The following Discharger is subject to waste discharge requirements as set forth in this Order:

Table 1. Discharger Information

<table>
<thead>
<tr>
<th>Discharger</th>
<th>Grizzly Lake Community Services District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Facility</td>
<td>Delleker Wastewater Treatment Plant</td>
</tr>
<tr>
<td>Facility Address</td>
<td>73821 Industrial Way</td>
</tr>
<tr>
<td></td>
<td>Portola, CA 96122</td>
</tr>
<tr>
<td></td>
<td>Plumas County</td>
</tr>
</tbody>
</table>

The U.S. Environmental Protection Agency (USEPA) and the Regional Water Quality Control Board have classified this discharge as a minor discharge.

The discharge by the Grizzly Lake Community Services District from the discharge points identified below is subject to waste discharge requirements as set forth in this Order:

Table 2. Discharge Location

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Effluent Description</th>
<th>Discharge Point Latitude</th>
<th>Discharge Point Longitude</th>
<th>Receiving Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Treated Wastewater</td>
<td>38º 48’ 13” N</td>
<td>120º 30’ 01” W</td>
<td>Middle Fork Feather River</td>
</tr>
</tbody>
</table>

Table 3. Administrative Information

This Order was adopted by the Regional Water Quality Control Board on:	8 June 2012
This Order shall become effective on:	8 June 2012
This Order shall expire on:	1 June 2017
The Discharger shall file a Report of Waste Discharge in accordance with title 23, California Code of Regulations, as application for issuance of new waste discharge requirements no later than:	180 days prior to the Order expiration date

I, PAMELA C. CREEDON, Executive Officer, do hereby certify that this Order with all attachments is a full, true, and correct copy of an Order adopted by the California Regional Water Quality Control Board, Central Valley Region, on 8 June 2012.

Original signed by

PAMELA C. CREEDON, Executive Officer
Table of Contents

I. Facility Information ... 4
II. Findings .. 4
III. Discharge Prohibitions .. 10
IV. Effluent Limitations and Discharge Specifications .. 11
 A. Effluent Limitations – Discharge Point No. 001 ... 11
 B. Land Discharge Specifications – Not Applicable ... 12
 C. Reclamation Specifications – Not Applicable .. 12
V. Receiving Water Limitations .. 12
 A. Surface Water Limitations ... 12
 B. Groundwater Limitations ... 14
VI. Provisions ... 15
 A. Standard Provisions .. 15
 B. Monitoring and Reporting Program Requirements .. 20
 C. Special Provisions ... 20
 1. Reopener Provisions ... 20
 2. Special Studies, Technical Reports and Additional Monitoring Requirements 21
 4. Construction, Operation and Maintenance Specifications 26
 5. Special Provisions for Municipal Facilities (POTWs Only) 28
 6. Other Special Provisions ... 31
 7. Compliance Schedules ... 31
VII. Compliance Determination .. 32

List of Tables

Table 1. Discharger Information ... 1
Table 2. Discharge Location ... 1
Table 3. Administrative Information .. 1
Table 4. Facility Information ... 4
Table 5. Basin Plan Beneficial Uses .. 6
Table 6. Effluent Limitations .. 11
Table 7. Interim Effluent Limitations-Ammonia ... 12
Table 8. Groundwater Limitations .. 15
List of Attachments

Attachment A – Definitions .. A-1
Attachment B – Maps .. B-1
Attachment C – Flow Schematic .. C-1
Attachment D – Standard Provisions .. D-1
Attachment E – Monitoring and Reporting Program E-1
Attachment F – Fact Sheet ... F-1
Attachment G – Summary of Reasonable Potential Analysis G-1
Attachment H – Calculation of WQBELs ... H-1
Attachment I – Effluent and Receiving Water Characterization Study ... I-1
Attachment J – Dioxin and Furan Sampling ... J-1
Attachment K – Requirements for Monitoring Well Installation Workplans and Reports K-1
I. FACILITY INFORMATION

The following Discharger is subject to waste discharge requirements as set forth in this Order:

Table 4. Facility Information

<table>
<thead>
<tr>
<th>Discharger</th>
<th>Grizzly Lake Community Services District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Facility</td>
<td>Delleker Wastewater Treatment Plant</td>
</tr>
<tr>
<td>Facility Address</td>
<td>73821 Industrial Way, Portola, CA 96122</td>
</tr>
<tr>
<td></td>
<td>Plumas County</td>
</tr>
<tr>
<td>Facility Contact, Title, and Phone</td>
<td>Randy Mark, Chief Operator (530) 927-8459</td>
</tr>
<tr>
<td>Mailing Address</td>
<td>119 Delleker Drive, Portola, CA 96122</td>
</tr>
<tr>
<td>Type of Facility</td>
<td>Publicly Owned Treatment Works</td>
</tr>
<tr>
<td>Facility Design Flow</td>
<td>0.1 million gallons per day (MGD)</td>
</tr>
</tbody>
</table>

II. FINDINGS

The California Regional Water Quality Control Board, Central Valley Region (hereinafter Central Valley Water Board), finds:

A. Background. The Grizzly Lake Community Services District (hereinafter Discharger) is currently discharging pursuant to Order No. R5-2007-0019 and National Pollutant Discharge Elimination System (NPDES) Permit No. CA0081744. The Discharger submitted a Report of Waste Discharge, dated May 6, 2011 and applied for a NPDES permit renewal to discharge up to 0.1 MGD of treated wastewater from the Delleker Wastewater Treatment Plant, hereinafter Facility. The application was deemed complete on 19 May 2011.

For the purposes of this Order, references to the “discharger” or “permittee” in applicable federal and state laws, regulations, plans, or policy are held to be equivalent to references to the Discharger herein.

B. Facility Description. The Discharger owns and operates a wastewater treatment plant. The treatment system consists of a headworks distribution box (no screening), five facultative treatment ponds, and chlorination/dechlorination. Wastewater is discharged from Discharge Point No. 001 (see table on cover page) to the Middle Fork of the Feather River, a water of the United States. Treated wastewater may be discharged to the River between November 1 and April 30, but only when receiving water flow is 40 cfs (25.85 MGD) or more at the Department of Water Resources (DWR) gauging station approximately four miles upstream of the discharge. Attachment B provides a map of the area around the Facility. Attachment C provides a flow schematic of the Facility.

C. Legal Authorities. This Order is issued pursuant to section 402 of the Clean Water Act (CWA) and implementing regulations adopted by USEPA and chapter 5.5, division 7 of
the California Water Code (Water Code; commencing with section 13370). It shall serve as a NPDES permit for point source discharges from this facility to surface waters. This Order also serves as Waste Discharge Requirements (WDRs) pursuant to article 4, chapter 4, division 7 of the Water Code (commencing with section 13260).

D. Background and Rationale for Requirements. The Central Valley Water Board developed the requirements in this Order based on information submitted as part of the application, through monitoring and reporting programs, and other available information. The Fact Sheet (Attachment F), which contains background information and rationale for Order requirements, is hereby incorporated into this Order and constitutes part of the Findings for this Order. Attachments A through E and G through K are also incorporated into this Order.

E. California Environmental Quality Act (CEQA). Under Water Code section 13389, this action to adopt an NPDES permit is exempt from the provisions of CEQA, Public Resources Code sections 21100-21177.

F. Technology-based Effluent Limitations. Section 301(b) of the CWA and implementing USEPA permit regulations at section 122.44, title 40 of the Code of Federal Regulations (40 CFR 122.44), require that permits include conditions meeting applicable technology-based requirements at a minimum, and any more stringent effluent limitations necessary to meet applicable water quality standards. The discharge authorized by this Order must meet minimum federal technology-based requirements based on Secondary Treatment Standards at 40 CFR Part 133. A detailed discussion of the technology-based effluent limitations development is included in the Fact Sheet.

G. Water Quality-based Effluent Limitations (WQBELs). Section 301(b) of the CWA and 40 CFR 122.44(d) require that permits include limitations more stringent than applicable federal technology-based requirements where necessary to achieve applicable water quality standards.

40 CFR 122.44(d)(1)(i) mandates that permits include effluent limitations for all pollutants that are or may be discharged at levels that have the reasonable potential to cause or contribute to an exceedance of a water quality standard, including numeric and narrative objectives within a standard. Where reasonable potential has been established for a pollutant, but there is no numeric criterion or objective for the pollutant, WQBELs must be established using: (1) USEPA criteria guidance under CWA section 304(a), supplemented where necessary by other relevant information; (2) an indicator parameter for the pollutant of concern; or (3) a calculated numeric water quality criterion, such as a proposed state criterion or policy interpreting the state’s narrative criterion, supplemented with other relevant information, as provided in 40 CFR 122.44(d)(1)(vi).

H. Water Quality Control Plans. The Central Valley Water Board adopted a Water Quality Control Plan, Fourth Edition (Revised October 2011), for the Sacramento and San Joaquin River Basins (hereinafter Basin Plan) that designates beneficial uses, establishes water quality objectives, and contains implementation programs and policies to achieve those objectives for all waters addressed through the plan. In addition, the
Basin Plan implements State Water Resources Control Board (State Water Board) Resolution No. 88-63, which established state policy that all waters, with certain exceptions, should be considered suitable or potentially suitable for municipal or domestic supply. Beneficial uses applicable to the Middle Fork of the Feather River are as follows:

Table 5. Basin Plan Beneficial Uses

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Receiving Water Name</th>
<th>Beneficial Use(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Middle Fork of the Feather River (From Last Chance to Lake Oroville)</td>
<td>Municipal and domestic supply (MUN); Water contact recreation, including canoeing and rafting (REC-1); Non-contact water recreation (REC-2); Warm freshwater habitat (WARM); Cold freshwater habitat (COLD); Spawning, reproduction, and/or early development, warm and cold (SPWN); Wildlife habitat (WILD).</td>
</tr>
<tr>
<td></td>
<td>Underlying Groundwater</td>
<td>Municipal and domestic supply (MUN); Industrial service supply (IND); Industrial process water supply (PROC); and Agricultural supply and stock watering supply (AGR).</td>
</tr>
</tbody>
</table>

The Basin Plan includes a list of Water Quality Limited Segments (WQLSs), which are defined as "...those sections of lakes, streams, rivers or other fresh water bodies where water quality does not meet (or is not expected to meet) water quality standards even after the application of appropriate limitations for point sources (40 CFR 130, et seq.)." The Basin Plan also states, "Additional treatment beyond minimum federal standards will be imposed on dischargers to WQLSs. Dischargers will be assigned or allocated a maximum allowable load of critical pollutants so that water quality objectives can be met in the segment."

The Middle Fork of the Feather River is not listed as an impaired water body pursuant to Section 303(d) of the Clean Water Act. The most recent list of approved water quality limited segments can be found at:

Requirements of this Order implement the Basin Plan.

I. **National Toxics Rule (NTR) and California Toxics Rule (CTR).** USEPA adopted the NTR on 22 December 1992, and later amended it on 4 May 1995 and 9 November 1999. About 40 criteria in the NTR applied in California. On 18 May 2000, USEPA adopted the CTR. The CTR promulgated new toxics criteria for California and, in addition, incorporated the previously adopted NTR criteria that were applicable in the state. The CTR was amended on 13 February 2001. These rules contain water quality criteria for priority pollutants.

J. **State Implementation Policy.** On 2 March 2000, the State Water Board adopted the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (State Implementation Policy or SIP). The SIP became effective on 28 April 28 2000 with respect to the priority pollutant criteria.
promulgated for California by USEPA through the NTR and to the priority pollutant objectives established by the Central Valley Water Board in the Basin Plan. The SIP became effective on 18 May 2000 with respect to the priority pollutant criteria promulgated by USEPA through the CTR. The State Water Board adopted amendments to the SIP on 24 February 2005 that became effective on 13 July 2005. The SIP establishes implementation provisions for priority pollutant criteria and objectives and provisions for chronic toxicity control. Requirements of this Order implement the SIP.

K. Compliance Schedules and Interim Requirements. In general, an NPDES permit must include final effluent limitations that are consistent with CWA section 301 and with 40 CFR 122.44(d). There are exceptions to this general rule. The State Water Board’s Policy for Compliance Schedules in National Pollutant Discharge Elimination System Permits (Compliance Schedule Policy) allows compliance schedules for new, revised, or newly interpreted water quality objectives or criteria, or in accordance with a TMDL. All compliance schedules must be as short as possible, and may not exceed ten years from the effective date of the adoption, revision, or new interpretation of the applicable water quality objective or criterion, unless a TMDL allows a longer schedule. The Central Valley Water Board, however, is not required to include a compliance schedule, but may issue a Time Schedule Order pursuant to Water Code section 13300 or a Cease and Desist Order pursuant to Water Code section 13301 where it finds that the discharger is violating or threatening to violate the permit. The Central Valley Water Board will consider the merits of each case in determining whether it is appropriate to include a compliance schedule in a permit, and, consistent with the Compliance Schedule Policy, should consider feasibility of achieving compliance, and must impose a schedule that is as short as possible to achieve compliance with the effluent limit based on the objective or criteria.

The Compliance Schedule Policy and the SIP do not allow compliance schedules for priority pollutants beyond 18 May 2010, except for new or more stringent priority pollutant criteria adopted by USEPA after 17 December 2008.

Where a compliance schedule for a final effluent limitation exceeds one year, the Order must include interim numeric limitations for that constituent or parameter, interim milestones and compliance reporting within 14 days after each interim milestone. The permit may also include interim requirements to control the pollutant, such as pollutant minimization and source control measures. This Order includes a compliance schedule and interim effluent limitations. A detailed discussion of the basis for the compliance schedule and interim effluent limitations is included in the Fact Sheet.

L. Alaska Rule. On 30 March 2000, USEPA revised its regulation that specifies when new and revised state and tribal water quality standards become effective for CWA purposes. (40 CFR 131.21 and 65 FR 24641 (27 April 2000).) Under the revised regulation (also known as the Alaska rule), new and revised standards submitted to USEPA after 30 May 2000, must be approved by USEPA before being used for CWA purposes. The final rule also provides that standards already in effect and submitted to USEPA by 30 May 2000 may be used for CWA purposes, whether or not approved by USEPA.
M. **Stringency of Requirements for Individual Pollutants.** This Order contains both technology-based effluent limitations and WQBELs for individual pollutants. The technology-based effluent limitations consist of restrictions on 5-day biochemical oxygen demand (BOD) and total suspended solids (TSS). The WQBELs consist of restrictions on ammonia, chlorine residual, copper, pH, and total coliform organisms. This Order’s technology-based pollutant restrictions implement the minimum, applicable federal technology-based requirements.

WQBELs have been scientifically derived to implement water quality objectives that protect beneficial uses. Both the beneficial uses and the water quality objectives have been approved pursuant to federal law and are the applicable federal water quality standards. To the extent that toxic pollutant WQBELs were derived from the CTR, the CTR is the applicable standard pursuant to 40 CFR 131.38. The scientific procedures for calculating the individual WQBELs for priority pollutants are based on the CTR-SIP, which was approved by USEPA on 18 May 2000. All beneficial uses and water quality objectives contained in the Basin Plan were approved under state law and submitted to and approved by USEPA prior to 30 May 2000. Any water quality objectives and beneficial uses submitted to USEPA prior to 30 May 2000, but not approved by USEPA before that date, are nonetheless “applicable water quality standards for purposes of the [Clean Water] Act” pursuant to 40 CFR 131.21(c)(1). Collectively, this Order’s restrictions on individual pollutants are no more stringent than required to implement the technology-based requirements of the CWA and the applicable water quality standards for purposes of the CWA.

N. **Antidegradation Policy.** 40 CFR 131.12 requires that the state water quality standards include an antidegradation policy consistent with the federal policy. The State Water Board established California’s antidegradation policy in State Water Board Resolution No. 68-16. Resolution No. 68-16 incorporates the federal antidegradation policy where the federal policy applies under federal law. Resolution No. 68-16 requires that existing quality of waters be maintained unless degradation is justified based on specific findings. The Central Valley Water Board’s Basin Plan implements, and incorporates by reference, both the state and federal antidegradation policies. As discussed in detail in the Fact Sheet, the permitted discharge is consistent with the antidegradation provision of 40 CFR 131.12 and Resolution No. 68-16.

O. **Anti-Backsliding Requirements.** Sections 303(d)(4) and 402(o)(2) of the CWA and federal regulations at 40 CFR 122.44(l) prohibit backsliding in NPDES permits. These anti-backsliding provisions require effluent limitations in a reissued permit to be as stringent as those in the previous permit, with some exceptions. All effluent limitations in this Order are at least as stringent as the effluent limitations in Order No. R5-2007-0019.

P. **Endangered Species Act.** This Order does not authorize any act that results in the taking of a threatened or endangered species or any act that is now prohibited, or becomes prohibited in the future, under either the California Endangered Species Act (Fish and Game Code sections 2050 to 2097) or the Federal Endangered Species Act (16 U.S.C.A. sections 1531 to 1544). This Order requires compliance with effluent limits, receiving water limits, and other requirements to protect the beneficial uses of
waters of the state. The discharger is responsible for meeting all requirements of the applicable Endangered Species Act.

Q. Monitoring and Reporting. 40 CFR 122.48 requires that all NPDES permits specify requirements for recording and reporting monitoring results. Water Code sections 13267 and 13383 authorize the Central Valley Water Board to require technical and monitoring reports. The Monitoring and Reporting Program establishes monitoring and reporting requirements to implement federal and State requirements. The Monitoring and Reporting Program is provided in Attachment E.

R. Standard and Special Provisions. Standard Provisions, which apply to all NPDES permits in accordance with 40 CFR 122.41, and additional conditions applicable to specified categories of permits in accordance with 40 CFR 122.42, are provided in Attachment D. The discharger must comply with all standard provisions and with those additional conditions that are applicable under 40 CFR 122.42. The Central Valley Water Board has also included in this Order special provisions applicable to the Discharger. A rationale for the special provisions contained in this Order is provided in the Fact Sheet.

S. Provisions and Requirements Implementing State Law. The provisions/requirements in sections V.B., VI.C.3.e., VI.C.3.f., VI.C.3.g., VI.C.3.h., and VI.C.4.a of this Order are included to implement state law only. These provisions/requirements are not required or authorized under the federal CWA; consequently, violations of these provisions/requirements are not subject to the enforcement remedies that are available for NPDES violations.

T. Notification of Interested Parties. The Central Valley Water Board has notified the Discharger and interested agencies and persons of its intent to prescribe WDRs for the discharge and has provided them with an opportunity to submit their written comments and recommendations. Details of notification are provided in the Fact Sheet of this Order.

