A Few Sources for Data Examples Used
1. Statistical Methods in Water Resources by D.R. Helsel and R.M. Hirsch (H&H)
2. Statistical Methods and Pitfalls in Environmental Data Analysis, Yue Rong, Environmental Forensics, Vol 1, 2000, pgs 213-220. (Rong)
3. Data provided by Steve Saiz (Saiz)
4. Introduction to Probability and Statistics, Mendenhall and Beaver (M&B)
5. Occasionally, my own data because I understand it!

The Big Picture
Why use statistical methods?
• Describe features of a data set
• Make inferences about a population using sample data
 – Estimate parameters (such as means) with a certain level of confidence
 – Test hypotheses about specific parameters or relationships
• Predict future values based on past data

Populations and Samples
Population data:
• Measurements available on all “units” of interest.
 – Example: Annual peak discharge for Saddle River, NJ from 1925 to 1989. (H&H)
 – Can be considered as population data if only those years are of interest.
 – Can be considered as sample data and used for inference about all possible years.

Sample Data
Sample data used for two purposes:
• Describing that sample only
• Making inferences to a population
• Ideal is a “random sample” but almost impossible to get. Instead:

Fundamental Rule for Using Data for Inference:
Available data can be used to make inferences about a much larger group if the data can be considered to be representative with regard to the question(s) of interest.

Examples of sample data
• Nickel effluent data, City of San Francisco (data from Saiz)
 – Grab samples from 1999 to 2002
 – Representative of a larger population of nickel concentration data; what population?
• Groundwater monitoring data for benzene concentrations for 16 quarters, 1996 to 1999 (data from Rong)
 – Representative of a larger population?
Independent vs Paired Samples
For comparing two situations, data can be collected as independent samples or as "matched pairs." Examples:
- Independent samples:
 - Compare wells upgradient and downgradient from a toxic waste site for a certain chemical.
- Matched pairs (H&H):
 - Compare atrazine concentrations before (June) and after (Sept) application season in 24 shallow groundwater sites (same sites both times).

Class Input and Discussion
Share examples of data you have collected and/or dealt with in your job:
- How were the data collected?
- What was the “question of interest?”
- Paired data or independent samples?
- Population or sample?
- If sample, what larger population do they represent?

Types of Data
There are various ways to classify data, but probably not too useful for your data:
- Nominal:
 - "Name" only, also called categorical data
 - Example: Classify wells by land use in area (residential, agricultural, industrial, etc)
- Ordinal:
 - Ordered, but numbers may not have much meaning.
 - Example (H&H): 0 = concentrations below reporting limit, 1 = above rl but below a health standard, 2 = above health standard.

Types of Data, Continued
- Interval:
 - Numbers have meaning, but ratios do not.
 - There is no absolute 0 ("none").
 - Example: Temperature
- Ratio:
 - There is an absolute 0
 - Ratios have meaning.
 - Example: Nickel concentration (it makes sense to talk about a sample having twice the concentration of another sample).

Categorical vs Quantitative Data
- Categorical data
 - Nominal, and sometimes ordinal
 - For a single variable, summaries include frequencies and proportions only
- Quantitative data
 - Interval, ratio, sometimes ordinal
 - Summarize with numerical summaries
- Multiple variables (same or different types). For instance, categorize wells by land use, and compare a quantitative measure across uses.

Types of Statistical Procedures
Graphical summaries
- Provide visual information about the data set
- Provide guidance on what statistical methods are appropriate
Numerical summaries
- Provide information about specific features of the data set
Inference (parametric, nonparametric)
- Infer things about a population, often to answer a yes/no question
Summary Features of Quantitative Data

1. Location (Center, Average)
2. Spread (Variability)
3. Shape (Normal, skewed, etc)
4. Outliers (Unusual values)

We use pictures and numerical information to examine these.

Questions about quantitative variables:

One Quantitative Variable

Question 1: What interesting summary measures, like the average or the range of values, can help us understand the data?

Example: What is the average nickel concentration in the SF effluent data, and how much variability is there?

Question 2: Are there individual data values that provide interesting information because they are unique or stand out in some way (outliers)?

