The following Discharger is subject to waste discharge requirements as set forth in this Order:

Table 1. Discharger Information

<table>
<thead>
<tr>
<th>Discharger</th>
<th>Chester Public Utility District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Facility</td>
<td>Chester Wastewater Treatment Plant, Chester</td>
</tr>
<tr>
<td>Facility Address</td>
<td>881 First Avenue</td>
</tr>
<tr>
<td></td>
<td>Chester, California, 96020</td>
</tr>
<tr>
<td></td>
<td>Plumas</td>
</tr>
</tbody>
</table>

The U.S. Environmental Protection Agency (USEPA) and the Regional Water Quality Control Board have classified this discharge as a minor discharge.

The discharge by the Chester Public Utility District from the discharge points identified below is subject to waste discharge requirements as set forth in this Order:

Table 2. Discharge Location

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Effluent Description</th>
<th>Discharge Point Latitude</th>
<th>Discharge Point Longitude</th>
<th>Receiving Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Secondary treated wastewater</td>
<td>40°, 18', 1" N</td>
<td>121°, 13’ 35" W</td>
<td>Lake Almanor</td>
</tr>
</tbody>
</table>

Table 3. Administrative Information

<table>
<thead>
<tr>
<th>Administrative Information</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Order was adopted by the Regional Water Quality Control Board on:</td>
<td>13 August 2009</td>
</tr>
<tr>
<td>This Order shall become effective on:</td>
<td>13 August 2009</td>
</tr>
<tr>
<td>This Order shall expire on:</td>
<td>1 August 2014</td>
</tr>
<tr>
<td>The Discharger shall file a Report of Waste Discharge in accordance with title 23, California Code of Regulations, as application for issuance of new waste discharge requirements no later than:</td>
<td>180 days prior to the Order expiration date</td>
</tr>
</tbody>
</table>

I, **Pamela C. Creedon**, Executive Officer, do hereby certify that this Order with all attachments is a full, true, and correct copy of an Order adopted by the California Regional Water Quality Control Board, Central Valley Region, on **13 August 2009**.

[Signature]

Pamela C. Creedon, Executive Officer
Table of Contents

I. Facility Information .. 4
II. Findings .. 4
III. Discharge Prohibitions .. 9
IV. Effluent Limitations and Discharge Specifications .. 10
 A. Effluent Limitations – Discharge Point No. D-001 ... 10
 B. Land Discharge Specifications – Not Applicable ... 11
 C. Reclamation Specifications – Not Applicable ... 11
V. Receiving Water Limitations ... 11
 A. Surface Water Limitations ... 11
 B. Groundwater Limitations .. 13
VI. Provisions .. 15
 A. Standard Provisions .. 15
 B. Monitoring and Reporting Program Requirements .. 19
 C. Special Provisions .. 19
 1. Reopener Provisions ... 19
 2. Special Studies, Technical Reports and Additional Monitoring Requirements 20
 4. Construction, Operation and Maintenance Specifications .. 24
 5. Special Provisions for Municipal Facilities (POTWs Only) 25
 6. Other Special Provisions ... 28
 7. Compliance Schedules-Not Applicable ... 29
VII. Compliance Determination ... 30

List of Tables

Table 1. Discharger Information ... 1
Table 2. Discharge Location .. 1
Table 3. Administrative Information .. 1
Table 4. Facility Information .. 4
Table 5. Basin Plan Beneficial Uses ... 6
Table 6. Effluent Limitations ... 10
Table 7. Groundwater Limitations .. 14
List of Attachments

<table>
<thead>
<tr>
<th>Attachment</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Definitions</td>
<td>A-1</td>
</tr>
<tr>
<td>B</td>
<td>Map</td>
<td>A-1</td>
</tr>
<tr>
<td>C</td>
<td>Flow Schematic</td>
<td>B-1</td>
</tr>
<tr>
<td>D</td>
<td>Standard Provisions</td>
<td>D-1</td>
</tr>
<tr>
<td>E</td>
<td>Monitoring and Reporting Program</td>
<td>E-1</td>
</tr>
<tr>
<td>F</td>
<td>Fact Sheet</td>
<td>F-1</td>
</tr>
<tr>
<td>G</td>
<td>Summary of Reasonable Potential Analysis</td>
<td>G-1</td>
</tr>
<tr>
<td>H</td>
<td>Calculation of WQBELs</td>
<td>H-1</td>
</tr>
<tr>
<td>I</td>
<td>Effluent and Receiving Water Characterization Study</td>
<td>I-1</td>
</tr>
<tr>
<td>J</td>
<td>Dioxin and Furan Sampling</td>
<td>J-1</td>
</tr>
<tr>
<td>K</td>
<td>Requirements for Monitoring Well Installation Work Plans</td>
<td>K-1</td>
</tr>
<tr>
<td></td>
<td>Monitoring Well Installation Reports</td>
<td></td>
</tr>
</tbody>
</table>
I. FACILITY INFORMATION

The following Discharger is subject to waste discharge requirements as set forth in this Order:

Table 4. Facility Information

<table>
<thead>
<tr>
<th>Discharger</th>
<th>Chester Public Utility District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Facility</td>
<td>Chester Sewage Treatment Plant, Chester</td>
</tr>
<tr>
<td>Facility Address</td>
<td>881 First Avenue</td>
</tr>
<tr>
<td></td>
<td>Chester California, 96020</td>
</tr>
<tr>
<td></td>
<td>Plumas County</td>
</tr>
<tr>
<td>Facility Contact, Title, and Phone</td>
<td>Bill Turner, General Manager, 530-258-2171</td>
</tr>
<tr>
<td>Mailing Address</td>
<td>P.O. Box 503, Chester, CA 96020</td>
</tr>
<tr>
<td>Type of Facility</td>
<td>Publicly Owned Treatment Works</td>
</tr>
<tr>
<td>Facility Design Flow</td>
<td>0.75 million gallons per day (mgd) ADWF</td>
</tr>
</tbody>
</table>

II. FINDINGS

The California Regional Water Quality Control Board, Central Valley Region (hereinafter Regional Water Board), finds:

A. Background. The Chester Public Utility District (hereinafter Discharger) is currently discharging pursuant to Order No. R5-2004-0050 and National Pollutant Discharge Elimination System (NPDES) Permit No. CA0077747. The Discharger submitted a Report of Waste Discharge, dated 19 September 2008, and applied for a NPDES permit renewal to discharge up to 0.75 MGD (average dry weather flow) of treated wastewater from the Chester Wastewater Treatment Plant, hereinafter Facility. The application was deemed complete on 10 December 2008. The Discharger is also regulated by Cease and Desist Order No. R5-2004-0051, adopted on 23 April 2004, due to Infiltration/Inflow (I/I) problems in their collection system, violations of effluent percentage removal limitations for BOD and total suspended solids, and effluent coliform violations.

For the purposes of this Order, references to the “discharger” or “permittee” in applicable federal and state laws, regulations, plans, or policy are held to be equivalent to references to the Discharger herein.

B. Facility Description. The Discharger owns and operates a municipal wastewater collection, treatment, and disposal Facility. The treatment system consists of a bar screen for large solids removal, an influent parshall flume for influent wastewater flow measurement, six facultative wastewater treatment ponds, effluent chlorination with a serpentine chlorination chamber and effluent parshall flume, and dechlorination when effluent is discharged to Lake Almanor (currently allowed from 1 October to 31 May). During the recreation season discharge prohibition period, 1 June to 30 September, wastewater is not dechlorinated and is discharged to a series of three constructed wetlands near the wastewater ponds. Discharge from the wetlands ponds to the Lake is
prohibited. Wastewater is discharged from Discharge D-001 to Lake Almanor, if necessary and if not during the 1 June to 30 September prohibition period, a water of the United States within the Feather River Watershed. Wastewater discharge does not take place every year and wastewater is seldom discharged before December of any given year. Since the adoption of the current Order on 23 April 2004, the Discharger has discharged to the Lake during four months in 2005 and six months in 2006, but not in 2007, 2008, or 2009. Attachment B provides a map of the Facility and surrounding area. Attachment C provides a flow schematic of the Facility.

C. Legal Authorities. This Order is issued pursuant to section 402 of the Clean Water Act (CWA) and implementing regulations adopted by USEPA and chapter 5.5, division 7 of the California Water Code (CWC; commencing with section 13370). It shall serve as a NPDES permit for point source discharges from this facility to surface waters. This Order also serves as Waste Discharge Requirements (WDRs) pursuant to article 4, chapter 4, division 7 of the CWC (commencing with section 13260).

D. Background and Rationale for Requirements. The Regional Water Board developed the requirements in this Order based on information submitted as part of the application, through monitoring and reporting programs, through staff monitoring, and other available information. The Fact Sheet (Attachment F), which contains background information and rationale for Order requirements, is hereby incorporated into this Order and constitutes part of the Findings for this Order. Attachments A through K are also incorporated into this Order.

E. California Environmental Quality Act (CEQA). Under CWC section 13389, this action to adopt an NPDES permit is exempt from the provisions of CEQA, Public Resources Code sections 21100-21177.

F. Technology-based Effluent Limitations. Section 301(b) of the CWA and implementing USEPA permit regulations at section 122.44, title 40 of the Code of Federal Regulations (40 CFR 122.44), require that permits include conditions meeting applicable technology-based requirements at a minimum, and any more stringent effluent limitations necessary to meet applicable water quality standards. The discharge authorized by this Order must meet minimum federal technology-based requirements based on Secondary Treatment Standards at 40 CFR Part 133. A detailed discussion of the technology-based effluent limitations development is included in the Fact Sheet.

G. Water Quality-Based Effluent Limitations (WQBELs). Section 301(b) of the CWA and 40 CFR 122.44(d) require that permits include limitations more stringent than applicable federal technology-based requirements where necessary to achieve applicable water quality standards.

40 CFR 122.44(d)(1)(i) mandates that permits include effluent limitations for all pollutants that are or may be discharged at levels that have the reasonable potential to cause or contribute to an exceedance of a water quality standard, including numeric and narrative objectives within a standard. Where reasonable potential has been established for a pollutant, but there is no numeric criterion or objective for the pollutant,
WQBELs must be established using: (1) USEPA criteria guidance under CWA section 304(a), supplemented where necessary by other relevant information; (2) an indicator parameter for the pollutant of concern; or (3) a calculated numeric water quality criterion, such as a proposed state criterion or policy interpreting the state’s narrative criterion, supplemented with other relevant information, as provided in 40 CFR 122.44(d)(1)(vi).

H. Water Quality Control Plans. The Regional Water Board adopted a Water Quality Control Plan, Fourth Edition (Revised October 2007), for the Sacramento and San Joaquin River Basins (hereinafter Basin Plan) that designates beneficial uses, establishes water quality objectives, and contains implementation programs and policies to achieve those objectives for all waters addressed through the plan. In addition, the Basin Plan implements State Water Resources Control Board (State Water Board) Resolution No. 88-63, which established state policy that all waters, with certain exceptions, should be considered suitable or potentially suitable for municipal or domestic supply. Beneficial uses applicable to Lake Almanor are as follows:

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Receiving Water Name</th>
<th>Beneficial Use(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Lake Almanor</td>
<td>Existing: Hydropower generation (POW); water contact recreation; warm freshwater habitat (WARM); cold freshwater habitat (COLD); spawning, reproduction, and/or early development, warm (SPWN); and wildlife habitat (WILD); Potential Municipal and Domestic supply (MUN)</td>
</tr>
</tbody>
</table>

Requirements of this Order implement the Basin Plan.

I. National Toxics Rule (NTR) and California Toxics Rule (CTR). USEPA adopted the NTR on 22 December 1992, and later amended it on 4 May 1995 and 9 November 1999. About 40 criteria in the NTR applied in California. On 18 May 2000, USEPA adopted the CTR. The CTR promulgated new toxics criteria for California and, in addition, incorporated the previously adopted NTR criteria that were applicable in the state. The CTR was amended on 13 February 2001. These rules contain water quality criteria for priority pollutants.

J. State Implementation Policy. On 2 March 2000, the State Water Board adopted the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (State Implementation Policy or SIP). The SIP became effective on April 28 2000 with respect to the priority pollutant criteria promulgated for California by USEPA through the NTR and to the priority pollutant objectives established by the Regional Water Board in the Basin Plan. The SIP became effective on 18 May 2000 with respect to the priority pollutant criteria promulgated by USEPA through the CTR. The State Water Board adopted amendments to the SIP on 24 February 2005 that became effective on 13 July 2005. The SIP establishes implementation provisions for priority pollutant criteria and objectives and provisions for chronic toxicity control. Requirements of this Order implement the SIP.
K. Compliance Schedules and Interim Requirements. In general, an NPDES permit must include final effluent limitations that are consistent with CWA section 301 and with 40 CFR 122.44(d). There are exceptions to this general rule. The State Water Board has concluded that where the Regional Water Board’s Basin Plan allows for schedules of compliance and the Regional Water Board is newly interpreting a narrative standard, it may include schedules of compliance in the permit to meet effluent limits that implement a narrative standard. See In the Matter of Waste Discharge Requirements for Avon Refinery (State Water Board Order WQ 2001-06 at pp. 53-55). See also Communities for a Better Environment et al. v. State Water Resources Control Board, 34 Cal.Rptr.3d 396, 410 (2005). The Basin Plan for the Sacramento and San Joaquin Rivers includes a provision that authorizes the use of compliance schedules in NPDES permits for water quality objectives that are adopted after the date of adoption of the Basin Plan, which was 25 September 1995 (see Basin Plan at page IV-16). Consistent with the State Water Board’s Order in the CBE matter, the Regional Water Board has the discretion to include compliance schedules in NPDES permits when it is including an effluent limitation that is a “new interpretation” of a narrative water quality objective. This conclusion is also consistent with USEPA policies and administrative decisions. See, e.g., Whole Effluent Toxicity (WET) Control Policy. The Regional Water Board, however, is not required to include a schedule of compliance, but may issue a Time Schedule Order pursuant to CWC section 13300 or a Cease and Desist Order pursuant to CWC section 13301 where it finds that the discharger is violating or threatening to violate the permit. The Regional Water Board will consider the merits of each case in determining whether it is appropriate to include a compliance schedule in a permit, and, consistent with the Basin Plan, should consider feasibility of achieving compliance, and must impose a schedule that is as short as practicable to achieve compliance with the objectives, criteria, or effluent limit based on the objective or criteria.

Section 2.1 of the SIP provides that, based on a Discharger’s request and demonstration that it is infeasible for an existing Discharger to achieve immediate compliance with an effluent limitation derived from a CTR criterion, compliance schedules may be allowed in an NPDES permit. Unless an exception has been granted under section 5.3 of the SIP, a compliance schedule may not exceed 5 years from the date that the permit is issued or reissued, nor may it extend beyond 10 years from the effective date of the SIP (or 18 May 2010) to establish and comply with CTR criterion-based effluent limitations. Where a compliance schedule for a final effluent limitation exceeds 1 year, the Order must include interim numeric limitations for that constituent or parameter. Where allowed by the Basin Plan, compliance schedules and interim effluent limitations or discharge specifications may also be granted to allow time to implement a new or revised water quality objective. This Order does not include compliance schedules, interim effluent limitations, and discharge specifications or reclamation specifications.

L. Alaska Rule. On 30 March 2000, USEPA revised its regulation that specifies when new and revised state and tribal water quality standards become effective for CWA purposes. (40 CFR 131.21 and 65 FR 24641 (27 April 2000).) Under the revised regulation (also known as the Alaska rule), new and revised standards submitted to USEPA after 30 May 2000, must be approved by USEPA before being used for CWA
purposes. The final rule also provides that standards already in effect and submitted to USEPA by 30 May 2000 may be used for CWA purposes, whether or not approved by USEPA.

M. Stringency of Requirements for Individual Pollutants. This Order contains both technology-based effluent limitations and WQBELs for individual pollutants. The technology-based effluent limitations consist of restrictions on biochemical oxygen demand (BOD), total suspended solids (TSS), and pH. The WQBELs consist of restrictions on copper and ammonia. This Order’s technology-based pollutant restrictions implement the minimum applicable federal technology-based requirements

WQBELs have been scientifically derived to implement water quality objectives that protect beneficial uses. Both the beneficial uses and the water quality objectives have been approved pursuant to federal law and are the applicable federal water quality standards. To the extent that toxic pollutant WQBELs were derived from the CTR, the CTR is the applicable standard pursuant to 40 CFR 131.38. The scientific procedures for calculating the individual WQBELs for priority pollutants are based on the CTR-SIP, which was approved by USEPA on 18 May 2000. All beneficial uses and water quality objectives contained in the Basin Plan were approved under state law and submitted to and approved by USEPA prior to 30 May 2000. Any water quality objectives and beneficial uses submitted to USEPA prior to 30 May 2000, but not approved by USEPA before that date, are nonetheless “applicable water quality standards for purposes of the [Clean Water] Act” pursuant to 40 CFR 131.21(c)(1). Collectively, this Order’s restrictions on individual pollutants are no more stringent than required to implement the technology-based requirements of the CWA and the applicable water quality standards for purposes of the CWA.

N. Antidegradation Policy. 40 CFR 131.12 requires that the state water quality standards include an antidegradation policy consistent with the federal policy. The State Water Board established California’s antidegradation policy in State Water Board Resolution No. 68-16. Resolution No. 68-16 incorporates the federal antidegradation policy where the federal policy applies under federal law. Resolution No. 68-16 requires that existing quality of waters be maintained unless degradation is justified based on specific findings. The Regional Water Board’s Basin Plan implements, and incorporates by reference, both the state and federal antidegradation policies. As discussed in detail in the Fact Sheet, the permitted discharge is consistent with the antidegradation provision of 40 CFR 131.12 and Resolution No. 68-16.

O. Anti-Backsliding Requirements. Sections 402(o)(2) and 303(d)(4) of the CWA and federal regulations at 40 CFR 122.44(l) prohibit backsliding in NPDES permits. These anti-backsliding provisions require effluent limitations in a reissued permit to be as stringent as those in the previous permit, with some exceptions.

P. Endangered Species Act. This Order does not authorize any act that results in the taking of a threatened or endangered species or any act that is now prohibited, or becomes prohibited in the future, under either the California Endangered Species Act (Fish and Game Code sections 2050 to 2097) or the Federal Endangered Species Act (16 U.S.C.A. sections 1531 to 1544). This Order requires compliance with effluent
limits, receiving water limits, and other requirements to protect the beneficial uses of waters of the state. The discharger is responsible for meeting all requirements of the applicable Endangered Species Act.

Q. Monitoring and Reporting. 40 CFR 122.48 requires that all NPDES permits specify requirements for recording and reporting monitoring results. CWC sections 13267 and 13383 authorize the Regional Water Board to require technical and monitoring reports. The Monitoring and Reporting Program establishes monitoring and reporting requirements to implement federal and State requirements. The Monitoring and Reporting Program is provided in Attachment E.

R. Standard and Special Provisions. Standard Provisions, which apply to all NPDES permits in accordance with 40 CFR 122.41, and additional conditions applicable to specified categories of permits in accordance with 40 CFR 122.42, are provided in Attachment D. The discharger must comply with all standard provisions and with those additional conditions that are applicable under 40 CFR 122.42. The Regional Water Board has also included in this Order special provisions applicable to the Discharger. A rationale for the special provisions contained in this Order is provided in the Fact Sheet.

S. Provisions and Requirements Implementing State Law. The provisions/requirements in sections IV.B, IV.C, V.B, VI.C.2.c and VI.C.2.d of this Order are included to implement state law only. These provisions/requirements are not required or authorized under the federal CWA; consequently, violations of these provisions/requirements are not subject to the enforcement remedies that are available for NPDES violations.

T. Notification of Interested Parties. The Regional Water Board has notified the Discharger and interested agencies and persons of its intent to prescribe WDRs for the discharge and has provided them with an opportunity to submit their written comments and recommendations. Details of notification are provided in the Fact Sheet of this Order.

U. Consideration of Public Comment. The Regional Water Board, in a public meeting, heard and considered all comments pertaining to the discharge. Details of the Public Hearing are provided in the Fact Sheet.

THEREFORE, IT IS HEREBY ORDERED, that Order No. R5-2004-0050 is rescinded upon the effective date of this Order except for enforcement purposes, and, in order to meet the provisions contained in division 7 of the CWC (commencing with section 13000) and regulations adopted thereunder, and the provisions of the federal CWA and regulations and guidelines adopted thereunder, the Discharger shall comply with the requirements in this Order.

III. DISCHARGE PROHIBITIONS

A. Discharge of wastewater at a location or in a manner different from that described in the Findings is prohibited.

C. Neither the discharge nor its treatment shall create a nuisance as defined in section 13050 of the CWC.

D. The Discharger shall not allow pollutant-free wastewater to be discharged into the collection, treatment, and disposal system in amounts that significantly diminish the system's capability to comply with this Order. Pollutant-free wastewater means rainfall, groundwater, cooling waters, and condensates that are essentially free of pollutants.

E. Discharge from the Wetlands Ponds to Lake Almanor is prohibited.

F. Discharge to Lake Almanor from 1 June to 30 September is prohibited.

IV. EFFLUENT LIMITATIONS AND DISCHARGE SPECIFICATIONS

A. Effluent Limitations – Discharge Point No. D-001

1. Final Effluent Limitations – Discharge Point No. D-001

 a. The Discharger shall maintain compliance with the following effluent limitations at Discharge Point No. D-001, with compliance measured at Monitoring Location EFF-001 as described in the Monitoring and Reporting Program:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Monthly</td>
<td>Average Weekly</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand 5-day @ 20°C</td>
<td>mg/L</td>
<td>30</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>30</td>
</tr>
<tr>
<td>pH</td>
<td>Standard units</td>
<td></td>
</tr>
<tr>
<td>Ammonia Nitrogen (as N)</td>
<td>mg/L</td>
<td>5.4</td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>ug/L</td>
<td>22</td>
</tr>
</tbody>
</table>
b. **Percent Removal.** The average monthly percent removal of 5-day biochemical oxygen demand (BOD₅) and total suspended solids (TSS) shall not be less than 85 percent.

c. **Acute Whole Effluent Toxicity.** Survival of aquatic organisms in 96-hour bioassays of undiluted waste shall be no less than:

 i. 70%, minimum for any one bioassay; and
 ii. 90%, median for any three consecutive bioassays.

d. **Total Residual Chlorine.** Effluent total residual chlorine shall not exceed:

 i. 0.011 mg/L, as a 4-day average; and
 ii. 0.019 mg/L, as a 1-hour average.

e. **Total Coliform Organisms.** Effluent total coliform organisms shall not exceed:

 i. 23 most probable number (MPN) per 100 mL, as a 7-day median; and
 ii. 240 MPN/100 mL, more than once in any 30-day period.

f. **Average Dry Weather Flow.** The average dry weather effluent flow shall not exceed 0.5 mgd.

2. **Interim Effluent Limitations-Not Applicable**

B. **Land Discharge Specifications – Not Applicable**

C. **Reclamation Specifications – Not Applicable**

V. **RECEIVING WATER LIMITATIONS**

A. **Surface Water Limitations**

Receiving water limitations are based on water quality objectives contained in the Basin Plan and are a required part of this Order. The discharge shall not cause the following in Lake Almanor:

1. **Bacteria.** The fecal coliform concentration, based on a minimum of not less than five samples for any 30-day period, to exceed a geometric mean of 200 MPN/100 mL, nor more than 10 percent of the total number of fecal coliform samples taken during any 30-day period to exceed 400 MPN/100 mL.

2. **Biostimulatory Substances.** Water to contain biostimulatory substances which promote aquatic growths in concentrations that cause nuisance or adversely affect beneficial uses.

3. **Chemical Constituents.** Chemical constituents to be present in concentrations that adversely affect beneficial uses.
4. **Color.** Discoloration that causes nuisance or adversely affects beneficial uses.

5. **Dissolved Oxygen:**
 a. The monthly median of the mean daily dissolved oxygen concentration to fall below 85 percent of saturation in the main water mass;
 b. The 95 percentile dissolved oxygen concentration to fall below 75 percent of saturation; nor
 c. The dissolved oxygen concentration to be reduced below 7.0 mg/L at any time.

6. **Floating Material.** Floating material to be present in amounts that cause nuisance or adversely affect beneficial uses.

7. **Oil and Grease.** Oils, greases, waxes, or other materials to be present in concentrations that cause nuisance, result in a visible film or coating on the surface of the water or on objects in the water, or otherwise adversely affect beneficial uses.

8. **pH.** The pH to be depressed below 6.5, raised above 8.5, nor changed by more than 0.5 units. A 1-month averaging period may be applied when calculating the pH change of 0.5 units.

9. **Pesticides:**
 a. Pesticides to be present, individually or in combination, in concentrations that adversely affect beneficial uses;
 b. Pesticides to be present in bottom sediments or aquatic life in concentrations that adversely affect beneficial uses;
 c. Total identifiable persistent chlorinated hydrocarbon pesticides to be present in the water column at concentrations detectable within the accuracy of analytical methods approved by USEPA or the Executive Officer;
 d. Pesticide concentrations to exceed those allowable by applicable antidegradation policies (see State Water Board Resolution No. 68-16 and 40 CFR 131.12.);
 e. Pesticide concentrations to exceed the lowest levels technically and economically achievable;
 f. Pesticides to be present in concentration in excess of the maximum contaminant levels set forth in CCR, Title 22, division 4, chapter 15.
 g. Thiobencarb to be present in excess of 1.0 μg/L

10. **Radioactivity:**
a. Radionuclides to be present in concentrations that are harmful to human, plant, animal, or aquatic life nor that result in the accumulation of radionuclides in the food web to an extent that presents a hazard to human, plant, animal, or aquatic life.

b. Radionuclides to be present in excess of the maximum contaminant levels specified in Table 4 (MCL Radioactivity) of Section 64443 of Title 22 of the California Code of Regulations.

11. Suspended Sediments. The suspended sediment load and suspended sediment discharge rate of surface waters to be altered in such a manner as to cause nuisance or adversely affect beneficial uses.

12. Settleable Substances. Substances to be present in concentrations that result in the deposition of material that causes nuisance or adversely affects beneficial uses.

13. Suspended Material. Suspended material to be present in concentrations that cause nuisance or adversely affect beneficial uses.

14. Taste and Odors. Taste- or odor-producing substances to be present in concentrations that impart undesirable tastes or odors to fish flesh or other edible products of aquatic origin, or that cause nuisance, or otherwise adversely affect beneficial uses.

15. Temperature. The natural temperature to be increased by more than 5°F.

16. Toxicity. Toxic substances to be present, individually or in combination, in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life.

17. Turbidity. The turbidity to increase as follows:

a. More than 1 Nephelometric Turbidity Unit (NTU) where natural turbidity is between 0 and 5 NTUs;

b. More than 20 percent where natural turbidity is between 5 and 50 NTUs;

c. More than 10 NTU where natural turbidity is between 50 and 100 NTUs; nor

d. More than 10 percent where natural turbidity is greater than 100 NTUs.

B. Groundwater Limitations

1. Release of waste constituents from any portion of the Facility shall not cause groundwater to:

a. Contain any of the following constituents in concentrations greater than listed or greater than natural background quality, whichever is greater.
Table 7. Groundwater Limitations

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Organisms</td>
<td>MPN/100 mL</td>
<td><2.2</td>
</tr>
<tr>
<td>Electrical Conductivity @ 25°C¹</td>
<td>µmhos/cm</td>
<td>700</td>
</tr>
<tr>
<td>Total Dissolved Solids¹</td>
<td>mg/L</td>
<td>450</td>
</tr>
<tr>
<td>Nitrite Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>1</td>
</tr>
<tr>
<td>Nitrate Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>10</td>
</tr>
<tr>
<td>Ammonia (as NH₃)</td>
<td>mg/L</td>
<td>1.5</td>
</tr>
</tbody>
</table>

¹ A cumulative impact limit that accounts for several dissolved constituents in addition to those listed here separately [e.g., alkalinity (carbonate and bicarbonate), calcium, hardness, phosphate, and potassium].

b. Exhibit a pH of less than 6.5 or greater than 8.4 pH units.

c. Impart taste, odor, chemical constituents, toxicity, or color that creates nuisance or impairs any beneficial use.
VI. PROVISIONS

A. Standard Provisions

1. The Discharger shall comply with all Standard Provisions included in Attachment D of this Order.

2. The Discharger shall comply with the following provisions:

a. If the Discharger's wastewater treatment plant is publicly owned or subject to regulation by California Public Utilities Commission, it shall be supervised and operated by persons possessing certificates of appropriate grade according to Title 23, CCR, division 3, chapter 26.

b. After notice and opportunity for a hearing, this Order may be terminated or modified for cause, including, but not limited to:

i. violation of any term or condition contained in this Order;

ii. obtaining this Order by misrepresentation or by failing to disclose fully all relevant facts;

iii. a change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge; and

iv. a material change in the character, location, or volume of discharge.

(1) The causes for modification include:

- New regulations. New regulations have been promulgated under section 405(d) of the CWA, or the standards or regulations on which the permit was based have been changed by promulgation of amended standards or regulations or by judicial decision after the permit was issued.

- Land application plans. When required by a permit condition to incorporate a land application plan for beneficial reuse of sewage sludge, to revise an existing land application plan, or to add a land application plan.

- Change in sludge use or disposal practice. Under 40 CFR 122.62(a)(1), a change in the Discharger's sludge use or disposal practice is a cause for modification of the permit. It is cause for revocation and reissuance if the Discharger requests or agrees.

(2) The Regional Water Board may review and revise this Order at any time upon application of any affected person or the Regional Water Board's own motion.

c. If a toxic effluent standard or prohibition (including any scheduled compliance specified in such effluent standard or prohibition) is established under section...
307(a) of the CWA, or amendments thereto, for a toxic pollutant that is present in
the discharge authorized herein, and such standard or prohibition is more
stringent than any limitation upon such pollutant in this Order, the Regional Water
Board will revise or modify this Order in accordance with such toxic effluent
standard or prohibition.

The Discharger shall comply with effluent standards and prohibitions within the
time provided in the regulations that establish those standards or prohibitions,
even if this Order has not yet been modified.

d. This Order shall be modified, or alternately revoked and reissued, to comply with
any applicable effluent standard or limitation issued or approved under sections
301(b)(2)(C) and (D), 304(b)(2), and 307(a)(2) of the CWA, if the effluent
standard or limitation so issued or approved:

i. contains different conditions or is otherwise more stringent than any effluent
 limitation in the Order; or

ii. controls any pollutant limited in the Order.

 (1) The Order, as modified or reissued under this paragraph, shall also
 contain any other requirements of the CWA then applicable.

e. The provisions of this Order are severable. If any provision of this Order is found
 invalid, the remainder of this Order shall not be affected.

f. The Discharger shall take all reasonable steps to minimize any adverse effects to
 waters of the State or users of those waters resulting from any discharge or
 sludge use or disposal in violation of this Order. Reasonable steps shall include
 such accelerated or additional monitoring as necessary to determine the nature
 and impact of the non-complying discharge or sludge use or disposal.

g. The Discharger shall ensure compliance with any existing or future pretreatment
 standard promulgated by USEPA under section 307 of the CWA, or amendment
 thereto, for any discharge to the municipal system.

h. A copy of this Order shall be maintained at the discharge facility and be available
 at all times to operating personnel. Key operating personnel shall be familiar with
 its content.

i. Safeguard to electric power failure:

 i. The Discharger shall provide safeguards to assure that, should there be
 reduction, loss, or failure of electric power, the discharge shall comply with
 the terms and conditions of this Order.

 ii. Upon written request by the Regional Water Board the Discharger shall
 submit a written description of safeguards. Such safeguards may include
 alternate power sources, standby generators, retention capacity, operating
procedures, or other means. A description of the safeguards provided shall include an analysis of the frequency, duration, and impact of power failures experienced over the past 5 years on effluent quality and on the capability of the Discharger to comply with the terms and conditions of the Order. The adequacy of the safeguards is subject to the approval of the Regional Water Board.

iii. Should the treatment works not include safeguards against reduction, loss, or failure of electric power, or should the Regional Water Board not approve the existing safeguards, the Discharger shall, within 90 days of having been advised in writing by the Regional Water Board that the existing safeguards are inadequate, provide to the Regional Water Board and USEPA a schedule of compliance for providing safeguards such that in the event of reduction, loss, or failure of electric power, the Discharger shall comply with the terms and conditions of this Order. The schedule of compliance shall, upon approval of the Regional Water Board, become a condition of this Order.

j. The Discharger, upon written request of the Regional Water Board, shall file with the Board a technical report on its preventive (failsafe) and contingency (cleanup) plans for controlling accidental discharges, and for minimizing the effect of such events. This report may be combined with that required under Regional Water Board Standard Provision contained in section VI.A.2.i. of this Order.

(1) The technical report shall:

i. Identify the possible sources of spills, leaks, untreated waste by-pass, and contaminated drainage. Loading and storage areas, power outage, waste treatment unit outage, and failure of process equipment, tanks and pipes should be considered.

ii. Evaluate the effectiveness of present facilities and procedures and state when they became operational.

iii. Predict the effectiveness of the proposed facilities and procedures and provide an implementation schedule containing interim and final dates when they will be constructed, implemented, or operational.

(2) The Regional Water Board, after review of the technical report, may establish conditions which it deems necessary to control accidental discharges and to minimize the effects of such events. Such conditions shall be incorporated as part of this Order, upon notice to the Discharger.

k. A publicly owned treatment works whose waste flow has been increasing, or is projected to increase, shall estimate when flows will reach hydraulic and treatment capacities of its treatment and disposal facilities. The projections shall be made in January, based on the last 3 years' average dry weather flows, peak wet weather flows and total annual flows, as appropriate. When any projection
shows that capacity of any part of the facilities may be exceeded in 4 years, the Discharger shall notify the Regional Water Board by 31 January. A copy of the notification shall be sent to appropriate local elected officials, local permitting agencies and the press. Within 120 days of the notification, the Discharger shall submit a technical report showing how it will prevent flow volumes from exceeding capacity or how it will increase capacity to handle the larger flows. The Regional Water Board may extend the time for submitting the report.