U. Consideration of Public Comment. The Central Valley Water Board, in a public meeting, heard and considered all comments pertaining to the discharge. Details of the Public Hearing are provided in the Fact Sheet.

THEREFORE, IT IS HEREBY ORDERED, that Order No. R5-2007-0019 is rescinded upon the effective date of this Order except for enforcement purposes, and, in order to meet the provisions contained in division 7 of the Water Code (commencing with section 13000) and regulations adopted thereunder, and the provisions of the federal CWA and regulations and guidelines adopted thereunder, the Discharger shall comply with the requirements in this Order.
III. DISCHARGE PROHIBITIONS

A. Discharge of wastewater at a location or in a manner different from that described in the Findings is prohibited.

C. Neither the discharge nor its treatment shall create a nuisance as defined in section 13050 of the Water Code.

D. The Discharger shall not allow pollutant-free wastewater to be discharged into the treatment or disposal system in amounts that significantly diminish the system’s capability to comply with this Order. Pollutant-free wastewater means rainfall, groundwater, cooling waters, and condensates that are essentially free of pollutants.

E. Discharge to the Middle Fork of the Feather River is prohibited when River flow as measured at the DWR Middle Fork Feather River Portola gauging station is less than 40 cfs.

F. Discharge of effluent to the Middle Fork of the Feather River from May 1 to October 31 is prohibited, unless approved by the Executive Officer in accordance with General Provision VI.C.6.a.
IV. EFFLUENT LIMITATIONS AND DISCHARGE SPECIFICATIONS

A. Effluent Limitations – Discharge Point No. 001

1. Final Effluent Limitations – Discharge Point No. 001

 a. The Discharger shall maintain compliance with the following effluent limitations at Discharge Point No. 001, with compliance measured at Monitoring Location EFF-001 as described in the Monitoring and Reporting Program:

 Table 6. Effluent Limitations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Average Monthly</th>
<th>Average Weekly</th>
<th>Maximum Daily</th>
<th>Instantaneous Minimum</th>
<th>Instantaneous Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical Oxygen Demand 5-day @ 20°C</td>
<td>mg/L</td>
<td>45</td>
<td>65</td>
<td>90</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>lbs/day¹</td>
<td>37.5</td>
<td>54.2</td>
<td>75.1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>45</td>
<td>65</td>
<td>90</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>lbs/day¹</td>
<td>37.5</td>
<td>54.2</td>
<td>75.1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chlorine, Total Residual</td>
<td>mg/L</td>
<td>--</td>
<td>0.01²</td>
<td>0.019³</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>6.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Total Coliform Organisms</td>
<td>MPN/100mL</td>
<td>--</td>
<td>23¹³</td>
<td>240⁵</td>
<td>--</td>
<td>500</td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>7.46</td>
<td>--</td>
<td>18.54</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>μg/L</td>
<td>5.0</td>
<td>--</td>
<td>10.1</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

¹ Mass-based effluent limitations are based on a permitted average monthly dry weather flow of 0.1 MGD.
² Applied as a 4-day average effluent limitation.
³ Applied as a 1-hour average effluent limitation.
⁴ Applied as a 7-day median effluent limitation.
⁵ Total coliform organisms shall not exceed 240 more than once in any 30-day period.
⁶ See interim limits below.
⁷ See interim limits in Time Schedule Order R5-2012-0047.

 b. Percent Removal. The average monthly percent removal of 5-day biochemical oxygen demand (BOD₅) and total suspended solids (TSS) shall not be less than 65 percent. Calculation of percent removal may be performed using a volume weighted average of influent wastewater and septage/supernatant pollutant concentrations.

c. Acute Whole Effluent Toxicity. Survival of aquatic organisms in 96-hour bioassays of undiluted waste shall be no less than:

 i. 70%, minimum for any one bioassay; and
 ii. 90%, median for any three consecutive bioassays.
d. Average Dry Weather Flow. The average dry weather discharge flow shall not exceed 0.1 MGD.

2. **Interim Effluent Limitations**

 a. Effective immediately and ending on permit expiration, the Discharger shall maintain compliance with the following ammonia effluent limitations at Discharge Point No. 001, with compliance measured at Monitoring Location Monitoring Location EFF-001 as described in the Monitoring and Reporting Program. These interim effluent limitations shall apply in lieu of the corresponding final effluent limitations specified for the same parameters during the time period indicated in this provision.

 Table 7. **Interim Effluent Limitations-Ammonia**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Monthly</td>
<td>Average Weekly</td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>27.3</td>
<td>--</td>
</tr>
</tbody>
</table>

 1 AMEL set equal to MDEL based on required monitoring once per month.

B. **Land Discharge Specifications – Not Applicable**

C. **Reclamation Specifications – Not Applicable**

V. **RECEIVING WATER LIMITATIONS**

A. **Surface Water Limitations**

 Receiving water limitations are based on water quality objectives contained in the Basin Plan and are a required part of this Order. The discharge shall not cause the following in the Middle Fork of the Feather River:

 1. **Bacteria.** The fecal coliform concentration, based on a minimum of not less than five samples for any 30-day period, to exceed a geometric mean of 200 MPN/100 mL, nor more than 10 percent of the total number of fecal coliform samples taken during any 30-day period to exceed 400 MPN/100 mL

 2. **Biostimulatory Substances.** Water to contain biostimulatory substances which promote aquatic growths in concentrations that cause nuisance or adversely affect beneficial uses.

 3. **Chemical Constituents.** Chemical constituents to be present in concentrations that adversely affect beneficial uses.

 4. **Color.** Discoloration that causes nuisance or adversely affects beneficial uses.

 5. **Dissolved Oxygen:**
a. The monthly median of the mean daily dissolved oxygen concentration to fall below 85 percent of saturation in the main water mass;

b. The 95 percentile dissolved oxygen concentration to fall below 75 percent of saturation; nor

c. The dissolved oxygen concentration to be reduced below 7.0 mg/L at any time.

6. Floating Material. Floating material to be present in amounts that cause nuisance or adversely affect beneficial uses.

7. Oil and Grease. Oils, greases, waxes, or other materials to be present in concentrations that cause nuisance, result in a visible film or coating on the surface of the water or on objects in the water, or otherwise adversely affect beneficial uses.

8. pH. The pH to be depressed below 6.5 nor raised above 8.5.

9. Pesticides:
 a. Pesticides to be present, individually or in combination, in concentrations that adversely affect beneficial uses;
 b. Pesticides to be present in bottom sediments or aquatic life in concentrations that adversely affect beneficial uses;
 c. Total identifiable persistent chlorinated hydrocarbon pesticides to be present in the water column at concentrations detectable within the accuracy of analytical methods approved by USEPA or the Executive Officer;
 d. Pesticide concentrations to exceed those allowable by applicable antidegradation policies (see State Water Board Resolution No. 68-16 and 40 CFR 131.12);
 e. Pesticide concentrations to exceed the lowest levels technically and economically achievable;
 f. Pesticides to be present in concentration in excess of the maximum contaminant levels set forth in CCR, Title 22, division 4, chapter 15; nor
 g. Thiobencarb to be present in excess of 1.0 μg/L.

10. Radioactivity:
 a. Radionuclides to be present in concentrations that are harmful to human, plant, animal, or aquatic life nor that result in the accumulation of radionuclides in the food web to an extent that presents a hazard to human, plant, animal, or aquatic life.
b. Radionuclides to be present in excess of the maximum contaminant levels specified in Table 4 (MCL Radioactivity) of section 64443 of Title 22 of the California Code of Regulations.

12. **Salinity.** Electrical Conductivity at 25°C shall not exceed 150 μmhos/cm (90th percentile) in well-mixed waters of the Middle Fork of the Feather River.

13. **Suspended Sediments.** The suspended sediment load and suspended sediment discharge rate of surface waters to be altered in such a manner as to cause nuisance or adversely affect beneficial uses.

14. **Settleable Substances.** Substances to be present in concentrations that result in the deposition of material that causes nuisance or adversely affects beneficial uses.

15. **Suspected Material.** Suspended material to be present in concentrations that cause nuisance or adversely affect beneficial uses.

16. **Taste and Odors.** Taste- or odor-producing substances to be present in concentrations that impart undesirable tastes or odors to fish flesh or other edible products of aquatic origin, or that cause nuisance, or otherwise adversely affect beneficial uses.

17. **Temperature.** The natural temperature to be increased by more than 5°F.

18. **Toxicity.** Toxic substances to be present, individually or in combination, in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life.

19. **Turbidity.**
 a. Shall not exceed 2 Nephelometric Turbidity Units (NTU) where natural turbidity is less than 1 NTU;
 b. Shall not increase more than 1 NTU where natural turbidity is between 1 and 5 NTUs;
 c. Shall not increase more than 20 percent where natural turbidity is between 5 and 50 NTUs;
 d. Shall not increase more than 10 NTU where natural turbidity is between 50 and 100 NTUs; nor
 e. Shall not increase more than 10 percent where natural turbidity is greater than 100 NTUs.

B. Groundwater Limitations

1. Release of waste constituents from any portion of the Facility shall not cause groundwater to:
a. Contain any of the following constituents in concentrations greater than listed or greater than natural background quality, whichever is greater.

Table 8. Groundwater Limitations

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Organisms</td>
<td>MPN/100 mL</td>
<td><2.2</td>
</tr>
<tr>
<td>Electrical Conductivity @ 25°C</td>
<td>μmhos/cm</td>
<td>900 (annual average)</td>
</tr>
<tr>
<td>Nitrate Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>10</td>
</tr>
<tr>
<td>Ammonia (as NH₄)</td>
<td>mg/L</td>
<td>1.5</td>
</tr>
</tbody>
</table>

A cumulative impact limit that accounts for several dissolved constituents in addition to those listed here separately [e.g., alkalinity (carbonate and bicarbonate), calcium, hardness, phosphate, and potassium].

b. Exhibit a pH of less than 6.5 or greater than 8.4 pH units.

c. Impart taste, odor, chemical constituents, toxicity, or color that creates nuisance or impairs any beneficial use.

VI. PROVISIONS

A. Standard Provisions

1. The Discharger shall comply with all Standard Provisions (federal NPDES standard conditions from 40 CFR Part 122) included in Attachment D of this Order.

2. The Discharger shall comply with the following provisions:

 a. If the Discharger's wastewater treatment plant is publicly owned or subject to regulation by California Public Utilities Commission, it shall be supervised and operated by persons possessing certificates of appropriate grade according to Title 23, CCR, division 3, chapter 26.

 b. After notice and opportunity for a hearing, this Order may be terminated or modified for cause, including, but not limited to:

 i. violation of any term or condition contained in this Order;

 ii. obtaining this Order by misrepresentation or by failing to disclose fully all relevant facts;

 iii. a change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge; and

 iv. a material change in the character, location, or volume of discharge.

The causes for modification include:

- New regulations. New regulations have been promulgated under section 405(d) of the CWA, or the standards or regulations on which the permit was
based have been changed by promulgation of amended standards or regulations or by judicial decision after the permit was issued.

- **Land application plans.** When required by a permit condition to incorporate a land application plan for beneficial reuse of sewage sludge, to revise an existing land application plan, or to add a land application plan.

- **Change in sludge use or disposal practice.** Under 40 CFR 122.62(a)(1), a change in the Discharger's sludge use or disposal practice is a cause for modification of the permit. It is cause for revocation and reissuance if the Discharger requests or agrees.

The Central Valley Water Board may review and revise this Order at any time upon application of any affected person or the Central Valley Water Board's own motion.

c. If a toxic effluent standard or prohibition (including any scheduled compliance specified in such effluent standard or prohibition) is established under section 307(a) of the CWA, or amendments thereto, for a toxic pollutant that is present in the discharge authorized herein, and such standard or prohibition is more stringent than any limitation upon such pollutant in this Order, the Central Valley Water Board will revise or modify this Order in accordance with such toxic effluent standard or prohibition.

The Discharger shall comply with effluent standards and prohibitions within the time provided in the regulations that establish those standards or prohibitions, even if this Order has not yet been modified.

d. This Order shall be modified, or alternately revoked and reissued, to comply with any applicable effluent standard or limitation issued or approved under sections 301(b)(2)(C) and (D), 304(b)(2), and 307(a)(2) of the CWA, if the effluent standard or limitation so issued or approved:

i. Contains different conditions or is otherwise more stringent than any effluent limitation in the Order; or

ii. Controls any pollutant limited in the Order.

The Order, as modified or reissued under this paragraph, shall also contain any other requirements of the CWA then applicable.

e. The provisions of this Order are severable. If any provision of this Order is found invalid, the remainder of this Order shall not be affected.

f. The Discharger shall take all reasonable steps to minimize any adverse effects to waters of the State or users of those waters resulting from any discharge or sludge use or disposal in violation of this Order. Reasonable steps shall include such accelerated or additional monitoring as necessary to determine
the nature and impact of the non-complying discharge or sludge use or disposal.

g. The Discharger shall ensure compliance with any existing or future pretreatment standard promulgated by USEPA under section 307 of the CWA, or amendment thereto, for any discharge to the municipal system.

h. A copy of this Order shall be maintained at the discharge facility and be available at all times to operating personnel. Key operating personnel shall be familiar with its content.

i. Safeguard to electric power failure:

i. The Discharger shall provide safeguards to assure that, should there be reduction, loss, or failure of electric power, the discharge shall comply with the terms and conditions of this Order.

ii. Upon written request by the Central Valley Water Board, the Discharger shall submit a written description of safeguards. Such safeguards may include alternate power sources, standby generators, retention capacity, operating procedures, or other means. A description of the safeguards provided shall include an analysis of the frequency, duration, and impact of power failures experienced over the past 5 years on effluent quality and on the capability of the Discharger to comply with the terms and conditions of the Order. The adequacy of the safeguards is subject to the approval of the Central Valley Water Board.

iii. Should the treatment works not include safeguards against reduction, loss, or failure of electric power, or should the Central Valley Water Board not approve the existing safeguards, the Discharger shall, within 90 days of having been advised in writing by the Central Valley Water Board that the existing safeguards are inadequate, provide to the Central Valley Water Board and USEPA a schedule of compliance for providing safeguards such that in the event of reduction, loss, or failure of electric power, the Discharger shall comply with the terms and conditions of this Order. The schedule of compliance shall, upon approval of the Central Valley Water Board, become a condition of this Order.

j. The Discharger, upon written request of the Central Valley Water Board, shall file with the Board a technical report on its preventive (failsafe) and contingency (cleanup) plans for controlling accidental discharges, and for minimizing the effect of such events. This report may be combined with that required under Central Valley Water Board Standard Provision contained in section VI.A.2.i of this Order.
The technical report shall:

i. Identify the possible sources of spills, leaks, untreated waste by-pass, and contaminated drainage. Loading and storage areas, power outage, waste treatment unit outage, and failure of process equipment, tanks and pipes should be considered.

ii. Evaluate the effectiveness of present facilities and procedures and state when they became operational.

iii. Predict the effectiveness of the proposed facilities and procedures and provide an implementation schedule containing interim and final dates when they will be constructed, implemented, or operational.

The Central Valley Water Board, after review of the technical report, may establish conditions which it deems necessary to control accidental discharges and to minimize the effects of such events. Such conditions shall be incorporated as part of this Order, upon notice to the Discharger.

k. A publicly owned treatment works whose waste flow has been increasing, or is projected to increase, shall estimate when flows will reach hydraulic and treatment capacities of its treatment and disposal facilities. The projections shall be made in January, based on the last 3 years' average dry weather flows, peak wet weather flows and total annual flows, as appropriate. When any projection shows that capacity of any part of the facilities may be exceeded in 4 years, the Discharger shall notify the Central Valley Water Board by 31 January. A copy of the notification shall be sent to appropriate local elected officials, local permitting agencies and the press. Within 120 days of the notification, the Discharger shall submit a technical report showing how it will prevent flow volumes from exceeding capacity or how it will increase capacity to handle the larger flows. The Central Valley Water Board may extend the time for submitting the report.

l. The Discharger shall submit technical reports as directed by the Executive Officer. All technical reports required herein that involve planning, investigation, evaluation, or design, or other work requiring interpretation and proper application of engineering or geologic sciences, shall be prepared by or under the direction of persons registered to practice in California pursuant to California Business and Professions Code, sections 6735, 7835, and 7835.1. To demonstrate compliance with Title 16, CCR, sections 415 and 3065, all technical reports must contain a statement of the qualifications of the responsible registered professional(s). As required by these laws, completed technical reports must bear the signature(s) and seal(s) of the registered professional(s) in a manner such that all work can be clearly attributed to the professional responsible for the work.
m. The Central Valley Water Board is authorized to enforce the terms of this permit under several provisions of the Water Code, including, but not limited to, sections 13385, 13386, and 13387.

n. For publicly owned treatment works, prior to making any change in the point of discharge, place of use, or purpose of use of treated wastewater that results in a decrease of flow in any portion of a watercourse, the Discharger must file a petition with the State Water Board, Division of Water Rights, and receive approval for such a change. (Water Code section 1211).

o. In the event the Discharger does not comply or will be unable to comply for any reason, with any prohibition, maximum daily effluent limitation, 1-hour average effluent limitation, or receiving water limitation contained in this Order, the Discharger shall notify the Central Valley Water Board by telephone (530) 224-4845 within 24 hours of having knowledge of such noncompliance, and shall confirm this notification in writing within 5 days, unless the Central Valley Water Board waives confirmation. The written notification shall include the information required by the Standard Provision contained in Attachment D section V.E.1. [40 CFR 122.41(l)(6)(i)].

p. Failure to comply with provisions or requirements of this Order, or violation of other applicable laws or regulations governing discharges from this facility, may subject the Discharger to administrative or civil liabilities, criminal penalties, and/or other enforcement remedies to ensure compliance. Additionally, certain violations may subject the Discharger to civil or criminal enforcement from appropriate local, state, or federal law enforcement entities.

q. In the event of any change in control or ownership of land or waste discharge facilities presently owned or controlled by the Discharger, the Discharger shall notify the succeeding owner or operator of the existence of this Order by letter, a copy of which shall be immediately forwarded to the Central Valley Water Board.

To assume operation under this Order, the succeeding owner or operator must apply in writing to the Executive Officer requesting transfer of the Order. The request must contain the requesting entity’s full legal name, the state of incorporation if a corporation, address and telephone number of the persons responsible for contact with the Central Valley Water Board and a statement. The statement shall comply with the signatory and certification requirements in the federal Standard Provisions (Attachment D, section V.B) and state that the new owner or operator assumes full responsibility for compliance with this Order. Failure to submit the request shall be considered a discharge without requirements, a violation of the Water Code. Transfer shall be approved or disapproved in writing by the Executive Officer.
B. Monitoring and Reporting Program Requirements

The Discharger shall comply with the Monitoring and Reporting Program, and future revisions thereto, in Attachment E of this Order.