Example: (M&B) Data on mercury concentration in livers of 28 dolphins were all over 100 micrograms/gram except 4 of them, which were all under 10. Explanation: 4 dolphins under 3 years old, others all more than 8 years old.

One Categorical, One Quantitative Variable

(Comparing across categories)

Question 1: Are the quantitative measurements similar across categories of the categorical variable?

Example: (H&H) Do wells upgradient and downgradient of a hazardous waste site have the same average concentration of a toxic compound?

Question 2: When the categories have a natural ordering (an ordinal variable), does the quantitative variable increase or decrease, on average, in that same order?

Example: Do low, medium and high flow areas of a stream have an increasing (or decreasing) average amount of a certain type of vegetation?

Questions about histograms:

- Intervals are equally spaced. Example: Each interval has width 0.25.
- One goal is to assess shape. Between 6 and 15 intervals is a good number (may need to use more if there are gaps and/or outliers). 11 in nickel example.
- Some authors suggest using smallest \(k \) with \(2^k \geq n \), but not good for small \(n \). Ex: \(n = 39 \), so would use only \(k = 6 \).
- Decide where to put values that are on the boundary. For instance, would 2 go in the interval from 0 to 2, or from 2 to 4? Need to be consistent. (Not relevant in this example.)
- Can use frequencies (counts) or relative frequencies (proportions) as vertical axis. Example uses frequencies.
Creating a Dotplot

These can be useful for comparing groups

- Ideally, number line represents all possible values and there is one dot per observation. Not always possible. If dots represent multiple observations, footnote should explain that.
- As with histogram, divide horizontal axis into equal intervals, then put dots on it for each individual in each interval.
- Example (next slide): Compare ln(specific capacity) for wells in Appalachians of Pennsylvania, 4 rock types. \([ln(x) = \text{natural log of } x]\)

Creating a Stemplot (stem and leaf plot) Ex: SF nickel effluent data

- Each stem value represents a range of 0.5
- Example: 2.8, 3.0, 3.3, 2.5, 2.3. The numbers after the decimal point are the “leaves.”

Further Details for Creating Stemplots

- Reusing digits two or five times. Goal: assess shape.
- Example: Each of the 6 stem values represents a possible range of 0.5 First one represents 1.5 to 1.9, then 2.0 to 2.4, then 2.5 to 2.9, and so on, up to 4.0 to 4.4.
Nickel Example: Shape

This shape is called “skewed to the right.”

Describing Shape

- **Symmetric, bell-shaped**
- **Symmetric, not bell-shaped**
- **Bimodal:** Two prominent “peaks” (modes)
- **Skewed Right:** On number line, values clumped at left end and extend to the right (Very common in your data sets.)
- **Skewed Left:** On number line, values clumped at right end and extend to the left (Ex: Age at death from heart attack.)

Bell-shaped example: Heights of 94 females

Heights of 94 female college students. Bell-shaped, centered around 64 inches with no outliers.

Bimodal Example: Old Faithful Geyser, time between eruptions, histogram from R Commander

Times between eruptions of the Old Faithful geyser, shape is bimodal. Two clusters, one around 50 min., other around 80 min.

Boxplots, based on “Five Number Summary”:

The five-number summary display

<table>
<thead>
<tr>
<th>Lower Quartile</th>
<th>Median</th>
<th>Upper Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest</td>
<td>Highest</td>
<td>Highest</td>
</tr>
</tbody>
</table>

- Lowest = Minimum
- Highest = Maximum
- Median = number such that half of the values are at or above it and half are at or below it (middle value or average of two middle numbers in ordered list).
- Quartiles = medians of the two halves.

Boxplots

Visual picture of the five-number summary

Example: How much do statistics students sleep?

190 statistics students asked how many hours they slept the night before (a Tuesday night).