I. The Discharger shall submit technical reports as directed by the Executive Officer. All technical reports required herein that involve planning, investigation, evaluation, or design, or other work requiring interpretation and proper application of engineering or geologic sciences, shall be prepared by or under the direction of persons registered to practice in California pursuant to California Business and Professions Code, sections 6735, 7835, and 7835.1. To demonstrate compliance with Title 16, CCR, sections 415 and 3065, all technical reports must contain a statement of the qualifications of the responsible registered professional(s). As required by these laws, completed technical reports must bear the signature(s) and seal(s) of the registered professional(s) in a manner such that all work can be clearly attributed to the professional responsible for the work.

m. The Regional Water Board is authorized to enforce the terms of this permit under several provisions of the CWC, including, but not limited to, sections 13385, 13386, and 13387.

n. For publicly owned treatment works, prior to making any change in the point of discharge, place of use, or purpose of use of treated wastewater that results in a decrease of flow in any portion of a watercourse, the Discharger must file a petition with the State Water Board, Division of Water Rights, and receive approval for such a change. (CWC section 1211).

o. In the event the Discharger does not comply or will be unable to comply for any reason, with any prohibition, maximum daily effluent limitation, 1-hour average effluent limitation, or receiving water limitation contained in this Order, the Discharger shall notify the Regional Water Board by telephone (916) 464-3291 within 24 hours of having knowledge of such noncompliance, and shall confirm this notification in writing within 5 days, unless the Regional Water Board waives confirmation. The written notification shall include the information required by the Standard Provision contained in Attachment D section V.E.1. [40 CFR 122.41(l)(6)(i)].

p. Failure to comply with provisions or requirements of this Order, or violation of other applicable laws or regulations governing discharges from this facility, may subject the Discharger to administrative or civil liabilities, criminal penalties, and/or other enforcement remedies to ensure compliance. Additionally, certain violations may subject the Discharger to civil or criminal enforcement from appropriate local, state, or federal law enforcement entities.
q. In the event of any change in control or ownership of land or waste discharge facilities presently owned or controlled by the Discharger, the Discharger shall notify the succeeding owner or operator of the existence of this Order by letter, a copy of which shall be immediately forwarded to the Regional Water Board.

To assume operation under this Order, the succeeding owner or operator must apply in writing to the Executive Officer requesting transfer of the Order. The request must contain the requesting entity's full legal name, the state of incorporation if a corporation, address and telephone number of the persons responsible for contact with the Regional Water Board and a statement. The statement shall comply with the signatory and certification requirements in the federal Standard Provisions (Attachment D, section V.B) and state that the new owner or operator assumes full responsibility for compliance with this Order. Failure to submit the request shall be considered a discharge without requirements, a violation of the CWC. Transfer shall be approved or disapproved in writing by the Executive Officer.

B. Monitoring and Reporting Program Requirements

The Discharger shall comply with the Monitoring and Reporting Program, and future revisions thereto, in Attachment E of this Order.

C. Special Provisions

1. Reopener Provisions

a. Conditions that necessitate a major modification of a permit are described in 40 CFR 122.62, including:

i. If new or amended applicable water quality standards are promulgated or approved pursuant to section 303 of the CWA, or amendments thereto, this permit may be reopened and modified in accordance with the new or amended standards.

ii. When new information, that was not available at the time of permit issuance, would have justified different permit conditions at the time of issuance.

b. This Order may be reopened for modification, or revocation and reissuance, as a result of the detection of a reportable priority pollutant generated by special conditions included in this Order. These special conditions may be, but are not limited to, fish tissue sampling, whole effluent toxicity, monitoring requirements on internal waste stream(s), and monitoring for surrogate parameters. Additional requirements may be included in this Order as a result of the special condition monitoring data.

c. Whole Effluent Toxicity. As a result of a Toxicity Reduction Evaluation (TRE), this Order may be reopened to include a chronic toxicity limitation, a new acute toxicity limitation, and/or a limitation for a specific toxicant identified in the TRE.
Additionally, if the State Water Board revises the SIP’s toxicity control provisions that would require the establishment of numeric chronic toxicity effluent limitations, this Order may be reopened to include a numeric chronic toxicity effluent limitation based on the new provisions.

d. **Water Effects Ratios (WER) and Metal Translators.** A default WER of 1.0 has been used in this Order for calculating CTR criteria for applicable priority pollutant inorganic constituents. In addition, default dissolved-to-total metal translators have been used to convert water quality objectives from dissolved to total recoverable when developing effluent limitations for copper. If the Discharger performs studies to determine site-specific WERs and/or site-specific dissolved-to-total metal translators, this Order may be reopened to modify the effluent limitations for the applicable inorganic constituents.

e. **Carbon Tetrachloride.** Carbon Tetrachloride was detected at a concentration of 0.6 µg/L in the one round of sampling that was performed for priority pollutants. There is inadequate data to determine if Carbon Tetrachloride has a reasonable potential. Therefore, this order requires monitoring of Carbon Tetrachloride. This Order may be reopened if Carbon Tetrachloride is found to cause a reasonable potential.

f. **Chloroform.** Chloroform was detected in the one round of CTR sampling at a concentration of 0.8 µg/L. Although this result is below the OEHHA cancer potency factor, it is prudent to monitor effluent chloroform, bromoform, bromodichloromethane, and chlorodibromomethane and reopen the permit if detection of any of these constituents, singly or in combination, indicates a reasonable potential for exceedance of a water quality objective for total trihalomethanes.

2. **Special Studies, Technical Reports and Additional Monitoring Requirements**

a. **Chronic Whole Effluent Toxicity.** For compliance with the Basin Plan’s narrative toxicity objective, this Order requires the Discharger to conduct chronic whole effluent toxicity (WET) testing, as specified in the Monitoring and Reporting Program (Attachment E, section V). Furthermore, this Provision requires the Discharger to investigate the causes of, and identify corrective actions to reduce or eliminate effluent toxicity. If the discharge exhibits a pattern of toxicity exceeding the numeric toxicity monitoring trigger during accelerated monitoring established in this Provision, the Discharger is required to initiate a TRE in accordance with an approved TRE Workplan, and take actions to mitigate the impact of the discharge and prevent recurrence of toxicity. A TRE is a site-specific study conducted in a stepwise process to identify the source(s) of toxicity and the effective control measures for effluent toxicity. TREs are designed to identify the causative agents and sources of effluent toxicity, evaluate the effectiveness of the toxicity control options, and confirm the reduction in effluent toxicity. This Provision includes requirements for the Discharger to develop and submit a TRE Workplan and includes procedures for accelerated chronic toxicity monitoring and TRE initiation.
i. **Initial Investigative TRE Workplan.** Within 90 days of the effective date of this Order, the Discharger shall submit to the Regional Water Board an Initial Investigative TRE Workplan for approval by the Executive Officer. This should be a one to two page document including, at a minimum:

(a) A description of the investigation and evaluation techniques that will be used to identify potential causes and sources of effluent toxicity, effluent variability, and treatment system efficiency;

(b) A description of the facility's methods of maximizing in-house treatment efficiency and good housekeeping practices, and a list of all chemicals used in operation of the facility; and

(c) A discussion of who will conduct the Toxicity Identification Evaluation (TIE), if necessary (e.g., an in-house expert or outside contractor).

ii. **Accelerated Monitoring and TRE Initiation.** When the numeric toxicity-monitoring trigger is exceeded during regular chronic toxicity monitoring, and the testing meets all test acceptability criteria, the Discharger shall initiate accelerated monitoring as required in the Accelerated Monitoring Specifications. The Discharger shall initiate a TRE to address effluent toxicity if any WET testing results exceed the numeric toxicity-monitoring trigger during accelerated monitoring.

iii. **Numeric Toxicity Monitoring Trigger.** The numeric toxicity monitoring trigger to initiate a TRE is > 7 TU_c (where TU_c = 100/NOEC) based upon the effluent dilution study that was performed by the discharger. The monitoring trigger is not an effluent limitation; it is the toxicity threshold at which the Discharger is required to begin accelerated monitoring and initiate a TRE when the effluent exhibits a pattern of toxicity.

iv. **Accelerated Monitoring Specifications.** If the numeric toxicity monitoring trigger is exceeded during regular chronic toxicity testing, the Discharger shall initiate accelerated monitoring within 14 days of notification by the laboratory of the exceedance. Accelerated monitoring shall consist of four (4) chronic toxicity tests conducted once every 2 weeks using the species that exhibited toxicity. The following protocol shall be used for accelerated monitoring and TRE initiation:

If the results of four (4) consecutive accelerated monitoring tests do not exceed the monitoring trigger, the Discharger may cease accelerated monitoring and resume regular chronic toxicity monitoring. However, notwithstanding the accelerated monitoring results, if there is adequate evidence of a pattern of effluent toxicity, the Executive Officer may require that the Discharger initiate a TRE.

If the source(s) of the toxicity is easily identified (e.g., temporary plant upset), the Discharger shall make necessary corrections to the facility and
shall continue accelerated monitoring until four (4) consecutive accelerated tests do not exceed the monitoring trigger. Upon confirmation that the effluent toxicity has been removed, the Discharger may cease accelerated monitoring and resume regular chronic toxicity monitoring.

If the result of any accelerated toxicity test exceeds the monitoring trigger, the Discharger shall cease accelerated monitoring and begin a TRE to investigate the cause(s) of, and identify corrective actions to reduce or eliminate effluent toxicity. Within thirty (30) days of notification by the laboratory of any test result exceeding the monitoring trigger during accelerated monitoring, the Discharger shall submit a TRE Action Plan to the Regional Water Board including, at minimum:

Specific actions the Discharger will take to investigate and identify the cause(s) of toxicity, including a TRE WET monitoring schedule;

Specific actions the Discharger will take to mitigate the impact of the discharge and prevent the recurrence of toxicity; and

A schedule for these actions.

b. **Groundwater Monitoring Work Plan.** To determine compliance with Groundwater Limitations V.B. this provision requires the Discharger to evaluate its groundwater monitoring network to ensure there are one or more background monitoring wells and a sufficient number of designated monitoring wells downgradient of every treatment, storage, and disposal unit that does or may release waste constituents to groundwater. **Within 6 months following adoption of this Order,** the Discharger shall submit a Groundwater Monitoring Work Plan prepared in accordance with, and including the items listed in, the first section of Attachment K: “Requirements for Monitoring Well Installation Work Plans and Monitoring Well Installation Reports.” All monitoring wells shall comply with the appropriate standards as described in California Well Standards Bulletin 74-90 (June 1991) and Water Well Standards: State of California Bulletin 74-81 (December 1981), and any more stringent standards adopted by the Discharger or County pursuant to CWC section 13801.

c. **Groundwater Water Quality Characterization.** The Discharger, after 2 years of monitoring, shall characterize natural background quality of monitored constituents in a technical report, to be submitted **within 42 months following adoption of this Order.** For each groundwater monitoring parameter/constituent identified in the Monitoring and Reporting Program, the report shall present a summary of monitoring data, calculation of the concentration in background monitoring wells, and a comparison of background groundwater quality to that in wells used to monitor the facility. Determination of background quality shall be made using the methods described in Title 27 California Code of Regulations Section 20415(e)(10), and shall be based on data from at least eight consecutive quarterly (or more frequent) groundwater
monitoring events. For each monitoring parameter/constituent, the report shall compare measured concentrations for compliance monitoring wells with the calculated background concentration.

d. **Best Practicable Treatment or Control (BPTC).** If the groundwater monitoring results show that the discharge of waste is threatening to cause or has caused groundwater to contain waste constituents in concentrations statistically greater than background water quality, the Discharger shall submit, within 48 months following adoption of this Order, a BPTC Evaluation Work Plan that sets forth a scope and schedule for a systematic and comprehensive technical evaluation of each component of the facilities' waste management system to determine best practicable treatment or control for each of the waste constituents of concern. The work plan shall include a preliminary evaluation of each component of the waste management system and propose a time schedule for completing the comprehensive technical evaluation. The schedule to complete the evaluation shall be as short as practicable, and shall not exceed 1 year.

e. **Effluent and Receiving Water Characterization Study.** An effluent and receiving water monitoring study is required to ensure adequate information is available for the next permit renewal. The Discharger shall conduct monitoring of the effluent at EFF-001 and of the receiving water at RSW-001 for all priority pollutants and other constituents of concern as described in Attachment I. Dioxin and Furans sampling shall be performed only once during the permit as described in Attachment J.

f. **Reclamation and Reduction of River Discharge.** Within eighteen months following adoption of this Order, the Discharger shall submit a plan for the minimization of effluent discharge to Lake Almanor and maximization of recycling and surface water discharge. The plan shall include, as a minimum:

- An analysis of methods of reclamation on and off site;
- An analysis of the effects of adding additional pond storage on site including wetlands ponds; and
- An analysis to maximize pond evaporation.

3. **Best Management Practices and Pollution Prevention**

 a. **Pollutant Minimization Program (PMP)**

 (1) The Discharger shall develop and conduct a PMP as further described below when there is evidence (e.g., sample results reported as DNQ when the effluent limitation is less than the MDL, sample results from analytical methods more sensitive than those methods required by this Order, presence of whole effluent toxicity, health advisories for fish consumption, results of benthic or aquatic organism tissue sampling) that a priority pollutant is present in the effluent above an effluent limitation and either: (1) A sample result is reported as DNQ and the effluent limitation is less than the RL; or (2) A sample result is reported
as ND and the effluent limitation is less than the MDL, using definitions described in Attachment A and reporting protocols described in the Monitoring and Reporting Program (Attachment E, section X.B.4).

(2) The PMP shall include, but not be limited to, the following actions and submittals acceptable to the Regional Water Board:

i. An annual review and annual monitoring of potential sources of the reportable priority pollutant(s), which may include fish tissue monitoring and other bio-uptake sampling;

ii. Annual monitoring for the reportable priority pollutant(s) in the influent to the wastewater treatment system;

iii. Submittal of a control strategy designed to proceed toward the goal of maintaining concentrations of the reportable priority pollutant(s) in the effluent at or below the effluent limitation;

iv. Implementation of appropriate cost-effective control measures for the reportable priority pollutant(s), consistent with the control strategy; and

v. An annual status report that shall be sent to the Regional Water Board including:

 (a) All PMP monitoring results for the previous year;

 (b) A list of potential sources of the reportable priority pollutant(s);

 (c) A summary of all actions undertaken pursuant to the control strategy; and

 (d) A description of actions to be taken in the following year.

b. Salinity Evaluation and Minimization Plan. The Discharger shall prepare a salinity evaluation and minimization plan to address sources of salinity from the Facility. The plan shall be completed and submitted to the Regional Water Board within 9 months of the adoption date of this Order for the approval by the Executive Officer.

4. Construction, Operation and Maintenance Specifications

a. Treatment Pond Operating Requirements.

i. The treatment facilities shall be designed, constructed, operated, and maintained to prevent inundation or washout due to floods with a 100-year return frequency.
ii. Public contact with wastewater shall be precluded through such means as fences, signs, and other acceptable alternatives.

iii. Ponds shall be managed to prevent breeding of mosquitoes. In particular,

(a) An erosion control program should assure that small coves and irregularities are not created around the perimeter of the water surface.

(b) Weeds shall be minimized.

(c) Dead algae, vegetation, and debris shall not accumulate on the water surface.

iv. Freeboard shall not be less than two feet (measured vertically to the lowest point of overflow), except if lesser freeboard does not threaten the integrity of the pond, no overflow of the pond occurs, and lesser freeboard is due to direct precipitation or storm water runoff occurring as a result of annual precipitation with greater than a 100-year recurrence interval, or a storm event with an intensity greater than a 25-year, 24-hour storm event.

v. Ponds shall have sufficient capacity to accommodate allowable wastewater flow and design seasonal precipitation and ancillary inflow and infiltration during the non-irrigation season. Design seasonal precipitation shall be based on total annual precipitation using a return period of 100 years, distributed monthly in accordance with historical rainfall patterns.

vi. Prior to the onset of the rainy season of each year, available pond storage capacity shall at least equal the volume necessary to comply with the operating specification contained at section v. above.

vii. The discharge of waste classified as "hazardous" as defined in section 2521(a) of Title 23, California Code of Regulations (CCR), or "designated", as defined in section 13173 of the CWC, to the treatment ponds is prohibited.

viii. Objectionable odors originating at this Facility shall not be perceivable beyond the limits of the wastewater treatment and disposal areas (or property owned by the Discharger).

ix. As a means of discerning compliance with the operating specification contained in section viii above, the dissolved oxygen content in the upper zone (1 foot) of wastewater in ponds shall not be less than 1.0 mg/L.

5. Special Provisions for Municipal Facilities (POTWs Only)

a. Pretreatment Requirements.

i. The Discharger shall implement, as more completely set forth in 40 CFR 403.5, the necessary legal authorities, programs, and controls to ensure that
the following incompatible wastes are not introduced to the treatment system, where incompatible wastes are:

a) Wastes which create a fire or explosion hazard in the treatment works;

b) Wastes which will cause corrosive structural damage to treatment works, but in no case wastes with a pH lower than 5.0, unless the works is specially designed to accommodate such wastes;

c) Solid or viscous wastes in amounts which cause obstruction to flow in sewers, or which cause other interference with proper operation or treatment works;

d) Any waste, including oxygen demanding pollutants (BOD, etc.), released in such volume or strength as to cause inhibition or disruption in the treatment works, and subsequent treatment process upset and loss of treatment efficiency;

e) Heat in amounts that inhibit or disrupt biological activity in the treatment works, or that raise influent temperatures above 40°C (104°F), unless the Regional Water Board approves alternate temperature limits;

f) Petroleum oil, non-biodegradable cutting oil, or products of mineral oil origin in amounts that will cause interference or pass through;

g) Pollutants which result in the presence of toxic gases, vapors, or fumes within the treatment works in a quantity that may cause acute worker health and safety problems; and:

h) Any trucked or hauled pollutants, except at points predesignated by the Discharger.

ii. The Discharger shall implement, as more completely set forth in 40 CFR 403.5, the legal authorities, programs, and controls necessary to ensure that indirect discharges do not introduce pollutants into the sewerage system that, either alone or in conjunction with a discharge or discharges from other sources:

a) Flow through the system to the receiving water in quantities or concentrations that cause a violation of this Order, or:

b) Inhibit or disrupt treatment processes, treatment system operations, or sludge processes, use, or disposal and either cause a violation of this Order or prevent sludge use or disposal in accordance with this Order.

b. Sludge/Biosolids Discharge Specifications
i. Collected screenings, residual sludge, biosolids, and other solids removed from liquid wastes shall be disposed of in a manner approved by the Executive Officer, and consistent with Consolidated Regulations for Treatment, Storage, Processing, or Disposal of Solid Waste, as set forth in Title 27, CCR, division 2, subdivision 1, section 20005, et seq. Removal for further treatment, disposal, or reuse at sites (e.g., landfill, composting sites, soil amendment sites) that are operated in accordance with valid waste discharge requirements issued by a Regional Water Board will satisfy these specifications.

ii. Sludge and solid waste shall be removed from screens, sumps, ponds, clarifiers, etc. as needed to ensure optimal plant performance.

iii. The treatment of sludge generated at the Facility shall be confined to the Facility property and conducted in a manner that precludes infiltration of waste constituents into soils in a mass or concentration that will violate groundwater limitations in section V.B. of this Order. In addition, the storage of residual sludge, solid waste, and biosolids on Facility property shall be temporary and controlled, and contained in a manner that minimizes leachate formation and precludes infiltration of waste constituents into soils in a mass or concentration that will violate groundwater limitations included in section V.B. of this Order.

iv. The use and disposal of biosolids shall comply with existing federal and state laws and regulations, including permitting requirements and technical standards included in 40 CFR Part 503. If the State Water Board and the Regional Water Board are given the authority to implement regulations contained in 40 CFR Part 503, this Order may be reopened to incorporate appropriate time schedules and technical standards. The Discharger must comply with the standards and time schedules contained in 40 CFR Part 503 whether or not they have been incorporated into this Order.

c. Biosolids Disposal Requirements

i. The Discharger shall comply with the Monitoring and Reporting Program for biosolids disposal contained in Attachment E.

ii. Any proposed change in biosolids use or disposal practice from a previously approved practice shall be reported to the Executive Officer and USEPA Regional Administrator at least 90 days in advance of the change.

iii. The Discharger is encouraged to comply with the "Manual of Good Practice for Agricultural Land Application of Biosolids" developed by the California Water Environment Association.

d. Biosolids Storage Requirements
i. Facilities for the storage of Class B biosolids shall be located, designed and maintained to restrict public access to biosolids.

ii. Biosolids storage facilities shall be designed and maintained to prevent washout or inundation from a storm or flood with a return frequency of 100 years.

iii. Biosolids storage facilities, which contain biosolids, shall be designed and maintained to contain all storm water falling on the biosolids storage area during a rainfall year with a return frequency of 100 years.

iv. Biosolids storage facilities shall be designed, maintained and operated to minimize the generation of leachate.

e. **Collection System.** On 2 May 2006, the State Water Board adopted State Water Board Order No. 2006-0003, a Statewide General WDR for Sanitary Sewer Systems. The Discharger shall be subject to the requirements of Order No. 2006-0003 and any future revisions thereto. Order No. 2006-0003 requires that all public agencies that currently own or operate sanitary sewer systems apply for coverage under the General WDR. The Discharger has applied for and has been approved for coverage under State Water Board Order 2006-0003 for operation of its wastewater collection system.

Regardless of the coverage obtained under Order No. 2006-0003, the Discharger’s collection system is part of the treatment system that is subject to this Order. As such, pursuant to federal regulations, the Discharger must properly operate and maintain its collection system [40 CFR 122.41(e)], report any non-compliance [40 CFR 122.41(l)(6) and (7)], and mitigate any discharge from the collection system in violation of this Order [40 CFR 122.41(d)].

f. This permit, and the Monitoring and Reporting Program which is a part of this permit, requires that certain parameters be monitored on a continuous basis. The wastewater treatment plant is not staffed on a full time basis. Permit violations or system upsets can go undetected during this period. The Discharger is required to establish an electronic system for operator notification for continuous recording device alarms. For existing continuous monitoring systems, the electronic notification system shall be installed within 6 months of adoption of this permit. For systems installed following permit adoption, the notification system shall be installed simultaneously.

6. **Other Special Provisions**

a. In the event of any change in control or ownership of land or waste discharge facilities presently owned or controlled by the Discharger, the Discharger shall notify the succeeding owner or operator of the existence of this Order by letter, a copy of which shall be immediately forwarded to the Regional Water Board.
To assume operation under this Order, the succeeding owner or operator must apply in writing to the Executive Officer requesting transfer of the Order. The request must contain the requesting entity's full legal name, the State of incorporation if a corporation, address and telephone number of the persons responsible for contact with the Regional Water Board and a statement. The statement shall comply with the signatory and certification requirements in the Federal Standard Provisions (Attachment D, Section V.B.) and state that the new owner or operator assumes full responsibility for compliance with this Order. Failure to submit the request shall be considered a discharge without requirements, a violation of the California Water Code. Transfer shall be approved or disapproved in writing by the Executive Officer.

7. Compliance Schedules-Not applicable
VII. COMPLIANCE DETERMINATION

A. BOD₅ and TSS Effluent Limitations. Compliance with the final effluent limitations for BOD₅ and TSS shall be ascertained by 24-hour composite samples (Samples obtained from ponds shall be considered adequately composited). Compliance with effluent limitations for percent removal shall be calculated using the arithmetic mean of BOD₅ and TSS in effluent samples collected over a monthly period as a percentage of the arithmetic mean of the values for influent samples collected at approximately the same times during the same period.

B. Average Dry Weather Flow Effluent Limitations (Section IV.A.1.f). The average dry weather discharge flow represents the daily average flow when groundwater is at or near normal and runoff is not occurring. Compliance with the average dry weather flow effluent limitations are generally determined annually based on the average daily flow over three consecutive dry weather months (e.g., July, August, and September). However, the Discharger does not discharge during dry weather months because their NPDES permit prohibits such discharges; therefore dry weather flow measurements are not applicable.

C. Total Coliform Organisms Effluent Limitations (Section IV.A.1.e.). For each day that an effluent sample is collected and analyzed for total coliform organisms, the 7-day median shall be determined by calculating the median concentration of total coliform bacteria in the effluent utilizing the bacteriological results of the last 7 days for which analyses have been completed. If the 7-day median of total coliform organisms exceeds a most probable number (MPN) of 23 per 100 milliliters, the Discharger will be considered out of compliance for that parameter for that 1 day only within the reporting period.

D. Total Residual Chlorine Effluent Limitations (Section IV.A.1.d). Continuous monitoring analyzers for chlorine residual or for dechlorination agent residual in the effluent are appropriate methods for compliance determination. A positive residual dechlorination agent in the effluent indicates that chlorine is not present in the discharge, which demonstrates compliance with the effluent limitations. This type of monitoring can also be used to prove that some chlorine residual exceedances are false positives. Continuous monitoring data showing either a positive dechlorination agent residual or a chlorine residual at or below the prescribed limit are sufficient to show compliance with the total residual chlorine effluent limitations, as long as the instruments are maintained and calibrated in accordance with the manufacturer's recommendations.

Any excursion above the 1-hour average or 4-day average total residual chlorine effluent limitations is a violation. If the Discharger conducts continuous monitoring and the Discharger can demonstrate, through data collected from a back-up monitoring system, that a chlorine spike recorded by the continuous monitor was not actually due to chlorine, then any excursion resulting from the recorded spike will not be considered an exceedance, but rather reported as a false positive. Records supporting validation of false positives shall be maintained in accordance with Section IV Standard Provisions (Attachment D).
E. Average Dry Weather Flow Effluent Limitations (IV.A.1.k.). The Average Dry Weather Flow (ADWF) represents the average flow when groundwater is at or near normal and runoff is not occurring. Compliance with the ADWF effluent limitations will be determined annually based on the average of daily flow occurring over the three consecutive driest months (e.g., July, August, and September).

F. Mass Effluent Limitations. Compliance with the mass effluent limitations will be determined during average dry weather periods only and runoff is not occurring.

G. Priority Pollutants. Dischargers shall be deemed out of compliance with an effluent limitation if the concentration of the priority pollutant in the monitoring sample is greater than the effluent limitation and greater than or equal to the reporting level (RL).

H. Ammonia. Compliance with the final effluent limitations for ammonia shall be ascertained by 24-hour composite samples (Samples obtained from ponds shall be considered adequately compositied). Dischargers shall be deemed out of compliance with an ammonia effluent limitation if the concentration of ammonia in the monitoring sample is greater than the effluent limitation.
ATTACHMENT A – DEFINITIONS

1Q10
The lowest flow that occurs for one day with a statistical frequency of once every 10 years.

7Q10
The average low flow that occurs for seven consecutive days with a statistical frequency of once every 10 years.

Arithmetic Mean (μ)
Also called the average, is the sum of measured values divided by the number of samples. For ambient water concentrations, the arithmetic mean is calculated as follows:

\[\text{Arithmetic mean} = \mu = \frac{\sum x}{n} \]

where: \(\sum x \) is the sum of the measured ambient water concentrations, and \(n \) is the number of samples.

Average Annual Effluent Limitation (AAEL)
The highest allowable average of monthly discharges over a calendar year, calculated as the sum of all daily discharges measured during a calendar year divided by the number of daily discharges measured during that year.

Average Monthly Effluent Limitation (AMEL)
The highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month divided by the number of daily discharges measured during that month.

Average Weekly Effluent Limitation (AWEL)
The highest allowable average of daily discharges over a calendar week (Sunday through Saturday), calculated as the sum of all daily discharges measured during a calendar week divided by the number of daily discharges measured during that week.

Bioaccumulative
Those substances taken up by an organism from its surrounding medium through gill membranes, epithelial tissue, or from food and subsequently concentrated and retained in the body of the organism.

Carcinogenic
Pollutants are substances that are known to cause cancer in living organisms.

Coefficient of Variation (CV)
CV is a measure of the data variability and is calculated as the estimated standard deviation divided by the arithmetic mean of the observed values.

Daily Discharge
Daily Discharge is defined as either: (1) the total mass of the constituent discharged over the calendar day (12:00 am through 11:59 pm) or any 24-hour period that reasonably represents a calendar day for purposes of sampling (as specified in the permit), for a constituent with
limitations expressed in units of mass or; (2) the unweighted arithmetic mean measurement of
the constituent over the day for a constituent with limitations expressed in other units of
measurement (e.g., concentration).

The daily discharge may be determined by the analytical results of a composite sample taken
over the course of 1 day (a calendar day or other 24-hour period defined as a day) or by the
arithmetic mean of analytical results from one or more grab samples taken over the course of
the day.

For composite sampling, if 1 day is defined as a 24-hour period other than a calendar day, the
analytical result for the 24-hour period will be considered as the result for the calendar day in
which the 24-hour period ends.

Detected, but Not Quantified (DNQ)

DNQ are those sample results less than the RL, but greater than or equal to the laboratory's
MDL.

Dilution Credit

Dilution Credit is the amount of dilution granted to a discharge in the calculation of a water
quality-based effluent limitation, based on the allowance of a specified mixing zone. It is
calculated from the dilution ratio or determined through conducting a mixing zone study or
modeling of the discharge and receiving water.

Effluent Concentration Allowance (ECA)

ECA is a value derived from the water quality criterion/objective, dilution credit, and ambient
background concentration that is used, in conjunction with the coefficient of variation for the
effluent monitoring data, to calculate a long-term average (LTA) discharge concentration. The
ECA has the same meaning as waste load allocation (WLA) as used in USEPA guidance
(Technical Support Document For Water Quality-based Toxics Control, March 1991, second
printing, EPA/505/2-90-001).

Enclosed Bays

Enclosed Bays means indentations along the coast that enclose an area of oceanic water
within distinct headlands or harbor works. Enclosed bays include all bays where the narrowest
distance between the headlands or outermost harbor works is less than 75 percent of the
greatest dimension of the enclosed portion of the bay. Enclosed bays include, but are not
limited to, Humboldt Bay, Bodega Harbor, Tomales Bay, Drake's Estero, San Francisco Bay,
Morro Bay, Los Angeles-Long Beach Harbor, Upper and Lower Newport Bay, Mission Bay,
and San Diego Bay. Enclosed bays do not include inland surface waters or ocean waters.

Estimated Chemical Concentration

The estimated chemical concentration that results from the confirmed detection of the
substance by the analytical method below the ML value.

Estuaries

Estuaries means waters, including coastal lagoons, located at the mouths of streams that
serve as areas of mixing for fresh and ocean waters. Coastal lagoons and mouths of streams
that are temporarily separated from the ocean by sandbars shall be considered estuaries.
Estuarine waters shall be considered to extend from a bay or the open ocean to a point upstream where there is no significant mixing of fresh water and seawater. Estuarine waters included, but are not limited to, the Sacramento-San Joaquin Delta, as defined in CWC section 12220, Suisun Bay, Carquinez Strait downstream to the Carquinez Bridge, and appropriate areas of the Smith, Mad, Eel, Noyo, Russian, Klamath, San Diego, and Otay rivers. Estuaries do not include inland surface waters or ocean waters.

Harmonic Mean
Harmonic mean flows are expressed as \(Q_{hm} = (n)/\sum_{i=1}^{n} 1/x_i \) where \(x_i \) = specific data values and \(n \) = number of data values.

Inland Surface Waters
All surface waters of the State that do not include the ocean, enclosed bays, or estuaries.

Instantaneous Maximum Effluent Limitation
The highest allowable value for any single grab sample or aliquot (i.e., each grab sample or aliquot is independently compared to the instantaneous maximum limitation).

Instantaneous Minimum Effluent Limitation
The lowest allowable value for any single grab sample or aliquot (i.e., each grab sample or aliquot is independently compared to the instantaneous minimum limitation).

Maximum Daily Effluent Limitation (MDEL)
The highest allowable daily discharge of a pollutant, over a calendar day (or 24-hour period). For pollutants with limitations expressed in units of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the arithmetic mean measurement of the pollutant over the day.

Median
The middle measurement in a set of data. The median of a set of data is found by first arranging the measurements in order of magnitude (either increasing or decreasing order). If the number of measurements \(n \) is odd, then the median = \(X_{(n+1)/2} \). If \(n \) is even, then the median = \((X_{n/2} + X_{(n/2)+1})/2 \) (i.e., the midpoint between the \(n/2 \) and \(n/2+1 \)).

Method Detection Limit (MDL)
MDL is the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero, as defined in 40 CFR Part 136, Attachment B, revised as of 3 July 1999.

Minimum Level (ML)
ML is the concentration at which the entire analytical system must give a recognizable signal and acceptable calibration point. The ML is the concentration in a sample that is equivalent to the concentration of the lowest calibration standard analyzed by a specific analytical procedure, assuming that all the method specified sample weights, volumes, and processing steps have been followed.

Mixing Zone
Mixing Zone is a limited volume of receiving water that is allocated for mixing with a wastewater discharge where water quality criteria can be exceeded without causing adverse effects to the overall water body.

Not Detected (ND)
Sample results which are less than the laboratory’s MDL.

Ocean Waters
The territorial marine waters of the State as defined by California law to the extent these waters are outside of enclosed bays, estuaries, and coastal lagoons. Discharges to ocean waters are regulated in accordance with the State Water Board’s California Ocean Plan.

Persistent Pollutants
Persistent pollutants are substances for which degradation or decomposition in the environment is nonexistent or very slow.

Pollutant Minimization Program (PMP)
PMP means waste minimization and pollution prevention actions that include, but are not limited to, product substitution, waste stream recycling, alternative waste management methods, and education of the public and businesses. The goal of the PMP shall be to reduce all potential sources of a priority pollutant(s) through pollutant minimization (control) strategies, including pollution prevention measures as appropriate, to maintain the effluent concentration at or below the water quality-based effluent limitation. Pollution prevention measures may be particularly appropriate for persistent bioaccumulative priority pollutants where there is evidence that beneficial uses are being impacted. The Regional Water Board may consider cost effectiveness when establishing the requirements of a PMP. The completion and implementation of a Pollution Prevention Plan, if required pursuant to CWC section 13263.3(d), shall be considered to fulfill the PMP requirements.

Pollution Prevention
Pollution Prevention means any action that causes a net reduction in the use or generation of a hazardous substance or other pollutant that is discharged into water and includes, but is not limited to, input change, operational improvement, production process change, and product reformulation (as defined in Water Code section 13263.3). Pollution prevention does not include actions that merely shift a pollutant in wastewater from one environmental medium to another environmental medium, unless clear environmental benefits of such an approach are identified to the satisfaction of the State or Regional Water Board.

