ILRP Ag Order 4.0

An Agricultural Perspective
Central Coast Regional Water Quality Control Board
September 20, 2018
Ag Panel Presentations

- Nutrient, Irrigation & Pesticide Management - 90 minutes
- Farm Management Considerations - 40 minutes
 - Including Food Safety & Harvest Decisions
- Generating Meaningful Data & Balancing the Level of Detail with Reporting Burden - 35 minutes
- Looking Forward: Getting to the Core Regulatory Principles - 35 minutes

It’s essential that we keep on schedule to ensure all information is presented today.
Achieving Core Regulatory Goals in 4.0

Importance of Central Coast Agriculture:

- Value of working landscapes
- Agriculture is #1 economic sector in almost all Central Coast Counties
- Central Coast Agriculture enhances dinner tables of our Nation and the World
- Balance of Water Quality Objectives and the Three Pillars of Sustainability
- Agriculture is focused on Water Quality Improvements that have been achieved over the last 14 years in some watersheds
Irrigation Practices

Jocelyn Bridson, Rio Farms
Mark Mason, Huntington Farms
Irrigation Practices Objectives

- Agriculture acknowledges that we need to work towards ensuring that irrigation return flow does not cause surface water quality objectives to be exceeded in our regions surface waters.
 - How growers reach them is unique to each farm.
- Farmers must be aware of the crops’ root zone so they can be more efficient in their irrigation.
- Irrigation trends show more use of BMPs that lead to less tailwater runoff and more precise timing and application.
- A crop in one area may need much more water than the same crop in another area, due to salt in the water and/or evapotranspiration.
- As Outliers are being determined, regional characteristics must be taken into consideration.
Irrigation Method Trend

Monterey County Water Resources Agency, 2015

Figure 14. Changes in Irrigation Methods Used Over Time (1993 – 2016) in Zones 2, 2A, and 2B.

BMPs Implemented in Monterey County

There are more than 200,000 acres in the Salinas Valley

- On more than 150,000 acres:
 - Time clock/pressure gauges
 - Water flowmeters

- On more than 100,000 acres:
 - Leakage reduction
 - Off-wind irrigation

- On more than 50,000 acres:
 - Land leveling/grading
 - Micro-irrigation systems
 - Reduced sprinkler use

Why Do Growers Irrigate?

Vegetable crops require irrigation for:

- Field preparation
- Germination
- Salt leaching fraction
- Crop growth
- Frost control
- Harvest

N in Well Water & Soil is Important to Determine N Available for Crop Uptake

Not all historic N (soil and well water) is available to the plant and results in double counting previously applied Nitrogen used for:

- Field preparation
- Germination
- Salt leaching fraction
- N in soil
High N groundwater pumped that percolates back
➢ Does not result in additional loading to the aquifer
A crop requiring

- 1.25-1.5 acre feet of water in Castroville may require 3.2 acre feet in King City

Comparisons of ranch water use should be based on geographically similar locations.

- Growers in Santa Maria could be considered as a sub-region
- Pajaro Valley could be another sub-region
Leaching Requirement Example

<table>
<thead>
<tr>
<th>WATER E.C.w (ds/m)</th>
<th>Leaching Requirement</th>
<th>Applied Water (as % of normal Crop Etc)</th>
<th>Applied Water Lettuce Castroville (in)</th>
<th>Applied Water Lettuce King City (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0%</td>
<td>100%</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>0.50</td>
<td>8%</td>
<td>109%</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>1.00</td>
<td>18%</td>
<td>122%</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>2.00</td>
<td>44%</td>
<td>180%</td>
<td>22</td>
<td>32</td>
</tr>
</tbody>
</table>

- **Applied Water Lettuce Castroville (in)**
- **Applied Water Lettuce King City (in)**
Location Matters When Considering Outliers
Considerations When Establishing Potential Ag Sub-Areas

- County boundaries
- Service area boundaries (i.e. water districts)
- Evapotranspiration data
- Climatic conditions
- Soil types
- Groundwater sub-basins
- Cropping systems
SWRCB Requires Reporting by Township

- “These data are required to be associated with the township (36 square mile area) where the farm is located. The spatial resolution by township provides a common unit that should facilitate analysis of data and comparisons between different areas.”

 Source: SWRCB ESJ Attachment A, page 24

- “With regard to the aggregated dataset, the regional water board is not limited to aggregating the data at the township level, but may choose a smaller or larger area unit based on region-specific and program-specific considerations.”

 Source: SWRCB ESJ page 51
Irrigation Practices Objectives

- Agriculture acknowledges that we need to work towards ensuring that irrigation return flow does not cause surface water quality objectives to be exceeded in our regions surface waters.
 - How growers reach them is unique to each farm.
- Farmers must be aware of the crops’ root zone so they can be more efficient in their irrigation.
- Irrigation trends show more use of BMPs that lead to less tailwater runoff and more precise timing and application.
- A crop in one area may need much more water than the same crop in another area, due to salt in the water and/or evapotranspiration.
- As Outliers are being determined, regional characteristics must be taken into consideration.
Nutrient Management

Tim Borel, Blanco Farms
Joel Wiley, Wilbur-Ellis
Jackie Vasquez, Sundance Berry Farms
Nutrient Management Objectives

