NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) CA0079901 ORDER R5-2022-0039

WASTE DISCHARGE REQUIREMENTS FOR THE CITY OF NEVADA CITY, WASTEWATER TREATMENT PLANT, NEVADA COUNTY

The following Discharger is subject to waste discharge requirements (WDRs) set forth in this Order:

Table 1. Discharger Information

<table>
<thead>
<tr>
<th>Discharger:</th>
<th>City of Nevada City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Facility:</td>
<td>City of Nevada City Wastewater Treatment Plant</td>
</tr>
<tr>
<td>Facility Street Address:</td>
<td>650 Jordan Street</td>
</tr>
<tr>
<td>Facility City, State, Zip:</td>
<td>Nevada City, CA 95959</td>
</tr>
<tr>
<td>Facility County:</td>
<td>Nevada County</td>
</tr>
</tbody>
</table>

Table 2. Discharge Location

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Effluent Description</th>
<th>Discharge Point Latitude (North)</th>
<th>Discharge Point Longitude (West)</th>
<th>Receiving Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Tertiary Treated Effluent</td>
<td>39° 15' 35.1"</td>
<td>121° 1' 50.7"</td>
<td>Deer Creek</td>
</tr>
</tbody>
</table>

Table 3. Administrative Information

This Order was Adopted on: 10 June 2022
This Order shall become effective on: 1 August 2022
This Order shall expire on: 31 July 2027

The Discharger shall file a Report of Waste Discharge (ROWD) as an application for reissuance of WDRs in accordance with title 23, California Code of Regulations, and an application for reissuance of a NPDES permit no later than: 31 July 2026

The United States Environmental Protection Agency (U.S. EPA) and the California Regional Water Quality Control Board, Central Valley Region have classified this discharge as follows: Minor discharge

I, Patrick Pulupa, Executive Officer, do hereby certify that this Order with all attachments is a full, true, and correct copy of the Order adopted by the California Regional Water Quality Control Board, Central Valley Region, on 10 June 2022.

__
PATRICK PULUPA, Executive Officer

Date: 2022.06.23
14:30:02 -07'00'
TABLE OF CONTENTS

I. Facility Information ... 3
II. Findings ... 3
III. Discharge Prohibitions ... 4
IV. Effluent Limitations and Discharge Specifications .. 5
 A. Effluent Limitations – Discharge Point 001 .. 5
 1. Final Effluent Limitations – Discharge Point 001 .. 5
 B. Land Discharge Specifications – Not Applicable ... 6
 C. Recycling Specifications – Not Applicable .. 6
V. Receiving Water Limitations ... 7
 A. Surface Water Limitations ... 7
 B. Groundwater Limitations – None .. 9
VI. Provisions .. 9
 A. Standard Provisions .. 9
 B. Monitoring and Reporting Program (MRP) Requirements .. 13
 C. Special Provisions ... 14
 1. Reopener Provisions ... 14
 2. Special Studies, Technical Reports and Additional Monitoring Requirements 15
 4. Construction, Operation and Maintenance Specifications 17
 5. Special Provisions for Publicly-Owned Treatment Works (POTWs) 17
 6. Other Special Provisions ... 18
 7. Compliance Schedules – None ... 19
VII. Compliance Determination .. 19

TABLES

Table 1. Discharger Information .. 1
Table 2. Discharge Location .. 1
Table 3. Administrative Information ... 1
Table 4. Effluent Limitations ... 5

ATTACHMENTS

Attachment A – Definitions .. A-1
Attachment B – Map ... B-1
Attachment C – Flow Schematic ... C-1
Attachment D – Standard Provisions .. D-1
Attachment E – Monitoring and Reporting Program ... E-1
Attachment F – Fact Sheet .. F-1
Attachment G – Summary Of Reasonable Potential Analysis ... G-1
Attachment H – Calculation of WQBEL’S .. H-1
II. FINDINGS

The California Regional Water Quality Control Board, Central Valley Region (hereinafter "Central Valley Water Board"), finds:

A. Legal Authorities. This Order serves as waste discharge requirements (WDRs) pursuant to article 4, chapter 4, division 7 of the California Water Code (commencing with section 13260). This Order is also issued pursuant to section 402 of the federal Clean Water Act (CWA) and implementing regulations adopted by the U.S. EPA and chapter 5.5, division 7 of the Water Code (commencing with section 13370). It shall serve as a National Pollutant Discharge Elimination System (NPDES) permit authorizing the Discharger to discharge into waters of the United States at the discharge location described in Table 2 subject to the WDRs in this Order.

B. California Environmental Quality Act (CEQA). Under Water Code section 13389, this action to adopt an NPDES permit is exempt from the provisions of Chapter 3 of CEQA, (commencing with section 21100) of Division 13 of Public Resources Code.

C. Background and Rationale for Requirements. The Central Valley Water Board developed the requirements in this Order based on information submitted as part of the application, through monitoring and reporting programs, and other available information. The Fact Sheet (Attachment F), which contains background information and rationale for the requirements in this Order, is hereby incorporated into and constitutes Findings for this Order. Attachments A through E and G through H are also incorporated into this Order.

D. Provisions and Requirements Implementing State Law. The provisions/requirements in subsection IV.B, IV.C and V.B are included to implement state law only. These provisions/requirements are not required or authorized under the federal CWA; consequently, violations of these provisions/requirements are not subject to the enforcement remedies that are available for NPDES violations.

E. Monitoring and Reporting. 40 C.F.R. section 122.48 requires that all NPDES permits specify requirements for recording and reporting monitoring results. Water Code sections 13267 and 13383 authorize the Central Valley Water Board to require technical and monitoring reports. The Monitoring and Reporting Program establishes monitoring and reporting requirements to implement federal and State requirements. The Monitoring and Reporting Program is provided in Attachment E.

The technical and monitoring reports in this Order are required in accordance with Water Code section 13267, which states the following in subsection (b)(1), “In conducting an investigation specified in subdivision (a), the regional board may require that any person who has discharged, discharges, or is suspected of having
discharged discharging, or who proposes to discharge waste within its region, or any
citizen or domiciliary, or political agency or entity of this state who has discharged,
discharges, or is suspected of having discharged or discharging, or who proposes to
discharge, waste outside of its region could affect the quality of waters within its
region shall furnish, under penalty of perjury, technical or monitoring program
reports which the regional board requires. The burden, including costs, of these
reports shall bear a reasonable relationship to the need for the report and the
benefits to be obtained from the reports. In requiring those reports, the regional
board shall provide the person with a written explanation with regard to the need for
the reports and shall identify the evidence that supports requiring that person to
provide the reports."

The Discharger owns and operates the Facility subject to this Order. The monitoring
reports required by this Order are necessary to determine compliance with this
Order. The need for the monitoring reports is discussed in the Fact Sheet.

F. Notification of Interested Persons. The Central Valley Water Board has notified
the Discharger and interested agencies and persons of its intent to prescribe WDRs
for the discharge and has provided them with an opportunity to submit their written
comments and recommendations. Details of the notification are provided in the Fact
Sheet.

G. Consideration of Public Comment. The Central Valley Water Board, in a public
meeting, heard and considered all comments pertaining to the discharge. Details of
the Public Hearing are provided in the Fact Sheet.

THEREFORE, IT IS HEREBY ORDERED that Order R5-2017-0060 is rescinded upon the
effective date of this Order except for enforcement purposes, and, in order to meet the
provisions contained in division 7 of the Water Code (commencing with section 13000)
and regulations adopted thereunder, and the provisions of the CWA and regulations and
guidelines adopted thereunder, the Discharger shall comply with the requirements in this
Order. This action in no way prevents the Central Valley Water Board from taking
enforcement action for violations of the previous Order.

III. DISCHARGE PROHIBITIONS

A. Discharge of wastewater from the Facility, as the Facility is specifically described in
the Fact Sheet in section II.B, in a manner different from that described in this Order
is prohibited.

B. The by-pass or overflow of wastes to surface waters is prohibited, except as allowed

C. Neither the discharge nor its treatment shall create a nuisance as defined in section
13050 of the Water Code.

D. Discharge of waste classified as ‘hazardous’, as defined in the California Code of
Regulations, title 22, section 66261.1 et seq., is prohibited.
E. **Average Dry Weather Flow.** Discharges exceeding an average dry weather flow of 0.69 million gallons per day (MGD) are prohibited.

IV. **EFFLUENT LIMITATIONS AND DISCHARGE SPECIFICATIONS**

A. **Effluent Limitations – Discharge Point 001**

1. **Final Effluent Limitations – Discharge Point 001**

The Discharger shall maintain compliance with the following effluent limitations at Discharge Point 001. Unless otherwise specified compliance shall be measured at Monitoring Location EFF-001, as described in the Monitoring and Reporting Program, Attachment E:

 a. The Discharger shall maintain compliance with the effluent limitations specified in Table 4:

 Table 4. Effluent Limitations

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>Average Monthly</th>
<th>Average Weekly</th>
<th>Maximum Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical Oxygen Demand (BOD), 5-day @ 20°Celsius</td>
<td>milligrams per liter (mg/L)</td>
<td>10</td>
<td>15</td>
<td>--</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>mg/L</td>
<td>10</td>
<td>15</td>
<td>--</td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>2.0</td>
<td>6.7</td>
<td>--</td>
</tr>
<tr>
<td>Nitrate Plus Nitrite (as N)</td>
<td>mg/L</td>
<td>10</td>
<td>15</td>
<td>--</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>micrograms per liter (µg/L)</td>
<td>4.2</td>
<td>--</td>
<td>8.3</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>µg/L</td>
<td>5.9</td>
<td>--</td>
<td>12</td>
</tr>
</tbody>
</table>

 b. **pH:**

 i. 6.5 Standard Units (SU) as an instantaneous minimum.

 ii. 8.5 SU as an instantaneous maximum.

 c. **Percent Removal:** The average monthly percent removal of 5-day biochemical oxygen demand (BOD5) and total suspended solids (TSS) shall not be less than 85 percent.

 d. **Acute Whole Effluent Toxicity (WET).** Survival of aquatic organisms in 96-hour bioassays of undiluted waste shall be no less than:

 i. 70%, minimum for any one bioassay; and

 ii. 90%, median for any three consecutive bioassays.
e. **Chronic Whole Effluent Toxicity (WET).** The effluent chronic toxicity shall not exceed 1 chronic toxicity units (as 100/NOEC) AND a percent effect of 25 percent (%) at 100 percent (%) effluent, for any endpoint as the median of up to three consecutive chronic toxicity tests within a six-week period.

f. **Total Residual Chlorine.** Effluent total residual chlorine shall not exceed:
 i. 0.011 mg/L, as a 4-day average; and
 ii. 0.019 mg/L, as a 1-hour average.

g. **Total Coliform Organisms.** Effluent total coliform organisms shall not exceed the following with compliance measured at Monitoring Location EFF-001 as described in the MRP, Attachment E:
 i. 2.2 most probable number per 100 milliliter (MPN/100 mL), as a 7-day median.
 ii. 23 MPN/100 mL, more than once in any 30-day period; and
 iii. 240 MPN/100 mL, at any time.

h. **Diazinon and Chlorpyrifos.** Effluent diazinon and chlorpyrifos concentrations shall not exceed the sum of one (1.0) as identified below:
 i. **Average Monthly Effluent Limitation (AMEL)**

 \[
 \text{SAMEL} = \frac{\text{CD M-avg}}{0.079} + \frac{\text{CC M-avg}}{0.012} \leq 1.0
 \]

 \[
 \text{CD M-AVG} = \text{average monthly diazinon effluent concentration in } \mu\text{g/L.}
 \]

 \[
 \text{CC M-AVG} = \text{average monthly chlorpyrifos effluent concentration in } \mu\text{g/L.}
 \]
 ii. **Average Weekly Effluent Limitation (AWEL)**

 \[
 \text{SAWEL} = \frac{\text{CD W-avg}}{0.14} + \frac{\text{CC W-avg}}{0.021} \leq 1.0
 \]

 \[
 \text{CD W-AVG} = \text{average weekly diazinon effluent concentration in } \mu\text{g/L.}
 \]

 \[
 \text{CC W-AVG} = \text{average weekly chlorpyrifos effluent concentration in } \mu\text{g/L.}
 \]
 i. **Mercury, Total.** For a calendar year, the total annual mass discharge of total mercury shall not exceed 0.0020 pounds.

B. **Land Discharge Specifications – Not Applicable**

C. **Recycling Specifications – Not Applicable**
V. RECEIVING WATER LIMITATIONS

A. Surface Water Limitations

The discharge shall not cause the following in Deer Creek:

1. **Biostimulatory Substances.** Water to contain biostimulatory substances which promote aquatic growths in concentrations that cause nuisance or adversely affect beneficial uses.

2. **Chemical Constituents.** Chemical constituents to be present in concentrations that adversely affect beneficial uses.

3. **Color.** Discoloration that causes nuisance or adversely affects beneficial uses.

4. **Dissolved Oxygen:**
 a. The monthly median of the mean daily dissolved oxygen concentration to fall below 85 percent of saturation in the main water mass;
 b. The 95-percentile dissolved oxygen concentration to fall below 75 percent of saturation; nor
 c. The dissolved oxygen concentration to be reduced below 7.0 mg/L at any time.

5. **Floating Material.** Floating material to be present in amounts that cause nuisance or adversely affect beneficial uses.

6. **Oil and Grease.** Oils, greases, waxes, or other materials to be present in concentrations that cause nuisance, result in a visible film or coating on the surface of the water or on objects in the water, or otherwise adversely affect beneficial uses.

7. **pH.** The pH to be depressed below 6.5 nor raised above 8.5

8. **Pesticides:**
 a. Pesticides to be present, individually or in combination, in concentrations that adversely affect beneficial uses;
 b. Pesticides to be present in bottom sediments or aquatic life in concentrations that adversely affect beneficial uses;
 c. Total identifiable persistent chlorinated hydrocarbon pesticides to be present in the water column at concentrations detectable within the accuracy of analytical methods approved by U.S. EPA or the Executive Officer;
d. Pesticide concentrations to exceed those allowable by applicable antidegradation policies (see State Water Board Resolution No. 68-16 and 40 CFR section 131.12.);

e. Pesticide concentrations to exceed the lowest levels technically and economically achievable;

f. Pesticides to be present in concentration in excess of the maximum contaminant levels (MCLs) set forth in CCR, Title 22, division 4, chapter 15; nor

g. Thiobencarb to be present in excess of 1.0 µg/L.

9. **Radioactivity:**

 a. Radionuclides to be present in concentrations that are harmful to human, plant, animal, or aquatic life nor that result in the accumulation of radionuclides in the food web to an extent that presents a hazard to human, plant, animal, or aquatic life.

 b. Radionuclides to be present in excess of the MCLs specified in Table 64442 of section 64442 and Table 64443 of section 64443 of Title 22 of the California Code of Regulations.

10. **Suspended Sediments.** The suspended sediment load and suspended sediment discharge rate of surface waters to be altered in such a manner as to cause nuisance or adversely affect beneficial uses.

11. **Settleable Substances.** Substances to be present in concentrations that result in the deposition of material that causes nuisance or adversely affects beneficial uses.

12. **Suspended Material.** Suspended material to be present in concentrations that cause nuisance or adversely affect beneficial uses.

13. **Taste and Odors.** Taste- or odor-producing substances to be present in concentrations that impart undesirable tastes or odors to fish flesh or other edible products of aquatic origin, or that cause nuisance, or otherwise adversely affect beneficial uses.

14. **Temperature.** The natural temperature to be increased by more than 5° Fahrenheit. Compliance to be determined based on the difference in temperature at Monitoring Locations RSW-001 and RSW-002.

15. **Toxicity.** Toxic substances to be present, individually or in combination, in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life.
16. Turbidity.
 a. Shall not exceed 2 Nephelometric Turbidity Units (NTU) where natural turbidity is less than 1 NTU;
 b. Shall not increase more than 1 NTU where natural turbidity is between 1 and 5 NTUs;
 c. Shall not increase more than 20 percent where natural turbidity is between 5 and 50 NTUs;
 d. Shall not increase more than 10 NTU where natural turbidity is between 50 and 100 NTUs; nor
 e. Shall not increase more than 10 percent where natural turbidity is greater than 100 NTUs.

B. Groundwater Limitations – None

VI. PROVISIONS

A. Standard Provisions

1. The Discharger shall comply with all Standard Provisions included in Attachment D.

2. The Discharger shall comply with the following provisions. In the event that there is any conflict, duplication, or overlap between provisions specified by this Order, the more stringent provision shall apply:

 a. If the Discharger’s wastewater treatment plant is publicly owned or subject to regulation by California Public Utilities Commission, it shall be supervised and operated by persons possessing certificates of appropriate grade according to Title 23, CCR, division 3, chapter 26.

 b. After notice and opportunity for a hearing, this Order may be terminated or modified for cause, including, but not limited to:
 i. violation of any term or condition contained in this Order;
 ii. obtaining this Order by misrepresentation or by failing to disclose fully all relevant facts;
 iii. a change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge; and
 iv. a material change in the character, location, or volume of discharge.

 The causes for modification include:
i. New regulations. New regulations have been promulgated under section 405(d) of the CWA, or the standards or regulations on which the permit was based have been changed by promulgation of amended standards or regulations or by judicial decision after the permit was issued.

ii. Land application plans. When required by a permit condition to incorporate a land application plan for beneficial reuse of sewage sludge, to revise an existing land application plan, or to add a land application plan.

iii. Change in sludge use or disposal practice. Under 40 CFR section 122.62(a)(1), a change in the Discharger’s sludge use or disposal practice is a cause for modification of the permit. It is cause for revocation and reissuance if the Discharger requests or agrees.

The Central Valley Water Board may review and revise this Order at any time upon application of any affected person or the Central Valley Water Board's own motion.

c. If a toxic effluent standard or prohibition (including any scheduled compliance specified in such effluent standard or prohibition) is established under section 307(a) of the CWA, or amendments thereto, for a toxic pollutant that is present in the discharge authorized herein, and such standard or prohibition is more stringent than any limitation upon such pollutant in this Order, the Central Valley Water Board will revise or modify this Order in accordance with such toxic effluent standard or prohibition.

The Discharger shall comply with effluent standards and prohibitions within the time provided in the regulations that establish those standards or prohibitions, even if this Order has not yet been modified.

d. This Order shall be modified, or alternately revoked and reissued, to comply with any applicable effluent standard or limitation issued or approved under sections 301(b)(2)(C) and (D), 304(b)(2), and 307(a)(2) of the CWA, if the effluent standard or limitation so issued or approved:

i. Contains different conditions or is otherwise more stringent than any effluent limitation in the Order; or

ii. Controls any pollutant limited in the Order.

The Order, as modified or reissued under this paragraph, shall also contain any other requirements of the CWA then applicable.

e. The provisions of this Order are severable. If any provision of this Order is found invalid, the remainder of this Order shall not be affected.
f. The Discharger shall take all reasonable steps to minimize any adverse effects to waters of the State or users of those waters resulting from any discharge or sludge use or disposal in violation of this Order. Reasonable steps shall include such accelerated or additional monitoring as necessary to determine the nature and impact of the non-complying discharge or sludge use or disposal.

g. The Discharger shall ensure compliance with any existing or future pretreatment standard promulgated by U.S. EPA under section 307 of the CWA, or amendment thereto, for any discharge to the municipal system.

h. A copy of this Order shall be maintained at the discharge facility and be available at all times to operating personnel. Key operating personnel shall be familiar with its content.

i. Safeguard to electric power failure:

i. The Discharger shall provide safeguards to assure that, should there be reduction, loss, or failure of electric power, the discharge shall comply with the terms and conditions of this Order.

ii. Upon written request by the Central Valley Water Board, the Discharger shall submit a written description of safeguards. Such safeguards may include alternate power sources, standby generators, retention capacity, operating procedures, or other means. A description of the safeguards provided shall include an analysis of the frequency, duration, and impact of power failures experienced over the past 5 years on effluent quality and on the capability of the Discharger to comply with the terms and conditions of the Order. The adequacy of the safeguards is subject to the approval of the Central Valley Water Board.

iii. Should the treatment works not include safeguards against reduction, loss, or failure of electric power, or should the Central Valley Water Board not approve the existing safeguards, the Discharger shall, within 90 days of having been advised in writing by the Central Valley Water Board that the existing safeguards are inadequate, provide to the Central Valley Water Board and U.S. EPA a schedule of compliance for providing safeguards such that in the event of reduction, loss, or failure of electric power, the Discharger shall comply with the terms and conditions of this Order. The schedule of compliance shall, upon approval of the Central Valley Water Board, become a condition of this Order.

j. The Discharger, upon written request of the Central Valley Water Board, shall file with the Board a technical report on its preventive (failsafe) and contingency (cleanup) plans for controlling accidental discharges, and for minimizing the effect of such events. This report may be combined with
that required under the Central Valley Water Board Standard Provision contained in section VI.A.2.i of this Order.

The technical report shall:

i. Identify the possible sources of spills, leaks, untreated waste by-pass, and contaminated drainage. Loading and storage areas, power outage, waste treatment unit outage, and failure of process equipment, tanks and pipes should be considered.

ii. Evaluate the effectiveness of present facilities and procedures and state when they became operational.

iii. Predict the effectiveness of the proposed facilities and procedures and provide an implementation schedule containing interim and final dates when they will be constructed, implemented, or operational.

The Central Valley Water Board, after review of the technical report, may establish conditions which it deems necessary to control accidental discharges and to minimize the effects of such events. Such conditions shall be incorporated as part of this Order, upon notice to the Discharger.

k. A publicly owned treatment works whose waste flow has been increasing, or is projected to increase, shall estimate when flows will reach hydraulic and treatment capacities of its treatment and disposal facilities. The projections shall be made in January, based on the last 3 years’ average dry weather flows, peak wet weather flows and total annual flows, as appropriate. When any projection shows that capacity of any part of the facilities may be exceeded in 4 years, the Discharger shall notify the Central Valley Water Board by 31 January. A copy of the notification shall be sent to appropriate local elected officials, local permitting agencies and the press. Within 120 days of the notification, the Discharger shall submit a technical report showing how it will prevent flow volumes from exceeding capacity or how it will increase capacity to handle the larger flows. The Central Valley Water Board may extend the time for submitting the report.

l. The Discharger shall submit technical reports as directed by the Executive Officer. All technical reports required herein that involve planning, investigation, evaluation, or design, or other work requiring interpretation and proper application of engineering or geologic sciences, shall be prepared by or under the direction of persons registered to practice in California pursuant to California Business and Professions Code, sections 6735, 7835, and 7835.1. To demonstrate compliance with Title 16, CCR, sections 415 and 3065, all technical reports must contain a statement of the qualifications of the responsible registered professional(s). As required by these laws, completed technical reports must bear the signature(s) and seal(s) of the registered professional(s) in a manner such that all work can be clearly attributed to the professional responsible for the work.
m. The Central Valley Water Board is authorized to enforce the terms of this permit under several provisions of the Water Code, including, but not limited to, sections 13385, 13386, and 13387.

n. In the event of any change in control or ownership of land or waste discharge facilities presently owned or controlled by the Discharger, the Discharger shall notify the succeeding owner or operator of the existence of this Order by letter, a copy of which shall be immediately forwarded to the Central Valley Water Board.

o. This Order may be reopened to transfer ownership of control of this Order. The succeeding owner or operator must apply in writing requesting transfer of the Order. The request must contain the requesting entity's full legal name, the state of incorporation if a corporation, address and telephone number of the persons responsible for contact with the Central Valley Water Board and a statement. The statement shall comply with the signatory and certification requirements in the federal Standard Provisions (Attachment D, section V.B) and state that the new owner or operator assumes full responsibility for compliance with this Order.

p. If the Discharger submits a timely and complete Report of Waste Discharge for permit reissuance, this permit shall continue in force and effect until the permit is reissued or the Regional Water Board rescinds the permit.

q. Failure to comply with provisions or requirements of this Order, or violation of other applicable laws or regulations governing discharges from this facility, may subject the Discharger to administrative or civil liabilities, criminal penalties, and/or other enforcement remedies to ensure compliance. Additionally, certain violations may subject the Discharger to civil or criminal enforcement from appropriate local, state, or federal law enforcement entities.

r. In the event the Discharger does not comply or will be unable to comply for any reason, with any prohibition, effluent limitation, or receiving water limitation of this Order, the Discharger shall notify the Central Valley Water Board by telephone (916) 464-3291 within 24 hours of having knowledge of such noncompliance, and shall confirm this notification in writing within five days, unless the Central Valley Water Board waives confirmation. The written notification shall state the nature, time, duration, and cause of noncompliance, and shall describe the measures being taken to remedy the current noncompliance and prevent recurrence including, where applicable, a schedule of implementation. Other noncompliance requires written notification as above at the time of the normal monitoring report.

B. Monitoring and Reporting Program (MRP) Requirements
The Discharger shall comply with the MRP, and future revisions thereto, in Attachment E.

C. Special Provisions

1. Reopener Provisions

 a. Conditions that necessitate a major modification of a permit are described in 40 CFR section 122.62, including, but not limited to:

 i. If new or amended applicable water quality standards are promulgated or approved pursuant to section 303 of the CWA, or amendments thereto, this permit may be reopened and modified in accordance with the new or amended standards.

 ii. When new information, that was not available at the time of permit issuance, would have justified different permit conditions at the time of issuance.

 b. This Order may be reopened for modification, or revocation and reissuance, as a result of the detection of a reportable priority pollutant generated by special conditions included in this Order. These special conditions may be, but are not limited to, fish tissue sampling, whole effluent toxicity, monitoring requirements on internal waste stream(s), and monitoring for surrogate parameters. Additional requirements may be included in this Order as a result of the special condition monitoring data.

 c. Mercury. If mercury is found to be causing toxicity based on acute or chronic toxicity test results, or if a TMDL program is adopted, this Order shall be reopened, and the mass effluent limitation modified (higher or lower) or an effluent concentration limitation imposed. If the Central Valley Water Board determines that a mercury offset program is feasible for Dischargers subject to a NPDES permit, then this Order may be reopened to reevaluate the mercury mass loading limitation(s) and the need for a mercury offset program for the Discharger.

 d. Whole Effluent Toxicity. As a result of a Toxicity Reduction Evaluation (TRE), this Order may be reopened to include a revised chronic toxicity effluent limitation, a revised acute toxicity effluent limitation, and/or an effluent limitation for a specific toxicant identified in a TRE. Additionally, if the State Water Board revises the SIP’s toxicity control provisions, this Order may be reopened to implement the new provisions.

 e. Central Valley Salinity Alternatives for Long-Term Sustainability (CV-SALTS). On 17 January 2020, certain Basin Plan Amendments to incorporate new strategies for addressing ongoing salt and nitrate accumulation in the Central Valley became effective. Other provisions subject to U.S. EPA approval became effective on 2 November 2020,
when approved by U.S. EPA. As the Central Valley Water Board moves forward to implement those provisions that are now in effect, this Order may be amended or modified to incorporate new or modified requirements necessary for implementation of the Basin Plan Amendments. More information regarding these Amendments can be found on the Central Valley Salinity Alternatives for Long-Term Sustainability (CV-SALTS) web page:

(https://www.waterboards.ca.gov/centralvalley/water_issues/salinity/)

f. **Bis (2-ethylhexyl) Phthalate.** The Monitoring and Reporting Program (Attachment E) requires quarterly effluent bis (2-ethylhexyl) phthalate sampling during the first 24 months of the permit term. If after review of the bis (2-ethylhexyl) phthalate monitoring it is determined that the discharge has reasonable potential to cause or contribute to an exceedance of a water quality objective this Order may be reopened to include water quality-based effluent limitations and additional monitoring for bis (2-ethylhexyl) phthalate, as appropriate.

2. **Special Studies, Technical Reports and Additional Monitoring Requirements**

 a. **Toxicity Reduction Evaluation Requirements.** This Provision requires the Discharger to investigate the causes of, and identify corrective actions to reduce or eliminate, effluent toxicity. If the discharge exceeds the chronic toxicity thresholds defined in this Provision, the Discharger is required to initiate a Toxicity Reduction Evaluation (TRE) in accordance with an approved TRE Work Plan and take actions to mitigate the impact of the discharge and prevent recurrence of toxicity. A TRE is a site-specific study conducted in a stepwise process to identify the source(s) of toxicity and the effective control measures for effluent toxicity. TREs are designed to identify the causative agents and sources of whole effluent toxicity, evaluate the effectiveness of the toxicity control options, and confirm the reduction in effluent toxicity. Alternatively, under certain conditions as described in this provision below, the Discharger may participate in an approved Toxicity Evaluation Study (TES) in lieu of conducting a site-specific TRE.

 i. **Chronic Toxicity Effluent Limitation Exceeded.** When a chronic whole effluent toxicity result during routine monitoring exceeds the chronic toxicity effluent limitation, the Discharger shall proceed as follows:

 (a) **Initial Toxicity Check.** If the result is less than or equal to 1.3 TUc (as 100/EC25) AND/OR the percent effect is less than 25 percent at 100 percent effluent, check for any operation or sample collection issues and return to routine chronic toxicity monitoring. Otherwise, proceed to step (b).
(b) **Evaluate 6-week Median.** The Discharger may take two additional samples within 6 weeks of the initial routine sampling event exceeding the chronic toxicity effluent limitation to evaluate compliance using a 6-week median. If the 6-week median is greater than 1.3 TUc (as 100/EC$_{25}$) and the percent effect is greater than 25 percent at 100 percent effluent, proceed with subsection (c). Otherwise, the Discharger shall check for any operation or sample collection issues and return to routine chronic toxicity monitoring. See Compliance Determination Section VII.G for procedures for calculating 6-week median.

(c) **Toxicity Source Easily Identified.** If the source(s) of the toxicity is easily identified (e.g., temporary plant upset), the Discharger shall make necessary corrections to the facility and shall resume routine chronic toxicity monitoring; If the source of toxicity is not easily identified the Discharger shall conduct a site-specific TRE or participate in an approved TES as described in the following subsections.

(d) **Toxicity Evaluation Study.** If the percent effect is \leq 50 percent at 100 percent effluent, as the median of up to three consecutive chronic toxicity tests within a 6-week period, the Discharger may participate in an approved TES in lieu of a site-specific TRE. The TES may be conducted individually or as part of a coordinated group effort with other similar dischargers. If the Discharger chooses not to participate in an approved TES, a site-specific TRE shall be initiated in accordance with subsection (e)(i), below. Nevertheless, the Discharger may participate in an approved TES instead of a TRE if the Discharger has conducted a site-specific TRE within the past 12 months and has been unsuccessful in identifying the toxicant.

(e) **Toxicity Reduction Evaluation.** If the percent effect is greater than 50 percent at 100 percent effluent, as the median of three consecutive chronic toxicity tests within a 6-week period, the Discharger shall initiate a site-specific TRE as follows:

(i) **Within thirty (30) days** of exceeding the chronic toxicity effluent limitation, the Discharger shall submit a TRE Action Plan to the Central Valley Water Board including, at minimum:

- Specific actions the Discharger will take to investigate and identify the cause(s) of toxicity, including a TRE WET monitoring schedule;
- Specific actions the Discharger will take to mitigate the impact of the discharge and prevent the recurrence of toxicity; and
3. Best Management Practices and Pollution Prevention
 a. Salinity Evaluation and Minimization Plan. The Discharger shall continue to implement a salinity evaluation and minimization plan to identify and address sources of salinity discharged from the Facility.

 The Discharger submitted a Notice of Intent to comply with the Salt Control Program and selected the Alternative Permitting Approach. Accordingly, the Discharger shall participate in the CV-SALTS Prioritization and Optimization (P&O) Study. Furthermore, an evaluation of the effectiveness of the salinity evaluation and minimization plan shall be submitted with the ROWD. The evaluation shall include, at minimum, the calendar annual average concentrations of effluent electrical conductivity during the term of the Order. If the average electrical conductivity concentration for any calendar year exceeds a performance-based trigger of 750 µmhos/cm, the Discharger shall evaluate possible sources of salinity contributing to the exceedance of the trigger and update the salinity evaluation and minimization plan to include a plan of action to control salinity.

4. Construction, Operation and Maintenance Specifications
 a. Filtration System Operating Specifications. To ensure the filtration system is operating properly to provide adequate disinfection of the wastewater, the turbidity of the filter effluent measured at Monitoring Location FIL-001 shall not exceed:

 i. 2 NTU as a daily average;
 ii. 5 NTU more than 5 percent of the time within a 24-hour period; and
 iii. 10 NTU, at any time.

5. Special Provisions for Publicly-Owned Treatment Works (POTWs)
 a. Sludge/Biosolids Treatment or Discharge Specifications. Sludge in this Order means the solid, semisolid, and liquid residues removed during primary, secondary, or advanced wastewater treatment processes. Solid waste refers to grit and screening material generated during preliminary treatment. Residual sludge means sludge that will not be subject to further treatment at the wastewater treatment plant. Biosolids refer to sludge that has been treated and tested and shown to be capable of being beneficially and legally used pursuant to federal and state regulations as a soil amendment for agricultural, silvicultural, horticultural, and land reclamation activities as specified under 40 C.F.R. Part 503.
i. Collected screenings, residual sludge, biosolids, and other solids removed from liquid wastes shall be disposed of in a manner consistent with Consolidated Regulations for Treatment, Storage, Processing, or Disposal of Solid Waste, as set forth in Title 27, CCR, division 2, subdivision 1, section 20005, et seq. Removal for further treatment, storage, disposal, or reuse at sites (e.g., landfill, composting sites, soil amendment sites) that are operated in accordance with valid waste discharge requirements issued by a Regional Water Board will satisfy these specifications.

Sludge and solid waste shall be removed from screens, sumps, ponds, clarifiers, etc. as needed to ensure optimal plant performance.

The treatment of sludge generated at the Facility shall be confined to the Facility property and conducted in a manner that precludes infiltration of waste constituents into soils in a mass or concentration that will violate groundwater limitations in section V.B. of this Order. In addition, the storage of residual sludge, solid waste, and biosolids on Facility property shall be temporary and controlled, and contained in a manner that minimizes leachate formation and precludes infiltration of waste constituents into soils in a mass or concentration that will violate groundwater limitations included in section V.B. of this Order.

ii. The use, disposal, storage, and transportation of biosolids shall comply with existing federal and state laws and regulations, including permitting requirements and technical standards included in 40 C.F.R. Part 503. If the State Water Board and the Central Valley Water Board are given the authority to implement regulations contained in 40 C.F.R. Part 503, this Order may be reopened to incorporate appropriate time schedules and technical standards. The Discharger must comply with the standards and time schedules contained in 40 C.F.R. Part 503 whether or not they have been incorporated into this Order.

iii. The Discharger shall comply with section IX.A Biosolids of the Monitoring and Reporting Program, Attachment E.

iv. The Discharger shall implement onsite sludge/biosolids treatment, processing, and storage for the Facility as described in the Fact Sheet (Attachment F, section II.A). This Order may be reopened to address any proposed change in the onsite treatment, processing, or storage of sludge/biosolids.

6. Other Special Provisions

a. **Disinfection Requirements.** Wastewater shall be oxidized, coagulated, filtered, and adequately disinfected consistent with the State Water Board, Division of Drinking Water (DDW) reclamation criteria, CCR, Title 22, division 4, chapter 3, (Title 22), or equivalent.
VII. COMPLIANCE DETERMINATION

A. **BOD$_5$ and TSS Effluent Limitations (Section IV.A.1.a and c).** Compliance with the final effluent limitations for BOD$_5$ and TSS required in Waste Discharge Requirements section IV.A.1.a shall be ascertained by 24-hour composite samples. Compliance with effluent limitations required in Waste Discharge Requirements section IV.A.1.c for percent removal shall be calculated using the arithmetic mean of BOD$_5$ and TSS in effluent samples collected over a monthly period as a percentage of the arithmetic mean of the values for influent samples collected at approximately the same times during the same period.

B. **Average Dry Weather Flow Prohibition (Section III.E).** The average dry weather discharge flow represents the daily average flow when groundwater is at or near normal and runoff is not occurring. Compliance with the average dry weather flow discharge prohibition will be determined annually based on the average daily flow over three consecutive dry weather months (e.g., July, August, and September).

C. **Total Coliform Organisms Effluent Limitations (Section IV.A.1.g).** For each day that an effluent sample is collected and analyzed for total coliform organisms, the 7-day median shall be determined by calculating the median concentration of total coliform bacteria in the effluent utilizing the bacteriological results of the last 7 days. For example, if a sample is collected on a Wednesday, the result from that sampling event and all results from the previous 6 days (i.e., Tuesday, Monday, Sunday, Saturday, Friday, and Thursday) are used to calculate the 7-day median. If the 7-day median of total coliform organisms exceeds a most probable number (MPN) of 2.2 per 100 milliliters, the Discharger will be considered out of compliance.

D. **Total Residual Chlorine Effluent Limitations (Section IV.A.1.f).** Continuous monitoring analyzers for chlorine residual or for dechlorination agent residual in the effluent are appropriate methods for compliance determination. A positive residual dechlorination agent in the effluent indicates that chlorine is not present in the discharge, which demonstrates compliance with the effluent limitations. This type of monitoring can also be used to prove that some chlorine residual exceedances are false positives. Continuous monitoring data showing either a positive dechlorination agent residual or a chlorine residual at or below the prescribed limit are sufficient to show compliance with the total residual chlorine effluent limitations, as long as the instruments are maintained and calibrated in accordance with the manufacturer's recommendations.

Any excursion above the 1-hour average or 4-day average total residual chlorine effluent limitations is a violation. If the Discharger conducts continuous monitoring and the Discharger can demonstrate, through data collected from a back-up monitoring system, that a chlorine spike recorded by the continuous monitor was not actually due to chlorine, then any excursion resulting from the recorded spike will not be considered an exceedance, but rather reported as a false positive. Records
supporting validation of false positives shall be maintained in accordance with Section IV Standard Provisions (Attachment D).

E. **Effluent Limitations.** Compliance with effluent limitations for shall be determined in accordance with section 2.4.5 of the SIP, as follows:

1. Dischargers shall be deemed out of compliance with an effluent limitation, if the concentration of the in the monitoring sample is greater than the effluent limitation and greater than or equal to the reporting level (RL).

2. Dischargers shall be required to conduct a Pollutant Minimization Program (PMP) in accordance with section 2.4.5.1 of the SIP when there is evidence that the priority pollutant is present in the effluent above an effluent limitation and either:
 a. sample result is reported as detected, but not quantified (DNQ) and the effluent limitation is less than the RL; or
 b. sample result is reported as non-detect (ND) and the effluent limitation is less than the method detection limit (MDL).

3. When determining compliance with an average monthly effluent limitation (AMEL) or an average weekly effluent limitation (AWEL) and more than one sample result is available, the discharger shall compute the arithmetic mean unless the data set contains one or more reported determinations of DNQ or ND. In those cases, the discharger shall compute the median in place of the arithmetic mean in accordance with the following procedure:
 a. The data set shall be ranked from low to high, reported ND determinations lowest, DNQ determinations next, followed by quantified values (if any). The order of the individual ND or DNQ determinations is unimportant.
 b. The median value of the data set shall be determined. If the data set has an odd number of data points, then the median is the middle value. If the data set has an even number of data points, then the median is the average of the two values around the middle unless one or both of the points are ND or DNQ, in which case the median value shall be the lower of the two data points where DNQ is lower than a value and ND is lower than DNQ.