Reporting Level (RL)
RL is the ML (and its associated analytical method) chosen by the Discharger for reporting and compliance determination from the MLs included in this Order. The MLs included in this Order correspond to approved analytical methods for reporting a sample result that are selected by the Regional Water Board either from Appendix 4 of the SIP in accordance with section 2.4.2 of the SIP or established in accordance with section 2.4.3 of the SIP. The ML is based on the proper application of method-based analytical procedures for sample preparation and the absence of any matrix interferences. Other factors may be applied to the ML depending on the specific sample preparation steps employed. For example, the treatment typically applied in
cases where there are matrix-effects is to dilute the sample or sample aliquot by a factor of ten. In such cases, this additional factor must be applied to the ML in the computation of the RL.

Satellite Collection System
The portion, if any, of a sanitary sewer system owned or operated by a different public agency than the agency that owns and operates the wastewater treatment facility that a sanitary sewer system is tributary to.

Source of Drinking Water
Any water designated as municipal or domestic supply (MUN) in a Regional Water Board Basin Plan.

Standard Deviation (σ)
Standard Deviation is a measure of variability that is calculated as follows:

\[
\sigma = \left(\frac{\sum(x - \mu)^2}{(n - 1)} \right)^{0.5}
\]

where:
- \(x\) is the observed value;
- \(\mu\) is the arithmetic mean of the observed values; and
- \(n\) is the number of samples.

Toxicity Reduction Evaluation (TRE)
TRE is a study conducted in a step-wise process designed to identify the causative agents of effluent or ambient toxicity, isolate the sources of toxicity, evaluate the effectiveness of toxicity control options, and then confirm the reduction in toxicity. The first steps of the TRE consist of the collection of data relevant to the toxicity, including additional toxicity testing, and an evaluation of facility operations and maintenance practices, and best management practices. A Toxicity Identification Evaluation (TIE) may be required as part of the TRE, if appropriate. (A TIE is a set of procedures to identify the specific chemical(s) responsible for toxicity. These procedures are performed in three phases (characterization, identification, and confirmation) using aquatic organism toxicity tests.)
Drawing Reference:
CHESTER QUAD
U.S.G.S TOPOGRAPHIC MAP
7.5 MINUTE QUADRANGLE
Photorevised 1973
Not to scale

SITE LOCATION MAP
CHESTER PUBLIC UTILITY DISTRICT
CHESTER WASTEWATER TREATMENT PLANT
PLUMAS COUNTY
ATTACHMENT C – FLOW SCHEMATIC

Feather River

Headworks
Control Building

LND-001

Primary
Ponds
LND-002

LND-003

LND-004

LND-005

LND-006

EFF-001

Chlorine Contact

INF-001

LND-007

LND-008

LND-009

Wetlands
Ponds

Lake
Almanor

RSW-001

RSW-002

RSW-003

CPUD WASTEWATER TREATMENT PLANT SCHEMATIC

Attachment B – Flow Schematic
ATTACHMENT D – STANDARD PROVISIONS

I. STANDARD PROVISIONS – PERMIT COMPLIANCE

 A. Duty to Comply

 1. The Discharger must comply with all of the conditions of this Order. Any noncompliance constitutes a violation of the Clean Water Act (CWA) and the California Water Code (CWC) and is grounds for enforcement action, for permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. (40 CFR 122.41(a).)

 2. The Discharger shall comply with effluent standards or prohibitions established under section 307(a) of the CWA for toxic pollutants and with standards for sewage sludge use or disposal established under section 405(d) of the CWA within the time provided in the regulations that establish these standards or prohibitions, even if this Order has not yet been modified to incorporate the requirement. (40 CFR 122.41(a)(1).)

 B. Need to Halt or Reduce Activity Not a Defense

 It shall not be a defense for a Discharger in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this Order. (40 CFR 122.41(c).)

 C. Duty to Mitigate

 The Discharger shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal in violation of this Order that has a reasonable likelihood of adversely affecting human health or the environment. (40 CFR 122.41(d).)

 D. Proper Operation and Maintenance

 The Discharger shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the Discharger to achieve compliance with the conditions of this Order. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of backup or auxiliary facilities or similar systems that are installed by a Discharger only when necessary to achieve compliance with the conditions of this Order. (40 CFR 122.41(e).)

 E. Property Rights

 1. This Order does not convey any property rights of any sort or any exclusive privileges. (40 CFR 122.41(g).)
2. The issuance of this Order does not authorize any injury to persons or property or invasion of other private rights, or any infringement of state or local law or regulations. (40 CFR 122.5(c).)

F. Inspection and Entry

The Discharger shall allow the Regional Water Board, State Water Board, United States Environmental Protection Agency (USEPA), and/or their authorized representatives (including an authorized contractor acting as their representative), upon the presentation of credentials and other documents, as may be required by law, to (40 CFR 122.41(i); CWC section 13383):

1. Enter upon the Discharger's premises where a regulated facility or activity is located or conducted, or where records are kept under the conditions of this Order (40 CFR 122.41(i)(1));

2. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this Order (40 CFR 122.41(i)(2));

3. Inspect and photograph, at reasonable times, any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this Order (40 CFR 122.41(i)(3)); and

4. Sample or monitor, at reasonable times, for the purposes of assuring Order compliance or as otherwise authorized by the CWA or the CWC, any substances or parameters at any location. (40 CFR 122.41(i)(4).)

G. Bypass

1. Definitions

 a. "Bypass" means the intentional diversion of waste streams from any portion of a treatment facility. (40 CFR 122.41(m)(1)(i).)

 b. "Severe property damage" means substantial physical damage to property, damage to the treatment facilities, which causes them to become inoperable, or substantial and permanent loss of natural resources that can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production. (40 CFR 122.41(m)(1)(ii).)

2. Bypass not exceeding limitations. The Discharger may allow any bypass to occur which does not cause exceedances of effluent limitations, but only if it is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions listed in Standard Provisions – Permit Compliance I.G.3, I.G.4, and I.G.5 below. (40 CFR 122.41(m)(2).)
3. Prohibition of bypass. Bypass is prohibited, and the Regional Water Board may take enforcement action against a Discharger for bypass, unless (40 CFR 122.41(m)(4)(i)):

 a. Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage (40 CFR 122.41(m)(4)(i)(A));

 b. There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass that occurred during normal periods of equipment downtime or preventive maintenance (40 CFR 122.41(m)(4)(i)(B)); and

 c. The Discharger submitted notice to the Regional Water Board as required under Standard Provisions – Permit Compliance I.G.5 below. (40 CFR 122.41(m)(4)(i)(C).)

4. The Regional Water Board may approve an anticipated bypass, after considering its adverse effects, if the Regional Water Board determines that it will meet the three conditions listed in Standard Provisions – Permit Compliance I.G.3 above. (40 CFR 122.41(m)(4)(ii).)

5. Notice

 a. Anticipated bypass. If the Discharger knows in advance of the need for a bypass, it shall submit a notice, if possible at least 10 days before the date of the bypass. (40 CFR 122.41(m)(3)(i).)

H. Upset

Upset means an exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the Discharger. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation. (40 CFR 122.41(n)(1).)

1. Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology based permit effluent limitations if the requirements of Standard Provisions – Permit Compliance I.H.2 below are met. No determination made during administrative review of claims that noncompliance was
caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review. (40 CFR 122.41(n)(2).)

2. Conditions necessary for a demonstration of upset. A Discharger who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs or other relevant evidence that (40 CFR 122.41(n)(3)):

a. An upset occurred and that the Discharger can identify the cause(s) of the upset (40 CFR 122.41(n)(3)(i));

b. The permitted facility was, at the time, being properly operated (40 CFR 122.41(n)(3)(ii));

c. The Discharger submitted notice of the upset as required in Standard Provisions – Reporting V.E.2.b below (24-hour notice) (40 CFR 122.41(n)(3)(iii)); and

3. Burden of proof. In any enforcement proceeding, the Discharger seeking to establish the occurrence of an upset has the burden of proof. (40 CFR 122.41(n)(4).)

II. STANDARD PROVISIONS – PERMIT ACTION

A. General

This Order may be modified, revoked and reissued, or terminated for cause. The filing of a request by the Discharger for modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any Order condition. (40 CFR 122.41(f).)

B. Duty to Reapply

If the Discharger wishes to continue an activity regulated by this Order after the expiration date of this Order, the Discharger must apply for and obtain a new permit. (40 CFR 122.41(b).)

C. Transfers

This Order is not transferable to any person except after notice to the Regional Water Board. The Regional Water Board may require modification or revocation and reissuance of the Order to change the name of the Discharger and incorporate such other requirements as may be necessary under the CWA and the CWC. (40 CFR 122.41(l)(3) and 122.61.)
III. STANDARD PROVISIONS – MONITORING

A. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. (40 CFR 122.41(j)(1).)

B. Monitoring results must be conducted according to test procedures under 40 CFR Part 136 or, in the case of sludge use or disposal, approved under 40 CFR Part 136 unless otherwise specified in 40 CFR Part 503 unless other test procedures have been specified in this Order. (40 CFR 122.41(j)(4) and 122.44(i)(1)(iv).)

IV. STANDARD PROVISIONS – RECORDS

A. Except for records of monitoring information required by this Order related to the Discharger’s sewage sludge use and disposal activities, which shall be retained for a period of at least 5 years (or longer as required by 40 CFR Part 503), the Discharger shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this Order, and records of all data used to complete the application for this Order, for a period of at least three (3) years from the date of the sample, measurement, report or application. This period may be extended by request of the Regional Water Board Executive Officer at any time. (40 CFR 122.41(j)(2).)

B. Records of monitoring information shall include:

1. The date, exact place, and time of sampling or measurements (40 CFR 122.41(j)(3)(i));

2. The individual(s) who performed the sampling or measurements (40 CFR 122.41(j)(3)(ii));

3. The date(s) analyses were performed (40 CFR 122.41(j)(3)(iii));

4. The individual(s) who performed the analyses (40 CFR 122.41(j)(3)(iv));

5. The analytical techniques or methods used (40 CFR 122.41(j)(3)(v)); and

6. The results of such analyses. (40 CFR 122.41(j)(3)(vi).)

C. Claims of confidentiality for the following information will be denied (40 CFR 122.7(b)):

1. The name and address of any permit applicant or Discharger (40 CFR 122.7(b)(1)); and

2. Permit applications and attachments, permits and effluent data. (40 CFR 122.7(b)(2).)
V. STANDARD PROVISIONS – REPORTING

A. Duty to Provide Information

The Discharger shall furnish to the Regional Water Board, State Water Board, or USEPA within a reasonable time, any information which the Regional Water Board, State Water Board, or USEPA may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this Order or to determine compliance with this Order. Upon request, the Discharger shall also furnish to the Regional Water Board, State Water Board, or USEPA copies of records required to be kept by this Order. (40 CFR 122.41(h); Wat. Code, § 13267.)

B. Signatory and Certification Requirements

1. All applications, reports, or information submitted to the Regional Water Board, State Water Board, and/or USEPA shall be signed and certified in accordance with Standard Provisions – Reporting V.B.2, V.B.3, V.B.4, and V.B.5 below. (40 CFR 122.41(k).)

2. All permit applications shall be signed by either a principal executive officer or ranking elected official. For purposes of this provision, a principal executive officer of a federal agency includes: (i) the chief executive officer of the agency, or (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of USEPA). (40 CFR 122.22(a)(3).).

3. All reports required by this Order and other information requested by the Regional Water Board, State Water Board, or USEPA shall be signed by a person described in Standard Provisions – Reporting V.B.2 above, or by a duly authorized representative of that person. A person is a duly authorized representative only if:

 a. The authorization is made in writing by a person described in Standard Provisions – Reporting V.B.2 above (40 CFR 122.22(b)(1));

 b. The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position.) (40 CFR 122.22(b)(2)); and

 c. The written authorization is submitted to the Regional Water Board and State Water Board. (40 CFR 122.22(b)(3).)

4. If an authorization under Standard Provisions – Reporting V.B.3 above is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of Standard
Provisions – Reporting V.B.3 above must be submitted to the Regional Water Board and State Water Board prior to or together with any reports, information, or applications, to be signed by an authorized representative. (40 CFR 122.22(c).)

5. Any person signing a document under Standard Provisions – Reporting V.B.2 or V.B.3 above shall make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations." (40 CFR 122.22(d).)

C. Monitoring Reports

1. Monitoring results shall be reported at the intervals specified in the Monitoring and Reporting Program (Attachment E) in this Order. (40 CFR 122.22(l)(4).)

2. Monitoring results must be reported on a Discharge Monitoring Report (DMR) form or forms provided or specified by the Regional Water Board or State Water Board for reporting results of monitoring of sludge use or disposal practices. (40 CFR 122.41(l)(4)(i).)

3. If the Discharger monitors any pollutant more frequently than required by this Order using test procedures approved under 40 CFR Part 136 or, in the case of sludge use or disposal, approved under 40 CFR Part 136 unless otherwise specified in 40 CFR Part 503, or as specified in this Order, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR or sludge reporting form specified by the Regional Water Board. (40 CFR 122.41(l)(4)(ii).)

4. Calculations for all limitations, which require averaging of measurements, shall utilize an arithmetic mean unless otherwise specified in this Order. (40 CFR 122.41(l)(4)(iii).)

D. Compliance Schedules

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this Order, shall be submitted no later than 14 days following each schedule date. (40 CFR 122.41(l)(5).)

E. Twenty-Four Hour Reporting

1. The Discharger shall report any noncompliance that may endanger health or the environment. Any information shall be provided orally within 24 hours from the time the Discharger becomes aware of the circumstances. A written submission shall
also be provided within five (5) days of the time the Discharger becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance. (40 CFR 122.41(l)(6)(i)).

2. The following shall be included as information that must be reported within 24 hours under this paragraph (40 CFR 122.41(l)(6)(ii)):

a. Any unanticipated bypass that exceeds any effluent limitation in this Order. (40 CFR 122.41(l)(6)(ii)(A)).

b. Any upset that exceeds any effluent limitation in this Order. (40 CFR 122.41(l)(6)(ii)(B)).

3. The Regional Water Board may waive the above-required written report under this provision on a case-by-case basis if an oral report has been received within 24 hours. (40 CFR 122.41(l)(6)(iii)).

F. Planned Changes

The Discharger shall give notice to the Regional Water Board as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required under this provision only when (40 CFR 122.41(l)(1)):

1. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR 122.29(b) (40 CFR 122.41(l)(1)(i)); or

2. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are not subject to effluent limitations in this Order. (40 CFR 122.41(l)(1)(ii)).

3. The alteration or addition results in a significant change in the Discharger's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan. (40 CFR 122.41(l)(1)(iii)).

G. Anticipated Noncompliance

The Discharger shall give advance notice to the Regional Water Board or State Water Board of any planned changes in the permitted facility or activity that may result in noncompliance with General Order requirements. (40 CFR 122.41(l)(2)).

H. Other Noncompliance
The Discharger shall report all instances of noncompliance not reported under Standard Provisions – Reporting V.C, V.D, and V.E above at the time monitoring reports are submitted. The reports shall contain the information listed in Standard Provision – Reporting V.E above. (40 CFR 122.41(l)(7).)

I. Other Information

When the Discharger becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Regional Water Board, State Water Board, or USEPA, the Discharger shall promptly submit such facts or information. (40 CFR 122.41(l)(8).)

VI. STANDARD PROVISIONS – ENFORCEMENT

A. The Regional Water Board is authorized to enforce the terms of this permit under several provisions of the CWC, including, but not limited to, sections 13385, 13386, and 13387

VII. ADDITIONAL PROVISIONS – NOTIFICATION LEVELS

A. Publicly-Owned Treatment Works (POTWs)

All POTWs shall provide adequate notice to the Regional Water Board of the following (40 CFR 122.42(b)):

1. Any new introduction of pollutants into the POTW from an indirect discharger that would be subject to sections 301 or 306 of the CWA if it were directly discharging those pollutants (40 CFR 122.42(b)(1)); and

2. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of adoption of the Order. (40 CFR 122.42(b)(2).)

3. Adequate notice shall include information on the quality and quantity of effluent introduced into the POTW as well as any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW. (40 CFR 122.42(b)(3).)
ATTACHMENT E – MONITORING AND REPORTING PROGRAM

Table of Contents

I. General Monitoring Provisions...E-2
II. Monitoring Locations..E-4
III. Influent Monitoring Requirements...E-4
 A. Monitoring Location INF-001...E-4
IV. Effluent Monitoring Requirements...E-5
 A. Monitoring Location EFF-001...E-5
V. Whole Effluent Toxicity Testing Requirements.......................................E-6
VI. Land Discharge Monitoring Requirements-not applicable....................E-9
VII. Reclamation Monitoring Requirements-not applicable.......................E-9
VIII. Receiving Water Monitoring Requirements – Surface Water and Groundwater ...E-9
 A. Monitoring Location RSW-001...E-10
 B. Monitoring Location RSW-002 and RSW-003...E-11
 C. Monitoring Location RGW-001 through RGW-00X...............................E-11
IX. Other Monitoring Requirements..E-12
 A. Biosolids ...E-12
 B. Municipal Water Supply ...E-13
 C. Pond Monitoring ...E-13
X. Reporting Requirements...E-14
 A. General Monitoring and Reporting Requirements.................................E-14
 B. Self Monitoring Reports (SMRs) ..E-14
 C. Discharge Monitoring Reports (DMRs)-Not Applicable..........................E-17
 D. Other Reports ..E-17

List of Tables

Table E-1. Monitoring Station Locations..E-4
Table E-2. Influent Monitoring...E-4
Table E-3. Effluent Monitoring ..E-5
Table E-4. Chronic Toxicity Testing Dilution Series.....................................E-8
Table E-5a. Receiving Water Monitoring Requirements...............................E-10
Table E-5b. Receiving Water Monitoring Requirements...............................E-11
Table E-5c. Receiving Water Monitoring Requirements...............................E-12
Table E-6. Municipal Water Supply Monitoring Requirements....................E-13
Table E-7. Pond Monitoring...E-13
Table E-8. Monitoring Periods and Reporting Schedule.................................E-15
Table E-9. Reporting Requirements for Special Provisions Progress Reports....E-17
ATTACHMENT E – MONITORING AND REPORTING PROGRAM

Title 40 of the Code of Federal Regulations (CFR), section 122.48 (40 CFR 122.48) requires that all NPDES permits specify monitoring and reporting requirements. California Water Code (CWC) sections 13267 and 13383 also authorize the Regional Water Quality Control Board (Regional Water Board) to require technical and monitoring reports. This Monitoring and Reporting Program establishes monitoring and reporting requirements, which implement the federal and California regulations.

I. GENERAL MONITORING PROVISIONS

A. Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge. All samples shall be taken at the monitoring locations specified below and, unless otherwise specified, before the monitored flow joins or is diluted by any other waste stream, body of water, or substance. Monitoring locations shall not be changed without notification to and the approval of this Regional Water Board.

B. Effluent samples shall be taken downstream of the last addition of wastes to the treatment or discharge works where a representative sample may be obtained prior to mixing with the receiving waters. Samples shall be collected at such a point and in such a manner to ensure a representative sample of the discharge.

C. Chemical, bacteriological, and bioassay analyses shall be conducted at a laboratory certified for such analyses by the Department of Public Health (DPH; formerly the Department of Health Services). In the event a certified laboratory is not available to the Discharger, analyses performed by a noncertified laboratory will be accepted provided a Quality Assurance-Quality Control Program is instituted by the laboratory. A manual containing the steps followed in this program must be kept in the laboratory and shall be available for inspection by Regional Water Board staff. The Quality Assurance-Quality Control Program must conform to USEPA guidelines or to procedures approved by the Regional Water Board.

D. All analyses shall be performed in a laboratory certified to perform such analyses by DPH. Laboratories that perform sample analyses must be identified in all monitoring reports submitted to the Regional Water Board.

E. Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to ensure the accuracy and reliability of measurements of the volume of monitored discharges. All monitoring instruments and devices used by the Discharger to fulfill the prescribed monitoring program shall be properly maintained and calibrated as necessary, at least yearly, to ensure their continued accuracy.

F. Monitoring results, including noncompliance, shall be reported at intervals and in a manner specified in this Monitoring and Reporting Program.
G. Laboratories analyzing monitoring samples shall be certified by DPH, in accordance with the provision of CWC section 13176, and must include quality assurance/quality control data with their reports.

H. The Discharger shall conduct analysis on any sample provided by USEPA as part of the Discharge Monitoring Quality Assurance (DMQA) program. The results of any such analysis shall be submitted to USEPA's DMQA manager.

I. The Discharger shall file with the Regional Water Board technical reports on self-monitoring performed according to the detailed specifications contained in this Monitoring and Reporting Program.

J. The results of all monitoring required by this Order shall be reported to the Regional Water Board, and shall be submitted in such a format as to allow direct comparison with the limitations and requirements of this Order. Unless otherwise specified, discharge flows shall be reported in terms of the monthly average and the daily maximum discharge flows.
II. MONITORING LOCATIONS

The Discharger shall establish the following monitoring locations to demonstrate compliance with the effluent limitations, discharge specifications, and other requirements in this Order:

Table E-1. Monitoring Station Locations

<table>
<thead>
<tr>
<th>Discharge Point Name</th>
<th>Monitoring Location Name</th>
<th>Monitoring Location Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>INF-001</td>
<td>Treatment Plant Headworks</td>
</tr>
<tr>
<td>D-001</td>
<td>EFF-001</td>
<td>Downstream from the last connection through which wastes can be admitted into the outfall</td>
</tr>
<tr>
<td>--</td>
<td>RSW-001</td>
<td>Feather River Upstream of Lake Almanor</td>
</tr>
<tr>
<td></td>
<td>RSW-002</td>
<td>Lake Almanor, “upgradient” of discharge</td>
</tr>
<tr>
<td></td>
<td>RSW-003</td>
<td>Lake Almanor, “downgradient” of discharge</td>
</tr>
<tr>
<td>LND-001</td>
<td></td>
<td>Facultative Pond 1</td>
</tr>
<tr>
<td>LND-002</td>
<td></td>
<td>Facultative Pond 2</td>
</tr>
<tr>
<td>LND-003</td>
<td></td>
<td>Facultative Pond 3</td>
</tr>
<tr>
<td>LND-004</td>
<td></td>
<td>Facultative Pond 4</td>
</tr>
<tr>
<td>LND-005</td>
<td></td>
<td>Facultative Pond 5</td>
</tr>
<tr>
<td>LND-006</td>
<td></td>
<td>Facultative Pond 6</td>
</tr>
<tr>
<td>LND-007</td>
<td></td>
<td>Wetlands Pond 1</td>
</tr>
<tr>
<td>LND-008</td>
<td></td>
<td>Wetlands Pond 2</td>
</tr>
<tr>
<td>LND-009</td>
<td></td>
<td>Wetlands Pond 3</td>
</tr>
<tr>
<td>RGW-001</td>
<td></td>
<td>Monitoring Well 1</td>
</tr>
<tr>
<td>RGW-002</td>
<td></td>
<td>Monitoring Well 2</td>
</tr>
<tr>
<td>RGW-003</td>
<td></td>
<td>Monitoring Well 3</td>
</tr>
<tr>
<td>RGW-00X</td>
<td></td>
<td>Monitoring Well X</td>
</tr>
<tr>
<td>BIO-001</td>
<td></td>
<td>Biosolids Storage Area</td>
</tr>
<tr>
<td>SPL-001</td>
<td></td>
<td>Water Supply</td>
</tr>
</tbody>
</table>

III. INFLUENT MONITORING REQUIREMENTS

A. Monitoring Location INF-001

1. The Discharger shall monitor influent to the facility at INF-001 as follows:

Table E-2. Influent Monitoring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>mgd</td>
<td>Continuous</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>Influent BOD</td>
<td>mg/L</td>
<td>24-hr composite</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Influent TSS</td>
<td>mg/L</td>
<td>24-hr composite</td>
<td>1/week</td>
<td></td>
</tr>
</tbody>
</table>

Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136.

Attachment E – Monitoring and Reporting Program
IV. Effluent Monitoring Requirements

A. Monitoring Location EFF-001

1. The Discharger shall monitor D-001 at EFF-001 as follows. If more than one analytical test method is listed for a given parameter, the Discharger must select from the listed methods and corresponding Minimum Level:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method and (Minimum Level, units), respectively</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>mgd</td>
<td>Meter</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>Total Residual Chlorine<sup>2</sup></td>
<td>mg/L</td>
<td>Meter</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>Temperature<sup>3</sup></td>
<td>°F</td>
<td>Grab</td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Standard Units</td>
<td>Grab</td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td>BOD 5-day 20°C</td>
<td>mg/L</td>
<td>24-hr Composite<sup>5</sup></td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>24-hr Composite<sup>5</sup></td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Total Coliform Organisms</td>
<td>MPN/100 mL</td>
<td>Grab</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Electrical Conductivity @ 25°C</td>
<td>µmhos/cm</td>
<td>Grab</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Ammonia (as N)<sup>4</sup></td>
<td>mg/L</td>
<td>Grab</td>
<td>1/month</td>
<td></td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/month</td>
<td></td>
</tr>
<tr>
<td>Copper, Total and dissolved</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/quarter<sup>6</sup></td>
<td></td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/quarter</td>
<td></td>
</tr>
<tr>
<td>Nitrite (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/quarter</td>
<td></td>
</tr>
<tr>
<td>Hardness, Total (as CaCO3)<sup>7</sup></td>
<td>mg/L</td>
<td>Grab</td>
<td>1/quarter</td>
<td></td>
</tr>
<tr>
<td>Total Trihalo methane</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/quarter</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/quarter</td>
<td></td>
</tr>
<tr>
<td>Iron, total and dissolved</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Aluminum, total and dissolved</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Standard Minerals<sup>11</sup></td>
<td>mg/L</td>
<td>Grab</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Priority Pollutants<sup>12, 13</sup></td>
<td>µg/L</td>
<td>Grab</td>
<td>1/year</td>
<td></td>
</tr>
</tbody>
</table>
Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136; for priority pollutants the methods must meet the lowest minimum levels (MLs) specified in Attachment 4 of the SIP, where no methods are specified for a given pollutant, by methods approved by this Regional Water Board or the State Water Board.

Total chlorine residual must be monitored with a method sensitive to and accurate at the permitted level of 0.01 mg/L.

Effluent Temperature monitoring shall be at the Outfall location.

Concurrent with biotic monitoring. Frequency shall be weekly during discharge to Lake Almanor.

24-hour flow proportioned composite (Effluent from ponds shall be considered adequately composited). Sampling shall be twice weekly during discharge to Lake Almanor.

Once per month during discharge to Lake Almanor

Hardness samples shall be collected concurrently with metals samples.

Method ML shall be 0.5 ug/L or less

Method ML shall be 2 ug/L or less

Report as total recoverable or acid soluble (inductively coupled plasma/atomic emission spectrometry or inductively coupled plasma/mass spectrometry) analysis methods, as supported by USEPA’s Ambient Water Quality Criteria for Aluminum document (EPA 440/5-86-008), or other standard methods that exclude aluminum silicate particles as approved by the Executive Officer.

Standard minerals shall include the following: boron, calcium, iron, magnesium, potassium, sodium, chloride, manganese, phosphorus, total alkalinity (including alkalinity series), and hardness, and include verification that the analysis is complete (i.e., cation/anion balance).

For priority pollutant constituents with effluent limitations, detection limits shall be below the effluent limitations. If the lowest minimum level (ML) published in Appendix 4 of the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (State Implementation Plan or SIP) is not below the effluent limitation, the detection limit shall be the lowest ML. For priority pollutant constituents without effluent limitations, the detection limits shall be equal to or less than the lowest ML published in Appendix 4 of the SIP.

Concurrent with receiving surface water sampling.

Volatile samples and bis(2-ethylhexyl)phthalate shall be grab samples, the remainder shall be 24-hour composite samples (Effluent from ponds shall be considered adequately composited).

V. WHOLE EFFLUENT TOXICITY TESTING REQUIREMENTS

A. Acute Toxicity Testing. The Discharger shall conduct acute toxicity testing to determine whether the effluent is contributing acute toxicity to the receiving water. The Discharger shall meet the following acute toxicity testing requirements:

1. Monitoring Frequency – The Discharger shall perform quarterly acute toxicity testing, concurrent with effluent ammonia sampling.

2. Sample Types – For static non-renewal and static renewal testing, the samples shall be grab samples and shall be representative of the volume and quality of the discharge. The effluent samples shall be taken at the effluent monitoring location EFF-001.

3. Test Species – Test species shall be rainbow trout (Onchorhynchus Mykiss).

4. Methods – The acute toxicity testing samples shall be analyzed using EPA-821-R-02-012, Fifth Edition. Temperature, total residual chlorine, and pH shall be recorded at the time of sample collection. No pH adjustment may be made unless approved by the Executive Officer.

5. Test Failure – If an acute toxicity test does not meet all test acceptability criteria, as specified in the test method, the Discharger must re-sample and re-test as soon as possible, not to exceed 7 days following notification of test failure.
B. Chronic Toxicity Testing. The Discharger shall conduct three species chronic toxicity testing to determine whether the effluent is contributing chronic toxicity to the receiving water. The Discharger shall meet the following chronic toxicity testing requirements:

1. *Monitoring Frequency* – The Discharger shall perform three species chronic toxicity testing once within 365 days of permit adoption and once at least one year prior to permit expiration.

2. *Sample Types* – Effluent samples shall be grab samples and shall be representative of the volume and quality of the discharge. The effluent samples shall be taken at the effluent monitoring location EFF-001. The receiving water control shall be a grab sample obtained from the RSW-001 sampling location, as identified in this Monitoring and Reporting Program.

3. *Sample Volumes* – Adequate sample volumes shall be collected to provide renewal water to complete the test in the event that the discharge is intermittent.

4. *Test Species* – Chronic toxicity testing measures sublethal (e.g., reduced growth, reproduction) and/or lethal effects to test organisms exposed to an effluent compared to that of the control organisms. The Discharger shall conduct chronic toxicity tests with:
 - The cladoceran, water flea, Ceriodaphnia dubia (survival and reproduction test);
 - The fathead minnow, Pimephales promelas (larval survival and growth test); and
 - The green alga, Selenastrum capricornutum (growth test).

6. *Reference Toxicant* – As required by the SIP, all chronic toxicity tests shall be conducted with concurrent testing with a reference toxicant and shall be reported with the chronic toxicity test results.

7. *Dilutions* – For regular chronic toxicity monitoring, the testing shall be performed using 100% effluent and two controls. If toxicity is found in any regular effluent test, the Discharger must immediately retest using the dilution series identified in Table E-5, below. The receiving water control shall be used as the diluent (unless the receiving water is toxic). For accelerated and/or TRE monitoring, the chronic toxicity testing shall be performed using the full dilution series identified in the table, below.
Table E-4. Chronic Toxicity Testing Dilution Series

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dilutions (%)</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>57</td>
</tr>
<tr>
<td>% Effluent</td>
<td>100</td>
<td>57</td>
</tr>
<tr>
<td>% Receiving Water</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>% Laboratory Water</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

8. *Test Failure* – The Discharger must re-sample and re-test as soon as possible, but no later than fourteen (14) days after receiving notification of a test failure. A test failure is defined as follows:

 a. The reference toxicant test or the effluent test does not meet all test acceptability criteria as specified in the *Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition*, EPA/821-R-02-013, October 2002 (Method Manual), and its subsequent amendments or revisions; or

 b. The percent minimum significant difference (PMSD) measured for the test exceeds the upper PMSD bound variability criterion in Table 6 on page 52 of the Method Manual. (A retest is only required in this case if the test results do not exceed the monitoring trigger specified in the Special Provision at section VI.C. 2.a.iii. of the Order.)

C. *WET Testing Notification Requirements*. The Discharger shall notify the Regional Water Board within 24-hours after the receipt of test results exceeding the monitoring trigger during regular or accelerated monitoring, or an exceedance of the acute toxicity effluent limitation.

D. *WET Testing Reporting Requirements*. All toxicity test reports shall include the contracting laboratory’s complete report provided to the Discharger and shall be in accordance with the appropriate “Report Preparation and Test Review” sections of the method manuals. At a minimum, whole effluent toxicity monitoring shall be reported as follows:

1. *Chronic WET Reporting*. Regular chronic toxicity monitoring results shall be reported to the Regional Water Board within 30 days following completion of the test, and shall contain, at minimum (a through c are only required when testing is performed using the full dilution series):

 a. The results expressed in TUC, measured as 100/NOEC, and also measured as 100/LC50, 100/EC25, 100/IC25, and 100/IC50, as appropriate.

 b. The statistical methods used to calculate endpoints;

 c. The statistical output page, which includes the calculation of the percent minimum significant difference (PMSD);
d. The dates of sample collection and initiation of each toxicity test; and

e. The results compared to the numeric toxicity monitoring trigger.

Additionally, the discharger self-monitoring reports shall contain an updated chronology of chronic toxicity test results expressed in TUC, and organized by test species, type of test (survival, growth or reproduction), and monitoring frequency, i.e., either quarterly, monthly, accelerated, or Toxicity Reduction Evaluation (TRE).

2. Acute WET Reporting. Acute toxicity test results shall be submitted with the monthly discharger self-monitoring reports and reported as percent survival.

3. TRE Reporting. Reports for TREs shall be submitted in accordance with the schedule contained in the Discharger's approved TRE Workplan.

4. Quality Assurance (QA). The Discharger must provide the following information for QA purposes (if applicable):

a. Results of the applicable reference toxicant data with the statistical output page giving the species, NOEC, LOEC, type of toxicant, dilution water used, concentrations used, PMSD, and dates tested.

b. The reference toxicant control charts for each endpoint, which include summaries of reference toxicant tests performed by the contracting laboratory.

c. Any information on deviations or problems encountered and how they were dealt with.

VI. LAND DISCHARGE MONITORING REQUIREMENTS-NOT APPLICABLE

VII. RECLAMATION MONITORING REQUIREMENTS-NOT APPLICABLE

VIII. RECEIVING WATER MONITORING REQUIREMENTS – SURFACE WATER AND GROUNDWATER

Obtaining representative samples of upstream and downstream receiving water near the discharge of the Chester facility into Lake Almanor is very problematic. The discharge travels through a 3,000-foot channel (during "normal" lake water levels) prior to discharge into the Lake. Slope in the area of the discharge channel is minimal and the area is an extensive marshy plateau, which makes access by foot extremely difficult and unsafe. In addition, the marsh causes the discharge channel to take on water, diluting the effluent with marsh water, but potentially adding pollutants such as BOD, Total Suspended Solids, and others associated with suspended solids addition. In accordance with a dilution study performed by Flow Science, Inc., depth of water in the area of the outfall varies from 4 inches to 18 inches, so obtaining samples uncontaminated by sediment, stirred up during the sampling process, would also be difficult. In accordance with the 1956 USGS 15 minute Chester, CA, Quadrangle, the discharge area is quite shallow for at least three quarters of a mile from the normal point of discharge into the Lake.
In addition, in accordance with the Flow Science study, “wind may play a significant role in tracer transport...” which can be interpreted as meaning the plume transport would also be substantially affected by wind. The study also found that depending on the time of day effluent could be buoyant (in the morning when the lake water is very cold) or denser than the lake water (in the afternoon, after the lake water has warmed). These factors all point to difficulty in locating a reasonable location for an upgradient and downgradient sample, as wind and buoyancy may cause the effluent to flow in directions not generally expected. Reference to the plume delineation on page 18 of the Flow Science Study shows that a point 500 feet “upgradient” of the discharge was within the effluent plume during the study.