- Reasonable methods for farmers to account for new Nitrogen
- Education must center around the 4 “R”s
- Applied and Removed data shows both have improved considerably over time on the Central Coast in a positive trend.
- There are three points of measurement to focus on.
- The diversification of crop mix on the Central Coast makes reporting different than in the Central Valley
- There are management factors that minimize loading, and Ag has a plan to address the best reporting structure that is provided for in the ESJ Order
- More research to establish R coefficients is necessary
- A public process is required for the adoption of coefficients
The Four “R”s

- Right Source
- Right Rate
- Right Time
- Right Place
The Four “R”s: Right Source

Selecting the right source of fertilizer or the right material to deliver the nutrients is important. The right source can be related to the following questions:

- What source of nutrient(s) would be the least expensive per unit of delivered nutrient?
- Should an organic source (compost or manure) of nutrient be considered?
- When is a controlled-release fertilizer the right source?
- What sources can simultaneously deliver more than one needed nutrient?
- When should a liquid form be used instead of a dry form?
- When should the salt index of the fertilizer be considered in selecting the right source?

Source: The Four Rs of Fertilizer Management, IFAS Extension, University of Florida
The Four “R”s: Right Rate

The right rate refers to the amount of fertilizer needed for the crop production season and is based on extensive research over locations, crops, varieties, and years. The right rate also refers to the amount of fertilizer applied at one time in the growing season.

For example, the farmer needs to know, depending on the cropping system used, the right rate of fertilizer to apply in the following scenarios:

- In the pre-plant application, while the mulched bed is made for plasticulture strawberries
- As the amount to inject (fertigation) into the drip irrigation system at any one time
- In a single side-dressing during the growing season for an un-mulched crop

Source: The Four Rs of Fertilizer Management, IFAS Extension, University of Florida
The Four “R”s: Right Time

- The right timing of nutrients takes into consideration the growth pattern of the crop and, therefore, natural changes in nutrient demand during the season. Crop development begins slowing from seed germination or transplanting, then increases through fruiting, and finally slows down at maturation.

- The right timing is often interrelated with the right rate and right placement.

- Greater rates of nutrients are applied at or just before the time when the vegetative growth rate is maximal and fruits are being developed.

- Rainfall is difficult to predict; however, when possible, fertilizer application should be timed to minimize the chance of leaching of nutrients due to heavy rainfall.

Source: The Four Rs of Fertilizer Management, IFAS Extension, University of Florida
The Four “R”s: Right Place

- For maximum nutrient efficiency, nutrients need to be placed where the plant will have the best access to the nutrients. For most crops, the right placement is in the root zone or just ahead of the advancing root system. Most nutrient uptake occurs through the root system, so placing the nutrients in the root zone maximizes the likelihood of absorption by the plant.

- Placement and timing interact because as the crop develops, the root system expands.

- The right placement is also related to the nutrient in question.

Source: The Four Rs of Fertilizer Management, IFAS Extension, University of Florida
Appreciating A & R Change Over Time

Head Lettuce UCCE
Crop Studies 1958-2017

- Lettuce Yield - 24ct Box
- Lettuce # Nitrate/acre

Studies 2009 and earlier also included 2.5 tons of manure per acre

#N per box declined from 0.42# to 0.18#
Measuring Nitrogen Use on the Central Coast

Predominant Crops:
Cool Season Vegetables Grapes
Berries Orchards

Three points of measurement:
- **Nitrogen applied** (new Nitrogen) (N applied or A)
- **Nitrogen uptake by the crop**
 (the minimum amount necessary for a mature crop)
- **Nitrogen removed at harvest** (N removed or R)
Management Practices that Minimize N Loading

- Accounting for high N well water for irrigation
 - (no net N loading)
- Timing of N applications
- Matching N to crop needs
 - Crop uptake
- Denitrification
- Irrigation coordination
- Nitrogen Fixing by specialized bacteria
- Volatilization
Some ranches are very diversified
Complex Multiple Cropping Patterns

A hypothetical farm contains:

- 200 acres
- 20 blocks of 10 acres each repeated planted throughout the season (year)
- As many as 2.5 crops grown in each block annually
- 2 wells with N concentrations of 8 mg/l & 56 mg/l (existing N)
- Cross linked irrigation system, any block can be irrigated by either well or combined water from both
- The grower knows how much:
 - Water is applied to the Ranch during the season
 - How much new N was applied during the season
 - Crop harvest yield by crop type
 - N Removed coefficients are not known for most crops grown
Tracking New N