4. If a sample result, or the arithmetic mean or median of multiple sample results, is below the RL, and there is evidence that the priority pollutant is present in the effluent above an effluent limitation and the discharger conducts a PMP (as described in section 2.4.5.1), the discharger shall **not** be deemed out of compliance.

F. **Dissolved Oxygen Receiving Water Limitation (Section V.A.4.a-c).** The Facility provides a high level of treatment including tertiary filtration and nitrification, which results in minimal dissolved oxygen impacts in the receiving water. Once per week
receiving water monitoring is required in the Monitoring and Reporting Program (Attachment E) and is sufficient to evaluate the impacts of the discharge and compliance with this Order. Once per week receiving water monitoring data, measured at monitoring locations RSW-001 and RSW-002, will be used to determine compliance with part “c” of the dissolved oxygen receiving water limitation to ensure the discharge does not cause the dissolved oxygen concentrations in the Deer Creek to be reduced below 7.0 mg/L at any time. However, should more frequent dissolved oxygen and temperature receiving water monitoring be conducted, Central Valley Water Board staff may evaluate compliance with parts “a” and “b”.

G. **Chronic Whole Effluent Toxicity Effluent Limitation (Section IV.A.1.e).** To evaluate compliance with the chronic whole effluent toxicity effluent limitation, the median chronic toxicity units (TUc) shall be the median of up to three consecutive chronic toxicity bioassays during a six-week period. This includes a routine chronic toxicity monitoring event and two subsequent optional compliance monitoring events. If additional compliance monitoring events are not conducted, the median is equal to the result for routine chronic toxicity monitoring event. If only one additional compliance monitoring event is conducted, the median will be established as the arithmetic mean of the routine monitoring event and compliance monitoring event.

Where the median chronic toxicity units exceed 1 TUc (as 100/NOEC) for any endpoint, the Discharger will be deemed out of compliance with the chronic toxicity effluent limitation if the median chronic toxicity units for any endpoint also exceed a reporting level of 1.3 TUc (as 100/EC25) AND the percent effect at 100% effluent exceeds 25 percent. The percent effect used to evaluate compliance with the chronic toxicity effluent limitation shall be based on the chronic toxicity bioassay result(s) from the sample(s) used to establish the median TUc result. If the median TUc is based on two equal chronic toxicity bioassay results, the percent effect of the sample with the greatest percent effect shall be used to evaluate compliance with the chronic toxicity effluent limitation.

H. **Chlorpyrifos and Diazinon Effluent Limitations (Sections IV.A.1.h).** Compliance shall be determined by calculating the sum (S), as provided in this Order, with analytical results that are reported as ND concentrations to be considered to be zero.

I. **Total Mercury Mass Loading Effluent Limitation (section IV.A.1.i).** The procedures for calculating mass loadings are as follows:

1. The total pollutant mass load for each calendar year shall be determined using average of all concentration data collected that year and the corresponding average flow during that year. All effluent monitoring data collected under the MRP, pretreatment program, and any special studies shall be used for these calculations. The calendar year total mass loading shall be the calculated average mass loading for the individual calendar year.
2. In calculating compliance, the Discharger shall count all non-detect measures at one-half of the detection level. If compliance with the effluent limitation is not attained due to the non-detect contribution, the Discharger shall improve and implement available analytical capabilities and compliance shall be evaluated with consideration of the detection limits.
ATTACHMENT A – DEFINITIONS

1Q10
The lowest one-day flow with an average reoccurrence frequency of once in ten years.

7Q10
The lowest average seven consecutive day flow with an average reoccurrence frequency of once in ten years.

Acute Aquatic Toxicity Test
A test to determine an adverse effect (usually lethality) on a group of aquatic test organisms during a short-term exposure (e.g., 24, 48, or 96 hours).

Acutely Toxic Conditions
As used in the context of mixing zones, refers to the lethality that occurs to mobile aquatic organisms that move or drift through the mixing zone.

Arithmetic Mean (μ)
Also called the average, is the sum of measured values divided by the number of samples. For ambient water concentrations, the arithmetic mean is calculated as follows:

\[
\text{Arithmetic mean} = \mu = \frac{\Sigma x}{n}
\]

where: \(\Sigma x\) is the sum of the measured ambient water concentrations, and \(n\) is the number of samples.

Average Monthly Effluent Limitation (AMEL)
The highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month divided by the number of daily discharges measured during that month.

Average Weekly Effluent Limitation (AWEL)
The highest allowable average of daily discharges over a calendar week (Sunday through Saturday), calculated as the sum of all daily discharges measured during a calendar week divided by the number of daily discharges measured during that week.

Best Management Practices (BMPs)
Methods, measures, or practices designed and selected to reduce or eliminate the discharge of pollutants to surface waters from point and nonpoint source discharges including storm water. BMPs include structural and non-structural controls, and operation and maintenance procedures, which can be applied before, during, and/or after pollution producing activities.

Bioaccumulative
Those substances taken up by an organism from its surrounding medium through gill membranes, epithelial tissue, or from food and subsequently concentrated and retained in the body of the organism.
Chronic Aquatic Toxicity Test
A test to determine an adverse effect (sub-lethal or lethal) on a group of aquatic test organisms during an exposure of duration long enough to assess sub-lethal effects.

Carcinogenic
Pollutants are substances that are known to cause cancer in living organisms.

Coefficient of Variation (CV)
CV is a measure of the data variability and is calculated as the estimated standard deviation divided by the arithmetic mean of the observed values.

Completely-Mixed Discharge
Completely-mixed discharge condition means not more than a 5 percent difference, accounting for analytical variability, in the concentration of a pollutant exists across a transect of the water body at a point within two stream/river widths from the discharge point.

Daily Discharge
Daily Discharge is defined as either: (1) the total mass of the constituent discharged over the calendar day (12:00 am through 11:59 pm) or any 24-hour period that reasonably represents a calendar day for purposes of sampling (as specified in the permit), for a constituent with limitations expressed in units of mass or; (2) the unweighted arithmetic mean measurement of the constituent over the day for a constituent with limitations expressed in other units of measurement (e.g., concentration).

The daily discharge may be determined by the analytical results of a composite sample taken over the course of one day (a calendar day or other 24-hour period defined as a day) or by the arithmetic mean of analytical results from one or more grab samples taken over the course of the day.

For composite sampling, if 1 day is defined as a 24-hour period other than a calendar day, the analytical result for the 24-hour period will be considered as the result for the calendar day in which the 24-hour period ends.

Detected, but Not Quantified (DNQ)
DNQ are those sample results less than the RL, but greater than or equal to the laboratory’s MDL. Sample results reported as DNQ are estimated concentrations.

Dilution Credit
Dilution Credit is the amount of dilution granted to a discharge in the calculation of a water quality-based effluent limitation, based on the allowance of a specified mixing zone. It is calculated from the dilution ratio or determined through conducting a mixing zone study or modeling of the discharge and receiving water.

Dilution Ratio
The critical low flow of the upstream receiving water divided by the flow of the effluent discharged.
Effluent Concentration Allowance (ECA)
ECA is a value derived from the water quality criterion/objective, dilution credit, and ambient background concentration that is used, in conjunction with the coefficient of variation for the effluent monitoring data, to calculate a long-term average (LTA) discharge concentration. The ECA has the same meaning as waste load allocation (WLA) as used in U.S. EPA guidance (Technical Support Document For Water Quality-based Toxics Control, March 1991, second printing, EPA/505/2-90-001).

Enclosed Bays
Enclosed Bays means indentations along the coast that enclose an area of oceanic water within distinct headlands or harbor works. Enclosed bays include all bays where the narrowest distance between the headlands or outermost harbor works is less than 75 percent of the greatest dimension of the enclosed portion of the bay. Enclosed bays include, but are not limited to, Humboldt Bay, Bodega Harbor, Tomales Bay, Drake's Estero, San Francisco Bay, Morro Bay, Los Angeles-Long Beach Harbor, Upper and Lower Newport Bay, Mission Bay, and San Diego Bay. Enclosed bays do not include inland surface waters or ocean waters.

Endpoint
An effect that is measured in a toxicity study. Endpoints in toxicity tests may include, but are not limited to survival, reproduction, and growth. A measured response of a receptor to a stressor. An endpoint can be measured in a toxicity test or field survey.

Estimated Chemical Concentration
The estimated chemical concentration that results from the confirmed detection of the substance by the analytical method below the ML value.

Estuaries
Estuaries means waters, including coastal lagoons, located at the mouths of streams that serve as areas of mixing for fresh and ocean waters. Coastal lagoons and mouths of streams that are temporarily separated from the ocean by sandbars shall be considered estuaries. Estuarine waters shall be considered to extend from a bay or the open ocean to a point upstream where there is no significant mixing of fresh water and seawater. Estuarine waters included, but are not limited to, the Sacramento-San Joaquin Delta, as defined in Water Code section 12220, Suisun Bay, Carquinez Strait downstream to the Carquinez Bridge, and appropriate areas of the Smith, Mad, Eel, Noyo, Russian, Klamath, San Diego, and Otay rivers. Estuaries do not include inland surface waters or ocean waters.

Harmonic Mean
Expressed as $Q_{hm} = (n)/(\Sigma_{i=1}^{n} 1/x_i)$, where $x_i =$ specific data values and $n =$ number of data values.

Inland Surface Waters
All surface waters of the state that do not include the ocean, enclosed bays, or estuaries.

Instantaneous Maximum Effluent Limitation
The highest allowable value for any single grab sample or aliquot (i.e., each grab sample or aliquot is independently compared to the instantaneous maximum limitation).
Instantaneous Minimum Effluent Limitation
The lowest allowable value for any single grab sample or aliquot (i.e., each grab sample or aliquot is independently compared to the instantaneous minimum limitation).

Instream Waste Concentration (IWC)
The concentration of effluent in the receiving water after mixing.

Load Allocation (LA)
The portion of a receiving water's total maximum daily load that is allocated to one of its nonpoint sources of pollution or to natural background sources.

Maximum Daily Effluent Limitation (MDEL)
The highest allowable daily discharge of a pollutant, over a calendar day (or 24-hour period). For pollutants with limitations expressed in units of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the arithmetic mean measurement of the pollutant over the day.

Median
The middle measurement in a set of data. The median of a set of data is found by first arranging the measurements in order of magnitude (either increasing or decreasing order). If the number of measurements (n) is odd, then the median = \(X_{(n+1)/2} \). If n is even, then the median = \(\frac{X_{n/2} + X_{(n/2)+1}}{2} \) (i.e., the midpoint between the n/2 and n/2+1).

Method Detection Limit (MDL)
MDL is the minimum measured concentration of a substance that can be reported with 99 percent confidence that the measured concentration is distinguishable from method blank results, as defined in in 40 C.F.R. Part 136, Attachment B.

Minimum Level (ML)
ML is the concentration at which the entire analytical system must give a recognizable signal and acceptable calibration point. The ML is the concentration in a sample that is equivalent to the concentration of the lowest calibration standard analyzed by a specific analytical procedure, assuming that all the method specified sample weights, volumes, and processing steps have been followed.

Mixing Zone
Mixing Zone is a limited volume of receiving water that is allocated for mixing with a wastewater discharge where water quality criteria can be exceeded without causing adverse effects to the overall water body.

Not Detected (ND)
Sample results which are less than the laboratory’s MDL.

Objectionable Bottom Deposits
An accumulation of materials or substances on or near the bottom of a water body, which creates conditions that adversely impact aquatic life, human health, beneficial uses, or aesthetics. These conditions include, but are not limited to, the accumulation of pollutants in
the sediments and other conditions that result in harm to benthic organisms, production of food chain organisms, or fish egg development. The presence of such deposits shall be determined by RWQCB(s) on a case-by-case basis.

Ocean Waters
The territorial marine waters of the State as defined by California law to the extent these waters are outside of enclosed bays, estuaries, and coastal lagoons. Discharges to ocean waters are regulated in accordance with the State Water Board’s California Ocean Plan.

Percent Effect
The percent effect at the instream waste concentration (IWC) shall be calculated using untransformed data and the following equation:

\[
\text{Percent Effect of the Sample} = \frac{\text{Mean Control Response} - \text{Mean Sample Response}}{\text{Mean Control Response}} \times 100
\]

Persistent Pollutants
Persistent pollutants are substances for which degradation or decomposition in the environment is nonexistent or very slow.

Pollutant Minimization Program (PMP)
PMP means waste minimization and pollution prevention actions that include, but are not limited to, product substitution, waste stream recycling, alternative waste management methods, and education of the public and businesses. The goal of the PMP shall be to reduce all potential sources of a priority pollutant(s) through pollutant minimization (control) strategies, including pollution prevention measures as appropriate, to maintain the effluent concentration at or below the water quality-based effluent limitation. Pollution prevention measures may be particularly appropriate for persistent bioaccumulative priority pollutants where there is evidence that beneficial uses are being impacted. The Central Valley Water Board may consider cost effectiveness when establishing the requirements of a PMP. The completion and implementation of a Pollution Prevention Plan, if required pursuant to Water Code section 13263.3(d), shall be considered to fulfill the PMP requirements.

Pollution Prevention
Pollution Prevention means any action that causes a net reduction in the use or generation of a hazardous substance or other pollutant that is discharged into water and includes, but is not limited to, input change, operational improvement, production process change, and product reformulation (as defined in Water Code section 13263.3). Pollution prevention does not include actions that merely shift a pollutant in wastewater from one environmental medium to another environmental medium, unless clear environmental benefits of such an approach are identified to the satisfaction of the State Water Resources Control Board (State Water Board) or Central Valley Water Board.

Public Entity
Includes the federal government or a state, county, city and county, city, district, public authority, or public agency.
Response
A measured biological effect (e.g., survival, reproduction, growth) as a result of exposure to a stimulus.

Source of Drinking Water
Any water designated as municipal or domestic supply (MUN) in a Central Valley Water Board Basin Plan.

Species Sensitivity Screening
An analysis to determine the single most sensitive species from an array of test species to be used in a single species laboratory test series.

Standard Deviation (σ)
Standard Deviation is a measure of variability that is calculated as follows:

$$\sigma = \left(\sum \left[(x - \mu)^2 \right] / (n - 1) \right)^{0.5}$$

where:

- x is the observed value;
- μ is the arithmetic mean of the observed values; and
- n is the number of samples.

Statewide Toxicity Provisions
Refers to Section III.B and Section IV.B of the Water Quality Control Plan for Inland Surface Waters, Enclosed Bays, and Estuaries of California. The Statewide Toxicity Provisions were adopted by the State Water Resources Control Board on 1 December 2020, and amended on 3 November 2021. The Statewide Toxicity Provisions are pending approval by the Office of Administrative Law and U.S. EPA.

Test of Significant Toxicity (TST)
A statistical approach used to analyze aquatic toxicity test data, as described in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (EPA 833-R-10-003, 2010), Appendix A, Figure A-1 and Table A-1 (Chronic Freshwater and East Coast Methods) and Appendix B, Table B-1.

Toxicity Reduction Evaluation (TRE)
TRE is a study conducted in a stepwise process designed to identify the causative agents of effluent or ambient toxicity, isolate the sources of toxicity, evaluate the effectiveness of toxicity control options, and then confirm the reduction in toxicity. The first steps of the TRE consist of the collection of data relevant to the toxicity, including additional toxicity testing, and an evaluation of facility operations and maintenance practices, and best management practices. A Toxicity Identification Evaluation (TIE) may be required as part of the TRE, if appropriate. (A TIE is a set of procedures to identify the specific chemical(s) responsible for toxicity. These procedures are performed in three phases (characterization, identification, and confirmation) using aquatic organism toxicity tests.)
Water Effect Ratio (WER)

An appropriate measure of the toxicity of a material obtained in a site water divided by the same measure of the toxicity of the same material obtained simultaneously in a laboratory dilution water.
I. STANDARD PROVISIONS – PERMIT COMPLIANCE

A. Duty to Comply:

1. The Discharger must comply with all of the terms, requirements, and conditions of this Order. Any noncompliance constitutes a violation of the Clean Water Act (CWA) and the California Water Code and is grounds for enforcement action; permit termination, revocation and reissuance, or modification; denial of a permit renewal application; or a combination thereof. (40 C.F.R. section 122.41(a); Wat. Code, sections 13261, 13263, 13265, 13268, 13000, 13001, 13304, 13350, 13385.)

2. The Discharger shall comply with effluent standards or prohibitions established under Section 307(a) of the CWA for toxic pollutants within the time provided in the regulations that establish these standards or prohibitions, even if this Order has not yet been modified to incorporate the requirement. (40 C.F.R. section 122.41(a)(1).)

B. Need to Halt or Reduce Activity Not a Defense

It shall not be a defense for a Discharger in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this Order. (40 C.F.R. section 122.41(c).)

C. Duty to Mitigate

The Discharger shall take all reasonable steps to minimize or prevent any discharge in violation of this Order that has a reasonable likelihood of adversely affecting human health or the environment. (40 C.F.R. section 122.41(d).)

D. Proper Operation and Maintenance

The Discharger shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the Discharger to achieve compliance with the conditions of this Order. Proper operation and maintenance also includes having adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of backup or auxiliary facilities or similar systems that are installed by a Discharger only when necessary to achieve compliance with the conditions of this Order. (40 C.F.R. section 122.41(e).)

E. Property Rights

1. This Order does not convey any property rights of any sort or any exclusive privileges. (40 C.F.R. section 122.41(g).)
2. The issuance of this Order does not authorize any injury to persons or property or invasion of other private rights, or any infringement of state or local law or regulations. (40 C.F.R. section 122.5(c).)

F. Inspection and Entry

The Discharger shall allow the Central Valley Water Board, State Water Board, U.S. EPA, and/or their authorized representatives (including an authorized contractor acting as their representative), upon the presentation of credentials and other documents, as may be required by law, to (33 U.S.C. section 1318(a)(4)(B); 40 C.F.R. section 122.41(i); Wat. Code, section 13267, 13383):

1. Enter upon the Discharger's premises where a regulated facility or activity is located or conducted, or where records are kept under the conditions of this Order (33 U.S.C section 1318(a)(4)(B)(ii); 40 C.F.R. section 122.41(i)(1); Wat. Code, sections 13267, 13383);

2. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this Order (33 U.S.C. section 1318(a)(4)(B)(ii); 40 C.F.R. section 122.41(i)(2); Wat. Code, sections 13267, 13383);

3. Inspect and photograph, at reasonable times, any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this Order (33 U.S.C section 1318(a)(4)(B)(ii); 40 C.F.R. section 122.41(i)(3); Wat. Code, section 13267, 13383); and

4. Sample or monitor, at reasonable times, for the purposes of assuring Order compliance or as otherwise authorized by the CWA or the Water Code, any substances or parameters at any location. (33 U.S.C section 1318(a)(4)(B); 40 C.F.R. section 122.41(i)(4); Wat. Code, sections 13267, 13383.)

G. Bypass

1. Definitions

 a. “Bypass” means the intentional diversion of waste streams from any portion of a treatment facility. (40 C.F.R. section 122.41(m)(1)(i).)

 b. “Severe property damage” means substantial physical damage to property, damage to the treatment facilities, which causes them to become inoperable, or substantial and permanent loss of natural resources that can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production. (40 C.F.R. section 122.41(m)(1)(ii).)

2. Bypass not exceeding limitations. The Discharger may allow any bypass to occur which does not cause exceedances of effluent limitations, but only if it is for essential maintenance to assure efficient operation. These bypasses are not
subject to the provisions listed in Standard Provisions – Permit Compliance I.G.3, I.G.4, and I.G.5 below. (40 C.F.R. section 122.41(m)(2).)

3. Prohibition of bypass. Bypass is prohibited, and the Central Valley Water Board may take enforcement action against a Discharger for bypass, unless (40 C.F.R. section 122.41(m)(4)(i)):

 a. Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage (40 C.F.R. section 122.41(m)(4)(i)(A));

 b. There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass that occurred during normal periods of equipment downtime or preventive maintenance (40 C.F.R. section 122.41(m)(4)(i)(B)); and

 c. The Discharger submitted notice to the Central Valley Water Board as required under Standard Provisions – Permit Compliance I.G.5 below. (40 C.F.R. section 122.41(m)(4)(i)(C).)

4. The Central Valley Water Board may approve an anticipated bypass, after considering its adverse effects, if the Central Valley Water Board determines that it will meet the three conditions listed in Standard Provisions – Permit Compliance I.G.3 above. (40 C.F.R. section 122.41(m)(4)(ii).)

5. Notice

 a. **Anticipated bypass.** If the Discharger knows in advance of the need for a bypass, it shall submit prior notice if possible, at least 10 days before the date of the bypass. The notice shall be sent to the Central Valley Water Board. As of 21 December 2023, all notices shall be submitted electronically to the initial recipient (State Water Board’s California Integrated Water Quality System (CIWQS) Program website (http://www.waterboards.ca.gov/water_issues/programs/ciwqs/), defined in Standard Provisions – Reporting V.J below. Notices shall comply with 40 C.F.R. Part 3, section 122.22, and 40 C.F.R. Part 127. (40 C.F.R. section 122.41(m)(3)(i).)

 b. **Unanticipated bypass.** The Discharger shall submit a notice of an unanticipated bypass as required in Standard Provisions - Reporting V.E below (24-hour notice). The notice shall be sent to the Central Valley Water Board. As of 21 December 2023, all notices shall be submitted electronically to the initial recipient (State Water Board’s California Integrated Water Quality System (CIWQS) Program website (http://www.waterboards.ca.gov/water_issues/programs/ciwqs/), defined in
H. Upset

Upset means an exceptional incident in which there is unintentional and temporary noncompliance with technology-based permit effluent limitations because of factors beyond the reasonable control of the Discharger. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation. (40 C.F.R. section 122.41(n)(1).)

1. Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology-based permit effluent limitations if the requirements of Standard Provisions – Permit Compliance I.H.2 below are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review. (40 C.F.R. section 122.41(n)(2).)

2. Conditions necessary for a demonstration of upset. A Discharger who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs or other relevant evidence that (40 C.F.R. section 122.41(n)(3)):

a. An upset occurred and that the Discharger can identify the cause(s) of the upset (40 C.F.R. section 122.41(n)(3)(i));

b. The permitted facility was, at the time, being properly operated (40 C.F.R. section 122.41(n)(3)(ii));

c. The Discharger submitted notice of the upset as required in Standard Provisions – Reporting V.E.2.b below (24-hour notice) (40 C.F.R. section 122.41(n)(3)(iii)); and

d. The Discharger complied with any remedial measures required under Standard Provisions – Permit Compliance I.C above. (40 C.F.R. section 122.41(n)(3)(iv).)

3. Burden of proof. In any enforcement proceeding, the Discharger seeking to establish the occurrence of an upset has the burden of proof. (40 C.F.R. section 122.41(n)(4).)

II. STANDARD PROVISIONS – PERMIT ACTION

A. General
This Order may be modified, revoked and reissued, or terminated for cause. The filing of a request by the Discharger for modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any Order condition. (40 C.F.R. section 122.41(f).)

B. Duty to Reapply

If the Discharger wishes to continue an activity regulated by this Order after the expiration date of this Order, the Discharger must apply for and obtain a new permit. (40 C.F.R. section 122.41(b).)

C. Transfers

This Order is not transferable to any person except after notice to the Central Valley Water Board. The Central Valley Water Board may require modification or revocation and reissuance of the Order to change the name of the Discharger and incorporate such other requirements as may be necessary under the CWA and the Water Code. (40 C.F.R. section 122.41(l)(3); 122.61.)

III. STANDARD PROVISIONS – MONITORING

A. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. (40 C.F.R. section 122.41(j)(1).)

B. Monitoring must be conducted according to test procedures approved under 40 C.F.R. Part 136 for the analyses of pollutants unless another method is required under 40 C.F.R. subchapters N or O. Monitoring must be conducted according to sufficiently sensitive test methods approved under 40 C.F.R. Part 136 for the analysis of pollutants or pollutant parameters or as required under 40 C.F.R. chapter 1, subchapter N or O. For the purposes of this paragraph, a method is sufficiently sensitive when the method has the lowest ML of the analytical methods approved under 40 C.F.R. Part 136 or required under 40 C.F.R. chapter 1, subchapter N or O for the measured pollutant or pollutant parameter, or when:

1. The method minimum level (ML) is at or below the level of the most stringent effluent limitation established in the permit for the measured pollutant or pollutant parameter, and:
 a. The method ML is at or below the level of the most stringent applicable water quality criterion for the measured pollutant or pollutant parameter, or;
 b. The method ML is above the applicable water quality criterion but the amount of the pollutant or pollutant parameter in the facility’s discharge is high enough that the method detects and quantifies the level of the pollutant or pollutant parameter in the discharge;
In the case of pollutants or pollutant parameters for which there are no approved methods under 40 C.F.R. Part 136 or otherwise required under 40 C.F.R. chapter 1, subchapters N or O, monitoring must be conducted according to a test procedure specified in this Order for such pollutants or pollutant parameters. (40 C.F.R. sections 122.21(e)(3), 122.41(j)(4); 122.44(i)(1)(iv).)

IV. STANDARD PROVISIONS – RECORDS

A. Except for records of monitoring information required by this Order related to the Discharger’s sewage sludge use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 C.F.R. part 503), the Discharger shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this Order, and records of all data used to complete the application for this Order, for a period of at least three (3) years from the date of the sample, measurement, report or application. This period may be extended by request of the Central Valley Water Board Executive Officer at any time. (40 C.F.R. section 122.41(j)(2).)

B. Records of monitoring information shall include:

1. The date, exact place, and time of sampling or measurements (40 C.F.R. section 122.41(j)(3)(i));
2. The individual(s) who performed the sampling or measurements (40 C.F.R. section 122.41(j)(3)(ii));
3. The date(s) analyses were performed (40 C.F.R. section 122.41(j)(3)(iii));
4. The individual(s) who performed the analyses (40 C.F.R. section 122.41(j)(3)(iv));
5. The analytical techniques or methods used (40 C.F.R. section 122.41(j)(3)(v)); and
6. The results of such analyses. (40 C.F.R. section 122.41(j)(3)(vi).)

C. Claims of confidentiality for the following information will be denied (40 C.F.R. section 122.7(b)):

1. The name and address of any permit applicant or Discharger (40 C.F.R. section 122.7(b)(1)); and
2. Permit applications and attachments, permits and effluent data. (40 C.F.R. section 122.7(b)(2).)

V. STANDARD PROVISIONS – REPORTING

A. Duty to Provide Information
The Discharger shall furnish to the Central Valley Water Board, State Water Board, or U.S. EPA within a reasonable time, any information which the Central Valley Water Board, State Water Board, or U.S. EPA may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this Order or to determine compliance with this Order. Upon request, the Discharger shall also furnish to the Central Valley Water Board, State Water Board, or U.S. EPA copies of records required to be kept by this Order. (40 C.F.R. section 122.41(h); Wat. Code, sections 13267, 13383.)

B. Signatory and Certification Requirements

1. All applications, reports, or information submitted to the Central Valley Water Board, State Water Board, and/or U.S. EPA shall be signed and certified in accordance with Standard Provisions – Reporting V.B.2, V.B.3, V.B.4, V.B.5, and V.B.6 below. (40 C.F.R. section 122.41(k).)

2. All permit applications shall be signed by either a principal executive officer or ranking elected official. For purposes of this provision, a principal executive officer of a federal agency includes: (i) the chief executive officer of the agency, or (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of U.S. EPA). (40 C.F.R. section 122.22(a)(3).)

3. All reports required by this Order and other information requested by the Central Valley Water Board, State Water Board, or U.S. EPA shall be signed by a person described in Standard Provisions – Reporting V.B.2 above, or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 a. The authorization is made in writing by a person described in Standard Provisions – Reporting V.B.2 above (40 C.F.R. section 122.22(b)(1));
 b. The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position.) (40 C.F.R. section 122.22(b)(2)); and
 c. The written authorization is submitted to the Central Valley Water Board and State Water Board. (40 C.F.R. section 122.22(b)(3).)

4. If an authorization under Standard Provisions – Reporting V.B.3 above is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of Standard Provisions – Reporting V.B.3 above must be submitted
to the Central Valley Water Board and State Water Board prior to or together with any reports, information, or applications, to be signed by an authorized representative. (40 C.F.R. section 122.22(c).)

5. Any person signing a document under Standard Provisions – Reporting V.B.2 or V.B.3 above shall make the following certification:

“I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.” (40 C.F.R. section 122.22(d).)

6. Any person providing the electronic signature for such documents described in Standard Provisions – V.B.1, V.B.2, or V.B.3 that are submitted electronically shall meet all relevant requirements of Standard Provisions – Reporting V.B, and shall ensure that all of the relevant requirements of 40 C.F.R. part 3 (Cross-Media Electronic Reporting) and 40 C.F.R. part 127 (NPDES Electronic Reporting Requirements) are met for that submission. (40 C.F.R section 122.22(e).)

C. Monitoring Reports

1. Monitoring results shall be reported at the intervals specified in the Monitoring and Reporting Program (Attachment E) in this Order. (40 C.F.R. section 122.41(l)(4).)

2. Monitoring results must be reported on a Discharge Monitoring Report (DMR) form or forms provided or specified by the Central Valley Water Board or State Water Board for reporting the results of monitoring, sludge use, or disposal practices. As of 21 December 2016, all reports and forms must be submitted electronically to the initial recipient, defined in Standard Provisions – Reporting V.J, and comply with 40 C.F.R. part 3, section 122.22, and 40 C.F.R. part 127. (40 C.F.R. section 122.41(l)(4)(i).)

3. If the Discharger monitors any pollutant more frequently than required by this Order using test procedures approved under 40 C.F.R. part 136, or another method required for an industry-specific waste stream under 40 C.F.R. subchapters N or O, the results of such monitoring shall be included in the calculation and reporting of the data submitted in the DMR or sludge reporting form specified by the Central Valley Water Board. (40 C.F.R. section 122.41(l)(4)(ii).)
4. Calculations for all limitations, which require averaging of measurements, shall utilize an arithmetic mean unless otherwise specified in this Order. (40 C.F.R. section 122.41(l)(4)(iii).)

D. Compliance Schedules

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this Order, shall be submitted no later than 14 days following each schedule date. (40 C.F.R. section 122.41(l)(5).)

E. Twenty-Four Hour Reporting

1. The Discharger shall report any noncompliance which may endanger health or the environment. Any information shall be provided orally within 24 hours from the time the Discharger becomes aware of the circumstances. A report shall also be provided within five (5) days of the time the Discharger becomes aware of the circumstances. The report shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.

For noncompliance events related to combined sewer overflows, sanitary sewer overflows, or bypass events, these reports must include the data described above (with the exception of time of discovery) as well as the type of event (combined sewer overflows, sanitary sewer overflows, or bypass events), type of sewer overflow structure (e.g., manhole, combined sewer overflow outfall), discharge volumes untreated by the treatment works treating domestic sewage, types of human health and environmental impacts of the sewer overflow event, and whether the noncompliance was related to wet weather.

As of 21 December 2020 all reports related to combined sewer overflows, sanitary sewer overflows, or bypass events must be submitted electronically to the initial recipient (State Water Board) defined in Standard Provisions – Reporting V.J. The reports shall comply with 40 C.F.R. part 3. They may also require the Discharger to electronically submit reports not related to combined sewer overflows, sanitary sewer overflows, or bypass events under this section. (40 C.F.R. section 122.41(l)(6)(i).)

F. Planned Changes

The Discharger shall give notice to the Central Valley Water Board as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required under this provision only when (40 C.F.R. section 122.41(l)(1)):
1. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in section 122.29(b) (40 C.F.R. section 122.41(l)(1)(i)); or

2. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are not subject to effluent limitations in this Order. (40 C.F.R. section 122.41(l)(1)(ii).

3. The alteration or addition results in a significant change in the Discharger’s sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan. (40 C.F.R. section 122.41(l)(1)(iii).

G. Anticipated Noncompliance

The Discharger shall give advance notice to the Central Valley Water Board of any planned changes in the permitted facility or activity that may result in noncompliance with this Order’s requirements. (40 C.F.R. section 122.41(l)(2).)

H. Other Noncompliance

The Discharger shall report all instances of noncompliance not reported under Standard Provisions – Reporting V.C, V.D, and V.E above at the time monitoring reports are submitted. The reports shall contain the information listed in Standard Provision – Reporting V.E above. For noncompliance events related to combined sewer overflows, sanitary sewer overflows, or bypass events, these reports shall contain the information described in Standard Provision – Reporting V.E and the applicable required data in appendix A to 40 C.F.R. part 127. The Central Valley Water Board may also require the Discharger to electronically submit reports not related to combined sewer overflows, sanitary sewer overflows, or bypass events under this section. (40 C.F.R. section 122.41(l)(7).)

I. Other Information

When the Discharger becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Central Valley Water Board, State Water Board, or U.S. EPA, the Discharger shall promptly submit such facts or information. (40 C.F.R. section 122.41(l)(8).)

J. Initial Recipient for Electronic Reporting Data

The owner, operator, or the duly authorized representative is required to electronically submit NPDES information specified in appendix A to 40 C.F.R. part 127 to the appropriate initial recipient, as determined by U.S. EPA, and as defined in 40 C.F.R. section 127.2(b). U.S. EPA will identify and publish the list of initial
recipients on its website and in the Federal Register, by state and by NPDES data group [see 40 C.F.R. section 127.2(c)]. U.S. EPA will update and maintain this listing. (40 C.F.R. section 122.41(l)(9).)

VI. STANDARD PROVISIONS – ENFORCEMENT

A. The Central Valley Water Board is authorized to enforce the terms of this permit under several provisions of the Water Code, including, but not limited to, sections 13385, 13386, and 13387.

VII. ADDITIONAL PROVISIONS – NOTIFICATION LEVELS

A. Publicly-Owned Treatment Works (POTWs)

All POTWs shall provide adequate notice to the Central Valley Water Board of the following (40 C.F.R. section 122.42(b)):

1. Any new introduction of pollutants into the POTW from an indirect discharger that would be subject to sections 301 or 306 of the CWA if it were directly discharging those pollutants (40 C.F.R. section 122.42(b)(1)); and

2. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of adoption of the Order. (40 C.F.R. section 122.42(b)(2).)

3. Adequate notice shall include information on the quality and quantity of effluent introduced into the POTW as well as any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW. (40 C.F.R. section 122.42(b)(3).).
ATTACHMENT E – MONITORING AND REPORTING PROGRAM

Table of Contents

I. General Monitoring Provisions .. E-2
II. Monitoring Locations .. E-3
III. Influent Monitoring Requirements ... E-4
 A. Monitoring Location INF-001 .. E-4
IV. Effluent Monitoring Requirements .. E-5
 A. Monitoring Location EFF-001 .. E-5
V. Whole Effluent Toxicity Testing Requirements ... E-7
VI. Land Discharge Monitoring Requirements – Not Applicable .. E-11
VII. Recycling Monitoring Requirements – Not Applicable .. E-11
VIII. Receiving Water Monitoring Requirements .. E-11
 A. Monitoring Location RSW-001 and RSW-002 .. E-11
IX. Other Monitoring Requirements .. E-13
 A. Biosolids – Not Applicable .. E-13
 B. Municipal Water Supply – Not Applicable ... E-13
 C. Filtration System ... E-13
 D. Effluent and Receiving Water Characterization ... E-13
X. Reporting Requirements ... E-20
 A. General Monitoring and Reporting Requirements .. E-20
 B. Self-Monitoring Reports (SMRs) .. E-20
 C. Discharge Monitoring Reports (DMR’s) .. E-24
 D. Other Reports .. E-24

Tables

Table E-1. Monitoring Station Locations ... E-3
Table E-2. Influent Monitoring .. E-4
Table E-3. Effluent Monitoring ... E-5
Table E-4. Chronic Toxicity Testing Dilution Series ... E-9
Table E-5. Receiving Water Monitoring Requirements ... E-11
Table E-6. Filtration System ... E-13
Table E-7. Effluent and Receiving Water Characterization Monitoring E-14
Table E-8. Monitoring Periods and Reporting Schedule .. E-21
Table E-9. Technical Reports ... E-26
ATTACHMENT E – MONITORING AND REPORTING PROGRAM (MRP)

The Code of Federal Regulations (40 C.F.R. section 122.48) requires that all NPDES permits specify monitoring and reporting requirements. Water Code sections 13267 and 13383 also authorize the Central Valley Water Board to require technical and monitoring reports. This MRP establishes monitoring and reporting requirements that implement federal and California regulations.

I. GENERAL MONITORING PROVISIONS

A. Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge. All samples shall be taken at the monitoring locations specified below and, unless otherwise specified, before the monitored flow joins or is diluted by any other waste stream, body of water, or substance. Monitoring locations shall not be changed without notification to and the approval of the Central Valley Water Board.

B. Final effluent samples shall be taken downstream of the last addition of wastes to the treatment or discharge works where a representative sample may be obtained prior to mixing with the receiving waters. Samples shall be collected at such a point and in such a manner to ensure a representative sample of the discharge.

C. Chemical, bacteriological, and bioassay analyses of any material required by this Order shall be conducted by a laboratory accredited for such analyses by the State Water Resources Control Board (State Water Board), Division of Drinking Water (DDW; formerly the Department of Public Health), in accordance with the provision of Water Code section 13176. Laboratories that perform sample analyses must be identified in all monitoring reports submitted to the Central Valley Water Board. In the event an accredited laboratory is not available to the Discharger for any onsite field measurements such as pH, dissolved oxygen (DO), turbidity, temperature, and residual chlorine, such analyses performed by a non-accredited laboratory will be accepted provided a Quality Assurance-Quality Control Program is instituted by the laboratory. A manual containing the steps followed in this program for any onsite field measurements such as pH, DO, turbidity, temperature, and residual chlorine must be kept onsite in the treatment facility laboratory and shall be available for inspection by Central Valley Water Board staff. The Discharger must demonstrate sufficient capability (qualified and trained employees, properly calibrated and maintained field instruments, etc.) to adequately perform these field measurements. The Quality Assurance-Quality Control Program must conform to U.S. EPA guidelines or to procedures approved by the Central Valley Water Board.

D. Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to ensure the accuracy and reliability of measurements of the volume of monitored discharges. All monitoring instruments and devices used by the Discharger to fulfill the prescribed monitoring program shall be properly maintained and calibrated as necessary, at least yearly, to ensure their continued accuracy. All flow measurement devices shall be calibrated at least once per year to ensure continued accuracy of the devices.
E. Monitoring results, including noncompliance, shall be reported at intervals and in a manner specified in this Monitoring and Reporting Program.