Five-number summary for number of hours of sleep (details of how to find these a little later)

Two students reported 16 hours; the max for the remaining 188 students was 12 hours.
Creating a Boxplot

1. Draw horizontal (or vertical) line, label it with values from lowest to highest in data.
2. Draw rectangle (box) with ends at quartiles.
3. Draw line in box at value of median.
4. Compute IQR = distance between quartiles.
5. Compute 1.5(IQR); outlier is any value more than this distance from closest quartile. Draw line (whisker) from each end of box extending to farthest data value that is not an outlier. (If no outlier, then to min and max.)
6. Draw asterisks to indicate the outliers.

Creating a Boxplot for Sleep Hours

1. Draw horizontal line and label it from 3 to 16.
2. Draw rectangle (box) with ends at 6 and 8 (quartiles).
3. Draw line in box at median of 7.
4. Compute IQR (interquartile range) = 8 – 6 = 2.
5. Compute 1.5(IQR) = 1.5(2) = 3; outlier is any value below 6 – 3 = 3, or above 8 + 3 = 11.
6. Draw line from each end of box extending down to 3 and up to 11.
7. Draw asterisks at outliers of 12 and 16 hours.

Interpreting Boxplots

- Divides the data into fourths.
- Easily identify outliers.
- Useful for comparing two or more groups.

Outliers and How to Handle Them

Outlier: a data point that is not consistent with the bulk of the data.

- Look for them via graphs.
- Can have big influence on conclusions.
- Can cause complications in some statistical analyses.
- Cannot discard without justification.
- May indicate that the underlying population is skewed, rather than one unique outlier (especially with small samples).

Possible reasons for outliers and what to do about them:

1. **Outlier**: legitimate data value and represents natural variability for the group and variable(s) measured. Values may not be discarded. They provide important information about location and spread.
2. Mistake made while taking measurement or entering it into computer. If verified, should be discarded or corrected.
3. Individual observation(s) in question belong(s) to a different group than bulk of individuals measured. Values may be discarded if summary is desired and reported for the majority group only.
Example: Sleep hours
Two students were outliers in amount of sleep, but the values were not mistakes.

Reason 1: Natural variability, it is not okay to remove these values.

Example: Students gave mother's height
Height of 80 inches = 6 ft 8 inches, almost surely an error!
Reason #2, investigate and try to find error; remove value.

Example: Weights (in pounds) of 18 men on crew teams:

Cambridge: 188.5, 183.0, 194.5, 185.0, 214.0, 203.5, 186.0, 178.5, 109.0
Oxford: 186.0, 184.5, 204.0, 184.5, 195.5, 202.5, 174.0, 183.0, 109.5
Note: last weight in each list is unusually small. ???

Example: Weights (in pounds) of 18 men on crew teams:

Cambridge: 188.5, 183.0, 194.5, 185.0, 214.0, 203.5, 186.0, 178.5, 109.0
Oxford: 186.0, 184.5, 204.0, 184.5, 195.5, 202.5, 174.0, 183.0, 109.5
Note: last weight in each list is unusually small. ???
They are the coxswains for their teams, while others are rowers.
Reason 3: different group, okay to remove if only interested in rowers.

Numerical Summaries of Quantitative Data
Notation for Raw Data:
n = number of individual observations in a data set
x₁, x₂, ..., xₙ represent individual raw data values

Example: Nickel effluent data:
So n = 39, and
x₁ = 2.8, x₂ = 3.0, x₃ = 3.3, x₄ = 2.5 etc....

Describing the “Location” of a Data Set
• Mean: the numerical average
• Median: the middle value (if n odd) or the average of the middle two values (n even)

Symmetric: mean = median
Skewed Left: usually mean < median
Skewed Right: usually mean > median
Determining the Mean and Median

The **Mean**

\[\bar{x} = \frac{\sum x_i}{n} \]

where \(\sum x_i \) means “add together all the values”

The **Median**

If \(n \) is odd: \(\text{Median} = \) middle of ordered values.
Count \((n + 1)/2\) down from top of ordered list.

If \(n \) is even: \(\text{Median} = \) average of middle two ordered values. Average the values that are \((n/2)\) and \((n/2) + 1\) down from top of ordered list.