C. Special Provisions

1. Reopener Provisions

 a. Conditions that necessitate a major modification of a permit are described in 40 CFR 122.62, including, but not limited to:

 i. If new or amended applicable water quality standards are promulgated or approved pursuant to section 303 of the CWA, or amendments thereto, this permit may be reopened and modified in accordance with the new or amended standards.

 ii. When new information, that was not available at the time of permit issuance, would have justified different permit conditions at the time of issuance.

 b. This Order may be reopened for modification, or revocation and reissuance, as a result of the detection of a reportable priority pollutant generated by special conditions included in this Order. These special conditions may be, but are not limited to, fish tissue sampling, whole effluent toxicity, monitoring requirements on internal waste stream(s), and monitoring for surrogate parameters. Additional requirements may be included in this Order as a result of the special condition monitoring data.

 c. Mercury. If mercury is found to be causing toxicity based on acute or chronic toxicity test results, or if a TMDL program is adopted, this Order shall be reopened and the interim mass effluent limitation modified (higher or lower) or an effluent concentration limitation imposed. If the Central Valley Water Board determines that a mercury offset program is feasible for Dischargers subject to a NPDES permit, then this Order may be reopened to reevaluate the interim mercury mass loading limitation(s) and the need for a mercury offset program for the Discharger.

 d. Pollution Prevention. This Order requires the Discharger prepare pollution prevention plans following Water Code section 13263.3(d)(3) for ammonia. Based on a review of the pollution prevention plans, this Order may be reopened for addition and/or modification of effluent limitations and requirements for these constituents.

 e. Whole Effluent Toxicity. As a result of a Toxicity Reduction Evaluation (TRE), this Order may be reopened to include a chronic toxicity limitation, a new acute toxicity limitation, and/or a limitation for a specific toxicant identified in the TRE. Additionally, if the State Water Board revises the SIP’s toxicity control provisions that would require the establishment of numeric chronic toxicity effluent
limitations, this Order may be reopened to include a numeric chronic toxicity effluent limitation based on the new provisions.

f. **Water Effects Ratios (WER) and Metal Translators.** A default WER of 1.0 has been used in this Order for calculating CTR criteria for applicable priority pollutant inorganic constituents. In addition, default dissolved-to-total metal translators have been used to convert water quality objectives from dissolved to total recoverable when developing effluent limitations for copper. If the Discharger performs studies to determine site-specific WERs and/or site-specific dissolved-to-total metal translators, this Order may be reopened to modify the effluent limitations for the applicable inorganic constituents.

g. **Dilution/Mixing Zone Study.** In Order to allow dilution credits for the calculation of WQBELs and the chronic toxicity monitoring trigger, the Discharger must submit an approved Dilution/Mixing Zone Study, in accordance with a work plan submitted to and approved by the Central Valley Water Board, which means all of the requirements of Section 1.4.2.2 of the SIP. Should the Discharger submit an approved Dilution/Mixing Zone Study that meets the requirements of Section 1.4.2.2 of the SIP, the Central Valley Water Board may reopen this Order to include effluent limitations based on an appropriate dilution factor.

h. **Constituent Study.** If after review of the study results it is determined that the discharge has reasonable potential to cause or contribute to an exceedance of a water quality objective this Order may be reopened and effluent limitations added for the subject constituents.

i. **Groundwater Study.** After review of the Groundwater Quality Characterization Study, this Order may be reopened and groundwater limitations revised and/or added for constituents of concern.

2. **Special Studies, Technical Reports and Additional Monitoring Requirements**

a. **Chronic Whole Effluent Toxicity.** For compliance with the Basin Plan’s narrative toxicity objective, this Order requires the Discharger to conduct chronic whole effluent toxicity (WET) testing, as specified in the Monitoring and Reporting Program (Attachment E, section V). Furthermore, this Provision requires the Discharger to investigate the causes of, and identify corrective actions to reduce or eliminate effluent toxicity. If the discharge exhibits toxicity, as described in subsection ii below, the Discharger is required to initiate a TRE in accordance with an approved TRE Workplan, and take actions to mitigate the impact of the discharge and prevent recurrence of toxicity. A TRE is a site-specific study conducted in a stepwise process to identify the source(s) of toxicity and the effective control measures for effluent toxicity. TREs are designed to identify the causative agents and sources of effluent toxicity, evaluate the effectiveness of the toxicity control options, and confirm the reduction in effluent toxicity. This Provision includes requirements for the Discharger to develop and submit a TRE Workplan and includes procedures for accelerated chronic toxicity monitoring and TRE initiation.
i. Initial Investigative TRE Workplan. Within 90 days of the effective date of this Order, the Discharger shall submit to the Central Valley Water Board an Initial Investigative TRE Workplan for approval by the Executive Officer. This should be a one to two page document including, at a minimum:

(a) A description of the investigation and evaluation techniques that will be used to identify potential causes and sources of effluent toxicity, effluent variability, and treatment system efficiency;

(b) A description of the facility’s methods of maximizing in-house treatment efficiency and good housekeeping practices, and a list of all chemicals used in operation of the facility; and

(c) A discussion of who will conduct the Toxicity Identification Evaluation (TIE), if necessary (e.g., an in-house expert or outside contractor).

ii. Accelerated Monitoring and TRE Initiation. When the numeric toxicity monitoring trigger is exceeded during regular chronic toxicity monitoring, the Discharger shall initiate accelerated monitoring as required in the Accelerated Monitoring Specifications. The Discharger shall initiate a TRE to address effluent toxicity if any WET testing results exceed the numeric toxicity monitoring trigger during accelerated monitoring.

iii. Numeric Toxicity Monitoring Trigger. The numeric toxicity monitoring trigger to initiate a TRE is \(> 1 \text{TUC} \) (where \(\text{TUC} = 100/\text{NOEC} \)). The monitoring trigger is not an effluent limitation; it is the toxicity threshold at which the Discharger is required to begin accelerated monitoring and initiate a TRE when the effluent exhibits toxicity.

iv. Accelerated Monitoring Specifications. If the numeric toxicity monitoring trigger is exceeded during regular chronic toxicity testing, the Discharger shall initiate accelerated monitoring within 14 days of notification by the laboratory of the exceedance. Accelerated monitoring shall consist of four (4) chronic toxicity tests conducted once every 2 weeks using the species that exhibited toxicity. The following protocol shall be used for accelerated monitoring and TRE initiation:

(a) If the results of four (4) consecutive accelerated monitoring tests do not exceed the monitoring trigger, the Discharger may cease accelerated monitoring and resume regular chronic toxicity monitoring. However, notwithstanding the accelerated monitoring results, if there is evidence of effluent toxicity, the Executive Officer may require that the Discharger initiate a TRE.

(b) If the source(s) of the toxicity is easily identified (e.g., temporary plant upset), the Discharger shall make necessary corrections to the facility and shall continue accelerated monitoring until four (4) consecutive accelerated tests do not exceed the monitoring
trigger. Upon confirmation that the effluent toxicity has been removed, the Discharger may cease accelerated monitoring and resume regular chronic toxicity monitoring.

(c) If the result of any accelerated toxicity test exceeds the monitoring trigger, the Discharger shall cease accelerated monitoring and begin a TRE to investigate the cause(s) of, and identify corrective actions to reduce or eliminate effluent toxicity. Within thirty (30) days of notification by the laboratory of any test result exceeding the monitoring trigger during accelerated monitoring, the Discharger shall submit a TRE Action Plan to the Central Valley Water Board including, at minimum:

1 Specific actions the Discharger will take to investigate and identify the cause(s) of toxicity, including a TRE WET monitoring schedule;

2 Specific actions the Discharger will take to mitigate the impact of the discharge and prevent the recurrence of toxicity; and

3 A schedule for these actions.

Within sixty (60) days of notification by the laboratory of the test results, the Discharger shall submit to the Central Valley Water Board a TRE Workplan for approval by the Executive Officer. The TRE Workplan shall outline the procedures for identifying the source(s) of, and reducing or eliminating effluent toxicity. The TRE Workplan must be developed in accordance with USEPA guidance 1.

b. Mixing Zone/Dilution Study. This Order requires that the Discharger maintain a minimum complete mix dilution of 10:1 during discharge. Section 1.4 of the SIP contains procedures for calculated effluent limitations. The calculation includes a dilution credit, D, which is a numerical value associated with the mixing zone that accounts for the receiving water entrained into the discharge. Dilution credits may be granted at the discretion of the Central Valley Water Board. The Discharger shall submit a site-specific mixing zone and dilution study as described in Section 1.4.2 of the SIP which confirms that a minimum 10:1 dilution exists at all times effluent is being discharged to the Middle Fork of the Feather River within the mixing zone established for ammonia in this Order. A work plan and time schedule for preparation of the mixing zone/dilution study shall be submitted to the Central Valley Water Board within 6 months of the adoption of this Order. The mixing zone/dilution study shall be completed and submitted to the Central Valley Water Board within 1 year following work plan approval by the Executive Officer. If the mixing zone/dilution study confirms that a dilution greater than 10:1 is achieved at all times effluent is being discharged, this Order may be reopened and the appropriate dilution

1 See the Fact Sheet (Attachment F section VII.B.2.a.) for a list of USEPA guidance documents that must be considered in development of the TRE Workplan.
credit may be applied to non CTR and CTR constituents for calculation of new effluent limitations. If the Discharger fails to submit a mixing zone/dilution study by the date specified, this Order may be reopened and the dilution credit for ammonia eliminated.

c. **Septage Receiving.** The Discharger receives septage from local septic tank pumpers and septage supernatant from Plumas Sanitation. Order No. R5-2007-0019 required a septage receiving study to regulate the quantity of untreated septage accepted at the WWTP based on an analysis prepared by a California registered civil engineer. Plumas Sanitation recently installed a septage treatment system prior to discharge of septage supernatant to the Facility’s collection system; flows to the WWTP have increased significantly from approximately 7,000 gallons per month to 100,000 gallons per month. **Within one year of adoption of this Order,** the Discharger shall submit an analysis of the receiving capacity and treatment capability for septage supernatant from the Plumas Sanitation treatment system and local septage haulers discharged to the Facility. The analysis shall be prepared by a California registered civil engineer and report on the capacity and treatment capability of the Facility to accept septage supernatant and septage while complying with the requirements of this Order. If septage supernatant and septage in excess of the Facility capacity and/or treatment capability is being accepted, the Discharger shall submit a plan, at the same time the septage study is submitted, with a time schedule to decrease its septage and septage supernatant receiving to within the Facility’s specifications.

d. **Constituent Study.** There are indications that the discharge may contain constituents that have a reasonable potential to cause or contribute to an exceedance of water quality objectives, including aluminum, iron, thallium, and mercury. This Order requires the Discharger to conduct monitoring for aluminum, iron, thallium, and mercury as outlined in the Monitoring and Reporting Program (Attachment E) and submit a study report evaluating the results of the first three years of monitoring **within 6 months following completion of the final monitoring event.**

e. **Groundwater Monitoring Work Plan.** To determine compliance with Groundwater Limitations V.B. this provision requires the Discharger to install a groundwater monitoring network. **Within 6 months following adoption of this Order,** the Discharger shall submit a Groundwater Monitoring Work Plan prepared in accordance with, and including the items listed in, the first section of Attachment K: “Requirements for Monitoring Well Installation Work Plans and Monitoring Well Installation Reports.” All monitoring wells shall comply with the appropriate standards as described in California Well Standards Bulletin 74-90 (June 1991) and Water Well Standards: State of California Bulletin 74-81 (December 1981), and any more stringent standards adopted by the Discharger or County pursuant to Water Code section 13801.

f. **Monitoring Well Installation Report.** The Discharger shall submit a Monitoring Well Installation Report **within 6 months** after approval of the
Groundwater Monitoring Work Plan by the Executive Officer. The Monitoring Well Installation Report shall include: well construction, well development, well surveying, water sampling, and soil logging.

g. **Groundwater Water Quality Characterization.** The Discharger, after 2 years of monitoring, shall characterize natural background quality of monitored constituents in a technical report, to be submitted **within 42 months following adoption of this Order.** For each groundwater monitoring parameter/constituent identified in the Monitoring and Reporting Program, the report shall present a summary of monitoring data, calculation of the concentration in background monitoring wells, and a comparison of background groundwater quality to that in wells used to monitor the facility. Determination of background quality shall be made using the methods described in Title 27 California Code of Regulations Section 20415(e)(10), and shall be based on data from at least eight consecutive quarterly (or more frequent) groundwater monitoring events. For each monitoring parameter/constituent, the report shall compare measured concentrations for compliance monitoring wells with the calculated background concentration.

h. **Best Practical Treatment or Control (BPTC).** If the groundwater monitoring results show that the discharge of waste is threatening to cause or has caused groundwater to contain waste constituents in concentrations statistically greater than background water quality, the Discharger shall submit, **within 48 months following adoption of this Order,** a BPTC Evaluation Work Plan that sets forth a scope and schedule for a systematic and comprehensive technical evaluation of each component of the facilities’ waste management system to determine best practicable treatment or control for each the waste constituents of concern. The work plan shall include a preliminary evaluation of each component of the waste management system and propose a time schedule for completing the comprehensive technical evaluation. The schedule to complete the evaluation shall be as short as practicable, and shall not exceed 1 year.

3. **Best Management Practices and Pollution Prevention**

 a. **Pollutant Minimization Program (PMP)**

 The Discharger shall develop and conduct a PMP as further described below when there is evidence (e.g., sample results reported as DNQ when the effluent limitation is less than the MDL, sample results from analytical methods more sensitive than those methods required by this Order, presence of whole effluent toxicity, health advisories for fish consumption, results of benthic or aquatic organism tissue sampling) that a priority pollutant is present in the effluent above an effluent limitation and either: (1) A sample result is reported as DNQ and the effluent limitation is less than the RL; or (2) A sample result is reported as ND and the effluent limitation is less than the MDL, using definitions described in Attachment A and reporting protocols described in the Monitoring and Reporting Program (Attachment E, section X.B.4).
The PMP shall include, but not be limited to, the following actions and submittals acceptable to the Central Valley Water Board:

i. An annual review and semi-annual monitoring of potential sources of the reportable priority pollutant(s), which may include fish tissue monitoring and other bio-uptake sampling;

ii. Quarterly monitoring for the reportable priority pollutant(s) in the influent to the wastewater treatment system;

iii. Submittal of a control strategy designed to proceed toward the goal of maintaining concentrations of the reportable priority pollutant(s) in the effluent at or below the effluent limitation;

iv. Implementation of appropriate cost-effective control measures for the reportable priority pollutant(s), consistent with the control strategy; and

v. An annual status report that shall be sent to the Central Valley Water Board including:

(a) All PMP monitoring results for the previous year;

(b) A list of potential sources of the reportable priority pollutant(s);

(c) A summary of all actions undertaken pursuant to the control strategy; and

(d) A description of actions to be taken in the following year.

b. Salinity Evaluation and Minimization Plan. The Discharger shall prepare a salinity evaluation and minimization plan to identify and address sources of salinity from the Facility. The plan shall be completed and submitted to the Central Valley Water Board within 9 months of the adoption date of this Order for the approval by the Executive Officer.

c. Salinity Reduction Goal. The Discharger shall provide annual reports determining whether discharge may be minimized or eliminated during times Electrical Conductivity in the Middle Fork of the Feather River exceeds 150 μmhos/cm.

4. Construction, Operation and Maintenance Specifications

a. Treatment Pond Operating Requirements.

i. The treatment facilities shall be designed, constructed, operated, and maintained to prevent inundation or washout due to floods with a 100-year return frequency.
ii. The maximum dry weather daily influent flow shall not exceed 0.1 million gallons.

iii. Objectionable odors originating at this Facility shall not be perceivable beyond the limits of the property owned by the Discharger.

iv. As a means of discerning compliance with IV.C.4.a.iii above, the dissolved oxygen content in the upper zone (1 foot) of wastewater in ponds shall not be less than 1.0 mg/L.

v. Ponds shall not have a pH that causes violations of effluent or receiving water limitations.

vi. Public contact with wastewater shall be precluded through such means as fences, signs, and other acceptable alternatives.

vii. Ponds shall be managed to prevent breeding of mosquitoes. In particular,

(a) An erosion control program should assure that small coves and irregularities are not created around the perimeter of the water surface.

(b) Weeds shall be minimized.

(c) Dead algae, vegetation, and debris shall not accumulate on the water surface.

viii. Freeboard shall never be less than 2 feet (measured vertically to the lowest point of overflow, except of lesser freeboard does not threaten the integrity of the pond, no overflow of the pond occurs, and lesser freeboard is due to direct precipitation or storm water runoff occurring as a result of annual precipitation with greater than a 25-year, 24-hour storm event.

ix. Ponds shall have sufficient capacity to accommodate allowable wastewater flow and design seasonal precipitation and ancillary inflow and infiltration during the non-discharge season. Design seasonal precipitation shall be based on total annual precipitation using a return period of 100 years, distributed monthly in accordance with historical rainfall patterns.

x. Prior to the onset of May 1 of each year, available pond storage capacity shall at least equal the volume necessary to comply with specification IV.C.4.a.ix, above.

xi. The discharge of waste classified as “hazardous” as defined in section 2521(a) of Title 23, California Code of Regulations (CCR), or “designated”, as defined in section 13173 of the Water Code, to the treatment ponds is prohibited.
5. Special Provisions for Municipal Facilities (POTWs Only)

a. Pretreatment Requirements – Not Applicable

b. Sludge/Biosolids Treatment or Discharge Specifications. Sludge in this document means the solid, semisolid, and liquid residues removed during the treatment processes. Solid waste refers to grit and screening material generated during preliminary treatment. Residual sludge means sludge that will not be subject to further treatment at the wastewater treatment plant. Biosolids refer to sludge that has been treated and tested and shown to be capable of being beneficially and legally used pursuant to federal and state regulations as a soil amendment for agricultural, silvicultural, horticultural, and land reclamation activities as specified under 40 CFR Part 503.

i. Collected screenings, residual sludge, biosolids, and other solids removed from liquid wastes shall be disposed of in a manner approved by the Executive Officer, and consistent with Consolidated Regulations for Treatment, Storage, Processing, or Disposal of Solid Waste, as set forth in Title 27, CCR, division 2, subdivision 1, section 20005, et seq. Removal for further treatment, storage, disposal, or reuse at sites (e.g., landfill, composting sites, soil amendment sites) that are operated in accordance with valid waste discharge requirements issued by a Regional Water Board will satisfy these specifications.

ii. Sludge and solid waste shall be removed from screens, sumps, ponds, clarifiers, etc. as needed to ensure optimal plant performance.

iii. The treatment of sludge generated at the Facility shall be confined to the Facility property and conducted in a manner that precludes infiltration of waste constituents into soils in a mass or concentration that will violate groundwater limitations in section V.B. of this Order. In addition, the storage of residual sludge, solid waste, and biosolids on Facility property shall be temporary and controlled, and contained in a manner that minimizes leachate formation and precludes infiltration of waste constituents into soils in a mass or concentration that will violate groundwater limitations included in section V.B. of this Order.

iv. The use, disposal, storage, and transportation of biosolids shall comply with existing federal and state laws and regulations, including permitting requirements and technical standards included in 40 CFR Part 503. If the State Water Board and the Central Valley Water Board are given the authority to implement regulations contained in 40 CFR Part 503, this Order may be reopened to incorporate appropriate time schedules and technical standards. The Discharger must comply with the standards and time schedules contained in 40 CFR Part 503 whether or not they have been incorporated into this Order.
v. The Discharger shall comply with Section IX.A. Biosolids of the Monitoring and Reporting Program, Attachment E.

vi. Any proposed change in biosolids use or disposal practice from a previously approved practice shall be reported to the Executive Officer and USEPA Regional Administrator at least 90 days in advance of the change.

vii. **Within 180 days of the permit effective date**, the Discharger shall review and update its existing biosolids use or disposal plan, and submit it to the Central Valley Water Board. The updated plan shall describe at a minimum:

(a) Sources and amounts of biosolids generated annually.

