Regional Salt and Nutrient Planning

Doing the Work

The Recycled Water Policy outlined a structure that balanced water quality and water supply

Intent

Stakeholders committed to quality & quantity

Water Boards responsible for water quality

CDPH responsible for public health

How it Manifested

Develop shared goals & mandates for recycled water supply

Require Water Quality Impact Analysis for Basin or Sub-basin

Convene expert panel on CECs to propose recommendations

The Policy anticipated adaptive-management through regional salt and nutrient plans

High quality groundwater basin with defined uses All stakeholders involved in planning and management

Irrigation
Permitting
streamlined

Plans are self-mitigating

"Stakeholders" have 5 to 7 years to prepare these plans

What happens if we don't do this?

- Back to 'Square 1'
 - Each individual project separately permitted
 - Individual monitoring programs
 - Sole mitigation requirements
- Lose opportunity for regional salinity management
- Lose link between recycled water and sustainability

Here's an example of 'monitoring well madness'

So, What Do We Do Next?

Technical Stakeholder/Institutional UNPLANNED DETOUR Gather information Additional Initiate stakeholder - water quality studies process - land use General Plan Develop conceptual S/N Plan -Ongoing stakeholder model discussions 'short form' Discuss issues WQ Impact Analysis Data Gap Analysis and develop resolutions/mitigations S/N Plan - Data Gap Work Plan - Mitigation Plan - Monitoring Plan - Recommended Basin Plan Modifications - Adaptive Management Plan

The First Step - Conceptual Model Development

- Understand the regulatory context
- Understand your basin
- Understand all current and potential future basin uses
- Be prepared to adjust basin management strategy and regulatory context to work better together

Understand the Regulatory Context

Basin Plan

- Defined Beneficial Uses
- Numeric Objectives (if any)
- Narrative Objectives (why these matter)
- Other special requirements
 - Habitat Plans
 - Special basin needs

Understand the Basin

- Hydrogeology/Aquifer Uses
- Soil Types
- Climate
- Land Uses
- Water Balance
- Water Quality
- Salt & Nutrient Balances
- Dominant Transport Pathways

Understand Current and Future Basin Uses

- Current land uses contributing to salt and/or nutrient loading
- Foreseen changes in land use
- Proposed future development/industries that could contribute to salt and/or nutrient loading
- Economic and political implications of changing proposed future projects
- Proposed or possible recycled water projects

Tools for Defining the Basin

- Your Basin Plan,
- DWR Bulletin 118
- Watershed lines
- USGS and CDMG Reports
- Groundwater Management Plans
- Soil Reports
- Consumer Confidence Reports (water quality)
- Annual drinking water quality reports
- Other local documents

Case Study of Additional Data Gathering – San Ramon Valley Groundwater Basin

- East Bay valley with groundwater-bearing alluvial deposits
- Little groundwater use in the basin
- No published data available on water quantity, quality, or use/production
- No Groundwater Management Plan
- Solution: Collect data necessary to prepare basin-wide water, salt and nutrient balances

Case Study of an Early Exit Strategy -Marina, California

- Salinas Valley Groundwater Basin
 - A Aquifer unused due to water quality and quantity
 - Salinas Valley Aquitard
 - 180-Foot Pressure Aquifer
 - 400-Foot Pressure Aquifer
 - Deep Aquifer
- Basin designated as municipal supply
- Potential Solution: Obtain variance/letter of concurrence regarding no anticipated impacts

The Second Step – Water Quality Impact Analysis and Data Gap Analysis

- Part of State Policy for water quality control
- Applies to high quality waters only
- Requires existing high quality be maintained to maximum extent possible
- Allows lowering if consistent with maximum benefit to people of the state

Factors that matter in a Water Quality Impact Analysis

- Constituent-by-constituent analysis
- Requires determination of groundwater as 'high quality'
- Determine if activity will lower existing high water quality

Preparing a Water Quality Impact Analysis and Data Gap Analysis

- Prepare Water and Constituent Balances
 - Salt
 - Nutrients
 - Other
- Compare against regulatory objectives
- Evaluate land use impacts on current and future groundwater quality
- Identify areas where more information is needed

What about CEQA?

- S/N Plan would amend the Basin Plan
- Basin Plan Amendments are a Certified State Regulatory Program - exempt from preparing a Negative Declaration or EIR [Guidelines Section 15251(g)]
- Proposed Basin Plan Amendment must still:
 - Evaluate environmental impacts
 - If significant adverse impacts, then adopt feasible alternatives or mitigation measures to reduce impacts
 - Comply with noticing requirements (PRC 21080.5)

Case Study: Salt Management Plan -Chino Basin

- Developing Optimum Basin Management Program (OBMP)
- Managed by Water Master
- Elements included in plan:
 - Comprehensive groundwater monitoring program
 - Groundwater Management Plan
 - Salt Management Program
 - Cooperative effort with Santa Ana RWQCB
 - Investigating/remediating legacy plumes
 - Includes TDS and nitrogen monitoring of both groundwater and surface water pursuant to 2004 Basin Plan Amendment
 - Actively desalting groundwater and stormwater

And there's still this side of the chart

Tools for gathering stakeholders:

- Existing interest groups
- UWMP coordination process
- AB 3030 (GWMP) process
- Let the Regional Board do it

S/N Plan

- Data Gap Work Plan
- Mitigation Plan
- Monitoring Plan
- Recommended Basin Plan Modifications
- Adaptive Management Plan

"Stakeholders" have 5 to 7 years to prepare these plans

So What Should that Schedule Really Look Like?

- Gather Data and Stakeholders 6 to 9 months
- Define Purpose and Need 2 additional months
- Analyze Data 3 to 4 months
- Early Exits within 1 year
- Additional Data Gathering and Analysis 9 months to 2 years
- Refine Conceptual Model 6 months
- 68-16 Analysis 6 months
- Complete Plan − 6 to 18 months
- ❖ Total Time 3 to 6 years