Lake Almanor is very cold in the wintertime; during the periods that discharge is likely to occur. The danger of falling into the lake water during sampling, with consequential potential for hypothermia, is a hazard. Most boaters, including rescue boat operators, avoid the lake in the winter and early spring, unless such access is necessitated by rescue operations. During discharge to the Lake (prohibited from 1 June to 30 September), effluent monitoring has been expanded, as given above in Table E-3. Some “upgradient” monitoring is also required in the Feather River prior to its entry into the Lake (Location RSW-001) as is given below.

The following sampling shall be performed at RSW-001

A. Monitoring Location RSW-001

Table E-5a. Receiving Water Monitoring Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority Pollutants ¹, ²</td>
<td>μg/L</td>
<td>³</td>
<td>Yr. 2011</td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td>mg/L</td>
<td>Grab</td>
<td>Annually</td>
<td>⁴</td>
</tr>
<tr>
<td>pH</td>
<td>Standard</td>
<td>Grab</td>
<td>Annually</td>
<td>⁵</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>Grab</td>
<td>Annually</td>
<td>⁵</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/L</td>
<td>Grab</td>
<td>Annually</td>
<td>⁴</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>umhos/cm</td>
<td>Grab</td>
<td>Annually</td>
<td>⁵</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>Grab</td>
<td>Annually</td>
<td>⁴</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>Grab</td>
<td>Annually</td>
<td>⁴</td>
</tr>
<tr>
<td>Ammonia</td>
<td>mg/L</td>
<td>Grab</td>
<td>Annually</td>
<td>⁴</td>
</tr>
<tr>
<td>Copper, total and dissolved</td>
<td>mg/L</td>
<td>Grab</td>
<td>Annually</td>
<td>⁴</td>
</tr>
</tbody>
</table>

¹ For priority pollutant constituents with effluent limitations, detection limits shall be below the effluent limitations. If the lowest minimum level (ML) published in Appendix 4 of the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (State Implementation Plan or SIP) is not below the effluent limitation, the detection limit shall be the lowest ML. For priority pollutant constituents without effluent limitations, the detection limits shall be equal to or less than the lowest ML published in Appendix 4 of the SIP.

² Concurrent with effluent sampling.

³ Volatile samples and bis(2-ethylhexyl)phthalate shall be grab samples, the remainder shall be 24-hour composite samples.

⁴ Per 40 CFR 136

⁵ A hand-held field meter may be used, provided the meter utilizes a USEPA-approved algorithm/method and is calibrated and maintained in accordance with the manufacturer’s instructions. A calibration and maintenance log for each meter used for monitoring required by this Monitoring and Reporting Program shall be maintained at the wastewater treatment plant.
When discharge to the Lake is occurring, access to the outfall location can be obtained safely, representative uncontaminated samples can be obtained, and flow direction of effluent can be determined, the Discharger shall obtain samples from RSW-002 and RSW-003 as follows.

B. Monitoring Location RSW-002 and RSW-003

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>mgd</td>
<td>Meter</td>
<td>Continuous</td>
<td>DWR MFP Station</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Standard Units</td>
<td>Grab</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>Grab</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>Grab</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>MPN/100 mL</td>
<td>Grab</td>
<td>1/month</td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/month</td>
<td></td>
</tr>
<tr>
<td>Copper, Total and Dissolved</td>
<td>ug/L</td>
<td>Grab</td>
<td>1/month</td>
<td></td>
</tr>
<tr>
<td>Total Ammonia</td>
<td>mg/l</td>
<td>Grab</td>
<td>1/month</td>
<td></td>
</tr>
<tr>
<td>Floating or suspended matter</td>
<td>Narrative</td>
<td>Visual</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Discoloration</td>
<td>Narrative</td>
<td>Visual</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Bottom Deposits</td>
<td>Narrative</td>
<td>Visual</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Aquatic Life</td>
<td>Narrative</td>
<td>Visual</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Visible films, sheens</td>
<td>Narrative</td>
<td>Visual</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Fungi, slimes, or objectionable growths</td>
<td>Narrative</td>
<td>Visual</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Potential nuisance conditions</td>
<td>Narrative</td>
<td>Visual</td>
<td>1/week</td>
<td></td>
</tr>
<tr>
<td>Foam</td>
<td>Narrative</td>
<td>Visual</td>
<td>1/week</td>
<td></td>
</tr>
</tbody>
</table>

1 A hand-held field meter may be used, provided the meter utilizes a USEPA-approved algorithm/method and is calibrated and maintained in accordance with the manufacturer’s instructions. A calibration and maintenance log for each meter used for monitoring required by this Monitoring and Reporting Program shall be maintained at the wastewater treatment plant.

2 Per 40 CFR 136

C. Monitoring Location RGW-001 through RGW-00X

The Discharger shall monitor monitoring Wells RGW-001, RGW-002, RGW-003, etc., as follows:
Table E-5c. Receiving Water Monitoring Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>Grab</td>
<td>Once per quarter</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Standard Units</td>
<td>Grab</td>
<td>Once per quarter</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>°F (°C)</td>
<td>Grab</td>
<td>Once per quarter</td>
<td></td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>µmhos/cm</td>
<td>Grab</td>
<td>Once per quarter</td>
<td></td>
</tr>
<tr>
<td>@ 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>mg/L</td>
<td>Grab</td>
<td>Once per quarter</td>
<td></td>
</tr>
<tr>
<td>Ammonia as N</td>
<td>mg/L</td>
<td>Grab</td>
<td>Once per quarter</td>
<td></td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>mg/L</td>
<td>Grab</td>
<td>Once per quarter</td>
<td></td>
</tr>
<tr>
<td>Total Coliform</td>
<td>mpn/100ml</td>
<td>Grab</td>
<td>Once per Quarter</td>
<td></td>
</tr>
</tbody>
</table>

1. Per 40 CFR 138
2. A hand-held field meter may be used, provided the meter utilizes a USEPA-approved algorithm/method and is calibrated and maintained in accordance with the manufacturer's instructions. A calibration and maintenance log for each meter used for monitoring required by this Monitoring and Reporting Program shall be maintained at the wastewater treatment plant.

IX. OTHER MONITORING REQUIREMENTS

A. Biosolids

1. Monitoring Location BIO-001

 a. A composite sample of sludge shall be collected annually or each time sludge is removed from the ponds at Monitoring Location BIO-001 in accordance with EPA's POTW Sludge Sampling and Analysis Guidance Document, August 1989, and tested for priority pollutants listed in 40 CFR Part 122, Appendix D, Tables II and III (excluding total phenols).

 b. A composite sample of sludge shall be collected annually or each time sludge is removed from the ponds, whichever is less frequent, at Monitoring Location BIO-001 in accordance with USEPA's POTW Sludge Sampling and Analysis Guidance Document, August 1989, and tested for the metals listed in Title 22.

 c. Sampling records shall be retained for a minimum of 5 years. A log shall be maintained of sludge quantities generated and of handling and disposal activities. The frequency of entries is discretionary; however, the log must be complete enough to serve as a basis for part of the annual report.

 d. Upon removal of sludge, the Discharger shall submit percent solids. In addition to USEPA's POTW Sludge Sampling and Analysis Guidance Document, August 1989, suggested methods for analysis of sludge are provided in USEPA publications titled Test Methods for Evaluating Solid Waste: Physical/Chemical Methods and Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater. Recommended analytical holding times for sludge samples should reflect those specified in 40 CFR 136.6.3(e). Other guidance is available.
B. Municipal Water Supply

1. Monitoring Location SPL-001

The Discharger shall monitor the municipal water supply at SPL-001 as follows. A sampling station shall be established where a representative sample of the municipal water supply can be obtained. Municipal water supply samples shall be collected at approximately the same time as effluent samples.

Table E-6. Municipal Water Supply Monitoring Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Solids</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Electrical Conductivity @ 25°C</td>
<td>μhos/cm</td>
<td>Grab</td>
<td>4/year</td>
<td></td>
</tr>
<tr>
<td>Standard Minerals</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/year</td>
<td></td>
</tr>
</tbody>
</table>

1. If the water supply is from more than one source, the EC shall be reported as a weighted average; include copies of supporting calculations.
2. Standard minerals shall include all major cations and anions and include verification that the analysis is complete (i.e., cation/anion balance).
3. Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136; where no methods are specified for a given pollutant, by methods approved by their Regional Water Board or the State Water Board.
4. A hand-held field meter may be used, provided the meter utilizes a USEPA-approved algorithm/method and is calibrated and maintained in accordance with the manufacturer’s instructions. A calibration and maintenance log for each meter used for monitoring required by this Monitoring and Reporting Program shall be maintained at the wastewater treatment plant.

C. Pond Monitoring

1. Monitoring locations LND-001, LND-002, LND-003, LND-004, LND-005, LND-006, LND-007, and LND-008.

The Discharger shall monitor ponds as follows

Table E-7. Pond Monitoring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/month(^1)</td>
<td>(^2,3)</td>
</tr>
<tr>
<td>Liquid Depth and Freeboard</td>
<td>Feet</td>
<td>Visual</td>
<td>Monthly</td>
<td>Visual</td>
</tr>
<tr>
<td>Seepage through pond dikes</td>
<td>Presence/Absence</td>
<td>Visual</td>
<td>Monthly</td>
<td>Visual</td>
</tr>
<tr>
<td>Excessive odors or other nuisances</td>
<td>Presence/Absence</td>
<td>Observation</td>
<td>Monthly</td>
<td>Visual</td>
</tr>
<tr>
<td>Excessive weed growth in pond</td>
<td>Presence/Absence</td>
<td>Visual</td>
<td>Monthly</td>
<td>Visual</td>
</tr>
</tbody>
</table>

\(^1\) For LND-001 and LND-002 only
\(^2\) Per 40 CFR 136
\(^3\) A hand-held field meter may be used, provided the meter utilizes a USEPA-approved algorithm/method and is calibrated and maintained in accordance with the manufacturer’s instructions. A calibration and maintenance log for each meter used for monitoring required by this Monitoring and Reporting Program shall be maintained at the wastewater treatment plant.
log for each meter used for monitoring required by this Monitoring and Reporting Program shall be maintained at the wastewater treatment plant.

X. REPORTING REQUIREMENTS

A. General Monitoring and Reporting Requirements

1. The Discharger shall comply with all Standard Provisions (Attachment D) related to monitoring, reporting, and recordkeeping.

2. Upon written request of the Regional Water Board, the Discharger shall submit a summary monitoring report. The report shall contain both tabular and graphical summaries of the monitoring data obtained during the previous year(s).

3. Compliance Time Schedules. For compliance time schedules included in the Order, the Discharger shall submit to the Regional Water Board, on or before each compliance due date, the specified document or a written report detailing compliance or noncompliance with the specific date and task. If noncompliance is reported, the Discharger shall state the reasons for noncompliance and include an estimate of the date when the Discharger will be in compliance. The Discharger shall notify the Regional Water Board by letter when it returns to compliance with the compliance time schedule.

4. The Discharger shall report to the Regional Water Board any toxic chemical release data it reports to the State Emergency Response Commission within 15 days of reporting the data to the Commission pursuant to section 313 of the "Emergency Planning and Community Right to Know Act" of 1986.

B. Self Monitoring Reports (SMRs)

1. At any time during the term of this permit, the State Water Board or the Regional Water Board may notify the Discharger to electronically submit Self-Monitoring Reports (SMRs) using the State Water Board’s California Integrated Water Quality System (CIWQS) Program Web site (http://www.waterboards.ca.gov/ciwqs/index.html). Until such notification is given, the Discharger shall submit hard copy SMRs. The CIWQS Web site will provide additional directions for SMR submittal in the event there will be service interruption for electronic submittal.

2. The Discharger shall report in the SMR the results for all monitoring specified in this Monitoring and Reporting Program under sections III through IX. The Discharger shall submit monthly, quarterly, and annual SMRs including the results of all required monitoring using USEPA-approved test methods or other test methods specified in this Order. If the Discharger monitors any pollutant more frequently than required by this Order, the results of this monitoring shall be included in the calculations and reporting of the data submitted in the SMR.
3. Monitoring periods and reporting for all required monitoring shall be completed according to the following schedule:

<table>
<thead>
<tr>
<th>Sampling Frequency</th>
<th>Monitoring Period Begins On...</th>
<th>Monitoring Period</th>
<th>SMR Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>Permit effective date</td>
<td>All</td>
<td>Submit with monthly SMR</td>
</tr>
<tr>
<td>Daily</td>
<td>Permit effective date</td>
<td>(Midnight through 11:59 PM) or any 24-hour period that reasonably represents a calendar day for purposes of sampling.</td>
<td>Submit with monthly SMR</td>
</tr>
<tr>
<td>Weekly</td>
<td>Sunday following permit effective date or on permit effective date if on a Sunday</td>
<td>Sunday through Saturday</td>
<td>Submit with monthly SMR</td>
</tr>
<tr>
<td>2/week</td>
<td>Sunday following permit effective date or on permit effective date if on a Sunday</td>
<td>Sunday through Saturday</td>
<td>Submit with monthly SMR</td>
</tr>
<tr>
<td>Monthly</td>
<td>First day of calendar month following permit effective date or on permit effective date if that date is first day of the month</td>
<td>1st day of calendar month through last day of calendar month</td>
<td>32 days from the end of the monitoring period</td>
</tr>
<tr>
<td>Quarterly</td>
<td>Closest of January 1, April 1, July 1, or October 1 following (or on) permit effective date</td>
<td>January 1 through March 31, April 1 through June 30, July 1 through September 30, October 1 through December 31</td>
<td>32 days from the end of the monitoring period</td>
</tr>
<tr>
<td>Annually</td>
<td>January 1 following (or on) permit effective date</td>
<td>January 1 through December 31</td>
<td>32 days from the end of the monitoring period</td>
</tr>
</tbody>
</table>

4. Reporting Protocols. The Discharger shall report with each sample result the applicable reported Minimum Level (ML) and the current Method Detection Limit (MDL), as determined by the procedure in 40 CFR Part 136.

The Discharger shall report the results of analytical determinations for the presence of chemical constituents in a sample using the following reporting protocols:

a. Sample results greater than or equal to the reported ML shall be reported as measured by the laboratory (i.e., the measured chemical concentration in the sample).

b. Sample results less than the RL, but greater than or equal to the laboratory's MDL, shall be reported as "Detected, but Not Quantified," or DNQ. The estimated chemical concentration of the sample shall also be reported.

For the purposes of data collection, the laboratory shall write the estimated chemical concentration next to DNQ as well as the words "Estimated Concentration" (may be shortened to "Est. Conc."). The laboratory may, if such information is available, include numerical estimates of the data quality for the reported result. Numerical estimates of data quality may be percent accuracy (+
a percentage of the reported value), numerical ranges (low to high), or any other means considered appropriate by the laboratory.

c. Sample results less than the laboratory’s MDL shall be reported as “Not Detected,” or ND.

d. Dischargers are to instruct laboratories to establish calibration standards so that the ML value (or its equivalent if there is differential treatment of samples relative to calibration standards) is the lowest calibration standard. At no time is the Discharger to use analytical data derived from extrapolation beyond the lowest point of the calibration curve.

5. **Compliance Determination.** Compliance with effluent limitations for priority pollutants shall be determined using sample reporting protocols defined above and in Attachment A of this Order. For purposes of reporting and administrative enforcement by the Regional Water Board and the State Water Board, the Discharger shall be deemed out of compliance with effluent limitations if the concentration of the priority pollutant in the monitoring sample is greater than the effluent limitation and greater than or equal to the reporting level (RL).

6. **Multiple Sample Data.** When determining compliance with an AMEL, AWEL, or MDEL for priority pollutants and more than one sample result is available, the Discharger shall compute the arithmetic mean unless the data set contains one or more reported determinations of “Detected, but Not Quantified” (DNQ) or “Not Detected” (ND). In those cases, the Discharger shall compute the median in place of the arithmetic mean in accordance with the following procedure:

 a. The data set shall be ranked from low to high, ranking the reported ND determinations lowest, DNQ determinations next, followed by quantified values (if any). The order of the individual ND or DNQ determinations is unimportant.

 b. The median value of the data set shall be determined. If the data set has an odd number of data points, then the median is the middle value. If the data set has an even number of data points, then the median is the average of the two values around the middle unless one or both of the points are ND or DNQ, in which case the median value shall be the lower of the two data points where DNQ is lower than a value and ND is lower than DNQ.

7. The Discharger shall submit SMRs in accordance with the following requirements:

 a. The Discharger shall arrange all reported data in a tabular format. The data shall be summarized to clearly illustrate whether the facility is operating in compliance with interim and/or final effluent limitations. The Discharger is not required to duplicate the submittal of data that is entered in a tabular format within CIWQS. When electronic submittal of data is required and CIWQS does not provide for entry into a tabular format within the system, the Discharger shall electronically submit the data in a tabular format as an attachment.
b. The Discharger shall attach a cover letter to the SMR. The information contained in the cover letter shall clearly identify violations of the WDRs; discuss corrective actions taken or planned; and the proposed time schedule for corrective actions. Identified violations must include a description of the requirement that was violated and a description of the violation.

c. SMRs must be submitted to the Regional Water Board, signed and certified as required by the Standard Provisions (Attachment D), to the address listed below:

 Regional Water Quality Control Board
 Central Valley Region
 415 Knollcrest Drive, Suite #100
 Redding, CA 96002

C. Discharge Monitoring Reports (DMRs)-Not Applicable

D. Other Reports

1. **Progress Reports.** As specified in the compliance time schedules required in the Special Provisions contained in section VI of the Order, progress reports shall be submitted in accordance with the following reporting requirements. At minimum, the progress reports shall include a discussion of the status of final compliance, whether the Discharger is on schedule to meet the final compliance date, and the remaining tasks to meet the final compliance date.

Table E-9. Reporting Requirements for Special Provisions Progress Reports

<table>
<thead>
<tr>
<th>Special Provision</th>
<th>Reporting Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Monitoring Plan (Provision IV.C.2.b.)</td>
<td>Within 6 Months of Order Adoption</td>
</tr>
<tr>
<td>Groundwater Quality Characterization Report (Provision IV.C.2.c.)</td>
<td>Within 42 Months of Order Adoption</td>
</tr>
<tr>
<td>BPTC Evaluation workplan (if necessary) (Provision IV.C.2.d.)</td>
<td>Within 48 Months of Order Adoption</td>
</tr>
</tbody>
</table>

2. The Discharger shall report the results of any special studies, acute and chronic toxicity testing, TRE/TIE, and PMP required by Special Provisions VI.C.2 of this Order. The Discharger shall submit reports with the first monthly SMR scheduled to be submitted on or immediately following the report due date.

3. Within 60 days of permit adoption, the Discharger shall submit a report outlining minimum levels, method detection limits, and analytical methods for approval, with a goal to achieve detection levels below applicable water quality criteria. At a minimum, the Discharger shall comply with the monitoring requirements for CTR constituents as outlined in section 2.3 and 2.4 of the SIP.
4. The Discharger's sanitary sewer system collects wastewater using sewers, pipes, pumps, and/or other conveyance systems and directs the raw sewage to the wastewater treatment plant. A "sanitary sewer overflow" is defined as a discharge to ground or surface water from the sanitary sewer system at any point upstream of the wastewater treatment plant. Sanitary sewer overflows are prohibited by this Order. All violations must be reported as required in Standard Provisions. Facilities (such as wet wells, regulated impoundments, tanks, highlines, etc.) may be part of a sanitary sewer system and discharges to these facilities are not considered sanitary sewer overflows, provided that the waste is fully contained within these temporary storage facilities.

5. **Annual Operations Report.** By 30 January of each year, the Discharger shall submit a written report to the Executive Officer containing the following:

 a. The names, certificate grades, and general responsibilities of all persons employed at the Facility.

 b. The names and telephone numbers of persons to contact regarding the plant for emergency and routine situations.

 c. A statement certifying when the flow meter(s) and other monitoring instruments and devices were last calibrated, including identification of who performed the calibration.

 d. A statement certifying whether the current operation and maintenance manual, and contingency plan, reflect the wastewater treatment plant as currently constructed and operated, and the dates when these documents were last revised and last reviewed for adequacy.

 e. The Discharger may also be requested to submit an annual report to the Regional Water Board with both tabular and graphical summaries of the monitoring data obtained during the previous year. Any such request shall be made in writing. The report shall discuss the compliance record. If violations have occurred, the report shall also discuss the corrective actions taken and planned to bring the discharge into full compliance with the waste discharge requirements.

6. **Reclamation and Reduction of Lake Discharge.** Within eighteen months of the adoption of this Order, the Discharger shall provide a study for minimizing Lake discharge and maximizing reclamation and on-site storage of wastewater.

7. **Annual Salinity Reduction Goal Report.** The Discharger shall submit an annual report by 30 January that discusses the past years efforts to minimize salinity of the discharge.
ATTACHMENT F – FACT SHEET

Table of Contents

I. Permit Information ... F-3

II. Facility Description .. F-4
 A. Description of Wastewater and Biosolids Treatment or Controls F-4
 B. Discharge Points and Receiving Waters .. F-4
 C. Summary of Existing Requirements and Self-Monitoring Report (SMR) Data F-4
 D. Compliance Summary ... F-6
 E. Planned Changes—Not Applicable ... F-6

III. Applicable Plans, Policies, and Regulations .. F-6
 A. Legal Authorities ... F-6
 B. California Environmental Quality Act (CEQA) F-6
 C. State and Federal Regulations, Policies, and Plans F-6
 D. Impaired Water Bodies on CWA 303(d) List—Not Applicable F-8
 E. Other Plans, Policies and Regulations .. F-8

IV. Rationale For Effluent Limitations and Discharge Specifications F-8
 A. Discharge Prohibitions ... F-9
 B. Technology-Based Effluent Limitations .. F-10
 1. Scope and Authority .. F-10
 2. Applicable Technology-Based Effluent Limitations F-11
 C. Water Quality-Based Effluent Limitations (WQBELs) F-12
 1. Scope and Authority .. F-12
 2. Applicable Beneficial Uses and Water Quality Criteria and Objectives F-13
 3. Determining the Need for WQBELs ... F-22
 4. WQBEL Calculations .. F-31
 5. Whole Effluent Toxicity (WET) .. F-32
 D. Final Effluent Limitations ... F-35
 1. Mass-based Effluent Limitations .. F-35
 2. Averaging Periods for Effluent Limitations F-35
 3. Satisfaction of Anti-Backsliding Requirements F-35
 4. Satisfaction of Antidegradation Policy .. F-36
 5. Stringency of Requirements for Individual Pollutants F-36
 E. Interim Effluent Limitations—Not Applicable F-36
 F. Land Discharge Specifications—Not Applicable F-36
 G. Reclamation Specifications—Not Applicable F-36

V. Rationale for Receiving Water Limitations .. F-36
 A. Surface Water .. F-37
 B. Groundwater .. F-37

VI. Rationale for Monitoring and Reporting Requirements F-39
 A. Influent Monitoring .. F-39
 B. Effluent Monitoring .. F-40
 C. Whole Effluent Toxicity Testing Requirements F-40
 D. Receiving Water Monitoring .. F-41
 1. Surface Water ... F-41
2. Groundwater ... F-41
E. Other Monitoring Requirements F-42
 1. Biosolids Monitoring .. F-42
 2. Water Supply Monitoring ... F-42

VII. Rationale for Provisions ... F-42
A. Standard Provisions ... F-42
B. Special Provisions .. F-43
 1. Reopener Provisions .. F-43
 2. Special Studies and Additional Monitoring Requirements F-43
 4. Construction, Operation, and Maintenance Specifications .. F-48
 5. Special Provisions for Municipal Facilities (POTWs Only) . F-49
 6. Other Special Provisions .. F-49
 7. Compliance Schedules-Not Applicable F-50

VIII. Public Participation .. F-50
A. Notification of Interested Parties F-50
B. Written Comments ... F-50
C. Public Hearing .. F-50
D. Waste Discharge Requirements Petitions F-51
E. Information and Copying .. F-51
F. Register of Interested Persons F-51
G. Additional Information ... F-51

List of Tables

Table F-1. Facility Information .. F-3
Table F-2. Historic Effluent Limitations and Monitoring Data F-5
Table F-3 Summary of Technology-based Effluent Limitations, F-12
Table F-4. Basin Plan Beneficial Uses F-13
Table F-5: Copper Design Hardness Evaluation F-17
Table F-5: Lead Design Hardness Evaluation F-18
Table F-7: Cadmium Design Hardness Evaluation F-18
Table F-8: Silver Design Hardness Evaluation F-19
Table F-9. Salinity Water Quality Criteria/Objectives F-28
Table F-10. Summary of Water Quality-Based Effluent Limitations F-32
ATTACHMENT F – FACT SHEET

As described in the Findings in section II of this Order, this Fact Sheet includes the legal requirements and technical rationale that serve as the basis for the requirements of this Order.

This Order has been prepared under a standardized format to accommodate a broad range of discharge requirements for Dischargers in California. Only those sections or subsections of this Order that are specifically identified as “not applicable” have been determined not to apply to this Discharger. Sections or subsections of this Order not specifically identified as “not applicable” are fully applicable to this Discharger.

I. PERMIT INFORMATION

The following table summarizes administrative information related to the Facility.

<table>
<thead>
<tr>
<th>Table F-1. Facility Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDID</td>
</tr>
<tr>
<td>Discharger</td>
</tr>
<tr>
<td>Name of Facility</td>
</tr>
<tr>
<td>Facility Address</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Facility Contact, Title and Phone</td>
</tr>
<tr>
<td>Authorized Person to Sign and Submit Reports</td>
</tr>
<tr>
<td>Mailing Address</td>
</tr>
<tr>
<td>Billing Address</td>
</tr>
<tr>
<td>Type of Facility</td>
</tr>
<tr>
<td>Major or Minor Facility</td>
</tr>
<tr>
<td>Threat to Water Quality</td>
</tr>
<tr>
<td>Complexity</td>
</tr>
<tr>
<td>Pretreatment Program</td>
</tr>
<tr>
<td>Reclamation Requirements</td>
</tr>
<tr>
<td>Facility Permitted Flow</td>
</tr>
<tr>
<td>Facility Design Flow</td>
</tr>
<tr>
<td>Watershed</td>
</tr>
<tr>
<td>Receiving Water</td>
</tr>
<tr>
<td>Receiving Water Type</td>
</tr>
</tbody>
</table>

A. The Chester Public Utility District (hereinafter Discharger) is the owner and operator of the Chester Wastewater Treatment Plant (hereinafter Facility), a POTW.

For the purposes of this Order, references to the "discharger" or "permittee" in applicable federal and state laws, regulations, plans, or policy are held to be equivalent to references to the Discharger herein.
B. The Facility discharges wastewater to Lake Almanor, a water of the United States, and is currently regulated by Order No. R5-2004-0050 which was adopted on 23 April 2004 and expired on 1 April 2009. The terms and conditions of the current Order have been automatically continued and remain in effect until new Waste Discharge Requirements (WDRs) and National Pollutant Discharge Elimination System (NPDES) permit are adopted pursuant to this Order.

C. The Discharger filed a report of waste discharge and submitted an application for renewal of its Waste Discharge Requirements (WDRs) and National Pollutant Discharge Elimination System (NPDES) permit on 19 September 2008. Supplemental information was requested on 20 September and received on 1 October 2008. The report of waste discharge was deemed complete on 10 December 2008. A site visit was conducted on 21 November 2008, to observe operations and collect additional data to develop permit limitations and conditions.

II. FACILITY DESCRIPTION

The Discharger provides sewerage service for the community of Chester and serves a population of approximately 2,500. The WWTP design daily dry weather flow capacity is 0.75 mgd.

A. Description of Wastewater and Biosolids Treatment or Controls

The Facility consists of bar screening, primary sedimentation in the initial ponds (Pond One or Pond Two), biological treatment by the five facultative ponds, including Ponds One and Two, disinfection, and dechlorination during discharge to Lake Almanor. Total acreage of the main ponds (facultative ponds) is 16 acres. The Discharger is authorized to Discharge to Lake Almanor only from 1 October to 31 May. During the Non-Discharge season, wastewater is stored in the facultative ponds or discharged to three wetlands ponds with a total area of 6 acres. Wastewater is not dechlorinated when discharge to the wetlands ponds is occurring. Discharge from the Wetlands ponds to Lake Almanor is prohibited.

B. Discharge Points and Receiving Waters

1. The Facility is located in Section 8, T28N, R7E, MDB&M, as shown in Attachment B, a part of this Order.

2. Treated municipal wastewater is discharged at Discharge Point No. 001 to Lake Almanor, a water of the United States at a point latitude 40° 18' 01" N and longitude 121° 13' 35" W.

C. Summary of Existing Requirements and Self-Monitoring Report (SMR) Data

Effluent limitations contained in Order No. R5-2004-0050 for discharges from Discharge Point No. D-001 (Monitoring Location EFF-001) and representative monitoring data from the term of Order No. R5-2004-0050 are as follows:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitation</th>
<th>Monitoring Data (From 4/04 To 4/09)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Monthly</td>
<td>Average Weekly</td>
</tr>
<tr>
<td>BOD</td>
<td>mg/L</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>TSS</td>
<td>mg/L</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>Chlorine Residual</td>
<td>mg/l</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Total Coliform Organisms</td>
<td>mpn/100 ml</td>
<td>500</td>
<td>23</td>
</tr>
<tr>
<td>pH</td>
<td>pH units</td>
<td>9.0</td>
<td></td>
</tr>
</tbody>
</table>
D. Compliance Summary

Chlorine. On 8 December 2008, the assistant executive office issued and Administrative Civil Liability in the amount of $3,000 against the Discharger for an effluent Chlorine violation that occurred on 22 April 2006.

Effluent Disinfection. The Discharger has had difficulty in meeting effluent disinfection requirements, but generally only during times discharge to the Lake is not occurring. To help address the issue, the Discharger added aerators to each of the ponds in November of 2008, as their engineer believes the added aeration and mixing will improve disinfection performance during the cold winter months. The cost of aerator addition was approximately $200,000 after energy efficiency credits were rebated to the Discharger. Since the aerator addition, disinfection has markedly improved.

BOD and TSS percentage Removals. The discharger has experienced continuing problems meeting the percentage removal requirements for BOD and TSS. The Discharger is under a Cease and Desist Order to repair the collection system for the District, and has performed several major repairs in the last five years, at a total cost to the Discharger of $1,128,000. Further repair programs are in the design stage.

Violation of Recreation Season Prohibition Discharge. Due to heavy rains and heavy snowfall in 2005/2006, coupled with rapid snowmelt, the Discharger violated the prohibition on discharge after 31 May. The prohibited discharge lasted for 9 days (1 June to 9 June 2006).

E. Planned Changes-Not Applicable

III. APPLICABLE PLANS, POLICIES, AND REGULATIONS

The requirements contained in this Order are based on the applicable plans, policies, and regulations identified in the Findings in section II of this Order. The applicable plans, policies, and regulations relevant to the discharge include the following:

A. Legal Authorities

This Order is issued pursuant to regulations in the Clean Water Act (CWA) and the California Water Code (CWC) as specified in the Finding contained at section II.C of this Order.

B. California Environmental Quality Act (CEQA)

This Order meets the requirements of CEQA as specified in the Finding contained at section II.E of this Order.

C. State and Federal Regulations, Policies, and Plans

1. Water Quality Control Plans. This Order implements the following water quality control plans as specified in the Finding contained at section II.H of this Order.

2. National Toxics Rule (NTR) and California Toxics Rule (CTR). This Order implements the NTR and CTR as specified in the Finding contained at section II.I of this Order.

3. State Implementation Policy (SIP). This Order implements the SIP as specified in the Finding contained at section II.I of this Order.

4. Alaska Rule. This Order is consistent with the Alaska Rule as specified in the Finding contained at section II.L of this Order.

5. Antidegradation Policy. As specified in the Finding contained at section II.N of this Order and as discussed in detail in the Fact Sheet (Attachment F, Section IV.D.4.), the discharge is consistent with the antidegradation provisions of 40 CFR section 131.12 and State Water Resources Control Board (State Water Board) Resolution 68-16.

6. Anti-Backsliding Requirements. This Order is consistent with anti-backsliding policies as specified in the Finding contained at section II.O of this Order. Compliance with the anti-backsliding requirements is discussed in the Fact Sheet (Attachment F, Section IV.D.3).

7. Emergency Planning and Community Right to Know Act

Section 13263.6(a) of the CWC, requires that "the Regional Water Board shall prescribe effluent limitations as part of the waste discharge requirements of a POTW for all substances that the most recent toxic chemical release data reported to the state emergency response commission pursuant to Section 313 of the Emergency Planning and Community Right to Know Act of 1986 (42 U.S.C. Sec. 11023) (EPCRA) indicate as discharged into the POTW, for which the State Water Board or the Regional Water Board has established numeric water quality objectives, and has determined that the discharge is or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to, an excursion above any numeric water quality objective".

The most recent toxic chemical data report does not indicate any reportable off-site releases or discharges to the collection system for this Facility. Therefore, a reasonable potential analysis based on information from EPCRA cannot be conducted. Based on information from EPCRA, there is no reasonable potential to cause or contribute to an excursion above any numeric water quality objectives included within the Basin Plan or in any State Water Board plan, so no effluent limitations are included in this permit pursuant to CWC section 13263.6(a).

However, as detailed elsewhere in this Order, available effluent data indicate that there are constituents present in the effluent that have a reasonable potential to
cause or contribute to exceedances of water quality standards and require inclusion of effluent limitations based on federal and state laws and regulations.

8. Storm Water Requirements

USEPA promulgated federal regulations for storm water on 16 November 1990 in 40 CFR Parts 122, 123, and 124. The NPDES Industrial Storm Water Program regulates storm water discharges from wastewater treatment facilities. Wastewater treatment plants are applicable industries under the storm water program and are obligated to comply with the federal regulations.