F. Laboratory analytical methods shall be sufficiently sensitive in accordance with the Sufficiently Sensitive Methods Rule (SSM Rule) specified under 40 C.F.R. 122.21(e)(3) and 122.44(i)(1)(iv). A U.S. EPA-approved analytical method is sufficiently sensitive for a pollutant/parameter where:

1. The method minimum level (ML) is at or below the applicable water quality objective for the receiving water, or;

2. The method ML is above the applicable water quality objective for the receiving water but the amount of the pollutant/parameter in the discharge is high enough that the method detects and quantifies the level of the pollutant/parameter, or;

3. the method ML is above the applicable water quality objective for the receiving water, but the ML is the lowest of the 40 C.F.R. 136 U.S. EPA-approved analytical methods for the pollutant/parameter.

G. The Discharger shall file with the Central Valley Water Board technical reports on self-monitoring performed according to the detailed specifications contained in this Monitoring and Reporting Program.

H. The results of all monitoring required by this Order shall be reported to the Central Valley Water Board, and shall be submitted in such a format as to allow direct comparison with the limitations and requirements of this Order. Unless otherwise specified, discharge flows shall be reported in terms of the monthly average and the daily maximum discharge flows.

II. MONITORING LOCATIONS

The Discharger shall establish the following monitoring locations to demonstrate compliance with the effluent limitations, discharge specifications, and other requirements in this Order:

<table>
<thead>
<tr>
<th>Discharge Point Name</th>
<th>Monitoring Location Name</th>
<th>Monitoring Location Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>INF-001</td>
<td>A location where a representative sample of the influent into the facility can be collected prior to any plant return flows or treatment processes.</td>
</tr>
</tbody>
</table>
| 001 | EFF-001 | A location where a representative sample of the effluent from the facility can be collected after all treatment processes and prior to commingling with other waste streams or being discharged into Deer Creek.
 Latitude: 39° 15’ 35.1” N - Longitude: -121° 01’ 50.7 W |
ATTACHMENT E – MONITORING AND REPORTING PROGRAM

Table E-1 Note:

1. The North latitude and West longitude information in Table E-1 are approximate for administrative purposes.

III. INFLUENT MONITORING REQUIREMENTS

A. Monitoring Location INF-001

1. The Discharger shall monitor influent to the Facility at INF-001 in accordance with Table E-2 and the testing requirements described in section III.A.2 below:

Table E-2. Influent Monitoring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>MGD</td>
<td>Meter</td>
<td>Continuous</td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>Grab</td>
<td>1/Week</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand (5-day @ 20°Celcius)</td>
<td>mg/L</td>
<td>24-hour Composite</td>
<td>2/Week</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>24-hour Composite</td>
<td>1/Week</td>
</tr>
</tbody>
</table>

2. Table E-2 Testing Requirements. The Discharger shall comply with the following testing requirements when monitoring for the parameters described in Table E-2:

 a. **Applicable to all parameters.** Parameters shall be analyzed using the analytical methods described in 40 CFR part 136; or by methods approved by the Central Valley Water Board or the State Water Board. In addition, if requested by the Discharger, the sample type may be modified by the Executive Officer to another 40 CFR part 136 allowed sample type.

 b. **Grab Samples.** All grab samples shall not be collected at the same time each day to get a complete representation of variations in the influent.
c. **24-Hour Composite Samples.** All composite samples shall be collected from a 24-hour flow proportional composite.

d. **Handheld Field Meter.** A handheld field meter may be used for pH, provided the meter utilizes a U.S. EPA-approved algorithm/method and is calibrated and maintained in accordance with the manufacturer's instructions. A calibration and maintenance log for each meter used for monitoring required by this Monitoring and Reporting Program shall be maintained at the Facility.

IV. EFFLUENT MONITORING REQUIREMENTS

A. Monitoring Location EFF-001

1. The Discharger shall monitor treated effluent discharge at EFF-001 in accordance with Table E-3 and the testing requirements described in section IV.A.2 below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>MGD</td>
<td>Meter</td>
<td>Continuous</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand (BOD) 5-day @ 20°Celcius</td>
<td>mg/L</td>
<td>24-hour Composite</td>
<td>2/Week</td>
</tr>
<tr>
<td>BOD</td>
<td>% removal</td>
<td>Calculate</td>
<td>1/Month</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>mg/L</td>
<td>24-hour Composite</td>
<td>2/Week</td>
</tr>
<tr>
<td>TSS</td>
<td>% removal</td>
<td>Calculate</td>
<td>1/Month</td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>Grab</td>
<td>1/Day</td>
</tr>
<tr>
<td>Bis (2-ethylhexyl) phthalate</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/Quarter (see Table Note j)</td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Week</td>
</tr>
<tr>
<td>Chlorine, Total Residual</td>
<td>mg/L</td>
<td>Meter</td>
<td>Continuous</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/Year</td>
</tr>
<tr>
<td>Dissolved Organic Carbon</td>
<td>mg/L</td>
<td>24-hour Composite</td>
<td>1/Quarter</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>Meter</td>
<td>1/Week</td>
</tr>
<tr>
<td>Diazinon</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/Year</td>
</tr>
<tr>
<td>Electrical Conductivity @ 25°Celcius</td>
<td>µmhos/cm</td>
<td>24-hour Composite</td>
<td>1/Month</td>
</tr>
<tr>
<td>Hardness, Total (as CaCO3)</td>
<td>mg/L</td>
<td>24-hour Composite</td>
<td>1/Quarter</td>
</tr>
<tr>
<td>Mercury (methyl)</td>
<td>ng/L</td>
<td>Grab</td>
<td>1/Quarter</td>
</tr>
<tr>
<td>Mercury, Total</td>
<td>ng/L</td>
<td>Grab</td>
<td>1/Quarter</td>
</tr>
</tbody>
</table>
2. **Table E-3 Testing Requirements.** The Discharger shall comply with the following testing requirements when monitoring for the parameters described in Table E-3:

 a. **Applicable to all parameters.** Parameters shall be analyzed using the analytical methods described in 40 CFR part 136 or by methods approved by the Central Valley Water Board or the State Water Board. In addition, if requested by the Discharger, the sample type may be modified by the Executive Officer to another 40 CFR part 136 allowed sample type.

 b. **24-hour composite samples** shall be collected from a 24-hour flow proportional composite.

 c. **Handheld Field Meter.** A handheld field meter may be used for temperature and pH, provided the meter utilizes a U.S. EPA-approved algorithm/method and is calibrated and maintained in accordance with the manufacturer’s instructions. A calibration and maintenance log for each meter used for monitoring required by this Monitoring and Reporting Program shall be maintained at the Facility.

 d. **Temperature** and **pH** shall be recorded at the time of ammonia sample collection.

 e. **Whole Effluent Toxicity.** See Section V for whole effluent toxicity monitoring requirements. Ammonia samples shall be collected concurrently with whole effluent toxicity monitoring.

 f. **Total Residual Chlorine** must be monitored using an analytical method that is sufficiently sensitive to measure at the permitted level of 0.01 mg/L.

 g. **Total Mercury and Methyl Mercury.** Unfiltered methyl mercury and total mercury samples shall be taken using clean hands/dirty hands procedures, as described in U.S. EPA method 1669: Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels, for collection of equipment blanks (section 9.4.4.2). The analysis of methyl mercury and total mercury shall be by U.S. EPA method 1630 and1631 (Revision E),

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
</tr>
<tr>
<td>Nitrite Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
</tr>
<tr>
<td>Nitrate Plus Nitrite (as N)</td>
<td>mg/L</td>
<td>Calculate</td>
<td>1/Month</td>
</tr>
<tr>
<td>Temperature</td>
<td>ºF</td>
<td>Grab</td>
<td>1/Day</td>
</tr>
<tr>
<td>Total Coliform Organisms</td>
<td>MPN/100 mL</td>
<td>Grab</td>
<td>3/Week</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/Month</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/Month</td>
</tr>
</tbody>
</table>
respectively, with a reporting limit of 0.05 ng/L for methyl mercury and 0.5 ng/L for total mercury.

h. **Total Coliform Organisms.** Samples for total coliform organisms may be collected at any point following disinfection.

i. **Priority Pollutants.** For all priority pollutant constituents listed in Table E-3 (Bis (2-ethylhexyl) phthalate, Persistent Chlorinated Hydrocarbon Pesticides and Priority Pollutants and Other Constituents of Concern) the RL shall be consistent with sections 2.4.2 and 2.4.3 of the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (State Implementation Policy or SIP) and the SSM Rule specified under 40 C.F.R. sections 122.21(e)(3) and 122.44(i)(1)(iv).

j. **Bis (2-ethylhexyl) phthalate.** In order to verify if bis (2-ethylhexyl) phthalate is truly present in the effluent discharge, the Discharger shall take steps to assure that sample containers, sampling apparatus, and analytical equipment are not sources of the detected contaminant. Bis (2-ethylhexyl) phthalate shall be sampled for the first 24 months of the permit term, after which the Discharger can cease quarterly monitoring.

k. **Chlorpyrifos and Diazinon** shall be sampled using U.S. EPA Method 625M, Method 8141, or equivalent GC/MS method with a lower Reporting Limit than the Basin Plan Water Quality Objectives of 0.015 µg/L and 0.1 µg/L for chlorpyrifos and diazinon, respectively.

l. **Dissolved Organic Carbon monitoring** shall be conducted concurrently with pH and hardness sampling.

m. **Nitrate and Nitrite.** Monitoring for nitrate and nitrite shall be conducted concurrently.

n. **Continuous analyzers.** The Discharger shall report documented routine meter maintenance activities including date, time of day, and duration, in which the analyzer(s) is not in operation. If analyzer(s) fail to provide continuous monitoring for more than two hours and influent and/or effluent from the disinfection process is not diverted for retreatment, the Discharger shall obtain and report hourly manual and/or grab sample results.

V. WHOLE EFFLUENT TOXICITY TESTING REQUIREMENTS

A. **Acute Toxicity Testing.** The Discharger shall conduct acute toxicity testing to determine whether the effluent is contributing acute toxicity to the receiving water. The Discharger shall meet the acute toxicity testing requirement:

1. **Monitoring Frequency** – The Discharger shall perform annual acute toxicity testing, concurrent with effluent ammonia sampling.
2. **Sample Types** – The Discharger may use flow-through or static renewal testing. For static renewal testing, the samples shall grab samples and shall be representative of the volume and quality of the discharge. The effluent samples shall be taken at Monitoring Location EFF-001.

3. **Test Species** – Test species shall be *rainbow trout* (*Oncorhynchus mykiss*).

4. **Methods** – The acute toxicity testing samples shall be analyzed using EPA-821-R-02-012, Fifth Edition. Temperature, total residual chlorine, and pH shall be recorded at the time of sample collection. No pH adjustment may be made unless approved by the Executive Officer.

5. **Test Failure** – If an acute toxicity test does not meet all test acceptability criteria, as specified in the test method, the Discharger must re-sample and re-test as soon as possible, not to exceed 7 days following notification of test failure.

B. Chronic Toxicity Testing. The Discharger shall meet the chronic toxicity testing requirements:

1. **Monitoring Frequency** – The Discharger shall perform routine quarterly chronic toxicity testing. If the result of the routine chronic toxicity testing event exhibits toxicity, demonstrated by a result greater than 1.3 TUc (as 100/EC25) AND a percent effect greater than 25 percent at 100 percent effluent, the Discharger has the option of conducting two additional compliance monitoring events and perform chronic toxicity testing using the species that exhibited toxicity in order to calculate a median. The optional compliance monitoring events shall occur at least one week apart, and the final monitoring event shall be initiated no later than 6 weeks from the routine monitoring event that exhibited toxicity. See Compliance Determination section VII.G for procedures for calculating 6-week median.

2. **Sample Types** – Effluent samples shall grab samples and shall be representative of the volume and quality of the discharge. The effluent samples shall be taken at Monitoring Location EFF-001. The receiving water control shall be a grab sample obtained from Monitoring Location RSW-001, as identified in this Monitoring and Reporting Program.

3. **Sample Volumes** – Adequate sample volumes shall be collected to provide renewal water to complete the test in the event that the discharge is intermittent.

4. **Test Species** – The testing shall be conducted using the most sensitive species. The Discharger shall conduct chronic toxicity tests with **water flea** (*Ceriodaphnia dubia*), unless otherwise specified in writing by the Executive Officer.

6. **Reference Toxicant** – As required by the SIP, all chronic toxicity tests shall be conducted with concurrent testing with a reference toxicant and shall be reported with the chronic toxicity test results.

7. **Dilutions** – For routine and compliance chronic toxicity monitoring, the chronic toxicity testing shall be performed using the dilution series identified in Table E-4, below. For TRE monitoring, the chronic toxicity testing shall be performed using the dilution series identified in Table E-4, below, unless an alternative dilution series is detailed in the submitted TRE Action Plan. A receiving water control or laboratory water control may be used as the diluent.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Dilution %</th>
<th>Dilution %</th>
<th>Dilution %</th>
<th>Dilution %</th>
<th>Dilution %</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Effluent</td>
<td>100</td>
<td>75</td>
<td>50</td>
<td>25</td>
<td>12.5</td>
<td>0</td>
</tr>
<tr>
<td>% Control Water</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>87.5</td>
<td>100</td>
</tr>
</tbody>
</table>

8. **Test Failure** – The Discharger must re-sample and re-test as soon as possible, but no later than fourteen (14) days after receiving notification of a test failure. A test failure is defined as follows:

 a. The reference toxicant test or the effluent test does not meet all test acceptability criteria as specified in the Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition, EPA/821-R-02-013, October 2002 (Method Manual), and its subsequent amendments or revisions; or

 b. The percent minimum significant difference (PMSD) measured for the test exceeds the upper PMSD bound variability criterion in the Method Manual.

C. **WET Testing Notification Requirements.** The Discharger shall notify the Central Valley Water Board within 24-hours after the receipt of test results exceeding the chronic toxicity effluent limitation, or an exceedance of the acute toxicity effluent limitation.

D. **WET Testing Reporting Requirements.** All toxicity test reports shall include the contracting laboratory’s complete report provided to the Discharger and shall be in accordance with the appropriate “Report Preparation and Test Review” sections of the method manuals. At a minimum, whole effluent toxicity monitoring shall be reported as follows:

1. **Test of Significance Toxicity (TST).** For both acute and chronic toxicity testing, the toxicity monitoring results shall be reported to the Central Valley Water Board with the quarterly self-monitoring report, and shall contain, at minimum:
a. The valid toxicity test results for the Test of Significance Toxicity (TST) statistical approach, reported as “Pass” or “Fail” and “Percent Effect” at the Instream Waste Concentration (IWC) for the discharge at 100% effluent.

b. The statistical analysis used in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (EPA 833-R-10-003, 2010) Appendix A, Figure A-1 and Table A-1, and Appendix B, Table B-1.

c. Statistical program (e.g., TST calculator, CETIS, etc.) output results, including graphical plots, for each toxicity test.

2. **Chronic WET Reporting.** Routing and compliance chronic toxicity monitoring results shall be reported to the Central Valley Water Board with the quarterly self-monitoring report, and shall contain, at minimum:

 a. The results expressed in TUc, measured as 100/NOEC, and also measured as 100/LC50, 100/EC25, 100/IC25, and 100/IC50, as appropriate.

 b. The percent effect for each endpoint at the IWC.

 c. The statistical methods used to calculate endpoints;

 d. The statistical output page, which includes the calculation of the percent minimum significant difference (PMSD);

 e. The dates of sample collection and initiation of each toxicity test; and

 f. The results compared to the numeric toxicity monitoring trigger.

 Additionally, the quarterly self-monitoring reports shall contain an updated chronology of chronic toxicity test results expressed in TUc, and organized by test species, type of test (survival, growth or reproduction), and monitoring type, i.e., routine, compliance, TES, or TRE monitoring.

3. **Acute WET Reporting.** Acute toxicity test results shall be submitted with the monthly discharger self-monitoring reports and reported as percent survival.

4. **TRE Reporting.** Reports for TREs shall be submitted in accordance with the schedule contained in the Discharger’s approved TRE Work Plan, or as amended by the Discharger’s TRE Action Plan.

5. **Quality Assurance (QA).** The Discharger must provide the following information for QA purposes:

 a. Results of the applicable reference toxicant data with the statistical output page giving the species, NOEC, LOEC, type of toxicant, dilution water used, concentrations used, PMSD, and dates tested.
b. The reference toxicant control charts for each endpoint, which include summaries of reference toxicant tests performed by the contracting laboratory.

c. Any information on deviations or problems encountered and how they were dealt with.

E. **Most Sensitive Species Screening.** The Discharger shall perform rescreening to re-evaluate the most sensitive species if there is a significant change in the nature of the discharge. If there are no significant changes during the permit term, a rescreening must be performed prior to permit reissuance and results submitted with the Report of Waste Discharge.

1. **Frequency of Testing for Species Sensitivity Screening.** Species sensitivity screening for chronic toxicity shall include, at a minimum, chronic WET testing of **four consecutive calendar quarters** using the water flea (*Ceriodaphnia dubia*), fathead minnow (*Pimephales promelas*), and green alga (*Pseudokirchneriella subcapitata*). The tests shall be performed using 100 percent effluent and one control. If the first two species sensitivity re-screening events result in no change in the most sensitive species, the Discharger may cease the species sensitive re-screening testing and the most sensitive species will remain unchanged.

VI. **LAND DISCHARGE MONITORING REQUIREMENTS – NOT APPLICABLE**

VII. **RECYCLING MONITORING REQUIREMENTS – NOT APPLICABLE**

VIII. **RECEIVING WATER MONITORING REQUIREMENTS**

A. **Monitoring Location RSW-001 and RSW-002**

1. The Discharger shall monitor Deer Creek at RSW-001 and RSW-002 in accordance with Table E-5 and the testing requirements described in section VIII.A.2 below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Week</td>
</tr>
<tr>
<td>Hardness, Total (as CaCO3)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Quarter</td>
</tr>
<tr>
<td>pH</td>
<td>Standard units</td>
<td>Grab</td>
<td>1/Week</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F</td>
<td>Grab</td>
<td>1/Week</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>Grab</td>
<td>1/Week</td>
</tr>
<tr>
<td>Dissolved Organic Carbon</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Quarter</td>
</tr>
<tr>
<td>Flow</td>
<td>MGD</td>
<td>Measurement</td>
<td>1/Month</td>
</tr>
</tbody>
</table>
2. **Table E-5 Testing Requirements.** The Discharger shall comply with the following testing requirements when monitoring for the parameters described in Table E-5:

 a. **Applicable to all parameters.** Parameters shall be analyzed using the analytical methods described in 40 CFR part 136 or by methods approved by the Central Valley Water Board or the State Water Board. In addition, if requested by the Discharger, the sample type may be modified by the Executive Officer to another 40 CFR part 136 allowed sample type.

 b. **24-hour composite samples** shall be collected from a 24-hour flow proportional composite.

 c. **Handheld Field Meter.** A handheld field meter may be used for **temperature and pH**, provided the meter utilizes a U.S. EPA-approved algorithm/method and is calibrated and maintained in accordance with the manufacturer's instructions. A calibration and maintenance log for each meter used for monitoring required by this Monitoring and Reporting Program shall be maintained at the Facility.

 d. **Flow monitoring** is only required at Monitoring Location RSW-001 and is not required under unsafe conditions.

 e. **Dissolved Organic Carbon monitoring** shall be conducted concurrently with pH and hardness.

 f. Samples shall be monitored on the same day as effluent monitoring samples.

3. In conducting the receiving water sampling, a log shall be kept of the receiving water conditions throughout the reach bounded by RSW-001 and RSW-002 when discharging to the Deer Creek. Attention shall be given to the presence of:

 a. Floating or suspended matter;

 b. Discoloration;

 c. Bottom deposits;

 d. Aquatic life;

 e. Visible films, sheens, or coatings;

 f. Fungi, slimes, or objectionable growths; and

 g. Potential nuisance conditions.

Notes on receiving water conditions shall be summarized in the monitoring report.
IX. OTHER MONITORING REQUIREMENTS

A. Biosolids – Not Applicable

B. Municipal Water Supply – Not Applicable

C. Filtration System

1. **Monitoring Locations FIL-001.** The Discharger shall monitor the filtration system at Monitoring Location FIL-001 in accordance with Table E-6 and the testing requirements described in section IX.C.2 below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Monitoring Location</th>
<th>Minimum Sampling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>(NTU)</td>
<td>Meter</td>
<td>FIL-001</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

2. **Table E-6 Testing Requirements.** The Discharger shall comply with the following testing requirements when monitoring for the parameters described in Table E-6:

 a. **Applicable to all parameters.** Parameters shall be analyzed using the analytical methods described in 40 CFR part 136; or by methods approved by the Central Valley Water Board or the State Water Board. In addition, if requested by the Discharger, the sample type may be modified by the Executive Officer to another 40 CFR part 136 allowed sample type.

 b. **Continuous analyzers.** The Discharger shall report documented routine meter maintenance activities including date, time of day, and duration, in which the analyzer(s) is not in operation. If analyzer(s) fail to provide continuous monitoring for more than two hours and influent and/or effluent from the disinfection process is not diverted for retreatment, the Discharger shall obtain and report hourly manual and/or grab sample results.

 c. **Turbidity.** Report daily average and maximum turbidity.

D. **Effluent and Receiving Water Characterization**

1. **Monitoring Frequency**

 a. **Effluent Sampling.** Samples shall be collected from the effluent (Monitoring Location EFF-001) quarterly between 1 July 2023 and 30 June 2024.

 b. **Receiving Water Sampling.** Samples shall be collected from the upstream receiving water (Monitoring Location RSW-001) quarterly between 1 July 2023 and 30 June 2024.
Constituents shall be collected and analyzed consistent with the Discharger’s Analytical Methods Report (MRP, X.D.2) using sufficiently sensitive analytical methods and Reporting Levels (RLs) per the SSM Rule specified in 40 C.F.R. 122.21(e)(3) and 122.44(i)(1)(iv). The “Reporting Level” is synonymous with the “Method Minimum Level” described in the SSM Rule. The results of the monitoring shall be submitted to the Central Valley Water Board with the quarterly self-monitoring reports. Each individual monitoring event shall provide representative sample results for the effluent and upstream receiving water.

2. **Analytical Methods Report Certification.** Prior to beginning the Effluent and Receiving Water Characterization monitoring, the Discharger shall provide a certification acknowledging the scheduled start date of the Effluent and Receiving Water Characterization monitoring and confirming that samples will be collected and analyzed as described in the previously submitted Analytical Methods Report. If there are changes to the previously submitted Analytical Methods Report, the Discharger shall outline those changes. A one-page certification form will be provided by Central Valley Water Board staff with the permit’s Notice of Adoption that the Discharger can use to satisfy this requirement. The certification form shall be submitted electronically via CIWQS submittal by the due date in the Technical Reports Table (Table E-9).

3. The Discharger shall conduct effluent and receiving water characterization monitoring in accordance with Table E-7 and the testing requirements described in section IX.D.4 below.

Table E-7. Effluent and Receiving Water Characterization Monitoring

VOLATILE ORGANICS

<table>
<thead>
<tr>
<th>CTR Number</th>
<th>Volatile Organic Parameters</th>
<th>CAS Number</th>
<th>Units</th>
<th>Effluent Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2-Chloroethyl vinyl Ether</td>
<td>110-75-8</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>17</td>
<td>Acrolein</td>
<td>107-02-8</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>18</td>
<td>Acrylonitrile</td>
<td>107-13-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>19</td>
<td>Benzene</td>
<td>71-43-2</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>20</td>
<td>Bromoform</td>
<td>75-25-2</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>21</td>
<td>Carbon Tetrachloride</td>
<td>56-23-5</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>22</td>
<td>Chlorobenzene</td>
<td>108-90-7</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>24</td>
<td>Chloroethane</td>
<td>75-00-3</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>26</td>
<td>Chloroform</td>
<td>67-66-3</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>35</td>
<td>Methyl Chloride</td>
<td>74-87-3</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>23</td>
<td>Dibromochloromethane</td>
<td>124-48-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>27</td>
<td>Dichlorobromomethane</td>
<td>75-27-4</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>36</td>
<td>Methylene Chloride</td>
<td>75-09-2</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>33</td>
<td>Ethylbenzene</td>
<td>100-41-4</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>89</td>
<td>Hexachlorobutadiene</td>
<td>87-68-3</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>34</td>
<td>Methyl Bromide (Bromomethane)</td>
<td>74-83-9</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>CTR Number</td>
<td>Volatile Organic Parameters</td>
<td>CAS Number</td>
<td>Units</td>
<td>Effluent Sample Type</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-------</td>
<td>----------------------</td>
</tr>
<tr>
<td>94</td>
<td>Naphthalene</td>
<td>91-20-3</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>38</td>
<td>Tetrachloroethylene (PCE)</td>
<td>127-18-4</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>39</td>
<td>Toluene</td>
<td>108-88-3</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>40</td>
<td>trans-1,2-Dichloroethylene</td>
<td>156-60-5</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>43</td>
<td>Trichloroethylene (TCE)</td>
<td>79-01-6</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>44</td>
<td>Vinyl Chloride</td>
<td>75-01-4</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>21</td>
<td>Methyl-tert-butyl ether (MTBE)</td>
<td>1634-04-4</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>41</td>
<td>1,1,1-Trichloroethane</td>
<td>71-55-6</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>42</td>
<td>1,1,2-Trichloroethane</td>
<td>79-00-5</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>28</td>
<td>1,1-Dichloroethane</td>
<td>75-34-3</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>30</td>
<td>1,1-Dichloroethylene (DCE)</td>
<td>75-35-4</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>31</td>
<td>1,2-Dichloropropane</td>
<td>78-87-5</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>32</td>
<td>1,3-Dichloropropylene</td>
<td>542-75-6</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>37</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>79-34-5</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>101</td>
<td>1,2,4-Trichlorobenzene</td>
<td>120-82-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>29</td>
<td>1,2-Dichloroethane</td>
<td>107-06-2</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>75</td>
<td>1,2-Dichlorobenzene</td>
<td>95-50-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>76</td>
<td>1,3-Dichlorobenzene</td>
<td>541-73-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>77</td>
<td>1,4-Dichlorobenzene</td>
<td>106-46-7</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
</tbody>
</table>

SEMI-VOLATILE ORGANICS

<table>
<thead>
<tr>
<th>CTR Number</th>
<th>Semi-Organic Volatile Parameters</th>
<th>CAS Number</th>
<th>Units</th>
<th>Effluent Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Benzo(a)Anthracene</td>
<td>56-55-3</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>85</td>
<td>1,2-Diphenylhydrazine</td>
<td>122-66-7</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>45</td>
<td>2-Chlorophenol</td>
<td>95-57-8</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>46</td>
<td>2,4-Dichlorophenol</td>
<td>120-83-2</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>47</td>
<td>2,4-Dimethylphenol</td>
<td>105-67-9</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>49</td>
<td>2,4-Dinitrophenol</td>
<td>51-28-5</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>82</td>
<td>2,4-Dinitrotoluene</td>
<td>121-14-2</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>55</td>
<td>2,4,6-Trichlorophenol</td>
<td>88-06-2</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>83</td>
<td>2,6-Dinitrotoluene</td>
<td>606-20-2</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>50</td>
<td>2-Nitrophenol</td>
<td>88-75-5</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>71</td>
<td>2-Chloronaphthalene</td>
<td>91-58-7</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>78</td>
<td>3,3-Dichlorobenzidine</td>
<td>91-94-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>62</td>
<td>Benzo(b)Fluoranthene</td>
<td>205-99-2</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>52</td>
<td>4-Chloro-3-methylphenol</td>
<td>59-50-7</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>48</td>
<td>2-Methyl-4,6-Dinitrophenol</td>
<td>534-52-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>51</td>
<td>4-Nitrophenol</td>
<td>100-02-7</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>69</td>
<td>4-Bromophenyl Phenyl Ether</td>
<td>101-55-3</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>72</td>
<td>4-Chlorophenyl Phenyl Ether</td>
<td>700-72-3</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>56</td>
<td>Acenaphthene</td>
<td>83-32-9</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>CTR Number</td>
<td>Semi-Organic Volatile Parameters</td>
<td>CAS Number</td>
<td>Units</td>
<td>Effluent Sample Type</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------------</td>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>57</td>
<td>Acenaphthylene</td>
<td>208-96-8</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>58</td>
<td>Anthracene</td>
<td>120-12-7</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>59</td>
<td>Benzidine</td>
<td>92-87-5</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>61</td>
<td>Benzo(a)Pyrene</td>
<td>111-91-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>62</td>
<td>Bis (2-Chloroethoxy) Methane</td>
<td>111-44-4</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>63</td>
<td>Bis (2-Chloroethyl) Ether</td>
<td>117-81-7</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>64</td>
<td>Butylbenzyl Phthalate</td>
<td>85-68-7</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>65</td>
<td>Chrysene</td>
<td>218-01-9</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>66</td>
<td>Di-n-butyl Phthalate</td>
<td>108-60-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>67</td>
<td>Diphenyl Phthalate</td>
<td>153-82-3</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>68</td>
<td>Dibenzo(a,h)anthracene</td>
<td>401-05-0</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>69</td>
<td>Fluoranthene</td>
<td>99-93-8</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>70</td>
<td>Fluorene</td>
<td>99-93-8</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>71</td>
<td>Hexachlorobenzene</td>
<td>77-74-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>72</td>
<td>Hexachlorocyclopentadiene</td>
<td>77-74-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>73</td>
<td>Isophorone</td>
<td>78-59-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>74</td>
<td>Indeno(1,2,3-cd) Pyrene</td>
<td>193-39-5</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>75</td>
<td>Nitrobenzene</td>
<td>98-95-3</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>76</td>
<td>Pentachlorophenol (PCP)</td>
<td>87-86-5</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>77</td>
<td>Phenanthrene</td>
<td>108-95-2</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>78</td>
<td>Pyrene</td>
<td>129-00-0</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
</tbody>
</table>

INORGANICS

<table>
<thead>
<tr>
<th>CTR Number</th>
<th>Inorganic Parameters</th>
<th>CAS Number</th>
<th>Units</th>
<th>Effluent Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>Aluminum</td>
<td>7429-90-5</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>1</td>
<td>Antimony, Total</td>
<td>7440-36-0</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>2</td>
<td>Arsenic, Total</td>
<td>7440-38-2</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>15</td>
<td>Asbestos</td>
<td>1332-21-4</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>3</td>
<td>Beryllium, Total</td>
<td>7440-41-7</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>4</td>
<td>Cadmium, Total</td>
<td>7440-43-9</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>5a (III)</td>
<td>Chromium, Total</td>
<td>7440-47-3</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
</tbody>
</table>
Inorganic Parameters

<table>
<thead>
<tr>
<th>CTR Number</th>
<th>Inorganic Parameters</th>
<th>CAS Number</th>
<th>Units</th>
<th>Effluent Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Copper, Total</td>
<td>7440-50-8</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>14</td>
<td>Iron, Total</td>
<td>7439-89-6</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>7</td>
<td>Lead, Total</td>
<td>7439-92-1</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>8</td>
<td>Mercury, Total</td>
<td>7439-97-6</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>NL</td>
<td>Mercury, Methyl</td>
<td>22967-92-6</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>NL</td>
<td>Manganese, Total</td>
<td>7439-96-5</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>9</td>
<td>Nickel, Total</td>
<td>7440-02-0</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>10</td>
<td>Selenium, Total</td>
<td>7782-49-2</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>11</td>
<td>Silver, Total</td>
<td>7440-22-4</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>12</td>
<td>Thallium, Total</td>
<td>7440-28-0</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>13</td>
<td>Zinc, Total</td>
<td>7440-66-6</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
</tbody>
</table>

NON-METALS/MINERALS

<table>
<thead>
<tr>
<th>CTR Number</th>
<th>Non-Metal/Mineral Parameters</th>
<th>CAS Number</th>
<th>Units</th>
<th>Effluent Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>Boron</td>
<td>7440-42-8</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Chloride</td>
<td>16887-00-6</td>
<td>mg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>14</td>
<td>Cyanide, Total (as CN)</td>
<td>57-12-5</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>NL</td>
<td>Phosphorus, Total (as P)</td>
<td>7723-14-0</td>
<td>mg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Sulfate</td>
<td>14808-79-8</td>
<td>mg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Sulfide (as S)</td>
<td>5651-88-7</td>
<td>mg/L</td>
<td>24-hour Composite</td>
</tr>
</tbody>
</table>

PESTICIDES/PCBs/DIOXINS

<table>
<thead>
<tr>
<th>CTR Number</th>
<th>Pesticide/PCB/Dioxin Parameters</th>
<th>CAS Number</th>
<th>Units</th>
<th>Effluent Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>4,4-DDD</td>
<td>72-54-8</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>109</td>
<td>4,4-DDE</td>
<td>72-55-9</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>108</td>
<td>4,4-DDT</td>
<td>50-29-3</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>112</td>
<td>alpha-Endosulfan</td>
<td>959-98-8</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>103</td>
<td>alpha-BHC (Benzene hexachloride)</td>
<td>319-84-6</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>102</td>
<td>Aldrin</td>
<td>309-00-2</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>113</td>
<td>beta-Endosulfan</td>
<td>33213-65-9</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>104</td>
<td>beta-BHC (Benzene hexachloride)</td>
<td>319-85-7</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>107</td>
<td>Chlordane</td>
<td>57-74-9</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>106</td>
<td>delta-BHC (Benzene hexachloride)</td>
<td>319-86-8</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>111</td>
<td>Dieldrin</td>
<td>60-57-1</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>114</td>
<td>Endosulfan Sulfate</td>
<td>1031-07-8</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>115</td>
<td>Endrin</td>
<td>72-20-8</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>116</td>
<td>Endrin Aldehyde</td>
<td>7421-93-4</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>117</td>
<td>Heptachlor</td>
<td>76-44-8</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>118</td>
<td>Heptachlor Epoxide</td>
<td>1024-57-3</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
</tbody>
</table>
Pesticide/PCB/Dioxin Parameters

<table>
<thead>
<tr>
<th>CTR Number</th>
<th>Pesticide/PCB/Dioxin Parameters</th>
<th>CAS Number</th>
<th>Units</th>
<th>Effluent Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>gamma-BHC (Benzene hexachloride or Lindane)</td>
<td>58-89-9</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>119</td>
<td>Polychlorinated Biphenyl (PCB) 1016</td>
<td>12674-11-2</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>120</td>
<td>PCB 1221</td>
<td>11104-28-2</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>121</td>
<td>PCB 1232</td>
<td>11141-16-5</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>122</td>
<td>PCB 1242</td>
<td>53469-21-9</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>123</td>
<td>PCB 1248</td>
<td>12672-29-6</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>124</td>
<td>PCB 1254</td>
<td>11097-69-1</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>125</td>
<td>PCB 1260</td>
<td>11096-82-5</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>126</td>
<td>Toxaphene</td>
<td>8001-35-2</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>16</td>
<td>2,3,7,8-TCDD (Dioxin)</td>
<td>1746-01-6</td>
<td>mg/L</td>
<td>24-hour Composite</td>
</tr>
</tbody>
</table>

CONVENTIONAL PARAMETERS

<table>
<thead>
<tr>
<th>CTR Number</th>
<th>Conventional Parameters</th>
<th>CAS Number</th>
<th>Units</th>
<th>Effluent Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>pH</td>
<td>--</td>
<td>SU</td>
<td>Grab</td>
</tr>
<tr>
<td>NL</td>
<td>Temperature</td>
<td>--</td>
<td>ºC</td>
<td>Grab</td>
</tr>
</tbody>
</table>

NON-CONVENTIONAL PARAMETERS

<table>
<thead>
<tr>
<th>CTR Number</th>
<th>Nonconventional Parameters</th>
<th>CAS Number</th>
<th>Units</th>
<th>Effluent Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>Foaming Agents (MBAS)</td>
<td>MBAS</td>
<td>mg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Hardness (as CaCO3)</td>
<td>471-34-1</td>
<td>mg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>NL</td>
<td>Specific Conductance (Electrical Conductivity or EC)</td>
<td>EC</td>
<td>µmhos/cm</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Total Dissolved Solids (TDS)</td>
<td>TDS</td>
<td>mg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Dissolved Organic Carbon (DOC)</td>
<td>DOC</td>
<td>mg/L</td>
<td>24-hour Composite</td>
</tr>
</tbody>
</table>

NUTRIENTS

<table>
<thead>
<tr>
<th>CTR Number</th>
<th>Nutrient Parameters</th>
<th>CAS Number</th>
<th>Units</th>
<th>Effluent Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>Ammonia (as N)</td>
<td>7664-41-7</td>
<td>mg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Nitrate (as N)</td>
<td>14797-55-8</td>
<td>mg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Nitrite (as N)</td>
<td>14797-65-0</td>
<td>mg/L</td>
<td>24-hour Composite</td>
</tr>
</tbody>
</table>

OTHER CONSTITUENTS OF CONCERN

<table>
<thead>
<tr>
<th>CTR Number</th>
<th>Other Constituents of Concern</th>
<th>CAS Number</th>
<th>Units</th>
<th>Effluent Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>Trichlorofluoromethane</td>
<td>75-69-4</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>NL</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>76-13-1</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>NL</td>
<td>Styrene</td>
<td>100-42-5</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>CTR Number</td>
<td>Other Constituents of Concern</td>
<td>CAS Number</td>
<td>Units</td>
<td>Effluent Sample Type</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------</td>
<td>------------</td>
<td>---------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>NL</td>
<td>Xylenes</td>
<td>1330-20-7</td>
<td>µg/L</td>
<td>Grab</td>
</tr>
<tr>
<td>NL</td>
<td>Barium</td>
<td>7440-39-3</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Fluoride</td>
<td>16984-48-8</td>
<td>mg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Molybdenum</td>
<td>7439-98-7</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Tributyltin</td>
<td>688-73-3</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Alachlor</td>
<td>15972-60-8</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Atrazine</td>
<td>1912-24-9</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Bentazon</td>
<td>25057-89-0</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Carbofuran</td>
<td>1563-66-2</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>2,4-D</td>
<td>94-75-7</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Dalapon</td>
<td>75-99-0</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>1,2-Dibromo-3-chloropropane (DBCP)</td>
<td>96-12-8</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Di(2-ethylhexyl)adipate</td>
<td>103-23-1</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Dinoseb</td>
<td>88-85-7</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Diquat</td>
<td>85-00-7</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Endothal</td>
<td>145-73-3</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Ethylene Dibromide (EDB)</td>
<td>106-93-4</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Methoxychlor</td>
<td>72-43-5</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Molinate (Ordram)</td>
<td>2212-67-1</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Oxamyl</td>
<td>23135-22-0</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Picloram</td>
<td>1918-02-1</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Simazine (Princep)</td>
<td>122-34-9</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Thiobencarb</td>
<td>28249-77-6</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>2,4,5-TP (Silvex)</td>
<td>93-72-1</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Chlorpyrifos</td>
<td>2921-88-2</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
<tr>
<td>NL</td>
<td>Diazinon</td>
<td>333-41-5</td>
<td>µg/L</td>
<td>24-hour Composite</td>
</tr>
</tbody>
</table>

4. **Table E-7 Testing Requirements.** The Discharger shall comply with the following testing requirements when monitoring for the parameters described in Table E-7:

 a. **Applicable to All Parameters.** Pollutants shall be analyzed using the analytical methods described in 40 C.F.R. Part 136 or by methods approved by the Central Valley Water Board or the State Water Board.

 b. **Grab Samples.** A grab sample is defined as an individual discrete sample collected over a period of time not exceeding 15 minutes. It can be taken manually, using a pump, scoop, vacuum, or other suitable device.

 c. **24-hour Composite Samples.** All 24-hour composite samples shall be collected from a 24-hour flow proportional composite.

 d. **Redundant Sampling.** The Discharger is not required to conduct effluent monitoring for constituents that have already been sampled in a given month, as required in Table E-3.

 e. **Concurrent Sampling.** Effluent and receiving water sampling shall be performed at approximately the same time, on the same date.
f. **Sample Type.** All receiving water samples shall be taken as grab samples. Effluent samples shall be taken as described in Table E-7.

g. **Bis (2-ethylhexyl) phthalate.** In order to verify if bis (2-ethylhexyl) phthalate is truly present, the Discharger shall take steps to assure that sample containers, sampling apparatus, and analytical equipment are not sources of the detected contaminant.

