shipment(Lab Name)	Courier Hand Deliver
Field Observations/ Comments: Low Juny 1:0 /Glug (10 7 3/1)	hier (mc): Dark greenish grang ~ 100 files, sulfar Odor
Data 12-19-25	and the second sec

-	ultan Sen	LFR Project No.: 6824.00.02
Sample Number: _	6021-31-10	LIB9 Steve LAN
Equipme		Duplicate:
Date 12-1	8-98	Time 9:30
Latitude N 33	16' 339"	Longitude W 115° 38 57.4"
Weather/Site Condit	ions Cloudy, calm	
Project Investigators	RIN, RNH, J	IWV, RBD
Depth to Sediment/	Water Interface syn hade 3	6' I.O' Feet
	Benthic Grab Sample	Benthic Grab Sample Percent Recovery 35 %
	Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipmen	t(Lab Name)	Courier Hand Deliver
Field Observations/	Comments: You plays	ching (mc): Dark Greenist
- gray (1	aly rox 3/12, 1	100% files, strong sulfre odor
DS.AL.	Daver /	and the second

Project Name: Salton Sea	LFR Project No.: 6824:00.07
Sample Number:GB24-20.5-	122798
Equipment Blank:	Duplicate:
Date 12-72-96	Time 3:55
Latitude N33 14 123.9 "	Longitude W 115° 39' 06.8"
Weather/Site Conditions Calm_ gun.	y
Project Investigators QWV, RNU, AUS	,1
, e. e.	, thinke
Depth to Sediment/Water Interiace	Feet Meters (Feet x 0.30)
Sampling Method: Benthic Grab Sample	Benthic Crab Sample Percent Recovery 155 %
Regiment Core	Sediment Core Sample Percent Recovery%
Method of Shipment	Courier
(Lab Namer	Hand Deliver
ALL THE ME THE	3" stain beg core barnel 1.5' lag
	menish gray (1 Gley 10 y 5%), -
80% V:4	the fine to fine sed, -
. 20°h ha	3
at lang per	anners in relience
hand and all and	in formally a survey

____ LFR Project No .: ______6824.00.02

Dupiicate:

Time 10:45 am

Longitude W 115° 38'28. 3"

Project Name: Salton Sea	LFR Project
Sample Number:	2' - 121898
Equipment Blank:	
Date 12-18-98	Time
Latitude N 33º 14'05.1"	Longitude
Weather/Site Conditions Calm (londy
Project Investigators RIXV RNH	RHD, JWU

Depth to Sediment/	septen Inder Water Interiace manual		Meters (F	eet x 0.30)
	Benthic Grab Sample	Benthic Grab Sample Percent Recov	ery _2	%
	/ Sediment Core	Sediment Core Sample Percent Reco	overy	%

- 16.2' - 121898

Method of Shipment

hru

Courier Hang Deliver (Lab Name) -ieia Observationsi Comments: -o litan hand. Came Compulp - and -m medium plasticity fries (me): aflemist gran (1 colon 104 5/1) ~ 100% fires , trade worm , trace tonnailes + worms, got large junch

barnelles + worms in message 07

Project Name: julton Sea	LFR Project No .: 6824.00.02
Sample Number: CR26 - 17	- 122298
Equipment Blank:	Duplicate:
Date 12-22-98	Time 4:40
Latitude N 33° 13' 40.7"	Longitude W115° 38' 01.9"
Weather/Site Conditions _ gunny / G	ilight breeze
•	ZBD
Depth to Sediment/Water Interface _ this	7.0', w 13.6 Feet
Sampling Method: Benthic Grab Sample	
Sediment Core	Sediment Core Sample Percent Recovery 50
Method of Shipment	Sediment Core Sample Percent Recovery <u>50</u> Could only drive 31 Courier Hand Deliver
(Lab Name)	Hand Deliver
Field Observations/ Comments:	A fingle of the land the second to be an an and the second to be a second to be a second to be a second to be a
CR26-17-	122298 4:40
CR 26 - 18 -	1222-28 5:00
CK 26 - 19 -	122298 5:04
	/
very hand both	on . Could only drive 3'

Project Name: Salton Sen	LFR Project No .: 6824.00.02
Sample Number: 6827-12-12	21898
Equipment Blank:	Duplicate:
Date 12-16-95	Time 11:20
Latitude N 33° 13' 55.3"	Longitude w 115.37' 29.2"
WeatheriSite Conditions Calm, Ind	4y
Project Investigators RAJ, RHD, RN	H. Jav
Depth to Sediment/Water Interface Augh hider	2.0 Feet
Sampling Method: Benthic Grab Sample	
Sediment Core	Sediment Core Sample Percent Recovery%
Viethoa of Shipment	Courier
(Lab Name)	Hang Deliver
	Regnised numerous gamplings to collect sampler. Freenish gray (1 clay 10 y 5%),
~ Boyov. fre to five and	
taken are the stat	, , , , , , , , , , , , , , , , , , , ,
Lough when drive 3	malled have were the large

04

Project Name: Galton Sea	LFR Project No.: 6824.00.02
ample Number: 6829 - 17.2 -	- 121898
Equipment Blank:	Dupiicate:
Date 12-18-98	Time 12:53 Longitude 115° 38' 20.8"
Veather/Site Conditions Calm , d	
Depth to Sediment/Water Interface 19.2 /	FeetMeters (Feet x 0.30
Sampling Method: Bentnic Grab Sample	Benthic Grab Sample Percent Recovery%
Sediment Core	Sediment Core Sample Percent Recovery
Vethod of Shipment	Courier
Field Observations, Comments: Hard Bo frok hurens gampli	y to colled Simples.
4	cremian gray (1 colory 10 y 5/1),
~ 85% Silt, ~	- 15 % very the Sand

回LFR	
LEVINE · FRICK	

Q4

Project Name:	Falton Sea	LFR Project No.: 6824.00.02	
ampie Number:	829- 17.2-13	LIB90	
🗌 Equipment Bla	ink:	Duplicate:	
Date 12-18	-98	Time 12:53	
atitude N 33° 13	2 19.1"	Longitude 115° 38' 20.8"	
Veather/Site Conditions	calm, chan	dy	
Project Investigators	RAN, RNH, JU	JY, RBD	7210
Depth to Sediment/Water	17.2 Interiace 18.2	FeetMeters (Feet x	0.30
ampling Method:	Bentnic Grab Sample	Benthic Grab Sample Percent Recovery	_%
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sediment Core	Sediment Core Sample Percent Recovery	26
lethoa of Shipment		Courier	_
	Lab Name/	Hand Deliver	
frok r	silt (me): cre	and the second second	
~	85% 511+ ~15	"s very fiesand	
			_
			_

Project Name: Galton Sea	LFR Project No .: 6824.00.07.
Sample Number: 0830 - 419 -	12 12219B
Equipment Blank:	1.
□ Equipment Blank: Date/2 - 21 - 9B	Time 10:40 00
	, ,,,,
atitude N 33º 11' 57.8"	_ Longitude 35 99.8
Weatherisite Conditions Windy, Clear	and the second s
Project Investigators RAV, RBD, RNH	the part will be a manual of
Depth to Sediment/Water Interiace	/ Feet Meters (Feet x 0.3
	154 ,
Sampling Method: 🛛 Benthic Grab Sample	Benthic Grab Sample Percent Recovery
Sediment Core	Sediment Core Sample Percent Recovery
Methoa of Shipment	Courier
(Lab Name)	Hang Deliver
Field Observationsi Comments: -Bolk complete	Re on southeast gide of Garst st
los el las man hanne ha	
Road Brilig	
Silly sand (motion (Sm);	Brown (104R 5/3), × 50% fie to v.
fie sand = 20% fr	es
Aleno Rier	
	server Rd
	somple foint

Project Name:	Gulton sea	LFR Project No.: _ 00.00.02.
Sampie Number:	GB31- 25.2	-121898
Equipme	nt Blank:	Duplicate:
Date 12-	18-98	Time /148
atitude N 33	0 12 ' 57.5 '	Longitude W 115° 39' 45.3"
Weather/Site Condit	ions partly clou	dy
	RAV, RNH, JWI	0
Depth to Sediment/V	Vater Interiace	25.2 6.0 Feet
	Benthic Grab Sample	Benthic Grab Sample Percent Recovery%
	Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment	Courter	Courier
	Lab Name)	Hang Deliver
Field Observations/		n 100 % fries, trace v. fre
	Sand	ac ⁴
	1.1.1.	"
	Haved 50.	Hom .
		S. And S.
		All allowed and all all all all all all all all all al
		No

ample Number: GA	32-36.5 -	- 121898
Equipment Blank:		Duplicate: GB32-36.5-1218
Sate 2-18-99	-	Time 2:24 pr dup 2:34
atitude N 33º 13' 1	5.0"	Longitude W 115 41' 13.0"
Veather/Site Conditions	partly clouds	y, calm
Project Investigators	•	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.0.0.
	manual 31	6.5
Depth to Sediment/Water Inte		
ampling Method: TBBe	nthic Grab Sample	Benthic Grab Sample Percent Recovery _20
Se	aiment Core	Sediment Core Sample Percent Recovery
Methoa of Shipment		Courier
	Namei	Hang Deliver
	is jou glass	-ic Fines (mL : Dark greening L
ieia Observationsi Commen Ger	y (1 chen Joy .	11), 299 % firs, trace fix so
	y (1 Gen Joy i	11), 2 gq " firs, trace fip so
	y (1 Gen Joy .	11), 299 " fins, trave fins so
	y (1 Gen Joy .	11), 299 " fries, traile fije so
	y (1 Gen 30 Y i	11), 299 " firs, trace fins so
	y (1 Gen Joy .	41), 299 " fries, traile fije so
	y (1 Ger 30 Y .	41), 299 " firs, trale firs so
	y (1 Gen Joy .	41), 299 " firs, trale firs so
	y (1 Gen Joy .	41), 299 " fins, trave fijs so

ampie Number: 6333-33 -	121898
	Duplicate:
	Time 2:55 pm
atitude N 33° 11' 13.5"	
Veather/Site Conditions Par	Ity abudy
Project Investigators RAN, RNH, AB	
	33.0 / 34.0 Feet
ampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery
Seaiment Core	Sediment Core Sample Percent Recovery
Method of Shipment	Courier
(Lab Name)	Hang Deliver
	· c fines (uc): Dark menish
Grand (1 color 10 M	3/1), - 99 %. file, trace y. 6
group (1 city 10 Y	

U	LFR
LEVING	E+FRICKE

Project Name:	Salton Sea	LFR Project No .: 6824	1.00.02
Sampie Number:	GB34-33 -	121398	21 conserved marries
🗌 Equipme	nt Blank:	Duplicate:	all common all
Date 12-19	8-98	Time 3:15 pm	12 - 18-
Latitude 133	" 11' 27.8"	Longitude 115 42' 5	4.04
Weather/Site Conditi	ions partly cloudy	, calm	Venezaria Conditions
	RHU, RNH, ROD		etoisententi tototo
	nound 35.7	and and a second second	
Depth to Sediment/V	Vater Interface dith fully 33.0	Feet	Meters (Feet x 0.30)
Sampling Method:	Benthic Grab Sample	Benthic Grab Sample Percent R	
	Sediment Core	Sediment Core Sample Percent	Recovery 40 %
Methoa of Shipment	Courier	Courier	
	(Lab Name)	Hand Deliver	
Field Observationsi (Comments: Inu plasmic [104 Joy 3/1],		

Sample Number: 63	35-24	- 121898
	×, ×,	
Equipment Blank:		Duplicate:
Date 12-18-96	3	Time 3:32 pm
Latitude N 23º 11	05.5"	Longitude W (15 40 / 47.3"
Weather/Site Conditions	calm, partl	3 cloudy
Project investigators	Low, RBD, R	RNH, JWV
	R	e ku
	manual 3	\$ 25.5
Depth to Sediment/Water Inte	mace dept file	24.0 Feet Meters (Feet)
Sampling Method: Ben	nthic Grab Sampie	Benthic Crab Sample Percent Recovery 5
Sea	iiment Core	Sediment Core Sample Percent Recovery
Method of Shipment		Courier
Method of Shipment (Lab	Name)	Courier Hang Deliver
	15: no play	
(Lab	15: no play	Hand Deliver
(Lab	15: no play	Hand Deliver
(Lab	is: ow play jray (1 crey 7. him	Hand Deliver
/Lab	is: ow play jray (1 crey 7. him	Hand Deliver
/Lab	s: no play gray (1 creey x. him	Hand Deliver
Lab	s: no play gray (1 creey x. him	Hand Deliver
Lab	s: no plas gray (1 crey ¥. ho	Hand Deliver

Project Name:	Sulha sea	LFR Project No.:	6824.00.02
	CR39-21-1-		•
	ent Blank:		
		Time 6:2	
	33009'33.21		
Weather/Site Condi	tions Culm, dar	k	
Project Investigator	- RIN, RNH,	200	
Depth to Sediment/	Water Interface with find	~ 19.6 1.0'_Feet	Meters (Feet x 0/30)
Sampling Method:	Benthic Grab Sample	Benthic Grab Samp	le Percent Recovery%
	Sediment Core	Sediment Core Sam	pie Percent Recovery 10 % O:5ft recovery
Method of Shipmen	(Lab Name)	Courier Hand Deliv	ver
Field Observations/	Comments:		
	CR 39-21	- /22298	6:20 3jars
	CH-39-22.	- 12 12 98 KE KU	to reverd.
	Very hand bor	the thist	attempt done
	2! Ene up "	empty . Coney	Severated, 5:50
	,) vie	pecorery.	
	3rd try 20	v reoben	6" recovery
	10	4	V

SHEET____OF___ 12 Levine-Fricke-Recon JOB NO: 6824.00.02 DATE: 12-17-98 PROJECT: Galton Sea SUBJECT: Sedient plase I COMPUTED BY: RAU CHECKED BY:____ Time 1:15 6636-20.4 - 121798 ----(at: N 33°.09'46.1" Grg: W 1150 41 '05.5" Guilt Breeze, Sunny ······ RAV, RBD, JWV, RNH manual 21.5' deptublie 20.4' Had to nove 3 provenas ties to get enough scripte Hard botton, bots of barnacles, collected gone samples off anglor in order to get sample.

Low plastic fies (anc): Dark green ist grey (1 Gen 10 Y 3/1), ~ 90 % fries, 10% banacles.