- Additional info on tracking new applied N
- Incentivize the use of high-N groundwater wells
- Pump-and-Fertilize (no penalty in calculations for high-N irrigation water use)
- Various methods used to calculate applied water by ranch, regionally
Outliers
<table>
<thead>
<tr>
<th>Crop</th>
<th>A - Typical N Crop Uptake Ranges (lbs./acre)</th>
<th>B - Harvest N Removed (lbs./acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broccoli</td>
<td>180</td>
<td>337</td>
</tr>
<tr>
<td>Cabbage</td>
<td>180</td>
<td>285</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>180</td>
<td>355</td>
</tr>
<tr>
<td>Celery</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>Lettuce</td>
<td>120</td>
<td>150</td>
</tr>
<tr>
<td>Baby lettuce</td>
<td>70</td>
<td>46</td>
</tr>
<tr>
<td>Spinach (Bunch)</td>
<td>120</td>
<td>130</td>
</tr>
<tr>
<td>Spinach (Baby)</td>
<td>74</td>
<td>85</td>
</tr>
<tr>
<td>Spinach (Tennage)</td>
<td>94</td>
<td>100</td>
</tr>
<tr>
<td>Strawberry</td>
<td>200</td>
<td>260</td>
</tr>
<tr>
<td>Blueberry</td>
<td>275</td>
<td>300</td>
</tr>
<tr>
<td>Bell Pepper</td>
<td>200</td>
<td>260</td>
</tr>
<tr>
<td>Mizuna (rep salad mix vegetable)</td>
<td>99</td>
<td>58</td>
</tr>
<tr>
<td>Cilantro</td>
<td>104</td>
<td>200</td>
</tr>
<tr>
<td>Tomato</td>
<td>240</td>
<td>300</td>
</tr>
</tbody>
</table>

Chris Rose & Peter Meertens, CCRWQCB staff - Strawberry Commission Meeting 8/8/2017
Strawberry Records 2016

Nitrogen from Fertilizers & Amendments Only

Source: CCRWQCB Staff - Year 2 & 3 Data
“Eventually, it is our expectation that outliers will be determined with reference to the ranges for the multi-year A/R ratio and A-R difference target values developed by the Third Party and the Central Valley Water Board.”

Source: SWRCB ESJ page 52

“Our view of the data collected so far by the Third Party indicates that different methods of assigning outliers may be needed as different crops are considered, as there appears to be no single approach that is appropriate across all crop types.”

Source: SWRCB ESJ page 52
Determining A/R Ratios

From the East San Joaquin Order:

- “The regional water boards must approve the coefficients in consultation with State Water Board staff, following an opportunity for public review and comment.” Page 42

- “In developing the coefficients, the regional water boards may rely on their own research, on published values, on the research of other entities, and on coefficients approved by other regional water boards.” Page 42-43

- “Coefficients may also be developed for use where harvest totals are measured by means other than weight, such as by box of produce, lugs, bins, bales, or other forms of volumetric measure.” Page 42, Footnote 120

Source: SWRCB ESJ Order
Research is Necessary

Research is necessary to determine:
- N Removed and
- Best rate of application to Maximize N in Harvest

- Irrigation and Nutrient UCCE research has focused on maximizing harvest yield and the cost of inputs
- New research needs to address minimizing N applied while maintaining yield and quality
- There are concerns inherent to using a number(s) such as A/R or A-R because climatic nuances and production complexities are not being acknowledged
Almond Fertilizer Guidelines:
Years of research gives growers both per acre and per yield fertilizer guidance
Lettuce Guidelines only provide fertilization rates per acre, not harvested yield/N#. Even if a grower wanted to know what a good ratio is, the science isn’t there.
Nutrient Management Objectives

- Reasonable methods for farmers to account for new Nitrogen
- Education must center around the 4 “R”s
- Applied and Removed data shows both have improved considerably over time on the Central Coast in a positive trend.
- There are three points of measurement to focus on.
- The diversification of crop mix on the Central Coast makes reporting different than in the Central Valley
- There are management factors that minimize loading, and Ag has a plan to address the best reporting structure that is provided for in the ESJ Order
- More research to establish R coefficients is necessary
- A public process is required for the adoption of coefficients
Pest & Toxicity Management

Presenters:
Mark Mason, Huntington Farms
Ed Mora, D’Arrigo Brothers
Pest & Toxicity Management Objectives

- Pest management is complicated, has many steps, is based on science, and labels take decades to develop with many toxicologists and environmental fate scientists.

- Pest management is scrutinized and regulated by several Federal, State, and County agencies.

- Regulation is conducted by Ag Commissioner Staff who are hired by the county, have a dual function, and are authorized by law to enforce label requirements, have enforcement authority, conduct inspections, etc.

- There are MANY research needs in order to protect water quality and mitigate pesticide movement while also meeting commercial production demands.
In the Last 14 Years, Progress Noted

- Substantial downward trends in loading
- Significant reductions in tailwater discharge
- Some CMP sites trending toward lower pesticide concentrations in sediment
- 75% of sites show increasing patterns in Cerodaphnia survival
- Significantly reduced toxicity and impairment in many watersheds
Research Needs

Sediment Management

- Research on PAM applications
 - In-field applications
 - Tailwater applications
 - Containment basin applications
- More knowledge about sources and age of sediment to indicate the origin of the off-site movement
- More information on turbidity background levels in watersheds
- Commercial product development of uses of activated charcoal
 - Where and when does it work?
 - How much needs to be used?
 - What pesticides does it mitigate?
- More research and development to reduce site-specific engineering for a more off-the-shelf approach
Research Needs

Water Management

- Education about pesticide environmental fate and breakdown
- More detailed knowledge about uses of pesticides-of-concern to determine and address the most impactful uses
- Research methods of management practice effectiveness measurement other than expensive monitoring
- Explore the connection between turbidity and Neonics environmental breakdown via photolysis
Management Practices/Mitigations

