Major Concepts

- Sources and types of pollution that threaten water supplies
 - Point sources & nonpoint sources
- Clean Water Act
- Safe Drinking Water Act
- Wastewater treatment
 - Septic systems & wastewater treatment plants
 - Biological oxygen demand & sag curve

Water Quality

- Characteristics of water
 - Taste, color, temperature, purity, toxicity
- Water quality requirements vary with intended use
 - High quality needed for drinking water and certain industrial uses
 - Lower quality may be acceptable for irrigation
 - Wastewater reuse

Types of Pollution

- Inorganic chemicals
 - Of particular concern are metals
 - Lead, cadmium, mercury, arsenic, copper
 - Can cause serious acute and chronic health problems
- Sources include
 - Mining and manufacturing
 - Agriculture
 - Households
 - Arial deposition from fossil fuel burning

- Organic chemicals
 - Volatile organic compounds (VOCs)
 - Solvents, petroleum fuels, fuel additives
 - Synthetic organic compounds (SOCs)
 - Pesticides, dioxins, PCBs
- Sources include
 - Industry
 - Agriculture
 - Households
Types of Pollution

- Biological – waterborne disease
 - 1 million illnesses each year in U.S.
 - Bacteria
 - Typhoid fever, cholera, bacillary dysentery
 - Viruses
 - Viral hepatitis, acute gastroenteritis
 - Parasites
 - Amebic dysentery, giardiasis

- Radioactive
 - Most common in water are
 - Radium, uranium, radon and man-made radionuclides
 - Naturally occurring radionuclides appear mainly in groundwater
 - Surface waters more likely to contain artificial radionuclides
 - Atmospheric fallout from nuclear testing

Sources of Pollution in U.S. Rivers

- Point sources
 - Industrial discharges and municipal wastewater treatment plants
 - Regulated under federal Clean Water Act
 - National Pollutant Discharge Elimination System (NPDES) permits
 - Underground injection wells

- Nonpoint sources
 - Agricultural runoff
 - Pesticides
 - Nutrients (fertilizers) – cause eutrophication
 - Sediment
 - Urban storm water
 - Pesticides
 - Nutrients (fertilizers)
 - Sediment
 - Petroleum
 - Hydro / habitat modification
 - Combined storm sewers & runoff
 - Resource extraction
 - 9%
 - Land disposal
 - 3%
 - Silviculture
 - 6%
 - Construction
 - 4%
 - Agriculture
 - 39%
 - Municipal
 - 11%
 - Unknown
 - 4%
 - Industrial
 - 6%
 - Combined storm sewers & runoff
 - 6%
Drinking Water Treatment

- Municipal drinking water treatment in the United States
 - 170,000 public water supply systems
 - 115,000 small scale suppliers
 - 55,000 community supply systems
 - Supply water to 250 million Americans

Drinking Water Treatment

- Main treatment steps
 - Coagulation - flocculation
 - Sedimentation
 - Filtration
 - Disinfection

Disinfection

- Most critical step in water treatment
- Goal: destroy all organisms in water supply
- Chlorine
 - Major disinfectant used in U.S. today
 - Form disinfection byproducts
- Alternatives
 - UV radiation
 - Ozone
 - Chloramines

Drinking Water Regulation

- Safe Water Drinking Act
 - U.S. Environmental Protection Agency sets Maximum Contaminant Levels (MCLs)
 - Protect the public health and welfare from specific water pollutants
 - Delegated enforcement to individual states
 - Oversight provided by the USEPA

Wastewater Treatment and Disposal

- Sewage
 - In many developing countries
 - Human waste pollutes land and water
 - Organic material can serve as food for disease-producing organisms living in the water

Biological Oxygen Demand (BOD)

- As microorganisms decompose organic material in water, they use dissolved oxygen
- If water overloaded with biodegradable organic pollutants, decomposition can deplete dissolved oxygen supply
- Kills fish and other aquatic organisms that depend on dissolved oxygen for respiration
- Reaeration of water caused by
 - Turbulent flow
 - Aquatic plant photosynthesis
Biological Oxygen Demand (BOD)
- Sag curve
 - Deoxygenation and reaeration of water presented graphically
 - Shows level of dissolved oxygen over time
 - Shows “critical point”
 - Minimum dissolved oxygen
 - Maximum aquatic life impact

BOD and Sag Curve

Types of Sewage Disposal
- Pit privies
- Individual septic systems
- Municipal sewage treatment plant

Pit Privy
- Separation from water
- Drainage
- Ventilation

Individual Septic System
- Septic tank
- Leach field

Jon B. Marshack, D.Env.
State Water Resources Control Board
Prevent Septic System Failure

- Proper installation
 - Separation from water sources
 - Soil properties - drainage
- Keep microorganisms healthy
 - Minimize toxins
- Don’t overload with solids
 - Grease, fats, food wastes
 - Remove solids periodically

Municipal Sewage Treatment

- Speeds up natural purification processes
 - Settling
 - Biooxidation
 - Filtration
- Stages of treatment
 - Primary
 - Secondary
 - Tertiary
 - Sludge disposal

Primary and Secondary Wastewater Treatment

- Primary treatment
 - Mechanical processes for removal of solids
 - Bar screen
 - Grinder or comminuter
 - Clarifier

Bar Screen
Municipal Sewage Treatment

- Secondary treatment
 - Trickling filters and activated sludge treatment
 - Bacteria break down and digest organic material in the sewage
 - Sludge from primary and secondary treatment
 - Dried
 - Disposed of in landfill or composted

Activated Sludge Tank (drained)
Municipal Sewage Treatment

- **Tertiary treatment**
 - Advanced wastewater treatment methods, including
 - Air stripping of ammonia
 - Coagulation
 - Rapid granular filtration
 - Reverse osmosis – membrane filtration
 - Further reduce BOD, salts, pathogens and other pollutants

Municipal Sewage Treatment

- **Sludge treatment and disposal**
 - Sludge or “biosolids”
 - Solids and associated liquids separated from wastewater during sewage treatment
 - Sludge disinfection
 - Destroys pathogens in the sludge to prevent the spread of disease
 - Digested sludge may be air dried
 - Disposal in landfill or reused as agricultural fertilizer

Future Outlook

On a planet covered with water, yet plagued by waterborne disease, drought, and water mismanagement, we must promote conservation, efficiency, and frugality.

- Every drop counts!