Levine-Fricke-Recon	SHEET OF OF
PROJECT: Saltons.on	DATE: 12-17-90 COMPUTED BY: RAV
SUBJECT: Seduciat place -	CHECKED BY:

Slight Braze, sung Depth finder: 23.4' Manuel depeth: 25 w 24.3' RAV, RBD, JWV, RNH

low plastic fines (me); Dark granish gray LI Gen (04 3/1), ~ 100 % ties,

mill up 12/17/18

SHEET____OF___ Levine-Fricke-Recon JOB NO: 6824.00.02 DATE: 12-17.95 PROJECT: Saltan Sea COMPUTED BY: RIAN SUBJECT: Gedinen place I CHECKED BY:_____ Time: 11:00 am GB38 - 24 - 121798 ------Lat: N33° 09 '49.8" Long: "115° 44' 5.9" Flight Breeze, Sunny Repth hider: 24.0' monunal Depth: 26.0' RIAU, RISD, JWV, RNH 30% recovery. Benthic Grab las plastic theis (me): Dark green ish growy (1 Gery 104 4/1); ~ 100% fries Mil 12/17/20

Levine-Fricke-Recon ENGINEERS, HYDROGEOLOGISTS & APPLIED SCIENTISTS PROJECT: Salton Sca SUBJECT: Sedment place I CHECKED BY: 9 Satellity Time 11:15 m GB40 - 13.2 - 121798 1" Lat: N 33° 08' 55.9" Long: W 115° 43'05.0" 2" N 33° 08' 51.1" W 115° 43'02.5" Glught Breeze, Summy 1st Pept lider ! 13.2 Manual depett: 14.0 1 2nd pept tinder - 15.41 RAU, RIDD, JWU, RNH Benthie Grab 0-2 % recovery Hard to Hom. Very little sediment Had to go down with Sangelar numerons fines to get sample. Had to move to get rest of sample 1" 1.5 yars W.ell gorted god (gw). Derk Guenish grey (1 Gey 10y 4/1), 50% fresand, 400 MN 1% Barnacles, trace Silt. ?" 4,5 jars hindry

12/17/90

End surple - 40% low plantic frees, that

SHEET OF / JOB NO: 6824.00.02 DATE: 12-17-98 COMPUTED BY:

SHEET _____ OF ____ Levine-Fricke-Recon JOB NO: 6924.00.02 DATE: 12-17-98 PROJECT: Sedier for I COMPUTED BY: MAN CHECKED BY: The: 2:08 GB41- 12 - 121796 hat: N33° 08' 31.5" long : W115° 41' 42.7" sclight Breeze, Sung RAV, ROD, JWV, RNH namel 13.5' depets fider 12.0' 5 tries only god ged in one. film on Jar. Pulled anchor into sedicil. Colloded 5 jars of andor. Silty Soud (me): Dark queenish gray (1 chay 104 3/1), fine to ned. Sound, 20-30% his, there

Project Name: Salfoncen	LFR Project No .: 6824.00.02
Sample Number: 0842-1-122198	
Equipment Blank:	/2:10 GB4/2-1-122196-0
Date 12-21-98	Time /2:00
atitude _ V 33° 06' 35.5 "	Longitude W 115° 41' 01.8"
Veather/Site Conditions partly Undy	, windy
Project Investigators RW, RN4, RBD	0
Depth to Sediment/Water Interface Manal 05-1	freet Meters (Feet x
ampling Method: - Benthic Grab Sample	Benthic Grab Sample Percent Recovery Jans.
Sediment Core	Sediment Core Sample Percent Recovery
Nethod of Shipment	Courier
(Lab Name)	Hand Deliver
ield Observations/ Comments:	Kd + New River along
South bale	
ion plastic fires (me): an	enge black (10key 104 2.5/1).
	bies.
100 10	
	ind
· er i Vi cante	, pm
N E Buch	

SHEET / OF / Levine-Fricke-Recon ENGINEERS, HYDROGEOLOGISTS & APPLIED SCIENTISTS JOB NO: 6824.00.02 COMPUTED BY: PROJECT: Salton Sea SUBJECT: Gedner Juse I 11 sufel Tine 12:27 61343- 11.4 -121798 Lat: N 33° 07' 07.8" Cong: W [15° 44' 56.5" Slight Breeze, Surany Depth foder: 11.4' manual depth: 12.5' RAV, ABD, JWV, RNH 2 vernag. Bentric Junt low plastic files (mc): Dark gray (I dey N 3/), trace file guid 35 while ligh 12/17/20

SHEET OF Levine-Fricke-Recon JOB NO: 6824.00.02 DATE: 12-17.98 PROJECT: Jalton Sea COMPUTED BY: RAN SUBJECT: Sedimint plage I CHECKED BY: tine 12:06 GB44 - 16.8 - 121798 lat: N 33°07'58.2" (07: W 115° 44' 08.6" Slight Breeze, Sunny 1 Dynt hiden: 16.8' mand Dept: 17.2' RAV, RBD, JWU, RNH Benthie Grab 25% % persvery Low plastic très (ML): Davie greenisch gray (16ky 1043/1), ~ 100 khives, worm present philad ug 12/17/98

Levine-Fricke-Recon PROJECT: Galfon Sen SUBJECT: Sedmint Plazet

Salton sea

SHEET / OF JOB NO: GELY.O.O. DATE: 12-17-98 COMPUTED BY: KAV CHECKED BY:

The 10:42 am

GB45-32.8 -121798 Long # 115 45 31.7" lat . N 33° 10' 58.7 Slight Breeze, Sunny E. 34.5 pv 33.3' Septh manual 32.8' Depth Rider RAV, RBD, JWV, RNA 30 % very Benthic Grab Une to redie Plastic fies (ML): Dark queenish gray [1 Gley, 104 3/1), ~ 97% Fiss, Trace vory fire sard, galfer odor, Small Worm I cm Augh (tam with vein) 0.5 mm dia

pilo 14 12/17/50

lī Levine∙Fricke∙Recon SHEET / OF / DATE: 12-17-98 PROJECT: SUBJECT: Sailon Sen COMPUTED BY:_RMV CHECKED BY: 6646-15-121798 10:18 am hat. 33 10' 43, 5" long 115048' 22.4" Glight Breeze, Sunny P.I. RAV, ROD, JWV, RNH Berthic Grab 50% recovery depth monuel 15.0 depth file 13.2' Soil: Low plastic fie (mc): Black (1 clay 1), ~ 100% fires . ling ug 12/17/78

Project Name: Sulfor Sea	LFR Project No .: 6824.00.02
Sample Number:GB47-24.4	-121798
Equipment Blank:	Duplicate:
Date 12-17-9%	Time9:40
Latitude 33° 17'09,1"	Longitude 115° 51,06.3"
Weather/Site Conditions <u>Gunny</u> , Slig	t & rouge
Project Investigators AN ROD, RNH	
	tegh file
Depth to Sediment/Water Interface 26.5 A	
Sampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery 10 %
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment	Courier
(Lab Name)	Hand Deliver
(00 plastic hies (m) (0.5 y 3/2), ~95%	Samplers to get 6 jars,): very dor h grey; sh brann fries, ~ 5% very frie sand, ~ 50% of total huss (line).
Care 1919 1916	and the second s

FIELD	ACTIVITIES LOGE	BOOK
	ENTRY	ORM

Project Name: Sulfor Sec	LFR Project No.: 6824.00.02
Sample Number: 6848 - 24.5 - 1	21798 9:10 00
	Duplicate: 6848-24.5-121798-0
Date 12-17-98	
	Longitude 115° 57' 23.2"
Weather/Site Conditions Glight Br	ueze, Sunuy
Project InvestigatorsRAV, RBD, Ju	NV, RNH
Depth to Sediment/Water Interface 24.5 mg	Heters (Feet x 0.30)
Sampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery 25 %
Sediment Core	Sediment Core Sample Percent Recovery 35 %
Method of Shipment	Courier
(Lab Name)	Hand Deliver
Field Observations/ Comments: (on plus brown (2.5 y 3/2), 195% Gulfur odar	tic fries (ML): Novy dank greyish this, ~ 5% vory he sand;
	1 1411
	A second s

Sample Numb		249-39-12		0.: 6824.00.03
				P
L Eq	quipment Blan	k:	Dup	licate:
			Time	
X Latitude N	35°22	' 35.6"	Longitude 	115° 58' 34.5"
Weather/Site	Conditions	Duyn, calm		
Project Invest	igators	AV, RNH, JWV	SNF	
		depet hader		
		terface		Meters (Feet x 0 Sample Percent Recovery
		ediment Core		e Sample Percent Recovery 33
Method of Shi	'			ier
	(La	b Name)	🗌 Hand	d Deliver
		nte.		
Field Observa	tions/ Comme			
17	.25	CR49-39-		3/9-5
17				3 jans 2 jans
17	.25	CR49-39-		3 jans 2 jans
17	.25	CR49-39-		3 jans 2 jans
	.25	CR49-39-		3 j'ans 2 j'ans
	.25	CR49-39-		3 jans 2 jans
	.25	CR49-39-		3 jans 2 jans
	.25	CR49-39-		3 jans 2 jans

1 1 1	in the AV
Project Name: - Sul for Sen flex II	LFR Project No.: 6824.00.02 03
Sample Number:CR50 - 39-119	99
Equipment Blank:	Duplicate:
Date 1- 19-99	Time 3:36 or 15:36
Latitude N 33' 24. 07.3"	Longitude W 116°00 ' 37. D" g , Slight Breeze (SE)
Weather/Site Conditions forthy cloud	y slight Breeze (SE)
Project Investigators RIN, RNH, JW	
dere no find	~ 39.0 ⁴
Depth to Sediment/Water Interface 4	Meters (Feet x 0.30
Sampling Method: 🗌 Benthic Grab Sample	Benthic Grab Sample Percent Recovery9
Sediment Core	Sediment Core Sample Percent Recovery 50
1	
Method of Shipment	Courier
(Lab Name)	Hand Deliver
Field Observations/ Comments: 19t ablengt yesangled · 2rd attempt Suple did 2 jars CR 50 - 3 CR 50 - 40 CR 50 - 4/	Hand Deliver Gampler fil not angent 6 learning not ingange. 3 dettempt KO 9 - 1999 15:36 KBoz jun 19 - 11999 15:50 KV 3/a-5 - 11999 15:00 3 ja-5
Field Observations/ Comments: 19t ablengt yesangled · 2rd attempt Suple did 2 jars CR 50 - 3 CR 50 - 40 CR 50 - 4/	Hand Deliver complex fill not angent 6" recovery not ingange. 3" attempt KO 9 - 11999 15:36 KBaz jan st - 11999 15:50 KV 3 Jars
Field Observations/ Comments: 19t ablengt yesangled · 2rd attengt Suple did 2 jars CR 50 - 3 CR 50 - 40 CR 50 - 4/	Hand Deliver Gampler fill net engral 6" fearing not ingauge . 3" attempt KO 9 - 11999 15:36 XEar junit - 11999 15:50 RV 31ars - 11999 15:00 3 jars - 11999 (Solar for fill is from)
Field Observations/ Comments: 19t ablengt Verangled · 2rd attengt Suple did 2 jars CR 50 - 3 CR 50 - 40 CR 50 - 41	Hand Deliver Gampler fill net engral 6" fearing not ingauge . 3" attempt KO 9 - 11999 15:36 XEar junit - 11999 15:50 RV 31ars - 11999 15:00 3 jars - 11999 (Solar for fill is from)
Field Observations/ Comments: 19t attempt Verangled · 2rd attempt Suple did 2 jars CR 50 - 3 CR 50 - 40 CR 50 - 41	Hand Deliver Gampler fill net engral 6" fearing not ingauge . 3" attempt KO 9 - 11999 15:36 XEar junit - 11999 15:50 RV 31ars - 11999 15:00 3 jars - 11999 (Solar for fill is from)
Field Observations/ Comments: 19t ablengt Verangled · 2rd attengt Suple did 2 jars CR 50 - 3 CR 50 - 40 CR 50 - 41	Hand Deliver Gampler fill net engral 6" fearing not ingauge . 3" attempt KO 9 - 11999 15:36 XEar junit - 11999 15:50 RV 31ars - 11999 15:00 3 jars - 11999 (Solar for fill is from)
Field Observations/ Comments: 19t ablengt Verangled · 2rd attempt Suple did 2 jars CR 50 - 3 CR 50 - 40 CR 50 - 41	Hand Deliver Gampler fill net engral 6" fearing not ingauge . 3" attempt KO 9 - 11999 15:36 XEar junit - 11999 15:50 RV 31ars - 11999 15:00 3 jars - 11999 (Solar for fill is from)

sample roumber:	CR51-	29-12099		
🗌 Equip	oment Blank:		Duplicate:	
Date			ne 8:5	
• LatitudeN	33' 24' 4	16.7 " Long ty clondy, calm	atude W116	01 41.7"
Weather/Site Col	nditions par	my dandy, calm		
		INH JWV, SKF		
Denth to Sedime	nt/Water Interface	deg the finder 28.8' 29.8 Fe	er	Meters (Feel
	_			Percent Recovery
sampling Metho	d: 🗌 Benthic (//		
	Sediment	t Core ~ di Sec	continuers	e Percent Recovery <u>33</u>
		0-		
Method of Shipm	nent		Courier	
Method of Shipn	nent(Lab Name	e)	Courier Hand Delive	
Method of Ship n Field Observatio	(Lab Name	e) Hand Botton	Hand Delive	
	(Lab Name		Hand Delive	
	(Lab Name ns/ Comments: 3 jars 3 jars	Hand Botton CR51-29-12 CR51-30-1	☐ Hand Delive	8:55 9:13
	(Lab Name	Hand Bottom CR51-29-12	☐ Hand Delive	8:55
	(Lab Name ns/ Comments: 3 jars 3 jars	Hand Botton CR51-29-12 CR51-30-1	☐ Hand Delive	8:55 9:13
	(Lab Name ns/ Comments: 3 jars 3 jars	Hand Botton CR51-29-12 CR51-30-1	☐ Hand Delive	8:55 9:13
	(Lab Name ns/ Comments: 3 jars 3 jars	Hand Botton CR51-29-12 CR51-30-1	☐ Hand Delive	8:55 9:13

Sample Number:	CQ52 - 40-1	LFR Project No.: 6824.00.03 2099 (CR52-41-12099)
Equipment	1 Ber	Duplicate:
Date [- 20.		Time 9:50 000
atitude N 33	· 25' 16.3"	Longitude w 116° - 51.4"
Weather/Site Condition	ns Sunny Sligh	at breeze 00
	RAN, RNH, JWV	-
	and the finde	~ 40.9 T
Depth to Sediment/Wa	Byth Finde ater Interface naming	42-3 Feet Meters (Feet x 0
Sampling Method:	Benthic Grab Sample	Benthic Grab Sample Percent Recovery
	Sediment Core	Sediment Core Sample Percent Recovery 70
	Asediment core	Sediment Core Sample Percent Recovery 70
Method of Shipment _	1-	Courier
Method of Shipment _	1-	
	(Lab Name)	Courier
	(Lab Name)	Courier
	(Lab Name)	Courier Hand Deliver
Field Observations/ Co	(Lab Name) omments: 55 CR 52 - 4 20 CR 52 - 4	Courier Hand Deliver Hand Deliver
Field Observations/ Co	(Lab Name) comments: 5 CR 52 - 4	Courier Hand Deliver Hand Deliver
ield Observations/ Co	(Lab Name) omments: 55 CR 52 - 4 20 CR 52 - 4	Courier Hand Deliver Hand Deliver
ield Observations/ Co	(Lab Name) omments: 55 CR 52 - 4 20 CR 52 - 4	Courier Hand Deliver Hand Deliver
Field Observations/ Co	(Lab Name) omments: 55 CR 52 - 4 20 CR 52 - 4	Courier Hand Deliver Hand Deliver
Field Observations/ Co	(Lab Name) omments: 55 CR 52 - 4 20 CR 52 - 4	Courier Hand Deliver Hand Deliver
ield Observations/ Co	(Lab Name) omments: 55 CR 52 - 4 20 CR 52 - 4	Courier Hand Deliver Hand Deliver

