Site 1

Cultivation Area (sq ft): 95,000
Canopy Area (sq ft): 94,000
Planting Method: In ground
Plant Type: Flowering
Number of Crops: 1

January
- Site closed – no nitrogen applied

February
- Site closed – no nitrogen applied

March
- Site closed – no nitrogen applied

April
- 2200 lbs of Fox Farm Ocean Forest Potting Soil
- 900 lbs manure

May
- 375 lbs of Peter’s Professional dry fertilizer
- 900 lbs manure
- 141,000 gallons of water

June
- 375 lbs of Peter’s Professional dry fertilizer
- 500 lbs compost
- 143,000 gallons of water

July
- 375 lbs of Peter’s Professional dry fertilizer
- 500 lbs compost
- 70 gallons of Tiger Bloom Plant Food
- 147,000 gallons of water

August
- 375 lbs of Peter’s Professional dry fertilizer
- 70 gallons of Tiger Bloom Plant Food
- 147,000 gallons of water

September
- 375 lbs of Peter’s Professional dry fertilizer
- 70 gallons of Tiger Bloom Plant Food
- 145,000 gallons of water

October
- 375 lbs of Peter’s Professional dry fertilizer
- 140,000 gallons of water

November
- Final harvest and winterization – no nitrogen applied

December
- Site closed – no nitrogen applied
Site 2

Cultivation Area (sq ft): 45,000
Plant Type: Flowering

Canopy Area (sq ft): 42,000
Number of Crops: 1

Planting Method: In ground

January
- Site closed – no nitrogen applied

February
- Site closed – no nitrogen applied

March
- Site closed – no nitrogen applied

April
- 1000 lbs of Fox Farm Ocean Forest Potting Soil
- 450 lbs manure

May
- 150 lbs of Peter’s Professional dry fertilizer
- 450 lbs manure
- 64,000 gallons of water

June
- 150 lbs of Peter’s Professional dry fertilizer
- 225 lbs compost
- 65,000 gallons of water

July
- 150 lbs of Peter’s Professional dry fertilizer
- 225 lbs compost
- 30 gallons of Tiger Bloom Plant Food
- 67,000 gallons of water

August
- 150 lbs of Peter’s Professional dry fertilizer
- 30 gallons of Tiger Bloom Plant Food
- 67,000 gallons of water

September
- 150 lbs of Peter’s Professional dry fertilizer
- 30 gallons of Tiger Bloom Plant Food
- 66,000 gallons of water

October
- 150 lbs of Peter’s Professional dry fertilizer
- 64,000 gallons of water

November
- Final harvest and winterization – no nitrogen applied

December
- Site closed – no nitrogen applied
Nitrogen Percentage of Fertilizers Used on Mock Site in 2019

<table>
<thead>
<tr>
<th>Bulk Materials</th>
<th>% Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fox Farm Ocean Forest Potting Soil</td>
<td>3.00%</td>
</tr>
<tr>
<td>Manure</td>
<td>5.00%</td>
</tr>
<tr>
<td>Compost</td>
<td>2.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dry Fertilizer</th>
<th>% Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter's Professional</td>
<td>5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liquid Fertilizer</th>
<th>Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Nitrogen on product label</td>
<td>2%</td>
</tr>
<tr>
<td>Density (lbs/gallon)</td>
<td>9.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Irrigation Water</th>
<th>NO₃ (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration on 5/1/2019</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Formulas Used to Calculate Pounds of Nitrogen Applied

Bulk Materials

\[
\text{% Nitrogen}/100 \times \text{bulk material weight applied (lbs)} = \text{Nitrogen applied (lbs)}
\]

Dry Fertilizers

\[
\text{% Nitrogen}/100 \times \text{fertilizer weight applied (lbs)} = \text{Nitrogen applied (lbs)}
\]

Liquid Fertilizers

\[
\text{% Nitrogen}/100 \times \text{fertilizer density (lbs/gal)} \times \text{volume of fertilizer applied (gal)} = \text{Nitrogen applied (lbs)}
\]

\[
\text{Liquid Fertilizer Density} = \frac{\text{weight of product (lbs)/volume of product (gal)}}{\text{Density (lbs/gal)}}
\]