(b) Location(s) of onsite storage and description of the containment area.

(c) Plans for ultimate disposal. For landfill disposal, include the Central Valley Water Board's waste discharge requirement numbers that regulate the particular landfill; the present classification of the landfill; and the name and location of the landfill.

viii. The Discharger is encouraged to comply with the “Manual of Good Practice for Agricultural Land Application of Biosolids” developed by the California Water Environment Association.

ix. Use of biosolids as a soil amendment shall comply with valid waste discharge requirements (WDRs) issued by the State or Regional Water Boards. In most cases, this means the WDRs contained in the State Water Resources Control Board Water Quality Order No. 2004-0012-DWQ, General Waste Discharge Requirements for the Discharge of Biosolids to Land for Use as a Soil Amendment in Agricultural, Silvicultural, Horticultural, and Land Reclamation Activities (Biosolids General Order). For a biosolids use project to be covered by the Biosolids General Order, the Discharger must file a complete Notice of Intent and receive a Notice of Applicability for each project.

c. **Biosolids Storage and Transportation Specifications**

Biosolids shall be considered to be “stored” if they are placed on the ground or in non-mobile containers (i.e. not in a truck or trailer) at an intermediate storage location away from the generator/processing for more than 48 hours. Biosolids shall be considered to be “staged” if placed on the ground for brief periods of time solely to facilitate transfer of the biosolids between transportation and application vehicles.

i. Biosolids shall not be stored directly on the ground at any one location for more than seven (7) consecutive days.

ii. Facilities for the storage of Class B biosolids shall be located, designed and maintained to restrict public access to biosolids.
iii. Biosolids storage facilities shall be designed and maintained to prevent washout or inundation from a storm or flood with a return frequency of 100 years.

iv. Biosolids storage facilities, which contain biosolids, shall be designed and maintained to contain all storm water falling on the biosolids storage area during a rainfall year with a return frequency of 100 years.

v. Biosolids placed on site for more than 24 hours shall be covered.

vi. Biosolids storage facilities shall be designed, maintained and operated to minimize the generation of leachate and the effects of erosion.

vii. If biosolids are to be stored at the site, a plan describing the storage program and means of complying with the specifications contained in sections VI.C.5.b and c of this Order shall be submitted for the Central Valley Water Board’s staff approval. The storage plan shall also include an adverse weather plan.

viii. The Discharger shall operate the biosolids storage facilities in accordance with the approved biosolids storage plan.

ix. The Discharger shall immediately remove and relocate any biosolids stored on site in violation of this General Order.

x. All biosolids shall be transported in covered vehicles capable of containing the designated load.

xi. All biosolids having a water content that is capable of leaching liquids shall be transported in leak proof vehicles.

xii. Each biosolids transport driver shall be trained as to the nature of its load and the proper response to accidents or spill events and shall carry a copy of an approved spill response plan.

xiii. The Discharger shall avoid the use of haul routes near residential land uses to the extent possible. If the use of haul routes near residential land uses cannot be avoided, the Discharger shall limit project-related truck traffic to daylight hours.

d. Collection System. On 2 May 2006, the State Water Board adopted State Water Resources Control Board Order No. 2006-0003-DWQ, Statewide General Waste Discharge Requirements (WDRs) for Sanitary Sewer Systems. The Discharger shall be subject to the requirements of Order No. 2006-0003-DWQ and any future revisions thereto. Order No. 2006-0003-DWQ requires that all public agencies that currently own or operate sanitary sewer systems apply for coverage under the general WDRs.

e. This Order, and the Monitoring and Reporting Program which is a part of this Order, requires that certain parameters be monitored on a continuous basis. The
wastewater treatment plant is not staffed on a full time basis. Permit violations or system upsets can go undetected during this period. The Discharger shall establish an electronic system for operator notification for continuous recording device alarms. For existing continuous monitoring systems, the electronic notification system shall be installed within 6 months of adoption of this permit. For systems installed following permit adoption, the notification system shall be installed simultaneously.

6. Other Special Provisions

a. Exceptions to Prohibition III.F, which prohibits discharge of effluent to the Middle Fork of the Feather River from May 1 to October 31, may be granted by the Executive Officer provided all of the following conditions are satisfied:

i. The discharge is necessary due to circumstances that could not have reasonably been foreseen, such as an extended wet weather season;

ii. The Discharger demonstrates that the potential impacts of non-discharge would be greater than discharge, including any potential property damage, or interference with the wastewater treatment process. Impact of non-discharge to be analyzed must include as a minimum, damage to treatment processes or structures, and potential damage to nearby property, e.g. should a breach in any pond structure occur;

iii. The Discharger has previously taken all reasonable steps to prevent the discharge and all required maintenance has been performed in accordance with the manufacturer’s recommendations and the Facility Operations and Maintenance Manual. Proof that all reasonable steps have been taken to prevent the discharge shall include a schedule for operation of the ponds that has been accepted by Central Valley Water Board staff.

iv. The discharge will not result in the exceedance of any water quality objective in the Middle Fork of the Feather River.

7. Compliance Schedule

a. **Compliance Schedule for Final Effluent Limitations for Ammonia.** This Order requires compliance with the final effluent limitations for ammonia by the permit expiration date. The Discharger shall comply with the following time schedule to ensure compliance with the final effluent limitations:

<table>
<thead>
<tr>
<th>Task</th>
<th>Date Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Submit Method of Compliance Workplan/Schedule</td>
<td>Within 6 months after adoption of this Order</td>
</tr>
<tr>
<td>ii. Submit results of mixing zone/dilution study to verify 10:1 or greater dilution.</td>
<td>Within 18 months after adoption of this Order</td>
</tr>
</tbody>
</table>
Limitations and Discharge Requirements

VII. COMPLIANCE DETERMINATION

A. BOD$_5$ and TSS Effluent Limitations (Section IV.A.1.a and IV.A.1.b). Compliance with the final effluent limitations for BOD$_5$ and TSS required in Limitations and Discharge Requirements section IV.A.1.a shall be ascertained by 24-hour composite samples. Compliance with effluent limitations required in Limitations and Discharge Requirements section IV.A.1.b for percent removal shall be calculated using the arithmetic mean of BOD$_5$ and TSS in effluent samples collected over a monthly period as a percentage of the volume weighted arithmetic mean of the values of influent samples and septage and supernatant samples collected at approximately the same times during the same period.

B. Average Dry Weather Flow Effluent Limitations (Section IV.A.1.f). The average dry weather discharge flow represents the daily average flow when groundwater is at or near normal and runoff is not occurring. Compliance with the average dry weather flow effluent limitations will be determined annually based on the average daily flow over three consecutive dry weather months (e.g., July, August, and September).

C. Total Coliform Organisms Effluent Limitations (Section IV.A.1.e). For each day that an effluent sample is collected and analyzed for total coliform organisms, the 7-day median shall be determined by calculating the median concentration of total coliform bacteria in the effluent utilizing the bacteriological results of the last 7 days. For example, if a sample is collected on a Wednesday, the result from that sampling event and all results from the previous 6 days (i.e., Tuesday, Monday, Sunday, Saturday, Friday, and Thursday) are used to calculate the 7-day median. If the 7-day median of total coliform organisms exceeds a most probable number (MPN) of 23 per 100 milliliters, the Discharger will be considered out of compliance.

D. Total Residual Chlorine Effluent Limitations (Section IV.A.1.a). Continuous monitoring analyzers for chlorine residual or for dechlorination agent residual in the effluent are appropriate methods for compliance determination. A positive residual
dechlorination agent in the effluent indicates that chlorine is not present in the discharge, which demonstrates compliance with the effluent limitations. This type of monitoring can also be used to prove that some chlorine residual exceedances are false positives. Continuous monitoring data showing either a positive dechlorination agent residual or a chlorine residual at or below the prescribed limit are sufficient to show compliance with the total residual chlorine effluent limitations, as long as the instruments are maintained and calibrated in accordance with the manufacturer’s recommendations.

Any excursion above the 1-hour average or 4-day average total residual chlorine effluent limitations is a violation. If the Discharger conducts continuous monitoring and the Discharger can demonstrate, through data collected from a back-up monitoring system, that a chlorine spike recorded by the continuous monitor was not actually due to chlorine, then any excursion resulting from the recorded spike will not be considered an exceedance, but rather reported as a false positive. Records supporting validation of false positives shall be maintained in accordance with Section IV Standard Provisions (Attachment D).

E. Mass Effluent Limitations. The mass effluent limitations contained in the Final Effluent Limitations IV.A.1.a and Interim Effluent Limitations IV.A.2.a are based on the permitted average dry weather flow and calculated as follows:

\[
\text{Mass (lbs/day)} = \text{Flow (MGD)} \times \text{Concentration (mg/L)} \times 8.34 \text{ (conversion factor)}
\]

If the effluent flow exceeds the permitted average dry weather flow during wet-weather seasons, the effluent mass limitations contained in Final Effluent Limitations IV.A.1.a and Interim Effluent Limitations IV.A.2.a shall not apply. If the effluent flow is below the permitted average dry weather flow during wet-weather seasons, the effluent mass limitations do apply.

F. Priority Pollutant Effluent Limitations. Compliance with effluent limitations for priority pollutants shall be determined using sample reporting protocols defined in Attachment A and Attachment E of this Order. For purposes of reporting and administrative enforcement by the Central Valley Water Board and the State Water Board, the Discharger shall be deemed out of compliance with effluent limitations if the concentration of the priority pollutant in the monitoring sample is greater than the effluent limitation and greater than or equal to the reporting level (RL).

G. Chronic Whole Effluent Toxicity Effluent Limitation (Section IV.A.1.d). Compliance with the accelerated monitoring and TRE/TIE provisions of Provision VI.C.2.a shall constitute compliance with the effluent limitation.
ATTACHMENT A – DEFINITIONS

Arithmetic Mean (μ)
Also called the average, is the sum of measured values divided by the number of samples. For ambient water concentrations, the arithmetic mean is calculated as follows:

\[
\text{Arithmetic mean} = \mu = \frac{\Sigma x}{n}
\]

where: \(\Sigma x \) is the sum of the measured ambient water concentrations, and \(n \) is the number of samples.

Average Monthly Effluent Limitation (AMEL)
The highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month divided by the number of daily discharges measured during that month.

Average Weekly Effluent Limitation (AWEL)
The highest allowable average of daily discharges over a calendar week (Sunday through Saturday), calculated as the sum of all daily discharges measured during a calendar week divided by the number of daily discharges measured during that week.

Bioaccumulative
Those substances taken up by an organism from its surrounding medium through gill membranes, epithelial tissue, or from food and subsequently concentrated and retained in the body of the organism.

Carcinogenic
Pollutants are substances that are known to cause cancer in living organisms.

Coefficient of Variation (CV)
CV is a measure of the data variability and is calculated as the estimated standard deviation divided by the arithmetic mean of the observed values.

Daily Discharge
Daily Discharge is defined as either: (1) the total mass of the constituent discharged over the calendar day (12:00 am through 11:59 pm) or any 24-hour period that reasonably represents a calendar day for purposes of sampling (as specified in the permit), for a constituent with limitations expressed in units of mass or; (2) the unweighted arithmetic mean measurement of the constituent over the day for a constituent with limitations expressed in other units of measurement (e.g., concentration).

The daily discharge may be determined by the analytical results of a composite sample taken over the course of 1 day (a calendar day or other 24-hour period defined as a day) or by the arithmetic mean of analytical results from one or more grab samples taken over the course of the day.

For composite sampling, if 1 day is defined as a 24-hour period other than a calendar day, the analytical result for the 24-hour period will be considered as the result for the calendar day in which the 24-hour period ends.
Detected, but Not Quantified (DNQ)
DNQ are those sample results less than the RL, but greater than or equal to the laboratory’s MDL.

Dilution Credit
Dilution Credit is the amount of dilution granted to a discharge in the calculation of a water quality-based effluent limitation, based on the allowance of a specified mixing zone. It is calculated from the dilution ratio or determined through conducting a mixing zone study or modeling of the discharge and receiving water.

Effluent Concentration Allowance (ECA)
ECA is a value derived from the water quality criterion/objective, dilution credit, and ambient background concentration that is used, in conjunction with the coefficient of variation for the effluent monitoring data, to calculate a long-term average (LTA) discharge concentration. The ECA has the same meaning as waste load allocation (WLA) as used in USEPA guidance (Technical Support Document For Water Quality-based Toxics Control, March 1991, second printing, EPA/505/2-90-001).

Enclosed Bays
Enclosed Bays means indentations along the coast that enclose an area of oceanic water within distinct headlands or harbor works. Enclosed bays include all bays where the narrowest distance between the headlands or outermost harbor works is less than 75 percent of the greatest dimension of the enclosed portion of the bay. Enclosed bays include, but are not limited to, Humboldt Bay, Bodega Harbor, Tomales Bay, Drake’s Estero, San Francisco Bay, Morro Bay, Los Angeles-Long Beach Harbor, Upper and Lower Newport Bay, Mission Bay, and San Diego Bay. Enclosed bays do not include inland surface waters or ocean waters.

Estimated Chemical Concentration
The estimated chemical concentration that results from the confirmed detection of the substance by the analytical method below the ML value.

Estuaries
Estuaries means waters, including coastal lagoons, located at the mouths of streams that serve as areas of mixing for fresh and ocean waters. Coastal lagoons and mouths of streams that are temporarily separated from the ocean by sandbars shall be considered estuaries. Estuarine waters shall be considered to extend from a bay or the open ocean to a point upstream where there is no significant mixing of fresh water and seawater. Estuarine waters included, but are not limited to, the Sacramento-San Joaquin Delta, as defined in Water Code section 12220, Suisun Bay, Carquinez Strait downstream to the Carquinez Bridge, and appropriate areas of the Smith, Mad, Eel, Noyo, Russian, Klamath, San Diego, and Otay rivers. Estuaries do not include inland surface waters or ocean waters.

Inland Surface Waters
All surface waters of the State that do not include the ocean, enclosed bays, or estuaries.

Instantaneous Maximum Effluent Limitation
The highest allowable value for any single grab sample or aliquot (i.e., each grab sample or aliquot is independently compared to the instantaneous maximum limitation).
Instantaneous Minimum Effluent Limitation
The lowest allowable value for any single grab sample or aliquot (i.e., each grab sample or aliquot is independently compared to the instantaneous minimum limitation).

Maximum Daily Effluent Limitation (MDEL)
The highest allowable daily discharge of a pollutant, over a calendar day (or 24-hour period). For pollutants with limitations expressed in units of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the arithmetic mean measurement of the pollutant over the day.

Median
The middle measurement in a set of data. The median of a set of data is found by first arranging the measurements in order of magnitude (either increasing or decreasing order). If the number of measurements \((n)\) is odd, then the median = \(X_{(n+1)/2}\). If \(n\) is even, then the median = \((X_{n/2} + X_{(n/2)+1})/2\) (i.e., the midpoint between the \(n/2\) and \(n/2+1\)).

Method Detection Limit (MDL)
MDL is the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero, as defined in 40 CFR Part 136, Attachment B, revised as of 3 July 1999.

Minimum Level (ML)
ML is the concentration at which the entire analytical system must give a recognizable signal and acceptable calibration point. The ML is the concentration in a sample that is equivalent to the concentration of the lowest calibration standard analyzed by a specific analytical procedure, assuming that all the method specified sample weights, volumes, and processing steps have been followed.

Mixing Zone
Mixing Zone is a limited volume of receiving water that is allocated for mixing with a wastewater discharge where water quality criteria can be exceeded without causing adverse effects to the overall water body.

Not Detected (ND)
Sample results which are less than the laboratory’s MDL.

Ocean Waters
The territorial marine waters of the State as defined by California law to the extent these waters are outside of enclosed bays, estuaries, and coastal lagoons. Discharges to ocean waters are regulated in accordance with the State Water Board’s California Ocean Plan.

Persistent Pollutants
Persistent pollutants are substances for which degradation or decomposition in the environment is nonexistent or very slow.

Pollutant Minimization Program (PMP)
PMP means waste minimization and pollution prevention actions that include, but are not limited to, product substitution, waste stream recycling, alternative waste management methods, and education of the public and businesses. The goal of the PMP shall be to reduce all potential sources of a priority pollutant(s) through pollutant minimization (control) strategies, including pollution prevention measures as appropriate, to maintain the effluent concentration at or below the water quality-based effluent limitation. Pollution prevention measures may be particularly appropriate for persistent bioaccumulative priority pollutants where there is evidence that beneficial uses are being impacted. The Central Valley Water Board may consider cost effectiveness when establishing the requirements of a PMP. The completion and implementation of a Pollution Prevention Plan, if required pursuant to Water Code section 13263.3(d), shall be considered to fulfill the PMP requirements.