Equipment Blank: Duplicate: Date 1-19-1919 Time 9:45 Latitude N 33° 25' 31.1 Latitude N 33° 25' 31.1 Latitude M 33° 25' 31.1 Latitude M 33° 25' 31.1 Latitude N 33° 25' 31.1 Latitude M 33° 25' 31.1 Latitude M 33° 25' 31.1 Latitude Mark 1 Weather/Site Conditions Calm Project Investigators Calm Method: Calm Method: Methol Crab Sample Project Investigators Method: Method: Method: Sediment Core Sediment Core Sample Percent Recovery 20' 30 Benthic Grab Sample Benthic Grab Sample Benthic Grab Sample Courier Image: Courier Image: Courier <	Sample Number: 6853-33-119	LFR Project No.: 6624,00.03
Date 1-19-1919 Time 9:45 Latitude N 33° 25' 31.1 Longitude W116° 01' 37.0" Weather/Site Conditions Calm farth Chandry Project Investigators LAN, RNH, SWV		
Latitude N 33° 25' 31.1 Longitude W116° 01' 37.0" Weather/Site Conditions Calm, Parkly Claudy Project Investigators AN, RNH, SWV 		
Weather/Site Conditions <u>Calm</u> , farthy chandy Project Investigators <u>flip</u> , <u>RNH</u> , <u>SWV</u> <u></u>		
Project Investigators <u>LIN</u> , <u>RNH</u> , <u>JWV</u> <u>Manual</u> <u>34.5'</u> Depth to Sediment/Water Interface <u>Meters (Feet)</u> Sampling Method: <u>Benthic Grab Sample</u> <u>Benthic Grab Sample Percent Recovery 2 3 3 3 3 3 3 3 3 3 3</u>		
Manual 24.5' Depth to Sediment/Water Interface Depth firster Sampling Method: Benthic Grab Sample Benthic Grab Sample Sediment Core Sediment Core Sediment Core Sample Percent Recovery Method of Shipment Benthic Grab Sample (Lab Name) Hand Deliver Field Observations/ Comments: 174 Sample 2 nd gangle Sediment Size Area Graphic Graph	Weather/Site Conditions Calm Partly	cloudy
Sampling Method: Benthic Grab Sample Benthic Grab Sample Percent Recovery 2nd 30 Benthic Grab Sample Benthic Grab Sample Percent Recovery 2nd 30 Sediment Core Sediment Core Sample Percent Recovery Method of Shipment [Courier (Lab Name) Dourier Field Observations/ Comments: Field Observations/ Comments:	Project Investigators RAV, RNH, JWV	•
Sampling Method: Benthic Grab Sample Benthic Grab Sample Percent Recovery 2nd 30 Benthic Grab Sample Benthic Grab Sample Percent Recovery 2nd 30 Sediment Core Sediment Core Sample Percent Recovery Method of Shipment [Courier (Lab Name) Dourier Field Observations/ Comments: Field Observations/ Comments:	Manual 3	1.5',
Sediment Core Sediment Core Sample Percent Recovery Method of Shipment	Depth to Sediment/Water Interface	Feet Meters (Feet
Method of Shipment (Lab Name) Courier Field Observations/ Comments:	Sampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery 24 50
Method of Shipment (Lab Name) Courier Field Observations/ Comments: 	Sediment Core	Sediment Core Sample Percent Recovery
(Lab Name) Hand Deliver Field Observations/ Comments:		
Field Observations/ Comments:		
	Field Observations/ Commonts:	
	1st sangle 2nd galile Non plastic Dark gree	
Signature: Kill Neg Date: 1-19-99	1°t sangle 2°d galple Non plastrc Dark gree Trace bar	mades, worm 5-6 cm, Suthan

Project Name: Galton Sea plage I	LFR Project No .: 6824.00,03
Sample Number: 6854-28.2-11	
Equipment Blank:	Duplicate:
Date - 19-99	Time_ 10:15
109 Latitude N 33° 28' 36.3"	Longitude w116°01'53.0"
Weather/Site Conditions Sunny calm	
Project Investigators DAU RNH JWV	
Depth to Sediment/Water Interface Name	29.8 Feet Meters (Feet x 0.30)
Sampling Method: 🛛 🕅 Benthic Grab Sample	Benthic Grab Sample Percent Recovery%
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment(Lab Name)	Courier
(Lab (Valle)	
Field Observations/ Comments: 194 sayle	d - filled 3 Box cars.
non plastic fre	s (me): Dark granish gray
· · · · · · · · · · · · · · · · · · ·	1), strong sulfur odor 700%
lives	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0	
Signature: And Vy	Date: 19-99
·V	

Project Name: Salfon Sea Pluse J	LFR Project No.: 6824.00.03
Sample Number: CR55-14-120	99
Equipment Blank:	Duplicate:
Date - 20-99	Time #:55 11:25
Latitude N 33º 29' 00.8'	Longitude W116° 04' 03.9 t
Weather/Site Conditions _ Gunny, calm	
Project Investigators RAN RNH JWV	
down finder	139'
Depth to Sediment/Water Interface mound	5. Feet Meters (Feet :
Sampling Method: 🛛 Benthic Grab Sample	Benthig fait Sample Percent Recovery
Sediment Core	Sediment Core Sample Percent Recovery 33
×	iw
Method of Shipment	Courier
(Lab Name)	Hand Deliver
	1 16
Field Observations/ Comments: Und LI:25 CR 55 II:45 CR 55	
11:25 CR 55	T-14-12099 Zjans

Project Name:	Salton Sca place I	LFR Project No.: 6424.00.03
Sample Number:	GB56-17.4-1	1999 10:4
Equipme	ent Blank:	Duplicate: 6856-17.4-11999-
Date	1-99	Time /0:36
	· 2 . 1 . 1 . "	Longitude w 116° 01'42.3"
	ions Sunny I calm	
Project Investigators	PAN, RNH, JWV	
	pynfide 17.	4 ¹
Depth to Sediment/	Water Interface Mound 18.7	Feet Meters (Feet x 0.3
Sampling Method:	Benthic Grab Sample	Benthic Grab Sample Percent Recovery
	T □ Sediment Core	Sediment Core Sample Percent Recovery 20
		Sediment Core sample Percent Recovery
Method of Shipmen		Courier
Method of Shipmen	(Lab Name)	Hand Deliver
Method of Shipmen	(Lab Name) Comments: medium plu gray (I cely 104 clay 1541for Odo filled all	
	(Lab Name) Comments: medium pla gray (I cely 104 clay 1 sulfor Odo filled all Drybrite Riled	Hand Deliver Hand Deliver Hand Deliver Derk Greansh 4/1), ~ qo k gilt, ~ 10 % 4 3 8 02 jars

a

Sample Number: 60	57-25.8-11	T LFR Project No .: 6824.00.03	
_			
Equipment Blank:		Duplicate:	
Date [- [9-99			
Latitude N 33° 30'	24.7"	Longitude w 115° 59' 33	.6
Weather/Site Conditions	Sunny calm		
Project Investigators	W. RNH. JWI	J	
	1 12		
Depth to Sediment/Water Inte	rface _ Manual 27	.5.6' Feet Meters	
Sampling Method: SBen	thic Grab Sample	Benthic Grab Sample Percent Recovery 2	
(Grad	liment Core	Sediment Core Sample Percent Recovery	-
	men core		
Method of Shipment		Courier	
(Lab	Name)	Hand Deliver	
Field Observations/ Comment:	·s:		
	154	single - 1 yar 3 to tal	
	Jud	mple - 2gars sh	
- Chu	plaste hies (me): Dark greenigh gree	
	(1 cly 10y	4/1) ~ 990 tries, trace & to little barnoces, sultur	Le
		to little barnenes, sultar	00
	- 1 pres		
		· · · · ·	
		H boat on way to GB58	
Signature:	opped by steri	· · · · ·	

Project Name:		1	
	Julton sen pune I	LFR Project No.: 6824.00.03	
Sample Number:	6058-45-11999		
Equipme	ent Blank:	Duplicate:	
Date -1	1-99	Time 11:31	
	5° 26' 47.9"		•
Weather/Site Condi	tions partly would ,	sugar prape	
Project Investigators	AW, RNH, JWV		
		15.0	
Depth to Sediment/	Water Interface monut	Hu. Feet Meters (F	eet x 0.
		13+ Zud	0%
Sampling Method:	Benthic Grab Sample	Benthic Grab Sample Percent Recover	40
	Sediment Core	Sediment Core Sample Percent Recovery	10
Method of Shipmen	t	Courier	
	(Lah Nama)	Hand Deliver	
	(Lab Name)	Hand Deliver	
Field Observations/		illed 2 jars filled 1 jars	1

Sample Number: 6859 - 45 - 11	999
A Equipment Blank: EB 6-0119	99 3.76 Duplicate:
Date 1-19-19	Time/2:30
Latitude N 33 26' 57.3"	Longitude W 115° 58' 08.7"
Weather/Site Conditions _ por thy Cloudy	Slight Breeze
Project Investigators AUV, RNY, Ju	00
Depth to Sediment/Water Interface manual 4	- 45.0'
Sampling Method: Benthic Grab Sample	6-2' Feet Meters /9- Benthic Grab Sample Percent Recovery
t Sediment Core	Sediment Core Sample Percent Recovery
Method of Shipment	Courier
(Lab Name)	Hand Deliver
	tic frey (ML): Dark greenish
Field Observations/ Comments:	tic fre, (ML): Dark greenish
Field Observations/ Comments:	tic fre, (ML): Dark greenish

en en en en en	1001
Project Name: Salta Sea plase I	
Sample Number: CR60 - 48- 120	099
Equipment Blank:	Duplicate:
Date 1-20-99	Time 13:10
Latitude N 33' 25' 37.9"	Longitude W 115° 56' 56.2
Weather/Site Conditions Sunny Calm	
Weather/Site Conditions Sunny Calm Project Investigators RAV, ANH, JWV	, 545
des re hider i	
	41.2. Feet Meters (Feet x 0.30)
Sampling Method: 🗌 Benthic Grab Sample	Benthic Grab Sample Percent Recovery%
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment	Courier
(Lab Name)	Hand Deliver
(1 jar brothers) 3:and CR60-49 3 jan CR60-5	- 12099 /05+ top 5:14 2 6" 1 - 12099 0 - 12099 1. 12099 12 - 12099
Signature: Min WD	Date: 1-20-99

Act

nple Number: 6861-44-1499	
C Faulamant Blanks	
Equipment Blank:	Duplicate:
te1-19-99	Time 12:05
itude N 33. 27' 57.5"	Longitude W115° 53' 54.5"
ather/Site Conditions party cling,	Longitude W115° 53' 54.5" Slight \$raye
ject Investigators AW, ANK, JW	v
depte holder 5.	4.0 ' Feet Meters (Fee
npling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery
Sediment Core	Sediment Core Sample Percent Recovery
thad of Shipmont	Courier
thod of Shipment (Lab Name)	Courier Courier
Id Observations/ Comments: In Ale gray (1 classical) Class work	INT 4/1), ~100% ties, tra

	the year place II	LFR Project No.:6824.00.03
Sample Number:	GB61-44-11999	
Equipment	Blank:	Duplicate:
Date 1-19.	-99	Time 12:05
Latitude N 37. 2	1' 57.5'	Longitude WUS° 53' 54.5" Slight knaze
Weather/Site Condition	s party cludy,	Slight knave
Project Investigators	AW, PNK, JW	v
Depth to Sadiment/Wa	dept hadres	
	ter Interface *manual 40	178
Sampling Method:	Benthic Grab Sample	Benthic Grab Sample Percent Recovery4
	Sediment Core	Sediment Core Sample Percent Recovery
Method of Shipment		Courier
Method of Shipment _	(Lab Name)	Hand Deliver
	(Lab Name)	
Field Observations/ Co	(Lab Name)	Hand Deliver
	(Lab Name)	Hand Deliver
Field Observations/ Co	(Lab Name)	Hand Deliver

	14-12099 changed to grab
Equipment Blank:	Duplicate:
Date 1-20-94	Time 2:30 14:30
Latitude N 33° 25' 44.7	" Longitude W 115° 53' 47.8
Weather/Site Conditions	y calm
Project Investigators	•
Death to Sadimant Mater Interface	
	15+ 10%
Sampling Method: Benthic Crab Sa	ample Benthic Grab Sample Percent Recovery%
(AF) Sediment Core	Sediment Core Sample Percent Recovery9
EV	
Method of Shipment (Lab Name)	Courier Courier
Field Observations/ Comments: 3	attempts - Sa plan would not gile 15:46
	0. 11
	ple 1
	carl tel
~ 10	Sar peter
No	Gard Leter
No	Collecter
No	Saver Jelen
Grab Sayell: to	Saver Jele

WELL CONSTRUCTION		LITHOLOGY	SAMPLE DATA
Type of Security:	Graphic Log	Description	ALPHONE ALphon
	-		- RV
	-		14:35 4
	-	le love	1/20
	-	- man on .	Cre Cre
		NO 5 100 Del	- 62 4
	-	1 (BU La fac	- 1
	-	1 compts	-
	-	fer 1	-
	-	2ª to wit	_
	-	ever low	
	_	ind	-
	-	Gart	-
	-	1	-
	-	Collected GB62-44-12 grat	099 -
	-	allet 22-44-10	-
	-	Goo Goo	-
	-	aver	-
		0	-
te well drilled:	-20-94 Oriller		Location:
neasured:		Weight:	
F Geologist/Engi			
FIELD LO	G OF WELL COM	STRUCTION AND LITHOLOGY FOR C	2.62
		LEV	INE·FRICKE
Project No. 602	4.00.03	CONSULTING	

	hase I LFR Project No.:
Sample Number: CR63 - 4°	9-12299
Equipment Blank:	Duplicate:
Date 1-22-99 20	Time 9:00
Latitude N33° 23' 37. 4	Time 9:00 Longitude W115° 55' 08.7"
Weather/Site Conditions	Calue
//	
Project Investigators AW RNH	, 3WV, 4017
Cuit	m film 48.61
Depth to Sediment/Water Interface	
Sampling Method: 🛛 Benthic Grab Sam	nple Benthic Grab Sample Percent Recovery
Sediment Core	Sediment Core Sample Percent Recovery
1	17 30cm Zha
Method of Shipment	Courier
(Lab Name)	Hand Deliver
Field Observations/ Comments: CP	63-49-12299 3jarg and attempt sampler split geen
	and attempt sampler split open
	and attempt sampler split geen

1

Sample Number: 6864-46.2 -	- 12099
Equipment Blank:	Duplicate:
Date 1-20-99	Time 16120
Latitude N 33° 23' 23.9'	Longitude W115° 51' 57,0"
Weather/Site Conditions <u>Gunny</u>	~
Project Investigators RNH, JW	
der the finder	46.2 RE AU
Depth to Sediment/Water Interface manual	47.3_Feet Meters (Feet)
Sampling Method: 🛛 🛱 Benthic Grab Sample	Benthic Grab Sample Percent Recovery 75
Sediment Core	Sediment Core Sample Percent Recovery
Method of Shipment	Courier
(Lab Name)	Hand Deliver
Field Observations/ Comments: (mr plant gray (1 cen 10 y 4/1) Gulfur odor	n fines (mk): Dark greenish 1/00 % files, worm ~ fre 25 cm

Equipment Blank:	Duplicate:
Date 1-20-99	Time 16:34
atitude N 33° 21' 34.9 "	Longitude 53' 10.3"
Weather/Site Conditions, cum	
Project Investigators RAV, ANH, 5W	V, SAF
Depth to Sediment/Water Interface many	46.2 HJ.J Feet Meters (Fe
ampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery
Sediment Core	Sediment Core Sample Percent Recovery
Method of Shipment	Courier
(Lab Name)	Hand Deliver
	his (ma): Derte annual
ield Observations/ Comments: h	the function of the second of a
ield Observations/ Comments: low planks (IColy (104 4/1))	1 ~ 100% hies, sulfer od
(IColy (IOY 4/1))	- 100% hies, sulfar od
(IColy (104 4/1))) 1- 100% hies, sulfar od
(IColy (IOY 4/1))) ~ 100% hies, sulfar od
(IColy (IOY 4/1))) 100% hies, sulfar od
(IColy (IOY 4/1))) ~ 100% hies, sullar od