Nitrogen Applied through Irrigation Water when Concentration is Provided as NO₃ (mg/L)

\[
\text{NO₃ Concentration (mg/L)} \times \text{Volume of Water Applied (gal)} \times 0.62 / 325851 = \text{Nitrogen applied (lbs)}
\]

Nitrogen Applied through Irrigation Water when Concentration is Provided as NO₃-N, N, or Total N (mg/L)

\[
\text{N Concentration (mg/L)} \times \text{Volume of Water Applied (gal)} \times 2.72 / 325851 = \text{Nitrogen applied (lbs)}
\]
<table>
<thead>
<tr>
<th>Month</th>
<th>Bulk</th>
<th>Dry</th>
<th>Liquid</th>
<th>Conc. Nitrogen</th>
<th>Concentration Unit (mg/L)</th>
<th>Volume of Irrigation Water Applied (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>45</td>
<td>18.75</td>
<td></td>
<td>2.5</td>
<td>NO3</td>
<td>141,000</td>
</tr>
<tr>
<td>May</td>
<td>10</td>
<td>18.75</td>
<td></td>
<td>2.5</td>
<td>NO3</td>
<td>143,000</td>
</tr>
<tr>
<td>June</td>
<td>10</td>
<td>18.75</td>
<td>13.3</td>
<td>2.5</td>
<td>NO3</td>
<td>147,000</td>
</tr>
<tr>
<td>July</td>
<td>10</td>
<td>18.75</td>
<td>13.3</td>
<td>2.5</td>
<td>NO3</td>
<td>147,000</td>
</tr>
<tr>
<td>August</td>
<td>18.75</td>
<td>13.3</td>
<td>13.3</td>
<td>2.5</td>
<td>NO3</td>
<td>147,000</td>
</tr>
<tr>
<td>September</td>
<td>18.75</td>
<td>13.3</td>
<td>13.3</td>
<td>2.5</td>
<td>NO3</td>
<td>145,000</td>
</tr>
<tr>
<td>October</td>
<td>18.75</td>
<td></td>
<td>13.3</td>
<td>2.5</td>
<td>NO3</td>
<td>140,000</td>
</tr>
<tr>
<td>November</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>176</td>
<td>112.5</td>
<td>39.9</td>
<td></td>
<td></td>
<td>863,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Bulk</th>
<th>Dry</th>
<th>Liquid</th>
<th>Conc. Nitrogen</th>
<th>Concentration Unit (mg/L)</th>
<th>Volume of Irrigation Water Applied (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>52.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>22.5</td>
<td>7.5</td>
<td></td>
<td>2.5</td>
<td>NO3</td>
<td>64,000</td>
</tr>
<tr>
<td>May</td>
<td>4.5</td>
<td>7.5</td>
<td></td>
<td>2.5</td>
<td>NO3</td>
<td>65,000</td>
</tr>
<tr>
<td>June</td>
<td>4.5</td>
<td>7.5</td>
<td>5.7</td>
<td>2.5</td>
<td>NO3</td>
<td>67,000</td>
</tr>
<tr>
<td>July</td>
<td>7.5</td>
<td>5.7</td>
<td></td>
<td>2.5</td>
<td>NO3</td>
<td>67,000</td>
</tr>
<tr>
<td>August</td>
<td>7.5</td>
<td>5.7</td>
<td></td>
<td>2.5</td>
<td>NO3</td>
<td>66,000</td>
</tr>
<tr>
<td>September</td>
<td>7.5</td>
<td>5.7</td>
<td></td>
<td>2.5</td>
<td>NO3</td>
<td>64,000</td>
</tr>
<tr>
<td>October</td>
<td>7.5</td>
<td></td>
<td></td>
<td>2.5</td>
<td>NO3</td>
<td>64,000</td>
</tr>
<tr>
<td>November</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>84</td>
<td>45</td>
<td>17.1</td>
<td></td>
<td></td>
<td>393,000</td>
</tr>
</tbody>
</table>