Pollution Prevention
Pollution Prevention means any action that causes a net reduction in the use or generation of a hazardous substance or other pollutant that is discharged into water and includes, but is not limited to, input change, operational improvement, production process change, and product reformulation (as defined in Water Code section 13263.3). Pollution prevention does not include actions that merely shift a pollutant in wastewater from one environmental medium to another environmental medium, unless clear environmental benefits of such an approach are identified to the satisfaction of the State or Regional Water Board.

Reporting Level (RL)
RL is the ML (and its associated analytical method) chosen by the Discharger for reporting and compliance determination from the MLs included in this Order. The MLs included in this Order correspond to approved analytical methods for reporting a sample result that are selected by the Central Valley Water Board either from Appendix 4 of the SIP in accordance with section 2.4.2 of the SIP or established in accordance with section 2.4.3 of the SIP. The ML is based on the proper application of method-based analytical procedures for sample preparation and the absence of any matrix interferences. Other factors may be applied to the ML depending on the specific sample preparation steps employed. For example, the treatment typically applied in cases where there are matrix-effects is to dilute the sample or sample aliquot by a factor of ten. In such cases, this additional factor must be applied to the ML in the computation of the RL.

Satellite Collection System
The portion, if any, of a sanitary sewer system owned or operated by a different public agency than the agency that owns and operates the wastewater treatment facility that a sanitary sewer system is tributary to.

Source of Drinking Water
Any water designated as municipal or domestic supply (MUN) in a Regional Water Board Basin Plan.

Standard Deviation (σ)
Standard Deviation is a measure of variability that is calculated as follows:

\[
σ = \left(\frac{\sum[(x - \mu)^2]}{(n - 1)} \right)^{0.5}
\]

where:
x is the observed value;
μ is the arithmetic mean of the observed values; and
n is the number of samples.

Toxicity Reduction Evaluation (TRE)
TRE is a study conducted in a step-wise process designed to identify the causative agents of effluent or ambient toxicity, isolate the sources of toxicity, evaluate the effectiveness of toxicity control options, and then confirm the reduction in toxicity. The first steps of the TRE consist of the collection of data relevant to the toxicity, including additional toxicity testing, and an evaluation of facility operations and maintenance practices, and best management practices. A Toxicity Identification Evaluation (TIE) may be required as part of the TRE, if appropriate. (A TIE is a set of procedures to identify the specific chemical(s) responsible for toxicity. These procedures are performed in three phases (characterization, identification, and confirmation) using aquatic organism toxicity tests.)
ATTACHMENT B – MAPS

Drawing Reference:
PORTOLA QUAD
U.S.G.S TOPOGRAPHIC MAP
7.5 MINUTE QUADRANGLE
Not to scale

SITE LOCATION MAP
GRIZZLY LAKE COMMUNITY SERVICES
DISTRICT
DELEKER WWTP
PLUMAS COUNTY

Delleker WWTP
ATTACHMENT D – STANDARD PROVISIONS

I. STANDARD PROVISIONS – PERMIT COMPLIANCE

A. Duty to Comply

1. The Discharger must comply with all of the conditions of this Order. Any noncompliance constitutes a violation of the Clean Water Act (CWA) and the California Water Code (Water Code) and is grounds for enforcement action, for permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. (40 CFR 122.41(a).)

2. The Discharger shall comply with effluent standards or prohibitions established under section 307(a) of the CWA for toxic pollutants and with standards for sewage sludge use or disposal established under section 405(d) of the CWA within the time provided in the regulations that establish these standards or prohibitions, even if this Order has not yet been modified to incorporate the requirement. (40 CFR 122.41(a)(1).)

B. Need to Halt or Reduce Activity Not a Defense

It shall not be a defense for a Discharger in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this Order. (40 CFR 122.41(c))

C. Duty to Mitigate

The Discharger shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal in violation of this Order that has a reasonable likelihood of adversely affecting human health or the environment. (40 CFR 122.41(d))

D. Proper Operation and Maintenance

The Discharger shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the Discharger to achieve compliance with the conditions of this Order. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of backup or auxiliary facilities or similar systems that are installed by a Discharger only when necessary to achieve compliance with the conditions of this Order. (40 CFR 122.41(e).)

E. Property Rights

1. This Order does not convey any property rights of any sort or any exclusive privileges. (40 CFR 122.41(g))
2. The issuance of this Order does not authorize any injury to persons or property or invasion of other private rights, or any infringement of state or local law or regulations. (40 CFR 122.5(c))

F. Inspection and Entry

The Discharger shall allow the Central Valley Water Board, State Water Board, United States Environmental Protection Agency (USEPA), and/or their authorized representatives (including an authorized contractor acting as their representative), upon the presentation of credentials and other documents, as may be required by law, to (40 CFR 122.41(i); Water Code section 13383):

1. Enter upon the Discharger's premises where a regulated facility or activity is located or conducted, or where records are kept under the conditions of this Order (40 CFR 122.41(i)(1));

2. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this Order (40 CFR 122.41(i)(2));

3. Inspect and photograph, at reasonable times, any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this Order (40 CFR 122.41(i)(3)); and

4. Sample or monitor, at reasonable times, for the purposes of assuring Order compliance or as otherwise authorized by the CWA or the Water Code, any substances or parameters at any location. (40 CFR 122.41(i)(4))

G. Bypass

1. Definitions

 a. “Bypass” means the intentional diversion of waste streams from any portion of a treatment facility. (40 CFR 122.41(m)(1)(i))

 b. “Severe property damage” means substantial physical damage to property, damage to the treatment facilities, which causes them to become inoperable, or substantial and permanent loss of natural resources that can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production. (40 CFR 122.41(m)(1)(ii))

2. Bypass not exceeding limitations. The Discharger may allow any bypass to occur which does not cause exceedances of effluent limitations, but only if it is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions listed in Standard Provisions – Permit Compliance I.G.3, I.G.4, and I.G.5 below. (40 CFR 122.41(m)(2))
3. Prohibition of bypass. Bypass is prohibited, and the Central Valley Water Board may take enforcement action against a Discharger for bypass, unless (40 CFR 122.41(m)(4)(i)):

a. Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage (40 CFR 122.41(m)(4)(i)(A));

b. There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass that occurred during normal periods of equipment downtime or preventive maintenance (40 CFR 122.41(m)(4)(i)(B)); and

c. The Discharger submitted notice to the Central Valley Water Board as required under Standard Provisions – Permit Compliance I.G.5 below. (40 CFR 122.41(m)(4)(ii)(C))

4. The Central Valley Water Board may approve an anticipated bypass, after considering its adverse effects, if the Central Valley Water Board determines that it will meet the three conditions listed in Standard Provisions – Permit Compliance I.G.3 above. (40 CFR 122.41(m)(4)(ii))

5. Notice

a. Anticipated bypass. If the Discharger knows in advance of the need for a bypass, it shall submit a notice, if possible at least 10 days before the date of the bypass. (40 CFR 122.41(m)(3)(i))

H. Upset

Upset means an exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the Discharger. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation. (40 CFR 122.41(n)(1))

1. Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology based permit effluent limitations if the requirements of Standard Provisions – Permit Compliance I.H.2 below are met. No determination made during administrative review of claims that noncompliance was
caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review. (40 CFR 122.41(n)(2))

2. Conditions necessary for a demonstration of upset. A Discharger who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs or other relevant evidence that (40 CFR 122.41(n)(3)):

a. An upset occurred and that the Discharger can identify the cause(s) of the upset (40 CFR 122.41(n)(3)(i));

b. The permitted facility was, at the time, being properly operated (40 CFR 122.41(n)(3)(ii));

c. The Discharger submitted notice of the upset as required in Standard Provisions – Reporting V.E.2.b below (24-hour notice) (40 CFR 122.41(n)(3)(iii)); and

3. Burden of proof. In any enforcement proceeding, the Discharger seeking to establish the occurrence of an upset has the burden of proof. (40 CFR 122.41(n)(4))

II. STANDARD PROVISIONS – PERMIT ACTION

A. General

This Order may be modified, revoked and reissued, or terminated for cause. The filing of a request by the Discharger for modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any Order condition. (40 CFR 122.41(f))

B. Duty to Reapply

If the Discharger wishes to continue an activity regulated by this Order after the expiration date of this Order, the Discharger must apply for and obtain a new permit. (40 CFR 122.41(b))

C. Transfers

This Order is not transferable to any person except after notice to the Central Valley Water Board. The Central Valley Water Board may require modification or revocation and reissuance of the Order to change the name of the Discharger and incorporate such other requirements as may be necessary under the CWA and the Water Code. (40 CFR 122.41(l)(3) and 122.61)
III. STANDARD PROVISIONS – MONITORING

A. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. (40 CFR 122.41(j)(1))

B. Monitoring results must be conducted according to test procedures under 40 CFR Part 136 or, in the case of sludge use or disposal, approved under 40 CFR Part 136 unless otherwise specified in 40 CFR Part 503 unless other test procedures have been specified in this Order. (40 CFR 122.41(j)(4) and 122.44(i)(1)(iv))

IV. STANDARD PROVISIONS – RECORDS

A. Except for records of monitoring information required by this Order related to the Discharger's sewage sludge use and disposal activities, which shall be retained for a period of at least 5 years (or longer as required by 40 CFR Part 503), the Discharger shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this Order, and records of all data used to complete the application for this Order, for a period of at least three (3) years from the date of the sample, measurement, report or application. This period may be extended by request of the Central Valley Water Board Executive Officer at any time. (40 CFR 122.41(j)(2))

4. Records of monitoring information shall include:

1. The date, exact place, and time of sampling or measurements (40 CFR 122.41(j)(3)(i));

2. The individual(s) who performed the sampling or measurements (40 CFR 122.41(j)(3)(ii));

3. The date(s) analyses were performed (40 CFR 122.41(j)(3)(iii));

4. The individual(s) who performed the analyses (40 CFR 122.41(j)(3)(iv));

5. The analytical techniques or methods used (40 CFR 122.41(j)(3)(v)); and

6. The results of such analyses. (40 CFR 122.41(j)(3)(vi))

7. Claims of confidentiality for the following information will be denied (40 CFR 122.7(b)):

1. The name and address of any permit applicant or Discharger (40 CFR 122.7(b)(1)); and

2. Permit applications and attachments, permits and effluent data. (40 CFR 122.7(b)(2))
V. STANDARD PROVISIONS – REPORTING

A. Duty to Provide Information

The Discharger shall furnish to the Central Valley Water Board, State Water Board, or USEPA within a reasonable time, any information which the Central Valley Water Board, State Water Board, or USEPA may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this Order or to determine compliance with this Order. Upon request, the Discharger shall also furnish to the Central Valley Water Board, State Water Board, or USEPA copies of records required to be kept by this Order. (40 CFR 122.41(h); Water Code, § 13267)

3. Signatory and Certification Requirements

1. All applications, reports, or information submitted to the Central Valley Water Board, State Water Board, and/or USEPA shall be signed and certified in accordance with Standard Provisions – Reporting V.B.2, V.B.3, V.B.4, and V.B.5 below. (40 CFR 122.41(k))

2. All permit applications shall be signed by either a principal executive officer or ranking elected official. For purposes of this provision, a principal executive officer of a federal agency includes: (i) the chief executive officer of the agency, or (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of USEPA). (40 CFR 122.22(a)(3)).

3. All reports required by this Order and other information requested by the Central Valley Water Board, State Water Board, or USEPA shall be signed by a person described in Standard Provisions – Reporting V.B.2 above, or by a duly authorized representative of that person. A person is a duly authorized representative only if:

 a. The authorization is made in writing by a person described in Standard Provisions – Reporting V.B.2 above (40 CFR 122.22(b)(1));

 b. The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position.) (40 CFR 122.22(b)(2)); and

 c. The written authorization is submitted to the Central Valley Water Board and State Water Board. (40 CFR 122.22(b)(3))

4. If an authorization under Standard Provisions – Reporting V.B.3 above is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of Standard
Provisions – Reporting V.B.3 above must be submitted to the Central Valley Water Board and State Water Board prior to or together with any reports, information, or applications, to be signed by an authorized representative. (40 CFR 122.22(c))

5. Any person signing a document under Standard Provisions – Reporting V.B.2 or V.B.3 above shall make the following certification:

“I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.” (40 CFR 122.22(d))

2. Monitoring Reports

1. Monitoring results shall be reported at the intervals specified in the Monitoring and Reporting Program (Attachment E) in this Order. (40 CFR 122.22(l)(4))

2. Monitoring results must be reported on a Discharge Monitoring Report (DMR) form or forms provided or specified by the Central Valley Water Board or State Water Board for reporting results of monitoring of sludge use or disposal practices. (40 CFR 122.41(l)(4)(i))

3. If the Discharger monitors any pollutant more frequently than required by this Order using test procedures approved under 40 CFR Part 136 or, in the case of sludge use or disposal, approved under 40 CFR Part 136 unless otherwise specified in 40 CFR Part 503, or as specified in this Order, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR or sludge reporting form specified by the Central Valley Water Board. (40 CFR 122.41(l)(4)(ii))

4. Calculations for all limitations, which require averaging of measurements, shall utilize an arithmetic mean unless otherwise specified in this Order. (40 CFR 122.41(l)(4)(iii))

5. Compliance Schedules

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this Order, shall be submitted no later than 14 days following each schedule date. (40 CFR 122.41(l)(5))

6. Twenty-Four Hour Reporting

1. The Discharger shall notify the Office of Emergency Services of any noncompliance that may endanger health or the environment within two (2) hours from the time the Discharger becomes aware of the circumstances. The Discharger shall notify the
Central Valley Water Board of the noncompliance by telephone or fax within 24 hours from the time the Discharger becomes aware of the circumstances. A written submission shall also be provided to the Central Valley Water Board within five (5) days of the time the Discharger becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance. (40 CFR 122.41(l)(6)(i))

2. The following shall be included as information that must be reported within 24 hours under this paragraph (40 CFR 122.41(l)(6)(ii)):

 a. Any unanticipated bypass that exceeds any effluent limitation in this Order. (40 CFR 122.41(l)(6)(ii)(A))

 b. Any upset that exceeds any effluent limitation in this Order. (40 CFR 122.41(l)(6)(ii)(B))

3. The Central Valley Water Board may waive the above-required written report under this provision on a case-by-case basis if an oral report has been received within 24 hours. (40 CFR 122.41(l)(6)(iii))

4. Planned Changes

The Discharger shall give notice to the Central Valley Water Board as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required under this provision only when (40 CFR 122.41(l)(1)):

1. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR 122.29(b) (40 CFR 122.41(l)(1)(i)); or

2. The alteration or addition results in a significant change in the Discharger's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan. (40 CFR 122.41(l)(1)(iii))

3. Anticipated Noncompliance

The Discharger shall give advance notice to the Central Valley Water Board or State Water Board of any planned changes in the permitted facility or activity that may result in noncompliance with General Order requirements. (40 CFR 122.41(l)(2))
4. Other Noncompliance

The Discharger shall report all instances of noncompliance not reported under Standard Provisions – Reporting V.C, V.D, and V.E above at the time monitoring reports are submitted. The reports shall contain the information listed in Standard Provision – Reporting V.E above. (40 CFR 122.41(l)(7))

5. Other Information

When the Discharger becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Central Valley Water Board, State Water Board, or USEPA, the Discharger shall promptly submit such facts or information. (40 CFR 122.41(l)(8))

VI. STANDARD PROVISIONS – ENFORCEMENT

A. The Central Valley Water Board is authorized to enforce the terms of this permit under several provisions of the Water Code, including, but not limited to, sections 13385, 13386, and 13387.

VII. ADDITIONAL PROVISIONS – NOTIFICATION LEVELS

A. Publicly-Owned Treatment Works (POTWs)

All POTWs shall provide adequate notice to the Regional Water Board of the following (40 CFR 122.42(b)):

1. Any new introduction of pollutants into the POTW from an indirect discharger that would be subject to sections 301 or 306 of the CWA if it were directly discharging those pollutants (40 CFR 122.42(b)(1)); and

2. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of adoption of the Order. (40 CFR 122.42(b)(2))

3. Adequate notice shall include information on the quality and quantity of effluent introduced into the POTW as well as any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW. (40 CFR 122.42(b)(3)).
ATTACHMENT E – MONITORING AND REPORTING PROGRAM

Table of Contents

I. General Monitoring Provisions .. E-2
II. Monitoring Locations ... E-4
III. Influent Monitoring Requirements ... E-4
 A. Monitoring Location INF-001 .. E-4
 B. Monitoring Location SEP-001 .. E-5
 C. Monitoring Location SUP-001 .. E-5
IV. Effluent Monitoring Requirements .. E-6
 A. Monitoring Location EFF-001 .. E-6
V. Whole Effluent Toxicity Testing Requirements ... E-7
VI. Land Discharge Monitoring Requirements-Not Applicable .. E-11
VII. Reclamation Monitoring Requirements-Not Applicable ... E-11
VIII. Receiving Water Monitoring Requirements – Surface Water and Groundwater E-11
 A. Surface Water Monitoring .. E-11
 B. Groundwater Monitoring ... E-12
IX. Other Monitoring Requirements .. E-13
 A. Biosolids .. E-13
 B. Municipal Water Supply .. E-14
 C. Pond Monitoring Requirements .. E-14
X. Reporting Requirements .. E-15
 A. General Monitoring and Reporting Requirements .. E-15
 B. Self Monitoring Reports (SMRs) ... E-15
 C. Discharge Monitoring Reports (DMRs) – Not Applicable E-18
 D. Other Reports .. E-18

List of Tables

Table E-1. Monitoring Station Locations .. E-4
Table E-2. Influent Monitoring .. E-4
Table E-3. Septage Monitoring .. E-5
Table E-4. Supernatant Monitoring ... E-5
Table E-5. Effluent Monitoring .. E-6
Table E-6. Chronic Toxicity Testing Dilution Series ... E-9
Table E-7. Receiving Water Monitoring Requirements .. E-11
Table E-8. Groundwater Monitoring Requirements .. E-13
Table E-9. Municipal Water Supply Monitoring Requirements ... E-14
Table E-10. Pond Monitoring ... E-14
Table E-11. Monitoring Periods and Reporting Schedule .. E-16
Table E-12. Reporting Requirements for Special Provisions Progress Reports E-18
ATTACHMENT E – MONITORING AND REPORTING PROGRAM

Title 40 of the Code of Federal Regulations (CFR), section 122.48 (40 CFR 122.48) requires that all NPDES permits specify monitoring and reporting requirements. California Water Code (Water Code) sections 13267 and 13383 also authorize the Regional Water Quality Control Board (Central Valley Water Board) to require technical and monitoring reports. This Monitoring and Reporting Program establishes monitoring and reporting requirements, which implement the federal and California regulations.