$ \begin{array}{ $	ample Number:	CR 66-42	- /2299	
ather/Site Conditions \underline{Gunm} , \underline{Calm} tect Investigators \underline{IDJ} , \underline{IDJ} , \underline{SPF} , \underline{SUV} \underline{Guptn} , \underline{fubr} , $\underline{41.9'}$ \underline{Guptn} , \underline{fubr} , $\underline{60}$ \underline{Guptn} , \underline{fubr} , $\underline{60}$ $\underline{60}$, $\underline{60}$	🗌 Equipme	nt Blank:	Duplicate:	
ather/Site Conditions \underline{Gunm} , \underline{Calm} tect Investigators \underline{IDJ} , \underline{IDJ} , \underline{SPF} , \underline{SUV} \underline{Guptn} , \underline{fubr} , $\underline{41.9'}$ \underline{Guptn} , \underline{fubr} , $\underline{60}$ \underline{Guptn} , \underline{fubr} , $\underline{60}$ $\underline{60}$, $\underline{60}$	Date 1-2	2-99 .00	Time 10:50	
ather/Site Conditions \underline{Gunm} , \underline{Calm} tect Investigators \underline{IDJ} , \underline{IDJ} , \underline{SPF} , \underline{SUV} \underline{Guptn} , \underline{fubr} , $\underline{41.9'}$ \underline{Guptn} , \underline{fubr} , $\underline{60}$ \underline{Guptn} , \underline{fubr} , $\underline{60}$ $\underline{60}$, $\underline{60}$	atitude N 33	· 19' 4 14.3"	Longitude 6115	50' 07.9"
tect Investigators $AAJ AAJ AAJ SAP SUV$ Aught finder 41.9' but to Sediment/Water Interface				
but to Sediment/Water Interface 42.5^{\prime} Feet Meters (Feet		4	wv	
Att to Sediment/Water Interface μ and 42.57 Feet Meters (Feet appling Method: Benthic Grab Sample Benthic Grab Sample Benthic Grab Sample Percent Recovery $\sqrt{2}$ Sediment Core Sediment Core Sample Percent Recovery $\sqrt{3}$ $\sqrt{2}$ Sediment Core Sediment Core Sample Percent Recovery $\sqrt{3}$ $\sqrt{2}$ Sediment Core Sediment Core Sample Percent Recovery $\sqrt{3}$ $\sqrt{2}$ Sediment $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ Model $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ Sediment $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ Sediment $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ Sediment $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ (Lab Name) $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{2}$				
Att to Sediment/Water Interface μ and 42.57 Feet Meters (Feet appling Method: Benthic Grab Sample Benthic Grab Sample Benthic Grab Sample Percent Recovery $\sqrt{2}$ Sediment Core Sediment Core Sample Percent Recovery $\sqrt{3}$ $\sqrt{2}$ Sediment Core Sediment Core Sample Percent Recovery $\sqrt{3}$ $\sqrt{2}$ Sediment Core Sediment Core Sample Percent Recovery $\sqrt{3}$ $\sqrt{2}$ Sediment $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ Model $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ Sediment $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ Sediment $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ Sediment $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ (Lab Name) $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{2}$		depen hide	- 41.4	
Sediment Core sediment Core Sample Percent Recovery 69 35'or 110 cm (Lab Name) d Observations/ Comments: 3jars CABB - $42 - 122993jars$ CABB - $43 - 122933jars$ CABB - $44 - 122953jars$ CABB - $44 - 1229511:35$	Depth to Sediment/V	Vater Interface 42	1.51 Feet	Meters (Feet x
hod of Shipment (Lab Name) \Box Courier \Box Hand Deliver d Observations/ Comments: \Box	ampling Method:	Benthic Grab Sample	Benthic Grab Sample Pe	ercent Recovery
hod of Shipment (Lab Name) \Box Courier \Box Hand Deliver d Observations/ Comments: \Box		- VZ Sediment Core	Sediment Core Sample	Percent Recovery 69
(Lab Name) \Box Hand Deliver d Observations/ Comments: $3_{jars} CAbb - 42 - 12299 [1:25 3_{jars} CAbb - 43 - 12299 [1:35 3_{jars} CAbb - 49 - 12299 [1:35]$		~		
(Lab Name) \square Hand Deliver d Observations/ Comments: $3_{i}a_{rs} = CAbb - 42 - 12299 + 125 + 11:25$ $3_{j}a_{rs} = CAbb - 43 - 12299 + 11:35$	Aethod of Shipment			-
3;aus CR66 - 42 - 12299 11:45 11:25 3;aus CR66 - 43 - 12299 11:45 11:25 3;aus CR66 - 43 - 12299 11:35		(Lab Name)	Hand Deliver	
3;aus CR66 - 42 - 12299 11:45 11:25 3;aus CR66 - 43 - 12299 11:45 11:25 3;aus CR66 - 43 - 12299 11:35				
3ja-s CR66 - 43- 122.99 11:30 3ja-s CR66 - 44- 122.99 11:35	ield Observations/ (Comments:		
3ja-s CR66 - 43- 122.99 11:30 3ja-s CR66 - 44- 122.99 11:35				ROR
3ja-s CR66 - 44- 122.99 11:35	3iaus	C166 - 42-	12299 1	1:45 11:25
	3 jans	CR66 - 43-		
1.5 jars (166 - 45 - 12299 1:45	319-5			
	1.5 , 905	(166 - 45-	12299	11:45
	3;a-s 1.5;ars			

-				
	Project Name:	n sea flush I	LFR Project No.:	6824.00.3
	Sample Number:	B67-43.	6-12199	
	Equipment Blan	k:	Duplicate:	
	Date 1-21-11		Time 9:30	
Xar	Latitude <u>N 33°</u>	6' 37. 5"	Longitude W 115	5° 47' 17.4"
•	Weather/Site Conditions	Dust Storm ,	1-2 ft goods	, very rough se
	Project Investigators	AV, RAUL JUI	1, SAP	, , ,
		deyn fide	43.6	
	Depth to Sediment/Water In		Feet	Meters (Feet x 0.30) /s+ 5•6 21
	Sampling Method: 🕉 B			Percent Recovery 3 2 25 %
		ediment Core	Sediment Core Sampi	e Percent Recovery%
	Method of Shipment	b Name)	Courier Hand Delive	
	n	rentish gray (1		$\sim 100^{\circ}$
	Signature: M	a vyl		Date: _/-21-97

Project Name:	alter Sea purett	LFR Project No.: 6824.00.03	
Sample Number:	GB68-47.2-	12199	
Equipme	nt Blank:	Duplicate:	
Date 1-21	-91	Time 10:12	
Latitude N 33	016'54.2'	Longitude W 115° 44' 34.9"	
• Weather/Site Conditi		ong Breeze 1-2 waves very 1	ny
Project Investigators	Reber LAVIE , JU	JV, SAP	'
		1	
Depth to Sediment/V	Vater Interface Manuel 4	17.7 18.0 Feet	0.30
Sampling Method:	Benthic Grab Sample	Benthic Grab Sample Percent Recovery 2-5	
	Sediment Core	Sediment Core Sample Percent Recovery	9
Method of Shipment		Courier.	
meenes or simprirein		1 L Courrier	
	(Lab Name)	_ Courier Hand Deliver	_
	(Lab Name)		_
Field Observations/ ((Lab Name)		_
Field Observations/ ((Lab Name)	Hand Deliver	
Field Observations/ ((Lab Name) Comments:0	Hand Deliver	
Field Observations/ ((Lab Name) Comments: Do low plant. Groy (10	Hand Deliver	
Field Observations/ ((Lab Name) Comments:0	Hand Deliver c finz (mc): Dark groening eg (0 Y 3/1) - 1000/0	
Field Observations/ ((Lab Name) Comments: Do low plant. Groy (10	Hand Deliver	- -
Field Observations/ ((Lab Name) Comments: Do low plant. Groy (10	Hand Deliver	
Field Observations/ ((Lab Name) Comments: Do low plant. Groy (10	Hand Deliver	
Field Observations/ ((Lab Name) Comments: Do low plant. Groy (10	Hand Deliver	

Project Name: _ Gulton Ja Mose	I LFR Project No.: 6824.00.03
Sample Number:GB69 - 42	.7-12199 10:41
Equipment Blank:	Duplicate: 6869-42.7-12199-0
Date 1-21-91	Time 10:35
Latitude N 33' 13' 50.3'	Longitude W 115° 46'21.9"
Weather/Site Conditions Windy, 1	-24 weres, Rough stag
Project Investigators LGV, KNH	, TWU, SAP
der te ti	
Depth to Sediment/Water Interface	A 44. Seet Meters (Feet x 0.30)
Sampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery 2nd 20%
Sediment Core	-
Method of Shipment	Courier
(Lab Name)	Hand Deliver
Field Observations/ Comments: (N+	oned plastic fies (ml to ch);
	•
Grown the going	(1 Gey 10 × 5/1) to dante
1 100	(1 why 10 y 4/1) ~ 10- 20%
plante fres	, figh bones, sultur od a stron
	-
min its	Date: 1-21-99
Signature:	A Date: Date: A 44
/	

Project Name:	Salton Sea place It	LFR Project No.: 6824.00.03
Sample Number:	61370-35.4-	12299
Equipme	nt Blank:	Duplicate:
Date 1-2	2-99	Time /2:13
		Longitude W115° 46' 05.7"
Weather/Site Conditi	ions Gummy, Slight	breye
	PAV, ANH, SAP	
	dereth Liker 39	5.4'
Depth to Sediment/W	Vater Interface Manual 3	
Sampling Method:	Benthic Grab Sample	Benthic Grab Sample Percent Recovery%
	Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment	(Lab Name)	Courier Hand Deliver
Field Observations/ (Comments: Silt (ML) ~100% (ou	: Dark greenish gray (10key 104 4/
	Bjars	
	. 0	
Signature:	min M	Date: 1-22-99
Signature.	- I The	Date. 1- 22 (1
	/	

Project N	ame:	alton S	ou pho	EI LFR Proj	ect No.:	6824	.00.03
Sample N	lumber: _	GP71	- 34.	2			
	Equipme	nt Blank:		□	Duplicate:		
Date	~	1-99	/	Time	15:	55	
Latitude _	N	330 17	42.5"	Longitude	-wy	5 46	tory al Se
Weather/	Site Condit	ions Ver	wit, 2- 3	o waves,	Stown	y, Vic	tory at Se
Project In	vestigators	RAN	<i>n</i> . n.	SAF, 5.		U .	d
			mand	35.0'			
Depth to	Sediment/V	Vater Interface	lyndd	51.2 Feet			Meters (Feet x)
Sampling	Method:		Grab Sample	Benthic	Grab Sampl	le Percent Re	covery 212
		Sediment	Core	Sedimen	t Core Sam	ple Percent R	ecovery
Method o	f Shipment			_ 0	Courier		
		(Lab Name	2)		Hand Deliv	ver	
Field Obs	ervations/		Jilt 1 ms gr -10% pc	anglinka 2) (1) agtic f	hier is	(mi): 1/1 10 1/1 2	Dark Y), do/
			V				
					and the second		
			,				

Project I	Name: Sult	Sen have I	LFR Project N	6624.00	03
Sample	Number: GC	FIZ CR-	12-11-	- 12199 .	
	Equipment Blank:		Dup	licate:	
Date	1-21-	99	Time	1:50	
X Latitude	N33º 11			W1150 37'4:	2.1"
		shing 1-	,	9	
	Investigators		WV. SAF		
		. (
Depth to	Sadimant/Matar Inte	dept fich		Mata	r (East v 0.2)
	o Sediment/Water Inte		3.0 Feet	Meter	rs (Feet x 0.30
Samplin	g Method: 🗌 Ben	thic Grab Sample	Benthic Grab	Sample Percent Recovery	9
	Sed	iment Core		e Sample Percent Recovery	66
Method	of Shipment		~ 4	ier 110 cm	
method		Name)		l Deliver	
Field Ob	oservations/ Comment	5:			
	"	6972 11	1010		
	11:50	CR72-10	12199	310-5	
	11:58	CR72-13	- 12199	314-5	
	12:00	CR72-14	- 12179	2 jars	
		· 1 ./ 8		1	
Signatur	re: M	~ Vyr		Date: _///	21 99
		1		,	

titude $133^{\circ}06'55.0''$ Longitude $125^{\circ}42'34.8''$ reather/Site Conditions $5ung$, $5hihh$ wid $1^{\circ}24^{\circ}$ wave oject Investigators hhh , $fhhh$, guv , $5hF$ $epth$ to Sediment/Water Interface $guard$ for $Felt^{0.0}$ Meters (Feet x 0.3 impling Method: \Box Benthic Grab Sample Benthic Grab Sample Percent Recovery 12 ff $\sim 164^{\circ}2^{\circ}12^{\circ}$ ff $\sim 164^{\circ}2^{\circ}12$	oject Name: Salton Sen Alere I	LFR Project No .: 6824.00.03
ate $[-2].99$ Time $[3:46$ titude $33^{\circ} 06' 55.0''$ Longitude $1.5^{\circ} 42' 34.8''$ eather/Site Conditions $5unm, 5hihh wid 1.2 ft waves$ oject Investigators fth , $fhhh$, $fhhh$, $fhhh$, fhh , fhh , $fhhh$, hhh , $hhhhh$, $hhhhhh$, $hhhhhhhhhh$	mple Number: CR73-8- 1219	9
titude <u>133</u> 06'55.0" Longitude <u>W 125°42'34.8"</u> reitude <u>133</u> 06'55.0" Longitude <u>W 125°42'34.8"</u> repether/Site Conditions <u>Survey</u> , <i>Slight wid</i> , <u>1-24</u> wars reject investigators <u>flik</u> , <i>flik</i> , <i>flik</i> , <i>Juv</i> , <i>Glif</i> <i>Weters (Feet x 0.3</i> <i>ampling Method:</i> Benthic Grab Sample Benthic Grab Sample Percent Recovery <u>12</u> <i>Sediment Core</i> <i>Sediment Core</i> <i>Sediment Core</i> <i>Sediment Core Sample Percent Recovery <u>12</u> <i>Carped 11</i> <i>Ward 11</i> <i>Courier</i> <i>Meters (Feet x 0.3</i> <i>Meters (Feet x 0.3 <i>Meters (Feet x 0.3)</i> <i>Meters (Feet x 0.3 <i>Meters (Feet x 0.3)</i> <i>Meters (Feet x 0.3 <i>Meters (Feet x 0.3)</i> <i>M</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	Equipment Blank:	Duplicate:
atitude <u>133° 06'55.0"</u> Longitude <u>W 128° 42' 34.8"</u> Veather/Site Conditions <u>Surge</u> , <u>Slight wid</u> , <u>1-2</u> ft wars troject Investigators <u>fth</u> , <u>fn</u> ,	Date 1-21-99	Time 13:46
Project Investigators _ fill , fill , Jur Sift South Lit 9: 7.4 Depth to Sediment/Water Interface _ manual for Felto.o ampling Method: Benthic Grab Sample Benthic Grab Sample Percent Recovery Sediment Core Sediment Core Sample Percent Recovery Method of Shipment Courier 2nd ~ 21° (Lab Name) Benthic Grab Sample Percent Recovery Method of Shipment Bernard I for 2nd ~ 21° (Lab Name) Benthic Grab Sample Percent Recovery Method of Shipment Bernard I for 2nd ~ 21° (Lab Name) Benthic Grab Sample Bernard I for 4000000000000000000000000000000000000	atitude 133 06'55.0"	Longitude 10 115° 42' 34.8"
Project Investigators _ fill , fill , Jur Sift South Lit 9: 7.4 Depth to Sediment/Water Interface _ manual for Felto.o ampling Method: Benthic Grab Sample Benthic Grab Sample Percent Recovery Sediment Core Sediment Core Sample Percent Recovery Method of Shipment Courier 2nd ~ 21° (Lab Name) Benthic Grab Sample Percent Recovery Method of Shipment Bernard I for 2nd ~ 21° (Lab Name) Benthic Grab Sample Percent Recovery Method of Shipment Bernard I for 2nd ~ 21° (Lab Name) Benthic Grab Sample Bernard I for 4000000000000000000000000000000000000	Veather/Site Conditions Sunny, Slight	t wind 1-2 ft waves
Sampling Method: Benthic Grab Sample Benthic Grab Sample Percent Recovery Definition of Shipment		
Method of Shipment	Depth to Sediment/Water Interface for	Feet Meters (Feet x 0.30)
Method of Shipment	ampling Method: 🗌 Benthic Grab Sample	Benthic Grab Sample Percent Recovery%
(Lab Name) Field Observations/ Comments: [5" allower [ft allower Field Observations/ Comments: [5" allower [ft allower] (vary hard !] (vary hard !] (uttertail ~ 3 'arg - Reused] ft - to tal CR73-B-12199 14:17 3/a-5 CR73-B-12199 14:17 3/a-5	Sediment Core	
Field Observations/ Comments: [5" alloyet 1 ft collected Saple Using hand!] cultered ~ 3 jarg - Record 1 ft total CR73-B-12199 14:17 3 jars CR73-9-12199 14:22 gjars		Courier N
CR73-B-12199 14:17 3ja-s CR73-9-12199 14:17 3ja-s CR73-9-12199 14:17 3ja-s		t Ift collected samle
CR73-B-12199 14:17 3ja-s CR73-9-12199 14:17 3ja-s		ary - Reuned If total
cr 73-9-12199 14122 gia-s		
	W. 73-9-	12199 14122 gjars
Signature: Min 1/1 Date: 1-21-99	Signature: Raid Un	Date: /- 21-99

	FIELD ACTIVITIES LOGBOOK ENTRY FORM
Project Name: Salton Sea	LFR Project No.: 6824.00.02
Sample Number:	-
,	Duplicate:
Date (2-16-98	Time 6:00 PM
Latitude	
	breeze
Project Investigators RAY RNH, JW	
Depth to Sediment/Water Interface	Feet
Sampling Method: 🗌 Benthic Grab Sample	Benthic Grab Sample Percent Recovery%
N/A Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment(Lab Name)	Courier Hand Deliver
Field Observations/ Comments: 2 EquipMe grab Sampler on land at	ut Ganks taken from berthic berdocking.