X. REPORTING REQUIREMENTS

A. General Monitoring and Reporting Requirements

1. The Discharger shall comply with all Standard Provisions (Attachment D) related to monitoring, reporting, and recordkeeping.

2. Upon written request of the Central Valley Water Board, the Discharger shall submit a summary monitoring report. The report shall contain both tabular and graphical summaries of the monitoring data obtained during the previous year(s).

3. **Compliance Time Schedules.** For compliance time schedules included in the Order, the Discharger shall submit to the Central Valley Water Board, on or before each compliance due date, the specified document or a written report detailing compliance or noncompliance with the specific date and task. If noncompliance is reported, the Discharger shall state the reasons for noncompliance and include an estimate of the date when the Discharger will be in compliance. The Discharger shall notify the Central Valley Water Board by letter when it returns to compliance with the compliance time schedule.

4. The Discharger shall report to the Central Valley Water Board any toxic chemical release data it reports to the State Emergency Response Commission within 15 days of reporting the data to the Commission pursuant to section 313 of the "Emergency Planning and Community Right to Know Act" of 1986.

B. Self-Monitoring Reports (SMRs)

1. The Discharger shall electronically submit SMRs using the State Water Board’s California Integrated Water Quality System (CIWQS) Program website (http://www.waterboards.ca.gov/water_issues/programs/ciwqs/). The CIWQS website will provide additional information for SMR submittal in the event there will be a planned service interruption for electronic submittal.

2. The Discharger shall report in the SMR the results for all monitoring specified in this MRP under sections III through IX. The Discharger shall submit monthly SMRs including the results of all required monitoring using U.S. EPA-approved test methods or other test methods specified in this Order. SMRs are to include all new monitoring results obtained since the last SMR was submitted. If the Discharger monitors any pollutant more frequently than required by this Order, the results of this monitoring shall be included in the calculations and reporting of the data submitted in the SMR. Monthly SMRs are required even if there is no
discharge. If no discharge occurs during the month, the monitoring report must be submitted stating that there has been no discharge.

3. Monitoring periods and reporting for all required monitoring shall be completed according to the following schedule:

<table>
<thead>
<tr>
<th>Sampling Frequency</th>
<th>Monitoring Period Begins On</th>
<th>Monitoring Period</th>
<th>SMR Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>Permit effective date</td>
<td>All</td>
<td>Submit with monthly SMR</td>
</tr>
<tr>
<td>1/Day</td>
<td>Permit effective date</td>
<td>(Midnight through 11:59 PM) or any 24-hour period that reasonably represents a calendar day for purposes of sampling</td>
<td>Submit with monthly SMR</td>
</tr>
<tr>
<td>1/Week</td>
<td>Permit effective date</td>
<td>Sunday through Saturday</td>
<td>Submit with monthly SMR</td>
</tr>
<tr>
<td>2/Week</td>
<td>Permit effective date</td>
<td>Sunday through Saturday</td>
<td>Submit with monthly SMR</td>
</tr>
<tr>
<td>3/Week</td>
<td>Permit effective date</td>
<td>Sunday through Saturday</td>
<td>Submit with monthly SMR</td>
</tr>
<tr>
<td>1/Month</td>
<td>Permit effective date</td>
<td>1st day of calendar month through last day of calendar month</td>
<td>First day of second calendar month following month of sampling</td>
</tr>
<tr>
<td>1/Quarter</td>
<td>Permit effective date</td>
<td>1 January through 31 March 1 April through 30 June 1 July through 30 September 1 October through 31 December</td>
<td>1 May 1 August 1 November 1 February of following year</td>
</tr>
</tbody>
</table>

4. Reporting Protocols. The Discharger shall report with each sample result the applicable Reporting Level (RL) and the current laboratory’s Method Detection Limit (MDL), as determined by the procedure in 40 C.F.R. part 136.

The Discharger shall report the results of analytical determinations for the presence of chemical constituents in a sample using the following reporting protocols:

a. Sample results greater than or equal to the RL shall be reported as measured by the laboratory (i.e., the measured chemical concentration in the sample).

b. Sample results less than the RL, but greater than or equal to the laboratory’s MDL, shall be reported as “Detected, but Not Quantified,” or DNQ. The estimated chemical concentration of the sample shall also be
For the purposes of data collection, the laboratory shall write the estimated chemical concentration next to DNQ. The laboratory may, if such information is available, include numerical estimates of the data quality for the reported result. Numerical estimates of data quality may be percent accuracy (± a percentage of the reported value), numerical ranges (low to high), or any other means considered appropriate by the laboratory.

c. Sample results less than the laboratory’s MDL shall be reported as “Not Detected,” or ND.

d. Dischargers are to instruct laboratories to establish calibration standards so that the Minimum Level (ML) value (or its equivalent if there is differential treatment of samples relative to calibration standards) is the lowest calibration standard. At no time is the Discharger to use analytical data derived from extrapolation beyond the lowest point of the calibration curve.

5. **Multiple Sample Data.** When determining compliance with an AMEL, AWEL, or MDEL for priority pollutants and more than one sample result is available, the Discharger shall compute the arithmetic mean unless the data set contains one or more reported determinations of “Detected, but Not Quantified” (DNQ) or “Not Detected” (ND). In those cases, the Discharger shall compute the median in place of the arithmetic mean in accordance with the following procedure:

 a. The data set shall be ranked from low to high, ranking the reported ND determinations lowest, DNQ determinations next, followed by quantified values (if any). The order of the individual ND or DNQ determinations is unimportant.

 b. The median value of the data set shall be determined. If the data set has an odd number of data points, then the median is the middle value. If the data set has an even number of data points, then the median is the average of the two values around the middle unless one or both of the points are ND or DNQ, in which case the median value shall be the lower of the two data points where DNQ is lower than a value and ND is lower than DNQ.

6. **The Discharger shall submit SMRs** in accordance with the following requirements:

 a. The Discharger shall arrange all reported data in a tabular format. The data shall be summarized to clearly illustrate whether the facility is operating in compliance with interim and/or final effluent limitations. The Discharger is not required to duplicate the submittal of data that is entered in a tabular format within CIWQS. When electronic submittal of data is
required and CIWQS does not provide for entry into a tabular format within the system, the Discharger shall electronically submit the data in a tabular format as an attachment.

b. The Discharger shall attach a cover letter to the SMR. The information contained in the cover letter shall clearly identify violations of the waste discharge requirements; discuss corrective actions taken or planned; and the proposed time schedule for corrective actions. Identified violations must include a description of the requirement that was violated and a description of the violation.

c. The Discharger shall attach all final laboratory reports from all contracted commercial laboratories, including quality assurance/quality control information, with all its SMRs for which sample analyses were performed.

7. The Discharger shall submit in the SMRs calculations and reports in accordance with the following requirements:

a. Calendar Annual Average Trigger. For constituents with effluent limitations specified as “calendar annual average” (electrical conductivity) the Discharger shall report the calendar annual average in the December SMR. The annual average shall be calculated as the average of the samples gathered for the calendar year.

b. Removal Efficiency (BOD$_5$ and TSS). The Discharger shall calculate and report the percent removal of BOD$_5$ and TSS in the SMRs. The percent removal shall be calculated as specified in section VII.A. of the Limitations and Discharge Requirements.

c. Total Coliform Organisms Effluent Limitations. The Discharger shall calculate and report the 7-day median of total coliform organisms for the effluent. The 7-day median of total coliform organisms shall be calculated as specified in Section VII.C of the Waste Discharge Requirements.

d. Chlorpyrifos and Diazinon Effluent Limitations. The Discharger shall calculate and report the value of SAMEL and SAWEL for the effluent, using the equations in section IV.A.1.h of the Order, and consistent with the Compliance Determination Language in section VII.H of the Waste Discharge Requirements.

e. Dissolved Oxygen Receiving Water Limitations. The Discharger shall report monthly in the self-monitoring report the dissolved oxygen concentrations in the effluent (EFF-001) and the receiving water RSW-001 and RSW-002.

f. Turbidity Receiving Water Limitations. The Discharger shall calculate and report the turbidity increase in the receiving water applicable to the
natural turbidity condition specified in section V.A.16.a-e of the Waste Discharge Requirements.

g. **Temperature Receiving Water Limitations.** The Discharger shall calculate and report the temperature increase in the receiving water based on the difference in temperature at Monitoring Locations RSW-001 and RSW-002.

C. **Discharge Monitoring Reports (DMRs)**

1. DMRs are U.S. EPA reporting requirements. The Discharger shall electronically certify and submit DMRs together with SMRs using Electronic Self-Monitoring Reports module eSMR 2.5 or any upgraded version. Electronic DMR submittal will be in addition to electronic SMR submittal. [Information about electronic DMR submittal](http://www.waterboards.ca.gov/water_issues/programs/discharge_monitoring/) is available on the Internet.

D. **Other Reports**

1. **The Discharger shall report BMPs** that are maintained or implemented at the facility including documentation of conditions prior to implementation, a description of the BMPs, and period of implementation. The Discharger shall maintain and make available to the Central Valley Water Board upon request a log of inspection for requested parameters. The Discharger shall certify within the report that the log has been maintained.

2. **Analytical Methods Report.** The Discharger shall complete and submit an Analytical Methods Report, electronically via CIWQS submittal, by the due date shown in the Technical Reports Table (Table E-9). The Analytical Methods Report shall include the following for each constituent to be monitored in accordance with this Order: 1) applicable water quality objective, 2) reporting level (RL), 3) method detection limit (MDL), and 4) analytical method. The analytical methods shall be sufficiently sensitive with RLs consistent with the SSM Rule per 40 C.F.R. 122.21(e)(3) and 122.44(i)(1)(iv), and with the Minimum Levels (MLs) in the SIP, Appendix 4. The “Reporting Level or RL” is synonymous with the “Method Minimum Level” described in the SSM Rule. If an RL is not less than or equal to the applicable water quality objective for a constituent, the Discharger shall explain how the proposed analytical method complies with the SSM Rule as outlined above in Attachment E, Section I.F. Central Valley Water Board staff will provide a tool with the permit’s Notice of Adoption to assist the Discharger in completing this requirement. The tool will include the constituents and associated applicable water quality objectives to be included in the Analytical Methods Report.

3. **Annual Operations Report.** The Discharger shall submit a written report to the Central Valley Water Board, electronically via CIWQS submittal, containing the following by the due date in the Technical Reports Table (Table E-9):
a. The names, certificate grades, and general responsibilities of all persons employed at the Facility.

b. The names and telephone numbers of persons to contact regarding the plant for emergency and routine situations.

c. A statement certifying when the flow meter(s) and other monitoring instruments and devices were last calibrated, including identification of who performed the calibration.

d. A statement certifying whether the current operation and maintenance manual, and contingency plan, reflect the wastewater treatment plant as currently constructed and operated, and the dates when these documents were last revised and last reviewed for adequacy.

e. The Discharger may also be requested to submit an annual report to the Central Valley Water Board with both tabular and graphical summaries of the monitoring data obtained during the previous year. Any such request shall be made in writing. The report shall discuss the compliance record. If violations have occurred, the report shall also discuss the corrective actions taken and planned to bring the discharge into full compliance with the waste discharge requirements.

4. Recycled Water Policy Annual Reports. In accordance with Section 3 of the Water Quality Control Policy for Recycled Water (Recycled Water Policy), the Discharger shall electronically submit an annual report of monthly data to the State Water Board by 30 April annually covering the previous calendar year using the State Water Board’s GeoTracker website (https://geotracker.waterboards.ca.gov/). Information for setting up and using the GeoTracker system can be found in the ESI Guide for Responsible Parties document on the State Water Board’s website for Electronic Submittal of Information (https://www.waterboards.ca.gov/ust/electronic_submittal/index.html).

The annual report to GeoTracker must include volumetric reporting of the items listed in Section 3.2 of the Recycled Water Policy (https://www.waterboards.ca.gov/board_decisions/adopted_orders/resolutions/2018/121118_7_final_amendment_oal.pdf). A pdf of the upload confirmation from GeoTracker for the Recycled Water Policy Annual Report shall be uploaded into CIWQS annually as a technical report per Table E-9, to demonstrate compliance with this reporting requirement.

5. Report of Waste Discharge (ROWD). For the 5-year permit renewal, the Discharger shall submit a written report to the Central Valley Water Board, electronically via CIWQS submittal, containing, at minimum, the following by the due date in the Technical Reports Table (Table E-9):

a. Report of Waste Discharge (Form 200);
b. NPDES Form 1 (not needed if submitting Form 2A);

c. NPDES Form 2S;

d. **Salinity Evaluation and Minimization Plan.** This Order includes a calendar year annual average salinity trigger of 750 µmhos/cm that when exceeded requires an update to the Salinity and Minimization Plan and submittal with the Report of Waste Discharge. If an update is not performed during the permit term, the Discharger shall evaluate the effectiveness of the salinity evaluation and minimization plan and provide a summary with the Report of Waste Discharge;

e. **Mixing Zone Requests.** A mixing zone analysis for constituents the Discharger is requesting the continuation of dilution credits and mixing zones in the calculation of water quality-based effluent limits (e.g., chlorodibromomethane and dichlorobromomethane); and

f. **Most Sensitive Species Screening.** This Order requires a species sensitivity screening for chronic toxicity. If there are no significant changes during the permit term, a rescreening must be performed prior to permit reissuance and results submitted with the Report of Waste Discharge.

6. **Technical Report Submittals.** This Order includes requirements to submit a Report of Waste Discharge (ROWD), special study technical reports, progress reports, and other reports identified in the MRP (hereafter referred to collectively as “technical reports”). The Technical Reports Table below summarize all technical reports required by this Order and the due dates for submittal. All technical reports shall be submitted electronically via CIWQS submittal. Technical reports should be uploaded as a PDF, Microsoft Word, or Microsoft Excel file attachment.

<table>
<thead>
<tr>
<th>Report #</th>
<th>Technical Report</th>
<th>Due Date</th>
<th>CIWQS Report Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intentionally left blank</td>
<td>Standard Reporting Requirements</td>
<td>Intentionally left blank</td>
<td>Intentionally left blank</td>
</tr>
<tr>
<td>1</td>
<td>Report of Waste Discharge</td>
<td>31 July 2026</td>
<td>ROWD</td>
</tr>
<tr>
<td>2</td>
<td>Analytical Methods Report</td>
<td>1 October 2022</td>
<td>MRP X.D.2</td>
</tr>
<tr>
<td>3</td>
<td>Analytical Methods Report Certification</td>
<td>1 April 2023</td>
<td>MRP IX.D.2.</td>
</tr>
<tr>
<td>4</td>
<td>Annual Operations Report</td>
<td>1 February 2023</td>
<td>MRP X.D.3</td>
</tr>
<tr>
<td>5</td>
<td>Annual Operations Report</td>
<td>1 February 2024</td>
<td>MRP X.D.3</td>
</tr>
<tr>
<td>6</td>
<td>Annual Operations Report</td>
<td>1 February 2025</td>
<td>MRP X.D.3</td>
</tr>
<tr>
<td>7</td>
<td>Annual Operations Report</td>
<td>1 February 2026</td>
<td>MRP X.D.3</td>
</tr>
<tr>
<td>8</td>
<td>Annual Operations Report</td>
<td>1 February 2027</td>
<td>MRP X.D.3</td>
</tr>
<tr>
<td>Report #</td>
<td>Technical Report</td>
<td>Due Date</td>
<td>CIWQS Report Name</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>9</td>
<td>Recycled Water Policy Annual Report Submittal Confirmation</td>
<td>30 April 2023</td>
<td>MRP X.D.4</td>
</tr>
<tr>
<td>10</td>
<td>Recycled Water Policy Annual Report Submittal Confirmation</td>
<td>30 April 2024</td>
<td>MRP X.D.4</td>
</tr>
<tr>
<td>11</td>
<td>Recycled Water Policy Annual Report Submittal Confirmation</td>
<td>30 April 2025</td>
<td>MRP X.D.4</td>
</tr>
<tr>
<td>12</td>
<td>Recycled Water Policy Annual Report Submittal Confirmation</td>
<td>30 April 2026</td>
<td>MRP X.D.4</td>
</tr>
<tr>
<td>13</td>
<td>Recycled Water Policy Annual Report Submittal Confirmation</td>
<td>30 April 2027</td>
<td>MRP X.D.4</td>
</tr>
</tbody>
</table>
ATTACHMENT F – FACT SHEET

Table of Contents

I. Permit Information ... F-3
II. Facility Description ... F-4
 A. Description of Wastewater and Biosolids Treatment and Controls F-5
 B. Discharge Points and Receiving Waters .. F-5
 C. Summary of Existing Requirements and Self-Monitoring Report (SMR) Data F-6
 D. Compliance Summary ... F-7
 E. Planned Changes ... F-7
III. Applicable Plans, Policies, and Regulations F-7
 A. Legal Authorities ... F-7
 B. California Environmental Quality Act (CEQA) .. F-8
 C. State and Federal Laws, Regulations, Policies, and Plans F-8
 D. Impaired Water Bodies on CWA 303(d) List ... F-12
 E. Other Plans, Policies and Regulations .. F-12
IV. Rationale For Effluent Limitations and Discharge Specifications F-13
 A. Discharge Prohibitions ... F-14
 B. Technology-Based Effluent Limitations ... F-15
 1. Scope and Authority ... F-15
 2. Applicable Technology-Based Effluent Limitations F-16
 C. Water Quality-Based Effluent Limitations (WQBELs) F-17
 1. Scope and Authority ... F-17
 2. Applicable Beneficial Uses and Water Quality Criteria and Objectives F-17
 3. Determining the Need for WQBELs .. F-32
 4. WQBEL Calculations ... F-56
 5. Whole Effluent Toxicity (WET) .. F-59
 D. Final Effluent Limitation Considerations ... F-61
 1. Mass-based Effluent Limitations .. F-61
 2. Averaging Periods for Effluent Limitations .. F-61
 3. Satisfaction of Anti-Backsliding Requirements F-62
 4. Antidegradation Policies ... F-63
 5. Stringency of Requirements for Individual Pollutants F-68
 E. Land Discharge Specifications – Not Applicable F-70
 F. Recycling Specifications – Not Applicable .. F-70
V. Rationale for Receiving Water Limitations ... F-70
 A. Surface Water ... F-70
 B. Groundwater ... F-71
VI. Rationale for Provisions ... F-71
 A. Standard Provisions ... F-71
 B. Special Provisions ... F-72
 1. Reopener Provisions ... F-72
 2. Special Studies and Additional Monitoring Requirements F-73
 3. Best Management Practices and Pollution Prevention F-75
 4. Construction, Operation, and Maintenance Specifications F-75
 5. Special Provisions for Publicly-Owned Treatment Works (POTWs) F-76
6. Other Special Provisions .. F-76
7. Compliance Schedules – Not Applicable ... F-76

VII. Rationale for Monitoring and Reporting Requirements ... F-76
 A. Influent Monitoring .. F-76
 B. Effluent Monitoring ... F-77
 C. Whole Effluent Toxicity Testing Requirements .. F-78
 D. Receiving Water Monitoring .. F-79
 1. Surface Water .. F-79
 2. Groundwater – Not Applicable .. F-79
 E. Other Monitoring Requirements .. F-79

VIII. Public Participation .. F-79
 A. Notification of Interested Persons ... F-80
 B. Written Comments ... F-80
 C. Public Hearing ... F-80
 D. Reconsideration of Waste Discharge Requirements ... F-80
 E. Information and Copying .. F-81
 F. Register of Interested Persons .. F-81
 G. Additional Information ... F-81

Tables
Table F-1. Facility Information .. F-3
Table F-2. Historic Effluent Limitations ... F-6
Table F-3 Basin Plan Beneficial Uses ... F-9
Table F-4. 303 (d) Listings and TMDLs for Deer Creek ... F-12
Table F-5. Summary of Technology-based Effluent Limitations F-16
Table F-6. Mixing Zones and Dilution Credits .. F-24
Table F-7. Summary of CTR Criteria for Hardness-dependent Metals F-26
Table F-8. Verification of CTR Compliance for Copper ... F-31
Table F-9. Verification of CTR Compliance for Silver .. F-32
Table F-10. Salinity Water Quality Criteria/Objectives ... F-38
Table F-11. Summary of Water Quality-Based Effluent Limitations F-58
Table F-12. Whole Effluent Chronic Toxicity Testing Results F-61
Table F-13. Summary of Final Effluent Limitations .. F-69
ATTACHMENT F – FACT SHEET

As described in section II.C of this Order, the Central Valley Water Board incorporates this Fact Sheet as findings of the Central Valley Water Board supporting the issuance of this Order. This Fact Sheet discusses the legal requirements and technical rationale that serve as the basis for the requirements of this Order.

This Order has been prepared under a standardized format to accommodate a broad range of discharge requirements for Dischargers in California. Only those sections or subsections of this Order that are specifically identified as “not applicable” have been determined not to apply to this Discharger. Sections or subsections of this Order not specifically identified as “not applicable” are fully applicable to this Discharger.

I. PERMIT INFORMATION

The following table summarizes administrative information related to the Facility.

<table>
<thead>
<tr>
<th>Table F-1. Facility Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Discharge ID: 5A290101001</td>
</tr>
<tr>
<td>CIWQS Facility Place ID: 244141</td>
</tr>
<tr>
<td>Discharger: City of Nevada City</td>
</tr>
<tr>
<td>Name of Facility: City of Nevada City Wastewater Treatment Plant</td>
</tr>
<tr>
<td>Facility Address: 650 Jordan Street</td>
</tr>
<tr>
<td>Facility City, State Zip: Nevada City, CA 95959</td>
</tr>
<tr>
<td>Facility County: Nevada</td>
</tr>
<tr>
<td>Facility Contact, Title and Phone Number: Bryan McAlister, City Engineer, (530) 265-2496 x126</td>
</tr>
<tr>
<td>Authorized Person to Sign and Submit Reports: Michael Faudoa, Chief Plant Operator, (530) 265-8668</td>
</tr>
<tr>
<td>Mailing Address: 317 Broad Street Nevada City, CA 95959</td>
</tr>
<tr>
<td>Billing Address: Same as Mailing Address</td>
</tr>
<tr>
<td>Type of Facility: Publicly Owned Treatment Works (POTW)</td>
</tr>
<tr>
<td>Major or Minor Facility: Minor</td>
</tr>
<tr>
<td>Threat to Water Quality: 2</td>
</tr>
<tr>
<td>Complexity: B</td>
</tr>
<tr>
<td>Pretreatment Program: No</td>
</tr>
<tr>
<td>Recycling Requirements: Not Applicable</td>
</tr>
<tr>
<td>Facility Permitted Flow: 0.69 million gallons per day (MGD)</td>
</tr>
<tr>
<td>Facility Design Flow: 0.69 MGD</td>
</tr>
<tr>
<td>Watershed: Yuba River</td>
</tr>
<tr>
<td>Receiving Water: Deer Creek, Tributary to Yuba River</td>
</tr>
</tbody>
</table>
A. City of Nevada City (hereinafter Discharger) is the owner and operator of the City of Nevada City Wastewater Treatment Plant (hereinafter Facility), a Publicly-Owned Treatment Works (POTW).

For the purposes of this Order, references to the “discharger” or “permittee” in applicable federal and state laws, regulations, plans, or policy are held to be equivalent to references to the Discharger herein.

B. The Facility discharges wastewater to Deer Creek, a water of the United States, tributary to Yuba River within Yuba River watershed. The Discharger was previously regulated by Order R5-2017-0060 and National Pollutant Discharge Elimination System (NPDES) Permit No. CA0079901 adopted on 9 June 2017 and expires on 31 July 2022. Attachment B provides a map of the area around the Facility. Attachment C provides a flow schematic of the Facility.

C. When applicable, state law requires dischargers to file a petition with the State Water Board, Division of Water Rights and receive approval for any change in the point of discharge, place of use, or purpose of use of treated wastewater that decreases the flow in any portion of a watercourse. The State Water Board retains separate jurisdictional authority to enforce any applicable requirements under Water Code section 1211. This is not an NPDES permit requirement.

D. The Discharger filed a report of waste discharge (ROWD) and submitted an application for reissuance of its waste discharge requirements (WDRs) and NPDES permit on 20 April 2021. Supplemental information was requested on 14 June 2021 and received on 16 June 2021. The application was deemed complete on 16 June 2021.

E. Regulations at 40 C.F.R. section 122.46 limit the duration of NPDES permits to a fixed term not to exceed five years. Accordingly, Table 3 of this Order limits the duration of the discharge authorization. Under 40 C.F.R. section 122.6(d), States authorized to administer the NPDES program may administratively continue State-issued permits beyond their expiration dates until the effective date of the new permits, if State law allows it. Pursuant to California Code of Regulations, title 23, section 2235.4, the terms and conditions of an expired permit are automatically continued pending reissuance of the permit if the Discharger complies with all federal NPDES requirements for continuation of expired permits.

II. FACILITY DESCRIPTION

The Discharger provides sewerage service for the community of Nevada City and serves a population of approximately 3,150. The design daily average flow capacity of the Facility is 0.69 million gallons per day (MGD).
A. Description of Wastewater and Biosolids Treatment and Controls

The wastewater treatment system consists of screening, grit removal, magnesium hydroxide addition, influent flow equalization and emergency storage, nitrification/denitrification, activated sludge, tertiary filters, ammonium sulfate addition, chlorination, and dechlorination. The waste activated sludge is stored in an aerated day tank, dewatered by a belt filter press, and hauled to Ostrom Road Landfill in Wheatland, CA.

The screening consists of a Parkson HLS500 Hycor Helisieve automatic screen to remove inorganics larger than 1/4”, grit removal occurs in a manually scraped grit channel. Magnesium hydroxide is added via a variable speed auger to maintain optimal pH in the nitrification/denitrification activated sludge process. Influent flow emergency storage or equalization is provided, as needed, in the original primary clarifier no longer needed with the new treatment process. Advanced secondary treatment is provided by two parallel nitrification/denitrification activated sludge processes (two basins and two secondary clarifiers).

Tertiary filtration is provided by a disk filter and sand filter in series operation (filters may also be run in parallel operation during high flow events or either filter may be isolated for maintenance). Effluent disinfection is achieved using chlorine. The final effluent is dechlorinated prior to discharge to Deer Creek. The annual average discharge is 0.45 MGD with a maximum wet weather flow of 1.38 MGD.

Grit and bar screenings are hauled off-site to a landfill. Secondary waste activated sludge is stored in an aerated day tank (with emergency backup storage in the old anaerobic digester) then dewatered in a filter press. Biosolids are collected in a truck trailer before they are hauled off-site to a landfill. The facility produces approximately 17 tons every ten days. No biosolids are treated, stored, or discharged onsite. Filtrate from the sludge dewatering process is returned to the activated sludge process for treatment with the incoming waste stream.

The Discharger has a year to year contract with Robinson Enterprises to haul the sludge. There is no contract with the Ostrom Road Landfill, but sludge is tested as required by the state to meet the requirements.

B. Discharge Points and Receiving Waters

1. The Facility is located in section 12, T16N, R8E, MDB&M, as shown in Attachment B, a part of this Order.

2. Treated municipal wastewater is discharged at Discharge Point No. 001 to Deer Creek, a water of the United States and a tributary to Yuba River at a point latitude 39° 15' 35.1" N and longitude 121° 01' 50.7" W.
C. Summary of Existing Requirements and Self-Monitoring Report (SMR) Data

Effluent limitations contained in Order R5-2017-0060 for discharges from Discharger Point 001 (Monitoring Location EFF-001) and representative monitoring data from the term of Order R5-2017-0060 are as follows:

Table F-2. Historic Effluent Limitations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Historic Effluent Limitations</th>
<th>Highest Average Monthly Discharge</th>
<th>Highest Average Weekly Discharge</th>
<th>Highest Daily Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical Oxygen Demand (BOD), 5-day @ 20°Celcius</td>
<td>mg/L</td>
<td>AMEL 10 AWEL 15 MDEL 20</td>
<td>17</td>
<td>48</td>
<td>95</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand, 5-day @ 20°Celcius</td>
<td>lbs/day</td>
<td>AMEL 58 AWEL 86 MDEL 115</td>
<td>128</td>
<td>319</td>
<td>992</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand, 5-day @ 20°Celcius</td>
<td>% removal</td>
<td>AMEL 85</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>mg/L</td>
<td>AMEL 10 AWEL 15 MDEL 20</td>
<td>54</td>
<td>20</td>
<td>388</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>lbs/day</td>
<td>AMEL 58 AWEL 86 MDEL 115</td>
<td>419</td>
<td>1190</td>
<td>3770</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>% removal</td>
<td>AMEL 85</td>
<td>100</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>Instantaneous Max 6.5 Instantaneous Min 8.0</td>
<td>--</td>
<td>--</td>
<td>6.0 – 7.6</td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>AMEL 1.9 AWEL 4.2</td>
<td>3.3</td>
<td>--</td>
<td>18</td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>lbs/day</td>
<td>AMEL 11 AWEL 24</td>
<td>10</td>
<td>--</td>
<td>55</td>
</tr>
<tr>
<td>Nitrate Plus Nitrite (as N)</td>
<td>mg/L</td>
<td>AMEL 10 AWEL 17</td>
<td>3.8</td>
<td>--</td>
<td>3.8</td>
</tr>
<tr>
<td>Dichlorobromo-methane (DCBM)</td>
<td>µg/L</td>
<td>AMEL 4.3 MDEL 11</td>
<td>15</td>
<td>--</td>
<td>15</td>
</tr>
<tr>
<td>Total Residual Chlorine</td>
<td>mg/L</td>
<td>4-day average 0.011 1-hour average 0.019</td>
<td>--</td>
<td>--</td>
<td>ND</td>
</tr>
</tbody>
</table>
CITY OF NEVADA CITY
WASTEWATER TREATMENT PLANT

ATTACHMENT F
FACT SHEET F-7

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Highest Average Monthly Discharge</th>
<th>Highest Average Weekly Discharge</th>
<th>Highest Daily Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Organisms</td>
<td>MPN/100 mL</td>
<td>2.2</td>
<td>--</td>
<td>1600</td>
</tr>
</tbody>
</table>

Table F-2 Notes:

1. **pH.** Highest daily discharge is provided as a range from daily minimum to daily maximum.

D. Compliance Summary

On 12 July 2018, the Executive Officer issued Administrative Civil Liability (ACL) Order No. R5-2018-0507 for Mandatory Minimum Penalties (MMPs) in the amount of $54,000 for violations of DCBM and total coliform occurring between 1 January 2016 and 28 February 2018. The matter was settled by payment and completion of the compliance project when sand filter and traveling bridge automation and backwash system was renovated.

On 5 February 2020, the Executive Officer issued ACL Order No. R5-2020-0501 for MMPs in the amount of $147,000 for violations of DCBM, total coliform, TSS, and BOD occurring between 1 March 2018 and 30 April 2019. The matter will be settled with completion of the wastewater treatment plant modification and optimization project.

On 23 April 2021, the Executive Officer issued ACL Order No. R5-2021-0501 for MMPs in the amount of $102,000 for violations of DCBM and total coliform occurring between 1 May 2019 and 30 September 2020. The matter will be settled by completion of the project to install covers on the chlorine contact basins, filtration process flow modulation, and equalization basin repairs.

E. Planned Changes

The Discharger does not plan on expanding or making any significant changes to the Facility during the next five years.

III. APPLICABLE PLANS, POLICIES, AND REGULATIONS

The requirements contained in this Order are based on the requirements and authorities described in this section.

A. Legal Authorities

This Order serves as WDRs pursuant to article 4, chapter 4, division 7 of the California Water Code (commencing with section 13260). This Order is also issued pursuant to section 402 of the federal Clean Water Act (CWA) and implementing
regulations adopted by the U.S. EPA and chapter 5.5, division 7 of the Water Code (commencing with section 13370). It shall serve as an NPDES permit for point source discharges from this Facility to surface waters.

B. California Environmental Quality Act (CEQA)

Under Water Code section 13389, this action to adopt an NPDES permit is exempt from the provisions of Chapter 3 of CEQA, (commencing with section 21100) of Division 13 of the Public Resources Code.

1. Water Quality Control Plans. Requirements of this Order specifically implement the applicable Water Quality Control Plans.

The Basin Plan at section 2.1 states that the beneficial uses of any specifically identified water body generally apply to its tributary streams. The Basin Plan in Table 2-1, section 2, does not specifically identify beneficial uses for Deer Creek, but does identify present and potential uses for Yuba River, to which Deer Creek is tributary. In addition, the Basin Plan implements State Water Board Resolution 88-63, which established state policy that all waters, with certain exceptions, should be considered suitable or potentially suitable for municipal or domestic supply. Thus, beneficial uses applicable to Deer Creek are as follows:
Table F-3 Basin Plan Beneficial Uses

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Receiving Water Name</th>
<th>Beneficial Use(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Deer Creek, tributary to Yuba River</td>
<td>Existing: Municipal and domestic water supply (MUN); Agricultural supply, including irrigation and stock watering (AGR); Water contact recreation, including canoeing and rafting (REC-1); Non-contact water recreation (REC-2); Warm freshwater habitat (WARM); Cold freshwater habitat (COLD); Migration of aquatic organisms, cold (MIGR); Spawning, reproduction and/or early development, warm and cold (SPWN); and wildlife habitat (WILD). Potential: None.</td>
</tr>
</tbody>
</table>

2. **National Toxics Rule (NTR) and California Toxics Rule (CTR).** U.S. EPA adopted the NTR on 22 December 1992, and later amended it on 4 May 1995 and 9 November 1999. About forty criteria in the NTR applied in California. On 18 May 2000, U.S. EPA adopted the CTR. The CTR promulgated new toxics criteria for California and, in addition, incorporated the previously adopted NTR criteria that were applicable in the state. The CTR was amended on 13 February 2001. These rules contain federal water quality criteria for priority pollutants.

3. **State Implementation Policy.** On 2 March 2000, the State Water Board adopted the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (State Implementation Policy or SIP). The SIP became effective on 28 April 2000, with respect to the priority pollutant criteria promulgated for California by the U.S. EPA through the NTR and to the priority pollutant objectives established by the Central Valley Water Board in the Basin Plan. The SIP became effective on 18 May 2000, with respect to the priority pollutant criteria promulgated by the U.S. EPA through the CTR. The State Water Board adopted amendments to the SIP on 24 February 2005, that became effective on 13 July 2005. The SIP establishes implementation provisions for priority pollutant criteria and objectives and provisions for chronic toxicity control. Requirements of this Order implement the SIP.

4. **Antidegradation Policy.** Federal regulation 40 C.F.R. section 131.12 requires that the state water quality standards include an antidegradation policy consistent with the federal policy. The State Water Board established California’s antidegradation policy in State Water Board Resolution 68-16 ("Statement of Policy with Respect to Maintaining High Quality of Waters in California") (State Anti-Degradation Policy). The State Anti-Degradation Policy is deemed to
incorporate the federal antidegradation policy where the federal policy applies under federal law. The State Anti-Degradation Policy requires that existing water quality be maintained unless degradation is justified based on specific findings. The Central Valley Water Board’s Basin Plan implements, and incorporates by reference, both the State and federal antidegradation policies. The permitted discharge must be consistent with the antidegradation provision of 40 C.F.R. section 131.12 and the State Anti-Degradation Policy. The Board finds this order is consistent with the Federal and State Water Board antidegradation regulations and policy.

5. **Anti-Backsliding Requirements.** Sections 402(o) and 303(d)(4) of the CWA and federal regulations at 40 C.F.R. section 122.44(l) restrict backsliding in NPDES permits. These anti-backsliding provisions require that effluent limitations in a reissued permit must be as stringent as those in the previous permit, with some exceptions in which limitations may be relaxed.

6. **Domestic Water Quality.** In compliance with Water Code section 106.3, it is the policy of the State of California that every human being has the right to safe, clean, affordable, and accessible water adequate for human consumption, cooking, and sanitary purposes. This Order promotes that policy by requiring discharges to meet maximum contaminant levels designed to protect human health and ensure that water is safe for domestic use.

7. **Endangered Species Act Requirements.** This Order does not authorize any act that results in the taking of a threatened or endangered species or any act that is now prohibited, or becomes prohibited in the future, under either the California Endangered Species Act (Fish and Game Code, sections 2050 to 2097) or the Federal Endangered Species Act (16 U.S.C.A. sections 1531 to 1544). This Order requires compliance with effluent limits, receiving water limits, and other requirements to protect the beneficial uses of waters of the state. The Discharger is responsible for meeting all requirements of the applicable Endangered Species Act.

8. **Emergency Planning and Community Right to Know Act.** Section 13263.6(a) of the Water Code, requires that “the Regional Water Board shall prescribe effluent limitations as part of the waste discharge requirements of a POTW for all substances that the most recent toxic chemical release data reported to the state emergency response commission pursuant to section 313 of the Emergency Planning and Community Right to Know Act of 1986 (42 U.S.C. Sec. 11023) (EPCRA) indicate as discharged into the POTW, for which the State Water Board or the Regional Water Board has established numeric water quality objectives, and has determined that the discharge is or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to, an excursion above any numeric water quality objective”.

ORDER R5-2022-0039
NPDES NO. CA0079901
The most recent toxic chemical data report does not indicate any reportable off-site releases or discharges to the collection system for this Facility. Therefore, a reasonable potential analysis based on information from EPCRA cannot be conducted. Based on information from EPCRA, there is no reasonable potential to cause or contribute to an excursion above any numeric water quality objectives included within the Basin Plan or in any State Water Board plan, so no effluent limitations are included in this permit pursuant to Water Code section 13263.6(a).

However, as detailed elsewhere in this Order, available effluent data indicate that there are constituents present in the effluent that have a reasonable potential to cause or contribute to exceedances of water quality standards and require inclusion of effluent limitations based on federal and state laws and regulations.

9. **Storm Water Requirements.** U.S. EPA promulgated federal regulations for storm water on 16 November 1990 in 40 C.F.R. parts 122, 123, and 124. The NPDES Industrial Storm Water Program regulates storm water discharges from wastewater treatment facilities. Wastewater treatment plants are applicable industries under the storm water program and are obligated to comply with the federal regulations. The State Water Board does not require wastewater treatment facilities with design flows less than 1 MGD to obtain coverage under the Industrial Storm water General Order. Therefore, this Order does not regulate storm water.