I. GENERAL MONITORING PROVISIONS

A. Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge. All samples shall be taken at the monitoring locations specified below and, unless otherwise specified, before the monitored flow joins or is diluted by any other waste stream, body of water, or substance. Monitoring locations shall not be changed without notification to and the approval of the Central Valley Water Board.

B. Effluent samples shall be taken downstream of the last addition of wastes to the treatment or discharge works where a representative sample may be obtained prior to mixing with the receiving waters. Samples shall be collected at such a point and in such a manner to ensure a representative sample of the discharge.

C. Chemical, bacteriological, and bioassay analyses of any material required by this Order shall be conducted by a laboratory certified for such analyses by the Department of Public Health (DPH). Laboratories that perform sample analyses must be identified in all monitoring reports submitted to the Central Valley Water Board. In the event a certified laboratory is not available to the Discharger for any onsite field measurements such as pH, turbidity, temperature and residual chlorine, such analyses performed by a noncertified laboratory will be accepted provided a Quality Assurance-Quality Control Program is instituted by the laboratory. A manual containing the steps followed in this program for any onsite field measurements such as pH, DO, turbidity, temperature and residual chlorine must be kept onsite in the treatment facility laboratory and shall be available for inspection by Central Valley Water Board staff. The Discharger must demonstrate sufficient capability (qualified and trained employees, properly calibrated and maintained field instruments, etc.) to adequately perform these field measurements. The Quality Assurance-Quality Control Program must conform to USEPA guidelines or to procedures approved by the Central Valley Water Board.

D. Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to ensure the accuracy and reliability of measurements of the volume of monitored discharges. All monitoring instruments and devices used by the Discharger to fulfill the prescribed monitoring program shall be properly maintained and calibrated as necessary, at least yearly, to ensure their continued accuracy. All flow measurement devices shall be calibrated at least once per year to ensure continued accuracy of the devices.
E. Monitoring results, including noncompliance, shall be reported at intervals and in a manner specified in this Monitoring and Reporting Program.

F. Laboratories analyzing monitoring samples shall be certified by DPH, in accordance with the provision of Water Code section 13176, and must include quality assurance/quality control data with their reports.

G. The Discharger shall conduct analysis on any sample provided by USEPA as part of the Discharge Monitoring Quality Assurance (DMQA) program. The results of any such analysis shall be submitted to USEPA's DMQA manager.

H. The Discharger shall file with the Central Valley Water Board technical reports on self-monitoring performed according to the detailed specifications contained in this Monitoring and Reporting Program.

I. The results of all monitoring required by this Order shall be reported to the Central Valley Water Board, and shall be submitted in such a format as to allow direct comparison with the limitations and requirements of this Order. Unless otherwise specified, discharge flows shall be reported in terms of the monthly average and the daily maximum discharge flows.
II. MONITORING LOCATIONS

The Discharger shall establish the following monitoring locations to demonstrate compliance with the effluent limitations, discharge specifications, and other requirements in this Order:

Table E-1. Monitoring Station Locations

<table>
<thead>
<tr>
<th>Discharge Point Name</th>
<th>Monitoring Location Name</th>
<th>Monitoring Location Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-- INF-001</td>
<td></td>
<td>Influent to Facility</td>
</tr>
<tr>
<td>001 EFF-001</td>
<td></td>
<td>Effluent discharged through Outfall</td>
</tr>
<tr>
<td>-- SEP-001</td>
<td></td>
<td>Influent septage discharged to ponds</td>
</tr>
<tr>
<td>-- SUP-001</td>
<td></td>
<td>Influent septage supernatant discharged to ponds</td>
</tr>
<tr>
<td>-- RSW-001</td>
<td></td>
<td>Middle Fork Feather River, approximately 500 feet upstream of Discharge Point 001</td>
</tr>
<tr>
<td>-- RSW-002</td>
<td></td>
<td>Middle Fork Feather River, approximately 40 feet downstream of Discharge Point 001 on north side of the River, one foot from the River bank</td>
</tr>
<tr>
<td>-- SPL-001</td>
<td></td>
<td>Municipal Water Supply</td>
</tr>
<tr>
<td>PND-001</td>
<td></td>
<td>Pond 1</td>
</tr>
<tr>
<td>PND-002</td>
<td></td>
<td>Pond 2</td>
</tr>
<tr>
<td>PND-003</td>
<td></td>
<td>Pond 3</td>
</tr>
<tr>
<td>PND-004</td>
<td></td>
<td>Pond 4</td>
</tr>
<tr>
<td>PND-005</td>
<td></td>
<td>Pond 5</td>
</tr>
<tr>
<td>BIO-001</td>
<td></td>
<td>Biosolids removed from the ponds</td>
</tr>
<tr>
<td>RGW-001</td>
<td></td>
<td>Monitoring Well 1</td>
</tr>
<tr>
<td>RGW-002</td>
<td></td>
<td>Monitoring Well 2</td>
</tr>
<tr>
<td>RGW-003</td>
<td></td>
<td>Monitoring Well 3</td>
</tr>
</tbody>
</table>

III. INFLUENT MONITORING REQUIREMENTS

A. Monitoring Location INF-001

A. The Discharger shall monitor influent to the Facility at INF-001 as follows. Influent samples shall be taken regardless of whether or not there is a discharge to the River; when a discharge to the River is occurring, influent samples shall be collected at approximately the same time as effluent samples.

Table E-2. Influent Monitoring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>MGD</td>
<td>Meter</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Std. Units</td>
<td>Grab</td>
<td>1/Week</td>
<td></td>
</tr>
<tr>
<td>BOD 5-day @ 20°C</td>
<td>mg/L</td>
<td>24-hr Composite</td>
<td>1/Week^3</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>24-hr Composite</td>
<td>1/Week^3</td>
<td></td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>μmhos/cm</td>
<td>Grab</td>
<td>1/Week^3</td>
<td></td>
</tr>
</tbody>
</table>
B. Monitoring Location SEP-001

1. The Discharger shall monitor untreated septage received at the Facility at SEP-001 as follows:

Table E-3. Septage Monitoring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septage Received</td>
<td>gallons</td>
<td>Weigh-bill</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>BOD 5-day @ 20°C</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td>1</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td>1</td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total as N</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td>1</td>
</tr>
<tr>
<td>Aluminum, Total Recoverable</td>
<td>µg/L</td>
<td>Grab</td>
<td>2/Year</td>
<td>1</td>
</tr>
<tr>
<td>Priority Pollutant Metals</td>
<td>µg/L</td>
<td>Grab</td>
<td>2/Year</td>
<td>1</td>
</tr>
</tbody>
</table>

Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136; where no methods are specified for a given pollutant, method shall be approved by the Central Valley Water Board or the State Water Board.

C. Monitoring Location SUP-001

1. The Discharger shall monitor septage supernatant received at the Facility at SUP-001 as follows:

Table E-4. Supernatant Monitoring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septage Received</td>
<td>gallons</td>
<td>Weigh-bill</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>BOD 5-day @ 20°C</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td>1</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td>1</td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total as N</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td>1</td>
</tr>
<tr>
<td>Aluminum, Total Recoverable</td>
<td>µg/L</td>
<td>Grab</td>
<td>2/Year</td>
<td>1</td>
</tr>
<tr>
<td>Priority Pollutant Metals</td>
<td>µg/L</td>
<td>Grab</td>
<td>2/Year</td>
<td>1</td>
</tr>
</tbody>
</table>

Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136; where no methods are specified for a given pollutant, method shall be approved by the Central Valley Water Board or the State Water Board.

If an aluminum based polymer is used by the industrial discharger, the sampling frequency shall be monthly.
IV. EFFLUENT MONITORING REQUIREMENTS

A. Monitoring Location EFF-001

1. The Discharger shall monitor treated effluent discharged to the Middle Fork Feather River at EFF-001 as follows. Effluent samples shall be collected downstream from the last connection through which wastes can be admitted into the outfall. If more than one analytical test method is listed for a given parameter, the Discharger must select from the listed methods and corresponding Minimum Level:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>mgd</td>
<td>Meter</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>Chlorine, Total Residual</td>
<td>mg/L</td>
<td>Meter</td>
<td>Continuous</td>
<td>1, 2</td>
</tr>
<tr>
<td>pH</td>
<td>Standard Units</td>
<td>Grab</td>
<td>1/day</td>
<td>4</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F(°C)</td>
<td>Grab</td>
<td>1/Week</td>
<td>1</td>
</tr>
<tr>
<td>Electrical Conductivity @25°C</td>
<td>μmhos/cm</td>
<td>Grab</td>
<td>1/Week</td>
<td>1</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand (BOD) (5-day @ 20 Deg. C)</td>
<td>mg/L</td>
<td>24-hr Composite</td>
<td>1/Week</td>
<td>1</td>
</tr>
<tr>
<td>lbs/day</td>
<td>Calculate</td>
<td>1/Week</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>24-hr Composite</td>
<td>1/Week</td>
<td>1</td>
</tr>
<tr>
<td>lbs/day</td>
<td>Calculate</td>
<td>1/Week</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Total Coliform Organisms</td>
<td>MPN/100mL</td>
<td>Grab</td>
<td>1/Week</td>
<td></td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td>4</td>
</tr>
<tr>
<td>Nitrate Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td>6</td>
</tr>
<tr>
<td>Nitrite Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td>6</td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>μg/L</td>
<td>24-hr Composite</td>
<td>1/Month</td>
<td>1</td>
</tr>
<tr>
<td>Hardness (as CaCO₃)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td>7</td>
</tr>
<tr>
<td>Aluminum, Total Recoverable</td>
<td>μg/L</td>
<td>24-hr Composite</td>
<td>1/Month</td>
<td>8, 9</td>
</tr>
<tr>
<td>Iron, Total Recoverable</td>
<td>μg/L</td>
<td>24-hr Composite</td>
<td>1/Month</td>
<td>8</td>
</tr>
<tr>
<td>Thallium, Total Recoverable</td>
<td>μg/L</td>
<td>24-hr Composite</td>
<td>1/Year</td>
<td>1</td>
</tr>
<tr>
<td>Mercury (methyl)</td>
<td>μg/L</td>
<td>Grab</td>
<td>1/Year</td>
<td>5</td>
</tr>
<tr>
<td>Mercury, Total Recoverable</td>
<td>μg/L</td>
<td>Grab</td>
<td>1/Year</td>
<td>8, 10</td>
</tr>
<tr>
<td>Priority Pollutant Metals</td>
<td>μg/L</td>
<td>24-hr Composite</td>
<td>1/Year</td>
<td>1, 12</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHMs)</td>
<td>μg/L</td>
<td>Grab</td>
<td>1/Year</td>
<td>1</td>
</tr>
<tr>
<td>Standard Minerals</td>
<td>mg/L</td>
<td>Grab</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Priority Pollutants</td>
<td>μg/L</td>
<td>24-hr Composite</td>
<td>15</td>
<td>1, 12, 17</td>
</tr>
<tr>
<td>Acute Toxicity (see Section V. below)</td>
<td>% Survival</td>
<td>Grab</td>
<td>1/Discharge Season</td>
<td>1</td>
</tr>
<tr>
<td>Whole Effluent Toxicity (see Section V. below)</td>
<td>TUm</td>
<td>Grab</td>
<td>1/Permit Term</td>
<td>--</td>
</tr>
<tr>
<td>Parameter</td>
<td>Units</td>
<td>Sample Type</td>
<td>Minimum Sampling Frequency</td>
<td>Required Analytical Test Method</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Total chlorine residual must be monitored with a method sensitive to and accurate at the permitted level of 0.01 mg/L.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A hand-held field meter may be used, provided the meter utilizes a USEPA-approved algorithm/method and is calibrated and maintained in accordance with the manufacturer's instructions. A calibration and maintenance log for each meter used for monitoring required by this Monitoring and Reporting Program shall be maintained at the Facility.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>pH and temperature shall be recorded at the time of ammonia sample collection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>24-hour flow proportional composite. Effluent samples taken from the last connection through which wastes can be admitted into the outfall will be considered adequately composited.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Monitoring for nitrite and nitrate shall be conducted concurrently.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Hardness samples shall be collected concurrently with metals samples.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Constituents shall be monitored as described in the MRP for use in the constituent study described in section VI.C.2.d of this Order.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Analysis using either total or acid-soluble (inductively coupled plasma/atomic emission spectrometry or inductively coupled plasma/mass spectrometry) analysis methods, as supported by USEPA’s Ambient Water Quality Criteria for Aluminum document (EPA 440/5-86-008), or other standard methods that exclude aluminum silicate particles as approved by the Executive Officer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Unfiltered methyl mercury and total mercury samples shall be taken using clean hands/dirty hands procedures, as described in U.S. EPA method 1669: Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels, for collection of equipment blanks (section 9.4.4.2), and shall be analyzed by U.S. EPA method 1630/1631 (Revision E) with a method detection limit of 0.02 ng/l for methyl mercury and 0.2 ng/l for total mercury.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Priority pollutant metals shall include the following: Antimony, Arsenic, Beryllium, Cadmium, Chromium III, Chromium IV, Copper, Lead, Mercury, Nickel, Selenium, Silver, Thallium, and Zinc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>For priority pollutant constituents with effluent limitations, detection limits shall be below the effluent limitations. If the lowest minimum level (ML) published in Appendix 4 of the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (State Implementation Plan or SIP) is not below the effluent limitation, the detection limit shall be the lowest ML. For priority pollutant constituents without effluent limitations, the detection limits shall be equal to or less than the lowest ML published in Appendix 4 of the SIP. Sampling and analysis of Bis (2-ethylhexyl) phthalate shall be conducted using ultra-clean techniques that eliminate the possibility of sample contamination.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Chloroform, Bromoform, Bromodichloromethane, Dibromodichloromethane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Standard minerals shall include the following: boron, calcium, iron, magnesium, potassium, sodium, chloride, manganese, phosphorus, total alkalinity (including alkalinity series), and hardness, and include verification that the analysis is complete (i.e., cation/anion balance).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Standard minerals and priority pollutants shall be sampled twice during the third year following the date of permit adoption and shall be conducted concurrently with upstream receiving water monitoring priority pollutant sampling and effluent hardness (as CaCO3) and pH. The Discharger is not required to conduct effluent monitoring for priority pollutants that have already been sampled during the same year as the priority pollutant sampling (i.e. metals and TTHMs), as required in Table E-5. See Attachment I for more detailed requirements related to performing the priority pollutant monitoring.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>See list of Priority Pollutants and Other Constituents of Concern in Attachment I.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Volatile constituents shall be sampled in accordance with 40 CFR Part 136.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. If the discharge is intermittent rather than continuous, then on the first day of each such intermittent discharge, the Discharger shall monitor and record data for all of the constituents listed above, after which the frequencies of analysis given in the schedule shall apply for the duration of each intermittent discharge.

V. WHOLE EFFLUENT TOXICITY TESTING REQUIREMENTS

A. Acute Toxicity Testing. The Discharger shall conduct acute toxicity testing to determine whether the effluent is contributing acute toxicity to the receiving water. The Discharger shall meet the following acute toxicity testing requirements:
1. **Monitoring Frequency** – The Discharger shall perform acute toxicity testing **once during each discharge season** (i.e. November 1 through April 30) when discharging to the Middle Fork of the Feather River. Acute toxicity testing shall be conducted concurrent with effluent ammonia sampling.

2. **Sample Types** – For static non-renewal and static renewal testing, the samples shall be **grab** samples and shall be representative of the volume and quality of the discharge. The effluent samples shall be taken at the effluent monitoring location EFF-001.

3. **Test Species** – Test species shall be rainbow trout (*Oncorhynchus mykiss)*.

4. **Methods** – The acute toxicity testing samples shall be analyzed using EPA-821-R-02-012, Fifth Edition. Temperature, total residual chlorine, and pH shall be recorded at the time of sample collection. No pH adjustment may be made unless approved by the Executive Officer.

5. **Test Failure** – If an acute toxicity test does not meet all test acceptability criteria, as specified in the test method, the Discharger must re-sample and re-test as soon as possible, not to exceed 7 days following notification of test failure.

4. **Chronic Toxicity Testing.** The Discharger shall conduct three species chronic toxicity testing to determine whether the effluent is contributing chronic toxicity to the receiving water. The Discharger shall meet the following chronic toxicity testing requirements:

1. **Monitoring Frequency** – The Discharger shall perform three species chronic toxicity testing; once during the term of this Order **no later than 365 days prior to permit expiration**.

2. **Sample Types** – Effluent samples shall be **24-hour composites** and shall be representative of the volume and quality of the discharge. The effluent samples shall be taken at the effluent monitoring location EFF-001. The receiving water control shall be a grab sample obtained from the RSW-001 sampling location, as identified in this Monitoring and Reporting Program.

3. **Sample Volumes** – Adequate sample volumes shall be collected to provide renewal water to complete the test in the event that the discharge is intermittent.

4. **Test Species** – Chronic toxicity testing measures sublethal (e.g., reduced growth, reproduction) and/or lethal effects to test organisms exposed to an effluent compared to that of the control organisms. The Discharger shall conduct chronic toxicity tests with:

 - The cladoceran, water flea, *Ceriodaphnia dubia* (survival and reproduction test);
 - The fathead minnow, *Pimephales promelas* (larval survival and growth test); and

6. **Reference Toxicant** – As required by the SIP, all chronic toxicity tests shall be conducted with concurrent testing with a reference toxicant and shall be reported with the chronic toxicity test results.

7. **Dilutions** – For regular and accelerated chronic toxicity monitoring, it is not necessary to perform the test using a dilution series. The test may be performed using 100% effluent and two controls. For TRE monitoring, the chronic toxicity testing shall be performed using the dilution series identified in Table E-6, below. The receiving water control shall be used as the diluent (unless the receiving water is toxic).

| Table E-6. Chronic Toxicity Testing Dilution Series |
Sample	Dilutions (%)	Controls					
	100	75	50	25	12.5	Receiving Water	Laboratory Water
% Effluent	100	75	50	25	12.5	0	0
% Receiving Water	0	25	50	75	87.5	100	0
% Laboratory Water	0	0	0	0	0	0	100

8. **Test Failure** – The Discharger must re-sample and re-test as soon as possible, but no later than fourteen (14) days after receiving notification of a test failure. A test failure is defined as follows:

 a. The reference toxicant test or the effluent test does not meet all test acceptability criteria as specified in the *Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition*, EPA/821-R-02-013, October 2002 (Method Manual), and its subsequent amendments or revisions; or

 b. The percent minimum significant difference (PMSD) measured for the test exceeds the upper PMSD bound variability criterion in Table 6 on page 52 of the Method Manual. (A retest is only required in this case if the test results do not exceed the monitoring trigger specified in the Special Provision at section VI. 2.a.iii of the Order.)