FIELD ACTIVITIES LOGBOOH
ENTRY FORM

Project Name: SALTON SEA	LFR Project No.: 6824.00.02
Sample Number:	
Equipment Blank: EB3-121898	Duplicate:
	Time 1820 6:20 PM
Latitude	Longitude
Weather/Site Conditions NIGHT, CLAR	K.
Project Investigators RAV, RNH, RBI	D, JW
Depth to Sediment/Water Interface	Feet Meters (Feet x 0.30)
Sampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery%
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment(Lab Name)	Courier Hand Deliver
Field Observations/ Comments: 5 AMB 2 PLAST 3 NOA:	10 BOTTLES
	and the second sec

	FR
LEVINE	FRICKE

LFR Project No.: 6824.00.02
Duplicate:
Time_ 6:30 PM
Longitude
у
FeetMeters (Feet x 0.30)
Benthic Grab Sample Percent Recovery%
Sediment Core Sample Percent Recovery%
Courier Hand Deliver
2 -S
n Sampling Shovel used for

Project Name: SALTON SEA	LFR Project No .: 6824.00.02
Sample Number:	
Equipment Blank: EBS-12-22	.98 Duplicate:
Date 12/22/98	
Latitude	Longitude
Weather/Site Conditions Dark , Sligh	vt breeze
Project Investigators RAU RNH RI	BD
Depth to Sediment/Water Interface	Feet
Sampling Method: Benthic Grab Sample	Benthic Grab Sample Percent Recovery%
Sediment Core	Sediment Core Sample Percent Recovery%
Method of Shipment	Courier
	ABERS ASTICS As
Subsample from corer	into glass sample jars.
and the second	and the former of the second s

Project Name: SALTON SEA	LFR Project No.:	6824,00-03		
Sample Number:				
	Duplicate	5.		
Date 1/20/99	Time	1820		
Latitude				
Weather/Site Conditions				
Project Investigators SAF RDH				
Depth to Sediment/Water Interface	Feet	Meters (Feet x 0.30)		
Sampling Method: 🗌 Benthic Grab Sample	Benthic Grab Sam	ple Percent Recovery%		
Sediment Core	Sediment Core Sai	mple Percent Recovery%		
Method of Shipment(Lab Name)	Courier	Courier Hand Deliver		
Field Observations/ Comments: 3A	LASTIC			
signature: fizen Sur		Date: 1/20/91		

Project Name:	SALTON SEA		LFR Project No.:	6824.00-03	
Sample Number:					
Equipment Blank:			Duplicate:		
Date	21-99		Time	1830	
Latitude		L	ongitude	-	
Weather/Site Condit	ions				
Project Investigators	RN#				
Depth to Sediment/V	Water Interface	_	Feet	Meters (Feet x 0.30)	
Sampling Method:	Benthic Grab Sample				
	Sediment Core		Sediment Core Sar	mple Percent Recovery%	
Method of Shipment	(Lab Name)		Courier _ Hand Del	liver	
Field Observations/ (Comments:		NBERS		
		3 V04	S		
		Taken	W/ Stanle	so steel troug	
Signature:	fizzu Genz			Date: 1/21/99	
	0.0				

Project Name: SACTON SEA	LFR Project No.:	6824.00-03	
Sample Number: EB9-12299			
Equipment Blank:	Duplicate:		
Date (-22-99	Time	1330	
Latitude	Longitude	~	
Weather/Site Conditions SUNNY C	LEAR		
Weather/Site Conditions SUNNY C			
Depth to Sediment/Water Interface	Feet	Meters (Feet x 0.30)	
Sampling Method: 🗌 Benthic Grab Sample	Benthic Grab Sam	ole Percent Recovery%	
Sediment Core	Sediment Core Sar	nple Percent Recovery%	
Method of Shipment(Lab Name)	Courier Hand Del	iver	
3	AMBERS PLASTIC VOAS Using Staunless	-steel hand trowel	
Signature: from Duny		Date: 1/22/91	

APPENDIX C

Field Boring Logs of Sediment Lithology

	LITHOLOGY				SAMPLING DATA			
Depth, feet	Graphic Log	Visual Description		ID of Samples Collected	Penetration Rate (blows/ft.)	P I D Values (ppm)		
		Water.						
5			_5_					
10			10					
15			_15_					
		SILT (ML), greenish black (1 Gley, 10Y-2.5/1), 100% low plastic fines.		CR6-18-				
		-trace barnacles.		122198 CR6-19-				
20		SILTY SAND (SM) , dark greenish gray (1 Gley, 10Y-3/1), 80% very fine to fine grained sand, 20% low plastic fines.	20					
		SILT (ML), dark greenish gray.	 r	122198				
		SILTY SAND (SM), dark greenish gray (1 Gley, 10Y-3/1), 80% fines, 20% very fine grained sand.		CR6-21- 122198				
		SILT (ML), dark greenish gray (1 Gley, 10Y-3/1), low plastic fines.		CR6-22-				
		SILT (ML), dark greenish gray (1 Gley, 10Y-3/1), low plastic fines. Bottom of boring at 7.01 meters (23 ft).						

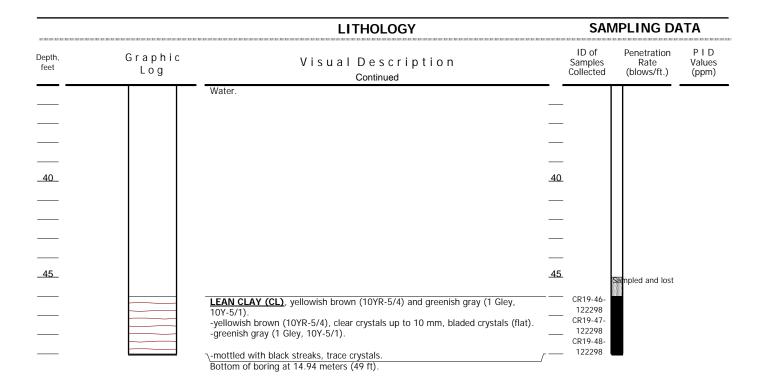
	EXPLANATI	ON
	Clay	 Interval Sampled Sample Retained
Date boring drilled: 12/21/98	Silt	
L • F • R Field Staff: Richard Vogl	Sand	uu: unconsolidated undrained triaxial
Approved by:	°°° Gravel	(confining pressure, psi)

	Salton Sea
Levine•Fricke Project No. 6824.00	Page 1 of 1
	050599RAV/lis

		LITHOLOGY		SAMPLING DATA				
Depth, feet	Graphic Log	Visual Description		ID of Samples Collected	Penetration Rate (blows/ft.)	P I D Values (ppm)		
		Water.						
				_				
				-				
5			_5	-				
				-				
				-				
				-				
				-				
_10			_10	-				
				-				
				-				
				_				
15			_15	_				
				_				
			_	-				
				-				
				-				
20			_20	-				
				-				
			—	-				
				-				
25			_25					
				_				
				-				
				-				
				-				
30			_30	-				
				-				
				-				
		<u>SILT (ML)</u> , greenish black (1 Gley, 10Y-2.5/1), low plasticity. -dark greenish gray (1 Gley, 10Y-4/1).		CR13-33- 122298				
35		-dark greenish gray (1 diey, 101-4/1).	35	CR13-34-				
	Continued				—			
				IATION	Interval Same	led		
			Clay		Interval Samp Sample Retair	ned		
Date boring	drilled: 12/22/98		Silt					
	ld Staff: Richard Vogl		Sand	uu:	unconsolidated	undrained triaxi		
Approved b			°°° Gravel		(confining press	ure, psi)		

	Salton Sea
Levine•Fricke Project No. 6824.00	Page 1 of 2
	050599RAV/lis

		SAMPLING DATA			
Depth, feet	Graphic Log	Visual Description Continued	ID of Samples Collected	Penetration Rate (blows/ft.)	P I D Values (ppm)
		LEAN CLAY (CL), grayish brown (10YR-5/2). SANDY SILT (ML), dark greenish gray (1 Gley, 10Y-4/1), 80% fines, 20% fine grained sand. -graysih brown (10YR-5/2), low plastic fines, trace sand lenses. -sand lense, fine grained sand. LEAN CLAY (CL), grayish brown (10YR-5/2). Bottom of boring at 11.89 meters (39 ft).	CR13:35- 122298 CR13:35- 122298 CR13:36- 122298 CR13:37- 122298 CR13:38- 122298		


LITHOLOGY AND SAMPLE DATA F	OR SOIL BORING CR13 (CONTI	NUED)
Approved by:	°°°° Gravel	(confining pressure, psi)
L • F • R Field Staff: Richard Vogl	Sand	uu: unconsolidated undrained triaxia
Date boring drilled: 12/22/98	Silt	
	Clay	 Interval Sampled Sample Retained

EXPLANATION

Salton SeaLevine• FrickeProject No. 6824.00050599RAV/lis

		LITHOLOGY	SAN	SAMPLING DATA			
Depth, feet	Graphic Log	Visual Description	ID of Samples Collected	Penetration P I D Rate Values (blows/ft.) (ppm)			
	Water.						
			5				
			_				
10			<u>_10</u>				
			—				
			—				
			—				
15			_15_				
			—				
			—				
20							
25_			_25_				
30_			_30_				
			—				
			—				
35	Continued		_35_				
			EXPLANATION				
		F	Clay	Interval Sampled Sample Retained			
			Silt	sample Retained			
	drilled: 12/22/98		Sand				
	ld Staff: Richard Vogl		uu.	unconsolidated undrained triax (confining pressure, psi)			
Approved b	y:		Gravel				

	Salton Sea
Levine•Fricke Project No. 6824.00	Page 1 of 2
	050599RAV/lis

		EXPLANATIO	N
		Clay	 Interval Sampled Sample Retained
Date boring drilled: 12/22/98		Silt	
L • F • R Field Staff: Richard Vogl		Sand	uu: unconsolidated undrained triaxial
Approved by:	$^{\circ}$	Gravel	(confining pressure, psi)

LITHOLOGY AND SAMPLE DATA FOR SOIL BORING CR19 (CONTINUED)

	Salton Sea
Levine•Fricke Project No. 6824.00	Page 2 of 2
	050599RAV/Iis

		LITHOLOGY		SAMPLING DATA			
Depth, feet	Graphic Log	Visual Description		ID of Samples Collected	Penetration Rate (blows/ft.)	PID Values (ppm)	
		Water.					
5			5				
10			_10				
15			<u>15</u>				
20			_20				
		SILT (ML), greenish gray (1 Gley, 10Y-5/1), 100% low plastic fines.		CR20-21- 122298			
				CR20-22- 122298			
		-greenish gray (1 Gley, 10Y-5/1), medium to high plastic fines.		CR20-23- 122298			
25			25	CR20-24- 122298			
		-grayish brown (10YR-5/2).		CR20-25-			
		LEAN LAY (CL), grayish brown (10YR-5/2), 100% plastic fines. Bottom of boring at 8.08 meters (26.5 ft).		122298 CR20-26- 122298			

	Salton Sea
Levine• Fricke Project No. 6824.00	Page 1 of 1
	050599RAV/lis

		LITHOLOGY		SAN	IPLING DA	АТА
Depth, feet	Graphic Log	Visual Description		ID of Samples Collected	Penetration Rate (blows/ft.)	PID Values (ppm)
		Water.				
5			_5_			
10			10			
15			15			
		SILT with SAND (ML), dark greenish gray (1 Gley, 10Y-4/1), saturated, 85%		CR26-17- 122298		
		\fines, 15% fine grained sand. FAT CLAY (CH), brown (10YR-5/2), saturated, medium to high plasticity.	J —	CR26-18- 122298		
		-moist.		CR26-19-		
20		Bottom of boring at 6.10 meters (20 ft).	20	122298		

	EXPLANATI	ION	
	Clay	 Interval Sampled Sample Retained 	
Date boring drilled: 12/22/98	Silt		
L • F • R Field Staff: Richard Vogl	Sand	uu: unconsolidated undrained triaxial	
5		(confining pressure, psi)	
Approved by:	°ŏ° Gravel		

	Salton Sea
Levine•Fricke Project No. 6824.00	Page 1 of 1
	050599RAV/lis

		LITHOLOGY			IPLING DA	ATA
Depth, feet	Graphic Log	Visual Description		ID of Samples Collected	Penetration Rate (blows/ft.)	P I D Values (ppm)
		Water.				
5			_5_			
10			_10_			
			<u>15</u>			
20			_20_			
		FAT CLAY (CH), greenish gray (1 Gley, 10Y-5/1), 100% plastic fines. Bottom of boring at 6.55 meters (21.5 ft).		CR39-21- 122298		

		EXPLANATIO	N	
		Clay	 Interval Sampled Sample Retained 	
Date boring drilled: 12/22/98		Silt		
L • F • R Field Staff: Richard Vogl		Sand	uu: unconsolidated undrained triaxial	
Approved by:	000	Gravel	(confining pressure, psi)	

	Salton Sea
Levine•Fricke Project No. 6824.00	Page 1 of 1
	050599RAV/lis

		LITHOLOGY	SAN	IPLING DATA
Depth, feet	Graphic Log	Visual Description	ID of Samples Collected	Penetration P I D Rate Values (blows/ft.) (ppm)
	Water.			
			5	
			_	
10			_10_	
			—	
			—	
			—	
			—	
15			_15_	
			—	
			—	
			_	
20				
			_	
25_			_25_	
			—	
			—	
			—	
30_			_30_	
			—	
			_	
			—	
35				
	Continued		_35	
			EXPLANATION	
			Clay 🔤	Interval Sampled Sample Retained
			Silt	
	g drilled: 1/20/99		Sand	
	ld Staff: Richard Vogl		$ \begin{array}{c} \circ \circ \\ \circ \circ \end{array} \\ \hline \\ \circ \circ \circ \end{array} \\ \hline \\ \hline \\ \circ \circ \circ \end{array} \\ \hline \\ \hline \\ \\ \circ \circ \circ \end{array} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
Approved b	y:	_ o _		

	Salton Sea
Levine• Fricke Project No. 6824.00	Page 1 of 2
	050599RAV/lis

		LITHOLOGY		SAN	IPLING DA	ATA
Depth, feet	Graphic Log	Visual Description Continued		ID of Samples Collected	Penetration Rate (blows/ft.)	P I D Values (ppm)
		Water.				
		SILT (ML), dark greenish gray (1 Gley, 10Y-4/1), low plastic fines, trace fine		CR49-39-		
40		grained sand, barnacle layer. -greenish gray (1 Gley, 10Y-6/1), low to medium plastic fines, trace organic carbon, 20% plastic fines. Bottom of boring at 12.34 meters (40.5 ft).	_ <u>40</u>	12099 CR49-40- 12099		