10. **Statewide General Waste Discharge Requirements for Sanitary Sewer Systems.** The State Water Board issued General Waste Discharge Requirements for Sanitary Sewer Systems, Water Quality Order 2006-0003-DWQ (General Order) on 2 May 2006. The State Water Board amended the MRP for the General Order through Order WQ 2013-0058-EXEC on 6 August 2013. The General Order requires public agencies that own or operate sanitary sewer systems with greater than 1 mile of pipes or sewer lines to enroll for coverage under the General Order. The General Order requires agencies to develop sanitary sewer management plans (SSMPs) and report all sanitary sewer overflows (SSOs), among other requirements and prohibitions.

The Discharger is subject to the requirements of, and must comply with, State Water Board Order 2006-0003-DWQ, Statewide General Waste Discharge Requirements for Sanitary Sewer Systems, as amended by State Water Board Order WQ 2013-0058-EXEC and any subsequent order.

11. **Sewage Sludge and Biosolids.** This Order does not authorize any act that results in violation of requirements administered by U.S. EPA to implement 40 C.F.R. Part 503, Standards for the Use or Disposal of Sewage Sludge. These standards regulate the final use or disposal of sewage sludge that is generated during the treatment of domestic sewage in a municipal wastewater treatment facility. The Discharger is responsible for meeting all applicable requirements of 40 C.F.R. Part 503 that are under U.S. EPA’s enforcement authority.
D. Impaired Water Bodies on CWA 303(d) List

1. Under section 303(d) of the 1972 CWA, states, territories and authorized tribes are required to develop lists of water quality limited segments. The waters on these lists do not meet water quality standards, even after point sources of pollution have installed the minimum required levels of pollution control technology. On 6 April 2018 U.S. EPA gave final approval to California's 2014 – 2016 section 303(d) List of Water Quality Limited Segments. The Basin Plan references this list of Water Quality Limited Segments (WQLSs), which are defined as “…those sections of lakes, streams, rivers or other fresh water bodies where water quality does not meet (or is not expected to meet) water quality standards even after the application of appropriate limitations for point sources (40 C.F.R. part 130, et seq.).” The Basin Plan also states, “Additional treatment beyond minimum federal standards will be imposed on dischargers to [WQLSs]. Dischargers will be assigned or allocated a maximum allowable load of critical pollutants so that water quality objectives can be met in the segment.” The listing for the Deer Creek includes: indicator bacteria, mercury, and pH.

2. Total Maximum Daily Loads (TMDLs). Deer Creek is not listed as impaired on the 303(d) list for diazinon and chlorpyrifos. However, Central Valley Water Board completed a TMDL for diazinon and chlorpyrifos for the Sacramento River and San Joaquin River Basins that is applicable to this discharge. Table F-4, below, identifies the 303(d) listings and any applicable TMDLs. This Order includes water quality-based effluent limitations (WQBELs) that are consistent with the assumptions and considerations of the applicable waste load allocations (WLAs) in the 2014 TMDL for diazinon and chlorpyrifos.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Sources</th>
<th>TMDL Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator bacteria</td>
<td>Source Unknown</td>
<td>Planned for completion 2027</td>
</tr>
<tr>
<td>Mercury</td>
<td>Source Unknown</td>
<td>Planned for completion 2027</td>
</tr>
<tr>
<td>pH</td>
<td>Source Unknown</td>
<td>Planned for completion 2027</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>Source Unknown</td>
<td>Adopted 28 March 2014 and Effective 16 August 2017</td>
</tr>
<tr>
<td>Diazinon</td>
<td>Source Unknown</td>
<td>Adopted 28 March 2014 and Effective 16 August 2017</td>
</tr>
</tbody>
</table>

3. The 303(d) listings and TMDLs have been considered in the development of the Order. A pollutant-by-pollutant evaluation of each pollutant of concern is described in section VI.C.3 of this Fact Sheet.

E. Other Plans, Polices and Regulations

1. Title 27. The discharge authorized herein and the treatment and storage facilities associated with the discharge of treated municipal wastewater, except for discharges of residual sludge and solid waste, are exempt from the requirements of Title 27, California Code of Regulations (CCR), section 20005 et seq
The exemption, pursuant to Title 27 CCR section 20090(a), is based on the following:

a. The waste consists primarily of domestic sewage and treated effluent;

b. The waste discharge requirements are consistent with water quality objectives; and

c. The treatment and storage facilities described herein are associated with a municipal wastewater treatment plant.

IV. RATIONALE FOR EFFLUENT LIMITATIONS AND DISCHARGE SPECIFICATIONS

Effluent limitations and toxic and pretreatment effluent standards established pursuant to sections 301 (Effluent Limitations), 302 (Water Quality Related Effluent Limitations), 304 (Information and Guidelines), and 307 (Toxic and Pretreatment Effluent Standards) of the CWA and amendments thereto are applicable to the discharge.

The CWA mandates the implementation of effluent limitations that are as stringent as necessary to meet water quality standards established pursuant to state or federal law [33 U.S.C., section 1311(b)(1)(C); 40 C.F.R. section 122.44(d)(1)]. NPDES permits must incorporate discharge limits necessary to ensure that water quality standards are met. This requirement applies to narrative criteria as well as to criteria specifying maximum amounts of particular pollutants. Pursuant to federal regulations, 40 C.F.R. section 122.44(d)(1)(i), NPDES permits must contain limits that control all pollutants that “are or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any state water quality standard, including state narrative criteria for water quality.” Federal regulations, 40 C.F.R. section 122.44(d)(1)(vi), further provide that “[w]here a state has not established a water quality criterion for a specific chemical pollutant that is present in an effluent at a concentration that causes, has the reasonable potential to cause, or contributes to an excursion above a narrative criterion within an applicable State water quality standard, the permitting authority must establish effluent limits.”

The CWA requires point source dischargers to control the amount of conventional, non-conventional, and toxic pollutants that are discharged into the waters of the United States. The control of pollutants discharged is established through effluent limitations and other requirements in NPDES permits. There are two principal bases for effluent limitations in the Code of Federal Regulations: 40 C.F.R. section 122.44(a) requires that permits include applicable technology-based limitations and standards; and 40 C.F.R. section 122.44(d) requires that permits include WQBELs to attain and maintain applicable numeric and narrative water quality criteria to protect the beneficial uses of the receiving water where numeric water quality objectives have not been established. The Basin Plan at page 4-27, contains an implementation policy, “Policy for Application of Water Quality Objectives”, that specifies that the Central Valley Water Board “will, on a case-by-case basis, adopt numerical limitations in orders which will implement the narrative objectives.” This Policy complies with 40 C.F.R. section 122.44(d)(1). With respect to narrative objectives, the Central Valley Water Board must establish effluent limitations using one or
CITY OF NEVADA CITY
WASTEWATER TREATMENT PLANT

ATTACHMENT F
FACT SHEET F-14

more of three specified sources, including: (1) U.S. EPA’s published water quality criteria, (2) a proposed state criterion (i.e., water quality objective) or an explicit state policy interpreting its narrative water quality criteria (i.e., the Central Valley Water Board’s “Policy for Application of Water Quality Objectives”) (40 C.F.R. section 122.44(d)(1)(vi)(A), (B) or (C)), or (3) an indicator parameter.

The Basin Plan includes numeric site-specific water quality objectives and narrative objectives for toxicity, chemical constituents, discoloration, radionuclides, and tastes and odors. The narrative toxicity objective states: “All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life.” (Basin Plan at section 3.1.20) The Basin Plan states that material and relevant information, including numeric criteria, and recommendations from other agencies and scientific literature will be utilized in evaluating compliance with the narrative toxicity objective. The narrative chemical constituents’ objective states that waters shall not contain chemical constituents in concentrations that adversely affect beneficial uses. At minimum, “…water designated for use as domestic or municipal supply (MUN) shall not contain concentrations of chemical constituents in excess of the maximum contaminant levels (MCLs)” in Title 22 of CCR. The Basin Plan further states that, to protect all beneficial uses, the Central Valley Water Board may apply limits more stringent than MCLs. The narrative tastes and odors objective states: “Water shall not contain taste- or odor-producing substances in concentrations that impart undesirable tastes or odors to domestic or municipal water supplies or to fish flesh or other edible products of aquatic origin, or that cause nuisance, or otherwise adversely affect beneficial uses.”

A. Discharge Prohibitions

1. **Prohibition III.A (No discharge or application of waste other than that described in this Order).** This prohibition is based on Water Code section 13260 that requires filing of a ROWD before discharges can occur. The Discharger submitted a ROWD for the discharges described in this Order; therefore, discharges not described in this Order are prohibited.

2. **Prohibition III.B (No bypasses or overflow of untreated wastewater, except under the conditions at CFR section122.41(m)(4)).** As stated in section I.G of Attachment D, Standard Provisions, this Order prohibits bypass from any portion of the treatment facility. Federal regulations, 40 C.F.R. section 122.41(m), define “bypass” as the intentional diversion of waste streams from any portion of a treatment facility. This section of the federal regulations, 40 C.F.R. section 122.41(m)(4), prohibits bypass unless it is unavoidable to prevent loss of life, personal injury, or severe property damage. In considering the Regional Water Board’s prohibition of bypasses, the State Water Board adopted a precedential decision, Order No. WQO 2002-0015, which cites the federal regulations, 40 C.F.R. section 122.41(m), as allowing bypass only for essential maintenance to assure efficient operation.
3. **Prohibition III.C (No controllable condition shall create a nuisance).** This prohibition is based on Water Code section 13050 that requires water quality objectives established for the prevention of nuisance within a specific area. The Basin Plan prohibits conditions that create a nuisance.

4. **Prohibition III.D (No discharge of hazardous waste).** This prohibition is based on California Code of Regulations, title 22, section 66261.1 et seq, that prohibits discharge of hazardous waste.

5. **Prohibition III.E (Average Dry Weather Flow).** This prohibition is based on the design average dry weather flow treatment capacity rating for the Facility and ensures the Facility is operated within its treatment capacity. Previous Order R5-2016-0060 included flow as an effluent limit based on the Facility design flow. Flow is not a pollutant and therefore has been changed from an effluent limit to a discharge prohibition in this Order, which is an equivalent level of regulation. This Order is not less stringent because compliance with flow as a discharge prohibition will be calculated the same way as the previous Order.

B. Technology-Based Effluent Limitations

1. **Scope and Authority**

Section 301(b) of the CWA and implementing U.S. EPA permit regulations at 40 C.F.R. section 122.44 require that permits include conditions meeting applicable technology-based requirements at a minimum, and any more stringent effluent limitations necessary to meet applicable water quality standards. The discharge authorized by this Order must meet minimum federal technology-based requirements based on Secondary Treatment Standards at 40 C.F.R. part 133.

Regulations promulgated in 40 C.F.R. section 125.3(a)(1) require technology-based effluent limitations for municipal Dischargers to be placed in NPDES permits based on Secondary Treatment Standards or Equivalent to Secondary Treatment Standards.

The Federal Water Pollution Control Act Amendments of 1972 (PL 92-500) established the minimum performance requirements for POTWs [defined in section 304(d)(1)]. Section 301(b)(1)(B) of that Act requires that such treatment works must, as a minimum, meet effluent limitations based on secondary treatment as defined by the U.S. EPA Administrator.

Based on this statutory requirement, U.S. EPA developed secondary treatment regulations, which are specified in 40 C.F.R. part 133. These technology-based regulations apply to all municipal wastewater treatment plants and identify the minimum level of effluent quality attainable by secondary treatment in terms of biochemical oxygen demand (BOD₅), total suspended solids (TSS), and pH.
2. Applicable Technology-Based Effluent Limitations

a. **BOD$_5$ and TSS.** Federal regulations at 40 C.F.R. part 133, establish the minimum weekly and monthly average level of effluent quality attainable by secondary treatment for BOD$_5$ and TSS. A daily maximum effluent limitation for BOD$_5$ and TSS is also included in the Order to ensure that the treatment works are not organically overloaded and operate in accordance with design capabilities. In addition, 40 C.F.R. section 133.102, in describing the minimum level of effluent quality attainable by secondary treatment, states that the 30-day average percent removal shall not be less than 85 percent. This Order contains a limitation requiring an average of 85 percent removal of BOD$_5$ and TSS over each calendar month. This Order requires Water Quality Based Effluent Limitations (WQBELs) that are equal to or more stringent than the secondary technology-based treatment described in 40 CFR part 133 (See section IV.C.3.d of the Fact Sheet for a discussion on Pathogens which includes WQBELs for BOD$_5$ and TSS.).

b. **pH.** The secondary treatment regulations at 40 C.F.R. part 133 also require that pH be maintained between 6.0 and 9.0 standard units. This Order, however, requires more stringent WQBELs for pH to comply with the Basin Plan’s water quality objectives for pH.

Summary of Technology-based Effluent Limitations

Discharge Point 001

Table F-5. Summary of Technology-based Effluent Limitations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical Oxygen Demand, 5-day @ 20°Celcius</td>
<td>mg/L</td>
<td>AMEL 30, AWEL 45</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand, 5-day @ 20°Celcius</td>
<td>% removal</td>
<td>AMEL 85</td>
</tr>
<tr>
<td>pH</td>
<td>Standard units</td>
<td>Instantaneous Min 6.0, Instantaneous Max 9.0</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>AMEL 30, AWEL 45</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>% removal</td>
<td>AMEL 85</td>
</tr>
</tbody>
</table>

Table F-5 Notes:

1. Note that more stringent WQBELs for BOD$_5$, pH, and TSS are applicable and are established as final effluent limitations in this Order (see section IV.C.3.d of this Fact Sheet).
C. Water Quality-Based Effluent Limitations (WQBELs)

1. Scope and Authority

CWA section 301(b) and 40 C.F.R. section 122.44(d) require that permits include limitations more stringent than applicable federal technology-based requirements where necessary to achieve applicable water quality standards. This Order contains requirements, expressed as a technology equivalence requirement, more stringent than secondary treatment requirements that are necessary to meet applicable water quality standards. The rationale for these requirements, which consist of tertiary treatment or equivalent requirements or other provisions, is discussed in section IV.C.3 of this Fact Sheet.

Section 122.44(d)(1)(i) of 40 C.F.R. requires that permits include effluent limitations for all pollutants that are or may be discharged at levels that have the reasonable potential to cause or contribute to an exceedance of a water quality standard, including numeric and narrative objectives within a standard. Where reasonable potential has been established for a pollutant, but there is no numeric criterion or objective for the pollutant, WQBELs must be established using: (1) U.S. EPA criteria guidance under CWA section 304(a), supplemented where necessary by other relevant information; (2) an indicator parameter for the pollutant of concern; or (3) a calculated numeric water quality criterion, such as a proposed state criterion or policy interpreting the state’s narrative criterion, supplemented with other relevant information, as provided in section 122.44(d)(1)(vi).

The process for determining reasonable potential and calculating WQBELs when necessary is intended to protect the designated uses of the receiving water as specified in the Basin Plan, and achieve applicable water quality objectives and criteria that are contained in other state plans and policies, or any applicable water quality criteria contained in the CTR and NTR.

Finally, 40 C.F.R. section 122(d)(1)(vii) requires effluent limits to be developed consistent with any available waste load allocations developed and approved for the discharge.

2. Applicable Beneficial Uses and Water Quality Criteria and Objectives

The Basin Plan designates beneficial uses, establishes water quality objectives, and contains implementation programs and policies to achieve those objectives for all waters addressed through the plan. In addition, the Basin Plan implements State Water Board Resolution No. 88-63, which established state policy that all waters, with certain exceptions, should be considered suitable or potentially suitable for municipal or domestic supply.

The Basin Plan on page 2-1 states: “Protection and enhancement of existing and potential beneficial uses are primary goals of water quality planning...” and with respect to disposal of wastewaters states that “...disposal of wastewaters
is [not] a prohibited use of waters of the State; it is merely a use which cannot be satisfied to the detriment of beneficial uses."

The federal CWA section 101(a)(2), states: "it is the national goal that wherever attainable, an interim goal of water quality which provides for the protection and propagation of fish, shellfish, and wildlife, and for recreation in and on the water be achieved by July 1, 1983." Federal Regulations, developed to implement the requirements of the CWA, create a rebuttable presumption that all waters be designated as fishable and swimmable. Federal Regulations, 40 CFR sections 131.2 and 131.10, require that all waters of the State regulated to protect the beneficial uses of public water supply, protection and propagation of fish, shellfish and wildlife, recreation in and on the water, agricultural, industrial and other purposes including navigation. 40 C.F.R. section 131.3(e) defines existing beneficial uses as those uses actually attained after 28 November 1975, whether or not they are included in the water quality standards. Federal Regulation, 40 C.F.R. section 131.10 requires that uses be obtained by implementing effluent limitations, requires that all downstream uses be protected and states that in no case shall a state adopt waste transport or waste assimilation as a beneficial use for any waters of the United States.

a. **Receiving Water and Beneficial Uses.** Refer to III.C.1. above for a complete description of the receiving water and beneficial uses.

b. **Effluent and Ambient Background Data.** The reasonable potential analysis (RPA), as described in section IV.C.3 of this Fact Sheet, was based on data from 1 March 2018 through 28 February 2021, which includes effluent and ambient background data submitted in SMRs and the Report of Waste Discharge (ROWD).

c. **Assimilative Capacity/Mixing Zone.**

i. The CWA directs the states to adopt water quality standards to protect the quality of its waters. U.S. EPA’s current water quality standards regulation authorizes states to adopt general policies, such as mixing zones, to implement state water quality standards (40 CFR parts 122.44 and 122.45). The U.S. EPA allows states to have broad flexibility in designing its mixing zone policies. Primary policy and guidance on determining mixing zone and dilution credits is provided by the SIP and the Basin Plan. If no procedure applies in the SIP or the Basin Plan, then the Central Valley Water Board may use the U.S. EPA Technical Support Document for Water Quality-Based Toxics Control (EPA/505/2-90-001) (TSD).

For non-Priority Pollutant constituents the allowance of mixing zones by the Central Valley Water Board is discussed in the Basin Plan, *Policy for Application of Water Quality Objectives, which states in part, “In conjunction with the issuance of NPDES and storm water permits, the Regional Board may designate mixing zones within which water*
quality objectives will not apply provided the discharger has demonstrated to the satisfaction of the Regional Board that the mixing zone will not adversely impact beneficial uses. If allowed, different mixing zones may be designated for different types of objectives, including, but not limited to, acute aquatic life objectives, chronic aquatic life objectives, human health objectives, and acute and chronic whole effluent toxicity objectives, depending in part on the averaging period over which the objectives apply. In determining the size of such mixing zones, the Regional Board will consider the applicable procedures and guidelines in the EPA’s Water Quality Standards Handbook and the [TSD]. Pursuant to EPA guidelines, mixing zones designated for acute aquatic life objectives will generally be limited to a small zone of initial dilution in the immediate vicinity of the discharge.

For Priority Pollutants, the SIP supersedes the Basin Plan mixing zone provisions. Section 1.4.2 of the SIP states, in part, “…with the exception of effluent limitations derived from TMDLs, in establishing and determining compliance with effluent limitations for applicable human health, acute aquatic life, or chronic aquatic life priority pollutant criteria/objectives or the toxicity objective for aquatic life protection in a basin plan, the Regional Board may grant mixing zones and dilution credits to dischargers…The applicable priority pollutant criteria and objectives are to be met through a water body except within any mixing zone granted by the Regional Board. The allowance of mixing zones is discretionary and shall be determined on a discharge-by-discharge basis. The Regional Board may consider allowing mixing zones and dilution credits only for discharges with a physically identifiable point of discharge that is regulated through an NPDES permit issued by the Regional Board.” [emphasis added]

For incompletely mixed discharges, the Discharger must complete an independent mixing zone study to demonstrate to the Central Valley Water Board that a dilution credit is appropriate. In granting a mixing zone, section 1.4.2.2 of the SIP requires the following to be met:

“A mixing zone shall be as small as practicable. The following conditions must be met in allowing a mixing zone:

A mixing zone shall not:

1. compromise the integrity of the entire water body;
2. cause acutely toxic conditions to aquatic life passing thorough the mixing zone;
3. restrict the passage of aquatic life;
4. adversely impact biologically sensitive or critical habitats, including, but not limited to, habitat of species listed under federal or State endangered species laws;

5. produce undesirable or nuisance aquatic life;

6. result in floating debris, oil, or scum;

7. produce objectionable color, odor, taste, or turbidity;

8. cause objectionable bottom deposits;

9. cause nuisance;

10. dominate the receiving water body or overlap a mixing zone from different outfalls; or

11. be allowed at or near any drinking water intake. A mixing zone is not a source of drinking water. To the extent of any conflict between this determination and the Sources of Drinking Water Policy (Resolution No. 88-63), this SIP supersedes the provisions of that policy.”

Section 1.4.2.1 of the SIP establishes the authority for the Central Valley Water Board to consider dilution credits based on the mixing zone conditions in a receiving water. Section 1.4.2.1 in part states:

“The dilution credit, D, is a numerical value associated with the mixing zone that accounts for the receiving water entrained into the discharge. The dilution credit is a value used in the calculation of effluent limitations (described in section 1.4). **Dilution credits may be limited or denied on a pollutant-by-pollutant basis, which may result in a dilution credit for all, some, or no priority pollutants in the discharge.**”

ii. **Receiving Water and Outfall Characteristics.** Deer Creek is a year-round stream, and therefore, dilution is considered for year-round discharge. Currently, there is not an adequate amount of flow data from the Deer Creek gauge station. On 6 January 2021, the Discharger submitted the *City of Nevada City WWTP Effluent Dilution Evaluation* technical memorandum by Jacobson James and Associates (2021 Dilution Memo) to update the harmonic mean flow of Deer Creek. The Discharger began taking manual twice per month flow measurements in November 2019 at a location approximately 1,600 feet upstream of Discharge Point 001. There is a stable cross-stream concrete weir at the measurement location are no major tributaries into or diversion from Deer Creek along this reach of the creek. The calculated harmonic mean flow is estimated to be conservatively low because 19 of 20 samples were collected during dry weather conditions. Therefore, monitoring data from November 2019 through December 2020 was...
iii. **Dilution/Mixing Zone Study Results.** To support a mixing zone request for CTR human health criteria, the Discharger submitted *City of Nevada City Mixing Zone and Dilution Study for Carcinogens: Carbon Tetrachloride and Dichlorobromomethane* (Stantec Consulting Services, Inc.) dated May 2011. The mixing zone field study was conducted on 18 November 2010, when Deer Creek flows are expected to be low and stable. Field conditions were found to be representative of mixing conditions under the estimated 5.02 MGD harmonic mean flow. Under low flow conditions, Deer Creek pinches down to narrow chutes of water before plunging into pools. Thus, electrical conductivity cross-sectional profiles were measured at the end of pools downstream of these hydraulic pinch points. Three measurements were obtained upstream and four measurements were obtained downstream. Based on field measurements, complete mixing was determined to be 236 feet downstream of the effluent discharge, which is the end of the proposed mixing zone.

In January 2022, the Discharger submitted the *Antidegradation Analysis for City of Nevada City Wastewater Treatment Plant – Effluent Discharge to Deer Creek* by Woodard and Curran (Antidegradation Analysis) to evaluate the potential impact of each constituent and their use of assimilative capacity. The Antidegradation Analysis confirmed that the mixing zone size estimated in the 2011 Mixing Zone Study is still a conservatively low based on the updated harmonic mean flow of 7.3 MGD. Thus, the mixing zone length is determined to be up to 236 feet downstream of the discharge point. Based on the average dry weather flow of 0.69 MGD and the harmonic mean flow of 7.3 MGD, the calculated human health dilution credit equates to 10.6:1.

iv. **Evaluation of Available Dilution for Human Health Criteria (Dibromochloromethane and Dichlorobromomethane).** The SIP requires a mixing zone must be as small as practicable and comply with eleven (11) prohibitions under section 1.4.2.2.A. Based on Central Valley Water Board staff evaluation, the mixing zone extends up to 236 feet downstream of the Facility’s outfall and a maximum available dilution credit of 10.6:1 meets the eleven prohibitions of the SIP as follows:

1. *Shall not compromise the integrity of the entire water body* – The TSD states that, “If the total area affected by elevated concentrations within all mixing zones combined is small compared to the total area of a water body (such as a river segment), then mixing zones are likely to have little effect on the integrity of the water body as a whole, provided that the mixing zone does not
impinge on unique or critical habitats.” The mixing zone is not applicable to aquatic life criteria. The mixing zone does not compromise the integrity of the entire water body.

(2) Shall not cause acutely toxic conditions to aquatic life passing through the mixing zone – The mixing zone is not applicable to aquatic life criteria. Therefore, acutely toxic conditions will not occur in the mixing zone.

(3) Shall not restrict the passage of aquatic life – The human health mixing zone is not applicable to aquatic life criteria. Therefore, the mixing zone will not restrict the passage of aquatic life.

(4) Shall not adversely impact biologically sensitive or critical habitats, including, but not limited to, habitat of species listed under federal or State endangered species laws – The mixing zone is not applicable to aquatic life criteria. The mixing zone will not impact biologically sensitive or critical habitats.

(5-9) Shall not produce undesirable or nuisance aquatic life; result in floating debris, oil, or scum; produce objectionable color, odor, taste, or turbidity; cause objectionable bottom deposits; cause nuisance – The allowance of the mixing zone will not produce undesirable or nuisance aquatic life, result in floating debris, oil, or scum; produce objectionable color, odor, taste, or turbidity; cause objectionable bottom deposits; or cause nuisance. This Order requires the discharge to meet Title 22 (or equivalent) tertiary filtration, which will ensure continued compliance with these mixing zone requirements. Therefore, the allowance of the mixing zone will not produce undesirable or nuisance aquatic life, result in floating debris, oil, or scum; produce objectionable color, odor, taste, or turbidity; cause objectionable bottom deposits; or cause nuisance.

(10) Shall not dominate the receiving water body or overlap a mixing zone from different outfalls – The mixing zone is small relative to the water body, so it will not dominate the water body. Furthermore, the mixing zone does not overlap mixing zones from other outfalls. There are no outfalls or mixing zones in the vicinity of the discharge.

(11) Shall not be allowed at or near any drinking water intake – The mixing zone is not near a drinking water intake.

A pollutant-by-pollutant evaluation is provided in subsection v. below to evaluate whether the mixing zones for each pollutant are as small as practicable and comply with the State and federal antidegradation requirements.

v. Evaluation of Available Dilution for Specific Constituents (Pollutant-by-Pollutant Evaluation)
When determining to allow dilution credits for a specific pollutant several factors must be considered, such as, available assimilative capacity, facility performance, and best practicable treatment or control. The receiving water contains assimilative capacity for dibromochloromethane (DBCM) and dichlorobromomethane (DCBM), and the human health criteria mixing zones meet the mixing zone prohibitions of the SIP section 1.4.2.2.A. Section 1.4.2.2 of the SIP requires that, “A mixing zone shall be as small as practicable.”, and Section 1.4.2.2.B requires, “The RWQCB shall deny or significantly limit a mixing zone and dilution credits as necessary to protect beneficial uses, meet the conditions of this Policy, or comply with other regulatory requirements.” A pollutant-by-pollutant evaluation is provided below:

(a) **Dibromochloromethane**. Considering existing Facility performance and the factors in section 1.4.2.2.A of the SIP, a dilution credit of 10.6:1 and a mixing zone extending 236 feet downstream has been granted for DBCM. This represents a mixing zone that is as small as practicable for this Facility and that fully complies with the SIP.

The allowance of a mixing zone and dilution credits are a discretionary act by the Central Valley Water Board. The mixing zone and dilution credit for DBCM permitted in this Order will result in a significant increase in the discharge (i.e., use 100 percent of the available assimilative capacity in the receiving water). According to U.S. EPA’s memorandum on Tier 2 Antidegradation Reviews and Significance Thresholds, any individual decision to lower water quality for nonbioaccumulative chemicals that is limited to 10 percent of the available assimilative capacity represents minimal risk to the receiving water and is fully consistent with the objectives and goals of the Clean Water Act. The mixing zone is as small as practicable for this Facility and the increased loading complies with the state and federal antidegradation requirements. Since the discharge will use 100 percent of the available assimilative capacity, the Discharger conducted a Complete Antidegradation Analysis discussed further in section IV.D.4 of this Fact Sheet.

(b) **Dichlorobromomethane**. Considering existing Facility performance and the factors in section 1.4.2.2.A of the SIP, a dilution credit of 10.6:1 and a mixing zone extending 236 feet downstream has been granted for DCBM. This represents a mixing zone that is as small as practicable for this Facility and that fully complies with the SIP.

The allowance of a mixing zone and dilution credits are a discretionary act by the Central Valley Water Board. The mixing zone and dilution credit for DCBM permitted in this Order will result
in a significant increase in the discharge (i.e., use 100 percent of
the available assimilative capacity in the receiving water).
According to U.S. EPA's memorandum on Tier 2 Antidegradation
Reviews and Significance Thresholds, any individual decision to
lower water quality for nonbioaccumulative chemicals that is limited
to 10 percent of the available assimilative capacity represents
minimal risk to the receiving water and is fully consistent with the
objectives and goals of the Clean Water Act. The mixing zone is as
small as practicable for this Facility and the increased loading
complies with the state and federal antidegradation requirements.
Since the discharge will use 100 percent of the available
assimilative capacity, the Discharger conducted a Complete
Antidegradation Analysis discussed further in section IV.D.4 of this
Fact Sheet.

Based on the findings above, this Order grants mixing zones and
dilution credits that have been used for the calculation of WQBELs for
DBCM and DCBM. The dimensions of the mixing zones and allowable
dilution credits are shown in Table F-6, below.

Table F-6. Mixing Zones and Dilution Credits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Allowed Dilution Credit</th>
<th>Mixing Zone Size (feet)</th>
<th>Percent Assimilative Capacity Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromochloromethane</td>
<td>10.6</td>
<td>236</td>
<td>100</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>10.6</td>
<td>236</td>
<td>100</td>
</tr>
</tbody>
</table>

d. **Conversion Factors.** The CTR contains aquatic life criteria for arsenic,
cadmium, chromium III, chromium VI, copper, lead, nickel, silver, and zinc
which are presented in dissolved concentrations. U.S. EPA recommends
conversion factors to translate dissolved concentrations to total
concentrations. The default U.S. EPA conversion factors contained in
Appendix 3 of the SIP were used to convert the applicable dissolved
criteria to total criteria.

e. **Hardness-Dependent CTR Metals Criteria.** The CTR and the NTR
contain water quality criteria for seven metals that vary as a function of
hardness. The lower the hardness the lower the water quality criteria. The
metals with hardness-dependent criteria include cadmium, copper,
chromium III, lead, nickel, silver, and zinc.

This Order has established the criteria for hardness-dependent metals
based on the hardness of the receiving water (actual ambient hardness)
as required by the SIP and the CTR. The SIP does not address how to
determine the hardness for application to the equations for the protection
of aquatic life when using hardness-dependent metals criteria. It simply
states, in section 1.2, that the criteria shall be properly adjusted for
hardness using the hardness of the receiving water. The CTR requires that, for waters with a hardness of 400 mg/L (as CaCO₃), or less, the actual ambient hardness of the surface water must be used (40 C.F.R. section 131.38(c)(4)). The CTR requires that the hardness values used shall be consistent with the design discharge conditions for design flows and mixing zones (40 C.F.R. section 131.3(c)(4)(ii)). Where design flows for aquatic life criteria include the lowest one-day flow with an average reoccurrence frequency of once in ten years (1Q10) and the lowest average seven consecutive day flow with an average reoccurrence frequency of once in ten years (7Q10) (40 C.F.R. section 131.38(c)(2)(iii) Table 4). This section of the CTR also indicates that the design conditions should be established such that the appropriate criteria are not exceeded more than once in a three year period on average (40 C.F.R. section 131.38(c)(2)(iii) Table 4, notes 1 and 2). The CTR requires that when mixing zones are allowed the CTR criteria apply at the edge of the mixing zone, otherwise the criteria apply throughout the water body including at the point of discharge (40 C.F.R. section 131.38(c)(2)(i)). The CTR does not define the term “ambient,” as applied in the regulations. Therefore, the Central Valley Water Board has considerable discretion to consider upstream and downstream ambient conditions when establishing the appropriate water quality criteria that fully complies with the CTR and SIP.

Summary findings
The ambient hardness for the Deer Creek is represented by the data in Figure F-1, below, which shows ambient hardness ranging from 11.9 mg/L to 193 mg/L based on collected ambient data from March 2018 through February 2021. Given the high variability in ambient hardness values, there is no single hardness value that describes the ambient receiving water for all possible scenarios (e.g., minimum, maximum). Because of this variability, staff has determined that based on the ambient hardness concentrations measured in the receiving water, the Central Valley Water Board has discretion to select ambient hardness values within the range of 11.9 mg/L (minimum) up to 193 mg/L (maximum). Staff recommends that the Board use the ambient hardness values shown in Table F-7 for the following reasons.

i. Using the ambient receiving water hardness values shown in Table F-7 will result in criteria and effluent limitations that ensure protection of beneficial uses under all ambient receiving water conditions.

ii. The Water Code mandates that the Central Valley Water Board establish permit terms that will ensure the reasonable protection of beneficial uses. In this case, using the lowest measured ambient hardness to calculate effluent limitations is not required to protect beneficial uses. Calculating effluent limitations based on the lowest measured ambient hardness is not required by the CTR or SIP and is not reasonable as it would result in overly conservative limits that will impart substantial costs to the Discharger and ratepayers without
providing any additional protection of beneficial uses. In compliance with applicable state and federal regulatory requirements, after considering the entire range of ambient hardness values, Board staff has used the ambient hardness values shown in Table F-7 to calculate the proposed effluent limitations for hardness-dependent metals. The proposed effluent limitations are protective of beneficial uses under all flow conditions.

iii. Using an ambient hardness that is higher than the minimum of 11.9 mg/L will result in limits that may allow increased metals to be discharged to the river, but such discharge is allowed under the State Antidegradation Policy (State Water Board Resolution 68-16). The Central Valley Water Board finds that this degradation is consistent with the antidegradation policy (see antidegradation findings in section IV.D.4 of the Fact Sheet). The Antidegradation policy requires the Discharger to meet waste discharge requirements which will result in the best practicable treatment or control of the discharge necessary to assure that: a) a pollution or nuisance will not occur, and b) the highest water quality consistent with maximum benefit to the people of the State will be maintained.

iv. Using the ambient hardness values shown in Table F-7 is consistent with the CTR and SIP's requirements for developing metals criteria.

Table F-7. Summary of CTR Criteria for Hardness-dependent Metals

<table>
<thead>
<tr>
<th>CTR Metals</th>
<th>Ambient Hardness (mg/L)</th>
<th>CTR Criteria (μg/L, total) (Acute)</th>
<th>CTR Criteria (μg/L, total) (Chronic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>92</td>
<td>13</td>
<td>8.7</td>
</tr>
<tr>
<td>Chromium III</td>
<td>92</td>
<td>1600</td>
<td>190</td>
</tr>
<tr>
<td>Cadmium</td>
<td>84 (acute) 92 (chronic)</td>
<td>3.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Lead</td>
<td>56</td>
<td>39</td>
<td>1.5</td>
</tr>
<tr>
<td>Nickel</td>
<td>92</td>
<td>440</td>
<td>49</td>
</tr>
<tr>
<td>Silver</td>
<td>52</td>
<td>1.3</td>
<td>--</td>
</tr>
<tr>
<td>Zinc</td>
<td>92</td>
<td>110</td>
<td>110</td>
</tr>
</tbody>
</table>

Table F-7 Notes:

1. **CTR Criteria (μg/L total).** Acute and chronic numbers were rounded to two significant figures in accordance with the CTR (40 C.F.R. section 131.38(b)(2)).

2. **Ambient hardness (mg/L).** Values in Table F-7 represent actual observed receiving water hardness measurements from the dataset shown in Figure F-1.

3. **The CTR’s hardness dependent metals criteria** equations vary differently depending on the metal, which results in differences in the range of ambient hardness values that may be used to develop effluent limitations that are protective of beneficial uses and comply with CTR criteria for all ambient flow conditions.
Background
The State Water Board provided direction regarding the selection of hardness in two precedential water quality orders; WQO 2008-0008 for the City of Davis Wastewater Treatment Plant (Davis Order) and WQO 2004-0013 for the Yuba City Wastewater Treatment Plant (Yuba City Order). The State Water Board recognized that the SIP and the CTR do not discuss the manner in which hardness is to be ascertained, thus regional water boards have considerable discretion in determining ambient hardness so long as the selected value is protective of water quality criteria under the given flow conditions. (Davis Order, p.10). The State Water Board explained that it is necessary that, “The [hardness] value selected should provide protection for all times of discharge under varying hardness conditions.” (Yuba City Order, p. 8). The Davis Order also provides that, “Regardless of the hardness used, the resulting limits must always be protective of water quality criteria under all flow conditions.” (Davis Order, p. 11)

For this discussion, all hardness values are expressed in mg/L as CaCO_3. The equation describing the total regulatory criterion, as established in the CTR, is as follows:

\[
CTR \text{ Criterion} = WER \times (e^{m \ln(H) + b}) \text{ (Equation 1)}
\]

Where:

- \(H \) = ambient hardness (as CaCO_3)
- \(WER \) = water-effect ratio
- \(m, b \) = metal- and criterion-specific constants

The direction in the CTR regarding hardness selection is that it must be based on ambient hardness and consistent with design discharge conditions for design flows and mixing zones. Consistent with design discharge conditions and design flows means that the selected “design” hardness must result in effluent limitations under design discharge conditions that do not result in more than one exceedance of the applicable criteria in a three year period (40 C.F.R. section 131.38(c)(2)(iii) Table 4, notes 1 and 2). Where design flows for aquatic life criteria include the lowest one-day flow with an average reoccurrence frequency of once in ten years (1Q10) and the lowest average seven consecutive day flow with an average reoccurrence frequency of once in ten years (7Q10). The 1Q10 and 7Q10 Deer Creek flows are 0 cfs and 0.12 cfs, respectively.

Ambient conditions
The ambient receiving water hardness varied from 11.9 mg/L to 193 mg/L, based on 105 samples from September 2012 through February 2021 (see Figure F-1).
In this analysis, the entire range of ambient hardness concentrations shown in Figure F-1 were considered to determine the appropriate ambient hardness to calculate the CTR criteria and effluent limitations that are protective under all discharge conditions.

Approach to derivation of criteria

As shown above, ambient hardness varies substantially. Because of the variation, there is no single hardness value that describes the ambient receiving water for all possible scenarios (e.g., minimum, maximum, midpoint). While the hardness selected must be hardness of the ambient receiving water, selection of an ambient receiving water hardness that is too high would result in effluent limitations that do not protect beneficial uses. Also, the use of minimum ambient hardness would result in criteria that are protective of beneficial uses, but such criteria may not be representative considering the wide range of ambient conditions.