The Mean, Median, and Mode

Ordered Listing of 16 Benzene values (Rong)

3.8, 35, 38, 55, 110, 120, 130, 180, 200, 230, 320, 340, 480, 810, 980, 1200

- **Mean** (numerical average): 327.0
- **Median**: 190 (halfway between 180 and 200)
- **Mode** (most common value): no single mode

The Influence of Outliers on the Mean and Median

- **Larger influence on mean** than median.
- High outliers and data skewed to the **right** will increase the mean.
- Low outliers and data skewed to the **left** will decrease the mean.

Ex: Suppose ages at death of your eight great-grandparents are: 28, 40, 75, 78, 80, 80, 81, 82.

Mean age is \(\frac{544}{8} = 68 \) years old

Median age is \(\frac{78 + 80}{2} = 79 \) years old
Caution: Confusing Normal with Average

Common mistake to confuse “average” with “normal”. Is woman 5 ft. 10 in. tall 5 inches taller than normal??

Example: How much hotter than normal is normal?

“October came in like a dragon Monday, hitting 101 degrees in Sacramento by late afternoon. That temperature tied the record high for Oct. 1 set in 1980 – and was 17 degrees higher than normal for the date.”

Article had thermometer showing “normal high” for the day was 84 degrees. High temperature for Oct. 1st is quite variable, from 70s to 90s. While 101 was a record high, it was not “17 degrees higher than normal” if “normal” includes the range of possibilities likely to occur on that date.

Describing Spread (Variability):
Range, Interquartile Range and Standard deviation

- **Range** = high value – low value
- **Interquartile Range (IQR)** = upper quartile – lower quartile = \(Q_3 - Q_1\) (to be defined)
- **Standard Deviation** (most useful for bell-shaped data)

Benzene Example, n = 16

3.8, 35, 38, 55, [Q_1 = (55+110)/2 = 82.5	190
110, 120, 130, 180, [Median = 190]	82.5
200, 230, 320, 340, [Q_3 = (340+480)/2 = 410]	410
480, 810, 980, 1200	3.8

- **Median** = 190 has half of the values above, half below
- Two **extremes** describe spread over 100% of data
 - **Range** = 1200 – 3.8 = 1196.2
- Two **quartiles** describe spread over middle 50% of data
 - **Interquartile Range** = 410 – 82.5 = 327.5

Finding Quartiles “by hand”

Split the ordered values at median:
- half at or below the median (“at” if ties)
- half at or above the median

- **Lower quartile** = \(Q_1\) = median of data values that are (at or) below the median
- **Upper quartile** = \(Q_3\) = median of data values that are (at or) above the median

Hands-On Activity #1

Data and details on activity sheet

- For the San Francisco effluent nickel data:
 - Find a 5-number summary
 - Draw a boxplot
- What can be concluded about shape from the boxplot?

Results given in class

- Five number summary:
- Boxplot:
- Shape:
Percentiles

The k^{th} percentile is a number that has $k\%$ of the data values at or below it and $(100 - k)\%$ of the data values at or above it.

- Lower quartile: 25th percentile
- Median: 50th percentile
- Upper quartile: 75th percentile

Describing Spread (Variability):

- **Range** = high value – low value
- **Interquartile Range (IQR)** = upper quartile – lower quartile = $Q_3 - Q_1$
- **Standard Deviation** – most useful for bell-shaped data

Describing Spread with Standard Deviation

Standard deviation measures variability by summarizing how far individual data values are from the mean.

Think of the standard deviation as roughly the average distance values fall from the mean.

Calculating the Standard Deviation

Formula for the (sample) standard deviation:

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$$

The value of s^2 is called the (sample) variance. An equivalent formula, easier to compute, is:

$$s = \sqrt{\frac{\sum x_i^2 - n\overline{x}^2}{n-1}}$$

Example:

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>100, 100, 100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>90, 90, 110, 110</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

Both sets have same mean of 100.

Set 1: all values are equal to the mean so there is no variability at all.

Set 2: one value equals the mean and other four values are 10 points away from the mean, so the average distance away from the mean is about 10.

Calculating the Standard Deviation

Example: 90, 90, 100, 110, 110

Step 1: Calculate \overline{x}, the sample mean. Ex: $\overline{x} = 100$

Step 2: For each observation, calculate the difference between the data value and the mean.