		EXPLANATION		
		Clay	 Interval Sampled Sample Retained 	
Date boring drilled: 1/20/99		Silt		
L • F • R Field Staff: Richard Vogl		Sand	uu: unconsolidated undrained triaxial	
Approved by:	$\circ \circ \circ$	Gravel	(confining pressure, psi)	

LITHOLOGY AND SAMPLE DATA FOR SOIL BORING CR49 (CONTINUED)

	Salton Sea
Levine•Fricke Project No. 6824.00	Page 2 of 2
	050599RAV/lis

		LITHOLOGY		SAMPLING DATA			
Depth, feet	Graphic Log	Visual Description	ID of Samples Collected	Penetration P I D Rate Values (blows/ft.) (ppm)			
	Water.						
			5				
			_				
10			_10_				
			—				
			—				
			—				
			—				
15			_15_				
			—				
			—				
			_				
20							
25_			_25_				
			_				
			_				
			—				
30_			_30_				
			—				
			—				
			—				
35	Continued		_35_				
			EXPLANATION				
		F	Clay 🔛	Interval Sampled Sample Retained			
			Silt	Sample Retained			
	drilled: 1/19/99		Sand				
	ld Staff: Richard Vogl		uu.	unconsolidated undrained tria: (confining pressure, psi)			
Approved b	y:		Gravel				

	Salton Sea
Levine•Fricke Project No. 6824.00	Page 1 of 2
	050599RAV/lis

		LITHOLOGY		SAN	IPLING DA	ATA
Depth, feet	Graphic Log	Visual Description Continued		ID of Samples Collected	Penetration Rate (blows/ft.)	P I D Values (ppm)
		Water.				
		SILT (ML), dark greenish gray (1 Gley, 10Y-4/1), 100% low plastic fines.		CR50-39-		
40		SILT TO LEAN CLAY (ML to CL), pale brown (10YR-6/3), medium plastic	40	11999 CR50-40-		
		fines, carbon streaks, mostly clay - 80%. SILT (ML), light brownish gray (10YR-6/2), 80% fines, 20% clay, trace very		11999 CR50-41-		
		fine grained sand, trace mica, trace barnacle pieces. Bottom of boring at 12.8 meters (42 ft).	/	11999		

		EXPLANATION		
		Clay	 Interval Sampled Sample Retained 	
Date boring drilled: 1/19/99		Silt	•	
L • F • R Field Staff: Richard Vogl		Sand	uu: unconsolidated undrained triaxial	
Approved by:	$^{\circ}$	Gravel	(confining pressure, psi)	

LITHOLOGY AND SAMPLE DATA FOR SOIL BORING CR50 (CONTINUED)

	Salton Sea
Levine•Fricke Project No. 6824.00	Page 2 of 2
	050599RAV/lis

		LITHOLOGY			MPLING DA	
epth, Grap ^{feet} Lo	ohic	Visual Description		ID of Samples Collected	Penetration Rate (blows/ft.)	P I D Values (ppm)
		Water.				
				_		
_				_		
				-		
5			_5	-		
—				-		
				-		
_				-		
0			_10			
				-		
_			_	-		
			_	-		
5			_15	<u>i</u>		
_				-		
_				-		
_				_		
			_20			
				_		
_				-		
_				-		
5				-		
<u>5</u>			_25	<u>)</u>		
				_		
				_		
		SILT (ML) , dark greenish gray (1 Gley, 10Y-4/1), 100% low plastic fines cm zone of barnacles.	i, 5 _30	CR51-29- 12099 CR51-30-		
_		-greenish gray (1 Gley, 5GY-6/1), 95% low plastic fines. LEAN CLAY (CL), light brownish gray (10YR-6/2), moist, medium to hig plastic fines.	h	_ 12099 CR51-31- 12099		
		Bottom of boring at 9.60 meters (31.5 ft).		12077	_	
			EXPLA	NATION		
			Clay		- Interval Samp - Sample Retair	led
			Silt		- Jampie Ketali	IEU
ate boring drilled: 1/20 • F • R Field Staff: Rich			Sand		unconsolidated	undrained tri-
	aru voyi	 ○ ○ ○	_	uu:	(confining press	ure, psi)
Approved by:	- 5		Gravel		(confining press	ure, p

	Salton Sea
Levine• Fricke Project No. 6824.00	Page 1 of 1
	050599RAV/lis

		LITHOLOGY	SAN	IPLING DATA
Depth, feet	Graphic Log	Visual Description	ID of Samples Collected	Penetration P I D Rate Values (blows/ft.) (ppm)
	Water.			
			5	
10			_10_	
			—	
			—	
			—	
			—	
15_			_15_	
			—	
			—	
			_	
20				
			_	
25			_25_	
			—	
			—	
			—	
30			_30_	
			—	
			—	
			—	
35				
	Continued			
			EXPLANATION	
			Clay	Interval Sampled Sample Retained
			Silt	
	g drilled: 1/20/99		Sand	
	eld Staff: Richard Vogl		uu.	unconsolidated undrained tria (confining pressure, psi)
Approved b	y:	_ o *	Glavel	

	Salton Sea
Levine•Fricke Project No. 6824.00	Page 1 of 2
	050599RAV/lis

		LITHOLOGY		SAN	IPLING DA	ATA
Depth, feet	Graphic Log	Visual Description Continued		ID of Samples Collected	Penetration Rate (blows/ft.)	P I D Values (ppm)
		Water.	 40			
 		SILT (ML), dark greenish gray (1 Gley, 10Y-4/1), 100% fines, barnacles in 2 cm layer. LEAN CLAY (CL), light greenish gray (1 Gley, 5GY-7/1), 20% plastic fines. -pale brown (10YR-6/3), 80% low plastic fines, 20% plastic fines, trace organic streaks, 3 mm clear to brown crystals, very small rust colored crystals. SILT (ML), light greenish gray (1 Gley, 10Y-7/1), moist, low to medium plastic fines, trace caliche nodules, organic streaks. Bottom of boring at 13.72 meters (45 ft).	 	CR52-41- 12099 CR52-42- 12099 CR52-43- 12099 CR52-44- 12099		

		EXPLANATION		
		Clay	 Interval Sampled Sample Retained 	
Date boring drilled: 1/20/99		Silt		
5	1.1.1	Sand		
L • F • R Field Staff: Richard Vogl	<u></u>	ound	uu: unconsolidated undrained triaxial	
Approved by:	\circ \circ	Gravel	(confining pressure, psi)	

LITHOLOGY AND SAMPLE DATA FOR SOIL BORING CR52 (CONTINUED)

	Salton Sea
Levine•Fricke Project No. 6824.00	Page 2 of 2
	050599RAV/lis

	LITHOLOGY		SAN	IPLING DA	ATA
Depth, feet	Graphic Log	Visual Description	ID of Samples Collected	Penetration Rate (blows/ft.)	PID Values (ppm)
		Water.	Collected	(blows/ft.)	(ppm)
		SILT (ML), dark greenish gray (1 Gley, 10Y-4/1), 100% low plastic fines. -greenish gray (1 Gley, 10Y-5/1), 10% low plastic fines. SILT to LEAN CLAY (ML to CL), light brownish gray (10YR-6/2), moist, 20-30% plastic fines, organic carbon abundant. Bottom of boring at 4.88 meters (16 ft).	CR55-14- 12099 CR55-15- 12099		

		EXPLANATION		
		Clay	 Interval Sampled Sample Retained 	
Date boring drilled: 1/20/99		Silt		
L • F • R Field Staff: Richard Vogl		Sand	uu: unconsolidated undrained triaxial	
Approved by:	\circ \circ \circ	Gravel	(confining pressure, psi)	

	Salton Sea
Levine•Fricke Project No. 6824.00	Page 1 of 1
	050599RAV/lis

LITHOLOGY		LITHOLOGY	SAN	SAMPLING DATA		
Depth, feet	Graphic Log	Visual Description	ID of Samples Collected	Penetration P I D Rate Values (blows/ft.) (ppm)		
	Water.					
			5			
10			_10_			
			—			
			—			
			—			
			—			
15_			_15_			
			—			
			—			
			_			
20						
			_			
25			_25_			
			—			
			—			
			—			
30			_30_			
			—			
			—			
			—			
35						
	Continued					
			EXPLANATION			
			Clay	Interval Sampled Sample Retained		
			Silt			
	g drilled: 1/20/99		Sand			
	eld Staff: Richard Vogl		uu.	unconsolidated undrained tria (confining pressure, psi)		
Approved b	y:	_ o *	Glavel			

	Salton Sea
Levine• Fricke Project No. 6824.00	Page 1 of 2
	050599RAV/lis

LITHOLOGY				SAN	IPLING DA	ATA
Depth, feet	Graphic Log	Visual Description Continued		ID of Samples Collected	Penetration Rate (blows/ft.)	P I D Values (ppm)
		Continued Water. SILT (ML), dark greenish gray (1 Gley, 10Y-4/1). -greenish gray (1 Gley, 5GY-6/1), low plastic fines, clear light brown crystals - 8-10m.	 40. 45. 	CR60-48- 12099 CR60-49-	Lost	
_ <u>50</u>		 J-dark gray (1 Gley, N-3), small clear crystal layer (max 1mm). LEAN CLAY (CL), mottled color (1 Gley N to 10Y-5/1 to 3/1), medium to high plasticity, 20% plastic fines. -trace organic carbon. -greenish gray (1 Gley, 50Y-5/1). -layers of very fine (0.5-1mm) clear crystals. \-30% clay. Bottom of boring at 16.15 meters (53 ft). 	∫ <u>50</u> — 	12099 CR60-50- 12099 CR60-51- 12099 CR60-52- 12099		

		EXPLANATION		
		Clay	 Interval Sampled Sample Retained 	
Date boring drilled: 1/20/99		Silt		
L • F • R Field Staff: Richard Vogl		Sand	uu: unconsolidated undrained triaxial	
Approved by:	<u></u>	Gravel	(confining pressure, psi)	

LITHOLOGY AND SAMPLE DATA FOR SOIL BORING CR60 (CONTINUED)

	Salton Sea
Levine• Fricke Project No. 6824.00	Page 2 of 2
	050599RAV/lis

LITHOLOGY		LITHOLOGY	SAN	SAMPLING DATA		
Depth, feet	Graphic Log	Visual Description	ID of Samples Collected	Penetration P I D Rate Values (blows/ft.) (ppm)		
	Water.					
			5			
			_			
			_			
			—			
10			_10_			
			—			
			—			
			—			
15						
15_			_15_			
			—			
20			_20_			
			_			
			_			
			—			
25			_25_			
			—			
			—			
30						
30_			_30_			
35_			_35_			
	Continued					
			EXPLANATION	Intonial Complet		
			Clay	Interval Sampled Sample Retained		
Date boring	g drilled: 1/22/99		Silt			
	ld Staff: Richard Vogl		Sand uu:	unconsolidated undrained tria		
Approved b			Gravel	(confining pressure, psi)		

	Salton Sea
Levine• Fricke Project No. 6824.00	Page 1 of 2
	050599RAV/lis

	LITHOLOGY			ATA		
Depth, feet	Graphic Log	Visual Description Continued	2	ID of Samples Collected	Penetration Rate (blows/ft.)	P I D Values (ppm)
		Water.				
40			40			
			—			
_45			_45_			
		SILT (ML) , greenish gray (1 Gley, GY-6/1), trace plastic fines, abundant amber crystals to 8 mm. -dark gray (1 Gley 4/N), low plastic fines, fine clear crystals. -greenish gray (1 Gley, 5 GY-6/1), 20% plastic fines. Bottom of boring at 15.24 meters (50 ft).		CR63-49- 12299		

		EXPLANATION		
		Clay	 Interval Sampled Sample Retained 	
Date boring drilled: 1/22/99		Silt		
L • F • R Field Staff: Richard Vogl		Sand	uu: unconsolidated undrained triaxial	
Approved by:	000	Gravel	(confining pressure, psi)	

LITHOLOGY AND SAMPLE DATA FOR SOIL BORING CR63 (CONTINUED)

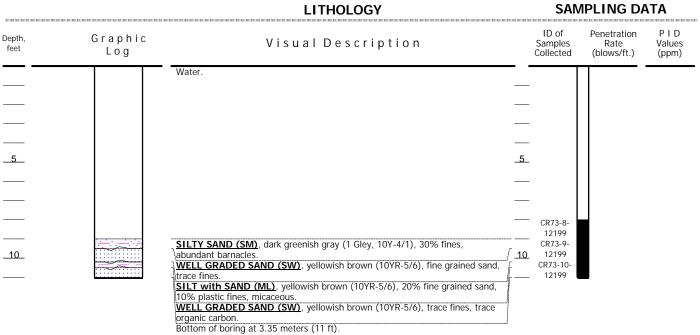
	Salton Sea
Levine•Fricke Project No. 6824.00	Page 2 of 2
	050599RAV/lis

		LITHOLOGY	LITHOLOGY SAMPLI							
Depth, feet	Graphic Log	Visual Description	ID of Samples Collected	Penetration P I D Rate Values (blows/ft.) (ppm)						
	Water.									
5			_5_							
10			_10_							
			—							
			—							
			—							
15_			_15_							
20			20							
25			_25_							
			—							
			—							
			—							
30			_30_							
35_			_35_							
	Continued									
			EXPLANATION	Intonial Complete						
			Clay	Interval Sampled Sample Retained						
Date boring	g drilled: 1/22/99		Silt							
	Id Staff: Richard Vogl		Sand uu:	unconsolidated undrained tria						
Approved b		° ° °	Gravel	(confining pressure, psi)						

	Salton Sea
Levine• Fricke Project No. 6824.00	Page 1 of 2
	050599RAV/lis

feet Log		SAN	IPLING DA	ATA	
Depth, feet	 Visual Description Continued		ID of Samples Collected	Penetration Rate (blows/ft.)	PID Values (ppm)
	Water.				
40		40			
	 SILT (ML), greenish gray (1 Gley, 10Y-4/1), 100% low plastic fines.	—	CR66-42-		
	-greenish gray (1 Gley, 10Y-6/1), 10-20% plastic fines, trace barnacles, worms, fine grained sand lense.	—	12299 CR66-43-		
	-pale brown (10VR-6/3), 80% low plastic fines, 20% fine grained sand. SILTY CLAY (ML/CL) , light greenish gray (1 Gley, 10Y-7/1), moderate to high plasticity, organic carbon present. Bottom of boring at 13.87 meters (45.5 ft).	/	12299 CR66-44- 12299 CR66-45- 12299		

		EXPLANATIC	DN
		Clay	 Interval Sampled Sample Retained
Date boring drilled: 1/22/99		Silt	
L • F • R Field Staff: Richard Vogl		Sand	uu: unconsolidated undrained triaxial
Approved by:	$\circ \circ \circ$	Gravel	(confining pressure, psi)


LITHOLOGY AND SAMPLE DATA FOR SOIL BORING CR66 (CONTINUED)

	Salton Sea
Levine• Fricke Project No. 6824.00	Page 2 of 2
	050599RAV/lis

		LITHOLOGY		SAN	IPLING DA	ATA
Depth, feet	Graphic Log	Visual Description		ID of Samples Collected	Penetration Rate (blows/ft.)	PID Values (ppm)
		Water.	— -			
5			_5_			
10			_10			
		SILT (ML), dark greenish gray (1 Gley, 10Y-4/1), 5% plastic fines, trace fine		CR72-11-		
		grained sand, light sulfur odor. -greenish gray (1 Gley, 10Y-6/1), 10-15% plastic fines (~1cm of low plastic on		12199 CR72-12-		
		top). -trace mica, ~20% plastic fines.		12199 CR72-13-		
	——————————————————————————————————————	-trace organic carbon, increasing plasticity with depth.		12199		
15		γ-dark yellowish brown (10YR-4/4), moist, 20-30% plasticity, trace barnacles. Bottom of boring at 4.57 meters (15 ft).		CR72-14- 12199		