- **Sediment Management**
 - Moving tailwater through underground pipes rather than Ag ditches
 - Slope away from ditches
 - Containment
 - Site-engineered vegetated treatments
 - Sediment Treatment (PAM?)
 - Check dams in Ag Ditches

Note: There are few “off the shelf” options.
Management Practices/Mitigations

Water Management
- Proper irrigation management
- Laser leveling slopes
- Proper storage and disposal
- Well-head protection
- Careful non-crop weed control
- Designating mixing/loading zones
- Consider row arrangement and distance to water features to manage aerial deposition

Note: There are few “off the shelf” options.
Application Considerations

- Value (Efficacy: Economy)
- Pest population in field
- Pesticide types
- Worker safety
- Food safety
- Resistance management
- 3rd Party Contractor vs. In-House
- Rate
- Field conditions/surrounding areas

- Wind
- Irrigation coordination
- Reentry interval (REI)
- Pre-harvest interval (PHI)
- Weather
- Invasive pest infestations
If a Material is Restricted Use:

- Restricted Materials Permit Program provides an abbreviated environmental review procedure that serves as the “functional equivalent” to a full-scale EIR required by CEQA.
- Purpose: To allow Ag Commissioner to evaluate the application site and surrounding properties
- Only issued to the operator or an authorized representative
- Requires:
 - Letter of authorization (if applicable)
 - Maps of each location
 - Permit /operator ID number
 - Company organization name,
 - Ranch name, ranch number, year, lot numbers and acreage,
 - Pesticide storage areas,
 - Section/Township and Range
 - Adjacent neighbors
 - Wells, reservoirs, north arrow
 - Ranch access/entry point
 - Cross streets or physical address
 - Landmarks (power poles, equipment yards, gates, fences, ditches, trees, etc)
 - Sensitive sites within a ¼ mile
If a Material is Not Restricted Use:

- Any property operator using a pesticide for Ag use must maintain records of pesticide use and report the use of registered pesticides.
- Must have OIN to submit pesticide use report.
- OIN purpose: Track pesticide use by operation and commodity.
- OIN needed to: if planning to do pesticide work or purchase rodenticides.
- To apply for OIN must submit:
 - Business name
 - Authorized representative
 - Contact information
 - Ranch name, size, location, maps
 - Commodity list (i.e. crops)
Pesticide is Registered with EPA and DPR

Pesticide Use is Reported

PCA Makes Pesticides Rec

PCA Walks Fields

Must Obtain Permit or OIN

Functional Equivalent EIR - Must consider surrounding areas including water features

PCA workload is likely maxed out; there is a general rule of thumb about max # of acres a PCA can handle.

Registration based on science

PCAs implement mitigations/practices

Grower implements mitigations/practices

Transparent, publicly data reporting

Application according to label by a (QAL) Qualified Licensed Applicator

Ag Commissioner audits and inspects throughout the year
Water Quality Protection Considerations for Growers

- Grower relies on PCA to follow prescriptive specimen label everyday.
- Ag Commissioner audits and inspects throughout the year.
- Growers & PCAs discuss permit restrictions.
- Constant discussion between PCA, Field Staff and Grower about production, harvest, surrounding activities.
- Registration based on science.
- PCA makes pesticides rec to spray or not.
- Pesticide walks fields.
- Must obtain permit or OIN.
- Pesticide use is reported.
- If spray recommended pesticide is applied.
- Pesticide is registered with EPA and DPR.
- Grower implements mitigations/practices.
- Designate mixing/loading zones and well protection zones.
- Residues tested for pesticide tolerances and MRL requirements.

Diagram:

- Water Quality Protection
- Grower
- PCA
- Ag Commissioner
- Permit
- Prescription
- Registration
- Mitigations
- Practices
- Tolerances
- MRL
- EPA
- DPR
Research Work - Summary

► If we can’t define the problem, we can’t solve the problem.

► Don’t confuse identifying the problem with defining the problem.

► Without doing this research,
 ► Growers will not be able to produce the crops ideally suited to the Central Coast and meet quality demands AND protect water quality.
 ► Ag production and water management become mutually exclusive.
Pest & Toxicity Management Objectives

- Pest management is complicated, has many steps, is based on science, and labels take decades to develop with many toxicologists and environmental fate scientists.
- Pest management is scrutinized and regulated by several Federal, State, and County agencies.
- Regulation is conducted by Ag Commissioner Staff who are hired by the county, have a dual function, and are authorized by law to enforce label requirements, have enforcement authority, conduct inspections, etc.
- There are MANY research needs in order to protect water quality and mitigate pesticide movement while also meeting commercial production demands.
Farm Management Considerations

Presenters:
Scott Horsfall, Leafy Green Handlers Marketing Agreement
Joe Pezzini, Ocean Mist Farms
Dan Sutton, Pismo Oceano Vegetable Exchange
Human Health & Our Food Safety Story