Reasonable worst-case ambient conditions. To determine whether a selected ambient hardness value results in effluent limitations that are fully protective while complying with federal regulations and state policy, staff have conducted an analysis considering varying ambient hardness and flow conditions. To do this, the Central Valley Water Board has ensured that the receiving water hardness and criteria selected for effluent limitations are protective under "reasonable-worst case ambient conditions." These conditions represent the receiving water conditions under which derived effluent limitations would ensure protection of beneficial uses under all ambient flow and hardness conditions.
Reasonable worst-case ambient conditions:

- “Low receiving water flow.” CTR design discharge conditions (1Q10 and 7Q10) have been selected to represent reasonable worst-case receiving water flow conditions.

- “High receiving water flow (maximum receiving water flow).” This additional flow condition has been selected consistent with the Davis Order, which required that the hardness selected be protective of water quality criteria under all flow conditions.

- “Low receiving water hardness.” The minimum receiving water hardness condition of 34 mg/L was selected to represent the reasonable worst-case receiving water hardness.

- “Background ambient metal concentration at criteria.” This condition assumes that the metal concentration in the background receiving water is equal to CTR criteria (upstream of the facility’s discharge). Based on data in the record, this is a design condition that has not occurred in the receiving water and is used in this analysis to ensure that limits are protective of beneficial uses even in the situation where there is no assimilative capacity.

Iterative approach.

An iterative analysis has been used to select the ambient hardness to calculate the criteria that will result in effluent limitations that protect beneficial uses under all flow conditions.

The iterative approach is summarized in the following algorithm and described below in more detail.
1. CRITERIA CALCULATION. CTR criteria are calculated using the CTR equations based on actual measured ambient hardness sample results, starting with the maximum observed ambient hardness of 193 mg/L. Effluent metal concentrations necessary to meet the above calculated CTR criteria in the receiving water are calculated in accordance with section 1.4.B, Step 2, of the SIP, which provides direction for calculating the Effluent Concentration Allowance. This should not be confused with an effluent limit. Rather, it is the Effluent Concentration Allowance (ECA), which is synonymous with the waste load allocation defined by U.S. EPA on page 96 of the TSD as “a definition of effluent water quality that is necessary to meet the water quality standards in the receiving water.” If effluent limits are found to be needed, the limits are calculated to enforce the ECA considering effluent variability and the probability basis of the limit.

2. CHECK. U.S. EPA’s simple mass balance equation, as found in the “U.S. EPA NPDES Permit Writers’ Handbook” (EPA 833-K-10-001 September 2010, pg. 6-24), is used to evaluate if discharge at the computed ECA is protective. Resultant downstream metal concentrations are compared with downstream calculated CTR criteria under reasonable worst-case ambient conditions.

3. ADAPT. If step 2 results in:

 (A) receiving water metal concentration that complies with CTR criteria under reasonable worst-case ambient conditions, then the hardness value is selected.
(B) receiving water metal concentration greater than CTR criteria, then
return to bullet 1, selecting a lower ambient hardness value.

The CTR’s hardness dependent metals criteria equations contain metal-specific constants, so the criteria vary depending on the metal. Therefore, steps 1 through 3 above must be repeated separately for each metal until ambient hardness values are determined that will result in criteria and effluent limitations that comply with the CTR and protect beneficial uses for all metals.

Results of iterative analysis
The iterative analysis for each CTR hardness-dependent metal results in the selected ambient hardness values are shown in Table F-7, above. Using these actual receiving water sample hardness values to calculate criteria will result in effluent limitations that are protective under all ambient flow conditions. Ambient hardness values are used in the CTR equations to derive criteria and effluent limitations. As an example of the three-step iterative process, Table F-8 below summarizes the numeric results for copper based on an ambient hardness of 92 mg/L and a calculated ECA of 8.7 µg/L. Table F-9 below summarizes the numeric results for silver based on an ambient hardness of 52 mg/L and a calculated ECA of 1.32 µg/L. The analysis evaluated all flow conditions, and the numeric values for the critical flow conditions are summarized in Tables F-8 and F-9, below. Ambient concentrations for copper and silver are calculated using the worst-case downstream ambient conditions, which allows for a conservative assumption that will ensure the receiving water complies with CTR criteria. Under the “check” step, worst-case ambient receiving water conditions are used to test whether the effluent discharge results in compliance with CTR criteria and protection of beneficial uses.

The results of the iterative analyses show that the ambient hardness values selected using the three-step iterative process results in protective effluent limitations that achieve CTR criteria under all flow conditions. Tables F-8 and F-9 below, summarize the critical flow conditions. There is no effluent limitation for copper and silver as it demonstrates no reasonable potential.

Table F-8. Verification of CTR Compliance for Copper

<table>
<thead>
<tr>
<th>Critical Flow Conditions</th>
<th>Hardness (mg/L)</th>
<th>CTR Criteria (µg/L)</th>
<th>Ambient Copper Concentration (µg/L)</th>
<th>Complies with CTR?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Q10</td>
<td>98</td>
<td>9.2</td>
<td>8.7</td>
<td>Yes</td>
</tr>
<tr>
<td>7Q10</td>
<td>89</td>
<td>8.5</td>
<td>8.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Max receiving water flow</td>
<td>12</td>
<td>1.5</td>
<td>1.5</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table F-9. Verification of CTR Compliance for Silver
Downstream Worst-Case Ambient Receiving Water Conditions

<table>
<thead>
<tr>
<th>Critical Flow Conditions</th>
<th>Hardness (mg/L)</th>
<th>CTR Criteria (µg/L)</th>
<th>Ambient Silver Concentration (µg/L)</th>
<th>Complies with CTR?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Q10</td>
<td>98</td>
<td>3.9</td>
<td>1.3</td>
<td>Yes</td>
</tr>
<tr>
<td>7Q10</td>
<td>89</td>
<td>3.4</td>
<td>1.2</td>
<td>Yes</td>
</tr>
<tr>
<td>Max receiving water flow</td>
<td>12</td>
<td>0.1</td>
<td>0.1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

3. Determining the Need for WQBELs

Clean Water Act section 301(b)(1)(C) requires effluent limitations necessary to meet water quality standards, and 40 C.F.R. section 122.44(d) requires NPDES permits to include conditions that are necessary to achieve water quality standards established under section 303 of the CWA, including State narrative criteria for water quality. Federal regulations at 40 C.F.R 122.44(d)(1)(i) state, “Limitations must control all pollutants or pollutant parameters (either conventional, nonconventional, or toxic pollutants) which the Director determines are or may be discharged at a level that will cause, have the reasonable potential to cause, or contribute to an excursion above any State water quality standard, including State narrative criteria for water quality.” Additionally, 40 C.F.R. section 122(d)(1)(vii) requires effluent limits to be developed consistent with any available waste load allocations developed and approved for the discharge. The process to determine whether a WQBEL is required as described in 40 C.F.R. section 122.44(d)(1)(i) is referred to as a reasonable potential analysis or RPA. Central Valley Water Board staff conducted RPAs for nearly 200 constituents, including the 126 U.S. EPA priority toxic pollutants. This section includes details of the RPAs for constituents of concern for the Facility. The entire RPA is included in the administrative record and a summary of the constituents of concern is provided in Attachment G. For non-priority pollutants the Central Valley Water Board is not restricted to one particular RPA method, therefore, the RPAs have been conducted based on EPA guidance considering multiple lines of evidence and the site-specific conditions of the discharge.

a. Constituents with Total Maximum Daily Load (TMDL).

40 C.F.R. section 122.44(d)(1)(vii) provides: “When developing water quality-based effluent limits under [section 122.44(d)(1)], the permitting authority shall ensure that: (A) The level of water quality to be achieved by limits on point sources established under this paragraph is derived from, and complies with all applicable water quality standards; and (B) Effluent limits developed to protect a narrative water quality criterion, a numeric water quality criterion, or both, are consistent with the assumptions and requirements of any available waste load allocation for the discharge prepared by the State and approved by EPA pursuant to [Total Maximum
Daily Loads regulations].” U.S. EPA construes 40 C.F.R. section 122.44(d)(1)(vii)(B) to mean that “when WLAs are available, they must be used to translate water quality standards into NPDES permit limits.” 54 Fed. Reg. 23868, 23879 (June 2, 1989).

Deer Creek is subject to TMDLs for diazinon and chlorpyrifos and waste load allocations under those TMDLs are available. The Central Valley Water Board developed WQBELs for these pollutants pursuant to 40 C.F.R. section 122.44(d)(1)(vii), which does not require or contemplate a reasonable potential analysis.

i. **Diazinon and Chlorpyrifos.**

 (a) **WQO.** The Central Valley Water Board completed a TMDL for diazinon and chlorpyrifos for the Sacramento River and San Joaquin River Basins and amended the Basin Plan to include diazinon and chlorpyrifos waste load allocations and water quality objectives. The Basin Plan Amendment for the Sacramento River and San Joaquin River Basins for Control of Diazinon and Chlorpyrifos Discharges was adopted by the Central Valley Water Board on 28 March 2014 and became effective on 16 August 2017.

 The amendment modified Basin Plan Chapter 3 (Water Quality Objectives) to establish site-specific numeric objectives for diazinon and chlorpyrifos for waters with COLD and/or WARM beneficial uses below major dams and identified the requirements to meet the additive formula already in Basin Plan Chapter 4 (Implementation) for the additive toxicity of diazinon and chlorpyrifos.

 The amendment states that “The waste load allocations for all NPDES-permitted dischargers…shall not exceed the sum (S) of one (1) as defined below.

 \[
 S = \frac{Cd}{WQOd} + \frac{Cc}{WQOc} \leq 1.0
 \]

 Where:

 \(Cd = \) diazinon concentration in µg/L of point source discharge

 \(Cc = \) chlorpyrifos concentration in µg/L of point source discharge

 \(WQOd = \) acute or chronic diazinon water quality objective in µg/L

 \(WQOc = \) acute or chronic chlorpyrifos water quality objective in µg/L
Available samples collected within the applicable averaging period for the water quality objective will be used to determine compliance with the allocations and loading capacity. For purposes of calculating the sum (S) above, analytical results that are reported as ‘non-detectable’ concentrations are considered to be zero.”

The WLAs apply to waterbodies that are downstream of the major dams in Table 3-5 of the Basin Plan, which includes Scotts Flat Dam on the Deer Creek. The Facility discharges to the Deer Creek, which is downstream of Scotts Flat Dam.

(b) **RPA Results.** Chlorpyrifos and diazinon were not detected in the effluent during four sampling events conducted between 1 March 2018 and 28 February 2021. However, since these pesticides have been banned for public use, they are not expected to be present in the effluent. The discharge does not have reasonable potential, but due to the TMDL for diazinon and chlorpyrifos in the Sacramento-San Joaquin Delta, WQBELs for these constituents are required. The TMDL waste load allocation applies to all NPDES dischargers to Delta waterways and will serve as the basis for WQBELs at Discharge Point 001.

(c) **WQBELs.** WQBELs for diazinon and chlorpyrifos are required based on the TMDL for diazinon and chlorpyrifos in the Deer Creek. Therefore, this Order includes effluent limits calculated based on the waste load allocations contained in the TMDL, as follows:

Average Monthly Effluent Limitation (AMEL)

\[
S(AMEL) = \frac{Cd (M-\text{avg})}{0.079} + \frac{Cc (M-\text{avg})}{0.012} \leq 1.0
\]

Where:

\[
Cd(M-\text{avg}) = \text{average monthly diazinon effluent concentration in } \mu g/L
\]

\[
Cc (M-\text{avg}) = \text{average monthly chlorpyrifos effluent concentration in } \mu g/L
\]

Average Weekly Effluent Limitation (AWEL)

\[
S(AWEL) = \frac{Cd (W-\text{avg})}{0.14} + \frac{Cc (W-\text{avg})}{0.021} \leq 1.0
\]

Where:
Cd(W-avg) = average weekly diazinon effluent concentration in μg/L

Cc (W-avg) = average weekly chlorpyrifos effluent concentration in μg/L

(d) **Plant Performance and Attainability.** Chlorpyrifos and diazinon were not detected in the effluent four sampling events conducted between 1 March 2018 and 28 February 2021. Furthermore, since these pesticides have been banned for public use, they are not expected to be present in the influent to the Facility. The Central Valley Water Board concludes, therefore, that immediate compliance with these effluent limitations is feasible.

b. **Constituents with No Reasonable Potential.** Central Valley Water Board staff conducted reasonable potential analyses for nearly 200 constituents, including the 126 U.S. EPA priority toxic pollutants. All reasonable potential analyses are included in the administrative record and a summary of the constituents of concern is provided in Attachment G. WQBELs are not included in this Order for constituents that do not demonstrate reasonable potential to cause or contribute to an instream excursion of an applicable water quality objective; however, monitoring for those pollutants is established in this Order as required by the SIP. If the results of effluent monitoring demonstrate reasonable potential, this Order may be reopened and modified by adding an appropriate effluent limitation.

Most constituents with no reasonable potential are not discussed in this Order. This section only provides the rationale for the reasonable potential analyses for the following constituents of concern that were found to have no reasonable potential after assessment of the data:

i. **Manganese**

(a) **WQO.** The Secondary MCL – Consumer Acceptance Limit for manganese is 50 μg/L, which is used to implement the Basin Plan’s chemical constituent objective for the protection of municipal and domestic supply. Compliance with the Secondary MCL is to be determined from samples that have been passed through a 1.5-micron filter.

(b) **RPA Results.** For priority pollutants, the SIP dictates the procedures for conducting the RPA. Manganese is not a priority pollutant. Therefore, the Central Valley Water Board is not restricted to one particular RPA method. Due to the site-specific conditions of the discharge, the Central Valley Water Board has used its judgment in determining the appropriate method for conducting the RPA for this non-priority pollutant constituent.
The most stringent objective is the Secondary MCL, which is derived from human welfare considerations (e.g., taste, odor, laundry staining), not for toxicity. Secondary MCLs are drinking water standards contained in Title 22 of the California Code of Regulations. Title 22 requires compliance with these standards on an annual average basis, when sampling at least quarterly. To be consistent with how compliance with the standards is determined, the RPA was conducted based on the mixed downstream concentration of manganese described in section 4.5.5 of the USEPA Technical Support Document for Water Quality-Based Toxics Control (EPA/505/2-90-001) (TSD).

The mixed downstream concentration of manganese was 34 µg/L based on four samples collected between 1 March 2018 and 28 February 2021. Therefore, the Central Valley Water Board finds the discharge does not have reasonable potential to cause or contribute to an exceedance in the receiving water and the Facility is adequately controlling the discharge of manganese.

ii. Mercury

(a) WQO. The current NAWQC for protection of freshwater aquatic life, continuous concentration, for mercury is 0.77 µg/L (30-day average, chronic criteria). The CTR contains a human health criterion (based on a threshold dose level causing neurological effects in infants) of 0.050 µg/L for waters from which both water and aquatic organisms are consumed. Both values are controversial and subject to change. In 40 C.F.R. part 131, U.S. EPA acknowledges that the human health criteria may not be protective of some aquatic or endangered species and that “…more stringent mercury limits may be determined and implemented through use of the State’s narrative criterion.” In the CTR, U.S. EPA reserved the mercury criteria for freshwater and aquatic life and may adopt new criteria at a later date.

The State Water Resource Control Board adopted Resolution 2017-0027 on 2 May 2017, which approved Part 2 of the Water Quality Control Plan for Inland Surface Waters, Enclosed Bays, and Estuaries of California, Tribal and Subsistence Fishing Beneficial Uses and Mercury Provisions (Statewide Mercury Provisions). The Statewide Mercury Provisions establish a Sport Fish Water Quality Objective of an average 0.2 mg/kg methylmercury fish tissue concentration within a calendar year for waters with the beneficial uses of commercial and sport fishing (COMM), tribal tradition and culture (CUL), wildlife habitat (WILD), marine habitat (MAR), and preservation or rare, threatened or endangered species (RARE). This fish tissue
objective corresponds to a water column concentration of 12 ng/L of total mercury for flowing water bodies (e.g., rivers, creeks, streams, and waters with tidal mixing). As shown in Table F-3, the beneficial uses of Deer Creek includes WILD; therefore, the Sport Fish Water Quality Objective is applicable and is the most stringent objective.

(b) **RPA Results.** The Statewide Mercury Provisions specify that the RPA shall be conducted using the maximum annual average effluent and background mercury concentrations for comparison with the Sport Fish Water Quality Objective. The maximum observed effluent mercury concentration was 5.5 ng/L, with a maximum annual average of 0.77 ng/L, based on four samples collected from 1 January 2020 through 28 February 2021. The maximum annual average background concentration for mercury was 1.7 ng/L based on four samples collected from 1 March 2018 through 28 February 2021. Therefore, the discharge does not exhibit reasonable potential to cause or contribute to an exceedance of the Sport Fish Water Quality Objective in the receiving water. However, the Deer Creek has been listed as an impaired water body pursuant to CWA section 303(d) because of mercury and the discharge must not cause or contribute to increased mercury levels.

(c) **WQBELs.** This Order contains a performance-based mass effluent limitation of 0.0020 lbs/year for mercury for the effluent discharged to the receiving water. This limitation is based on maintaining the mercury loading at the current level until a TMDL can be established. The performance-based mercury effluent mass limit was derived using current, representative data.

(d) **Plant Performance and Attainability.** The maximum observed total annual mercury loading was 0.00082 lbs/year based on an annual average effluent flow of 0.35 MGD for the year of 2020. Thus, the Central Valley Water Board concludes that immediate compliance with this performance-based effluent limitation is feasible.

iii. **Salinity**

(a) **WQO.** The Basin Plan contains a chemical constituent objective that incorporates state MCLs, contains a narrative objective, and contains numeric water quality objectives for certain specified water bodies for electrical conductivity, total dissolved solids, sulfate, and chloride. The U.S. EPA Ambient Water Quality Criteria for Chloride recommends acute and chronic criteria for the protection of aquatic life. There are no U.S. EPA water quality criteria for the protection of aquatic life for
electrical conductivity, total dissolved solids, and sulfate. Additionally, there are no U.S. EPA numeric water quality criteria for the protection of agricultural, livestock, and industrial uses. Numeric values for the protection of these uses are typically based on site specific conditions and evaluations to determine the appropriate constituent threshold necessary to interpret the narrative chemical constituent Basin Plan objective. The Central Valley Water Board must determine the applicable numeric limit to implement the narrative objective for the protection of agricultural supply. Table F-10, below, contains various recommended levels for EC or TDS, sulfate, and chloride.

Table F-10. Salinity Water Quality Criteria/Objectives

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Secondary MCL Recommended Level.</th>
<th>Secondary MCL Upper Level</th>
<th>Secondary MCL Short-term Maximum</th>
<th>U.S. EPA NAWQC</th>
<th>Maximum Calendar Annual Average Effluent Concentration</th>
<th>Maximum Daily Effluent Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC (µmhos/cm) or TDS (mg/L)</td>
<td>EC 900 or TDS 500</td>
<td>EC 1,600 or TDS 1,000</td>
<td>EC 2,200 or TDS 1,500</td>
<td>N/A</td>
<td>EC 600 TDS 296</td>
<td>EC 785 TDS 388</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>250</td>
<td>500</td>
<td>600</td>
<td>N/A</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>250</td>
<td>500</td>
<td>600</td>
<td>860 1-hour / 230 4-day</td>
<td>53</td>
<td>60</td>
</tr>
</tbody>
</table>

Table F-10 Notes:

1. **Agricultural Water Quality Objectives.** Applicable agricultural water quality objectives vary. Narrative chemical constituent objective of the Basin Plan. Procedures for establishing the applicable numeric limitation to implement the narrative objective can be found in the Policy for Application of Water Quality Objectives, section 4.2.2.1.9 of the Basin Plan. However, the Basin Plan does not require improvement over naturally occurring background concentrations. In cases where the natural background concentration of a particular constituent exceeds an applicable water quality objective, the natural background concentration will be considered to comply with the objective.

2. **Secondary MCLs.** Secondary MCLs are for protection of public welfare and are stated as a recommended level, upper level, and a short-term maximum level.

3. **Chloride.** The Secondary MCL for chloride is 250 mg/L, as a recommended level, 500 mg/L as an upper level, and 600 mg/L as a short-term maximum.
4. **Electrical Conductivity or Total Dissolved Solids.** The Secondary MCL for EC is 900 μmhos/cm as a recommended level, 1600 μmhos/cm as an upper level, and 2200 μmhos/cm as a short-term maximum, or when expressed as TDS is 500 mg/L as a recommended level, 1000 mg/L as an upper level, and 1500 mg/L as a short-term maximum.

5. **Sulfate.** The Secondary MCL for sulfate is 250 mg/L as a recommended level, 500 mg/L as an upper level, and 600 mg/L as a short-term maximum.

(b) **RPA Results.**

(1) **Chloride.** Chloride concentrations in the effluent ranged from 39 mg/L to 60 mg/L, with an average of 53 mg/L. These levels do not exceed the Secondary MCL. Background concentrations in Deer Creek ranged from 1.9 mg/L to 3.5 mg/L, with an average of 2.7 mg/L, for 4 samples collected by the Discharger from January 2020 through December 2020.

(2) **Electrical Conductivity or Total Dissolved Solids.** A review of the Discharger’s monitoring reports shows an average effluent EC of 600 μmhos/cm, with a range from 143 μmhos/cm to 785 μmhos/cm. These levels do not exceed the Secondary MCL. The background receiving water EC averaged 91 μmhos/cm. The average TDS effluent concentration was 296 mg/L with concentrations ranging from 142 mg/L to 388 mg/L. These levels do not exceed the Secondary MCL. The background receiving water TDS ranged from 84 mg/L to 340 mg/L, with an average of 242 mg/L.

(3) **Sulfate.** Sulfate concentrations in the effluent ranged from 31 mg/L to 35 mg/L, with an average of 33 mg/L. These levels do not exceed the Secondary MCL. Background concentrations in Deer Creek ranged from 1.1 mg/L to 3.7 mg/L, with an average of 2.0 mg/L.

(c) **WQBELs.**

As discussed above, the discharge does not have reasonable potential to cause or contribute to an in-stream excursion of water quality objectives for salinity. On 17 January 2020, certain amendments to the Basin Plan incorporating a Program to Control and Permit Salt Discharges to Surface and Groundwater (Salt Control Program) became effective. Other amendments became effective on 2 November 2020 when approved by the U.S. EPA. The Salt Control Program is a three-phased program, with each phase lasting 10 to 15 years. The Basin Plan requires all salt dischargers to comply with the provisions of the program.
Two compliance pathways are available for salt dischargers during Phase 1.

The Phase 1 Compliance pathways are: 1) Conservative Salinity Permitting Approach, which utilizes the existing regulatory structure and focuses on source control, conservative salinity limits on the discharge, and limits the use of assimilative capacity and compliance time schedules; and, 2) Alternative Salinity Permitting Approach, which is an alternative approach to compliance through implementation of specific requirements such as participating in the Salinity Prioritization and Optimization Study (P&O Study) rather than the application of conservative discharge limits.

The Discharger submitted a Notice of Intent for the Salinity Control Program indicating its intent to meet the Alternative Salinity Permitting Approach. This Order requires implementation of a Salinity Evaluation and Minimization Plan, participation in the Salinity P&O Study, and includes a performance-based trigger for EC consistent with the Alternative Salinity Permitting Approach.

c. **Constituents with No Data or Insufficient Data.** Reasonable potential cannot be determined for the following constituents because effluent data are limited or ambient background concentrations are not available. The Discharger is required to continue to monitor for these constituents in the effluent using analytical methods that provide the best feasible detection limits. When additional data become available, further analysis will be conducted to determine whether to add numeric effluent limitations or to continue monitoring.

i. **Bis (2-ethylhexyl) Phthalate.**

 (a) **WQO.** The CTR includes criterion of 1.8 µg/L for bis (2-ethylhexyl) phthalate (hereafter bis-2) for the protection of human health for water and organisms.

 (b) **RPA Results.** One of four samples collected between 1 March 2018 and 28 February 2021 detected Bis-2 in the effluent with an MEC of 2.2 µg/L. Two of four samples collected between 1 March 2018 and 28 February 2021 detected Bis-2 in the receiving water with a maximum observed upstream receiving water concentration of 3.2 µg/L. All other samples were non-detect in the effluent and receiving water.

The maximum effluent and receiving water sample results were collected on 7 October 2020 and 29 January 2020, respectively, during characterization monitoring. For comparison to the MEC
and maximum observed upstream receiving water bis-2 results, Central Valley Water Board staff examined historical bis-2 data collected from characterization monitoring during the last two permit cycles. Prior to the 1 March 2018 sampling event, there were no quantified effluent or receiving water results that exceeded the applicable CTR criterion.

Sources of bis-2 typically include sample containers, the sampling apparatus, and analytical equipment. Historically, bis-2 has not been detected in Central Valley receiving water samples because the samples are grab samples so diffusion of plastic compounds from a sampling apparatus is not an issue and it would take a significant bis-2 source upstream to create a detection with the mixing that occurs in Deer Creek. Also, as previously mentioned there has been no historical detections in the receiving water from the past two characterization sampling events. Though bis-2 was detected above the criteria in the effluent and receiving water, the samples most likely were contaminated by either the sample container or as part of the analysis in the laboratory.

Section 1.3, Step 8 of the SIP allows the Central Valley Water Board to require additional monitoring for a pollutant in place of an effluent limitation if data are unavailable or insufficient. Instead of limitations, additional monitoring has been established for bis-2 in the effluent. Should monitoring results indicate that the discharge has the reasonable potential to cause or contribute to an exceedance of a water quality standard, this Order may be reopened and modified by adding an appropriate effluent limitation.

d. **Constituents with Reasonable Potential.** The Central Valley Water Board finds that the discharge has a reasonable potential to cause or contribute to an in-stream excursion above a water quality standard for ammonia, BOD$_5$, dibromochloromethane, dichlorobromomethane, nitrate plus nitrite, pH, total coliform organisms, total residual chlorine, and TSS. WQBELs for these constituents are included in this Order. A summary of the RPA is provided in Attachment G, and a detailed discussion of the RPA for each constituent is provided below.

i. **Ammonia**

 (a) **WQO.** The 2013 U.S. EPA National Ambient Water Quality Criteria (NAWQC) for the protection of freshwater aquatic life for total ammonia (2013 Criteria), recommends acute (1-hour average; criteria maximum concentration or CMC) and chronic (30-day average; criteria continuous concentration or CCC)
standards based on pH and temperature. U.S. EPA also recommends that no 4-day average concentration should exceed 2.5 times the 30-day CCC.

The 2013 Criteria reflects the latest scientific knowledge on the toxicity of ammonia to certain freshwater aquatic life, including toxicity data on sensitive freshwater unionid mussels, non-pulmonary snails, and other freshwater organisms. The inclusion of new toxicity data for unionid mussels resulted in substantially more stringent criteria. In many cases, current wastewater treatment technologies are not capable of complying with effluent limitations based on the more stringent criteria.

The Central Valley Clean Water Association (CVCWA) organized a coordinated effort for POTWs within the Central Valley Region, the Freshwater Mussel Collaborative Study for Wastewater Treatment Plants, to determine how the latest scientific knowledge on the toxicity of ammonia reflected in the 2013 Criteria could be implemented in the Central Valley Region. Phase I, completed in June 2015, included a State of Knowledge Report developed by a consultant team consisting of Robertson-Bryan, Inc., Larry Walker Associates, and Pacific EcoRisk. The collaborative study involved policy and permitting discussions among representatives from the Central Valley Water Board, U.S. EPA, United States Fish and Wildlife Service (USFWS), California Department of Fish and Wildlife (CDFW), and regional mussel experts regarding the implementation of the 2013 Criteria in POTW NPDES permits. The discussions evaluated permitting approaches that provide reasonable protection of aquatic life beneficial uses, including protection of freshwater mussels.

The State of Knowledge Report explained that the species of freshwater mussels in waters within the Central Valley Region are different than what U.S. EPA used in the toxicity dataset for development of the 2013 Criteria. The State of Knowledge Report indicated that one resident freshwater mussel species was shown to not be as sensitive as the eastern mussel species used to derive the 2013 Criteria. However, the sensitivity of the other Central Valley Region mussel species was unknown.

Initial work under this project indicated the need to understand whether freshwater mussels are present or absent in POTW receiving waters in order to properly permit the discharge of ammonia in NPDES permits. Hence, a Phase II of the CVCWA study was conducted that developed and validated an effective
environmental DNA (eDNA) method for determining the presence/absence of the three freshwater mussel genera in water bodies of the Central Valley. A Phase IIb of the study involved further study and application of the eDNA methodology.

CVCWA submitted the Phase IIc Freshwater Mussel Collaborative Study for Wastewater Treatment Plants: Ammonia Criteria Recalculation Final Report, dated January 2020 (Criteria Recalculation Report) developed by the same consultant team. The Criteria Recalculation Report provides toxicity studies demonstrating all freshwater mussel species present in Central Valley Region waters are less sensitive than the eastern species used to develop the 2013 Criteria.

U.S. EPA developed the Guidelines for Deriving Numerical Aquatic Site-Specific Water Quality Criteria by Modifying National Criteria (EPA-600/S3-84-099 December 1984) that provides a Recalculation Procedure. U.S. EPA also developed the Revised Deletion Process for the Site-Specific Recalculation Procedure for Aquatic Life Criteria (EPA-823-R-13-001, April 2013) to guide the development of a site-specific toxicity dataset that is appropriate for deriving a site-specific aquatic life criterion, by modifying the national toxicity dataset for the pollutant of concern through correcting, adding, and/or deleting test results.

The Criteria Recalculation Report implemented U.S. EPA’s Recalculation Procedure utilizing toxicity bioassays conducted on resident mussel species to replace the toxicity data for the eastern mussel species in the national dataset to develop site-specific ammonia criteria for waters within the Central Valley Region, including all surface waters in the Sacramento River, San Joaquin River, and Tulare Lake Basin Plans.

A draft Criteria Recalculation Report was provided to the Central Valley Water Board, U.S. EPA Region 9, U.S. EPA Office of Science and Technology, USFWS, and the Nature Conservancy. Comments were provided by Central Valley Water Board staff and U.S. EPA Office of Science and Technology. U.S. EPA agreed with the recalculation procedure for developing site-specific acute criterion. However, U.S. EPA recommended a more conservative approach for utilizing the acute-to-chronic ratio procedure for developing the site-specific chronic criterion. The final Criteria Recalculation Report addressed the comments and provided revised equations for the chronic criterion in Appendix D.
The Basin Plans’ Policy for Application of Water Quality Objectives requires the Central Valley Water Board to consider, “…on a case-by-case basis, direct evidence of beneficial use impacts, all material and relevant information submitted by the discharger and other interested parties, and relevant numerical criteria and guidelines developed and/or published by other agencies and organizations…In considering such criteria, the Board evaluates whether the specific numerical criteria which are available through these sources and through other information supplied to the Board, are relevant and appropriate to the situation at hand and, therefore, should be used in determining compliance with the narrative objective.”

The Central Valley Water Board finds that the site-specific ammonia criteria provided in the January 2020 Criteria Recalculation Report implement the Basin Plan’s narrative toxicity objective to protect aquatic life beneficial uses of the receiving water. This Order implements the site-specific acute and chronic criteria for ammonia provided by the January 2020 Criteria Recalculation Report, with the adjustments to the chronic criteria recommended by U.S. EPA.

Site-specific Criteria for Deer Creek. Similar to the U.S. EPA 2013 Criteria, the recalculated site-specific criteria developed in the Criteria Recalculation Report for the acute and chronic criteria are presented based on equations that vary according to pH and temperature. The pH and temperature speciation relationships developed by U.S. EPA were utilized without modification. Equations were developed for situations where freshwater mussels are present and where they are absent. In this case, for the Deer Creek freshwater mussels have been assumed to be present. In addition, the recalculated criteria include equations that provide enhanced protection for important salmonid species in the genus *Oncorhynchus*, that can be implemented for receiving waters where salmonid species are present. Because Deer Creek has a beneficial use of cold freshwater habitat and the presence of salmonids in Deer Creek is well-documented, the criteria equations for waters where salmonids are present were used.

The acute (1-hour average) criterion or CMC was calculated using paired effluent pH and temperature data, collected during the period from 1 March 2018 and 28 February 2021. The most stringent CMC of 10.8 mg/L (ammonia as N) calculated using the paired effluent pH and temperature data has been implemented in this Order.
The chronic (30-day average) criterion or CCC was calculated using paired effluent pH and temperature data, collected during the period from 1 March 2018 and 28 February 2021. The most stringent 30-day rolling average CCC of 2.39 mg/L (ammonia as N) has been implemented in this Order.

The chronic (4-day average) concentration is derived in accordance with the U.S. EPA criterion as 2.5 times the 30-day CCC. Based on the 30-day CCC of 2.39 mg/L (ammonia as N), the 4-day average concentration that should not be exceeded is 5.97 mg/L (ammonia as N).

(b) **RPA Results.** The Facility is a POTW that treats domestic wastewater. Untreated domestic wastewater contains ammonia in concentrations that is harmful to aquatic life and exceed the Basin Plan narrative toxicity objective. Federal regulations at 40 C.F.R. section122.44(d)(1)(i) requires that, “Limitations must control all pollutants or pollutant parameters (either conventional, nonconventional, or toxic pollutants) which the Director determines are or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any State water quality standard, including State narrative criteria for water quality.” For priority pollutants, the SIP dictates the procedures for conducting the RPA. Ammonia is not a priority pollutant. Therefore, the Central Valley Water Board is not restricted to one particular RPA method. Due to the site-specific conditions of the discharge, the Central Valley Water Board has used professional judgment in determining the appropriate method for conducting the RPA for this non-priority pollutant constituent.

U.S. EPA’s September 2010 NPDES Permit Writer’s Manual, page 6-30, states, “State implementation procedures might allow, or even require, a permit writer to determine reasonable potential through a qualitative assessment process without using available facility-specific effluent monitoring data or when such data are not available...A permitting authority might also determine that WQBELs are required for specific pollutants for all facilities that exhibit certain operational or discharge characteristics (e.g., WQBELs for pathogens in all permits for POTWs discharging to contact recreational waters).” U.S. EPA’s TSD also recommends that factors other than effluent data should be considered in the RPA, “When determining whether or not a discharge causes, has the reasonable potential to cause, or contributes to an excursion of a numeric or narrative water quality criterion for individual toxicants or for toxicity, the
regulatory authority can use a variety of factors and information where facility-specific effluent monitoring data are unavailable. These factors also should be considered with available effluent monitoring data.” With regard to POTWs, U.S. EPA recommends that, “POTWs should also be characterized for the possibility of chlorine and ammonia problems.” (TSD, p. 50)

Nitrification is a biological process that converts ammonia to nitrite and nitrite to nitrate. Denitrification is a process that converts nitrate to nitrite or nitric oxide and then to nitrous oxide or nitrogen gas, which is then released to the atmosphere. The Discharger currently uses nitrification to remove ammonia from the waste stream. Inadequate or incomplete nitrification may result in the discharge of ammonia to the receiving stream. Ammonia is known to cause toxicity to aquatic organisms in surface waters. Discharges of ammonia in concentrations that produce detrimental physiological responses to human, plant, animal, or aquatic life would violate the Basin Plan’s narrative toxicity objective. Although the Discharger nitrifies the discharge, inadequate or incomplete nitrification creates the potential for ammonia to be discharged and provides the basis for the discharge to have a reasonable potential to cause or contribute to an in-stream excursion above the site-specific acute and chronic criteria for ammonia provided by the January 2020 Criteria Recalculation Report. Therefore, the Central Valley Water Board finds the discharge has reasonable potential for ammonia and WQBELs are required.

(c) WQBELs. The Central Valley Water Board calculates WQBELs in accordance with SIP procedures for non-CTR constituents, and ammonia is a non-CTR constituent. The SIP procedure assumes a 4-day averaging period for calculating the long-term average discharge condition (LTA). However, U.S. EPA recommends modifying the procedure for calculating permit limits for ammonia using a 30-day averaging period for the calculation of the LTA corresponding to the 30-day CCC. Therefore, while the LTAs corresponding to the acute and 4-day chronic criteria were calculated according to SIP procedures, the LTA corresponding to the 30-day CCC was calculated assuming a 30-day averaging period. The lowest LTA representing the acute, 4-day CCC, and 30-day CCC is then selected for deriving the average monthly effluent limitation (AMEL) and average weekly effluent limitation (AWEL). The remainder of the WQBEL calculation for ammonia was performed according to the SIP procedures.

The Discharger reported that the 11 December 2020 effluent total ammonia sample (18 mg/L as N) was collected during fine
tuning of ammonia sulfate addition to the disinfection system, which had started earlier that month for optimization of trihalomethanes reduction. For this reason, the sample collected on 11 December 2020 is not representative of the discharge and was removed from the dataset to develop the effluent data statistics for calculating the WQBELs. This Order contains a final AMEL and AWEL for total ammonia of 2.0 mg/L (as N) and 6.7 mg/L (as N), respectively, based on the USEPA’s NAWQC, which implements the Basin Plan’s narrative toxicity objective for protection of aquatic life.

(d) **Plant Performance and Attainability.** Analysis of the effluent data shows that the MEC of 1.1 mg/L is less than the applicable WQBELs. The Central Valley Water Board concludes, therefore, that immediate compliance with this effluent limitation is feasible.

ii. **Chlorine Residual**

(a) **WQO.** U.S. EPA developed NAWQC for protection of freshwater aquatic life for chlorine residual. The recommended 4-day average (chronic) and 1-hour average (acute) criteria for chlorine residual are 0.011 mg/L and 0.019 mg/L, respectively. These criteria are protective of the Basin Plan’s narrative toxicity objective.

(b) **RPA Results.** The concentrations of chlorine used to disinfect wastewater are high enough to harm aquatic life and violate the Basin Plan narrative toxicity objective if discharged to the receiving water. Reasonable potential therefore does exist and effluent limits are required.

Federal regulations at 40 C.F.R. section 122.44(d)(1)(i) requires that, “Limitations must control all pollutants or pollutant parameters (either conventional, nonconventional, or toxic pollutants) which the Director determines are or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any State water quality standard, including State narrative criteria for water quality.” For priority pollutants, the SIP dictates the procedures for conducting the RPA. Chlorine is not a priority pollutant. Therefore, the Central Valley Water Board is not restricted to one particular RPA method. Due to the site-specific conditions of the discharge, the Central Valley Water Board has used its judgment in determining the appropriate method for conducting the RPA for this non-priority pollutant constituent.

allow, or even require, a permit writer to determine reasonable potential through a qualitative assessment process without using available facility-specific effluent monitoring data or when such data are not available...A permitting authority might also determine that WQBELs are required for specific pollutants for all facilities that exhibit certain operational or discharge characteristics (e.g., WQBELs for pathogens in all permits for POTWs discharging to contact recreational waters).” U.S. EPA’s TSD also recommends that factors other than effluent data should be considered in the RPA, “When determining whether or not a discharge causes, has the reasonable potential to cause, or contributes to an excursion of a numeric or narrative water quality criterion for individual toxicants or for toxicity, the regulatory authority can use a variety of factors and information where facility-specific effluent monitoring data are unavailable. These factors also should be considered with available effluent monitoring data.” With regard to POTWs, U.S. EPA recommends that, “POTWs should also be characterized for the possibility of chlorine and ammonia problems.” (TSD, p. 50)

The Discharger uses chlorine for disinfection, which is extremely toxic to aquatic organisms. Although the Discharger uses a sulfur dioxide process to dechlorinate the effluent prior to discharge to Deer Creek, the existing chlorine use and the potential for chlorine to be discharged provides the basis for the discharge to have a reasonable potential to cause or contribute to an in-stream excursion above the NAWQC.