		EXPLANATIO	N
		Clay	 Interval Sampled Sample Retained
Date boring drilled: 1/21/99		Silt	
L • F • R Field Staff: Richard Vogl		Sand	uu: unconsolidated undrained triaxial
Approved by:	° ° °	Gravel	(confining pressure, psi)

	Salton Sea
Levine• Fricke Project No. 6824.00	Page 1 of 1
	050599RAV/lis

	EXPLANATION
	Clay Clay Sampled
Date boring drilled: 1/21/99	Silt
L • F • R Field Staff: Richard Vogl	Sand uu: unconsolidated undrained triaxial
Approved by:	$\circ \circ \circ \circ$ Gravel (confining pressure, psi)

	Salton Sea
Levine• Fricke Project No. 6824.00	Page 1 of 1
	050599RAV/lis

APPENDIX D

Chain-of-Custody Forms

Project No.	incrot :	1.	Lentue-Fri	020-136	Field Logbook No.: Date: 12/14/								Serial No	Y., Serial No.:			
Project Nam	ne:				Project Location:									1	12 P-0	178	
Sampler (Sig	nature)	:					/	-	1	NAL	YSE	S	1	1 Sample	rs:		
SAMPLES					1.0000		/	1	11/1.	1/1	15	1	100/3	EX KAV, IL	11 - 1 - 1	J.	
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON - TAINERS	SANPLE TYPE	/	1	2	2	2/0	X	1	* 3	R	EMARKS	LDE	
ALC IN CO	1. de	1. 4		1	+ 41.5T		Y.	×.	Y	X	11	*	X				
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11.5		1				1	1			-	*				
- <u>- 12 - 1</u> (9)		1			-	1	1						Y				
		Sec. 1.				1				+		-	1				
18 GHz;		1.11-									1	P.		/		and the	
Section.		11		-													
		11 12										br					
i de cher		1 1 1 2 1							-	1-					-		
14414		1 . 4.						1	1.1.			-					
	>	1. 1							11-	11			11	,			
2.4 6.47		11.1											11				
$\sim 1^{10}r$		1 20						\square		1		i	1				
1.144		4.20					11		11	11	11	-					
1011 204		4731		1		1	V	4	1	1.1		-	V X	*			
1.0.411.	1	$d_{i}^{j} q_{j_{N}}$		V	11	7	×	X	1	X	11	5	X				
111	164	5 441		-	17.45	- 11	TING	1	DECEN	150.00		14			Intro	True	
RELINQUISHED (Signature) RELINQUISHED	BY:	1.0	100	Taria an	DATE	24	TINE 3: TIME		RECEI	vED BY	-	1 to	<i>cia</i>	zelaya	DATE 12/15/18 DATE	TIME 79 TIME	
(Signature) RELINQUISHED (Signature)	BY:				DATE		TIME		(Signature) RECEIVED BY: (Signature)						DATE		
METHOD OF SH	PHENT :				DATE		TIME		LAB C	OHMENT	S :						
Sample Co	llector:		Levine-Fr 1920 MAIN STH IRVINE, CALIFO (7 14) 955-1390	REET, SUITE	750 4-7211		ange .	101				borat	ory: i / I(C	S	1	1.50	

Shipping Copy (White) Lab Copy (Green) File Copy (Yellow) Field Copy (Pink)

FORM NO. 86/COC/ARF

Project No.	: (1.1	. JOURSE	010-120	Field	Logb	ook	No.:	yuai	dice	[Date:	h.	Serial No		0470
Project Nam	ne:				Projec	t Lo	catio	n:	. 1	1					19 P-	-01/9
Sampler (sig	(nature)		1111				1				YSES		/	Sample	rs:	
		SA	MPLES		1.		/	/	11	1	/	1.	20/2	Straw,	ilvi e	1.0
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON - TAINERS	SAMPLE TYPE	1	1	/	1	>/	1	/	*/*	R	EMARKS	5
1		1				Y	×	X	X	×	×	-	X			
						1	1	1			1		X			
										1			X			
1 .		1. 11											X			
1		-f											X			
(1. j.		1.1				1							X			
		4											X			
111.1		1 1					\square						X			
15 i h		1							1		1		X			
1.00.11		41.1			1	V	¥	X	*	¥	1		X			
1		4.45		V	. Y	X	X	X	X	X	X					
	1				1 .	X	×	Ť			×			5260 only		
			-				1.							· · ·	1.	
					-	*										
						_										
RELINQUISHED (Signature)		1.1.1	diam.	1	DATE	1	INE		RECEIV (Signa			11.53	1000	· ~	DATE	TIME
RELINQUISHED (Signature)			/	101 05	DATE	1	TIME		RECEIV (Signa	ture)			6		DATE	TIME
RELINQUISHED (Signature)				DATE	1	TIME		RECEIV (Signa					Sector Consulta	DATE	TIME	
HETHOD OF SH	IPHENT:				DATE		TIME		LAB CO	MMENTS	5:					
Sample Co	llector	:	Levine-Fr 1920 MAIN STR IRVINE, CALIFO (7 14) 955-1390	REET, SUITE DRNIA 9261	750 4-7211	199	Seek.	1	Analy		Lab			aterial a		

Project No.	: 60	324.0	0 0 2	2109-131	Field	Log	gbo	ok M	No.:		Anos		Date	118/48	Serial No		
Project Nam	1e: 🧹	VIEN	A.		Proje	ct l	.oca	ation	1: 1	- 14-1	2505	1	Moro	. 1. 1		1º P-01	181
Sampler (Sig	nature)	· 0.	au llan	/			1	1	-	A	NAL'	VSE	S	/	5. X Sampler	5:	-
		SA	AN (Long	•	LUNCES.		/	1	1	.PA	NET	11/1	5/	7.9/3	RNH, RA	U, HISD.	Jun
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON - TAINERS	SAMPLE TYPE	/	2	Pa	2/	30/0	24	1×	E al		RE	MARKS	1000
1 -1-126 18	12/18/18	130A		6	Si trat	17)	K	1	X	X	X	X		×		1 DVie	1.101
2 124 121895	1	142 A			1			1	1	11	1	1					
3 54.8 1.1918		155A		V													
4 244-1288	5	JUUTA		1													
5 11.2 12/87	the second se	1045A		6													
7 12-126/1	Contraction of the local division of the loc	11200				-											
8-14.2 12182		12300															
1 17.2 12818		12538															
1 25.2.1215%		1480							1				_	V			
· 56.5-1218		224P)	V	Y	V	Y	V	4		X			
4.5 121518		234 8				1	4	X	1	X	X	X	-				
\$ 33 12 15 18		355 F						1		11		1		X			
1 53-121578		3151				-											
5 34-12 548		332 p								11							
3 116.8 121112	management of the second second	4020				1	V	V	V	V	V	V		V			
4 468-126		4276		V	V	Ľ	٤ .	1	X	X	X	X		X			
RELINQUISHED (Signature)	BY:	11.			DATE	1222	TIN	50		RECEIV (Signa	ED BY: ture)	1 1	1.1.1		The	DATE 1.	TIME
RELINQUISHED (Signature)			CED EVICIE	10 6.	DATE		TIN	the second se	10		ED BY:			0	10-10-	DATE	TIME
RELINQUISHED (Signature)				DATE		TIN	E			ED BY:			10.13		DATE	TIME	
METHOD OF SHI	PMENT :	NE IN	124		DATE		TIM	1E		LAB CO	MMENTS	i:	TITL				
	lector: Av v.v	4 200	Levine-Fri 1920 MAIN STR IRVINE, CALIFO (714) 955-1390	EET, SUITE RNIA 92614	750 I-7211	100	1200	14	101				borato Are	ory: אוירחכ ג	N Intered	g 6704	85

Project No.	: (8:	24.00.	υ2	icke-Br	Field	-			(use)	hen	D	ate:	12/18/	98	Serial		P-01	82
Project Nam	Estrat.	ALTON	the second s		Projec	t Lo	catior	ENE	0410	E/IN	PER	AL	LUNT	TES	14 6		1 01	
Sampler (Sig	nature)	: 4.x	MPLES MPLES		Torus -		1	76	A	WER	105	7	13/2	and and	Sam IZNH	RAU	PRD	Tur
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON - TAINERS	SAMPLE TYPE		2/20	à là	Pa	2/30	Ster &	×	103 3	80		REMA	RKS	1916
6-45.3-1218	12/5/2	44KBP		6	Siding	- X	X	X	X	X	N		X					
53-12898	production of the second se	6201		1D	lix	X	X	X	X	X	X							
		- 352/0 M					-	1	-				× _					
						1	4		1									
		1000																
1.1.2.0		1123																
				-														
		128				-												
RELINQUISHED (Signature)		110	:22		DATE	140	TIME 3	5	RECEIV (Signa	ture)				20	inger	1	DATE 2/21/07	TINE
RELINQUISHED (Signature				1 52 10	DATE	/	TIME		RECEIV (Signa	ture)			2		J		DATE '	TIME
RELINQUISHED (Signature	BY:	1	12 110	8	DATE		TIME		RECEIN (Signa	ture)	1363						DATE	TIME
METHOD OF SH	IPHENT:				DATE		TIME		LAB CO	MMENT	5:			1996				
Sample Co Cr.H C. JW	AV RI	: 3D	Levine-F 1920 MAIN ST IRVINE, CALI (714) 955-139	REET, SUIT ORNIA 926	E 750 14-7211	3	sor.	2455	Anal		၊ Lab u(၂		ory:)ALYT	ics				

CHAIN OF CUSTODY / ANALYSES REQUEST FORM

Project No.		11. c.		ske-Ra	Field	Log	book	No.	Anal	Arica		Date:	123	48	Seria	I No.:	-	
Project Nam	ne:	A.1	1.17		Projec	t L	ocatio	n:	IVI 0	Silv						115	P-0:	183
Sampler (Sig	nature)		an Him		land a		/	/	A	NAL	YSES	;	/	1.	San	nplers:		
(hydracala)		SA	MPLES	0			1.	/	/	/	/	/	7.9	133	1	IN FN	11 41	4D
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON - TAINERS	SAMPLE TYPE	/	1 al	2	3/0	30/	Ye	SY.				REMA	RKS	102
0-11 1-12- 112	1.1.1';	12.4.0		6	d ownig.5	X	X	X	1 2		X		X					T D M M M
2-1-1-12	1	12 -		1		-			1	1	1		V					
21-12-115-0		17:14				-	11						~					
Tana		Hing			1								X					
+ Classes		4 37;			1								~					
10 102019		4 9%		V					11				2					
10216		5.4		C			11						X					
22.1 11-		SUN		5	V						1		~	· ·				
1.0-12 m	V	(:20p		10	110							1						
5 33-12:24	12624	1150		ć	- 1-101-5								X					
10. j		105%							11	T			x					
		11 5				1	11						×					
-11-1-	1	11.1 -						1					X					
37-		150		1									X					
- 500 V	V	10 ~		1	1	ł	1	1	1	1	1		X					
RELINQUISHED (Signature)		10-11	. 1.		DATE		TIME		RECEIV (Signa	(ED BY			-			0	DATE	TIME
RELINQUISHED (Signature)	BY:	1	()	140° 01-	DATE		TIME		RECEIV	(ED BY		18	0			0	ATE	TIME
RELINQUISHED (Signature)					DATE		TIME			ED BY	:			. R	<i>‼</i> .	C	ATE	TIME
METHOD OF SHI	IPMENT :	1 parts	X 112 2		DATE	40	TIME		LAB C	DHHENT	S:			1				
Sample Col	llector ⊶0	:	Levine-Fr 1920 MAIN STF IRVINE, CALIFO (714) 955-1390	REET, SUITE	CON 750 4-7211	-	2002	19-01 V 101	Anal			orato AN		TICA	2000	i interest		
	0· -		1920 MAIN STE IRVINE, CALIFO	EET, SUITE ORNIA 9261 FAX (714	750 4-7211		ow)	Fie	Anal	Ai.	410			म(त)	-	- Garrie	FORM NO	. 86/C

Project No.	lactor	d	. 200100-5	foke-Re	Field	Logt	ook	No.:	Anal	dice	Da	te: 12/23/1	Serial	No.:	P-0:	104
Project Nam	ne:	A. Tak	1.t.		Projec	t Lo	catio	n:	VE . 10	N/	nn.	IL	1.1.1	112	F-0.	104
Sampler (Sig			the state	· ·			/	1	A	NAL	SES	/	/ San	nplers:		
Lordenenie			MPLES	G			/	/	/	/	/ /		1-A	41-11	1. 1.1)
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON - TAINERS	SAHPLE TYPE	/	1	2%	3/3	1	K	1 8/39	~	REMA	RKS	1 12-5
1 in the	1. TONE	1:27	-KNN		1.012.0											
1 4: 12742	ingen.	1.22		11	i sugar d	X	X	X	X	×	X	X				
14.	1	114		6	-	1				1		X				_
40 V		140		ii -,												
111.200		3		Į					-			X				
- 1		1. 1							-			X				
		· · · ·		-	-	-						×			-	
		30.										X				
1		312		V	-							X				_
, Y		101		1				11				X				
4 65-224		. 55		4		1						X				
17111		UGL	-	é.								X			Second Second	
15		2.4		1						1		X				
111		5.4		1						11		X				
4 1-1.2-C		1 de la		3	\. \\	1				1						
. Sel 176	Y	11		- Ic.	line	1	1	14	1	1	V					
RELINQUISHED (Signature)		ur il		Le la se	DATE	14	TIME		RECEIV (Signa			100		0	ATE	TIME
RELINQUISHED (Signature	BY:	1	()	1101 01	DATE	-	TIME		RECEIV (Signa			2019		D	ATE	TIME
RELINQUISHED (Signature	BY:	1	1111		DATE		TIME		RECEIV (Signa	ED BY	1	1	11	D	ATE	TIME
METHOD OF SH		11	Yatay		DATE	1.	TIME		LAB CO	HHENT	S:					
Sample Co	llector		Levine-F 1920 MAIN ST IRVINE, CALIF	REET, SUITE	750 4-7211	00	A N	2011 V ES	Anal			atory: ANALYM	AL	1. 99.1		

Project No.	sector.		Legine-Fr	(C) + B + B +	Field	Log	book	No.	: 908	Arres	1 12	Date	• 7	2.	Serial No.		
Project Nan	ne:				Projec	t L	ocatio	on:	0.0	11						1º P-0	185
Sampler (Sig	nature)	:			Incie		/	/			YSE	S	/	Lit	Sampler	s:	1.11
-(Hogeschus)		SA	MPLES				/	/	6	1	6	AL	101	18/	1 · · · + ;	/	
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON - TAINERS	SAMPLE TYPE	1	1./	2	10%	20/	0/3	Ny	N. A.	ALLER IL	RE	MARKS	
11	!				-	N	Ý	1	Y	X	X		X				
	1	1		1		1	-		1		X		×				
7					1		1				Ŷ						
11 1					1				11	1	-		X				
, '		•			;			11			1		1				
· · ·						11		11		11							
		1			1	11		11		11	11	-					
17		-				11		++		11	11	-	-				
-18				2		11			++-	++	11	-					
-47		1.			1	H	++-	-	++	++			++				
					1	11	11	+		++-	11						
51 1204				1		11		-		11	++		11				-
52				-		11	11		11	++	1	-	W				
31		1.			1.	1	11	1	ŤŸ	1	V		X				
4,)	11	1.	X	Y	X	X	X	2		1			
ELINQUISHED (Signature)			1	(LY INCOS	DATE		TIME	,]	RECEI	VED By ature)	1	(24	52	2		DATE	TIME
ELINQUISHED (Signature)	BY:			189 00	DATE		TIHE	1	RECEI	VED BY	1	100		Store-		DATE	TIME
ELINQUISHED (Signature)	8Y:	1	-		DATE		TIME	1	RECEI	VED BY ature)	:				V.Zanishe	DATE	TIME
ETHOD OF SHI	PMENT:				DATE		TIME	PLAN.		ONHENT			4			-	
sample Co	llector		Levine-Fri 1920 MAIN STR IRVINE, CALIFO	EET, SUITE	750	19	iprenk 	540	Anal	ytica	il Lal	oorat	ofy:		281.091-130		