Presenter:
Joe Pezzini, Ocean Mist Farms
Public & Buyer Discussion

Partial List From the Marler-Clark Blog 8.30.18

And a Bit(e) of Lettuce History

<table>
<thead>
<tr>
<th>Date</th>
<th>Vehicle</th>
<th>Etiology</th>
<th>Confirmed Cases</th>
<th>States/Provinces</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1995</td>
<td>Leafy Greens</td>
<td>E. coli O157:H7</td>
<td>74</td>
<td>1:MT</td>
</tr>
<tr>
<td>Sept. 1995</td>
<td>Romaine</td>
<td>E. coli O157:H7</td>
<td>20</td>
<td>1:ID</td>
</tr>
<tr>
<td>Sept. 1995</td>
<td>Iceberg</td>
<td>E. coli O157:H7</td>
<td>30</td>
<td>1:ME</td>
</tr>
<tr>
<td>Oct. 1995</td>
<td>Iceberg</td>
<td>E. coli O157:H7</td>
<td>11</td>
<td>1:OH</td>
</tr>
<tr>
<td>May-June 1996</td>
<td>Mesclun Mix</td>
<td>E. coli O157:H7</td>
<td>61</td>
<td>3:CT, IL, NY</td>
</tr>
<tr>
<td>May 1998</td>
<td>Salad Mix</td>
<td>E. coli O157:H7</td>
<td>2</td>
<td>1:CA</td>
</tr>
<tr>
<td>Feb.-Mar. 1999</td>
<td>Iceberg</td>
<td>E. coli O157:H7</td>
<td>72</td>
<td>1:NE</td>
</tr>
<tr>
<td>Oct. 1999</td>
<td>Salad</td>
<td>E. coli O157:H7</td>
<td>92</td>
<td>3:OR, PA, OH</td>
</tr>
<tr>
<td>Oct. 2000</td>
<td>Lettuce</td>
<td>E. coli O157:H7</td>
<td>6</td>
<td>1:IN</td>
</tr>
</tbody>
</table>

https://www.marlerblog.com/legal-cases/thinking-about-romaine-today/
Legal Food Safety Mandates

Presenter:
Scott Horsfall, Leafy Green Handlers Marketing Agreement
Food Safety Practices / Metrics

- They go beyond recommendations; they are specific and based on science.

- LGMA Metrics identify potential risks during farming and harvest of leafy greens.

- LGMA Metrics include:
 - Written compliance plan
 - Grower list
 - Trace back
Food Safety Practices / Metrics

- General requirements
- Environmental Assessments
- Water Use
- Soil Amendments
- Worker Practices
- Field Sanitation
- Field Observations

Food Safety Metrics Are Based Upon Real Science
Water, Soil, Animals & Environment

LGMA Water Metrics:
- Monthly testing for bacteria
- Standards for water used on crops
- Standards for all other water

LGMA Soil Amendment Metrics:
- No untreated soil amendments
- Criteria for all other soil amendments
- Process verifications

LGMA Animals & Environment Metrics:
- 3 environmental assessments for each ranch
- Buffer Zones/No Harvest of contaminated product
- Addresses flooding, human encroachment, etc.
LGMA Health and Hygiene Metrics:
- Standard operating procedures (SOPs) covering worker health and hygiene
- Auditors verify that workers are trained and follow SOPs
- Policies apply to visitors

LGMA Field and Equipment Sanitation Metrics:
- Standard operating procedures (SOPs) for harvest equipment, container storage and sanitary operation of equipment and facilities, etc.
Audits & Government Auditors

Why USDA/AMS?

- Government
- Independent
- Transparent
- Experienced - 100 years on the farm!

Auditor Qualifications

- Trained in auditing standards and commodity-specific programs
- HACCP
- ISO 19011 Standard
- Annual evaluation by USDA to 25 criteria
- At least 80 hours of continued education required every 3 years
- One team of trained, experienced auditors doing on-farm audits every day
FDA’s Produce Safety Rule Alignment

- FDA’s Produce Safety Rule was implemented in January 2018.
- Reviewed needed changes with FDA.
- Accepted changes to the metrics which now align with new Food Safety Modernization Act (FSMA) requirements.
- Started audits April 1, 2018.
- Working with CDFA to verify compliance.
- All metrics continue to be based on research and sound science.

Providing PSR Verification adds value to the LGMA Certification and aligns to the new Federal Law.
Food Safety & Co-Management Considerations

Dan Sutton, Pismo Oceano Vegetable Exchange
Regional Board Requirement Compared to Food Safety Requirement - Example 1

Food Safety Requirement Realities

- Buffers may be required based upon the characteristics of a field, or by buyers.
- The presence of nearby riparian vegetation may trigger the need for a buffer zone to meet customer requirements, creating conflict with water quality regulations.

Irrigated Lands 3.0: Minimize Bare Soil

- “Dischargers (farmers) must minimize the presence of bare soil vulnerable to erosion and soil runoff to surface waters and implement erosion control, sediment, and stormwater management practices in non-cropped areas, such as unpaved roads and other heavy use areas.”

Source: Central Coast Ag Order 3.0
Regional Board Requirement Compared to Food Safety Requirement - Example 2

Establishment of a vegetated filter strip for water quality purposes can be at odds with the need for a buffer for food safety.

According to California LGMA Food Safety Practices, Table 5:
- Consider the proximity to water (i.e., riparian areas), animal harborage, open range lands, non-contiguous blocks, urban centers, etc.
- Periodically monitor these factors and assess during pre-season and pre-harvest assessments.
- If there is the potential for microbial contamination from adjacent areas, a risk assessment shall be performed to determine the risk level as well as to evaluate potential strategies to control or reduce the introduction of human pathogens.