5. **WET Testing Notification Requirements.** The Discharger shall notify the Central Valley Water Board within 24-hours after the receipt of test results exceeding the monitoring trigger during regular or accelerated monitoring, or an exceedance of the acute toxicity effluent limitation.

6. **WET Testing Reporting Requirements.** All toxicity test reports shall include the contracting laboratory’s complete report provided to the Discharger and shall be in accordance with the appropriate “Report Preparation and Test Review” sections of
the method manuals. At a minimum, whole effluent toxicity monitoring shall be reported as follows:

1. **Chronic WET Reporting.** Regular chronic toxicity monitoring results shall be reported to the Central Valley Water Board within 30 days following completion of the test, and shall contain, at minimum:

 c. The results expressed in TUc, measured as 100/NOEC, and also measured as 100/LC50, 100/EC25, 100/IC25, and 100/IC50, as appropriate.

 d. The statistical methods used to calculate endpoints;

 e. The statistical output page, which includes the calculation of the percent minimum significant difference (PMSD);

 f. The dates of sample collection and initiation of each toxicity test; and

 g. The results compared to the numeric toxicity monitoring trigger.

 Additionally, the monthly discharger self-monitoring reports shall contain an updated chronology of chronic toxicity test results expressed in TUc, and organized by test species, type of test (survival, growth or reproduction), and monitoring frequency, i.e., either quarterly, monthly, accelerated, or Toxicity Reduction Evaluation (TRE).

2. **Acute WET Reporting.** Acute toxicity test results shall be submitted with the monthly discharger self-monitoring reports and reported as percent survival.

3. **TRE Reporting.** Reports for TREs shall be submitted in accordance with the schedule contained in the Discharger’s approved TRE Workplan.

4. **Quality Assurance (QA).** The Discharger must provide the following information for QA purposes:

 a. Results of the applicable reference toxicant data with the statistical output page giving the species, NOEC, LOEC, type of toxicant, dilution water used, concentrations used, PMSD, and dates tested.

 b. The reference toxicant control charts for each endpoint, which include summaries of reference toxicant tests performed by the contracting laboratory.

 c. Any information on deviations or problems encountered and how they were dealt with.
VI. LAND DISCHARGE MONITORING REQUIREMENTS – NOT APPLICABLE

VII. RECLAMATION MONITORING REQUIREMENTS – NOT APPLICABLE

VIII. RECEIVING WATER MONITORING REQUIREMENTS – SURFACE WATER AND GROUNDWATER

A. Surface Water Monitoring

1. The Discharger shall monitor the Middle Fork of the Feather River at RSW-001 and RSW-002 as follows (when discharge to the River is occurring):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle Fork Feather River Flow</td>
<td>cfs</td>
<td></td>
<td>1/Day¹</td>
<td>DWR Station</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Week</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Standard Units</td>
<td>Grab</td>
<td>1/Week</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>°F(°C)</td>
<td>Grab</td>
<td>1/Week</td>
<td></td>
</tr>
<tr>
<td>Electrical Conductivity @25°C</td>
<td>µmhos/cm</td>
<td>Grab</td>
<td>1/Week</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform Organisms</td>
<td>MPN/100 mL</td>
<td>Grab</td>
<td>1/Week</td>
<td></td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td></td>
</tr>
<tr>
<td>Copper (Total Recoverable)</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td></td>
</tr>
<tr>
<td>Hardness, Total (as CaCO₃)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month</td>
<td></td>
</tr>
<tr>
<td>Aluminum, Total Recoverable</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/Month, 1, 6</td>
<td></td>
</tr>
<tr>
<td>Iron, Total Recoverable</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/Month, 1, 6</td>
<td></td>
</tr>
<tr>
<td>Thallium, Total Recoverable</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/Year, 1, 6</td>
<td></td>
</tr>
<tr>
<td>Mercury (methyl)</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/Year, 1, 6</td>
<td></td>
</tr>
<tr>
<td>Mercury, Total Recoverable</td>
<td>µg/L</td>
<td>Grab</td>
<td>1/Year, 1, 6</td>
<td></td>
</tr>
<tr>
<td>Standard Minerals</td>
<td>mg/L</td>
<td>Grab</td>
<td>1, 10</td>
<td></td>
</tr>
<tr>
<td>Priority Pollutants and Other Constituents of Concern</td>
<td>µg/L</td>
<td>Grab</td>
<td>1, 10</td>
<td></td>
</tr>
</tbody>
</table>

¹ Monitoring required at RSW-001 only.
² Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136.
³ A hand-held field meter may be used, provided the meter utilizes a USEPA-approved algorithm/method and is calibrated and maintained in accordance with the manufacturer’s instructions. A calibration and maintenance log for each meter used for monitoring required by this Monitoring and Reporting Program shall be maintained at the Facility.
⁴ Monitoring for pH and temperature shall be conducted concurrently with effluent ammonia sampling.
⁵ Copper and hardness samples shall be collected concurrently with effluent metals samples.
⁶ Constituents shall be monitored as described in the MRP for use in the constituent study described in section VI.C.2.d of this Order.
7 Analysis using either total or acid-soluble (inductively coupled plasma/atomic emission spectrometry or inductively coupled plasma/mass spectrometry) analysis methods, as supported by USEPA’s Ambient Water Quality Criteria for Aluminum document (EPA 440/5-86-008), or other standard methods that exclude aluminum silicate particles as approved by the Executive Officer.

8 Unfiltered methyl mercury and total mercury samples shall be taken using clean hands/dirty hands procedures, as described in U.S. EPA method 1669: Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels, for collection of equipment blanks (section 9.4.4.2), and shall be analyzed by U.S. EPA method 1630/1631 (Revision E) with a method detection limit of 0.02 ng/l for methyl mercury and 0.2 ng/l for total mercury.

9 Standard minerals shall include the following: boron, calcium, iron, magnesium, potassium, sodium, chloride, manganese, phosphorus, total alkalinity (including alkalinity series), and hardness, and include verification that the analysis is complete (i.e., cation/anion balance).

10 Standard minerals and priority pollutants shall be sampled twice during the third year following the date of permit adoption and shall be conducted concurrently with effluent priority pollutant monitoring and upstream receiving water hardness (as CaCO₃) and pH. See Attachment I for more detailed requirements related to performing priority pollutant monitoring.

11 See list of Priority Pollutants and Other Constituents of Concern in Attachment I.

12 Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136; for priority pollutants the methods must meet the lowest MLs specified in Appendix 4 of the SIP, where no methods are specified for a given pollutant, by methods approved by this Central Valley Water Board or the State Water Board.

2. In conducting the receiving water sampling, a log shall be kept of the receiving water conditions throughout the reach bounded by Monitoring Locations RSW-001 and RSW-002. Attention shall be given to the presence or absence of:

 a. Floating or suspended matter;
 b. Discoloration;
 c. Bottom deposits;
 d. Aquatic life;
 e. Visible films, sheens, or coatings;
 f. Fungi, slimes, or objectionable growths;
 g. Potential nuisance conditions; and
 h. Foam.

Notes on receiving water conditions shall be summarized in the monitoring report.

Receiving water monitoring is required only when there is discharge to the Middle Fork of the Feather River. However, in any calendar week in which a discharge occurs, receiving water monitoring must be accomplished on a day in that week in which discharge is occurring.

B. Groundwater Monitoring

1. Prior to construction and beginning a sampling program of any new groundwater monitoring wells, the Discharger shall submit plans and specifications to the Central Valley Water Board for approval. Once installed, all new wells shall be added to the monitoring network and shall be sampled and analyzed according to the schedule below. All samples shall be collected using approved EPA methods. Water table elevations shall be calculated to determine groundwater gradient and direction of flow.

2. Prior to sampling, the groundwater elevations shall be measured and the wells shall be purged of at least three well volumes until temperature, pH, and electrical
conductivity have stabilized. Depth to groundwater shall be measured to the nearest 0.01 feet. Groundwater monitoring at GW-001, GW-002, GW-003, and any new groundwater monitoring wells shall include, at a minimum, the following:

Table E-8. Groundwater Monitoring Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth to Groundwater</td>
<td>±0.01 feet</td>
<td>Measurement</td>
<td>1/Month^1</td>
<td>--</td>
</tr>
<tr>
<td>Groundwater Elevation 2</td>
<td>±0.01 feet</td>
<td>Calculated</td>
<td>1/Month^1</td>
<td>--</td>
</tr>
<tr>
<td>Gradient</td>
<td>feet/feet</td>
<td>Calculated</td>
<td>1/Quarter</td>
<td>--</td>
</tr>
<tr>
<td>Gradient Direction</td>
<td>degrees</td>
<td>Calculated</td>
<td>1/Quarter</td>
<td>--</td>
</tr>
<tr>
<td>Electrical Conductivity @ 25°C</td>
<td>µmhos/cm</td>
<td>Grab</td>
<td>1/Month^1</td>
<td>3</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Month^1</td>
<td>3</td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>Grab</td>
<td>1/Month^1</td>
<td>3</td>
</tr>
<tr>
<td>Total Coliform Organisms</td>
<td>MPN/100 mL</td>
<td>Grab</td>
<td>1/Month^1</td>
<td>3</td>
</tr>
<tr>
<td>Nitrate Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Quarter</td>
<td>3</td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Quarter</td>
<td>3</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Quarter</td>
<td>3</td>
</tr>
<tr>
<td>Standard Minerals^4</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/Year</td>
<td>3</td>
</tr>
</tbody>
</table>

^1 Quarterly after one year of submittal of required analyses.
^2 Groundwater elevation shall be determined based on depth-to-water measurements from a surveyed measuring point elevation on the well. The groundwater elevation shall be used to calculate the direction and gradient of groundwater flow, which must be reported.
^3 Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136.
^4 Standard minerals shall include the following: boron, calcium, iron, magnesium, potassium, sodium, chloride, manganese, phosphorus, total alkalinity (including alkalinity series), and hardness, and include verification that the analysis is complete (i.e., cation/anion balance).

IX. OTHER MONITORING REQUIREMENTS

A. Biosolids

1. Monitoring Location BIO-001
 a. Upon removal of sludge, but no more than once during the permit term, a composite sample of sludge shall be collected at monitoring location BIO-001 in accordance with EPA's POTW Sludge Sampling and Analysis Guidance Document, August 1989, and tested for priority pollutants listed in 40 CFR Part 122, Appendix D, Tables II and III (excluding total phenols).
 b. Upon removal of sludge, a composite sample of sludge shall be collected at Monitoring Location BIO-001 in accordance with USEPA's POTW Sludge Sampling and Analysis Guidance Document, August 1989, and tested for priority pollutant metals.
c. Sampling records shall be retained for a minimum of 5 years. A log shall be maintained of sludge quantities generated and of handling and disposal activities. The frequency of entries is discretionary; however, the log must be complete enough to serve as a basis for part of the annual report.

B. Municipal Water Supply

A. Monitoring Location SPL-001

The Discharger shall monitor the municipal water supply at SPL-001 as follows. A sampling station shall be established where a representative sample of the municipal water supply can be obtained. Municipal water supply samples shall be collected at approximately the same time as effluent samples.

Table E-9. Municipal Water Supply Monitoring Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Solids</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Electrical Conductivity @ 25°C</td>
<td>μmhos/cm</td>
<td>Grab</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Standard Minerals</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/year</td>
<td></td>
</tr>
</tbody>
</table>

1. If the water supply is from more than one source, the total dissolved solids and electrical conductivity shall be reported as a weighted average and include copies of supporting calculations.

2. Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136.

3. Standard minerals shall include the following: boron, calcium, iron, magnesium, potassium, sodium, chloride, manganese, phosphorus, total alkalinity (including alkalinity series), and hardness, and include verification that the analysis is complete (i.e., cation/anion balance).

C. Pond Monitoring Requirements

1. Monitoring Locations PND-001, PND-002, PND-003, PND-004 and PND-005

The Discharger shall monitor the treatment ponds at PND-001, PND-002, PND-003 PND-004 and PND-005 as follows:

Table E-10. Pond Monitoring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>Grab</td>
<td>1/month</td>
</tr>
<tr>
<td>Liquid Depth and Freeboard</td>
<td>Feet</td>
<td>Visual/Measurement</td>
<td>1/month</td>
</tr>
<tr>
<td>Seepage through pond dikes</td>
<td></td>
<td>Visual</td>
<td>1/month</td>
</tr>
<tr>
<td>Excessive odors or other nuisances</td>
<td>Presence/Absence</td>
<td>Observation</td>
<td>1/month</td>
</tr>
<tr>
<td>Excessive weed growth in pond</td>
<td>Presence/Absence</td>
<td>Visual</td>
<td>1/month</td>
</tr>
</tbody>
</table>

1. A hand-held field meter may be used, provided the meter utilizes a USEPA-approved algorithm/method and is calibrated and maintained in accordance with the manufacturer’s instructions. A calibration and maintenance log for the meter should be maintained at the Facility.

2. Weekly for April through June.
X. REPORTING REQUIREMENTS

A. General Monitoring and Reporting Requirements

1. The Discharger shall comply with all Standard Provisions (Attachment D) related to monitoring, reporting, and recordkeeping.

2. Upon written request of the Central Valley Water Board, the Discharger shall submit a summary monitoring report. The report shall contain both tabular and graphical summaries of the monitoring data obtained during the previous year(s).

3. **Compliance Time Schedules.** For compliance time schedules included in the Order, the Discharger shall submit to the Central Valley Water Board, on or before each compliance due date, the specified document or a written report detailing compliance or noncompliance with the specific date and task. If noncompliance is reported, the Discharger shall state the reasons for noncompliance and include an estimate of the date when the Discharger will be in compliance. The Discharger shall notify the Central Valley Water Board by letter when it returns to compliance with the compliance time schedule.

4. The Discharger shall report to the Central Valley Water Board any toxic chemical release data it reports to the State Emergency Response Commission within 15 days of reporting the data to the Commission pursuant to section 313 of the "Emergency Planning and Community Right to Know Act" of 1986.

B. Self Monitoring Reports (SMRs)

1. At any time during the term of this permit, the State Water Board or the Central Valley Water Board may notify the Discharger to electronically submit Self-Monitoring Reports (SMRs) using the State Water Board’s California Integrated Water Quality System (CIWQS) Program Web site (http://www.waterboards.ca.gov/ciwqs/index.html). Until such notification is given, the Discharger shall submit hard copy SMRs. The CIWQS Web site will provide additional directions for SMR submittal in the event there will be service interruption for electronic submittal. Upon notification directing the Discharger to submit electronic SMRs (eSMRs) and discontinue submitting hard copy SMRs, the Discharger shall maintain sufficient staffing and resources to ensure it submits eSMRs for the effective duration of this Order. This includes provision of training and supervision of individuals (e.g., Discharger personnel or consultant) on how to prepare and submit eSMRs.

A. The Discharger shall report in the SMR the results for all monitoring specified in this Monitoring and Reporting Program under sections III through IX. The Discharger shall submit **monthly**, SMRs including the results of all required monitoring using USEPA-approved test methods or other test methods specified in this Order. If the Discharger monitors any pollutant more frequently than required by this Order, the results of this monitoring shall be included in the calculations and reporting of the data submitted in the SMR.
B. Monitoring periods and reporting for all required monitoring shall be completed according to the following schedule:

Table E-11. Monitoring Periods and Reporting Schedule

<table>
<thead>
<tr>
<th>Sampling Frequency</th>
<th>Monitoring Period Begins On…</th>
<th>Monitoring Period</th>
<th>SMR Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>Permit effective date</td>
<td>All</td>
<td>First day of second calendar month following month of sampling.</td>
</tr>
<tr>
<td>1/Day</td>
<td>Permit effective date</td>
<td>(Midnight through 11:59 PM) or any 24-hour period that reasonably represents a calendar day for purposes of sampling.</td>
<td>First day of second calendar month following month of sampling.</td>
</tr>
<tr>
<td>1/Week</td>
<td>Permit effective date</td>
<td>Sunday through Saturday</td>
<td>First day of second calendar month following month of sampling.</td>
</tr>
<tr>
<td>1/Month</td>
<td>Permit effective date</td>
<td>First day of calendar month through last day of calendar month</td>
<td>First day of second calendar month following month of sampling.</td>
</tr>
</tbody>
</table>
| 1/Quarter | Permit effective date | 1 January through 31 March
| | | 1 April through 30 June
| | | 1 July through 30 September
| | | 1 October through 31 December | 1 May
| | | | 1 August
| | | | 1 November
| | | | 1 February |
| 1/Discharge Season | Permit effective date | 1 November through 30 April | 1 June |
| 1/Year | Permit effective date | 1 November through 30 April | 1 June |

C. Reporting Protocols. The Discharger shall report with each sample result the applicable reported Minimum Level (ML) and the current Method Detection Limit (MDL), as determined by the procedure in 40 CFR Part 136.

The Discharger shall report the results of analytical determinations for the presence of chemical constituents in a sample using the following reporting protocols:

a. Sample results greater than or equal to the reported ML shall be reported as measured by the laboratory (i.e., the measured chemical concentration in the sample).

b. Sample results less than the RL, but greater than or equal to the laboratory’s MDL, shall be reported as “Detected, but Not Quantified,” or DNQ. The estimated chemical concentration of the sample shall also be reported.

For the purposes of data collection, the laboratory shall write the estimated chemical concentration next to DNQ as well as the words “Estimated Concentration” (may be shortened to “Est. Conc.”). The laboratory may, if such information is available, include numerical estimates of the data quality for the reported result. Numerical estimates of data quality may be percent accuracy (+ a percentage of the reported value), numerical ranges (low to high), or any other means considered appropriate by the laboratory.
c. Sample results less than the laboratory’s MDL shall be reported as “Not Detected,” or ND.

d. Dischargers are to instruct laboratories to establish calibration standards so that the ML value (or its equivalent if there is differential treatment of samples relative to calibration standards) is the lowest calibration standard. At no time is the Discharger to use analytical data derived from extrapolation beyond the lowest point of the calibration curve.

D. Multiple Sample Data. When determining compliance with an AMEL or MDEL for priority pollutants and more than one sample result is available, the Discharger shall compute the arithmetic mean unless the data set contains one or more reported determinations of “Detected, but Not Quantified” (DNQ) or “Not Detected” (ND). In those cases, the Discharger shall compute the median in place of the arithmetic mean in accordance with the following procedure.