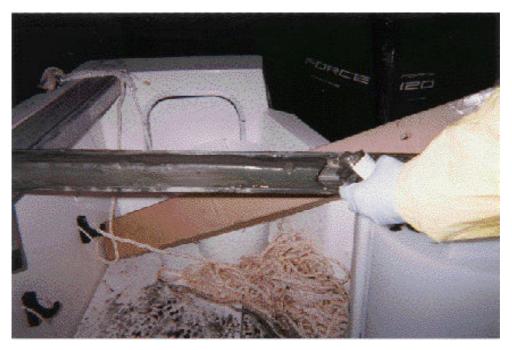
11

1

Project No.	Setor:			cite-Se	Field	Logb	ook	No.:	/Usly	()¢9(100	Date:	eks -	Serial No		
Project Nar	ne:				Projec	t Lo	catio	n:	10.00	/	-			- 1	12 P-0	187
Sampler (Sig	gnature)	:			OWE	1	1	/	A	NALY	SES		1	/ Sample	rs:	Luce
(p) due pares		S/	AMPLES				7	6	1	6	6	132	101/23/		1	
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	ND. OF CON - TAINERS	SAMPLE TYPE	p	A	1	/	e fo	Q.6	50%	* *	R	EMARKS	Link
- K 2				2	1	X	X	X	4	X	V t		X			
Vr.A	1			2		1										
- 44	. 1			1		V	1	V	$ \vee $	Ý	V		√			
10111252																
																~
-18																
1.2											1.57					
				-												
							-		-				-			
									-		-					
				-												
				$ \rangle$								5	3			
RELINQUISHED (Signature)	BY:	1	1111	1 1 1 1 2 2 2 2	DATE	T	THE		RECEIVE	ED BY: ture)	-st	2	a.		DATE	TINE
RELINQUISHED (Signature)	BY:		100.000	1000	DATE	T	ÎMÊ	1	RECEIVE	D BY:		Ser.	9.13		DATE	TIME
RELINQUISHED (Signature)				DATE	T	INE	1	RECEIVI (Signa)	ED BY:				(A) (A B B B B B B B B B B B B B B B B B B	DATE	TIME	
METHOD OF SH	PMENT:				DATE	I	IME		LAB CO	MMENTS	:				12 Bach	-
Sample Co	llector:		Levine-Fri 1920 MAIN STR IRVINE, CALLEC (714) 955-1390	EET, SUITE RNIA 92614	750		ook VV		Analy	tical		orato	ry:	200 an 20		

Project No.	: / : .	100	03	leke-lie	Field I	_ogt	oook	No.	Analy	11211	D	ate: -21 99	Serial N		
Project Nam	ne: <	Arites	SEA		Projec	t Lo	catio	n:	rys co	-0.101		1 - 1 - 1		110 P-	0189
Sampler (Sig					OVIE		1	1	A	NAL	/SES	_//	42 Sampl	ers:	
(5)(())(())		SA	MPLES	0			/	/	10	1	161	1× 4 8/3	FAULT	1 JICA	ort tr
SAMPLE NO.	DATE	TIME	LAB SANPLE NO.	NO. OF CON - TAINERS	SAMPLE TYPE	1	1	N	200	32/4	55	n j ol B	when	REMARKS	
7-154 1411	11.1/11	130		3	i dense	Y	X	X	X	X	X	X			
5-17.1.14	i	1.42		i	1	1		1	1	1					
110 1-1.111		1055								-					
: 11-1.111		Its				1			11						
12		1155							11			V			
13.		1158		V								X			
111- V		1200		12											
5-8-1241		11117)		1	11					X			
111		10.2		3			11				$\left \right $	X			
to V		14.2 7		1	1			++	1	1	$ \psi $				
1 31.2 1217		1555		3		V		V	V			X			
34113	N. m	18:5		3	14-10	X	N	X	Y	X	X	V			
112 F.M.		リシショ		15		1	1	+	Î	Î	1	1			
	1	11.		15			11	-							
44		1155		-2		V	V	1	V	1					
RELINQUISHED (Signature			10	1111111	DATE		TIME	50	RECEIV (Signa		1.	tisia ze	laura	DATE	TIME I I
RELINQUISHED (Signature	8Y:1	·	0	100,000	DATE		TIME		RECEIV (Signa			the second second	1	DATE	TIME
RELINQUISHED (Signature	BY:				DATE		TIME		RECEIV (Signa	ture)			As Service	DATE	TIME
METHOD OF SH	IPMENT:				DATE		TIME		LAB CO	HHENT	S:				ntan
Sample Co	ollector	:	Levine-F 1920 MAIN S IRVINE, CALI	REET, SUITE	750 4-7211	240 00	neers A A	100	Anal			oratory: , NALYTIC	5	е ^{ра}	

CHAIN OF CUSTODY / ANALYSES REQUEST FORM


Project No.	.: y		0.5	5 (6-6)	Field	Logb	ook	No.:	YUP	N/AR	1	Date	1/2	-1-1-7	Serial			
Project Nar			SE A		Projec	t Lo	catio	n:	142.02	121511			-			115	P-01	190
Sampler (Si	gnature)	: (de 11	5	SYLE		1	1	A	NAL	YSES	5	/	1/20	/ Sam	plers:		
151 governme	Pretsen.	Ŝ/	AMPLES	0			/	1.	1	1	1:	A	7.9	13/	EAVI	wet T	WU 51	٢
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON - TAINERS	SAMPLE TYPE	1:	1/4	2/	3/4	30/	X	3/	No.	all		REMA	12.2.2	
191511	1/20	1145		1.5	Stante.	×	Y	1	~	×	Y							
1. ~ 413	11	1:15		12	1.	1	1	X	X	×	X		x				1 7 7 7 7	
1 JEN YO		110		×	115.00	~/	14		Y	4	X							
		1.4		-						2								
		18.2		0	1.000	2		1		-		-						
M ALCONDA		1222				-	-	-	-	-		-						
		-									-							
							-	-	-			-						
		10.000		-					-									
1 13		122																The sector S
		1135				T												
		11.55							1	-			-					
		1.5025																
		1.3								-								
1.51.614	0101	185		-	TO INTE								-					
RELINQUISHED (Signature)		. 1		CON-	DATE	1.1	INE	11-1	RECEIV (Signa	ED BY: ture)	4	tie	id	3cla	ja	(IZ SHA	TIME
RELINQUISHED (Signature)	8Y: `		e e		DATE		IME	8	RECEIV (Signa	ED BY:	. /				1		DATE	TIME
RELINQUISHED (Signature					DATE	1	INE		RECEIV (Signa							C	DATE	TIME
METHOD OF SH	IPMENT:		1.7.3		DATE	1	TIME	1	LAB CO	MMENTS	5:						1	na i
Sample Co	llector		Levine-Fri 1920 MAIN STR IRVINE, CALIFO (714) 955-1390	EET, SUITE RNIA 9261-	750 4-7211	00	998. 	12	Analy			io ,		yncs	2996420	<u>10003</u>		
Shipping 0	(White)	Lat	Copy (Green)		e Copy (w)	-	Coo	y (Pin	k)		115	and the second			FORM NO	/COC/ARF

CHAIN OF CUSTODY / ANALYSES REQUEST FORM

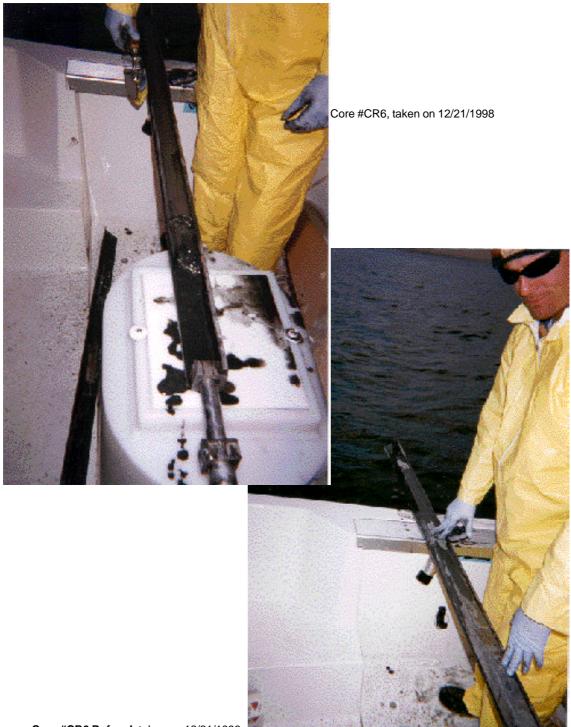
Project No.: Project Name:						Field Logbook No.:							17 J	÷,	Serial No.:			
						Project Location:									Nº P-0193			
Sampler (Sig	nature)	:					/	/	A	NAL	YSES		/	120	Samplers	:		
		SA	MPLES				1.	12	10	1	1	145	7.2	(#L	C.	1		
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON- TAINERS	SAMPLE TYPE	/	1	S/	3/4	Ý	5/	a y	NO NO NO	\$/	REM	ARKS		
AU 71					÷	Y	X	V	X	X	X							
- <u>%</u>		1				1	1						X					
11							-						X					
4.90				1	1		1				1		X					
6 6/14				7	1						X							
-1	14. 1				1		1				1		X					
64 17.9 T				2									1					
1: 25 4				1			V.		11		1							
6. 45	:					K.	V	V	V	4	V	-	V					
: 44	1	-				1	18	1	V	X	X	X	X					
56-17.9-11	Contraction of the second descents of	1				1	1	11	1									
59-45-119	99					X	1	1	V	V	V	-						
							-	-	-	-	-	-						
				7)				
RELINQUISHED BY: ///			DATE	, 1	IME	;	RECEIVED BY:						-	DATE	5. ^{把E}			
RELINQUISHED BY: (Signature)			DATE		INE		RECEIVED BY: (Signature)							DATE	TIME			
RELINQUISHED BY: (Signature)					DATE	DATE TIME			RECEIVED BY: (Signature)							DATE	TIME	
METHOD OF SHI	PMENT :				DATE		TIME		LAB CO	MMENT	5:				1			
Sample Col	llector	:	Levine-Fri 1920 MAIN STR IRVINE, CALIFO (714) 955-1390	EET, SUITE RNIA 9261-	750 4-7211				Anal	ytica	l Lat		ory: PCI	10				
Shipping Copy	(White)	Lab	Copy (Green)	Fil	e Copy (Yello	w)	Fie	ld Cop	y (Pir	nk)			-	1.5 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FORM	NO. 86/COC	

APPENDIX E

Core Photographs

Core #CR6, taken on 12/21/1998

Core #CR6, taken on 12/21/1998

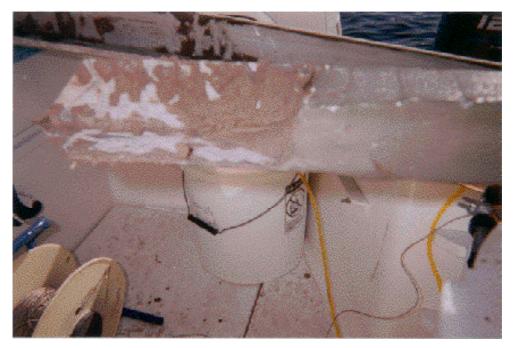


Appendix E Sile Photographs

Calton Gea

Fepert No. 6824

ODEL: SAMET IN


Core #CR6 Refusal, taken on 12/21/1998

Appendix E Sile Photographs

Calton Gea

FepertMe.6824

Core #CR13, taken on 12/22/1998

Core #CR13, taken on 12/22/1998

Appendix E Sile Photographs

: Calton Gea

Fepert No. 6824

COMPANIES SATURATION

Core #CR19, taken on 12/22/1998

Core #CR19, taken on 12/22/1998

Appendix E Sile Photographs

: Calton Gea

e spect net serve

Core #CR19, taken on 12/22/1998

Core #CR20, taken on 12/22/1998

Appendix E Sile Photographs

Calton Gea

a observe a see

SOME STREET IN

Core #CR20, taken on 12/22/1998

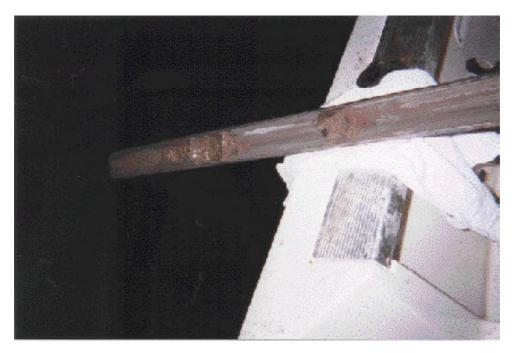
Core #CR26, taken on 12/22/1998

Appendix E Sile Photographs

Calton Gea

Frepert No. 6824

Core #CR26, taken on 12/22/1998



Core #CR39, taken on 12/22/1998

Appendix E Sile Photographs

Calton Gea

Core #CR39, taken on 12/22/1998

Core #CR49, taken on 1/20/1999

Appendix E Sile Photographs

Calton Gea

Fepert No. 6824

CONTRACTOR (1993)

Core #CR50, taken on 1/19/1999

Core #CR50, taken on 1/19/1999

Appendix E Sile Photographs

Galton Gea

a elizione area

CONTRACTOR STREET

Core #CR51, taken on 1/20/1998

Core #CR51, taken on 1/20/1999

Appendix E Sile Photographs

Calton Gea

a obra na ana

CONTRACTOR STREET

Core #CR51, taken on 1/20/1999

Core #CR51, taken on 1/20/1999

Appendix E Sile Photographs

Calton Gea

FepertMe.6824 .

Core #CR52, taken on 1/20/1999

Core #CR52, taken on 1/20/1999

Appendix E Sile Photographs

Galton Gea

Core #CR52, taken on 1/20/1999

Core #CR60, taken on 1/20/1999

Appendix E Sile Photographs

: Calton Gea

FepertMe.6824 .

Core #CR60, taken on 1/20/1999

Core #CR60, taken on 1/20/1999

Appendix E Sile Photographs

Calton Gea

FepertMe.6824 .

CONTRACTOR STREET

Core #CR60, taken on 1/20/1999

Core #CR63, taken on 1/22/1999

Appendix E Sile Photographs

Calton Gea

- spectre, ease

Core #CR66, taken on 1/22/1999

Core #CR66, taken on 1/22/1999


Appendix E Sile Photographs

Calton Gea

n eller energiesen.

Core #CR72, taken on 1/21/1999

Core #CR72, taken on 1/21/1999

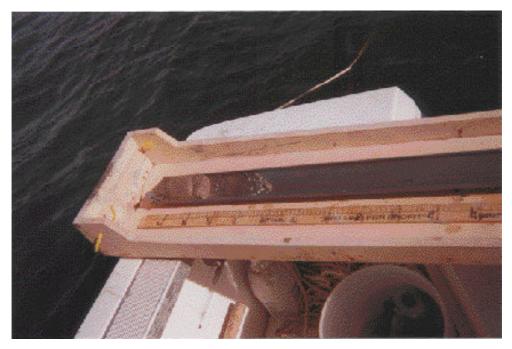
Appendix E Sile Photographs

Calton Gea

e spect res, seve

Core #CR72, taken on 1/21/1999

Core #CR72, taken on 1/21/1999



Appendix E Sile Photographs

Calton Gea

e state ne eere

ODED SATIFIED IN

Core #CR73 (first attempt), taken on 1/21/1999

Core #CR73, taken on 1/21/1999

Appendix E Sile Photographs

Calton Gea

Lohno me anea

ODED SATIFIED IN

Core #CR73, taken on 1/21/1999

Core #CR73, taken on 1/21/1999

Appendix E Sile Photographs

Calton Gea

e schede une rearen

SOME STREET IN