Irrigated Lands 3.0: Tier 3 Water Buffer Plans Requirement
- "A filter strip of appropriate width, and consisting of undisturbed soil and riparian vegetation or its equivalent, shall be maintained, wherever possible, between significant land disturbance activities and watercourses, lakes, bays, estuaries, marshes, and other water bodies..."

Source: Central Coast Ag Order 3.0
Industry Response to Conflicts

Resources to Use when Discussing Co-Management:

- “Reconciling Food Safety & Environmental Protection: A Literature Review” - RCD of Monterey County
- “Farming with Food Safety & Conservation in Mind” - Wild Farm Alliance & CAFF
- “Balancing Food Safety & Sustainability” - UCCE
Public/Private Research

Joe Pezzini, Ocean Mist Farms
Critical Research Since 2006

- Since 2006, California Leafy Greens Research Board @ $1.1 Million in Food Safety Research Funding and Center for Produce Safety @ $23.4 Million
- Vertebrate study to keep tree frogs out of fields
- Coring knife pathogen transfer
- Tailwater Reuse Study
- Buffer zones being re-addressed due to recent outbreak
Food Safety Panel Objectives

- Surface water health and safe & affordable drinking water is of utmost importance; so is every American consumer’s need and expectation to consume food that is safe.

- The Regional Water Board can ensure that riparian and wetland habitat is protected by working with Agriculture to adopt practices that make sense on their farms, not mandating specific vegetative buffers for all farms.
 - Vegetative Buffers ≠ Riparian Habitat and shouldn’t be treated the same
 - Consider alternatives to vegetative buffers
 - Allow for innovation
 - Give credit for practices that reach the goal
General Farm Management

Joe Pezzini, Ocean Mist Farms
Dan Sutton, Pismo Oceano Vegetable Exchange
General Farm Management with Dynamic Markets & Relationships

- What’s the role of the Shipper vs. the Farmer?
- Who and what influences harvesting decisions?
- Influence of other regulatory agencies
- Market influences
Generating Meaningful Data & Balancing the Level of Detail with Reporting Burden

Presenters:
Claire Wineman, Grower-Shipper Association of Santa Barbara and San Luis Obispo Counties
Sarah Lopez, Preservation, Inc.
Parry Klassen, Central Coast Groundwater Coalition
Tim Borel, Blanco Farms
George Adam, Innovative Produce
Generating Meaningful Data and Balancing the Level of Detail with Reporting Burden

“The Regional Water Boards have the flexibility to develop alternative reporting areas...as long as...provides meaningful data and balances the level of detail with the reporting burden”

(Emphasis added) - East San Joaquin Order, Page 30-31, Footnote 88
Improving Water Quality in Central Coast Irrigated Lands:

What can growers and the Regional Water Board do to demonstrate quantifiable progress?
Improve Water Quality

Improve existing water quality

Minimize further impairment
ESJ Order Direction on Central Coast Reporting Areas

Recognizes areas like Central Coast:

- Highly intensive cropping practices
- Multiple rotations of different crops in the same location within a single year
- Unpredictable crop types and harvesting
- Order encourages meaningful data and balances the level of detail with the reporting burden

Source: SWRCB ESJ, page 31, footnote 88
Improve Water Quality

Outreach and assistance to outliers

Collect meaningful and accurate data

Accurately identify potential outliers
Row Crops Account for Majority of ILRP Enrollment in Region 3

Acres Enrolled by Crop Category
Total: 420,000 acres

- 266,316 Row Crop
- 112,439 Vineyard
- Other or Multiple
Most Ranches in Region 3 < 100 Acres

Number of Ranches by Ranch Acreage
(All eNOI Crop Types)

- Minimum: 0.2 acres
- Maximum: 2,780 acres
- Median Ranch Acres:
 - Row Crops = 70 acres
 - Vineyards = 40 acres
Meaningful and Accurate Data

- Usable data for meaningful analysis
- Comparing similar ranches
- Manageable number of data points
- Reporting requirements are intuitive and reasonable
- Recognize that agricultural businesses can have changes in staffing and varying levels of expertise
- Develop regulations that are possible to achieve compliance given social, technical, and/or economic constraints
How Many Data Points?

Growers are working with a number of data points to get to A & R number given diversity of:

- Operations
- Crop type, planting, and harvesting
- Land tenure
- Some ranches > 640 acres
- Need and ability to measure vs. estimate

Ag Order 4.0 must be thoughtfully crafted to achieve a management number of data points for both farmers and Regional Water Board that “…bears a reasonable relationship to the benefits to be obtained…”

Source: SWRCB ESJ Order page 70
How many data points?

Growers are working with a multitude of data points just to get to an A/R ratio.

- 420,000 acres
- 4,300 ranches
- 1,650
- Growers
How many data points?