9. Endangered Species Act. This Order is consistent with the Endangered Species Act as specified in the Finding contained at section II.P of this Order.

D. Impaired Water Bodies on CWA 303(d) List-Not Applicable

E. Other Plans, Polices and Regulations

1. The discharge authorized herein and the treatment and storage facilities associated with the discharge of treated municipal wastewater, except for discharges of residual sludge and solid waste, are exempt from the requirements of Title 27, California Code of Regulations (CCR), section 20005 et seq. (hereafter Title 27). The exemption, pursuant to Title 27 CCR section 20090(a), is based on the following:

 a. The waste consists primarily of domestic sewage and treated effluent;

 b. The waste discharge requirements are consistent with water quality objectives; and

 c. The treatment and storage facilities described herein are associated with a municipal wastewater treatment plant.

IV. RATIONALE FOR EFFLUENT LIMITATIONS AND DISCHARGE SPECIFICATIONS

Effluent limitations and toxic and pretreatment effluent standards established pursuant to sections 301 (Effluent Limitations), 302 (Water Quality Related Effluent Limitations), 304 (Information and Guidelines), and 307 (Toxic and Pretreatment Effluent Standards) of the CWA and amendments thereto are applicable to the discharge.

The CWA mandates the implementation of effluent limitations that are as stringent as necessary to meet water quality standards established pursuant to state or federal law [33 U.S.C., §1311(b)(1)(C); 40 CFR 122.44(d)(1)]. NPDES permits must incorporate discharge limits necessary to ensure that water quality standards are met. This requirement applies to narrative criteria as well as to criteria specifying maximum amounts of particular pollutants. Pursuant to federal regulations, 40 CFR 122.44(d)(1)(i), NPDES permits must contain limits that control all pollutants that "are or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any state water quality standard, including state narrative criteria for water quality." Federal regulations, 40 CFR 122.44(d)(1)(vi), further provide that "[w]here a state has not
established a water quality criterion for a specific chemical pollutant that is present in an effluent at a concentration that causes, has the reasonable potential to cause, or contributes to an excursion above a narrative criterion within an applicable State water quality standard, the permitting authority must establish effluent limits."

The CWA requires point source dischargers to control the amount of conventional, non-conventional, and toxic pollutants that are discharged into the waters of the United States. The control of pollutants discharged is established through effluent limitations and other requirements in NPDES permits. There are two principal bases for effluent limitations in the Code of Federal Regulations: 40 CFR 122.44(a) requires that permits include applicable technology-based limitations and standards; and 40 CFR 122.44(d) requires that permits include WQBELs to attain and maintain applicable numeric and narrative water quality criteria to protect the beneficial uses of the receiving water where numeric water quality objectives have not been established. The Basin Plan at page IV-17.00, contains an implementation policy, "Policy for Application of Water Quality Objectives", that specifies that the Regional Water Board "will, on a case-by-case basis, adopt numerical limitations in orders which will implement the narrative objectives." This Policy complies with 40 CFR 122.44(d)(1). With respect to narrative objectives, the Regional Water Board must establish effluent limitations using one or more of three specified sources, including: (1) USEPA's published water quality criteria, (2) a proposed state criterion (i.e., water quality objective) or an explicit state policy interpreting its narrative water quality criteria (i.e., the Regional Water Board's "Policy for Application of Water Quality Objectives") (40 CFR 122.44(d)(1)(vi)(A), (B) or (C)), or (3) an indicator parameter.

The Basin Plan includes numeric site-specific water quality objectives and narrative objectives for toxicity, chemical constituents, discoloration, radionuclides, and tastes and odors. The narrative toxicity objective states: "All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life." (Basin Plan at III-8.00.) The Basin Plan states that material and relevant information, including numeric criteria, and recommendations from other agencies and scientific literature will be utilized in evaluating compliance with the narrative toxicity objective. The narrative chemical constituents objective states that waters shall not contain chemical constituents in concentrations that adversely affect beneficial uses. At minimum, "...water designated for use as domestic or municipal supply (MUN) shall not contain concentrations of chemical constituents in excess of the maximum contaminant levels (MCLs)" in Title 22 of CCR. The Basin Plan further states that, to protect all beneficial uses, the Regional Water Board may apply limits more stringent than MCLs. The narrative tastes and odors objective states: "Water shall not contain taste- or odor-producing substances in concentrations that impart undesirable tastes or odors to domestic or municipal water supplies or to fish flesh or other edible products of aquatic origin, or that cause nuisance, or otherwise adversely affect beneficial uses."

A. Discharge Prohibitions

1. As stated in section I.G of Attachment D, Standard Provisions, this Order prohibits bypass from any portion of the treatment facility. Federal regulations, 40 CFR 122.41(m), define "bypass" as the intentional diversion of waste streams from any portion of a treatment facility. This section of the federal regulations,
40 CFR 122.41(m)(4), prohibits bypass unless it is unavoidable to prevent loss of life, personal injury, or severe property damage. In considering the Regional Water Board's prohibition of bypasses, the State Water Board adopted a precedential decision, Order No. WQO 2002-0015, which cites the federal regulations, 40 CFR 122.41(m), as allowing bypass only for essential maintenance to assure efficient operation.

2. Discharge of wastewater is prohibited from 1 June to 30 September of each year because Lake Almanor is a prime recreational destination during the summer, with fishing and body contact recreation.

3. Discharge from the wetlands ponds to the lake is prohibited as the contents of the wetlands ponds may contain harmful levels of chlorine because wastewater discharged to the wetlands is not dechlorinated.

B. Technology-Based Effluent Limitations

1. Scope and Authority

Section 301(b) of the CWA and implementing USEPA permit regulations at 40 CFR 122.44 require that permits include conditions meeting applicable technology-based requirements at a minimum, and any more stringent effluent limitations necessary to meet applicable water quality standards. The discharge authorized by this Order must meet minimum federal technology-based requirements based on Secondary Treatment Standards at 40 CFR Part 133.

Following publication of the secondary treatment regulations, legislative history indicates that Congress was concerned that USEPA had not “sanctioned” the use of certain biological treatment techniques that were effective in achieving significant reductions in 5-day biochemical oxygen demand (BOD₅) and total suspended solids (TSS) for secondary treatment. Therefore to prevent unnecessary construction of costly new facilities, Congress included language in the 1981 amendment to the Construction Grants statutes [Section 23 of Pub. L. 97-147] that required USEPA to provide allowance for alternative biological treatment technologies such as trickling filters or waste stabilization ponds. In response to this requirement, definition of secondary treatment was modified on 20 September 1984 and 3 June 1985, and published in the revised secondary treatment regulations contained in 40 CFR 133.105. These regulations allow alternative limitations for facilities using trickling filters and waste stabilization ponds that meet the requirements for “equivalent to secondary treatment.” These “equivalent to secondary treatment” limitations are up to 45 mg/L (monthly average) and up to 65 mg/L (weekly average) for BOD₅ and TSS.

Therefore, POTWs that use waste stabilization ponds, identified in 40 CFR 133.103, as the principal process for secondary treatment and whose operation and maintenance data indicate that the TSS values specified in the equivalent-to-secondary regulations cannot be achieved, can qualify to have their minimum levels of effluent quality for TSS adjusted upwards.
Furthermore, in order to address the variations in facility performance due to geographic, climatic, or seasonal conditions in different States, the Alternative State Requirements (ASR) provision contained in 40 CFR 133.105(d) was written. ASR allows States the flexibility to set permit limitations above the maximum levels of 45 mg/L (monthly average) and 65 mg/L (weekly average) for TSS from lagoons. However, before ASR limitations for suspended solids can be set, the effluent must meet the BOD\textsubscript{5} limitations as prescribed by 40 CFR 133.102(a). Presently, the maximum TSS value set by the State of California for lagoon effluent is 95 mg/L. This value corresponds to a 30-day consecutive average or an average over duration of less than 30 days.

To be eligible for equivalent-to-secondary limitations, a POTW must meet all of the following criteria:

a. The principal treatment process must be either a trickling filter or waste stabilization pond.

b. The effluent quality consistently achieved, despite proper operations and maintenance, is in excess of 30 mg/L BOD\textsubscript{5} and TSS.

c. Water quality is not adversely affected by the discharge. (40 CFR 133.101(g))

The treatment works as a whole provides significant biological treatment such that a minimum 65 percent reduction of BOD\textsubscript{5} is consistently attained (30-day average).

2. Applicable Technology-Based Effluent Limitations

a. BOD\textsubscript{5} and TSS. Federal regulations at 40 CFR Part 133, establish the minimum weekly and monthly average level of effluent quality attainable by secondary treatment for BOD\textsubscript{5} and TSS. A daily maximum effluent limitation for BOD\textsubscript{5} and TSS is also included in the Order to ensure that the treatment works are not organically overloaded and operate in accordance with design capabilities. In addition, 40 CFR 133.102, in describing the minimum level of effluent quality attainable by secondary treatment, states that the 30-day average percent removal shall not be less than 85 percent. For facilities with pond or trickling filter systems, treatment equivalent to secondary treatment is authorized requiring BOD and TSS removal of a minimum of 65%. Since the discharger has historically been able to meet an average monthly effluent equal to 30 mg/L for BOD and TSS on most occasions, that treatment level is retained in this Order. As I/I becomes progressively less of a problem due to repairs being made on the collection system, it may become more difficult for the Discharger to meet these effluent limitations, due to higher strength wastewater. However, the aeration recently added to the ponds may, at least partially, deal with the increased waste strength.

b. Flow. The Facility was designed to provide a secondary treatment level of treatment for up to a dry weather design flow of 0.75 mgd. This Order contains an average dry weather discharge flow effluent limit of 0.5 mgd as dilution
studies were performed at that flow, which is the flow at which dilution credits were calculated.

c. pH. The secondary treatment regulations at 40 CFR Part 133 also require that pH be maintained between 6.0 and 9.0 standard units.

Table F-3 Summary of Technology-based Effluent Limitations, Discharge Point No. D-001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Monthly</td>
</tr>
<tr>
<td>BOD$_5$</td>
<td>mg/l</td>
<td>30</td>
</tr>
<tr>
<td>Total Suspended Solids1</td>
<td>mg/L</td>
<td>30</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removal</td>
<td></td>
<td>85% removal BOD$_5$ and TSS</td>
</tr>
</tbody>
</table>

C. Water Quality-Based Effluent Limitations (WQBELs)

1. Scope and Authority

Section 301(b) of the CWA and 40 CFR 122.44(d) require that permits include limitations more stringent than applicable federal technology-based requirements where necessary to achieve applicable water quality standards.

40 CFR 122.44(d)(1)(i) mandates that permits include effluent limitations for all pollutants that are or may be discharged at levels that have the reasonable potential to cause or contribute to an exceedance of a water quality standard, including numeric and narrative objectives within a standard. Where reasonable potential has been established for a pollutant, but there is no numeric criterion or objective for the pollutant, WQBELs must be established using: (1) USEPA criteria guidance under CWA section 304(a), supplemented where necessary by other relevant information; (2) an indicator parameter for the pollutant of concern; or (3) a calculated numeric water quality criterion, such as a proposed state criterion or policy interpreting the state’s narrative criterion, supplemented with other relevant information, as provided in 40 CFR 122.44(d)(1)(vi).

The process for determining reasonable potential and calculating WQBELs when necessary is intended to protect the designated uses of the receiving water as specified in the Basin Plan, and achieve applicable water quality objectives and criteria that are contained in other state plans and policies, or any applicable water quality criteria contained in the CTR and NTR.
2. Applicable Beneficial Uses and Water Quality Criteria and Objectives

The Basin Plan designates beneficial uses, establishes water quality objectives, and contains implementation programs and policies to achieve those objectives for all waters addressed through the plan. In addition, the Basin Plan implements State Water Board Resolution No. 88-63, which established state policy that all waters, with certain exceptions, should be considered suitable or potentially suitable for municipal or domestic supply.

The Basin Plan on page II-1.00 states: "Protection and enhancement of existing and potential beneficial uses are primary goals of water quality planning..." and with respect to disposal of wastewaters states that "...disposal of wastewaters is [not] a prohibited use of waters of the State; it is merely a use which cannot be satisfied to the detriment of beneficial uses."

The federal CWA section 101(a)(2), states: "it is the national goal that wherever attainable, an interim goal of water quality which provides for the protection and propagation of fish, shellfish, and wildlife, and for recreation in and on the water be achieved by July 1, 1983." Federal Regulations, developed to implement the requirements of the CWA, create a rebuttable presumption that all waters be designated as fishable and swimmable. Federal Regulations, 40 CFR sections 131.2 and 131.10, require that all waters of the State regulated to protect the beneficial uses of public water supply, protection and propagation of fish, shellfish, and wildlife, recreation in and on the water, agricultural, industrial and other purposes including navigation. Section 131.3(e), 40 CFR, defines existing beneficial uses as those uses actually attained after 28 November 1975, whether or not they are included in the water quality standards. Federal Regulation, 40 CFR section 131.10 requires that uses be obtained by implementing effluent limitations, requires that all downstream uses be protected and states that in no case shall a state adopt waste transport or waste assimilation as a beneficial use for any waters of the United States.

a. Receiving Water and Beneficial Uses. Lake Almanor was formed by the damming of the North Fork of the Feather River early in the 20th century. Currently, a portion of the outflow from the dam is discharged to the North Fork of the River, and a portion is discharged to Butt Lake for hydropower generation.

(1) Beneficial uses applicable to Lake Almanor are as follows:

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Receiving Water Name</th>
<th>Beneficial Use(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Lake Almanor</td>
<td>Existing:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydropower generation (POW); water contact recreation;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>warm freshwater habitat (WARM); cold freshwater habitat (COLD); spawning, reproduction, and/or early development, warm (SPWN); and wildlife habitat (WILD); Potential Municipal and Domestic Supply (MUN)</td>
</tr>
</tbody>
</table>
b. **Effluent and Ambient Background Data.** The reasonable potential analysis (RPA), as described in section IV.C.3 of this Fact Sheet, was based on data from April 2004 through March 2009, which includes effluent and ambient background data submitted in SMRs, the Report of Waste Discharge (ROWD), and data obtained by staff. Additional data collected by the California Department of Water Resources was also reviewed where there was minimal data from the self-monitoring reports to perform an analysis.

c. **Priority Pollutant Metals**

Hardness. While effluent limitations for hardness are not necessary in this Order, hardness is critical to the assessment of the need for, and the development of effluent limitations for certain metals. The *California Toxics Rule* and the *National Toxics Rule* contain water quality criteria for seven metals that vary as a function of hardness. The lower the hardness the lower the water quality criteria. The metals with hardness-dependent criteria include cadmium, copper, chromium III, lead, nickel, silver, and zinc.

This Order has established the criteria for hardness-dependent metals based on the reasonable worst-case ambient hardness as required by the SIP\(^1\), the CTR\(^2\) and State Water Board Order No. WQO 2008-0008 (City of Davis). The SIP and the CTR require the use of "receiving water" or "actual ambient" hardness, respectively, to determine effluent limitations for these metals. (SIP, § 1.2; 40 CFR § 131.38(c)(2), Table 4, note 4.) The CTR does not define whether the term “ambient,” as applied in the regulations, necessarily requires the consideration of upstream as opposed to downstream hardness conditions. In some cases, the hardness of effluent discharges changes the hardness of the ambient receiving water. Therefore, where reliable, representative data are available, the hardness value for calculating effluent limitations can be the downstream receiving water hardness, after mixing with the effluent (Order WQO 2008-0008, p. 11). The Regional Water Board thus has considerable discretion in determining ambient hardness (*id.*, p.10.).

The hardness values must also be protective under all flow conditions (*id.*, pp. 10-11). As discussed below, scientific literature provides a reliable method for calculating protective effluent limitations for metals with hardness-dependent CTR criteria, considering all discharge conditions. This methodology produces effluent limitations that prevent these metals from causing receiving water toxicity, while avoiding effluent limitations that are unnecessarily stringent.

\(^1\) The SIP does not address how to determine the hardness for application to the equations for the protection of aquatic life when using hardness-dependent metals criteria. It simply states, in Section 1.2, that the criteria shall be properly adjusted for hardness using the hardness of the receiving water.

\(^2\) The CTR requires that, for waters with a hardness of 400 mg/L (as CaCO\(_3\)), or less, the actual ambient hardness of the surface water must be used. It further requires that the hardness values used must be consistent with the design discharge conditions for design flows and mixing zones.
A 2006 Study\(^1\) evaluated the relationships between hardness and the CTR metals criteria as the effluent and receiving water mix. The 2006 Study demonstrates that it is necessary to evaluate all discharge conditions (e.g. high and low flow conditions) when determining the appropriate hardness for calculating effluent limitations for hardness-dependent metals. Simply using the lowest recorded receiving water hardness may result in over or under protective effluent limitations and would not represent the reasonable worst-case hardness of the receiving water.

As is discussed in detail below, using the methodology described in the 2006 Study, the Design Hardness for calculating protective hardness-dependent metals limits in this Order ranged from 42mg/L to 52 mg/L (as CaCO\(_3\)), depending on the metal. The upstream receiving water hardness ranged from 18 mg/L to 29 mg/L (as CaCO\(_3\)), based on three samples of the River upstream of the Lake however. Testing by the Department of water resources indicates that the hardness measured in the west arm of Lake Almanor has ranged from 30 to 46 mg/L. Therefore the River hardness values appear to be somewhat conservative.

As is discussed in detail below, using the methodology described in the 2006 Study, the Design Hardness for calculating protective hardness-dependent metals limits in this Order ranged from 42 mg/L to 52 mg/L (as CaCO\(_3\)), depending on the metal. The effluent hardness ranged from 52 mg/L to 76 mg/L (as CaCO\(_3\)).

The equation describing the total recoverable regulatory criterion, as established in the CTR, is as follows:

\[
\text{CTR Criterion} = e^{m(\ln(H)) + b} \quad \text{(Equation 1)}
\]

Where:

- \(H\) = Design Hardness
- \(b\) = metal- and criterion-specific constant
- \(m\) = metal- and criterion-specific constant

The constants “\(m\)” and “\(b\)” are specific to both the metal under consideration, and the type of total recoverable criterion (i.e. acute or chronic). The metal-specific values for these constants are provided in the CTR at paragraph (b)(2), Table 1. The Design Hardness “\(H\)” is the hardness of the receiving water that results in hardness-dependent metals effluent limits that are adequately protective under all discharge conditions.

The 2006 Study demonstrated that the relationship between hardness and the

calculated criteria is the same for some metals, so the same procedure for estimating the Design Hardness may be used for these metals. The same procedure can be used for chronic cadmium, chromium III, copper, nickel, and zinc. These metals are hereinafter referred to as "Concave Down Metals". "Concave Down" refers to the shape of the curve represented by the relationship between hardness and the CTR criteria in Equation 1. Another similar procedure can be used for determining the Design Hardness for acute cadmium, lead, and acute silver, which are referred to hereafter as "Concave Up Metals".

Design Hardness for Concave Down Metals – For Concave Down Metals (i.e. chronic cadmium, chromium III, copper, nickel, and zinc) the 2006 study demonstrates that effluent limits based on a Design Hardness equivalent to the lowest recorded effluent hardness is adequately protective under all discharge conditions. The minimum effluent hardness was 52 mg/L (as CaCO₃), based on eight samples from June 2006 to November 2008. While the upstream receiving water hardness varied from 18 mg/L to 29 mg/L (as CaCO₃). Using a Design Hardness of 52 mg/L for all Concave Down Metals will result in effluent limitations that are protective under all discharge conditions, as demonstrated in Table F-5, below. This example assumed the following conservative conditions:

- Receiving water always at the lowest observed upstream receiving water hardness (i.e. 18 mg/L as CaCO₃)
- Upstream receiving water copper concentration always at the CTR criteria (i.e. no assimilative capacity). Based on available data, the receiving water never exceeded the CTR criteria for any metal with hardness-dependent criteria.

As demonstrated in Table F-5, a Design Hardness of 52 mg/L results in effluent limits that are protective under all discharge conditions (i.e. the Mixed Downstream Ambient Copper Concentration never exceed the Mixed Downstream Ambient Criteria). In this example, the effluent is always in compliance with the CTR criteria and any mixture of the effluent and receiving water is always in compliance with the CTR criteria. Effluent limits based on a lower hardness (e.g. lowest upstream receiving water hardness) would also be protective, but is overly protective and would result in unreasonably stringent effluent limits. Therefore, a Design Hardness of 52 mg/L has been used in this Order for all Concave Down Metals.
Table F-5: Copper Design Hardness Evaluation

<table>
<thead>
<tr>
<th>Effluent Fraction</th>
<th>Design Hardness</th>
<th>Effluent Copper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52 mg/L</td>
<td>5.7 µg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effluent Fraction</th>
<th>Mixed Downstream Ambient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hardness² (mg/L)</td>
<td>Criteria³ (µg/L)</td>
</tr>
<tr>
<td>1%</td>
<td>18.34</td>
<td>2.2</td>
</tr>
<tr>
<td>25%</td>
<td>26.5</td>
<td>3.0</td>
</tr>
<tr>
<td>50%</td>
<td>35</td>
<td>3.8</td>
</tr>
<tr>
<td>75%</td>
<td>43.5</td>
<td>4.6</td>
</tr>
<tr>
<td>100%</td>
<td>52</td>
<td>5.3</td>
</tr>
</tbody>
</table>

¹ Effluent Copper concentration calculated using Equation 1 for chronic criteria at the Design Hardness.
² Mixed Downstream Ambient Hardness is the mixture of the receiving water and effluent hardness using the lowest observed hardnesses (i.e. 18 mg/L and 52 mg/L for the receiving water and effluent, respectively)
³ Mixed Downstream Ambient Criteria is the chronic criteria calculated using Equation 1 at the Mixed Hardness.
⁴ Mixed Downstream Ambient Copper concentration is the mixture of the receiving water and effluent copper concentrations using a receiving water copper concentration assumed to be at the chronic criteria (calculated using 18 mg/L hardness) and the effluent copper concentration equal to the Effluent Copper concentration.

Design Hardness for Concave Up Metals – For Concave Up Metals (i.e. acute cadmium, lead, and acute silver), the 2006 Study also demonstrates that the Design Hardness must not exceed the lowest recorded effluent hardness in order to be adequately protective. However, for these metals the Design Hardness is not readily apparent, due to a different relationship between hardness and the metals criteria. Based on the 2006 Study, it is necessary to use an iterative approach to determine the appropriate Design Hardness to calculate effluent limits that are protective under all discharge conditions.

A similar example as was done for the Concave Down Metals is shown below for lead, cadmium, and silver (see Tables F-6, F-7, and F-8). The same conservative assumptions for the receiving water were made. As shown in following tables, the Design Hardness is different for each constituent. A Design Hardness of 47, 50, and 42 mg/L for acute lead, cadmium, and acute silver, respectively, result in effluent limits that are protective under all discharge conditions. In these examples, the effluent is always in compliance with the CTR criteria and any mixture of the effluent and receiving water is always in compliance with the CTR criteria. Use of a lower hardness (e.g. the lowest upstream receiving water hardness) is also protective, but is overly protective and would lead to unreasonably stringent effluent limits. Therefore, a Design Hardness of 47, 50, and 42 mg/L for acute silver, lead, and acute cadmium, respectively, has been used in this Order.
Table F-6: Lead Design Hardness Evaluation

<table>
<thead>
<tr>
<th>Effluent Fraction</th>
<th>Mixed Hardness (mg/L as CaCO₃)</th>
<th>Mixed Criteria (ug/L)</th>
<th>Mixed Lead Concentration (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>18.34</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>25%</td>
<td>26.5</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>50%</td>
<td>35</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>75%</td>
<td>43.5</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>100%</td>
<td>52</td>
<td>1.4</td>
<td>1.2</td>
</tr>
</tbody>
</table>

1. Effluent Lead concentration calculated using Equation 1 for chronic criteria at the Design Hardness.
2. Mixed Downstream Ambient Hardness is the mixture of the receiving water and effluent hardness using the lowest observed hardnesses (i.e. 18 mg/L and 52 mg/L for the receiving water and effluent, respectively).
3. Mixed Downstream Ambient Criteria is the chronic criteria calculated using Equation 1 at the Mixed Hardness.
4. Mixed Downstream Ambient Lead concentration is the mixture of the receiving water and effluent lead concentrations using a receiving water lead concentration assumed to be at the chronic criteria (calculated using 18 mg/L hardness) and the effluent lead concentration equal to the Effluent Lead concentration.

Table F-7: Cadmium Design Hardness Evaluation

<table>
<thead>
<tr>
<th>Effluent Fraction</th>
<th>Mixed Hardness (mg/L as CaCO₃)</th>
<th>Mixed Criteria (ug/L)</th>
<th>Mixed Cadmium Concentration (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>18.34</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>25%</td>
<td>26.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>50%</td>
<td>35</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>75%</td>
<td>43.5</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>100%</td>
<td>52</td>
<td>2.2</td>
<td>2.1</td>
</tr>
</tbody>
</table>

1. Effluent Cadmium concentration calculated using Equation 1 for chronic criteria at the Design Hardness.
2. Mixed Downstream Ambient Hardness is the mixture of the receiving water and effluent hardness using the lowest observed hardnesses (i.e. 18 mg/L and 52 mg/L for the receiving water and effluent, respectively).
3. Mixed Downstream Ambient Criteria is the chronic criteria calculated using Equation 1 at the Mixed Hardness.
4. Mixed Downstream Ambient Cadmium concentration is the mixture of the receiving water and effluent cadmium concentrations using a receiving water cadmium concentration assumed to be at the chronic criteria (calculated using 18 mg/L hardness) and the effluent cadmium concentration equal to the Effluent Cadmium concentration.
satisfaction of the Regional Board that the mixing zone will not adversely impact beneficial uses. If allowed, different mixing zones may be designated for different types of objectives, including, but not limited to, acute aquatic life objectives, chronic aquatic life objectives, human health objectives, and acute and chronic whole effluent toxicity objectives, depending in part on the averaging period over which the objectives apply. In determining the size of such mixing zones, the Regional Board will consider the applicable procedures and guidelines in the EPA’s Water Quality Standards Handbook and the [TSD]. Pursuant to EPA guidelines, mixing zones designated for acute aquatic life objectives will generally be limited to a small zone of initial dilution in the immediate vicinity of the discharge."

Section 1.4.2 of the SIP states, in part, "...with the exception of effluent limitations derived from TMDLs, in establishing and determining compliance with effluent limitations for applicable human health, acute aquatic life, or chronic aquatic life priority pollutant criteria/objectives or the toxicity objective for aquatic life protection in a basin plan, the Regional Board may grant mixing zones and dilution credits to dischargers ... The applicable priority pollutant criteria and objectives are to be met throughout a water body except within any mixing zone granted by the Regional Board. The allowance of mixing zones is discretionary and shall be determined on a discharge-by-discharge basis. The Regional Board may consider allowing mixing zones and dilution credits only for discharges with a physically identifiable point of discharge that is regulated through an NPDES permit issued by the Regional Board."

Section 1.4.2.1 of the SIP defines a dilution credit as, "a numerical value associated with the mixing zone that accounts for the receiving water entrained into the discharge. The dilution credit is a value used in the calculation of effluent limitations. Dilution credits may be limited or denied on a pollutant-by-pollutant basis, which may result in a dilution credit for all, some or no priority pollutants in a discharge." Section 1.4.2 of the SIP states that when establishing and determining compliance with effluent limitations for applicable human health, acute or chronic aquatic life priority pollutant criteria/objectives, or the narrative toxicity objective for aquatic life protection contained in a Basin Plan, that the Regional Water Board has the discretion to grant mixing zones and dilution credits on a discharge-by-discharge basis. In granting a mixing zone, the SIP states that a mixing zone shall be as small as practicable, and meet the conditions provided in Section 1.4.2.2 of the SIP.

As described above, the discharge from the Facility is to Lake Almanor, by an open channel that runs through a Marsh on its way to the Lake. During wastewater travel through the marsh, the wastewater flow is augmented by water in the Marsh. Upon entering the Lake, the effluent encounters a large area that is very shallow—several inches to several feet. In addition, the effluent may be subject to wind action and may be more, or less, buoyant than the Lake water, depending on the time of day and weather, due to solar heating of the shallow Lake bottom.
Flow Science, Inc. performed a dilution study of the Lake and determined that a dilution of 7:1 occurred within a very short distance of the discharge (approximately seventy-five feet in accordance with their graphic of the discharge. Within several hundred feet, dilution had increased to in excess of 50:1). Therefore this order uses a dilution credit of 7:1 for both acute and chronic dilution at effluent flows of up to 0.5 MGD (The standard methodologies in the USEPA support document of using a 1Q10, 7Q10 or harmonic mean flow for the receiving water are not applicable for a Lake Discharge.). The Discharger must perform additional effluent dilution studies at higher effluent flows to demonstrate adequate dilution if they wish to discharge at such higher rates.

Regarding mixing zones, the SIP states, "A mixing zone shall be as small as practicable. The following conditions must be met in allowing a mixing zone:

A: A mixing zone shall not:

(1) compromise the integrity of the entire water body;

(2) cause acutely toxic conditions to aquatic life passing through the mixing zone;

(3) restrict the passage of aquatic life;

(4) adversely impact biologically sensitive or critical habitats, including, but not limited to, habitat of species listed under federal or State endangered species laws;

(5) produce undesirable or nuisance aquatic life;

(6) result in floating debris, oil, or scum;

(7) produce objectionable color, odor, taste, or turbidity;

(8) cause objectionable bottom deposits;

(9) cause nuisance;

(10) dominate the receiving water body or overlap a mixing zone from different outfalls; or

(11) be allowed at or near any drinking water intake. A mixing zone is not a source of drinking water. To the extent of any conflict between this determination and the Sources of Drinking Water Policy (Resolution No. 88-63), this SIP supersedes the provisions of that policy."
3. Determining the Need for WQBELs

a. The Regional Water Board conducted the RPA in accordance with section 1.3 of the SIP. Although the SIP applies directly to the control of CTR priority pollutants, the State Water Board has held that the Regional Water Board may use the SIP as guidance for water quality-based toxics control. The SIP states in the introduction “The goal of this Policy is to establish a standardized approach for permitting discharges of toxic pollutants to non-ocean surface waters in a manner that promotes statewide consistency.” Therefore, in this Order the RPA procedures from the SIP were used to evaluate reasonable potential for both CTR and non-CTR constituents based on information submitted as part of the application, in studies, and as directed by monitoring and reporting programs.

b. Constituents with Limited Data. Reasonable potential cannot be determined for the following constituents because effluent data are limited. The Discharger is required to continue to monitor for these constituents in the effluent using analytical methods that provide the best feasible detection limits. When additional data become available, further analysis will be conducted to determine whether to add numeric effluent limitations or to continue monitoring.

i. **Carbon Tetrachloride.** Based on the limited data provided, the Regional Water Board is unable to determine if the discharge has a reasonable potential to cause or contribute to an in-stream excursion above the CTR criterion for Carbon Tetrachloride. WQBELs for Carbon Tetrachloride are not included in this Order due to the fact that 1) there is limited data, and 2) Lake Almanor is not listed as impaired for carbon tetrachloride. Monitoring for Carbon Tetrachloride is included in the Order.

ii. **Chloroform.** The Basin Plan contains the Policy for Application of Water Quality Objectives, which provides that narrative objectives may be translated using numerical limits published by other agencies and organizations. The California Environmental Protection Agency (Cal/EPA) Office of Environmental Health Hazard Assessment (OEHHA) has published the Toxicity Criteria Database, which contains cancer potency factors for chemicals, including chloroform, that have been used as a basis for regulatory actions by the boards, departments and offices within Cal/EPA. The OEHHA cancer potency value for oral exposure to chloroform is 0.031 milligrams per kilogram body weight per day (mg/kg-day). By applying standard toxicological assumptions used by OEHHA and USEPA in evaluating health risks via drinking water exposure of 70 kg body weight and two liters per day water consumption, this cancer potency factor is equivalent to a concentration in drinking water of 1.1 μg/L (ppb) at the one-in-a-million cancer risk level. This risk level is consistent with that used by the Department of Health Services (DHS) to set de minimis risks from involuntary exposure to carcinogens in drinking water in developing MCLs and Action Levels and by OEHHA to set negligible cancer risks in developing Public

1 See Order WQO 2001-16 (Napa) and Order WQO 2004-0013 (Yuba City).
Health Goals for drinking water. The one-in-a-million cancer risk level is also mandated by USEPA in applying human health protective criteria contained in the NTR and the CTR to priority toxic pollutants in California surface waters.

The observed chloroform MEC was 0.8 µg/L. The equivalent concentration for the OEHHA cancer potency factor is 1.1 µg/L. The MEC does not exceed the cancer potency factor even excluding dilution; therefore, an Effluent Limitation for chloroform is not required. However, monitoring for total trihalomethanes is included in this Order.

c. **Constituents with No Reasonable Potential.** WQBELs are not included in this Order for constituents that do not demonstrate reasonable potential; however, monitoring for those pollutants is established in this Order as required by the SIP. If the results of effluent monitoring demonstrate reasonable potential, this Order may be reopened and modified by adding an appropriate effluent limitation.

d. **Constituents with Reasonable Potential.** The Regional Water Board finds that the discharge has a reasonable potential to cause or contribute to an in-stream excursion above a water quality standard for ammonia and copper. WQBELs for these constituents are included in this Order. A summary of the RPA is provided in Attachment G, and a detailed discussion of the RPA for each constituent is provided below.

i. **Ammonia**

(a) **WQO.** The NAWQC for the protection of freshwater aquatic life for total ammonia recommends acute (1-hour average; criteria maximum concentration or CMC) standards based on pH and chronic (30-day average; criteria continuous concentration or CCC) standards based on pH and temperature. USEPA also recommends that no 4-day average concentration should exceed 2.5 times the 30-day CCC. USEPA found that as pH increased, both the acute and chronic toxicity of ammonia increased. Salmonids were more sensitive to acute toxicity effects than other species. However, while the acute toxicity of ammonia was not influenced by temperature, it was found that invertebrates and young fish experienced increasing chronic toxicity effects with increasing temperature. Because Lake Almanor has a beneficial use of cold freshwater habitat and the presence of salmonids and early fish life stages in the Lake Almanor is well documented, the recommended criteria for waters where salmonids and early life stages are present were used.