(c) **WQBELs.** The U.S. EPA’s TSD for Water Quality-Based Toxics Control [EPA/505/2-90-001] contains statistical methods for converting chronic (4-day) and acute (1-hour) aquatic life criteria to average monthly and maximum daily effluent limitations based on the variability of the existing data and the expected frequency of monitoring. However, because chlorine is an acutely toxic constituent that can and will be monitored continuously, an average 1-hour limitation is considered more appropriate than an average daily limitation. This Order contains a 4-day average effluent limitation and 1-hour average effluent limitation for chlorine residual of 0.011 mg/L and 0.019 mg/L, respectively, based on U.S. EPA’s NAWQC, which implements the Basin Plan’s narrative toxicity objective for protection of aquatic life.

(d) **Plant Performance and Attainability.** Analysis of the effluent data shows that effluent concentrations of chlorine residual are consistently less than the applicable WQBELs. The Central Valley Water Board concludes, therefore, that immediate compliance with these effluent limitations is feasible.
iii. Dibromochloromethane (DBCM)

(a) **WQO.** The CTR includes criterion of 0.41 µg/L for DBCM for the protection of human health for waters from which both water and organisms are consumed.

(b) **RPA.** The MEC for DBCM was 1.9 µg/L while the maximum observed upstream receiving water concentration was non-detect with a method detection limit of 0.052 µg/L. Therefore, DBCM has a reasonable potential to cause or contribute to an in-stream excursion above the CTR criterion for the protection of human health.

(c) **WQBELs.** The receiving water contains assimilative capacity for DBCM; therefore, as discussed further in Section IV.C.2.c. of this Fact Sheet, a dilution credit of 10.6:1 may be allowed in the development of the WQBELs for DBCM. Based on the allowable dilution credit, this Order contains a final AMEL of 4.2 µg/L and MDEL of 8.3 µg/L.

(d) **Plant Performance and Attainability.** Analysis of the effluent data shows that the MEC of 1.9 µg/L is less than the applicable WQBELs. The Central Valley Water Board concludes, therefore, that immediate compliance with these effluent limitations is feasible.

iv. Dichlorobromomethane (DCBM)

(a) **WQO.** The CTR includes criterion of 0.56 µg/L for DCBM for the protection of human health for waters from which both water and organisms are consumed.

(b) **RPA.** The MEC for DCBM was 15 µg/L while the maximum observed upstream receiving water concentration was non-detect with a method detection limit of 0.058 µg/L. Therefore, DCBM has a reasonable potential to cause or contribute to an in-stream excursion above the CTR criterion for the protection of human health.

(c) **WQBELs.** The receiving water contains assimilative capacity for DCBM; therefore, as discussed further in Section IV.C.2.c. of this Fact Sheet, a dilution credit of 10.6:1 may be allowed in the development of the WQBELs for DCBM. Based on the allowable dilution credit, this Order contains a final AMEL of 5.9 µg/L and MDEL of 12 µg/L.

(d) **Plant Performance and Attainability.** Analysis of the effluent data shows that the MEC of 15 µg/L is greater than the applicable WQBELs with dilution. However, the Discharger has indicated that recent ammonium sulfate addition has optimized DCBM removal. Since the ammonium sulfate addition in
December 2020, analysis of the effluent DCBM samples shows that effluent concentrations have ranged between 0.42 and 7.4 from January 2021 and December 2021. The maximum daily and maximum monthly average effluent concentrations during this period was 7.4 µg/L and 3.3 µg/L, respectively for DCBM which is less than the applicable WQBELs. The Central Valley Water Board concludes, therefore, that immediate compliance with the effluent limitations is feasible.

v. Nitrate and Nitrite

(a) WQO. DDW has adopted Primary MCLs for the protection of human health for nitrite and nitrate that are equal to 1 mg/L and 10 mg/L (measured as nitrogen), respectively. DDW has also adopted a Primary MCL of 10 mg/L for the sum of nitrate and nitrite, measured as nitrogen.

U.S. EPA has developed a primary MCL and an MCL goal of 1 mg/L for nitrite (as nitrogen). For nitrate, U.S. EPA has developed Drinking Water Standards (10 mg/L as Primary MCL) and NAWQC for protection of human health (10 mg/L for non-cancer health effects).

(b) RPA Results. The Facility is a POTW that treats domestic wastewater. Untreated domestic wastewater contains ammonia in concentrations that is harmful to aquatic life and exceed the Basin Plan’s narrative toxicity objective. This Order, therefore, requires removal of ammonia (i.e., nitrification). Nitrification is a biological process that converts ammonia to nitrate and nitrite, and will result in effluent nitrate concentrations above the Primary MCL for nitrate plus nitrite. Nitrate concentrations in a drinking water supply above the Primary MCL threatens the health of human fetuses and newborn babies by reducing the oxygen-carrying capacity of the blood (methemoglobinemia).

Federal regulations at 40 C.F.R. section 122.44(d)(1)(i) requires that, “Limitations must control all pollutants or pollutant parameters (either conventional, nonconventional, or toxic pollutants) which the Director determines are or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any State water quality standard, including State narrative criteria for water quality.” For priority pollutants, the SIP dictates the procedures for conducting the RPA. Nitrate and nitrite are not priority pollutants. Therefore, the Central Valley Water Board is not restricted to one particular RPA method. Due to the site-specific conditions of the discharge, the Central Valley Water Board has used professional judgment in determining the
appropriate method for conducting the RPA for this non-priority pollutant constituent.

U.S. EPA’s September 2010 NPDES Permit Writer’s Manual, page 6-30, states, “State implementation procedures might allow, or even require, a permit writer to determine reasonable potential through a qualitative assessment process without using available facility-specific effluent monitoring data or when such data are not available…A permitting authority might also determine that WQBELs are required for specific pollutants for all facilities that exhibit certain operational or discharge characteristics (e.g., WQBELs for pathogens in all permits for POTWs discharging to contact recreational waters).” U.S. EPA’s TSD also recommends that factors other than effluent data should be considered in the RPA, “When determining whether or not a discharge causes, has the reasonable potential to cause, or contributes to an excursion of a numeric or narrative water quality criterion for individual toxicants or for toxicity, the regulatory authority can use a variety of factors and information where facility-specific effluent monitoring data are unavailable. These factors also should be considered with available effluent monitoring data.” With regard to POTWs, U.S. EPA recommends that, “POTWs should also be characterized for the possibility of chlorine and ammonia problems.” (TSD, p. 50)

The concentration of nitrogen in raw domestic wastewater is sufficiently high that the resultant treated wastewater has a reasonable potential to exceed or threat to exceed the Primary MCL for nitrate plus nitrite unless the wastewater is treated for nitrogen removal, and therefore an effluent limit for nitrate plus nitrite is required. Denitrification is a process that converts nitrate to nitrite or nitric oxide and then to nitrous oxide or nitrogen gas, which is then released to the atmosphere. The Discharger currently uses nitrification/denitrification to remove ammonia, nitrite, and nitrate from the waste stream. Inadequate or incomplete denitrification may result in the discharge of nitrate and/or nitrite to the receiving stream. Discharges of nitrate plus nitrite in concentrations that exceed the Primary MCL would violate the Basin Plan’s narrative chemical constituents’ objective. Although the Discharger denitrifies the discharge, inadequate or incomplete denitrification creates the potential for nitrate and nitrite to be discharged and provides the basis for the discharge to have a reasonable potential to cause or contribute to an in-stream excursion above the Primary MCL. Therefore, the Central Valley Water Board finds the discharge has reasonable potential for nitrate plus nitrite and WQBELs are required.
WQBELs. This Order contains an AMEL and AWEL for nitrate plus nitrite of 10 mg/L and 15 mg/L, respectively, based on the Basin Plan’s narrative chemical constituents objective for protection of the MUN beneficial use. These effluent limitations are included in this Order to assure the treatment process adequately nitrifies and denitrifies the waste stream to protect the beneficial use of municipal and domestic supply.

(d) **Plant Performance and Attainability.** Analysis of the effluent data shows that the MEC of 3.8 mg/L is less than the applicable WQBELs. The Central Valley Water Board concludes, therefore, that immediate compliance with these effluent limitations is feasible.

vi. **Pathogens**

(a) **WQO.** DDW has developed reclamation criteria, CCR, Division 4, Chapter 3 (Title 22), for the reuse of wastewater. Title 22 requires that for spray irrigation of food crops, parks, playgrounds, schoolyards, and other areas of similar public access, wastewater be adequately disinfected, oxidized, coagulated, clarified, and filtered, and that the effluent total coliform levels not exceed 2.2 MPN/100 mL as a 7-day median; 23 MPN/100 mL, not to be exceeded more than once in a 30-day period; and 240 MPN/100 mL, at any time.

Title 22 also requires that recycled water used as a source of water supply for non-restricted recreational impoundments be disinfected tertiary recycled water that has been subjected to conventional treatment. A non-restricted recreational impoundment is defined as “...an impoundment of recycled water, in which no limitations are imposed on body-contact water recreational activities.” Title 22 is not directly applicable to surface waters; however, the Central Valley Water Board finds that it is appropriate to apply an equivalent level of treatment to that required by the DDW’s reclamation criteria because the receiving water is used for irrigation of agricultural land and for contact recreation purposes. The stringent disinfection criteria of Title 22 are appropriate since the undiluted effluent may be used for the irrigation of food crops and/or for body-contact water recreation. Coliform organisms are intended as an indicator of the effectiveness of the entire treatment train and the effectiveness of removing other pathogens.

(b) **RPA Results.** Raw domestic wastewater inherently contains human pathogens that threaten human health and life, and constitute a threatened pollution and nuisance under CWC section 13050 if discharged untreated to the receiving water.
Reasonable potential for pathogens therefore exists and WQBELs are required.

Federal regulations at 40 C.F.R. section 122.44(d)(1)(i) requires that, “Limitations must control all pollutants or pollutant parameters (either conventional, nonconventional, or toxic pollutants) which the Director determines are or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any State water quality standard, including State narrative criteria for water quality.” For priority pollutants, the SIP dictates the procedures for conducting the RPA. Pathogens are not priority pollutants. Therefore, the Central Valley Water Board is not restricted to one particular RPA method. Due to the site-specific conditions of the discharge, the Central Valley Water Board has used professional judgment in determining the appropriate method for conducting the RPA for this non-priority pollutant constituent.

U.S. EPA’s September 2010 NPDES Permit Writer’s Manual, page 6-30, states, “State implementation procedures might allow, or even require, a permit writer to determine reasonable potential through a qualitative assessment process without using available facility-specific effluent monitoring data or when such data are not available...A permitting authority might also determine that WQBELs are required for specific pollutants for all facilities that exhibit certain operational or discharge characteristics (e.g., WQBELs for pathogens in all permits for POTWs discharging to contact recreational waters).” U.S. EPA’s TSD also recommends that factors other than effluent data should be considered in the RPA, “When determining whether or not a discharge causes, has the reasonable potential to cause, or contributes to an excursion of a numeric or narrative water quality criterion for individual toxicants or for toxicity, the regulatory authority can use a variety of factors and information where facility-specific effluent monitoring data are unavailable. These factors also should be considered with available effluent monitoring data.” (TSD, p. 50)

The beneficial uses of Deer Creek include municipal and domestic supply, water contact recreation, and agricultural irrigation supply, and there is, at times, less than 20:1 dilution. To protect these beneficial uses, the Central Valley Water Board finds that the wastewater must be disinfected and adequately treated to prevent disease. Although the Discharger provides disinfection, inadequate or incomplete disinfection creates the potential for pathogens to be discharged. Therefore, the Central
Valley Water Board finds the discharge has reasonable potential for pathogens and WQBELs are required.

(c) **WQBELs.** In accordance with the requirements of Title 22, this Order includes effluent limitations for total coliform organisms of 2.2 MPN/100 mL as a 7-day median; 23 MPN/100 mL, not to be exceeded more than once in a 30-day period; and 240 MPN/100 mL as an instantaneous maximum.

The tertiary treatment process, or equivalent, is capable of reliably treating wastewater to a turbidity level of 2 nephelometric turbidity units (NTU) as a daily average. Failure of the filtration system such that virus removal is impaired would normally result in increased particles in the effluent, which result in higher effluent turbidity. Turbidity has a major advantage for monitoring filter performance. Coliform testing, by comparison, is not conducted continuously and requires several hours, to days, to identify high coliform concentrations. Therefore, to ensure compliance with the DDW recommended Title 22 disinfection criteria, weekly average specifications are impracticable for turbidity. This Order includes operational specifications for turbidity of 2 NTU as a daily average; 5 NTU, not to be exceeded more than 5 percent of the time within a 24-hour period; and 10 NTU as an instantaneous maximum.

This Order contains effluent limitations for BOD\textsubscript{5}, total coliform organisms, and TSS and requires a tertiary level of treatment, or equivalent, necessary to protect the beneficial uses of the receiving water. The Central Valley Water Board has previously considered the factors in Water Code section 13241 in establishing these requirements.

Final WQBELs for BOD\textsubscript{5} and TSS are based on the technical capability of the tertiary process, which is necessary to protect the beneficial uses of the receiving water. BOD\textsubscript{5} is a measure of the amount of oxygen used in the biochemical oxidation of organic matter. The tertiary treatment standards for BOD\textsubscript{5} and TSS are indicators of the effectiveness of the tertiary treatment process. The principal design parameter for wastewater treatment plants is the daily BOD\textsubscript{5} and TSS loading rates and the corresponding removal rate of the system. The application of tertiary treatment processes results in the ability to achieve lower levels for BOD\textsubscript{5} and TSS than the secondary standards currently prescribed. Therefore, this Order requires AMELs for BOD\textsubscript{5} and TSS of 10 mg/L, which is technically based on the capability of a tertiary system. In addition to the average weekly
and average monthly effluent limitations, a daily maximum effluent limitation for BOD$_5$ and TSS is included in the Order to ensure that the treatment works are not organically overloaded and operate in accordance with design capabilities.

(d) **Plant Performance and Attainability.** The Facility includes tertiary treatment facilities that enable the Discharger to comply with the WQBELs. The Central Valley Water Board concludes, therefore, that immediate compliance with these effluent limitations is feasible.

vii. **pH**

(a) **WQO.** The Basin Plan includes a water quality objective for surface waters (except for Goose Lake) that the “pH shall not be depressed below 6.5 nor raised above 8.5.”

(b) **RPA Results.** Raw domestic wastewater inherently has variable pH. Additionally, some wastewater treatment processes can increase or decrease wastewater pH which if not properly controlled, would violate the Basin Plan’s numeric objective for pH in the receiving water. Therefore, reasonable potential exists for pH and WQBELs are required.

Federal regulations at 40 C.F.R. section 122.44(d)(1)(i) requires that, “Limitations must control all pollutants or pollutant parameters (either conventional, nonconventional, or toxic pollutants) which the Director determines are or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any State water quality standard, including State narrative criteria for water quality.” For priority pollutants, the SIP dictates the procedures for conducting the RPA. pH is not a priority pollutant. Therefore, the Central Valley Water Board is not restricted to one particular RPA method. Due to the site-specific conditions of the discharge, the Central Valley Water Board has used professional judgment in determining the appropriate method for conducting the RPA for this non-priority pollutant constituent.

U.S. EPA’s September 2010 NPDES Permit Writer’s Manual, page 6-30, states, “State implementation procedures might allow, or even require, a permit writer to determine reasonable potential through a qualitative assessment process without using available facility-specific effluent monitoring data or when such data are not available...A permitting authority might also determine that WQBELs are required for specific pollutants for all facilities that exhibit certain operational or discharge
characteristics (e.g., WQBELs for pathogens in all permits for POTWs discharging to contact recreational waters).” U.S. EPA’s TSD also recommends that factors other than effluent data should be considered in the RPA, “When determining whether or not a discharge causes, has the reasonable potential to cause, or contributes to an excursion of a numeric or narrative water quality criterion for individual toxicants or for toxicity, the regulatory authority can use a variety of factors and information where facility-specific effluent monitoring data are unavailable. These factors also should be considered with available effluent monitoring data.” (TSD, p. 50)

The Facility is a POTW that treats domestic wastewater. Based on 1,100 effluent samples taken from 1 March 2018 to 28 February 2021, the maximum pH reported was 7.6 and the minimum was 5.9. The Facility exceeded the instantaneous minimum effluent limitation 5 times between 13 March 2019 and 29 January 2020. Since 29 January 2020, the minimum pH reported was 6.5. Although the Discharger has proper pH controls in place, the pH for the Facility’s influent varies due to the nature of municipal sewage, which provides the basis for the discharge to have a reasonable potential to cause or contribute to an in-stream excursion below the Basin Plan’s numeric objective for pH in the receiving water. Therefore, WQBELs for pH are required in this Order.

(c) **WQBELs.** Effluent limitations for pH of 6.5 as an instantaneous minimum and 8.5 as an instantaneous maximum are included in this Order based on protection of the Basin Plan objectives for pH.

(d) **Plant Performance and Attainability.** Analysis of 1,100 effluent samples taken from 1 March 2018 to 28 February 2021, the, the maximum pH reported was 7.6 and the minimum was 5.9. On seven occasions, the effluent pH was below the instantaneous minimum. The Facility does have proper pH controls in place, and when in proper operation the control of effluent pH leaving the Facility is possible. Thus, the Central Valley Water Board concludes that immediate compliance with these effluent limitations is feasible.

4. **WQBEL Calculations**

 a. This Order includes WQBELs for ammonia, chlorpyrifos, diazinon, dibromochloromethane, dichlorobromomethane, nitrate plus nitrite, pH, total coliform organisms, and total residual chlorine. The general methodology for calculating WQBELs based on the different
criteria/objectives is described in subsections IV.C.5.b through e, below. See Attachment H for the WQBEL calculations.

b. **Effluent Concentration Allowance.** For each water quality criterion/objective, the ECA is calculated using the following steady-state mass balance equation from section 1.4 of the SIP:

\[
ECA = C + D(C - B) \quad \text{where } C > B, \text{ and}
\]

\[
ECA = C \quad \text{where } C \leq B
\]

where:

- \(ECA\) = effluent concentration allowance
- \(D\) = dilution credit
- \(C\) = the priority pollutant criterion/objective
- \(B\) = the ambient background concentration.

According to the SIP, the ambient background concentration \((B)\) in the equation above shall be the observed maximum with the exception that an ECA calculated from a priority pollutant criterion/objective that is intended to protect human health from carcinogenic effects shall use the arithmetic mean concentration of the ambient background samples.

c. **Primary and Secondary MCLs.** For non-priority pollutants with primary MCLs to protect human health (e.g., nitrate plus nitrite), the AMEL is set equal to the primary MCL and the AWEL is calculated using the AWEL/AMEL multiplier, where the AWEL multiplier is based on a 98th percentile occurrence probability and the AMEL multiplier is from Table 2 of the SIP.

For non-priority pollutants with secondary MCLs that protect public welfare (e.g., taste, odor, and staining), WQBELs were calculated by setting the LTA equal to the secondary MCL and using the AMEL multiplier to set the AMEL. The AWEL was calculated using the MDEL/AMEL multiplier from Table 2 of the SIP.

d. **Aquatic Toxicity Criteria.** For priority pollutants with acute and chronic aquatic toxicity criteria, the WQBELs are calculated in accordance with section 1.4 of the SIP. The ECAs are converted to equivalent long-term averages (i.e. \(LT_{\text{acute}}\) and \(LT_{\text{chronic}}\)) using statistical multipliers and the lowest LTA is used to calculate the AMEL and MDEL using additional statistical multipliers. For non-priority pollutants, WQBELs are calculated using similar procedures, except that an AWEL is determined utilizing multipliers based on a 98th percentile occurrence probability.

e. **Human Health Criteria.** For priority pollutants with human health criteria, the WQBELs are calculated in accordance with section 1.4 of the SIP. The AMEL is set equal to the ECA and the MDEL is calculated using the
MDEL/AMEL multiplier from Table 2 of the SIP. For non-priority pollutants with human health criteria, WQBELs are calculated using similar procedures, except that an AWEL is established using the MDEL/AMEL multiplier from Table 2 of the SIP.

\[
AMEL = \text{mult}_{AMEL} [\min (M_A \text{ECA}_{\text{acute}}, M_C \text{ECA}_{\text{chronic}})]
\]

\[
MDEL = \text{mult}_{MDEL} [\min (M_A \text{ECA}_{\text{acute}}, M_C \text{ECA}_{\text{chronic}})]
\]

\[
MDEL_{HH} = \left(\frac{\text{mult}_{MDEL}}{\text{mult}_{AMEL}} \right) AMEL_{HH}
\]

where:

- \text{mult}_{AMEL} = \text{statistical multiplier converting minimum LTA to AMEL}
- \text{mult}_{MDEL} = \text{statistical multiplier converting minimum LTA to MDEL}
- M_A = \text{statistical multiplier converting acute ECA to LTA}_{\text{acute}}
- M_C = \text{statistical multiplier converting chronic ECA to LTA}_{\text{chronic}}

Summary of Water Quality-Based Effluent Limitations

Discharge Point No. 001

Table F-11. Summary of Water Quality-Based Effluent Limitations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>AMEL 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWEL 6.7</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>µg/L</td>
<td>See table note 1 below</td>
</tr>
<tr>
<td>Diazinon</td>
<td>µg/L</td>
<td>See table note 1 below</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>µg/L</td>
<td>AMEL 4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDEL 8.3</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>µg/L</td>
<td>AMEL 5.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDEL 12</td>
</tr>
<tr>
<td>Mercury, Total</td>
<td>lbs/year</td>
<td>0.0020</td>
</tr>
<tr>
<td>Nitrate Plus Nitrite (as N)</td>
<td>mg/L</td>
<td>AMEL 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWEL 15</td>
</tr>
<tr>
<td>pH</td>
<td>Standard units</td>
<td>Instantaneous Min 6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instantaneous Max 8.5</td>
</tr>
<tr>
<td>Acute Toxicity</td>
<td>% survival</td>
<td>Instantaneous Min 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Three Consecutive Median 90</td>
</tr>
<tr>
<td>Chronic Toxicity</td>
<td>TUc</td>
<td>1</td>
</tr>
</tbody>
</table>

ORDER R5-2022-0039
NPDES NO. CA0079901
Table F-11 Notes:

1. **Diazinon and Chlorpyrifos.** Effluent diazinon and chlorpyrifos concentrations shall not exceed the sum of one (1.0) as identified below:

 (a) Average Monthly Effluent Limitation (AMEL)

 \[
 \text{SAMEL} = \frac{\text{CD M-avg}}{0.079} + \frac{\text{CC M-avg}}{0.012} \leq 1.0
 \]

 \text{CD M-AVG} = \text{average monthly diazinon effluent concentration in µg/L.}

 \text{CC M-AVG} = \text{average monthly chlorpyrifos effluent concentration in µg/L.}

 (b) Average Weekly Effluent Limitation (AWEL)

 \[
 \text{SAWEL} = \frac{\text{CD W-avg}}{0.14} + \frac{\text{CC W-avg}}{0.021} \leq 1.0
 \]

 \text{CD W-AVG} = \text{average weekly diazinon effluent concentration in µg/L.}

 \text{CC W-AVG} = \text{average weekly chlorpyrifos effluent concentration in µg/L.}

5. **Whole Effluent Toxicity (WET)**

 For compliance with the Basin Plan’s narrative toxicity objective, this Order requires the Discharger to conduct whole effluent toxicity testing for acute and chronic toxicity, as specified in the Monitoring and Reporting Program (Attachment E section V.). This Order also contains effluent limitations for acute and chronic toxicity and requires the Discharger to implement best management practices to investigate the causes of, and identify corrective actions to reduce or eliminate effluent toxicity.

 a. **Acute Aquatic Toxicity.** The Basin Plan contains a narrative toxicity objective that states, “All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life.” (Basin Plan at section 3.1.20) The Basin Plan also states that, “…effluent limits based upon acute biotoxicity tests of effluents will be prescribed where appropriate…”.

 For priority pollutants, the SIP dictates the procedures for conducting the RPA. Acute toxicity is not a priority pollutant. Therefore, the Central Valley Water Board is not restricted to one particular RPA method. Acute whole effluent toxicity is not a priority pollutant. Therefore, due to the site-specific conditions of the discharge, the Central Valley Water Board has used
professional judgment in determining the appropriate method for conducting the RPA. U.S. EPA’s September 2010 NPDES Permit Writer’s Manual, page 6-30, states, “State implementation procedures might allow, or even require, a permit writer to determine reasonable potential through a qualitative assessment process without using available facility-specific effluent monitoring data or when such data are not available...A permitting authority might also determine that WQBELs are required for specific pollutants for all facilities that exhibit certain operational or discharge characteristics (e.g., WQBELs for pathogens in all permits for POTWs discharging to contact recreational waters).” Although the discharge has been consistently in compliance with the acute effluent limitations, the Facility is a POTW that treats domestic wastewater containing ammonia and other acutely toxic pollutants. Acute toxicity effluent limits are required to ensure compliance with the Basin Plan’s narrative toxicity objective.

U.S. EPA Region 9 provided guidance for the development of acute toxicity effluent limitations in the absence of numeric water quality objectives for toxicity in its document titled "Guidance for NPDES Permit Issuance", dated February 1994. In section B.2. "Toxicity Requirements" (pgs. 14-15) it states that, "In the absence of specific numeric water quality objectives for acute and chronic toxicity, the narrative criterion 'no toxics in toxic amounts' applies. Achievement of the narrative criterion, as applied herein, means that ambient waters shall not demonstrate for acute toxicity: 1) less than 90% survival, 50% of the time, based on the monthly median, or 2) less than 70% survival, 10% of the time, based on any monthly median. For chronic toxicity, ambient waters shall not demonstrate a test result of greater than 1 TUc." Accordingly, effluent limitations for acute toxicity have been included in this Order as follows:

Acute Toxicity. Survival of aquatic organisms in 96-hour bioassays of undiluted waste shall be no less than:

- 70%, minimum for any one bioassay; and
- 90%, median for any three consecutive bioassays.

b. **Chronic Aquatic Toxicity.** The Basin Plan contains a narrative toxicity objective that states, “All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life.” (Basin Plan at page section 3.1.20). The table below is chronic WET testing performed by the Discharger from August 2017 through February 2021. This data was used to determine if the discharge has reasonable potential to cause or contribute to an in-stream excursion above the Basin Plan’s narrative toxicity objective.
Table F-12. Whole Effluent Chronic Toxicity Testing Results

<table>
<thead>
<tr>
<th>Date</th>
<th>Fathead Minnow Pimephales promelas Survival (TUc)</th>
<th>Fathead Minnow Pimephales promelas Growth (TUc)</th>
<th>Water Flea Ceriodaphnia dubia Reproduction (TUc)</th>
<th>Water Flea Ceriodaphnia dubia Survival (TUc)</th>
<th>Green Algae Selenastrum capricornutum Growth (TUc)</th>
<th>Maximum Percent Effect (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/27/2017</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>1/5/2018</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.06</td>
</tr>
<tr>
<td>4/26/2018</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.67</td>
</tr>
<tr>
<td>6/29/2018</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.51</td>
</tr>
<tr>
<td>11/27/2018</td>
<td>1</td>
<td>1</td>
<td>>8</td>
<td>1</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>8/30/2019</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>10/29/2020</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

i. **RPA.** No dilution has been granted for chronic whole effluent toxicity. Chronic toxicity testing results exceeding 1.3 chronic toxicity units (TUc) (as 100/NOEC) and a percent effect at 100 percent effluent exceeding 25 percent demonstrates the discharge has a reasonable potential to cause or contribute to an exceedance of the Basin Plan’s narrative toxicity objective. Based on chronic toxicity testing conducted between August 2017 and February 2021 the maximum chronic toxicity result was 8 TUc on 27 November 2018 with a percent effect of 42 percent, therefore, the discharge does have reasonable potential to cause or contribute to an instream exceedance of the Basin Plan’s narrative toxicity objective.

ii. **WQBELs.** The effluent chronic toxicity shall not exceed 1.3 chronic toxicity units (as 100/NOEC) AND a percent effect of 25 percent at 100 percent effluent, for any endpoint as the median of up to three consecutive chronic toxicity tests within a 6-week period.

D. Final Effluent Limitation Considerations

1. **Mass-based Effluent Limitations**

40 C.F.R section 122.45(f)(1) requires effluent limitations be expressed in terms of mass, with some exceptions. Pursuant to the exceptions to mass limitations provided in 40 C.F.R. section 122.45(f)(1), some effluent limitations are not expressed in terms of mass, such as pH and temperature, and when the applicable standards are expressed in terms of concentration (e.g., CTR criteria and MCLs) and mass limitations are not necessary to protect the beneficial uses of the receiving water.

2. **Averaging Periods for Effluent Limitations**

40 C.F.R. section 122.45 (d) requires average weekly and average monthly discharge limitations for POTWs unless impracticable. For
dibromochloromethane and dichlorobromomethane, average weekly effluent limitations have been replaced with maximum daily effluent limitations in accordance with section 1.4 of the SIP. Furthermore, for total residual chlorine, pH, and total coliform organisms, weekly average effluent limitations have been replaced or supplemented with effluent limitations utilizing shorter averaging periods. The rationale for using shorter averaging periods for these constituents is discussed in section IV.C.3 of this Fact Sheet.

3. Satisfaction of Anti-Backsliding Requirements

The CWA specifies that a revised permit may not include effluent limitations that are less stringent than the previous permit unless a less stringent limitation is justified based on exceptions to the anti-backsliding provisions contained in CWA sections 402(o) or 303(d)(4), or, where applicable, 40 C.F.R. section 122.44(l).

The effluent limitations in this Order are at least as stringent as the effluent limitations in the previous Order R5-2017-0060, with the exception of effluent limitations for ammonia, BOD\textsubscript{5}, dichlorobromomethane, pH, and TSS. The effluent limitations for these pollutants are less stringent than those in Order R5-2017-0060. This relaxation and removal of effluent limitations is consistent with the anti-backsliding requirements of the CWA and federal regulations.

a. **CWA section 402(o)(1) and 303(d)(4).** CWA section 402(o)(1) prohibits the establishment of less stringent water quality-based effluent limits “except in compliance with Section 303(d)(4).” CWA section 303(d)(4) has two parts: paragraph (A) which applies to nonattainment waters and paragraph (B) which applies to attainment waters.

 i. For waters where standards are not attained, CWA section 303(d)(4)(A) specifies that any effluent limit based on a TMDL or other WLA may be revised only if the cumulative effect of all such revised effluent limits based on such TMDLs or WLAs will assure the attainment of such water quality standards.

 ii. For attainment waters, CWA section 303(d)(4)(B) specifies that a limitation based on a water quality standard may be relaxed where the action is consistent with the antidegradation policy.

Deer Creek is considered an attainment water for ammonia, BOD\textsubscript{5}, dichlorobromomethane, pH, and TSS because the receiving water is not listed as impaired on the 303(d) list for this constituent. The exceptions in section 303(d)(4) address both waters in attainment with water quality standards and those not in attainment, i.e. waters on the section 303(d) impaired waters list. As discussed in section IV.D.4, below, removal or relaxation of the effluent limits complies with federal and state antidegradation requirements. Thus, removal of maximum daily and mass-based effluent limitations for BOD\textsubscript{5} and TSS, removal
of mass-based effluent limitations for ammonia, and relaxation of the effluent limitations for dichlorobromomethane and instantaneous maximum pH from Order R5-2017-0060 meets the exception in CWA section 303(d)(4)(B).

b. **CWA section 402(o)(2).** CWA section 402(o)(2) provides several exceptions to the anti-backsliding regulations. CWA 402(o)(2)(B)(i) allows a renewed, reissued, or modified permit to contain a less stringent effluent limitation for a pollutant if information is available which was not available at the time of permit issuance (other than revised regulations, guidance, or test methods) and which would have justified the application of a less stringent effluent limitation at the time of permit issuance.

As described further in section IV.C.3.d of this Fact Sheet, updated information that was not available at the time Order R5-2017-0060 was issued indicates that less stringent effluent limitations for dichlorobromomethane based on available dilution credits satisfy requirements in CWA section 402(o)(2). The updated information that supports the relaxation of effluent limitations for these constituents includes the following:

i. **Dichlorobromomethane.** Based on dilution/mixing zone studies conducted in November 2019 through December 2020 and receiving water monitoring data collected between 1 March 2018 and 28 February 2021, a mixing zone and dilution credit of 10.6:1 is applicable and the receiving water contains assimilative capacity for dichlorobromomethane, as discussed in section IV.C.2.c of this Fact Sheet. Therefore, this Order includes less stringent effluent limitations for dichlorobromomethane based on the performance of the Facility and the available dilution.

c. **Flow.** Order R5-2017-0060 included flow as an effluent limit at Discharge Point 001 based on the Facility design flow. Compliance with the flow limit was calculated using the average daily flow over three consecutive dry weather months. Flow is not a pollutant and therefore has been changed from an effluent limit to a discharge prohibition in this Order, which is an equivalent level of regulation. This Order is not less stringent because compliance with flow as a discharge prohibition will be calculated the same way as the previous Order. Flow as a discharge prohibition adequately regulates the Facility, does not allow for an increase in the discharge of pollutants, and does not constitute backsliding.

4. **Antidegradation Policies**

The permitted discharge is consistent with the antidegradation provisions of 40 C.F.R. section 131.12 and the State Anti-Degradation Policy. This Order provides for an increase in the volume and mass of pollutants discharged. The increase will not have significant impacts on municipal and domestic water supply, which is the beneficial use affected by the increased pollutants.
discharged (dichlorobromomethane). The increase will not cause a violation of water quality objectives. Any change in water quality that is expected to occur as a result of the issuance of this Order will be consistent with the maximum benefit to the people of the state and will not unreasonably affect present and anticipated beneficial uses. Furthermore, compliance with these requirements in this Order will result in the use of best practicable treatment or control of the discharge.

The relaxation of the effluent limitations for dichlorobromomethane is based on the allowance of mixing zones in accordance with the Basin Plan, the SIP, U.S. EPA's Water Quality Standards Handbook, 2nd Edition (updated July 2007), and the TSD. As discussed in section IV.C.2.c of this Fact Sheet, the mixing zones comply with applicable provisions of both the state and federal antidegradation policies. The Discharger developed a report titled Antidegradation Analysis for City of Nevada City Wastewater Treatment Plant – Effluent Discharge to Deer Creek (Woodard & Curran) dated January 2022 (Antidegradation Analysis), that provides an antidegradation analysis following the guidance provided by State Water Board APU 90-004. Pursuant to the guidelines, the Discharger conducted a complete antidegradation analysis. The Antidegradation Analysis evaluated relaxed effluent limitations for DCBM and addition of effluent limitations for DBCM is within the available assimilative capacity for Deer Creek and are consistent with the maximum benefit to the people of the State, will not unreasonably affect beneficial uses, will not cause water quality to be less than water quality objectives, and that the discharge provides protection for existing in-stream uses and water quality necessary to protect those uses. Findings from the Antidegradation Analysis are summarized below.

a. Water quality parameters and beneficial uses which will be affected by the proposed harmonic mean flow increase and the extent of the impact. Compliance with this Order will not adversely impact beneficial uses of the receiving water or downstream receiving waters. All beneficial uses will be maintained and protected. 40 C.F.R. section 131.12 defines the following tier designations to describe water quality in the receiving water body.

Tier 1 Designation: Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected. (40 C.F.R. §131.12)

Tier 2 Designation: Where the quality of waters exceed levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water, that quality shall be maintained and protected unless the State finds, after full satisfaction of the intergovernmental coordination and public participation provisions of the State’s continuing planning process, that allowing lower water quality is necessary to accommodate important economic or social
development in the area in which the waters are located. In allowing such degradation or lower water quality, the State shall assure water quality adequate to protect existing uses fully. Further, the State shall assure that there shall be achieved the highest statutory and regulatory requirements for all new and existing point sources and all cost-effective and reasonable best management practices for nonpoint source control. (40 C.F.R. §131.12)

The tier designation is assigned on a pollutant-by-pollutant basis. The Antidegradation Analysis did not delineate the tier designation for pollutants, but instead conducted an analysis of the potential impact of each constituent and their use of assimilative capacity. The Deer Creek is not listed on the 2018 303(d) list as impaired for DBCM and DCBM. Therefore, the Deer Creek has a Tier 2 designation per 40 C.F.R. §131.12 for DBCM and DCBM.

The scientific rationale used in the Antidegradation Analysis to determine if the Order allows a lowering of water quality is to determine the reduction of assimilative capacity. Assimilative capacity was calculated on a mass-balanced, concentration basis and, for bioaccumulative constituents, calculated on a mass loading basis. This approach is consistent with recent USEPA guidance and addresses a key objective of the Antidegradation Analysis to “[c]ompare receiving water quality to the water quality objectives established to protect designated beneficial uses” (APU 90-004). USEPA has recommended ten (10) percent as a measure of significance for identifying those substantial lowerings of water quality that should receive a full tier 2 antidegradation review. APU 90-004 requires the consideration of “feasible alternative control measures” as part of the procedures for a complete antidegradation analysis (See also 40 C.F.R. 131.12 [requiring evaluation of practicable alternatives that would prevent or lessen degradation associated with the proposed activity]).

The Antidegradation Analysis conducted an analysis of the potential impact of each constituent and their use of assimilative capacity from an update to the Deer Creek mean harmonic flow of 7.3 MGD and updated available dilution credit of 10.6:1. The updated harmonic mean flow of
Deer Creek and updated dilution credits allows for an increase in dilution credit used to calculate effluent limitations for DCBM and use of full dilution credit when calculating effluent limitations for DBCM.

Based on the Antidegradation Analysis, the effluent limitations would result in a significant increase in concentrations of DBCM and DCBM. For DBCM and DCBM, for which mixing zones and dilution credits were requested, the Antidegradation Analysis provided results which correspond to the use of 100 percent of the available assimilative capacity for both constituents. As discussed in section IV.C.2.c of this Fact Sheet, the mixing zones for DBCM and DCBM have been sized to comply with State and federal antidegradation requirements. This Order will result in best practicable treatment or control of the discharge necessary to assure a pollution of nuisance will not occur and highest water quality consistent with the maximum benefit to the people of the State will be maintained.

c. **Alternative Control Measures Considered.** Both DBCM and DCBM are disinfection by-products which are formed from the Facility’s chlorine disinfection system. The most common way to reduce disinfection by-products is to install an Ultraviolet (UV) Disinfection system. The Antidegradation Analysis analyzed the use of UV Disinfection as an alternative to chlorine disinfection. UV Disinfection was determined to be infeasible because the Facility has no feasible emergency storage site to hold effluent in the event of a process upset. The Discharger would need to maintain the chlorine disinfection system for emergency use in the event of a process upset. The cost to install a UV Disinfection system is approximately $3,500,000 with estimated operation and maintenance costs of $20,000 annually. The Discharger spends approximately $11,500 annually for operation and maintenance costs of the chlorine disinfection system. Therefore, conversion to UV Disinfection is infeasible because emergency effluent storage is not feasible and the cost of operating and maintaining a UV Disinfection alongside chlorine disinfection is not a feasible cost for the Discharger and the residents of Nevada City.