2016 TNA Reporting was required for only a *subset* of Tier 2 and 3 ranches:

- Less than 23% of total enrolled acres*
- 14% of total enrolled ranches*
- Yet generated **45,000** data values reported

2017 TNA Reporting after expansion to all Tier 2 and Tier 3 ranches?

Based on values from the 9/2016 Item 11 Staff Presentation
Prioritizing Finite Resources: Water Board AND Growers

- WDR vs. Waiver
- Ability to understand requirements and achieve good faith compliance
- Clear and usable reporting interface
- In-house vs. commercial consultants/resources
- Possible role of coalitions and 3rd parties
- Inadequate/decreasing number of technical service providers
Nitrogen Reporting

- Incentivize, rather than penalize, use of existing nitrates in groundwater through “pump-and-fertilize”

- Multi-crop diversity on Central Coast necessitates:
 - Manageable data load
 - Reporting conducive to accuracy
 - Flexibility that recognizes dynamic cropping systems
 - Allows adaptability in crop type and reporting scale
Groundwater Monitoring

Given that Region 3 Ag Order 3.0 currently exceeds the ESJ Order mandates:

- There should be a rationalization for further domestic well monitoring (once exceedances are inevitable due to high ambient nitrates)

- User notification is a priority and already becoming normal business practice for landowners and/or operators
Surface Water Monitoring

- Identify opportunities for improvement in load and/or concentration considering waterbody characteristics

- Support the existing Cooperative Monitoring Program managed by Preservation, Inc. and use that data as the basis of analyzing Surface Water Quality.
Surface Water Monitoring

- Measuring Water quality change and defining “improvement”
 - Binary compliance/non-compliance vs. trends/patterns
 - What does change/improvement look like in a discharge-dominated stream?
 - The CMP is most-often detecting Change as significant reductions in streamflow
 - The most measurable Improvements are load reductions
 - “Compliance” is going to look like a dry stream bed in quite a few water bodies
 - The above are not hypotheticals. They are demonstrable facts. Preservation, Inc. has 14 years of data.
 - RWQCB has interest in seeing streams come into “compliance,” but should not ignore indicators of change and/or reduced discharge (i.e. as load/flow reductions instead of reduced concentrations)
Surface Water Monitoring

- Monitoring study design - CMP site locations vs other studies that repeatedly sample only the most impaired sites
 - Looking at a sub-set of sites that are only highly impaired may mischaracterize the cause of impairment if unimpaired geographically related sites are not also considered.

- Metrics
 - Detection Frequencies can be high if a study limits its scope to only the most impaired sites, as can the Average Detected Concentration
 - Exceedance Frequencies are lower, and the Average of All Samples Collected will reflect many non-detects
Looking Forward: Achieving Core Regulatory Principles

Presenters:
Abby Taylor-Silva, Grower-Shipper Association of Central California
Kirk Schmidt, Sustainable Agricultural Water Corporation
Kris Beal, Central Coast Vineyard Team
ESJ Reporting

- Requirement to Participate in Outreach Events (pg 27)
- Farm Evaluation (pg 28)
- Sediment and Erosion Control Plan (32)
- Nitrogen Management Plans (33)
- Recordkeeping Requirements (53)
ESJ Reporting

- Surface Water Quality Monitoring
- Groundwater Quality Monitoring (59)
- Surface Water and Groundwater Quality Management Plans
- Monitoring and Reporting Requirements and Water Code Section 13267 (68)
- Direction to Central Valley Water Board Regarding Use of Submitted Data
Thank You!

Central Coast Groundwater Coalition
California Strawberry Commission
Central Coast Vineyard Team
Grower-Shipper Association of Central California
Grower-Shipper Association of Santa Barbara and San Luis Obispo Counties
Monterey County Farm Bureau
Paso Robles Wine Country Alliance
Santa Cruz County Farm Bureau
San Luis Obispo County Farm Bureau
Sustainable Ag Water Corporation
SWRCB Requires Reporting by Township

- “These data are required to be associated with the township (36 square mile area) where the farm is located. The spatial resolution by township provides a common unit that should facilitate analysis of data and comparisons between different areas.”

 Source: SWRCB ESJ Attachment A, page 24

- “With regard to the aggregated dataset, the regional water board is not limited to aggregating the data at the township level, but may choose a smaller or larger area unit based on region-specific and program-specific considerations.”

 Source: SWRCB ESJ page 51
“Eventually, it is our expectation that outliers will be determined with reference to the ranges for the multi-year A/R ratio and A-R difference target values developed by the Third Party and the Central Valley Water Board.”

Source: SWRCB ESJ page 52

“Our view of the data collected so far by the Third Party indicates that different methods of assigning outliers may be needed as different crops are considered, as there appears to be no single approach that is appropriate across all crop types.”

Source: SWRCB ESJ page 52
Determining A/R Ratios

From the East San Joaquin Order:

- “The regional water boards must approve the coefficients in consultation with State Water Board staff, following an opportunity for public review and comment.” Page 42

- “In developing the coefficients, the regional water boards may rely on their own research, on published values, on the research of other entities, and on coefficients approved by other regional water boards.” Page 42-43

- “Coefficients may also be developed for use where harvest totals are measured by means other than weight, such as by box of produce, lugs, bins, bales, or other forms of volumetric measure.” Page 42, Footnote 120

Source: SWRCB ESJ Order
Generating Meaningful Data and Balancing the Level of Detail with Reporting Burden

“The Regional Water Boards have the flexibility to develop alternative reporting areas...as long as...provides meaningful data and balances the level of detail with the reporting burden”

(Emphasis added) - East San Joaquin Order, Page 30-31, Footnote 88
Recognizes areas like Central Coast:

- Highly intensive cropping practices
- Multiple rotations of different crops in the same location within a single year
- Unpredictable crop types and harvesting
- Order encourages meaningful data and balances the level of detail with the reporting burden

Source: SWRCB ESJ, page 31, footnote 88
Slides for the Record, but Removed for a Concise Presentation
Reporting Applied Nitrogen

Q: What belongs in the N budget for reporting purposes?
A: Only NEW sources of N:

<table>
<thead>
<tr>
<th>New N:</th>
<th>Old (cycling) N</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Fertilizer</td>
<td>- Irrigation water N</td>
</tr>
<tr>
<td>- Compost</td>
<td>- N in soil</td>
</tr>
<tr>
<td>- Other Amendments</td>
<td></td>
</tr>
</tbody>
</table>

New nitrogen application is discussed in Ag Order 3.0 MRP language under the INMP section Part 6A.5.

- “must evaluate reduction in new nitrogen loading potential…”
- “New nitrogen is nitrogen from fertilizers, amendments, and other nitrogen sources applied other than nitrogen present in groundwater”
- “…”analysis of trends in new nitrogen application”
Nitrate Expert Panel on AR Metrics

“The members of the Panel are not aware of readily available, easily usable information regarding harvested nitrogen/acre for a wide range of crops. This is especially true of produce crops (broccoli, lettuce, cauliflower) which have widely different pack-out rates, in which yield is expressed as boxes per acre rather than tons/acre, seasons are highly variable in duration, and the percentage of vegetative matter that is left in a field can change drastically depending upon the market. …Reporting or accounting for harvested nitrogen is a completely new concept for farmers. This represents a much higher difficulty than what they are currently doing... The further one moves from the field into research and academia, testimony indicates that the idea of accounting for harvested nitrogen sounds more and more simple.”

Feasibility of AR Metrics on Central Coast

“For reporting purposes in the Central Valley, the term “field” represents a convenient and appropriate reporting area such that the data reported is meaningful and the scale of reporting balances the level of detail with the reporting burden. Some growers in other regions engage in highly intensive cropping practices, including multiple rotations of different crops in the same location within a single year, unpredictable crop types and harvesting based on rapidly-shifting market demand, and variable management practices adjusting to weather and field conditions. The regional water boards have the flexibility to develop alternative reporting areas for these types of growers, as long as the regional water board determines that the alternative reporting area provides meaningful data and balances the level of detail with the reporting burden similar to the field approach. In no case should a reported area exceed a total size of 640 acres, and different crop types must always be reported separately even if they are within the same reporting area, to allow for evaluation of the effectiveness of management practices with regard to each individual crop type grown.”

- State Water Board ORDER WQ 2018-0002 (East San Joaquin Final Order), footnote 88, Page 31
Additional Consideration: Who & What

- In-house PCA or private applicator
- Grower
- Ag Commissioner/DPR restricted use status
- Organic or conventional crop
Tests must be conducted to determine:

- **Physical/chemical properties:**
 - Color, physical state, odor, oxidation/reduction, chemical incompatibility, flammability, explodability, miscibility, corrosivity, dielectric breakdown voltage, pH, viscosity, density, shelf life.
- **Acute toxicity**
- **Chronic toxicity**
- **Environmental fate**
- **Product performance**
- **Ecological effects (phytotoxicity, fish and wildlife)**
- **Human exposure**
- **Spray drift potential**
Once CA Approves, The Specimen Label Becomes That Material’s Mandate

This Label Includes:

- EPA Number
- Manufacturer
- Product type (herbicide, etc.) and formulation (Granule, dry, etc.)
- The Active Ingredient, Chemical Name, Common Name
- Inert Ingredients
- Precautionary Statements:
 - Hazard to bees, wildlife, fish, etc.
 - Environmental precautions
 - Drift precautions
 - Personal protective equipment (PPE)
 - First aide/emergency numbers
- Concentration of Active Ingredient
- Signal word (indicates relative acute toxicity)
- Directions for use:
 - Pests to be controlled
 - Where the product may be used
 - How to apply the product
 - How much product to use,
 - When to apply
 - How often to apply
 - Pre-harvest interval (PHI)
 - Re-entry Information (REI)
- Storage and Disposal
Is a Pesticide a Restricted Use Material?

Yes

Must obtain a Restricted Material Permit from Ag Commissioner

No

Must Obtain a Operator Identification Number (OIN) from Ag Commissioner
Pesticide Use Reports

- Types of Pesticide Use Reports:
 - 100% Production Ag
 - 100% Non-Production Ag (non-crop weed control, water disinfectant, rodenticides)
 - 100% Urban (Pest Control Operators, Landscape Maintenance for hire)

- Note: Quarantine or invasive species sprays made by the State are reported

- Note: Municipalities and Counties report pesticide use for mosquito abatement, roadside spraying, school yard and/or park pest control, etc.

- Urban use is not reported unless applied by certified applicator.
Pest Control Advisor (PCA)

- Any person who offers a recommendation on any Ag use holds himself as an authority on Ag use or solicits services or sales for any Ag use.
- Must be licensed by the State of California
- Must meet minimum education requirements to take the PCA exam
- Must pass the PCA exam consisting of (at a minimum) Laws, Regulations, and Basic Principles on pest control category
- Must pay a fee
- Must maintain Continuing Education Requirements of 40 hours every two years