The maximum permitted effluent pH is 9.0, as the Basin Plan objective for pH in the receiving stream is the range of 6.5 to 8.5. Water Quality information obtained by the Department of Water Resources indicates that pH in the West Branch of the Lake has been as high as 8.7. To protect against the worst-case short-term exposure of an organism, a pH value of 8.7 was used to derive the acute criterion. The resulting acute criterion is 1.48 mg/L, prior to consideration of any dilution credit.
The maximum observed 30-day average temperature during the month of May (the month highest temperatures are likely to occur and discharge is allowed) and the maximum observed pH of the Lake were used to calculate the 30-day CCC. The maximum observed 30-day average effluent temperature was 17.5°C, for May of 2008. (The maximum observed effluent pH value was 8.9 during discharge, although effluent pH is generally much lower than this value). Using a pH value of 8.7 (highest observed pH of Lake Almanor), and the worst-case temperature value of 17.5°C, the resulting 30-day CCC is 0.642 mg/L (as N), prior to any dilution allowance. The 4-day average concentration is derived in accordance with the USEPA criterion as 2.5 times the 30-day CCC. Based on the 30-day CCC of 0.642 mg/L (as N), the 4-day average concentration that should not be exceeded is 1.605 mg/L (as N).

(b) RPA Results. Untreated domestic wastewater contains ammonia. Nitrification is a biological process that converts ammonia to nitrite and nitrite to nitrate. Denitrification is a process that converts nitrate to nitrite or nitric oxide and then to nitrous oxide or nitrogen gas, which is then released to the atmosphere. The Discharger does not currently use nitrification to remove ammonia from the waste stream. Inadequate or incomplete nitrification may result in the discharge of ammonia to the receiving stream. Ammonia is known to cause toxicity to aquatic organisms in surface waters. Discharges of ammonia would violate the Basin Plan narrative toxicity objective. The maximum effluent concentration (MEC) for ammonia was 10.5 μg/L while the maximum observed upstream receiving water concentration was 0.10μg/L. Therefore, ammonia in the discharge has a reasonable potential to cause or contribute to an in-stream excursion above the NAWQC.

(c) WQBELs. The Regional Water Board calculates WQBELs in accordance with SIP procedures for non-CTR constituents, and ammonia is a non-CTR constituent. The SIP procedure assumes a 4-day averaging period for calculating the long-term average discharge condition (LTA). However, USEPA recommends modifying the procedure for calculating permit limits for ammonia using a 30-day averaging period for the calculation of the LTA corresponding to the 30-day CCC. Therefore, while the LTAs corresponding to the acute and 4-day chronic criteria were calculated according to SIP procedures, the LTA corresponding to the 30-day CCC was calculated assuming a 30-day averaging period. The lowest LTA representing the acute, 4-day CCC, and 30-day CCC is then selected for deriving the average monthly effluent limitation (AMEL) and the maximum daily effluent limitation (MDEL). The remainder of the WQBEL calculation for ammonia was performed according to the SIP procedures. This Order contains a final average monthly effluent limitation (AMEL) of 5.4 mg/L and maximum daily effluent limitation (MDEL) of 10.8 for ammonia based on the 30 day CCC.
(d) Plant Performance and Attainability. Analysis of the effluent data shows that the MEC of 10.5 µg/L is less than the applicable MDEP and the average effluent concentration of 4.1 mg/L is less than the average monthly effluent limitation (See Attachment H). Based on the sample results for the effluent, the limitations appear to allow the Discharger to comply with effluent limitations.

ii. Copper

(a) WQO. The CTR includes hardness dependent criteria for the protection of freshwater aquatic life for copper. Using the default conversion factors and reasonable worst-case measured hardness, as described in section IV.C.2.c of this Fact Sheet (the DWR data showing a lowest hardness of 30 mg/l in the West Branch of the Lake was used for dilution credit calculations, as it is considered the most reliable and relevant for the Lake itself, the applicable acute (1-hour average) criterion is 4.94 at the edge of the mixing zone and and the applicable chronic (4-day average) criterion is 3.62, as total recoverable at the edge of the mixing zone, prior to allowance for dilution credits in the Lake. After consideration of the mixing zone, effluent limits are 22 µg/L as a monthly average and 36 µg/L as a daily max.

(b) RPA Results. The maximum effluent concentration (MEC) for copper was 17 µg/L (as total recoverable) while the maximum observed upstream receiving water concentration was 0.5 µg/L (as total recoverable). Therefore, copper in the discharge has a reasonable potential to cause or contribute to an in-stream excursion above the CTR criterion for the protection of freshwater aquatic life.

(c) WQBELs. The receiving water contains assimilative capacity for copper, therefore, a dilution credit of 7:1 was allowed in the development of the WQBELs for copper. This Order contains a final average monthly effluent limitation (AMEL) of 22 µg/L and maximum daily effluent limitation (MDEL) for copper of 36 µg/L, based on the CTR criterion for the protection of freshwater aquatic life.

(d) Plant Performance and Attainability. Analysis of the effluent data shows that the MEC of 17 µg/L is less than applicable WQBELs. Based on the sample results for the effluent, the limitations appear to allow the discharger to immediately comply with the effluent limitation.

iii. Chlorine Residual

(a) WQO. USEPA developed NAWQC for protection of freshwater aquatic life for chlorine residual. The recommended 4-day average (chronic) and 1-hour average (acute) criteria for chlorine residual are 0.011 µg/L and 0.019 µg/L, respectively. These criteria are protective of the Basin Plan's narrative toxicity objective.
(b) RPA Results. The Discharger uses chlorine for disinfection, which is extremely toxic to aquatic organisms. The Discharger uses a sulfur dioxide process to dechlorinate the effluent prior to discharge to Lake Almanor. Due to the existing chlorine use and the potential for chlorine to be discharged, the discharge has a reasonable potential to cause or contribute to an in-stream excursion above the NAWQC.

(c) WQBELs. The USEPA Technical Support Document for Water Quality-Based Toxics Control [EPA/505/2-90-001] contains statistical methods for converting chronic (4-day) and acute (1-hour) aquatic life criteria to average monthly and maximum daily effluent limitations based on the variability of the existing data and the expected frequency of monitoring. However, because chlorine is an acutely toxic constituent that can and will be monitored continuously, an average 1-hour limitation is considered more appropriate than an average daily limitation. This Order contains a 4-day average effluent limitation and 1-hour average effluent limitation for chlorine residual of 0.011 µg/L and 0.019 µg/L, respectively, based on USEPA’s NAWQC, which implements the Basin Plan’s narrative toxicity objective for protection of aquatic life.

(d) Plant Performance and Attainability. Analysis of the effluent data shows that the MEC of 0.6 µg/L is greater than the applicable WQBELs. However, this excursion occurred on only one occasion, and the Discharger has otherwise been able to maintain compliance with the WQBELs. The Regional Water Board concludes, therefore, that immediate compliance with these effluent limitations is feasible.

iv. Nitrate and Nitrite

(a) WQO. DPH has adopted Primary MCLs for the protection of human health for nitrite and nitrate that are equal to 1 mg/L and 10 mg/L (measured as nitrogen), respectively. DPH has also adopted a primary MCL of 10,000 µg/L for the sum of nitrate and nitrite, measured as nitrogen.

USEPA has developed a primary MCL and an MCL goal of 1,000 µg/L for nitrite (as nitrogen). For nitrate, USEPA has developed Drinking Water Standards (10,000 µg/L as Primary MCL) and NAWQC for protection of human health (10,000 µg/L for non-cancer health effects). Recent toxicity studies have indicated a possibility that nitrate is toxic to aquatic organisms.

(b) RPA Results. Untreated domestic wastewater contains ammonia. Nitrification is a biological process that converts ammonia to nitrite and nitrite to nitrate. Denitrification is a process that converts nitrate to nitrite or nitric oxide and then to nitrous oxide or nitrogen gas, which is then released to the atmosphere. Nitrate and nitrite are known to cause adverse health effects in humans. Inadequate or incomplete denitrification
may result in the discharge of nitrate and/or nitrite to the receiving stream. The Chester Plant has limited ability to denitrify. The conversion of ammonia to nitrites and the conversion of nitrites to nitrates present a reasonable potential for the discharge to cause or contribute to an in-stream excursion above the Primary MCLs for nitrite and nitrate.

(c) WQBELs. There is assimilative capacity for nitrate and nitrite in the receiving water. There are no water intakes in Lake Almanor, and complete mixing in the Lake would effectively prevent any exceedance of the water quality objective at any downstream water intake.

(d) Plant Performance and Attainability. This Order does not contain a final effluent limitation for nitrate or nitrite due to the magnitude of dilution in Lake Almanor, and the fact that there are no drinking water intakes in the Lake.

v. Pathogens

The Regional Water Board, when developing NPDES permits, implements recommendations by DPH for the appropriate disinfection requirements for the protection of MUN, REC-1 and AGR. The disinfection requirements in the proposed Order implement the DPH recommendations and are fully protective of the beneficial uses of the receiving water.

(a) WQO. In a letter to the Regional Water Board dated 8 April 1999, DPH indicated it would consider wastewater discharged to water bodies with identified beneficial uses of irrigation or contact recreation and where the wastewater receives dilution of more than 20:1 to be adequately disinfected if the effluent coliform concentration does not exceed 23 MPN/100 mL as a 7-day median and if the effluent coliform concentration does not exceed 240 MPN/100 mL more than once in any 30 day period.

(b) RPA Results. Body contact water recreation is a beneficial use of Lake Almanor, although minimal recreation occurs during times of discharge because of the frigid Lake temperatures. A Dilution study performed by Flow Science, Inc., in 2005 indicated that dilution of wastewater in the Lake occurs fairly rapidly and in an area that would not be expected to have any significant body contact recreation because the Lake is very shallow in the area of the discharge. Therefore, the DPH requirements for a dilution greater than 20:1 are applicable to the discharge.

(c) WQBELs. Pursuant to guidance from DPH, this Order includes effluent limitations for total coliform organisms of 23 MPN/100 mL as a 7-day median and 240 MPN/100 mL, not to be exceeded more than once in a 30-day period. These coliform limits are imposed to protect the beneficial uses of the receiving water, including public health through contact recreation and drinking water pathways.
(d) **Plant Performance and Attainability.** The discharger has had problems, meeting a 23 mg/L median, but generally not during times of discharge to the Lake. In addition, the Discharger has recently spent $300,000 to add aeration to the ponds, which should improve effluent BOD removal and therefore disinfection efficiency. To date, the added aeration has appeared to be effective in helping to reduce effluent coliform. Still, it is uncertain whether the Discharger can meet effluent coliform, and this fact is addressed in the CDO accompanying this Order.

vi. **pH**

(a) **WQO.** The Basin Plan includes a water quality objective for surface waters (except for Goose Lake) that the "...pH shall not be depressed below 6.5 nor raised above 8.5. Changes in normal ambient pH levels shall not exceed 0.5 in fresh waters with designated COLD or WARM beneficial uses."

(b) **RPA Results.** The discharge of facultative pond effluent has a reasonable potential to cause or contribute to an excursion above the Basin Plan's numeric objectives for pH.

(c) **WQBELs.** Effluent limitations for pH of 6.0 as an instantaneous minimum and 9.0 as an instantaneous maximum are included in this Order based on protection of the Basin Plan objectives for pH.

(d) **Plant Performance and Attainability.** The Discharger has not historically exceeded these effluent pH limitations and therefore should be able to continue to achieve them.

vii. **Salinity**

(a) **WQO.** There are no USEPA water quality criteria for the protection of aquatic organisms for electrical conductivity, total dissolved solids, sulfate, and chloride. The Basin Plan contains a chemical constituent objective that incorporates state MCLs, contains a narrative objective, and contains numeric water quality objectives for electrical conductivity, total dissolved solids, sulfate, and chloride.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Agricultural WQ Goal</th>
<th>Secondary MCL</th>
<th>Effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg</td>
<td>900, 1600, 2200</td>
<td>229</td>
</tr>
<tr>
<td>EC (µmhos/cm)</td>
<td>Varies²</td>
<td>500, 1000, 1500</td>
<td>183</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>Varies</td>
<td>250, 500, 600</td>
<td>7.7</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>Varies</td>
<td>250, 500, 600</td>
<td>24.7</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>Varies</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>
1 Agricultural water quality goals based on Water Quality for Agriculture, Food and Agriculture Organization of the United Nations—Irrigation and Drainage Paper No. 29, Rev. 1 (R.S. Ayers and D.W. Westcot, Rome, 1985)

2 The EC level in irrigation water that harms crop production depends on the crop type, soil type, irrigation methods, rainfall, and other factors. An EC level of 700 umhos/cm is generally considered to present no risk of salinity impacts to crops. However, many crops are grown successfully with higher salinities.

3 The secondary MCLs are stated as a recommended level, upper level, and a short-term maximum level.

Chloride. The secondary MCL for chloride is 250 mg/L, as a recommended level, 500 mg/L as an upper level, and 600 mg/L as a short-term maximum. The recommended agricultural water quality goal for chloride, that would apply the narrative chemical constituent objective, is 106 mg/L as a long-term average based on Water Quality for Agriculture, Food and Agriculture Organization of the United Nations—Irrigation and Drainage Paper No. 29, Rev. 1 (R.S. Ayers and D.W. Westcot, Rome, 1985). The 106 mg/L water quality goal is intended to protect against adverse effects on sensitive crops when irrigated via sprinklers.

Electrical Conductivity. The secondary MCL for EC is 900 μmhos/cm as a recommended level, 1600 μmhos/cm as an upper level, and 2200 μmhos/cm as a short-term maximum. The agricultural water quality goal, that would apply the narrative chemical constituents objective, is 700 μmhos/cm as a long-term average based on Water Quality for Agriculture, Food and Agriculture Organization of the United Nations—Irrigation and Drainage Paper No. 29, Rev. 1 (R.S. Ayers and D.W. Westcot, Rome, 1985). The 700 μmhos/cm agricultural water quality goal is intended to prevent reduction in crop yield, i.e. a restriction on use of water, for salt-sensitive crops, such as beans, carrots, turnips, and strawberries. These crops are not currently grown in the area and are unlikely to be grown in the future. Most other crops can tolerate higher EC concentrations without harm, however, as the salinity of the irrigation water increases, more crops are potentially harmed by the EC, or extra measures must be taken by the farmer to minimize or eliminate any harmful impacts.

Sulfate. The secondary MCL for sulfate is 250 mg/L as a recommended level, 500 mg/L as an upper level, and 600 mg/L as a short-term maximum. Secondary MCLs are based upon “consumer acceptance” of a water supply and are no based upon protection of public health.

Total Dissolved Solids. The secondary MCL for TDS is 500 mg/L as a recommended level, 1000 mg/L as an upper level, and 1500 mg/L as a short-term maximum. The recommended agricultural water quality goal for TDS, that would apply the narrative chemical constituent objective, is 450 mg/L as a long-term average based on Water Quality
for Agriculture, Food and Agriculture Organization of the United Nations—Irrigation and Drainage Paper No. 29, Rev. 1 (R.S. Ayers and D.W. Westcot, Rome, 1985). Water Quality for Agriculture evaluates the impacts of salinity levels on crop tolerance and yield reduction, and establishes water quality goals that are protective of the agricultural uses. The 450 mg/L water quality goal is intended to prevent reduction in crop yield, i.e. a restriction on use of water, for salt-sensitive crops. Only the most salt sensitive crops require irrigation water of 450 mg/L or less to prevent loss of yield. Most other crops can tolerate higher TDS concentrations without harm, however, as the salinity of the irrigation water increases, more crops are potentially harmed by the TDS, or extra measures must be taken by the farmer to minimize or eliminate any harmful impacts.

(b) RPA Results.

Chloride. Chloride concentrations in the effluent ranged from 23 to 26 mg/L, based on three samples, with an average of 24.7 mg/L. These levels do not exceed the agricultural water goal. Background concentrations in Lake Almanor are not available, but are not expected to exceed the agricultural water quality goal due to the low TDS and electrical conductivity of the Lake.

Electrical Conductivity. A review of the Discharger's monitoring reports shows an average effluent EC of 229 μmhos/cm, with a range from 169 μmhos/cm to 254 μmhos/cm. These levels do not exceed the agricultural water goal. The background receiving water EC averaged 73 μmhos/cm with a limited data set. Water quality samples obtained by the Department of Water Resources in the West Arm of the Lake showed electrical conductivities ranging from 81 to 122 umhos/cm (64 samples obtained from 1989 to 2004). Therefore, it does not appear that electrical conductivity in surface water would exceed any water quality objective.

Sulfate. Sulfate concentrations in the effluent ranged from 7.0 mg/L to 8.1 mg/L, with an average of 7.7mg/L. These levels do not exceed the secondary MCL. Background concentrations in Lake Almanor are not available but are not expected to exceed the secondary MCL.

Total Dissolved Solids. The average TDS effluent concentration was 183 mg/L with concentrations ranging from 130 mg/L to 230 mg/L. These levels do not exceed the applicable water quality objectives. The background receiving water TDS ranged from 57mg/L to 75 mg/L, with an average of 67mg/L.

(c) WQBELs. Based on the relatively low reported salinity, the discharge does not have reasonable potential to cause or contribute to an in-stream excursion of water quality objectives for salinity. However, since the
Discharger discharges to Lake Almanor, on the North Fork of the Feather River, and eventually the Sacramento-San Joaquin Delta, of additional concern is the salt contribution to Delta waters. Allowing the Discharger to increase its current salt loading may be contrary to the Region-wide effort to address salinity in the Central Valley. Therefore, this Order includes testing of potable water EC as well as effluent EC.

To ensure that the Discharger will continue to control the discharge of salinity, this Order includes a requirement to develop and implement a salinity evaluation and minimization plan. Also water supply monitoring is required to evaluate the relative contribution of salinity from the source water to the effluent.

(d) Plant Performance and Attainability. At this time, no effluent limitation is being set for effluent salinity.

4. WQBEL Calculations

a. This Order includes WQBELs for ammonia and copper. The general methodology for calculating WQBELs based on the different criteria/objectives is described in subsections IV.C.4.b through e, below. See Attachment H for the WQBEL calculations.

b. Effluent Concentration Allowance. For each water quality criterion/objective, the ECA is calculated using the following steady-state mass balance equation from Section 1.4 of the SIP:

\[
ECA = C + D(C - B) \quad \text{where } C>B, \text{ and} \\
ECA = C \quad \text{where } C\leq B
\]

where:
- ECA = effluent concentration allowance
- D = dilution credit
- C = the priority pollutant criterion/objective
- B = the ambient background concentration.

According to the SIP, the ambient background concentration (B) in the equation above shall be the observed maximum with the exception that an ECA calculated from a priority pollutant criterion/objective that is intended to protect human health from carcinogenic effects shall use the arithmetic mean concentration of the ambient background samples. For ECAs based on MCLs, which implement the Basin Plan's chemical constituents objective and are applied as annual averages, an arithmetic mean is also used for B due to the long-term basis of the criteria.

c. Basin Plan Objectives and MCLs. For WQBELs based on site-specific numeric Basin Plan objectives or MCLs, the effluent limitations are applied directly as the
ECA as either an MDEL, AMEL, or average annual effluent limitations, depending on the averaging period of the objective.

d. **Aquatic Toxicity Criteria.** WQBELs based on acute and chronic aquatic toxicity criteria are calculated in accordance with Section 1.4 of the SIP. The ECAs are converted to equivalent long-term averages (i.e. LTAacute and LTACHronic) using statistical multipliers and the lowest LTA is used to calculate the AMEL and MDEL using additional statistical multipliers.

e. **Human Health Criteria.** WQBELs based on human health criteria, are also calculated in accordance with Section 1.4 of the SIP. The ECAs are set equal to the AMEL and a statistical multiplier was used to calculate the MDEL.

\[
AMEL = \text{mult}_{AMEL} \left[\min \left(M_A ECA_{acute}, M_C ECA_{chronic} \right) \right]^{LTA_{acute}}
\]

\[
MDEL = \text{mult}_{MDEL} \left[\min \left(M_A ECA_{acute}, M_C ECA_{chronic} \right) \right]^{LTA_{chronic}}
\]

\[
MDEL_{HH} = \left(\frac{\text{mult}_{MDEL}}{\text{mult}_{AMEL}} \right) AMEL_{HH}
\]

where:
- \text{mult}_{AMEL} = \text{statistical multiplier converting minimum LTA to AMEL}
- \text{mult}_{MDEL} = \text{statistical multiplier converting minimum LTA to MDEL}
- \text{MA} = \text{statistical multiplier converting acute ECA to LTA}_{acute}
- \text{MC} = \text{statistical multiplier converting chronic ECA to LTA}_{chronic}

Summary of Water Quality-Based Effluent Limitations

Discharge Point No. EFF-001

Table F-10. Summary of Water Quality-Based Effluent Limitations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Monthly</td>
</tr>
<tr>
<td>Ammonia</td>
<td>mg/L</td>
<td>5.4</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>22</td>
</tr>
</tbody>
</table>

5. **Whole Effluent Toxicity (WET)**

For compliance with the Basin Plan's narrative toxicity objective, this Order requires the Discharger to conduct whole effluent toxicity testing for acute and chronic toxicity, as specified in the Monitoring and Reporting Program (Attachment E, Section V.). This Order also contains effluent limitations for acute toxicity and requires the Discharger to implement best management practices to investigate the causes of, and identify corrective actions to reduce or eliminate effluent toxicity.
b. **Acute Aquatic Toxicity.** The Basin Plan contains a narrative toxicity objective that states, "*All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life.*" (Basin Plan at page III-8.00) The Basin Plan also states that, "*...effluent limits based upon acute biotoxicity tests of effluents will be prescribed where appropriate...*" USEPA Region 9 provided guidance for the development of acute toxicity effluent limitations in the absence of numeric water quality objectives for toxicity in its document titled "Guidance for NPDES Permit Issuance", dated February 1994. In section B.2. "Toxicity Requirements" (pgs. 14-15) it states that, "*In the absence of specific numeric water quality objectives for acute and chronic toxicity, the narrative criterion 'no toxics in toxic amounts' applies. Achievement of the narrative criterion, as applied herein, means that ambient waters shall not demonstrate for acute toxicity: 1) less than 90% survival, 50% of the time, based on the monthly median, or 2) less than 70% survival, 10% of the time, based on any monthly median. For chronic toxicity, ambient waters shall not demonstrate a test result of greater than 1 TUc.*" Accordingly, effluent limitations for acute toxicity have been included in this Order as follows:

Acute Toxicity. Survival of aquatic organisms in 96-hour bioassays of undiluted waste shall be no less than:

- Minimum for any one bioassay------------------------------- 70%
- Median for any three or more consecutive bioassays ------ 90%

c. **Chronic Aquatic Toxicity.** The Basin Plan contains a narrative toxicity objective that states, "*All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life.*" (Basin Plan at page III-8.00) Adequate chronic WET data is not available to determine if the discharge has reasonable potential to cause or contribute to an in-stream excursion above the Basin Plan's narrative toxicity objective.

(1) The Monitoring and Reporting Program of this Order requires chronic WET monitoring twice during the life of this permit for demonstration of compliance with the narrative toxicity objective. In addition to WET monitoring, the Special Provision in section VI.C.2.a. of the Order requires the Discharger to submit to the Regional Water Board an Initial Investigative TRE Work plan for approval by the Executive Officer, to ensure the Discharger has a plan to immediately move forward with the initial tiers of a TRE, in the event effluent toxicity is encountered in the future. The provision also includes a numeric toxicity monitoring trigger, requirements for accelerated monitoring, and requirements for TRE initiation if a pattern of toxicity is demonstrated.

Numeric chronic WET effluent limitations have not been included in
this Order. The SIP contains implementation gaps regarding the appropriate form and implementation of chronic toxicity limits. This has resulted in the petitioning of a NPDES permit in the Los Angeles Region\(^1\) that contained numeric chronic toxicity effluent limitations. To address the petition, the State Water Board adopted WQO 2003-012 directing its staff to revise the toxicity control provisions in the SIP. The State Water Board states the following in WQO 2003-012, "In reviewing this petition and receiving comments from numerous interested persons on the propriety of including numeric effluent limitations for chronic toxicity in NPDES permits for publicly-owned treatment works that discharge to inland waters, we have determined that this issue should be considered in a regulatory setting, in order to allow for full public discussion and deliberation. We intend to modify the SIP to specifically address the issue. We anticipate that review will occur within the next year. We therefore decline to make a determination here regarding the propriety of the final numeric effluent limitations for chronic toxicity contained in these permits." The process to revise the SIP is currently underway. Proposed changes include clarifying the appropriate form of effluent toxicity limits in NPDES permits and general expansion and standardization of toxicity control implementation related to the NPDES permitting process. Since the toxicity control provisions in the SIP are under revision it is infeasible to develop numeric effluent limitations for chronic toxicity. Therefore, this Order requires that the Discharger meet best management practices for compliance with the Basin Plan's narrative toxicity objective, as allowed under 40 CFR 122.44(k).

(2) To ensure compliance with the Basin Plan's narrative toxicity objective, the Discharger is required to conduct chronic WET testing, as specified in the Monitoring and Reporting Program (Attachment E section V.). Furthermore, the Special Provision contained at VI.C.2.a. of this Order requires the Discharger to investigate the causes of, and identify and implement corrective actions to reduce or eliminate effluent toxicity. If the discharge demonstrates a pattern of toxicity exceeding the numeric toxicity monitoring trigger, the Discharger is required to initiate a Toxicity Reduction Evaluation (TRE) in accordance with an approved TRE workplan. The numeric toxicity monitoring trigger is not an effluent limitation; it is the toxicity threshold at which the Discharger is required to perform accelerated chronic toxicity monitoring, as well as, the threshold to initiate a TRE if a pattern of effluent toxicity has been demonstrated.

\(^1\) In the Matter of the Review of Own Motion of Waste Discharge Requirements Order Nos. R4-2002-0121 [NPDES No. CA0054011] and R4-2002-0123 [NPDES NO. CA0055119] and Time Schedule Order Nos. R4-2002-0122 and R4-2002-0124 for Los Coyotes and Long Beach Wastewater Reclamation Plants Issued by the California Regional Water Quality Control Board, Los Angeles Region SWRCB/OCC FILES A-1496 AND 1496(a)
D. Final Effluent Limitations

1. Mass-based Effluent Limitations

40 CFR 122.45(f)(1) requires effluent limitations be expressed in terms of mass, with some exceptions, and 40 CFR 122.45(f)(2) allows pollutants that are limited in terms of mass to additionally be limited in terms of other units of measurement. This Order includes effluent limitations expressed in terms of mass and concentration. In addition, pursuant to the exceptions to mass limitations provided in 40 CFR 122.45(f)(1), some effluent limitations are not expressed in terms of mass, such as pH and temperature, and when the applicable standards are expressed in terms of concentration (e.g., CTR criteria and MCLs) and mass limitations are not necessary to protect the beneficial uses of the receiving water. Mass-based effluent limitations were calculated based upon the permitted average daily dry weather flow of 0.5 mgd.

2. Averaging Periods for Effluent Limitations

40 CFR 122.45 (d) requires average weekly and average monthly discharge limitations for publicly owned treatment works (POTWs) unless impracticable. However, for toxic pollutants and pollutant parameters in water quality permitting, USEPA recommends the use of a maximum daily effluent limitation in lieu of average weekly effluent limitations for two reasons. “First, the basis for the 7-day average for POTWs derives from the secondary treatment requirements. This basis is not related to the need for assuring achievement of water quality standards. Second, a 7-day average, which could comprise up to seven or more daily samples, could average out peak toxic concentrations and therefore the discharge’s potential for causing acute toxic effects would be missed.” (TSD, pg. 96) This Order utilizes maximum daily effluent limitations in lieu of average weekly effluent limitations for ammonia and copper as recommended by the TSD for the achievement of water quality standards and for the protection of the beneficial uses of the receiving stream. Furthermore, for BOD, TSS, pH, and total coliform organisms, weekly average effluent limitations have been replaced or supplemented with effluent limitations utilizing shorter averaging periods. The rationale for using shorter averaging periods for these constituents is discussed in section IV.C.3. of this Fact Sheet.

3. Satisfaction of Anti-Backsliding Requirements

All effluent limitations in this Order are at least as stringent as the effluent limitations in the previous Order. The CWA allows revision of effluent limitations only if such revision is subject to and consistent with a State’s antidegradation policy. The antibacksliding requirements also prohibit the reissued permits to contain effluent limitations which are less stringent than the current effluent limitation guidelines for that pollutant, or which would cause the receiving water to violate the applicable state water quality standard under Section 303 of the CWA.
4. Satisfaction of Antidegradation Policy

This Order does not allow for an increase in flow or mass of pollutants to the receiving water. Therefore, a complete antidegradation analysis is not necessary. The Order requires compliance with applicable federal technology-based standards and with WQBELs where the discharge could have the reasonable potential to cause or contribute to an exceedance of water quality standards. The permitted discharge is consistent with the antidegradation provisions of 40 CFR 131.12 and State Water Board Resolution No. 68-16. Compliance with these requirements will result in the use of best practicable treatment or control of the discharge. The impact on existing water quality will be insignificant.

5. Stringency of Requirements for Individual Pollutants

This Order contains both technology-based effluent limitations and WQBELs for individual pollutants. The technology-based effluent limitations consist of restrictions on BOD, TSS, and pH. The WQBELs consist of restrictions on copper and ammonia. This Order’s technology-based pollutant restrictions implement the minimum, applicable federal technology-based requirements. WQBELs have been scientifically derived to implement water quality objectives that protect beneficial uses. Both the beneficial uses and the water quality objectives have been approved pursuant to federal law and are the applicable federal water quality standards. To the extent that toxic pollutant WQBELs were derived from the CTR, the CTR is the applicable standard pursuant to 40 CFR 131.38. The scientific procedures for calculating the individual WQBELs for priority pollutants are based on the CTR-SIP, which was approved by USEPA on 18 May 2000. All beneficial uses and water quality objectives contained in the Basin Plan were approved under state law and submitted to and approved by USEPA prior to 30 May 2000. Any water quality objectives and beneficial uses submitted to USEPA prior to 30 May 2000, but not approved by USEPA before that date, are nonetheless “applicable water quality standards for purposes of the CWA” pursuant to 40 CFR 131.21(c)(1). Collectively, this Order’s restrictions on individual pollutants are no more stringent than required to implement the requirements of the CWA.

E. Interim Effluent Limitations-Not Applicable

F. Land Discharge Specifications-Not Applicable

G. Reclamation Specifications-Not Applicable

V. RATIONALE FOR RECEIVING WATER LIMITATIONS

Basin Plan water quality objectives to protect the beneficial uses of surface water and groundwater include numeric objectives and narrative objectives, including objectives for chemical constituents, toxicity, and tastes and odors. The toxicity objective requires that surface water and groundwater be maintained free of toxic substances in concentrations that produce detrimental physiological responses in humans, plants, animals, or aquatic
life. The chemical constituent objective requires that surface water and groundwater shall not contain chemical constituents in concentrations that adversely affect any beneficial use or that exceed the maximum contaminant levels (MCLs) in Title 22, CCR. The tastes and odors objective states that surface water and groundwater shall not contain taste- or odor-producing substances in concentrations that cause nuisance or adversely affect beneficial uses. The Basin Plan requires the application of the most stringent objective necessary to ensure that surface water and groundwater do not contain chemical constituents, toxic substances, radionuclides, or taste and odor producing substances in concentrations that adversely affect domestic drinking water supply, agricultural supply, or any other beneficial use.

A. Surface Water

1. CWA section 303(a-c) requires states to adopt water quality standards, including criteria where they are necessary to protect beneficial uses. The Regional Water Board adopted water quality criteria as water quality objectives in the Basin Plan. The Basin Plan states that "[t]he numerical and narrative water quality objectives define the least stringent standards that the Regional Water Board will apply to regional waters in order to protect the beneficial uses." The Basin Plan includes numeric and narrative water quality objectives for various beneficial uses and water bodies. This Order contains receiving surface water limitations based on the Basin Plan numerical and narrative water quality objectives for ammonia, bacteria, biostimulatory substances, color, chemical constituents, dissolved oxygen, floating material, oil and grease, pH, pesticides, radioactivity, suspended sediment, settleable substances, suspended material, tastes and odors, temperature, toxicity, and turbidity.

B. Groundwater

1. The beneficial uses of the underlying ground water are municipal and domestic supply, industrial service supply, and industrial process supply.

2. Basin Plan water quality objectives include narrative objectives for chemical constituents, tastes and odors, and toxicity of groundwater. The toxicity objective requires that groundwater be maintained free of toxic substances in concentrations that produce detrimental physiological responses in humans, plants, animals, or aquatic life. The chemical constituent objective states groundwater shall not contain chemical constituents in concentrations that adversely affect any beneficial use. The tastes and odors objective prohibits taste- or odor-producing substances in concentrations that cause nuisance or adversely affect beneficial uses. The Basin Plan requires the application of the most stringent objective necessary to ensure that waters do not contain chemical constituents, toxic substances, radionuclides, taste- or odor-producing substances, or bacteria in concentrations that adversely affect municipal or domestic supply, agricultural supply, industrial supply or some other beneficial use. The Basin Plan also establishes numerical water quality objectives for chemical constituents and radioactivity in groundwaters designated as municipal supply. These include, at a minimum, compliance with MCLs in Title 22 of the CCR. The bacteria objective prohibits fecal coliform organisms at or above 2.2 MPN/100
mL. The Basin Plan requires the application of the most stringent objective necessary to ensure that waters do not contain chemical constituents, toxic substances, radionuclides, taste- or odor-producing substances, or bacteria in concentrations that adversely affect municipal or domestic supply, agricultural supply, industrial supply or some other beneficial use.

3. Total dissolved solids, which were found to be present in the wastewater at an average concentration of 183 mg/L, have the potential to degrade groundwater quality at this site because there is little ability for attenuation in the shallow permeable vadose zone beneath this Facility. According to Ayers and Westcot, dissolved solids can cause yield or vegetative growth reductions of sensitive crops if present in excess of 450 mg/L in irrigation water, thereby impairing agricultural use of the water resource. However, any degradation will not result in an exceedance of the 450 mg/L level.

4. Nitrate, which was not analyzed, but could be present in concentrations as high as 40 mg/l or more in effluent, has the potential to degrade groundwater quality because there is little ability for attenuation in the shallow permeable vadose zone beneath the Facility. The Chemical Constituents objective prohibits concentrations of chemical constituents in excess of California MCLs in groundwater that is designated as municipal or domestic supply. The California primary MCL for nitrate is equivalent to 10 mg/L as nitrogen, and groundwater beneath the facility is designated as municipal or domestic supply. It is therefore appropriate to adopt a numerical groundwater limitation of 10 mg/L for nitrate as nitrogen to implement the Chemical Constituents objective to protect the municipal and domestic use of groundwater.