Ex: -10, -10, 0, 10, 10

Step 3: Square each difference in step 2.

Ex: 100, 100, 0, 100, 100

Step 4: Sum the squared differences in step 3, and then divide this sum by $n - 1$. Result = variance s^2

Ex: $400/(5 - 1) = 400/4 = 100$

Step 5: Take the square root of the value in step 4.

Ex: $s = \text{standard deviation} = \sqrt{100} = 10$
Data sets usually represent a sample from a larger population. If the data set includes measurements for an entire population, the notations for the mean and standard deviation are different, and the formula for the standard deviation is also slightly different.

A population mean is represented by the Greek μ (“mu”), and the population standard deviation is represented by the Greek “sigma” (lower case).

\[
\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}}
\]

Bell-shaped distributions

- Measurements that have a bell-shape are so common in nature that they are said to have a normal distribution.
- Knowing the mean and standard deviation completely determines where all of the values fall for a normal distribution, assuming an infinite population!
- In practice we don’t have an infinite population (or sample) but if we have a large sample, we can get good approximations of where values fall.

Examples of bell-shaped data

- Women’s heights
 - mean = 64.5 inches, s = 2.5 inches
- Men’s heights
 - mean = 70 inches, s = 3 inches
- IQ scores
 - mean = 100, s = 15 (or for some tests, 16)

Women’s heights, n = 94 students

Note approximate bell-shape of histogram “Normal curve” with mean = 64.5, s = 2.5 superimposed over histogram

Interpreting the Standard Deviation for Bell-Shaped Curves:

The Empirical Rule

For any bell-shaped curve, approximately

- 68% of the values fall within 1 standard deviation of the mean in either direction
- 95% of the values fall within 2 standard deviations of the mean in either direction
- 99.7% (almost all) of the values fall within 3 standard deviations of the mean in either direction

Ex: Population of women’s heights

- 68% of heights are between 62 and 67 inches
- 95% of heights are between 59.5 and 69.5 inches
- 99.7% of heights are between 57 and 72 inches
Women’s Heights: How well does the Empirical Rule work?

Mean height for the 94 students was 64.5, and the standard deviation was 2.5 inches. Let’s compare actual with ranges from Empirical Rule:

<table>
<thead>
<tr>
<th>Range of Values:</th>
<th>Empirical Rule</th>
<th>Actual number</th>
<th>Actual percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± 1 s.d.</td>
<td>68% in 62 to 67</td>
<td>70</td>
<td>70/94 = 74.5%</td>
</tr>
<tr>
<td>Mean ± 2 s.d.</td>
<td>95% in 59.5 to 69.5</td>
<td>89</td>
<td>89/94 = 94.7%</td>
</tr>
<tr>
<td>Mean ± 3 s.d.</td>
<td>99.7% in 57 to 72</td>
<td>94</td>
<td>94/94 = 100%</td>
</tr>
</tbody>
</table>

The Empirical Rule, the Standard Deviation, and the Range

- Empirical Rule tells us that the range from the minimum to the maximum data values equals about 4 to 6 standard deviations for data sets with an approximate bell shape.
- For a large data set, you can get a rough idea of the value of the standard deviation by dividing the range by 6 (or 4 or 5 for a smaller dataset):

 \[s \approx \frac{\text{Range}}{6} \]

Standardized z-Scores

Standardized score or z-score:

\[z = \frac{\text{Observed value} - \text{Mean}}{\text{Standard deviation}} \]

Example: UCI Verbal SAT scores had mean = 569 and \(s = 75 \). Suppose someone had SAT = 674:

\[z = \frac{674 - 569}{75} = 1.40 \]

Verbal SAT of 674 for UCI student is 1.40 standard deviations above the mean for UCI students.

The Empirical Rule Restated for Standardized Scores (z-scores):

For bell-shaped data,

- About 68% of the values have \(z \)-scores between −1 and +1.
- About 95% of the values have \(z \)-scores between −2 and +2.
- About 99.7% of the values have \(z \)-scores between −3 and +3.