The Antidegradation Analysis noted that the Discharger has been actively implementing source control measures to reduce the formation of disinfection by-products. The measures include the following physical and operational improvements to the Facility:

i. Restoration of traveling sand filter and pumps;
ii. Installation of weir washers;
iii. Optimization of biological processes;
iv. Repair of blower pipes;
v. Update of the City Sewer Ordinance;
vi. Covering of the chlorine contact chambers;
vii. Installation of a flow control valve and mag meter to the filtration system and contact chamber;
viii. Repair of equalization basin; and
ix. Addition of ammonium sulfate.

d. Socioeconomic Evaluation. The objective of the socioeconomic analysis was to determine if the lowering of Deer Creek water quality is in the maximum interest of the people of the State. The socioeconomic evaluation considered the social benefits and costs based on installing a UV Disinfection system. The Antidegradation Analysis explained that the capital and operational cost of a UV Disinfection system would increase the monthly sewer fee from $51.30 per month to $108 per month. This increase is approximately 2 percent of the median household income of Nevada City at which point the sewer fee would begin to represent a general financial hardship on a community. Thus, the cost to install a UV Disinfection system is not feasible for the Discharger and the residents of Nevada City.

e. Justification for Allowing Degradation. Potential degradation identified in the Antidegradation Analysis and due to this Order is justified by the following considerations:

1. The mixing zones for DBCM and DCBM have been sized to ensure this Order results in the implementation of best practicable treatment or control of the discharge;

2. Further reduction in concentration is expected downstream of the discharge due to volatilization of DBCM and DCBM;

3. The Discharger continues to implement source control and operational control measures to optimize the chlorine disinfection system to minimize the formation of disinfection by-products (e.g., addition of ammonium sulfate to chlorine disinfection system);

4. Implementation of alternatives does not provide important socioeconomic benefit to the people of the region, nor do they provide maximum benefit to the people of the State;

5. The Order is fully protective of the beneficial uses of the Deer Creek. The anticipated water quality changes in the Deer Creek will not reduce or impair its designated beneficial uses and is consistent with State and federal antidegradation policies;

6. No feasible alternatives currently exist to reduce the impacts; and

7. The Discharger has fully satisfied the requirements of the intergovernmental coordination and public participation provisions of the State’s continuing planning process concurrent with the public participation period of this Order.

f. This Order also relaxes the instantaneous maximum pH effluent limitation and removes maximum daily and mass-based effluent limitations for
ammonia, BOD$_5$, and TSS based on 40 CFR parts 122.45 (d) and (f). The removal of maximum daily and mass-based effluent limits for ammonia, BOD$_5$, and TSS will not result in a decrease in the level of treatment or control or a reduction in water quality. The instantaneous maximum pH effluent limitation was changed to be consistent with the Basin Plan water quality objective. The relaxation of the pH effluent limit does not result in an increase in the mass of pollutants discharged, because pH is not a pollutant and does not have mass.

Furthermore, both concentration-based AMELs and AWELs remain for ammonia, BOD$_5$, and TSS, as well as an average dry weather flow prohibition that limits the amount of flow that can be discharged to the receiving water during dry weather months. The combination of concentration-based effluent limits and a flow prohibition in this Order are equivalent to mass-based effluent limitations, which were redundant limits contained in previous Orders by multiplying the concentration-based effluent limits and permitted average dry weather flow by a conversion factor to determine the mass-based effluent limitations. The Central Valley Water Board finds that the removal of maximum daily and mass-based effluent limits for ammonia, BOD$_5$, and TSS does not result in an allowed increase in pollutants or any additional degradation of the receiving water. Thus, the removal of maximum daily and mass-based effluent limits for ammonia, BOD$_5$, and TSS is consistent with the antidegradation provisions of 40 C.F.R. section 131.12 and the State Antidegradation Policy.

g. The permitted surface water discharge is consistent with the antidegradation provisions of 40 C.F.R. section 131.12 and the State Antidegradation Policy. Compliance with these requirements will result in the use of best practicable treatment or control of the discharge. The impact on existing water quality will be insignificant.

5. **Stringency of Requirements for Individual Pollutants**

This Order contains both technology-based effluent limitations and WQBELs for individual pollutants. The technology-based effluent limitations consist of restrictions on BOD$_5$, TSS, and pH. Restrictions on BOD$_5$, TSS, and pH are discussed in section IV.B of the Fact Sheet. This Order’s technology-based pollutant restrictions implement the minimum, applicable federal technology-based requirements.

WQBELs have been derived to implement water quality objectives that protect beneficial uses. Both the beneficial uses and the water quality objectives have been approved pursuant to federal law and are the applicable federal water quality standards. To the extent that toxic pollutant WQBELs were derived from the CTR, the CTR is the applicable standard pursuant to 40 C.F.R. section 131.38. The procedures for calculating the individual water quality-based
effluent limitations for priority pollutants are based on the CTR implemented by the SIP, which was approved by U.S. EPA on 18 May 2000. Collectively, this Order’s restrictions on individual pollutants are no more stringent than required to implement the requirements of the CWA.

Summary of Final Effluent Limitations

Discharge Point 001

Table F-13. Summary of Final Effluent Limitations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitations</th>
<th>Basis¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical Oxygen Demand, 5-day @ 20°C</td>
<td>mg/L</td>
<td>AMEL 10</td>
<td>TTC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWEL 15</td>
<td></td>
</tr>
<tr>
<td>Biochemical Oxygen Demand, 5-day @ 20°C</td>
<td>% removal</td>
<td>85</td>
<td>CFR,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TTC</td>
</tr>
<tr>
<td>pH</td>
<td>Standard</td>
<td>Instantaneous Min 6.5</td>
<td>BP,</td>
</tr>
<tr>
<td></td>
<td>units</td>
<td>Instantaneous Max 8.5</td>
<td>PP</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>AMEL 10</td>
<td>TTC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWEL 15</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>% removal</td>
<td>85</td>
<td>CFR,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TTC</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>µg/L</td>
<td>AMEL 4.2</td>
<td>CTR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDEL 8.3</td>
<td></td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>µg/L</td>
<td>AMEL 5.9</td>
<td>CTR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDEL 12</td>
<td></td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>AMEL 2.0</td>
<td>NAWQC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWEL 6.7</td>
<td></td>
</tr>
<tr>
<td>Acute Toxicity</td>
<td>% survival</td>
<td>Instantaneous Min 70</td>
<td>BP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Three Consecutive Median 90</td>
<td></td>
</tr>
<tr>
<td>Chronic Toxicity</td>
<td>TUc</td>
<td>1</td>
<td>BP</td>
</tr>
<tr>
<td>Nitrate Plus Nitrite (as N)</td>
<td>mg/L</td>
<td>AMEL 10</td>
<td>MCL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWEL 15</td>
<td></td>
</tr>
<tr>
<td>Total Coliform Organisms</td>
<td>MPN/100 mL</td>
<td>7-day median 2.2</td>
<td>Title 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30-day period 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instantaneous Max 240</td>
<td></td>
</tr>
<tr>
<td>Total Residual Chlorine</td>
<td>mg/L</td>
<td>4-day average 0.011</td>
<td>NAWQC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-hour average 0.019</td>
<td></td>
</tr>
<tr>
<td>Diazinon</td>
<td>µg/L</td>
<td>See table note 3 below</td>
<td>TMDL</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>µg/L</td>
<td>See table note 3 below</td>
<td>TMDL</td>
</tr>
<tr>
<td>Mercury</td>
<td>lbs/year</td>
<td>0.0020</td>
<td>PB</td>
</tr>
</tbody>
</table>

Table F-13 Notes:

1. BP – Based on water quality objectives contained in the Basin Plan.
 CTR – Based on water quality criteria contained in the California Toxics Rule and applied as specified in the SIP.
 PB – Based on Facility performance.
 MCL – Based on the Primary Maximum Contaminant Level.
 NAWQC – Based on U.S. EPA’s National Ambient Water Quality Criteria for the protection

ATTACHMENT F – FACT SHEET

F-69
of freshwater aquatic life.

PP – Based on treatment plant performance.

Title 22 – Based on State Water Board Division of Drinking Water Reclamation Criteria.

TTC – Based on tertiary treatment capability. These effluent limitations reflect the capability of a properly operated tertiary treatment plant.

TMDL – Based on the WLAs in the applicable TMDL.

2. **Dibromochloromethane and Dichlorobromomethane.** Final effluent limitations based on CTR multiplied by the dilution credit of 10.6:1.

3. **Diazinon and Chlorpyrifos.** Effluent diazinon and chlorpyrifos concentrations shall not exceed the sum of one (1.0) as identified below:

 a. Average Monthly Effluent Limitation (AMEL)

 \[
 \text{SAMEL} = \frac{\text{CD M-avg}}{0.079} + \frac{\text{CC M-avg}}{0.012} \leq 1.0
 \]

 \[
 \text{CD M-AVG} = \text{average monthly diazinon effluent concentration in } \mu\text{g/L.}
 \]

 \[
 \text{CC M-AVG} = \text{average monthly chlorpyrifos effluent concentration in } \mu\text{g/L.}
 \]

 b. Average Weekly Effluent Limitation (AWEL)

 \[
 \text{SAWEL} = \frac{\text{CD W-avg}}{0.14} + \frac{\text{CC W-avg}}{0.021} \leq 1.0
 \]

 \[
 \text{CD W-AVG} = \text{average weekly diazinon effluent concentration in } \mu\text{g/L.}
 \]

 \[
 \text{CC W-AVG} = \text{average weekly chlorpyrifos effluent concentration in } \mu\text{g/L.}
 \]

E. **Land Discharge Specifications – Not Applicable**

F. **Recycling Specifications – Not Applicable**

V. **RATIONALE FOR RECEIVING WATER LIMITATIONS**

A. **Surface Water**

1. CWA section 303(a-c), requires states to adopt water quality standards, including criteria where they are necessary to protect beneficial uses. The Central Valley Water Board adopted water quality criteria as water quality objectives in the Basin Plan. The Basin Plan states that “[t]he numerical and narrative water quality objectives define the least stringent standards that the Regional Water Board will apply to regional waters in order to protect the beneficial uses.” The Basin Plan includes numeric and narrative water quality objectives for various beneficial uses and water bodies. This Order contains receiving surface water limitations based on the Basin Plan numerical and narrative water quality objectives for bacteria, biostimulatory substances, color, chemical constituents, dissolved oxygen, floating material, oil and grease, pH, pesticides, radioactivity, suspended sediment, settleable substances, suspended material, tastes and odors, temperature, toxicity, and turbidity.

The Bacteria Water Quality Objectives correspond with the risk protection level of 32 illnesses per 1,000 recreators and use E. coli as the indicator of pathogens in freshwaters and enterococci as the indicator of pathogens in estuarine waters and ocean waters.

The Bacteria Provisions provide that where a permit, waste discharge requirement (WDR), or waiver of WDR includes an effluent limitation or discharge requirement that is derived from a water quality objective or other guidance to control bacteria (for any beneficial use) that is more stringent than the Bacteria Water Quality Objective, the Bacteria Water Quality Objective would not be implemented in the permit, WDR, or waiver of WDR. This Order includes effluent limitations and discharge requirements equivalent to the DDW Title 22 disinfected tertiary reclamation criteria that are more stringent than the Statewide Bacteria Objectives. Therefore, the Statewide Bacteria Objectives have not been implemented in this Order.

B. Groundwater

1. The beneficial uses of the underlying groundwater are municipal and domestic supply, industrial service supply, industrial process supply, and agricultural supply. The wastewater and biosolid processes at the Facility are contained within piping, concrete structures, and tanks, and consequently there is no existing threat to groundwater. Therefore, groundwater limitations are not necessary to protect groundwater beneficial uses and are not included within this Order.

VI. RATIONALE FOR PROVISIONS

A. Standard Provisions

Standard Provisions, which apply to all NPDES permits in accordance with 40 C.F.R. section 122.41, and additional conditions applicable to specified categories of permits in accordance with 40 C.F.R. section 122.42, are provided in Attachment D. The discharger must comply with all standard provisions and with those additional conditions that are applicable under section 122.42.
Sections 122.41(a)(1) and (b) through (n) of 40 C.F.R. establish conditions that apply to all state issued NPDES permits. These conditions must be incorporated into the permits either expressly or by reference. If incorporated by reference, a specific citation to the regulations must be included in the Order. Section 123.25(a)(12) of 40 C.F.R. allows the state to omit or modify conditions to impose more stringent requirements. In accordance with 40 C.F.R. section 123.25, this Order omits federal conditions that address enforcement authority specified in 40 C.F.R. sections 122.41(j)(5) and (k)(2) because the enforcement authority under the Water Code is more stringent. In lieu of these conditions, this Order incorporates by reference Water Code section 13387(e).

B. Special Provisions

1. Reopener Provisions

 a. **Mercury.** This provision allows the Central Valley Water Board to reopen this Order in the event mercury is found to be causing toxicity based on acute or chronic toxicity test results, or if a TMDL program is adopted. In addition, this Order may be reopened if the Central Valley Water Board determines that a mercury offset program is feasible for dischargers subject to NPDES permits.

 b. **Central Valley Salinity Alternatives for Long-Term Sustainability (CV-SALTS).** On 17 January 2020, certain Basin Plan Amendments to incorporate new strategies for addressing ongoing salt and nitrate accumulation in the Central Valley became effective. Other provisions subject to U.S. EPA approval became effective on 2 November 2020, when approved by U.S. EPA. As the Central Valley Water Board moves forward to implement those provisions that are now in effect, this Order may be amended or modified to incorporate new or modified requirements necessary for implementation of the Basin Plan Amendments. More information regarding these Amendments can be found on the Central Valley Salinity Alternatives for Long-Term Sustainability (CV-SALTS) web page: https://www.waterboards.ca.gov/centralvalley/water_issues/salinity/

 c. **Whole Effluent Toxicity.** This Order requires the Discharger to investigate the causes of, and identify corrective actions to reduce or eliminate, effluent toxicity through a site-specific Toxicity Reduction Evaluation (TRE). This Order may be reopened to include a new chronic toxicity limitation, a new acute toxicity limitation, and/or a limitation for a specific toxicant identified in the TRE.

 d. **Bis (2-ethylhexyl) Phthalate.** As discussed in Section IV.C.3 of the Fact Sheet, there was insufficient information to conduct the reasonable potential analysis for bis (2-ethylhexyl) phthalate. This Order requires the Discharger to conduct quarterly effluent monitoring during the first 24 months of the permit term in lieu of implementing water quality-based
effluent limitations. This reopener provision allows the Central Valley Water Board to reopen this Order for addition of effluent limitations and requirements for bis (2-ethylhexyl) phthalate if after review of the monitoring results it is determined that the discharge has reasonable potential to cause or contribute to an exceedance of a water quality objective.

2. Special Studies and Additional Monitoring Requirements
 a. **Chronic Whole Effluent Toxicity Requirements.** The Basin Plan contains a narrative toxicity objective that states, “All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life.” (Basin Plan at section 3.1.20). Based on whole effluent chronic toxicity testing performed by the Discharger from August 2017 through February 2021, the discharge has reasonable potential to cause or contribute to an in-stream excursion above of the Basin Plan’s narrative toxicity objective.

The Monitoring and Reporting Program of this Order requires chronic WET monitoring to demonstrate compliance with the numeric chronic toxicity effluent limitation. If the discharge exceeds the chronic toxicity effluent limitation this provision requires the Discharger either participate in an approved Toxicity Evaluation Study (TES) or conduct a site-specific Toxicity Reduction Evaluation (TRE).

A TES may be conducted in lieu of a TRE if the percent effect at 100 percent effluent is less than or equal to 50 percent. Determining the cause of toxicity can be challenging when the toxicity signal is low. Several Central Valley facilities with similar treatment systems have been experiencing intermittent low-level toxicity. The dischargers have not been successful identifying the cause of the toxicity because of the low toxicity signal and the intermittent nature of the toxicity. Due to these challenges, the Central Valley Clean Water Association (CVCWA), in collaboration with staff from the Central Valley Water Board, has initiated a Special Study to Investigate Low Level Toxicity Indications (Group Toxicity Study). This Order allows the Discharger to participate in an approved TES, which may be conducted individually or as part of a coordinated group effort with other similar dischargers that are exhibiting toxicity. Although the current CVCWA Group Toxicity Study is related to low-level toxicity, participation in an approved TES is not limited to only low-level toxicity issues.

See the WET Monitoring Flow Chart (Figure F-3), below, for further clarification of the decision points for determining the need for TES/TRE initiation.
Figure F-3: WET Accelerated Monitoring Flow Chart

1. The Discharger may participate in an approved TES if the discharge has exceeded the chronic toxicity effluent limitations twice or more in the past 12-month period and the cause is not identified and/or addressed.
2. The Discharger may elect to take additional samples to determine the 3-sample median. The samples shall be collected at least one week apart and the final sample shall be within 6 weeks of the initial sample exhibiting toxicity.
3. The Discharger may participate in an approved TES instead of a TRE if the Discharger has conducted a TRE within the past 12 months and has been unsuccessful in identifying the toxicant.

4. See Compliance Determination section VII.G for procedures for calculating 6-week median.

3. **Best Management Practices and Pollution Prevention**

 a. **Salinity Evaluation and Minimization Plan.** The Basin Plan includes a Salt Control Program for discharges to groundwater and surface water. The Salt Control Program is a phased approach to address salinity in the Central Valley Region. During Phase I the focus will be on conducting a Prioritization and Optimization (P&O) Study to provide information for subsequent phases of the Salt Control Program. During Phase I, the Salt Control Program includes two compliance pathways for dischargers to choose; a Conservative Salinity Permitting Approach and an Alternative Salinity Permitting Approach.

 The Discharger submitted a notice to intent for the Salt Control Program on 14 April 2022 indicating its intent to meet the Alternative Salinity Permitting Approach. Under the Alternative Permitting Approach the Basin Plan requires dischargers implement salinity minimization measures to maintain existing salinity levels, and participate in the P&O Study. The Discharger’s NOI demonstrated adequate participation in the P&O and this Order requires continued participation to meeting the requirements of the Alternative Salinity Permitting Approach. This Order also requires continued implementation of the Discharger’s Salinity Evaluation and Minimization Plan and includes a performance-based salinity trigger of 750 µmhos/cm to ensure salinity levels do not increase. In accordance with the Basin Plan, the salinity trigger was developed based on existing facility performance, and considers possible temporary increases that may occur due to water conservation and/or drought.

4. **Construction, Operation, and Maintenance Specifications**

 a. **Filtration System Operating Specifications.** Turbidity is included as an operational specification as an indicator of the effectiveness of the filtration system for providing adequate disinfection. The tertiary treatment process utilized at this Facility is capable of reliably meeting a turbidity limitation of 2 nephelometric turbidity units (NTU) as a daily average. Failure of the treatment system such that virus removal is impaired would normally result in increased particles in the effluent, which result in higher effluent turbidity and could impact UV dosage. Turbidity has a major advantage for monitoring filter performance, allowing immediate detection of filter failure and rapid corrective action. The operational specification requires that turbidity prior to disinfection shall not exceed 2 NTU as a daily average; 5 NTU, more than 5 percent of the time within a 24-hour period, and an instantaneous maximum of 10 NTU.
5. Special Provisions for Publicly-Owned Treatment Works (POTWs)
 a. **Sludge/Biosolids Treatment or Discharge Specifications.** Sludge in this Order means the solid, semisolid, and liquid residues removed during primary, secondary, or advanced wastewater treatment processes. Solid waste refers to grit and screening material generated during preliminary treatment. Residual sludge means sludge that will not be subject to further treatment at the wastewater treatment plant. Biosolids refer to sludge that has been treated and tested and shown to be capable of being beneficially and legally used pursuant to federal and state regulations as a soil amendment for agricultural, silvicultural, horticultural, and land reclamation activities as specified under 40 C.F.R. part 503. This Order does not regulate offsite use or disposal of biosolids, which are regulated instead under 40 C.F.R. part 503; administered by U.S. EPA. The Sludge/Biosolids Treatment or Discharge Specifications in this Order implement the California Water Code to ensure sludge/biosolids are properly handled onsite to prevent nuisance, protect public health, and protect groundwater quality.

6. Other Special Provisions
 a. **Disinfection Requirements.** This Order requires wastewater discharged to surface water to be oxidized, coagulated, filtered, and adequately disinfected consistent with DDW reclamation criteria, CCR, Title 22, division 4, chapter 3 (Title 22), or equivalent. The disinfection requirements are discussed in detail above in Section IV.C.3.d.vi, Determining the Need for WQBELs (see Pathogens).

7. Compliance Schedules – Not Applicable

VII. RATIONALE FOR MONITORING AND REPORTING REQUIREMENTS

CWA section 308 and 40 C.F.R. sections 122.41(h), (j)-(l), 122.44(i), and 122.48 require that all NPDES permits specify monitoring and reporting requirements. Water Code sections 13267 and 13383 also authorize the Central Valley Water Board to establish monitoring, inspection, entry, reporting, and recordkeeping requirements. The Monitoring and Reporting Program (MRP), Attachment E of this Order establishes monitoring, reporting, and recordkeeping requirements that implement federal and state requirements. The following provides the rationale for the monitoring and reporting requirements contained in the MRP for this facility.

A. Influent Monitoring

1. Influent monitoring is required to collect data on the characteristics of the wastewater and to assess compliance with effluent limitations (e.g., BOD$_5$ and TSS reduction requirements). The monitoring frequencies for flow (continuous) and BOD$_5$ (twice per week). have been retained from Order No. R5-2017-0060.
2. Influent monitoring for pH and TSS have been reduced from twice per week to once per week to be consistent with frequencies of similar dischargers.

3. Influent monitoring for EC has not been retained from Order R5-2017-0060 to be consistent with frequencies of similar dischargers.

B. Effluent Monitoring

1. Pursuant to the requirements of 40 C.F.R. section 122.44(i)(2) effluent monitoring is required for all constituents with effluent limitations. Effluent monitoring is necessary to assess compliance with effluent limitations, assess the effectiveness of the treatment process, and to assess the impacts of the discharge on the receiving stream and groundwater.

2. Effluent monitoring frequencies and sample types for ammonia (once per week), BOD5 (twice per week), total residual chlorine (continuous), dichlorobromomethane (once per month), electrical conductivity (once per month), flow (continuous), mercury (once per quarter), methylmercury (once per quarter), nitrate (one per month), nitrite (once per month), pH (once per day), temperature (once per day), total coliform organisms (three times per week), and TSS (twice per week), have been retained from Order No. R5-2017-0060 to determine compliance with effluent limitations contained in this Order.

3. Hardness is used to establish the criteria for hardness-dependent metals. Order R5-2017-0060 required monthly effluent monitoring for hardness. This Order reduces the monitoring for hardness to once per quarter. The Central Valley Water Board finds that this frequency is sufficient for determining the criteria of hardness-dependent metals.

4. This Order includes effluent monitoring for dissolved organic carbon (once per quarter) to calculate site-specific freshwater aluminum criteria in accordance with the 2018 United State Environmental Protection Agency (U.S. EPA) National Ambient Water Quality Criteria (NAWQC) for aluminum in freshwater.

5. Effluent monitoring for dissolved oxygen was not included in Order R5-2017-0060. Once per week monitoring for dissolved oxygen will ensure that the effluent is not degrading Deer Creek below the Basin Plan objective of 7 mg/L for dissolved oxygen.

6. Salinity concentrations can be described using EC (@ 25°C) or total dissolved solids. Electrical Conductivity (@ 25°C) is sufficient to determine effluent salinity concentrations. Thus, effluent monitoring for total dissolved solids has not been retained from Order R5-2017-0060.

7. Monitoring data collected over the previous permit term for dibromochloromethane and bis (2-ethylhexyl) phthalate demonstrate reasonable potential to exceed water quality objectives/criteria. Thus, specific monitoring
requirements for these dibromochloromethane (once per month) and bis (2-ethylhexyl) phthalate (once per quarter) have been added to this Order.

8. Water Code section 13176, subdivision (a), states: "The analysis of any material required by [Water Code sections 13000-16104] shall be performed by a laboratory that has accreditation or certification pursuant to Article 3 (commencing with section 100825) of Chapter 4 of Part 1 of Division 101 of the Health and Safety Code." The DDW accredits laboratories through its Environmental Laboratory Accreditation Program (ELAP).

9. Section 13176 cannot be interpreted in a manner that would violate federal holding time requirements that apply to NPDES permits pursuant to the CWA. (Wat. Code sections 13370, subd. (c), 13372, 13377.). Section 13176 is inapplicable to NPDES permits to the extent it is inconsistent with CWA requirements. (Wat. Code section 13372, subd. (a).) Lab accreditation is not required for field tests such as tests for color, odor, turbidity, pH, temperature, dissolved oxygen, electrical conductivity, and disinfectant residual. The holding time requirements are 15 minutes for total residual chlorine, dissolved oxygen, and pH (40 C.F.R. section 136.3(e), Table II). Due to the location of the Facility, it is both legally and factually impossible for the Discharger to comply with section 13176 for constituents with short holding times.

10. This Order establishes annual effluent monitoring requirements for chlorpyrifos and diazinon in order to determine compliance with effluent limitations for these parameters. Chlorpyrifos and diazinon shall be analyzed using the analytical methods described in 40 C.F.R. part 136 or an EPA-approved Alternate Testing Procedure. However, where no methods are specified for a given pollutant that meets a specific reporting limit or method performance standard, an alternate method can be approved by the Central Valley Water Board. This Order requires either EPA 8141A or EPA 625M for chlorpyrifos and diazinon. These alternate analytical methods are necessary to determine compliance with the effluent limits for these constituents. Basin Plan water quality objectives for chlorpyrifos and diazinon are 0.015 µg/L and 0.10 µg/L, respectively, as a 4-day average (see section IV.C.3.a.i of this Fact Sheet for more information). Therefore, chlorpyrifos and diazinon must be analyzed using analytical methods that have a lower MDL than the Basin Plan water quality objectives.

C. Whole Effluent Toxicity Testing Requirements

To implement the future statewide toxicity provisions, the Discharger shall report the TST results of the instream waste stream at the 100% effluent for both acute and chronic toxicity tests.

1. **Acute Toxicity.** Annual 96-hour bioassay testing is required to demonstrate compliance with the effluent limitation for acute toxicity.
2. **Chronic Toxicity.** Quarterly chronic whole effluent toxicity testing is required in order to demonstrate compliance with the numeric chronic toxicity effluent limitation.

The most sensitive species to be used for chronic toxicity testing was determined in accordance with the process outlined in the MRP section V.E.2. Based on the Discharger’s last 3 years of chronic toxicity data, the species that exhibited the highest percent effect was the water flea (*Ceriodaphnia dubia*), with a percent effect of 42.1%. Consequently, *Ceriodaphnia dubia* has been established as the most sensitive species for chronic WET testing.

D. Receiving Water Monitoring

1. **Surface Water**
 - Receiving water monitoring is necessary to assess compliance with receiving water limitations and to assess the impacts of the discharge on the receiving stream.

2. **Groundwater – Not Applicable**

E. Other Monitoring Requirements

1. **Biosolids Monitoring**

 Biosolids monitoring for compliance with 40 C.F.R. part 503 regulations is not included in this Order since it is a program administered by [U.S. EPA’s part 503 Biosolids Program](https://www.epa.gov/biosolids/compliance-and-annual-reporting-guidance-about-clean-water-act-laws)

2. **Water Supply Monitoring**

 Water supply monitoring was required in the previous Order to evaluate the source of constituents in the wastewater. Water supply monitoring has been discontinued based on low levels of electrical conductivity in the discharge.

3. **Filtration System Monitoring**

 Filtration system monitoring is required to ensure the filtration system is operating properly to provide adequate disinfection of the wastewater.

VIII. PUBLIC PARTICIPATION

The Central Valley Water Board has considered the issuance of WDRs that will serve as an NPDES permit for the City of Grass Valley Wastewater Treatment Plant. As a step in the WDR adoption process, the Central Valley Water Board staff has developed tentative WDRs and has encouraged public participation in the WDR adoption process.
A. Notification of Interested Persons

The Central Valley Water Board notified the Discharger and interested agencies and persons of its intent to prescribe WDRs for the discharge and provided an opportunity to submit written comments and recommendations. Notification was provided through posting on the Central Valley Water Board’s website on 22 March 2022 and through posting by the Discharger at the Nevada City Hall on 5 April 2022 and the Facility entrance on 5 April 2022.

The public had access to the agenda and any changes in dates and locations through the Central Valley Water Board’s website (http://www.waterboards.ca.gov/centralvalley/board_info/meetings/)

B. Written Comments

Interested persons were invited to submit written comments concerning tentative WDRs as provided through the notification process. Comments were due either in person or by mail to the Executive Office at the Central Valley Water Board at the address on the cover page of this Order.

To be fully responded to by staff and considered by the Central Valley Water Board, the written comments were due at the Central Valley Water Board office by 5:00 p.m. on 21 April 2022.

C. Public Hearing

The Central Valley Water Board held a public hearing on the tentative WDRs during its regular Board meeting on the following date and time and at the following location:

Date: 10 June 2022
Time: 10:30 a.m.
Location: Online
AND
Regional Water Quality Control Board, Central Valley Region
11020 Sun Center Dr., Suite #200
Rancho Cordova, CA 95670

Interested persons were invited to attend. At the public hearing, the Central Valley Water Board heard testimony pertinent to the discharge, WDRs, and permit. For accuracy of the record, important testimony was requested in writing.

D. Reconsideration of Waste Discharge Requirements

Any person aggrieved by this action of the Central Valley Water Board may petition the State Water board to review the action in accordance with Water Code section 13320 and California Code of Regulations, title 23, sections 2050 and following. The State Water Board must receive the petition by 5:00 p.m., within 30 calendar days of
the date of adoption of this Order at the following address, except that if the thirtieth
day following the date of this Order falls on a Saturday, Sunday, or state holiday, the
petition must be received by the State Water Board by 5:00 p.m. on the next
business day:

State Water Resources Control Board
Office of Chief Counsel
P.O. Box 100, 1001 I Street
Sacramento, CA 95812-0100

Or by email at waterqualitpetitions@waterboards.ca.gov

Instructions on how to file a petition for review
(http://www.waterboards.ca.gov/public_notices/petitions/water_quality/wqpetition_instr.shtml) are available on the Internet.

E. Information and Copying

The Report of Waste Discharge, other supporting documents, and comments
received are on file and may be inspected at the address above at any time between
8:30 a.m. and 4:45 p.m., Monday through Friday. Copying of documents may be
arranged through the Central Valley Water Board by calling (916) 464-3291.

F. Register of Interested Persons

Any person interested in being placed on the mailing list for information regarding
the WDRs and NPDES permit should contact the Central Valley Water Board,
reference this facility, and provide a name, address, and phone number.

G. Additional Information

Requests for additional information or questions regarding this order should be
directed to Sarah Thompson at 916-464-4713, or
sarah.thompson@waterboards.ca.gov.
ATTACHMENT G – SUMMARY OF REASONABLE POTENTIAL ANALYSIS

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>MEC</th>
<th>B</th>
<th>C</th>
<th>CMC</th>
<th>CCC</th>
<th>Water & Org</th>
<th>Org. Only</th>
<th>Basin Plan</th>
<th>MCL</th>
<th>Reasonable Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>1.1</td>
<td>0.15</td>
<td>2.39</td>
<td>10.8</td>
<td>2.39</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
</tr>
<tr>
<td>Bis (2-ethylhexyl) Phthalate</td>
<td>µg/L</td>
<td>2.2</td>
<td>3.2</td>
<td>1.8</td>
<td>--</td>
<td>--</td>
<td>1.8</td>
<td>5.9</td>
<td>--</td>
<td>4</td>
<td>Insufficient Data</td>
</tr>
<tr>
<td>Dibromo-chloro-methane</td>
<td>µg/L</td>
<td>1.9</td>
<td>0.052</td>
<td>0.41</td>
<td>--</td>
<td>--</td>
<td>0.41</td>
<td>34</td>
<td>--</td>
<td>80</td>
<td>Yes</td>
</tr>
<tr>
<td>Dichloro-bromo-methane</td>
<td>µg/L</td>
<td>15</td>
<td>0.058</td>
<td>0.56</td>
<td>--</td>
<td>--</td>
<td>0.56</td>
<td>46</td>
<td>--</td>
<td>80</td>
<td>Yes</td>
</tr>
<tr>
<td>Electrical Conductivity @ 25°C</td>
<td>µmho/cm</td>
<td>600</td>
<td>91</td>
<td>900</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>900</td>
<td>No</td>
</tr>
<tr>
<td>Manganese, Total Recoverable</td>
<td>µg/L</td>
<td>34</td>
<td>13</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>100</td>
<td>--</td>
<td>50</td>
<td>No</td>
</tr>
<tr>
<td>Nitrate Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>4</td>
<td>0.25</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>Nitrite Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>0.044</td>
<td>0.0022</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>pH</td>
<td>Standard units</td>
<td>6.0 – 7.6</td>
<td>6.1 – 7.7</td>
<td>6.5 – 8.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>6.5 – 8.5</td>
<td>--</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

General Note: All inorganic concentrations are given as a total concentration.

Notes:

ATTACHMENT G – SUMMARY OF REASONABLE POTENTIAL ANALYSIS

G-1
1. **Electrical Conductivity.** Sample and criteria values are provided as maximum annual averages.

2. **Manganese.** Maximum effluent concentration (MEC) is based on the mixed downstream concentration described in section 4.5.5 of the USEPA Technical Support Document for Water Quality-Based Toxics Control (EPA/505/2-90-001) (TSD).

3. **Nitrate Plus Nitrite.** Reasonable potential exists due to the biological processes inherent to the treatment of domestic wastewater (see section IV.C.3.d.v of the Fact Sheet).

Abbreviations used in this table:

- **MEC** = Maximum Effluent Concentration
- **B** = Maximum Receiving Water Concentration or lowest detection level, if non-detect
- **C** = Criterion used for Reasonable Potential Analysis
- **CMC** = Criterion Maximum Concentration (CTR or NTR)
- **CCC** = Criterion Continuous Concentration (CTR or NTR)
- **Water & Org** = Human Health Criterion for Consumption of Water & Organisms (CTR or NTR)
- **Org Only** = Human Health Criterion for Consumption of Organisms Only (CTR or NTR)
- **Basin Plan** = Numeric Site-Specific Basin Plan Water Quality Objective
- **MCL** = Drinking Water Standards Maximum Contaminant Level
- **NA** = Not Available
- **ND** = Non-detect
ATTACHMENT H – CALCULATION OF WQBELS

HUMAN HEALTH WQBELS CALCULATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Criteria</th>
<th>Mean Background Concentration</th>
<th>Effluent CV</th>
<th>Dilution Factor</th>
<th>MDEL/AMEL Multiplier</th>
<th>AMEL Multiplier</th>
<th>AMEL</th>
<th>MDEL</th>
<th>AWEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromochloromethane</td>
<td>µg/L</td>
<td>0.41</td>
<td>0.052</td>
<td>0.60</td>
<td>10.6</td>
<td>2.01</td>
<td>1.55</td>
<td>4.2</td>
<td>8.3</td>
<td>--</td>
</tr>
<tr>
<td>Dichlorobromomethane</td>
<td>µg/L</td>
<td>0.56</td>
<td>0.058</td>
<td>0.65</td>
<td>10.6</td>
<td>2.08</td>
<td>1.60</td>
<td>5.9</td>
<td>12</td>
<td>--</td>
</tr>
<tr>
<td>Nitrate Plus Nitrite (as N)</td>
<td>mg/L</td>
<td>10</td>
<td>0.17</td>
<td>0.40</td>
<td>--</td>
<td>1.67</td>
<td>1.35</td>
<td>10</td>
<td>--</td>
<td>15</td>
</tr>
</tbody>
</table>

Notes:

1. **Effluent CV.** Coefficient of Variation (CV) was established in accordance with section 1.4 of the SIP.

2. **Nitrate Plus Nitrite.** Mean background concentration is based on the maximum background concentration.

Abbreviations used in this table:

- CV = Coefficient of Variation
- MDEL = Maximum Daily Effluent Limitation
- AMEL = Average Monthly Effluent Limitation
- MDEL = Maximum Daily Effluent Limitation
- AWEL = Average Weekly Effluent Limitation
AQUATIC LIFE WQBELS CALCULATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>CMC Criteria</th>
<th>CCC Criteria</th>
<th>Effluent CV</th>
<th>CCC Dilution Factor</th>
<th>ECA Multiplier<sub>acute</sub></th>
<th>LTA<sub>acute</sub></th>
<th>ECA Multiplier<sub>chronic</sub></th>
<th>LTA<sub>chronic</sub></th>
<th>AMEL Multiplier<sub>95</sub></th>
<th>AWEL Multiplier</th>
<th>MDEL Multiplier<sub>99</sub></th>
<th>AMEL</th>
<th>AWEL</th>
<th>MDEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>10.8</td>
<td>2.39</td>
<td>0.15</td>
<td>1.3</td>
<td>0.16</td>
<td>1.7</td>
<td>0.59</td>
<td>1.4</td>
<td>1.4</td>
<td>4.7</td>
<td>--</td>
<td>2.0</td>
<td>6.7</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:

1. **Coefficient of Variation.** Coefficient of Variation (CV) was established in accordance with section 1.4 of the SIP.

2. **AMEL.** Average Monthly Effluent Limitations are calculated according to section 1.4 of the SIP using a 95th percentile occurrence probability.

3. **AWEL.** Average Weekly Effluent Limitations are calculated according to section 1.4 of the SIP using a 98th percentile occurrence probability.

4. **MDEL.** Maximum Daily Effluent Limitations are calculated according to section 1.4 of the SIP using a 99th percentile occurrence probability.

Abbreviations used in this table:

- **B** = Maximum Receiving Water Concentration or lowest detection level, if non-detect
- **CMC** = Criterion Maximum Concentration (CTR or NTR)
- **CCC** = Criterion Continuous Concentration (CTR or NTR)
- **CV** = Coefficient of Variation (established in accordance with section 1.4 of the SIP)
- **ECA** = Effluent Concentration Allowance
- **LTA** = Aquatic Life Calculations – Long-Term Average
- **MDEL** = Maximum Daily Effluent Limitation
CITY OF NEVADA CITY
WASTEWATER TREATMENT PLANT

AMEL = Average Monthly Effluent Limitation
MDEL = Maximum Daily Effluent Limitation
AWEL = Average Weekly Effluent Limitation