5. pH, which ranged 6.4 to 8.9 standard units in the domestic wastewater, has the ability to degrade groundwater quality at this site because there is little potential for buffering in the shallow permeable vadose zone. According to Ayers and Westcot, pH less than 6.5 or greater than 8.4 can cause yield or vegetative growth reductions of sensitive crops if present in irrigation water, thereby impairing agricultural use of the water resource. The applicable water quality objective to protect the agricultural use from discharges of substances that affect pH is the narrative Chemical Constituents objective, which is applied following the “Policy of Application of Water Quality Objectives” in the Basin Plan. A numerical groundwater limitation range of 6.5 to 8.4 for pH, based on Ayers and Westcot, is relevant and appropriate to apply the narrative Chemical Constituents objective to protect unrestricted agricultural use of groundwater in the absence of information to support a less protective limit.

6. Ammonia has the potential to degrade groundwater quality because there is little ability for ammonia attenuation in the shallow permeable vadose zone at this site. According to Amoore and Hautala, who evaluated odor of ammonia in water, the odor threshold for ammonia in water is 1.5 mg/L (as NH₃). These authors studied

the concentration of chemicals in air that caused adverse odors and then calculated the concentration in water that would be equivalent to that amount in air. Therefore, it is appropriate to use the data contained therein to apply the narrative Tastes and Odors water quality objective. Concentrations that exceed this value can impair the municipal or domestic use of the resource by causing adverse odors. The applicable water quality objective to protect the municipal and domestic use from discharges of odor producing substances is the narrative Tastes and Odors objective, which is applied following the "Policy of Application of Water Quality Objectives" in the Basin Plan. A numerical groundwater limitation of 1.5 mg/L for ammonia (as NH₄), based on Amoore and Hautala, is relevant and appropriate to apply the narrative Tastes and Odors objective to protect the municipal and domestic use of groundwater.

7. Electrical Conductivity in the effluent has minor potential to affect groundwater because of its low value (average of 229 umhos/cm). However, as infiltration inflow at the Facility becomes less of a problem due to sewer repairs, effluent electrical conductivity is expected to rise and may become a problem in the future.

8. Nitrite, which was not analyzed, but could be present in concentrations as high as several mg/l or more in effluent, has the potential to degrade groundwater quality because there is little ability for attenuation in the shallow permeable vadose zone beneath the Facility. The Chemical Constituents objective prohibits concentrations of chemical constituents in excess of California MCLs in groundwater that is designated as municipal or domestic supply. The California primary MCL for nitrate is equivalent to 1 mg/L as nitrogen, and groundwater beneath the facility is designated as municipal or domestic supply. It is therefore appropriate to adopt a numerical groundwater limitation of 1 mg/L for nitrate as nitrogen to implement the Chemical Constituents objective to protect the municipal and domestic use of groundwater.

9. Groundwater limitations are required to protect the beneficial uses of the underlying groundwater.

VI. RATIONALE FOR MONITORING AND REPORTING REQUIREMENTS

40 CFR 122.48 requires that all NPDES permits specify requirements for recording and reporting monitoring results. Water Code sections 13267 and 13383 authorizes the Regional Water Board to require technical and monitoring reports. The Monitoring and Reporting Program (Attachment E) of this Order, establishes monitoring and reporting requirements to implement federal and state requirements. The following provides the rationale for the monitoring and reporting requirements contained in the Monitoring and Reporting Program for the Facility.

A. Influent Monitoring

1. Influent monitoring is required to collect data on the characteristics of the wastewater and to assess compliance with effluent limitations (e.g., BOD₅ and TSS reduction requirements).
B. Effluent Monitoring

1. Pursuant to the requirements of 40 CFR 122.44(i)(2) effluent monitoring is required for all constituents with effluent limitations. Effluent monitoring is necessary to assess compliance with effluent limitations, assess the effectiveness of the treatment process, and to assess the impacts of the discharge on the receiving stream and groundwater.

2. The SIP states that if "...all reported detection limits of the pollutant in the effluent are greater than or equal to the C [water quality criterion or objective] value, the RWQCB [Regional Water Board] shall establish interim requirements...that require additional monitoring for the pollutant...." All reported detection limits for 2,3,7,8 TCDD, acrylonitrile, pentachlorophenol, benzidine, benzo (a) anthracene, benzo (a) pyrene, benzo (b) fluoranthene, benzo (k) fluoranthene, bis (2-chloroethyl) ether, Bis(2Ethylhexyl)Phthalate, chrysene, dibenzo (a, h) anthracene, 3,3 dichlorobenzidine, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, Di-n-octyl Phthalate, 1,2-diphenylydrazine, hexachlorobenzene, hexachlorobutadiene, hexachloroethane, indeno (1,2,3-cd) pyrene, n-nitrosodimethylamine, n-nitroso-n-Porpylamine, N-nitrosodiphenylamine, aldrin, alpha-bhc, gamma-bhc, chlordane, 4,4'-dtt, 4,4'-dde, 4,4'-ddd, dieldrin, heptachlor, heptachlor epoxide, PCB 1016, PCB 1221, PCB 1232, PCB 1242, PCB 1248, PCB 1254, PCB 1260, and toxaphene are greater than or equal to corresponding applicable water quality criteria or objectives. Monitoring for these constituents has been included in this Order in accordance with the SIP.

3. The Discharger’s laboratory had difficulty meeting MLs for numerous constituents in the CTR sampling. In some cases the laboratory ML (or PQL as referred to by the testing laboratory) was above the ML in the SIP; but the laboratory’s PQL was below the C, or criterion concentrations, so these values were considered valid for permitting purposes. In other cases the laboratory MDL was below the SIP ML, even though the PQL was not. The compound would have been detected below the SIP ML, because of the method detection limit of the analysis. In another case, the laboratory PQL was above the SIP ML, but neither the SIP ML or lab MDL would have detected the compound at its C (but the lab MDL was below the SIP ML).

C. Whole Effluent Toxicity Testing Requirements

1. Acute Toxicity. Quarterly 96-hour bioassay testing is required to demonstrate compliance with the effluent limitation for acute toxicity.

2. Chronic Toxicity. Chronic whole effluent toxicity testing is required twice during the term of this order in order to demonstrate compliance with the Basin Plan’s narrative toxicity objective.
D. Receiving Water Monitoring

1. Surface Water

 a. Surface receiving water monitoring is necessary to assess compliance with receiving water limitations and to assess the impacts of the discharge on the receiving stream. Surface receiving water monitoring in the body of Lake Almanor is generally not possible for this discharger because of the discharge to the Lake, the configuration of the Lake at the discharge point, and safety concerns. Monitoring of receiving water for priority pollutants and other parameters necessary to determine effluent limitations in the next permit cycle will take place at the Feather River just prior to its discharge into the lake.

2. Groundwater

 a. CWC section 13267 states, in part, "(a) A Regional Water Board, in establishing...waste discharge requirements...may investigate the quality of any waters of the state within its region" and "(b) (1) In conducting an investigation..., the Regional Water Board may require that any person who...discharges...waste...that could affect the quality of waters within its region shall furnish, under penalty of perjury, technical or monitoring program reports which the Regional Water Board requires. The burden, including costs, of these reports shall bear a reasonable relationship to the need for the report and the benefits to be obtained from the reports. In requiring those reports, the Regional Water Board shall provide the person with a written explanation with regard to the need for the reports, and shall identify the evidence that supports requiring that person to provide the reports." The Monitoring and Reporting Program is issued pursuant to CWC section 13267. The groundwater monitoring and reporting program required by this Order is necessary to assure compliance with these waste discharge requirements. The Discharger is responsible for the discharges of waste at the facility subject to this Order.

 b. Monitoring of the groundwater must be conducted to determine if the discharge has caused an increase in constituent concentrations, when compared to background, the monitoring must, at a minimum, require a complete assessment of groundwater impacts including the vertical and lateral extent of degradation, an assessment of all wastewater-related constituents which may have migrated to groundwater, an analysis of whether additional or different methods of treatment or control of the discharge are necessary to provide best practicable treatment or control to comply with Resolution No. 68-16. Economic analysis is only one of many factors considered in determining best practicable treatment or control. If monitoring indicates that the discharge has incrementally increased constituent concentrations in groundwater above background, this permit may be reopened and modified. Until groundwater monitoring is sufficient, this Order contains Groundwater Limitations that allow groundwater quality to be degraded for certain constituents when compared to background groundwater quality, but not to exceed water quality objectives. If groundwater quality has been degraded by the discharge, the incremental change in pollutant concentration (when
compared with background) may not be increased. If groundwater quality has been or may be degraded by the discharge, this Order may be reopened and specific numeric limitations established consistent with Resolution No. 68-16 and the Basin Plan.

c. This Order requires the Discharger to begin groundwater monitoring and includes a regular schedule of groundwater monitoring in the attached Monitoring and Reporting Program. The groundwater monitoring reports are necessary to evaluate impacts to waters of the State to assure protection of beneficial uses and compliance with Regional Water Board plans and policies, including Resolution No. 68-16. Evidence in the record includes effluent monitoring data that indicates the presence of constituents that may degrade groundwater and surface water.

E. Other Monitoring Requirements

1. Biosolids Monitoring

Biosolids monitoring is required to ensure compliance with the biosolids disposal requirements contained in the Special Provision contained in section VI.C.6.a. of this Order. Biosolids disposal requirements are imposed pursuant to 40 CFR Part 503 to protect public health and prevent groundwater degradation.

2. Water Supply Monitoring

Water supply monitoring is required to evaluate electrical conductivity of the water supply and to establish BPTC effluent limitations for electrical conductivity.

VII. RATIONALE FOR PROVISIONS

A. Standard Provisions

Standard Provisions, which apply to all NPDES permits in accordance with 40 CFR 122.41, and additional conditions applicable to specified categories of permits in accordance with 40 CFR 122.42, are provided in Attachment D. The discharger must comply with all standard provisions and with those additional conditions that are applicable under 40 CFR 122.42.

40 CFR 122.41(a)(1) and (b) through (n) establish conditions that apply to all State-issued NPDES permits. These conditions must be incorporated into the permits either expressly or by reference. If incorporated by reference, a specific citation to the regulations must be included in the Order. 40 CFR 123.25(a)(12) allows the state to omit or modify conditions to impose more stringent requirements. In accordance with 40 CFR 123.25, this Order omits federal conditions that address enforcement authority specified in 40 CFR 122.41(j)(5) and (k)(2) because the enforcement authority under the CWC is more stringent. In lieu of these conditions, this Order incorporates by reference CWC section 13387(e).
B. Special Provisions

1. Reopener Provisions

a. Whole Effluent Toxicity. This Order requires the Discharger to investigate the causes of, and identify corrective actions to reduce or eliminate effluent toxicity through a Toxicity Reduction Evaluation (TRE). This Order may be reopened to include a numeric chronic toxicity limitation, a new acute toxicity limitation, and/or a limitation for a specific toxicant identified in the TRE. Additionally, if a numeric chronic toxicity water quality objective is adopted by the State Water Board, this Order may be reopened to include a numeric chronic toxicity limitation based on that objective.

b. Water Effects Ratio (WER) and Metal Translators. A default WER of 1.0 has been used in this Order for calculating CTR criteria for applicable priority pollutant inorganic constituents. In addition, default dissolved-to-total metal translators have been used to convert water quality objectives from dissolved to total recoverable when developing effluent limitations for copper. If the Discharger performs studies to determine site-specific WERs and/or site-specific dissolved-to-total metal translators, this Order may be reopened to modify the effluent limitations for the applicable inorganic constituents.

c. Carbon Tetrachloride. Carbon Tetrachloride was detected at a concentration of 0.6 ug/L in one round of effluent sampling that was performed for priority pollutants. There is inadequate data to determine if Carbon Tetrachloride creates a reasonable potential. Therefore, this order requires monitoring of Carbon Tetrachloride. This Order may be reopened if Carbon Tetrachloride is found to cause a reasonable potential for exceedance of its water quality objective.

g. Chloroform. Chloroform was detected in the one round of CTR sampling at a concentration of 0.8 ug/L. Although this result is below the OEHHA cancer potency factor, it is prudent to monitor effluent chloroform, bromoform, bromodichloromethane, and chlorodibromomethane and reopen the permit if detection of any of these constituents, singly or in combination, indicates a reasonable potential for exceedance of a water quality objective for total trihalomethanes.

2. Special Studies and Additional Monitoring Requirements

a. Chronic Whole Effluent Toxicity Requirements. The Basin Plan contains a narrative toxicity objective that states, "All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life." (Basin Plan at page III-8.00) Adequate WET data is not available to determine if the discharge has reasonable potential to cause or contribute to an in-stream excursion above the Basin Plan's narrative toxicity objective.
(1) The Monitoring and Reporting Program of this Order requires chronic WET monitoring for demonstration of compliance with the narrative toxicity objective. In addition to WET monitoring, this provision requires the Discharger to submit to the Regional Water Board an Initial Investigative TRE Work plan for approval by the Executive Officer, to ensure the Discharger has a plan to immediately move forward with the initial tiers of a TRE, in the event effluent toxicity is encountered in the future. The provision also includes a numeric toxicity monitoring trigger, requirements for accelerated monitoring, and requirements for TRE initiation if a pattern of toxicity is demonstrated.

(2) **Monitoring Trigger.** A numeric toxicity monitoring trigger of > 7 TUc (where TUc = 100/NOEC) is applied in the provision, because this Order allows dilution for the chronic condition. Therefore, a TRE is triggered when the effluent exhibits a pattern of toxicity at 14% effluent.

(3) **Accelerated Monitoring.** The provision requires accelerated WET testing when a regular WET test result exceeds the monitoring trigger. The purpose of accelerated monitoring is to determine, in an expedient manner, whether there is a pattern of toxicity before requiring the implementation of a TRE. Due to possible seasonality of the toxicity, the accelerated monitoring should be performed in a timely manner, preferably taking no more than 2 to 3 months to complete.

(4) The provision requires accelerated monitoring consisting of four chronic toxicity tests in a six-week period (i.e., one test every two weeks) using the species that exhibited toxicity. Guidance regarding accelerated monitoring and TRE initiation is provided in the *Technical Support Document for Water Quality-based Toxics Control*, EPA/505/2-90-001, March 1991 (TSD). The TSD at page 118 states, "EPA recommends if toxicity is repeatedly or periodically present at levels above effluent limits more than 20 percent of the time, a TRE should be required." Therefore, four accelerated monitoring tests are required in this provision. If no toxicity is demonstrated in the four accelerated tests, then it demonstrates that toxicity is not present at levels above the monitoring trigger more than 20 percent of the time (only 1 of 5 tests are toxic, including the initial test). However, notwithstanding the accelerated monitoring results, if there is adequate evidence of a pattern of effluent toxicity (i.e. toxicity present exceeding the monitoring trigger more than 20 percent of the time), the Executive Officer may require that the Discharger initiate a TRE.

(5) See the WET Accelerated Monitoring Flow Chart (Figure F-1), below, for further clarification of the accelerated monitoring requirements and for the decision points for determining the need for TRE initiation.
(6) **TRE Guidance.** The Discharger is required to prepare a TRE Workplan in accordance with USEPA guidance. Numerous guidance documents are available, as identified below:

b. **Groundwater Monitoring.** To determine compliance with the groundwater limitations contained in section V.B. of this Order, the Discharger is required to evaluate the adequacy of its groundwater monitoring network. This provision requires the Discharger to evaluate its groundwater monitoring network to ensure there are one or more background monitoring wells and a sufficient number of designated monitoring wells downgradient of every treatment, storage, and disposal unit that does or may release waste constituents to groundwater. Currently, there are no groundwater monitoring wells downgradient of the aerated lagoons or wetlands ponds. The Discharger must install new groundwater monitoring wells, collect 2 years of monitoring data, and submit a report evaluating the underlying groundwater within 42 months of the date of adoption of this Order. If the monitoring shows that any constituent concentrations are increased above background water quality, by 48 months from the adoption of this Order, the Discharger shall submit a technical report describing the groundwater evaluation report results and critiquing each evaluated facility component with respect to BPTC and minimizing the discharge's impact on groundwater quality.

c. **Best Practical Treatment or Control (BPTC).** If the groundwater monitoring results show that the discharge of waste is threatening to cause or has caused groundwater to contain waste constituents in concentrations statistically greater than background water quality, the Discharger shall submit, within 12 months following the second year of monitoring that documents constituent concentrations increased beyond background water quality, a BPTC Evaluation Work Plan. This work plan shall set forth a scope and schedule for a systematic and comprehensive technical evaluation of each component of the Facility’s waste management system to determine best practicable treatment or control for each of the waste constituents of concern. The work plan shall include a preliminary evaluation of each component of the waste management system and propose a time schedule for completing the comprehensive technical evaluation. The schedule to complete the evaluation shall be as short as practicable, and shall not exceed one year.

d. **Reclamation, Reduction of Lake Discharge Study, and Regionalization.** The State Water Board adopted a State Policy for Water Quality Control on 6 July 1972 in which the State Water Board found that protection of the State’s waters required implementation programs that conformed to specific principles. The State Policy for Water Quality Control included the following principles that relate to reclaimed water and consolidation of wastewater collection and treatment systems.

 i. Municipal, agricultural, and industrial wastewaters must be considered as a potential integral part of the total available fresh water resource.

 ii. Coordinated management of water supplies and wastewaters on a regional basis must be promoted to achieve efficient utilization of water.
iii. Wastewater collection and treatment facilities must be consolidated in all cases where feasible and desirable to implement sound water quality management programs based upon long-range economic and water quality benefits to an entire basin.

iv. Institutional and financial programs for implementation of consolidated wastewater management systems must be tailored to serve each particular area in an equitable manner.

v. Wastewater reclamation and reuse systems which assure maximum benefit from available fresh water resources shall be encouraged. Reclamation systems must be an appropriate integral part of the long-range solution to the water resources needs of an area and incorporate provisions for salinity control and disposal on nonreclaimable residues.

The Basin Plan includes a wastewater reuse policy that encourages the reclamation and reuse of wastewater where practicable and requires as part of a Report of Waste Discharge an evaluation of reuse and land disposal options as alternative disposal methods.

State and federal antidegradation policies require dischargers to demonstrate that degradation from new or expanded discharges are necessary, and to implement BPTC of the discharge necessary to maintain the highest water quality consistent with maximum benefit to the people of the State. Regionalization, reclamation, reuse and conservation may enhance the implementation of these policies.

Within eighteen months of the issuance of this Order, the Discharger shall submit a plan for the minimization of effluent discharge to Lake Almanor and maximization of recycling and surface water discharge. The plan shall include, as a minimum:

- An analysis of methods of reclamation on and off site;
- An analysis of the effects of adding additional pond storage onsite;
- An analysis to maximize pond evaporation;
- An analysis of any opportunities for Regionalization

3. Best Management Practices and Pollution Prevention

a. Salinity Evaluation and Minimization Plan. An Evaluation and Minimization Plan for salinity is required in this Order to ensure adequate measures are developed and implemented by the Discharger to reduce the discharge of salinity to Lake Almanor.

4. Construction, Operation, and Maintenance Specifications

a. The operation and maintenance specifications for the facultative and wetlands ponds are necessary to protect the beneficial uses of the groundwater. In
addition, reporting requirements related to use of the facultative and wetlands ponds are required to monitor their use and the potential impact on groundwater.

5. Special Provisions for Municipal Facilities (POTWs Only)

a. Pretreatment Requirements.

The federal CWA, section 307(b), and federal regulations, 40 CFR Part 403, require publicly owned treatment works to develop an acceptable industrial pretreatment program. This Order continues the provisions from the previous order requiring the Discharger to implement the necessary legal authorities, programs, and controls to insure that incompatible wastes are not introduced to the treatment system. The Discharger is not required to develop a pretreatment program.

b. Sanitary Sewer Overflow Requirements.

The State Water Board issued General Waste Discharge Requirements for Sanitary Sewer Systems, Water Quality Order No. 2006-0003-DWQ (General Order) on 2 May 2006. The General Order requires public agencies that own or operate sanitary sewer systems with greater than one mile of pipes or sewer lines to enroll for coverage under the General Order. The General Order requires agencies to develop sanitary sewer management plans (SSMPs) and report all sanitary sewer overflows (SSOs), among other requirements and prohibitions.

(1) Furthermore, the General Order contains requirements for operation and maintenance of collection systems and for reporting and mitigating sanitary sewer overflows. Inasmuch that the Discharger’s collection system is part of the system that is subject to this Order, certain standard provisions are applicable as specified in Provisions, section VI.C.5. For instance, the 24-hour reporting requirements in this Order are not included in the General Order. The Discharger must comply with both the General Order and this Order. The Discharger and public agencies that are discharging wastewater into the facility were required to obtain enrollment for regulation under the General Order by 1 December 2006.

6. Other Special Provisions

a. Ownership Change. To maintain the accountability of the operation of the Facility, the Discharger is required to notify the succeeding owner or operator of the existence of this Order by letter if, and when, there is any change in control or ownership of land or waste discharge facilities presently owned or controlled by the Discharger.
7. Compliance Schedules-Not Applicable

VIII. PUBLIC PARTICIPATION

The Regional Water Board is considering the issuance of WDRs that will serve as an NPDES permit for the Facility. As a step in the WDR adoption process, the Regional Water Board staff has developed tentative WDRs. The Regional Water Board encourages public participation in the WDR adoption process.

A. Notification of Interested Parties

The Regional Water Board has notified the Discharger and interested agencies and persons of its intent to prescribe waste discharge requirements for the discharge and has provided them with an opportunity to submit their written comments and recommendations. Notification was provided through physical posting (posting at city offices, county courthouse or city hall) and internet posting.

B. Written Comments

The staff determinations are tentative. Interested persons are invited to submit written comments concerning these tentative WDRs. Comments must be submitted either in person or by mail to the Executive Office at the Regional Water Board at the address above on the cover page of this Order.

To be fully responded to by staff and considered by the Regional Water Board, written comments must be received at the Regional Water Board offices by 5:00 p.m. on 15 July 2009.

C. Public Hearing

The Regional Water Board will hold a public hearing on the tentative WDRs during its regular Board meeting on the following date and time and at the following location:

Date: 13/14 August
Time: 8:30 a.m.
Location: Regional Water Quality Control Board, Central Valley Region
11020 Sun Center Dr., Suite #200
Rancho Cordova, CA 95670

Interested persons are invited to attend. At the public hearing, the Regional Water Board will hear testimony, if any, pertinent to the discharge, WDRs, and permit. Oral testimony will be heard; however, for accuracy of the record, important testimony should be in writing.

Please be aware that dates and venues may change. Our Web address is www.waterboards.ca.gov/centralvalley where you can access the current agenda for changes in dates and locations.
D. Waste Discharge Requirements Petitions

Any aggrieved person may petition the State Water Board to review the decision of the Regional Water Board regarding the final WDRs. The petition must be submitted within 30 days of the Regional Water Board's action to the following address:

State Water Resources Control Board
Office of Chief Counsel
P.O. Box 100, 1001 I Street
Sacramento, CA 95812-0100

E. Information and Copying

The Report of Waste Discharge, related documents, tentative effluent limitations and special provisions, comments received, and other information are on file and may be inspected at the address above at any time between 8:30 a.m. and 4:45 p.m., Monday through Friday. Copying of documents may be arranged through the Regional Water Board by calling (530) 224-4845.

F. Register of Interested Persons

Any person interested in being placed on the mailing list for information regarding the WDRs and NPDES permit should contact the Regional Water Board, reference this Facility, and provide a name, address, and phone number.

G. Additional Information

Requests for additional information or questions regarding this order should be directed to Ronald S. Dykstra at 530-224-4858 or the address above.
ATTACHMENT H – CALCULATION OF WQBELS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>HH</th>
<th>CMC</th>
<th>CCC</th>
<th>HH</th>
<th>CMC</th>
<th>CMC</th>
<th>ECAM</th>
<th>AMEL/MDEL Multiplier</th>
<th>MDEL</th>
<th>ECA Multiplier Acute</th>
<th>LTAacute</th>
<th>ECA Multiplier Chronic</th>
<th>LTAchronic</th>
<th>LOWEST LTA</th>
<th>AMEL Multiplier 95%</th>
<th>AMEL</th>
<th>MDEL Multiplier 95%</th>
<th>MDEL</th>
<th>LOWEST MDEL</th>
<th>Final Effluent Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooper, total</td>
<td>μg/L</td>
<td>--</td>
<td>4.94</td>
<td>3.62</td>
<td>--</td>
<td>7:1</td>
<td>7:1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.452</td>
<td>16.28</td>
<td>0.654</td>
<td>16.65</td>
<td>16.28</td>
<td>1.34</td>
<td>21.8</td>
<td>2.21</td>
<td>36</td>
<td>21.8</td>
<td>36</td>
</tr>
</tbody>
</table>

Ammonia

<table>
<thead>
<tr>
<th>Criteria (mg/L)</th>
<th>Acute</th>
<th>Chronic (30 day)</th>
<th>Chronic (4-day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution Credit</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>ECA</td>
<td>11.1</td>
<td>4.44</td>
<td>12.1</td>
</tr>
<tr>
<td>ECA Multiplier</td>
<td>0.321</td>
<td>0.780</td>
<td>0.527</td>
</tr>
<tr>
<td>LTA</td>
<td>3.56</td>
<td>3.46</td>
<td>6.38</td>
</tr>
<tr>
<td>AMEL Multiplier (95%)</td>
<td>(2)</td>
<td>1.55</td>
<td>(2)</td>
</tr>
<tr>
<td>AMEL (mg/L)</td>
<td>(2)</td>
<td>6.4</td>
<td>(2)</td>
</tr>
<tr>
<td>MDEL Multiplier (95%)</td>
<td>(2)</td>
<td>3.11</td>
<td>(2)</td>
</tr>
<tr>
<td>MDEL (mg/L)</td>
<td>(2)</td>
<td>10.8</td>
<td>(2)</td>
</tr>
</tbody>
</table>

1 USEPA Ambient Water Quality Criteria
2 Limitations based on Acute (Acute LTA < Chronic (30 day))< Chronic 4-day

Attachment H – Calculation of WQBELs

H-1
ATTACHMENT G – SUMMARY OF REASONABLE POTENTIAL ANALYSIS

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>MEC</th>
<th>B</th>
<th>C</th>
<th>CMC</th>
<th>CCC</th>
<th>Water & Org</th>
<th>Org. Only</th>
<th>Basin Plan</th>
<th>MCL</th>
<th>Reasonable Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>1.0</td>
<td>1.0</td>
<td>6</td>
<td>N/A</td>
<td>N/A</td>
<td>14</td>
<td>4300</td>
<td>N/A</td>
<td>6</td>
<td>No</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>2.0</td>
<td>2.0</td>
<td>10</td>
<td>340</td>
<td>150</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Narrative</td>
<td>N/A</td>
<td>4</td>
<td>No</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>1.5</td>
<td>2.1</td>
<td>1.5</td>
<td>N/A</td>
<td>Narrative</td>
<td>N/A</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Chromium (III)</td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>121</td>
<td>1016</td>
<td>121</td>
<td>N/A</td>
<td>Narrative</td>
<td>N/A</td>
<td>50</td>
<td>No</td>
</tr>
<tr>
<td>Chromium (VI)</td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>16</td>
<td>11</td>
<td>N/A</td>
<td>Narrative</td>
<td>N/A</td>
<td>15</td>
<td>No</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>17</td>
<td>0.5</td>
<td>5.3</td>
<td>7.6</td>
<td>5.3</td>
<td>1300</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>0.5</td>
<td>0.2</td>
<td>1.2</td>
<td>31</td>
<td>1.2</td>
<td>N/A</td>
<td>Narrative</td>
<td>N/A</td>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>Mercury</td>
<td>ug/L</td>
<td>0.02</td>
<td>0.02</td>
<td>0.050</td>
<td>N/A</td>
<td>N/A</td>
<td>0.050</td>
<td>0.051</td>
<td>N/A</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>25</td>
<td>225</td>
<td>25</td>
<td>610</td>
<td>4600</td>
<td>N/A</td>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>2</td>
<td>2</td>
<td>6.0</td>
<td>20</td>
<td>5</td>
<td>N/A</td>
<td>Narrative</td>
<td>N/A</td>
<td>50</td>
<td>No</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td>0.02</td>
<td>0.02</td>
<td>0.91</td>
<td>0.91</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>1.7</td>
<td>N/A</td>
<td>N/A</td>
<td>1.7</td>
<td>6.3</td>
<td>N/A</td>
<td>2.0</td>
<td>No</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td>10</td>
<td>10</td>
<td>69</td>
<td>69</td>
<td>69</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Cyanide</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5.2</td>
<td>22</td>
<td>5.2</td>
<td>700</td>
<td>220,000</td>
<td>N/A</td>
<td>200</td>
<td>No</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ug/L</td>
<td>0.6</td>
<td>0.5</td>
<td>0.25</td>
<td>N/A</td>
<td>N/A</td>
<td>0.25</td>
<td>4.4</td>
<td>N/A</td>
<td>0.5</td>
<td>Monitor?</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ug/L</td>
<td>0.8</td>
<td>0.5</td>
<td>No Criteria</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No-Monitor THMs?</td>
<td>No</td>
</tr>
<tr>
<td>Toluene</td>
<td>ug/L</td>
<td>6.4</td>
<td>2</td>
<td>150</td>
<td>N/A</td>
<td>N/A</td>
<td>6,800</td>
<td>200,000</td>
<td>N/A</td>
<td>150</td>
<td>No</td>
</tr>
</tbody>
</table>

General Note: All inorganic concentrations are given as a total recoverable.
Footnotes:
(1) MEC = Maximum Effluent Concentration
(2) B = Maximum Receiving Water Concentration or lowest detection level, if non-detect
C = Criterion used for Reasonable Potential Analysis
CMC = Criterion Maximum Concentration (CTR or NTR)
CCC = Criterion Continuous Concentration (CTR or NTR)
Water & Org = Human Health Criterion for Consumption of Water & Organisms (CTR or NTR)
Org. Only = Human Health Criterion for Consumption of Organisms Only (CTR or NTR)
Basin Plan = Numeric Site-specific Basin Plan Water Quality Objective
MCL = Drinking Water Standards Maximum Contaminant Level
N/A = Not Available
ND = Non-detect

Attachment G – Summary of Reasonable Potential Analysis
ATTACHMENT I – EFFLUENT AND RECEIVING WATER CHARACTERIZATION STUDY

I. Background. Sections 2.4.1 through 2.4.4 of the SIP provide minimum standards for analyses and reporting. (Copies of the SIP may be obtained from the State Water Resources Control Board, or downloaded from http://www.waterboards.ca.gov/isswp/index.html). To implement the SIP, effluent and receiving water data are needed for all priority pollutants. Effluent and receiving water pH and hardness are required to evaluate the toxicity of certain priority pollutants (such as heavy metals) where the toxicity of the constituents varies with pH and/or hardness. Section 3 of the SIP prescribes mandatory monitoring of dioxin congeners. In addition to specific requirements of the SIP, the Regional Water Board is requiring the following monitoring:

A. Drinking water constituents. Constituents for which drinking water Maximum Contaminant Levels (MCLs) have been prescribed in the California Code of Regulations are included in the Water Quality Control Plan, Fourth Edition, for the Sacramento and San Joaquin River Basins (Basin Plan). The Basin Plan defines virtually all surface waters within the Central Valley Region as having existing or potential beneficial uses for municipal and domestic supply.

B. The Basin Plan further requires that, at a minimum, water designated for use as domestic or municipal supply shall not contain concentrations of chemical constituents in excess of the MCLs contained in the California Code of Regulations.

C. Effluent and receiving water temperature. This is both a concern for application of certain temperature-sensitive constituents, such as fluoride, and for compliance with the Basin Plan’s thermal discharge requirements.

D. Effluent and receiving water hardness and pH. These are necessary because several of the CTR constituents are hardness and pH dependent.

E. Dioxin and furan sampling. Section 3 of the SIP has specific requirements for the collection of samples for analysis of dioxin and furan congeners, which are detailed in Attachment J. Pursuant to Section 13267 of the California Water Code, this Order includes a requirement for the Discharger to submit monitoring data for the effluent and receiving water as described in Attachment J.

II. Monitoring Requirements.

A. Priority pollutant samples shall be collected from the effluent and upstream receiving water (EFF-001 and RSW-001) and analyzed for the constituents listed in Table I-1 once during the life of the permit. The event shall provide representative sample results for the effluent and upstream receiving water.

B. Concurrent Sampling. Effluent and receiving water sampling shall be performed at approximately the same time, on the same date.
C. Sample type. All effluent samples shall be taken as 24-hour flow proportioned composite samples. Samples from ponds shall be considered adequately composited. All receiving water samples shall be taken as grab samples.

D. Modifications. Check with your Regional Water Board staff contact prior to sampling. Modifications to this study may be made.

Table I-1. Priority Pollutants

<table>
<thead>
<tr>
<th>CTR #</th>
<th>Constituent</th>
<th>CAS Number</th>
<th>Controlling Water Quality Criterion for Surface Waters</th>
<th>Controlling Water Quality Criterion for Surface Waters</th>
<th>Criterion Concentration</th>
<th>Criterion Quantitation Limit</th>
<th>Suggested Test Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basis</td>
<td>Basis</td>
<td>ug/L or noted</td>
<td>ug/L or noted</td>
<td></td>
</tr>
<tr>
<td>VOLATILE ORGANICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1,1-Dichloroethane</td>
<td>75343</td>
<td>Primary MCL</td>
<td>5</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1,1-Dichloroethene</td>
<td>75354</td>
<td>National Toxics Rule</td>
<td>0.057</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1,1,1-Trichloroethane</td>
<td>71556</td>
<td>Primary MCL</td>
<td>200</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1,1,2-Trichloroethane</td>
<td>79005</td>
<td>National Toxics Rule</td>
<td>0.6</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>79345</td>
<td>National Toxics Rule</td>
<td>0.17</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>1,2-Dichlorobenzene</td>
<td>95501</td>
<td>Taste & Odor</td>
<td>10</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1,2-Dichloroethane</td>
<td>107062</td>
<td>National Toxics Rule</td>
<td>0.38</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>cl-1,2-Dichloroethene</td>
<td>156592</td>
<td>Primary MCL</td>
<td>6</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1,2-Dichloropropane</td>
<td>78875</td>
<td>Calif. Toxics Rule</td>
<td>0.52</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>1,2,4-Trichlorobenzene</td>
<td>120821</td>
<td>Public Health Goal</td>
<td>5</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>1,3-Dichlorobenzene</td>
<td>541731</td>
<td>Taste & Odor</td>
<td>10</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1,3-Dichloropropene</td>
<td>542756</td>
<td>Primary MCL</td>
<td>0.5</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>1,4-Dichlorobenzene</td>
<td>106457</td>
<td>Primary MCL</td>
<td>5</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Acrolein</td>
<td>107026</td>
<td>Aquatic Toxicity</td>
<td>21</td>
<td>2</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Acrylonitrile</td>
<td>107131</td>
<td>National Toxics Rule</td>
<td>0.059</td>
<td>2</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Benzene</td>
<td>71432</td>
<td>Primary MCL</td>
<td>1</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Bromoform</td>
<td>75252</td>
<td>Calif. Toxics Rule</td>
<td>4.3</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Bromomethane</td>
<td>74839</td>
<td>Calif. Toxics Rule</td>
<td>48</td>
<td>1</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Carbon tetrachloride</td>
<td>56235</td>
<td>National Toxics Rule</td>
<td>0.25</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Chlorobenzene (mono chlorobenzene)</td>
<td>108907</td>
<td>Taste & Odor</td>
<td>50</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Chloroethane</td>
<td>75003</td>
<td>Taste & Odor</td>
<td>16</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2- Chloroethyl vinyl ether</td>
<td>110758</td>
<td>Aquatic Toxicity</td>
<td>122 (3)</td>
<td>1</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Chloroform</td>
<td>67663</td>
<td>OEHHA Cancer Risk</td>
<td>1.1</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Chloromethane</td>
<td>74873</td>
<td>USEPA Health Advisory</td>
<td>3</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Dibromochloromethane</td>
<td>124481</td>
<td>Calif. Toxics Rule</td>
<td>0.41</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Dichlorobromomethane</td>
<td>75274</td>
<td>Calif. Toxics Rule</td>
<td>0.56</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Dichloromethane</td>
<td>75092</td>
<td>Calif. Toxics Rule</td>
<td>4.7</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>CTR #</td>
<td>Constituent</td>
<td>CAS Number</td>
<td>Basis</td>
<td>Criterion Concentration ug/L or noted</td>
<td>Criterion Quantitation Limit ug/L or noted</td>
<td>Suggested Test Methods</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Ethylbenzene</td>
<td>100414</td>
<td>Taste & Odor</td>
<td>29</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Hexachlorobenzene</td>
<td>118741</td>
<td>Calif. Toxics Rule</td>
<td>0.00075</td>
<td>1</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Hexachlorobutadiene</td>
<td>87683</td>
<td>National Toxics Rule</td>
<td>0.44</td>
<td>1</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Hexachloroethane</td>
<td>67721</td>
<td>National Toxics Rule</td>
<td>1.9</td>
<td>1</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Naphthalene</td>
<td>91203</td>
<td>USEPA IRIS</td>
<td>14</td>
<td>10</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Tetrachloroethene</td>
<td>127184</td>
<td>National Toxics Rule</td>
<td>0.8</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Toluene</td>
<td>108683</td>
<td>Taste & Odor</td>
<td>42</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Trans-1,2-Dichloroethylene</td>
<td>156605</td>
<td>Primary MCL</td>
<td>10</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Trichloroethylene</td>
<td>79016</td>
<td>National Toxics Rule</td>
<td>2.7</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Vinyl chloride</td>
<td>75014</td>
<td>Primary MCL</td>
<td>0.5</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl-tert-butyl ether (MTBE)</td>
<td>1634044</td>
<td>Secondary MCL</td>
<td>5</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>75694</td>
<td>Primary MCL</td>
<td>150</td>
<td>5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>76131</td>
<td>Primary MCL</td>
<td>1200</td>
<td>10</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td>100425</td>
<td>Taste & Odor</td>
<td>11</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td>1330207</td>
<td>Taste & Odor</td>
<td>17</td>
<td>0.5</td>
<td>EPA 8260B</td>
<td></td>
</tr>
</tbody>
</table>

SEMI-VOLATILE ORGANICS

<table>
<thead>
<tr>
<th>CTR #</th>
<th>Constituent</th>
<th>CAS Number</th>
<th>Basis</th>
<th>Criterion Concentration ug/L or noted</th>
<th>Criterion Quantitation Limit ug/L or noted</th>
<th>Suggested Test Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1,2-Benzanthracene</td>
<td>56553</td>
<td>Calif. Toxics Rule</td>
<td>0.0044</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>85</td>
<td>1,2-Diphenylhydrazine</td>
<td>122657</td>
<td>National Toxics Rule</td>
<td>0.04</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>45</td>
<td>2-Chlorophenol</td>
<td>95578</td>
<td>Taste and Odor</td>
<td>0.1</td>
<td>2</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>46</td>
<td>2,4-Dichlorophenol</td>
<td>120832</td>
<td>Taste and Odor</td>
<td>0.3</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>47</td>
<td>2,4-Dimethylphenol</td>
<td>105879</td>
<td>Calif. Toxics Rule</td>
<td>540</td>
<td>2</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>49</td>
<td>2,4-Dinitrophenol</td>
<td>51285</td>
<td>National Toxics Rule</td>
<td>70</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>82</td>
<td>2,4-Dinitrotoluene</td>
<td>121142</td>
<td>National Toxics Rule</td>
<td>0.11</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>55</td>
<td>2,4,6-Trichlorophenol</td>
<td>88062</td>
<td>Taste and Odor</td>
<td>2</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>83</td>
<td>2,6-Dinitrotoluene</td>
<td>606202</td>
<td>USEPA IRIS</td>
<td>0.05</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>50</td>
<td>2-Nitrophenol</td>
<td>25154557</td>
<td>Aquatic Toxicity</td>
<td>150 (5)</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>71</td>
<td>2-Chloronaphthalene</td>
<td>91587</td>
<td>Aquatic Toxicity</td>
<td>1600 (6)</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>78</td>
<td>3,3'-Dichlorobenzidine</td>
<td>91941</td>
<td>National Toxics Rule</td>
<td>0.04</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>62</td>
<td>3,4-Benzofluoranthene</td>
<td>205992</td>
<td>Calif. Toxics Rule</td>
<td>0.0044</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>52</td>
<td>4-Chloro-3-methylphenol</td>
<td>59507</td>
<td>Aquatic Toxicity</td>
<td>30</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>48</td>
<td>4,6-Dinitro-2-methylphenol</td>
<td>534521</td>
<td>National Toxics Rule</td>
<td>13.4</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>51</td>
<td>4-Nitrophenol</td>
<td>100027</td>
<td>USEPA Health Advisory</td>
<td>60</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>69</td>
<td>4-Bromophenyl phenyl ether</td>
<td>101553</td>
<td>Aquatic Toxicity</td>
<td>122</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>72</td>
<td>4-Chlorophenyl phenyl ether</td>
<td>7005723</td>
<td>Aquatic Toxicity</td>
<td>122 (3)</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>56</td>
<td>Acenaphthene</td>
<td>83329</td>
<td>Taste and Odor</td>
<td>20</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>57</td>
<td>Acenaphthylene</td>
<td>208968</td>
<td>No Criteria Available</td>
<td></td>
<td></td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>CTR #</td>
<td>Constituent</td>
<td>CAS Number</td>
<td>Controlling Water Quality Criterion for Surface Waters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basis</td>
<td>Criterion Concentration ug/L or noted</td>
<td>Criterion Quantitation Limit ug/L or noted</td>
<td>Suggested Test Methods</td>
</tr>
<tr>
<td>58</td>
<td>Anthracene</td>
<td>120127</td>
<td>Calif. Toxics Rule</td>
<td>9,600</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>59</td>
<td>Benzidine</td>
<td>92875</td>
<td>National Toxics Rule</td>
<td>0.00012</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>61</td>
<td>Benzo(a)pyrene (3,4-Benzpyrene)</td>
<td>50328</td>
<td>Calif. Toxics Rule</td>
<td>0.0044</td>
<td>0.1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>63</td>
<td>Benzo(g,h,i)perylene</td>
<td>191242</td>
<td>No Criteria Available</td>
<td></td>
<td></td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>64</td>
<td>Benzo(k)fluoranthene</td>
<td>207089</td>
<td>Calif. Toxics Rule</td>
<td>0.0044</td>
<td>2</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>65</td>
<td>Bis(2-chloroethoxy) methane</td>
<td>111911</td>
<td>No Criteria Available</td>
<td></td>
<td></td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>66</td>
<td>Bis(2-chloroethyl) ether</td>
<td>111444</td>
<td>National Toxics Rule</td>
<td>0.031</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>67</td>
<td>Bis(2-chloroisopropyl) ether</td>
<td>39638329</td>
<td>Aquatic Toxicity</td>
<td>122 (3)</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>68</td>
<td>Bis(2-ethylhexyl) phthalate</td>
<td>117817</td>
<td>National Toxics Rule</td>
<td>1.8</td>
<td>3</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>70</td>
<td>Butyl benzyl phthalate</td>
<td>85587</td>
<td>Aquatic Toxicity</td>
<td>3 (7)</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>73</td>
<td>Chrysene</td>
<td>218019</td>
<td>Calif. Toxics Rule</td>
<td>0.0044</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>81</td>
<td>Di-n-butylphthalate</td>
<td>84742</td>
<td>Aquatic Toxicity</td>
<td>3 (7)</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>84</td>
<td>Di-n-octylphthalate</td>
<td>117840</td>
<td>Aquatic Toxicity</td>
<td>3 (7)</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>74</td>
<td>Dibenzo(a,h)-anthracene</td>
<td>53703</td>
<td>Calif. Toxics Rule</td>
<td>0.0044</td>
<td>0.1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>79</td>
<td>Diethyl phthalate</td>
<td>84662</td>
<td>Aquatic Toxicity</td>
<td>3 (7)</td>
<td>2</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>80</td>
<td>Dimethyl phthalate</td>
<td>131113</td>
<td>Aquatic Toxicity</td>
<td>3 (7)</td>
<td>2</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>86</td>
<td>Fluoranthene</td>
<td>206440</td>
<td>Calif. Toxics Rule</td>
<td>300</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>87</td>
<td>Fluorene</td>
<td>893737</td>
<td>Calif. Toxics Rule</td>
<td>1300</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>90</td>
<td>Hexachlorocyclopentadiene</td>
<td>77474</td>
<td>Taste and Odor</td>
<td>1</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>92</td>
<td>Indeno(1,2,3-c,d)pyrene</td>
<td>193395</td>
<td>Calif. Toxics Rule</td>
<td>0.0044</td>
<td>0.05</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>93</td>
<td>Isophorone</td>
<td>78591</td>
<td>National Toxics Rule</td>
<td>8.4</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>98</td>
<td>N-Nitrosodiphenylamine</td>
<td>85306</td>
<td>National Toxics Rule</td>
<td>5</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>96</td>
<td>N-Nitrosodimethylamine</td>
<td>62759</td>
<td>National Toxics Rule</td>
<td>0.00069</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>97</td>
<td>N-Nitrosodi-n-propylamine</td>
<td>621647</td>
<td>Calif. Toxics Rule</td>
<td>0.005</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>95</td>
<td>Nitrobenzene</td>
<td>98953</td>
<td>National Toxics Rule</td>
<td>17</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>53</td>
<td>Pentachlorophenol</td>
<td>88765</td>
<td>Calif. Toxics Rule</td>
<td>0.28</td>
<td>0.2</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>99</td>
<td>Phenanthrene</td>
<td>85018</td>
<td>No Criteria Available</td>
<td></td>
<td></td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>54</td>
<td>Phenol</td>
<td>108952</td>
<td>Taste and Odor</td>
<td>5</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>100</td>
<td>Pyrene</td>
<td>129000</td>
<td>Calif. Toxics Rule</td>
<td>950</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
</tbody>
</table>

INORGANICS

<table>
<thead>
<tr>
<th>aluminum</th>
<th>7429905</th>
<th>Ambient Water Quality</th>
<th>87</th>
<th>50</th>
<th>EPA 6020/200.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>7440360</td>
<td>Primary MCL</td>
<td>6</td>
<td>5</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>Arsenic</td>
<td>7440382</td>
<td>Ambient Water Quality</td>
<td>0.018</td>
<td>0.01</td>
<td>EPA 1632</td>
</tr>
<tr>
<td>Asbestos</td>
<td>1332214</td>
<td>National Toxics Rule/Primary MCL</td>
<td>7 MFL</td>
<td>0.2 MFL >10μm</td>
<td>EPA/600/R-93/116 (PCM)</td>
</tr>
<tr>
<td>Barium</td>
<td>7440393</td>
<td>Basin Plan Objective</td>
<td>100</td>
<td>100</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7440417</td>
<td>Primary MCL</td>
<td>4</td>
<td>1</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>CTR #</td>
<td>Constituent</td>
<td>CAS Number</td>
<td>Controlling Water Quality Criterion for Surface Waters</td>
<td>Criterion Quantitation Limit ug/L or noted</td>
<td>Suggested Test Methods</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>------------</td>
<td>---</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Cadmium</td>
<td>7440439</td>
<td>Public Health Goal</td>
<td>0.07</td>
<td>0.25</td>
</tr>
<tr>
<td>5a</td>
<td>Chromium (total)</td>
<td>7440473</td>
<td>Primary MCL</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>5b</td>
<td>Chromium (VI)</td>
<td>18540259</td>
<td>Public Health Goal</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>Copper</td>
<td>7440508</td>
<td>National Toxics Rule</td>
<td>4.1 (2)</td>
<td>0.5</td>
</tr>
<tr>
<td>14</td>
<td>Cyanide</td>
<td>57125</td>
<td>National Toxics Rule</td>
<td>5.2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Fluoride</td>
<td>7782414</td>
<td>Public Health Goal</td>
<td>1000</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>7439696</td>
<td>Secondary MCL</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>Lead</td>
<td>7439921</td>
<td>Calif. Toxics Rule</td>
<td>0.92 (2)</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>Mercury</td>
<td>7439976</td>
<td>TMDL Development</td>
<td>0.0002 (11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>7439665</td>
<td>Secondary MCL/ Basin Plan Objective</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Nickel</td>
<td>7440020</td>
<td>Calif. Toxics Rule</td>
<td>24 (2)</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Selenium</td>
<td>7782492</td>
<td>Calif. Toxics Rule</td>
<td>5 (8)</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>Silver</td>
<td>7440222</td>
<td>Calif. Toxics Rule</td>
<td>0.71 (2)</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Thallium</td>
<td>7440280</td>
<td>National Toxics Rule</td>
<td>1.7</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Tributyltin</td>
<td>698733</td>
<td>Ambient Water Quality</td>
<td>0.063</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>7440666</td>
<td>Calif. Toxics Rule/ Basin Plan Objective</td>
<td>54/16 (2)</td>
<td>10</td>
</tr>
</tbody>
</table>

PESTICIDES - PCBs

<table>
<thead>
<tr>
<th>CTR</th>
<th>Constituent</th>
<th>CAS Number</th>
<th>Controlling Water Quality Criterion for Surface Waters</th>
<th>Criterion Quantitation Limit ug/L or noted</th>
<th>Suggested Test Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>4,4'-DDD</td>
<td>72548</td>
<td>Calif. Toxics Rule</td>
<td>0.00083</td>
<td>0.02</td>
</tr>
<tr>
<td>109</td>
<td>4,4'-DDE</td>
<td>72559</td>
<td>Calif. Toxics Rule</td>
<td>0.00059</td>
<td>0.01</td>
</tr>
<tr>
<td>108</td>
<td>4,4'-DDT</td>
<td>50293</td>
<td>Calif. Toxics Rule</td>
<td>0.00059</td>
<td>0.01</td>
</tr>
<tr>
<td>112</td>
<td>alpha-Endosulfan</td>
<td>959988</td>
<td>National Toxics Rule</td>
<td>0.056 (9)</td>
<td>0.02</td>
</tr>
<tr>
<td>103</td>
<td>alpha-Hexachlorocyclohexane (BHC)</td>
<td>319846</td>
<td>Calif. Toxics Rule</td>
<td>0.0039</td>
<td>0.01</td>
</tr>
<tr>
<td>102</td>
<td>Aldrin</td>
<td>309002</td>
<td>Calif. Toxics Rule</td>
<td>0.00013</td>
<td>0.005</td>
</tr>
<tr>
<td>113</td>
<td>beta-Endosulfan</td>
<td>33213559</td>
<td>Calif. Toxics Rule</td>
<td>0.056 (9)</td>
<td>0.01</td>
</tr>
<tr>
<td>104</td>
<td>beta-Hexachlorocyclohexane</td>
<td>319857</td>
<td>Calif. Toxics Rule</td>
<td>0.014</td>
<td>0.005</td>
</tr>
<tr>
<td>107</td>
<td>Chlordeane</td>
<td>57749</td>
<td>Calif. Toxics Rule</td>
<td>0.00057</td>
<td>0.1</td>
</tr>
<tr>
<td>105</td>
<td>delta-Hexachlorocyclohexane</td>
<td>319866</td>
<td>No Criteria Available</td>
<td>0.00014</td>
<td>0.005</td>
</tr>
<tr>
<td>111</td>
<td>Dieldrin</td>
<td>60571</td>
<td>Calif. Toxics Rule</td>
<td>0.00014</td>
<td>0.01</td>
</tr>
<tr>
<td>114</td>
<td>Endosulfan sulfate</td>
<td>1031078</td>
<td>Ambient Water Quality</td>
<td>0.056</td>
<td>0.05</td>
</tr>
<tr>
<td>115</td>
<td>Endrin</td>
<td>72208</td>
<td>Calif. Toxics Rule</td>
<td>0.036</td>
<td>0.01</td>
</tr>
<tr>
<td>116</td>
<td>Endrin Aldehyde</td>
<td>7421934</td>
<td>Calif. Toxics Rule</td>
<td>0.75</td>
<td>0.01</td>
</tr>
<tr>
<td>117</td>
<td>Heptachlor</td>
<td>76448</td>
<td>Calif. Toxics Rule</td>
<td>0.00021</td>
<td>0.01</td>
</tr>
<tr>
<td>118</td>
<td>Heptachlor Epoxide</td>
<td>1024573</td>
<td>Calif. Toxics Rule</td>
<td>0.0001</td>
<td>0.01</td>
</tr>
<tr>
<td>105</td>
<td>Lindane (gamma-Hexachlorocyclohexane)</td>
<td>58899</td>
<td>Calif. Toxics Rule</td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td>CTR #</td>
<td>Constituent</td>
<td>CAS Number</td>
<td>Controlling Water Quality Criterion for Surface Waters</td>
<td>Criterion Concentration ug/L or noted</td>
<td>Criterion Quantitation Limit ug/L or noted</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>119</td>
<td>PCB-1016</td>
<td>12974112</td>
<td>Calif. Toxics Rule</td>
<td>0.00017 (10)</td>
<td>0.5</td>
</tr>
<tr>
<td>120</td>
<td>PCB-1221</td>
<td>11104282</td>
<td>Calif. Toxics Rule</td>
<td>0.00017 (10)</td>
<td>0.5</td>
</tr>
<tr>
<td>121</td>
<td>PCB-1232</td>
<td>11141165</td>
<td>Calif. Toxics Rule</td>
<td>0.00017 (10)</td>
<td>0.5</td>
</tr>
<tr>
<td>122</td>
<td>PCB-1242</td>
<td>53469219</td>
<td>Calif. Toxics Rule</td>
<td>0.00017 (10)</td>
<td>0.5</td>
</tr>
<tr>
<td>123</td>
<td>PCB-1248</td>
<td>12572299</td>
<td>Calif. Toxics Rule</td>
<td>0.00017 (10)</td>
<td>0.5</td>
</tr>
<tr>
<td>124</td>
<td>PCB-1254</td>
<td>11097691</td>
<td>Calif. Toxics Rule</td>
<td>0.00017 (10)</td>
<td>0.5</td>
</tr>
<tr>
<td>125</td>
<td>PCB-1260</td>
<td>11096825</td>
<td>Calif. Toxics Rule</td>
<td>0.00017 (10)</td>
<td>0.5</td>
</tr>
<tr>
<td>126</td>
<td>Toxicophene</td>
<td>8001352</td>
<td>Calif. Toxics Rule</td>
<td>0.0002</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Atrazine</td>
<td>1912249</td>
<td>Public Health Goal</td>
<td>0.15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Bentazon</td>
<td>25057890</td>
<td>Primary MCL</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Carbofuran</td>
<td>1563662</td>
<td>CDFG Hazard Assess.</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2,4-D</td>
<td>94757</td>
<td>Primary MCL</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Dapron</td>
<td>75990</td>
<td>Ambient Water Quality</td>
<td>110</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropene</td>
<td>96128</td>
<td>Public Health Goal</td>
<td>0.0017</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Dl(2-ethylhexyl)adipate</td>
<td>103231</td>
<td>USEPA IRIS</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Dinoseb</td>
<td>88857</td>
<td>Primary MCL</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Diquat</td>
<td>85007</td>
<td>Ambient Water Quality</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Endothal</td>
<td>145733</td>
<td>Primary MCL</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Ethylene Dibromide</td>
<td>106934</td>
<td>OEHHA Cancer Risk</td>
<td>0.0097</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Glyphosate</td>
<td>1071836</td>
<td>Primary MCL</td>
<td>700</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Methoxychlor</td>
<td>72435</td>
<td>Public Health Goal</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Molinate (Ordram)</td>
<td>2212671</td>
<td>CDFG Hazard Assess.</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Oxamyl</td>
<td>23135220</td>
<td>Public Health Goal</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Pchlorom</td>
<td>1918021</td>
<td>Primary MCL</td>
<td>500</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Simazine (Princep)</td>
<td>122349</td>
<td>USEPA IRIS</td>
<td>3.4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Thiobencarb</td>
<td>28249776</td>
<td>Basin Plan Objective/Secondary MCL</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>2,3,7,8-TCDD (Dioxin)</td>
<td>1746016</td>
<td>Calif. Toxics Rule</td>
<td>1.30E-08</td>
<td>5.00E-06</td>
</tr>
<tr>
<td></td>
<td>2,4,5-TP (Silvex)</td>
<td>93765</td>
<td>Ambient Water Quality</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Diazinon</td>
<td>333415</td>
<td>CDFG Hazard Assess.</td>
<td>0.05</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Chlorpyrifos</td>
<td>2921882</td>
<td>CDFG Hazard Assess.</td>
<td>0.014</td>
<td>1</td>
</tr>
</tbody>
</table>

OTHER CONSTITUENTS

<table>
<thead>
<tr>
<th>Constituent</th>
<th>CAS Number</th>
<th>Criterion Concentration ug/L or noted</th>
<th>Criterion Quantitation Limit ug/L or noted</th>
<th>Suggested Test Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia (as N)</td>
<td>7664417</td>
<td>Ambient Water Quality</td>
<td>1500 (4)</td>
<td>EPA 350.1</td>
</tr>
<tr>
<td>Chloride</td>
<td>16887006</td>
<td>Agricultural Use</td>
<td>106,000</td>
<td>EPA 300.0</td>
</tr>
<tr>
<td>Flow</td>
<td></td>
<td></td>
<td>1 CFS</td>
<td></td>
</tr>
<tr>
<td>Hardness (as CaCO3)</td>
<td></td>
<td></td>
<td>5000</td>
<td>EPA 130.2</td>
</tr>
<tr>
<td>CTR #</td>
<td>Constituent</td>
<td>CAS Number</td>
<td>Controlling Water Quality Criterion for Surface Waters</td>
<td>Criterion Concentration ug/L or noted</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------</td>
<td>------------</td>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Foaming Agents (MBAS)</td>
<td></td>
<td>Secondary MCL</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Nitrate (as N)</td>
<td>14797558</td>
<td>Primary MCL</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>Nitrite (as N)</td>
<td>14797650</td>
<td>Primary MCL</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td></td>
<td>Basin Plan Objective</td>
<td>6.5-8.5</td>
</tr>
<tr>
<td></td>
<td>Phosphorus, Total (as P)</td>
<td>7723140</td>
<td>USEPA IRIS</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Specific conductance (EC)</td>
<td></td>
<td>Agricultural Use</td>
<td>700 umhos/cm</td>
</tr>
<tr>
<td></td>
<td>Sulfate</td>
<td></td>
<td>Secondary MCL</td>
<td>250,000</td>
</tr>
<tr>
<td></td>
<td>Sulfide (as S)</td>
<td></td>
<td>Taste and Odor</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>Sulfite (as SO3)</td>
<td></td>
<td>No Criteria Available</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td></td>
<td>Basin Plan Objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Dissolved Solids (TDS)</td>
<td></td>
<td>Agricultural Use</td>
<td>450,000</td>
</tr>
</tbody>
</table>

FOOTNOTES:

1. The Criterion Concentrations serve only as a point of reference for the selection of the appropriate analytical method. They do not indicate a regulatory decision that the cited concentration is either necessary or sufficient for full protection of beneficial uses. Available technology may require that effluent limits be set lower than these values.

2. Freshwater aquatic life criteria for metals are expressed as a function of total hardness (mg/L) in the water body. Values displayed correspond to a total hardness of 40 mg/L.

3. For haloethers

4. Freshwater aquatic life criteria for ammonia are expressed as a function of pH and temperature of the water body. Values displayed correspond to pH 8.0 and temperature of 22°C.

5. For nitrophenols.

6. For chlorinated naphthalenes.

7. For phthalate esters.

10. Criteria for sum of all PCBs.

11. Mercury monitoring shall utilize “ultra-clean” sampling and analytical methods. These methods include:
 - Method 1669: Sampling Ambient Water for Trace Metals at USEPA Water Quality Criteria Levels, USEPA; and
 - Method 1631: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence, USEPA

III. Additional Study Requirements

A. Laboratory Requirements. The laboratory analyzing the monitoring samples shall be certified by the Department of Health Services in accordance with the provisions of Water Code 13176 and must include quality assurance/quality control data with their reports (ELAP certified).

B. Criterion Quantitation Limit (CQL). The criterion quantitation limits will be equal to or lower than the minimum levels (MLs) in Appendix 4 of the SIP or the detection limits for purposes of reporting (DLRs) below the controlling water quality criterion concentrations.
summarized in Table I-1 of this Order. In cases where the controlling water quality
criteria concentrations are below the detection limits of all approved analytical methods,
the best available procedure will be utilized that meets the lowest of the MLs and DLR.
Table I-1 contains suggested analytical procedures. The Discharger is not required to
use these specific procedures as long as the procedure selected achieves the desired
minimum detection level.

C. Method Detection Limit (MDL). The method detection limit for the laboratory shall be
determined by the procedure found in 40 CFR Part 136, Appendix B (revised as of May
14, 1999).

D. Reporting Limit (RL). The reporting limit for the laboratory. This is the lowest
quantifiable concentration that the laboratory can determine. Ideally, the RL should be
equal to or lower than the CQL to meet the purposes of this monitoring.

E. Reporting Protocols. The results of analytical determinations for the presence of
chemical constituents in a sample shall use the following reporting protocols:

1. Sample results greater than or equal to the reported RL shall be reported as measured
by the laboratory (i.e., the measured chemical concentration in the sample).

2. Sample results less than the reported RL, but greater than or equal to the laboratory's
MDL, shall be reported as "Detected, but Not Quantified," or DNQ. The estimated
chemical concentration of the sample shall also be reported.

3. For the purposes of data collection, the laboratory shall write the estimated chemical
concentration next to DNQ as well as the words "Estimated Concentration" (may
shortened to "Est. Conc."). The laboratory, if such information is available, may include
numerical estimates of the data quantity for the reported result. Numerical estimates
of data quality may be percent accuracy (+ or − a percentage of the reported value),
numerical ranges (low and high), or any other means considered appropriate by the
laboratory.

4. Sample results that are less than the laboratory's MDL shall be reported as "Not
Detected" or ND.
F. Data Format. The monitoring report shall contain the following information for each pollutant:

1. The name of the constituent.
2. Sampling location.
3. The date the sample was collected.
4. The time the sample was collected.
5. The date the sample was analyzed. For organic analyses, the extraction data will also be indicated to assure that hold times are not exceeded for prepared samples.
6. The analytical method utilized.
7. The measured or estimated concentration.
8. The required Criterion Quantitation Limit (CQL).
10. The laboratory's lowest reporting limit (RL).
11. Any additional comments.
ATTACHMENT J – DIOXIN AND FURAN SAMPLING

The CTR includes criteria for 2,3,7,8-tetrachlorodibenzo-pdioxin (2,3,7,8-TCDD). In addition to this compound, there are many congeners of chlorinated dibenzo-dioxins (2,3,7,8-CDDs) and chlorinated dibenzofurans (2,3,7,8-CDFs) that exhibit toxic effects similar to those of 2,3,7,8-TCDD. The USEPA has published toxic equivalency factors (TEFs) for 17 of the congeners. The TEFs express the relative toxicities of the congeners compared to 2,3,7,8-TCDD (whose TEF equals 1.0). In June 1997, participants in a World Health Organization (WHO) expert meeting revised TEF values for 1,2,3,7,8-PentaCDD, OctaCDD, and OctaCDF. The current TEFs for the 17 congeners, which include the three revised values, are shown below:

<table>
<thead>
<tr>
<th>Congener</th>
<th>TEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,7,8-TetraCDD</td>
<td>1</td>
</tr>
<tr>
<td>1,2,3,7,8-PentaCDD</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HexaCDD</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,6,7,8-HexaCDD</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,7,8,9-HexaCDD</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HeptaCDD</td>
<td>0.01</td>
</tr>
<tr>
<td>OctaCDD</td>
<td>0.0001</td>
</tr>
<tr>
<td>2,3,7,8-TetraCDF</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,7,8-PentaCDF</td>
<td>0.05</td>
</tr>
<tr>
<td>2,3,4,7,8-PentaCDF</td>
<td>0.5</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HexaCDF</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,6,7,8-HexaCDF</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,7,8,9-HexaCDF</td>
<td>0.1</td>
</tr>
<tr>
<td>2,3,4,6,7,8-HexaCDF</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HeptaCDF</td>
<td>0.01</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-HeptaCDF</td>
<td>0.01</td>
</tr>
<tr>
<td>OctaCDF</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

The Discharger shall conduct effluent and receiving water monitoring for the 2,3,7,8-TCDD congeners listed above to assess the presence and amounts of the congeners being discharged and already present in the receiving water. Effluent and upstream receiving water shall be monitored for the presence of the 17 congeners once during the life of the permit, in conjunction with CTR monitoring.

The Discharger shall report, for each congener, the analytical results of the effluent and receiving water monitoring, including the quantifiable limit and the method detection limit, and the measured or estimated concentration.

In addition, the Discharger shall multiply each measured or estimated congener concentration by its respective TEF value and report the sum of these values.
ATTACHMENT K— REQUIREMENTS FOR MONITORING WELL INSTALLATION WORK PLANS AND MONITORING WELL INSTALLATION REPORTS

Prior to installation of groundwater monitoring wells, the Discharger shall submit a work plan containing at least the information specified in this document. Wells may be installed after the executive officer's approval of the work plan. Upon installation of the monitoring wells, the Discharger shall submit a report of results, as described below. A registered geologist, certified engineering geologist, or civil engineer registered or certified by the State of California must sign all work plans and reports.

MONITORING WELL INSTALLATION WORKPLAN

A. General Information:
 Monitoring well locations and rationale
 Survey details
 Equipment decontamination procedures
 Health and safety plan
 Topographic map showing any existing monitoring wells, proposed wells, waste handling facilities, utilities, and other major physical and man-made features.

B. Drilling Details: describe drilling and logging methods

C. Monitoring Well Design:
 Casing diameter
 Borehole diameter
 Depth of surface seal
 Well construction materials
 Diagram of well construction
 Type of well cap
 Size of perforations and rationale
 Grain size of sand pack and rationale
 Thickness and position of bentonite seal and sand pack
 Depth of well, length and position of perforated interval

D. Well Development:
 Method of development to be used
 Method of determining when development is complete
 Method of development water disposal

E. Surveying Details: discuss how each well will be surveyed to a common reference point

F. Soil Sampling (if applicable):
 Cuttings disposal method
 Analyses to be run and methods
Sample collection and preservation method
Intervals at which soil samples are to be collected
Number of soil samples to be analyzed and rationale
Location of soil samples and rationale
QA/QC procedures

G. Well Sampling:
Minimum time after development before sampling (48 hours)
Well purging method and amount of purge water
Sample collection and preservation method
QA/QC procedures

H. Water Level Measurement:
The elevation reference point at each monitoring well shall be within 0.01 foot.
Ground surface elevation at each monitoring well shall be within 0.1 foot. Method and
time of water level measurement shall be specified.

I. Proposed time schedule for work.

MONITORING WELL INSTALLATION REPORT OF RESULTS

A. Well Construction:
Number and depth of wells drilled
Date(s) wells drilled
Description of drilling and construction
Approximate locations relative to facility site(s)
A well construction diagram for each well must be included in the report, and should
contain
the following details:
Total depth drilled
Depth of open hole (same as total depth drilled if no caving occurs)
Footage of hole collapsed
Length of slotted casing installed
Depth of bottom of casing
Depth to top of sand pack
Thickness of sand pack
Depth to top of bentonite seal
Thickness of bentonite seal
Thickness of concrete grout
Boring diameter
Casing diameter
Casing material
Size of perforations
Number of bags of sand
Well elevation at top of casing
Depth to ground water
Date of water level measurement

Attachment J – K-2
Monitoring well number
Date drilled
Location

B. Well Development:
 Date(s) of development of each well
 Method of development
 Volume of water purged from well
 How well development completion was determined
 Method of effluent disposal
 Field notes from well development should be included in report.

C. Well Surveying: provide reference elevations for each well and surveyor's notes

D. Water Sampling:
 Date(s) of sampling
 How well was purged
 How many well volumes purged
 Levels of temperature, EC, and pH at stabilization
 Sample collection, handling, and preservation methods
 Sample identification
 Analytical methods used
 Laboratory analytical data sheets
 Water level elevation(s)
 Groundwater contour map

E. Soil Sampling (if applicable):
 Date(s) of sampling
 Sample collection, handling, and preservation method
 Sample identification
 Analytical methods used
 Laboratory analytical data sheets