1. The data set shall be ranked from low to high, ranking the reported ND determinations lowest, DNQ determinations next, followed by quantified values (if any). The order of the individual ND or DNQ determinations is unimportant.

2. The median value of the data set shall be determined. If the data set has an odd number of data points, then the median is the middle value. If the data set has an even number of data points, then the median is the average of the two values around the middle unless one or both of the points are ND or DNQ, in which case the median value shall be the lower of the two data points where DNQ is lower than a value and ND is lower than DNQ.

E. Compliance Determination. Compliance with effluent limitations for priority pollutants shall be determined using sample reporting protocols defined above and in Attachment A of this Order. For purposes of reporting and administrative enforcement by the Central Valley Water Board and the State Water Board, the Discharger shall be deemed out of compliance with effluent limitations if the concentration of the priority pollutant in the monitoring sample is greater than the effluent limitation and greater than or equal to the reporting level (RL).

2. Reporting Requirements. In reporting the monitoring data, the Discharger shall arrange the data in tabular form so that the date, the constituents, and the concentrations are readily discernible.

a. The data shall be summarized to clearly illustrate whether the facility is operating in compliance with interim and/or final effluent limitations or with other waste discharge requirements (e.g., discharge specifications, receiving water limitations, special provisions, etc.).

1. Reports must clearly show when discharging to EFF-001 or other permitted discharge locations. Reports must show the date and time that the discharge started and stopped at each location.
2. The highest daily maximum for the month and monthly and weekly averages shall be determined and recorded as needed to demonstrate compliance.

F. The Discharger shall submit SMRs in accordance with the following requirements:

1. When electronic submittal of data is required and CIWQS does not provide for entry into a tabular format within the system, the Discharger shall electronically submit the data in a tabular format as an attachment. The Discharger is not required to duplicate the submittal of data that is entered in a tabular format within CIWQS.

2. The Discharger shall attach a cover letter to the SMR. The information contained in the cover letter shall clearly identify violations of the WDRs; discuss corrective actions taken or planned; and the proposed time schedule for corrective actions. Identified violations must include a description of the requirement that was violated and a description of the violation.

3. SMRs must be submitted to the Central Valley Water Board, signed and certified as required by the Standard Provisions (Attachment D), to the address listed below:

 Regional Water Quality Control Board
 Central Valley Region
 415 Knollcrest Dr., Suite 100
 Redding, CA 96001

G. Reports must clearly show when discharging to EFF-001 or other permitted discharge locations. Reports must show the date and time that the discharge started and stopped at each location.

C. Discharge Monitoring Reports (DMRs) – Not Applicable

D. Other Reports

1. Progress Reports. As specified in the compliance time schedules required in the Special Provisions contained in section VI of the Order, progress reports shall be submitted in accordance with the following reporting requirements. At minimum, the progress reports shall include a discussion of the status of final compliance, whether the Discharger is on schedule to meet the final compliance date, and the remaining tasks to meet the final compliance date.

Table E-12. Reporting Requirements for Special Provisions Progress Reports

<table>
<thead>
<tr>
<th>Special Provision</th>
<th>Reporting Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing Zone/Dilution Study Work Plan</td>
<td>Within 6 months, after permit adoption date</td>
</tr>
<tr>
<td>Mixing Zone/Dilution Study Results</td>
<td>Within 1 year, after approval of work plan</td>
</tr>
<tr>
<td>Septage Supernatant Receiving Analysis</td>
<td>Within 1 year, after permit adoption date</td>
</tr>
</tbody>
</table>
Special Provision

<table>
<thead>
<tr>
<th>Special Provision</th>
<th>Reporting Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituent Study</td>
<td>Within 6 months, after monitoring the first three years of the permit term</td>
</tr>
<tr>
<td>Groundwater Monitoring Work Plan</td>
<td>Within 6 months, after permit adoption date</td>
</tr>
<tr>
<td>Groundwater Monitoring Well Installation Report</td>
<td>Within 6 months, after approval of work plan</td>
</tr>
<tr>
<td>Groundwater Water Quality Characterization</td>
<td>Within 42 months, after permit adoption date</td>
</tr>
<tr>
<td>Best Practical Treatment or Control (BPTC)</td>
<td>Within 48 months, after permit adoption date</td>
</tr>
<tr>
<td>Salinity Evaluation and Minimization Plan</td>
<td>Within 9 months, after permit adoption date</td>
</tr>
<tr>
<td>Compliance Work Plan Schedule for Ammonia</td>
<td>Within 6 months, after permit adoption date</td>
</tr>
<tr>
<td>Pollution Prevention Plan for Ammonia</td>
<td>Within 1 year, after workplan approval and progress reports, 31 January, annually thereafter</td>
</tr>
</tbody>
</table>

2. The Discharger shall report the results of any special studies, acute and chronic toxicity testing, TRE/TIE, PMP, and Pollution Prevention Plan required by Special Provisions VI.C of this Order. The Discharger shall submit reports with the first monthly SMR scheduled to be submitted on or immediately following the report due date.

3. Within 60 days of permit adoption, the Discharger shall submit a report outlining minimum levels, method detection limits, and analytical methods for approval, with a goal to achieve detection levels below applicable water quality criteria. At a minimum, the Discharger shall comply with the monitoring requirements for CTR constituents as outlined in section 2.3 and 2.4 of the SIP.

4. The Discharger’s sanitary sewer system collects wastewater using sewers, pipes, pumps, and/or other conveyance systems and directs the raw sewage to the wastewater treatment plant. A “sanitary sewer overflow” is defined as a discharge to ground or surface water from the sanitary sewer system at any point upstream of the wastewater treatment plant. Sanitary sewer overflows are prohibited by this Order. All violations must be reported as required in Standard Provisions. Facilities (such as wet wells, regulated impoundments, tanks, highlines, etc.) may be part of a sanitary sewer system and discharges to these facilities are not considered sanitary sewer overflows, provided that the waste is fully contained within these temporary storage facilities.

5. **Effluent and Receiving Water Characterization Study.** An effluent and receiving water monitoring study is required to ensure adequate information is available for the next permit renewal. **Twice during the third year of this permit term,** the Discharger shall conduct monitoring of the effluent at EFF-001 and of the receiving water at RSW-001 for all priority pollutants and other constituents of concern as described in Attachment I. Dioxin and Furan sampling shall be performed only **once during the third year,** as described in Attachment J. The report shall be completed in conformance with the following schedule.
### Task	Compliance Date
1. Submit Work Plan and Time Schedule | No later than 2 years 6 months from adoption of this Order
2. Conduct monitoring | Twice during third year of permit term
3. Submit Final Report | 6 months following completion of final monitoring event

1. Dioxin and Furan sampling shall be performed only once during the third year, as described in Attachment J.

6. Annual Operations Report
By 30 January of each year, the Discharger shall submit a written report to the Executive Officer containing the following:

a. The names, certificate grades, and general responsibilities of all persons employed at the Facility.

b. The names and telephone numbers of persons to contact regarding the plant for emergency and routine situations.

c. A statement certifying when the flow meter(s) and other monitoring instruments and devices were last calibrated, including identification of who performed the calibration.

d. A statement certifying whether the current operation and maintenance manual, and contingency plan, reflect the wastewater treatment plant as currently constructed and operated, and the dates when these documents were last revised and last reviewed for adequacy.

e. The Discharger may also be requested to submit an annual report to the Central Valley Water Board with both tabular and graphical summaries of the monitoring data obtained during the previous year. Any such request shall be made in writing. The report shall discuss the compliance record. If violations have occurred, the report shall also discuss the corrective actions taken and planned to bring the discharge into full compliance with the waste discharge requirements.
ATTACHMENT F – FACT SHEET

Table of Contents

I. Permit Information .. F-3

II. Facility Description ... F-4
 A. Description of Wastewater and Biosolids Treatment or Controls F-4
 B. Discharge Points and Receiving Waters ... F-4
 C. Summary of Existing Requirements and Self-Monitoring Report (SMR) Data F-4
 D. Compliance Summary ... F-5
 E. Planned Changes-Not Applicable ... F-6

III. Applicable Plans, Policies, and Regulations .. F-6
 A. Legal Authorities .. F-6
 B. California Environmental Quality Act (CEQA) .. F-6
 C. State and Federal Regulations, Policies, and Plans ... F-6
 D. Impaired Water Bodies on CWA 303(d) List-Not Applicable F-7
 E. Other Plans, Policies and Regulations .. F-7

IV. Rationale For Effluent Limitations and Discharge Specifications F-8
 A. Discharge Prohibitions ... F-9
 B. Technology-Based Effluent Limitations .. F-10
 1. Scope and Authority ... F-10
 2. Applicable Technology-Based Effluent Limitations F-11
 C. Water Quality-Based Effluent Limitations (WQBELs) F-12
 1. Scope and Authority ... F-12
 2. Applicable Beneficial Uses and Water Quality Criteria and Objectives F-13
 3. Determining the Need for WQBELs ... F-24
 4. WQBEL Calculations .. F-38
 5. Whole Effluent Toxicity (WET) .. F-39
 D. Final Effluent Limitations .. F-42
 1. Mass-based Effluent Limitations .. F-42
 2. Averaging Periods for Effluent Limitations .. F-42
 3. Satisfaction of Anti-Backsliding Requirements ... F-43
 4. Satisfaction of Antidegradation Policy .. F-43
 5. Stringency of Requirements for Individual Pollutants F-44
 E. Interim Effluent Limitations ... F-45
 F. Land Discharge Specifications – Not Applicable .. F-47
 G. Reclamation Specifications – Not Applicable .. F-47

V. Rationale for Receiving Water Limitations ... F-47
 A. Surface Water .. F-47
 B. Groundwater .. F-48

VI. Rationale for Monitoring and Reporting Requirements ... F-50
 A. Influent Monitoring ... F-50
 B. Effluent Monitoring ... F-50
 C. Whole Effluent Toxicity Testing Requirements .. F-51
 D. Receiving Water Monitoring ... F-52
 1. Surface Water .. F-52
2. Groundwater .. F-52
E. Other Monitoring Requirements .. F-53
 1. Water Supply Monitoring .. F-53
 2. Biosolids Monitoring .. F-53
 3. Pond Monitoring .. F-54
 4. Effluent and Receiving Water Characterization Study F-54

VII. Rationale for Provisions .. F-54
A. Standard Provisions .. F-54
B. Special Provisions ... F-54
 1. Reopener Provisions .. F-54
 2. Special Studies and Additional Monitoring Requirements F-55
 4. Construction, Operation, and Maintenance Specifications F-60
 5. Special Provisions for Municipal Facilities (POTWs Only) F-61
 6. Other Special Provisions – Not Applicable ... F-61
 7. Compliance Schedules .. F-61

VIII. Public Participation .. F-62
A. Notification of Interested Parties ... F-62
B. Written Comments .. F-62
C. Public Hearing .. F-62
D. Waste Discharge Requirements Petitions ... F-63
E. Information and Copying ... F-63
F. Register of Interested Persons .. F-63
G. Additional Information .. F-63

List of Tables

Table F-1. Facility Information .. F-3
Table F-2. Historic Effluent Limitations and Monitoring Data F-5
Table F-3. Summary of Technology-based Effluent Limitations F-12
Table F-4. Basin Plan Beneficial Uses ... F-14
Table F-5a. Copper ECA Evaluation .. F-22
Table F-5b. Lead ECA Evaluation .. F-23
Table F-6. Summary of ECA Evaluations for CTR Hardness-dependent Metals F-24
Table F-7. Site-Specific pH and Hardness Characteristics ... F-26
Table F-8. WQBEL Calculations for Ammonia .. F-30
Table F-9. Salinity Water Quality Criteria/Objectives ... F-34
Table F-10. Summary of Water Quality-Based Effluent Limitations F-39
Table F-11. Summary of Final Effluent Limitations .. F-45
Table F-12. Interim Effluent Limitation Calculation Summary F-47
ATTACHMENT F – FACT SHEET

As described in the Findings in section II of this Order, this Fact Sheet includes the legal requirements and technical rationale that serve as the basis for the requirements of this Order.

This Order has been prepared under a standardized format to accommodate a broad range of discharge requirements for Dischargers in California. Only those sections or subsections of this Order that are specifically identified as “not applicable” have been determined not to apply to this Discharger. Sections or subsections of this Order not specifically identified as “not applicable” are fully applicable to this Discharger.

I. PERMIT INFORMATION

The following table summarizes administrative information related to the Facility.

<table>
<thead>
<tr>
<th>Table F-1. Facility Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDID</td>
</tr>
<tr>
<td>Discharger</td>
</tr>
<tr>
<td>Name of Facility</td>
</tr>
<tr>
<td>Facility Address</td>
</tr>
<tr>
<td>Facility Contact, Title and Phone</td>
</tr>
<tr>
<td>Authorized Person to Sign and Submit Reports</td>
</tr>
<tr>
<td>Mailing Address</td>
</tr>
<tr>
<td>Billing Address</td>
</tr>
<tr>
<td>Type of Facility</td>
</tr>
<tr>
<td>Major or Minor Facility</td>
</tr>
<tr>
<td>Threat to Water Quality</td>
</tr>
<tr>
<td>Complexity</td>
</tr>
<tr>
<td>Pretreatment Program</td>
</tr>
<tr>
<td>Reclamation Requirements</td>
</tr>
<tr>
<td>Facility Permitted Flow</td>
</tr>
<tr>
<td>Facility Design Flow</td>
</tr>
<tr>
<td>Watershed</td>
</tr>
<tr>
<td>Receiving Water</td>
</tr>
<tr>
<td>Receiving Water Type</td>
</tr>
</tbody>
</table>

A. The Grizzly Lake Community Services District (hereinafter Discharger) is the owner and operator of Delleker Wastewater Treatment Plant (hereinafter Facility), a POTW.

For the purposes of this Order, references to the “discharger” or “permittee” in applicable federal and state laws, regulations, plans, or policy are held to be equivalent to references to the Discharger herein.
B. The Facility discharges wastewater to the Middle Fork of the Feather River, a water of the United States, and is currently regulated by Order No. R5-2007-0019 which was adopted on March 16, 2007 and expires on May 1, 2012. The terms and conditions of the current Order have been automatically continued and remain in effect until new Waste Discharge Requirements (WDRs) and National Pollutant Discharge Elimination System (NPDES) permit are adopted pursuant to this Order.

C. The Discharger filed a report of waste discharge and submitted an application for renewal of its Waste Discharge Requirements (WDRs) and National Pollutant Discharge Elimination System (NPDES) permit on May 6, 2011. A site visit was conducted on March 5, 2012, to observe operations and collect additional data to develop permit limitations and conditions.

II. FACILITY DESCRIPTION

The Discharger provides wastewater collection, treatment, and disposal for approximately 700 residents living in the community of Delleker. The Facility has received up to 130,000 gallons (gal) of untreated domestic septage per year in the past; untreated and treated septage flows are projected to significantly increase during this permit term. The design daily average dry weather flow capacity of the Facility is 0.1 million gallons per day (mgd).

A. Description of Wastewater and Biosolids Treatment or Controls

The treatment system consists of a headworks distribution box (no screening), five facultative treatment ponds, and chlorination/dechlorination.

B. Discharge Points and Receiving Waters

1. The Facility is located in Section 3, T22N, R13E, MDB&M, as shown in Attachment B, a part of this Order.

2. Treated municipal wastewater is seasonally discharged to the Middle Fork of the Feather River, a water of the United States at a point latitude 38° 48’ 13” N and longitude 120° 30’ 01” W. Treated wastewater may be discharged to the Middle Fork of the Feather River between November 1 and April 30, but only when receiving water flow is 40 cfs (25.85 mgd) or more at the Department of Water Resources gauging station approximately four miles upstream of the discharge.

C. Summary of Existing Requirements and Self-Monitoring Report (SMR) Data

Effluent limitations contained in Order No. R5-2007-0019 for discharges from Discharge Point No. 001 (Monitoring Location EFF-001) and representative monitoring data from the term of Order No. R5-2007-0019 are as follows:
Table F-2. Historic Effluent Limitations and Monitoring Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitation</th>
<th>Monitoring Data (From March 2008 To May 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Monthly</td>
<td>Average Weekly</td>
</tr>
<tr>
<td>Flow¹</td>
<td>mgd</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand 5-day @ 20°C</td>
<td>mg/L</td>
<td>45</td>
<td>65</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>45</td>
<td>65</td>
</tr>
<tr>
<td>pH</td>
<td>Standard units</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chlorine, Total Residual</td>
<td>mg/L</td>
<td>--</td>
<td>0.01²</td>
</tr>
<tr>
<td>Total Coliform Organisms</td>
<td>MPN/100 mL</td>
<td>--</td>
<td>23⁵</td>
</tr>
<tr>
<td>Percent Removal BOD<sub>5</sub></td>
<td>%</td>
<td>65</td>
<td>--</td>
</tr>
<tr>
<td>Percent Removal TSS</td>
<td>%</td>
<td>65</td>
<td>--</td>
</tr>
</tbody>
</table>

¹ The average daily dry weather discharge flow of 0.1 mgd. No limit was established in Order No. R5-2007-0019 for discharge to the Middle Fork of the Feather River during the wet season.
² Instantaneous minimum of 6.0 and instantaneous maximum of 9.0
³ 4-day average
⁴ 1-hour average
⁵ Median of the previous seven samples
⁶ Discharge did not meet 65% removal for BOD₅ in February 2010 (51%) and March 2010 (33.7%).
⁷ Discharge did not meet 65% removal for TSS in March 2009 (48%), February 2010 (27%) and March 2010 (20.4%).

D. Compliance Summary

1. Review of the SMRs submitted by the Discharger from March 2008 through May 2011 indicated the Discharger has not consistently complied with the average monthly and average weekly effluent limitations for BOD and TSS. SMR results indicated two exceedances of the average monthly BOD limitation and one exceedance of the weekly BOD limitation. SMR results reported for TSS indicated four exceedances of the average monthly TSS limitation and two exceedances of the average weekly TSS limitation.

The Discharger also reported a pH of 5.8 which is less than the minimum effluent limit of 6.0. Four additional pH readings less than the minimum pH 6.0 limit were determined to occur from equipment malfunction and were not considered as violations by Central Valley Water Board staff.

The maximum daily coliform limitation of 500 MPN/100 mL was exceeded in one sample collected on April 30, 2010 (900 MPN/100 mL).
III. APPLICABLE PLANS, POLICIES, AND REGULATIONS

The requirements contained in this Order are based on the applicable plans, policies, and regulations identified in the Findings in section II of this Order. The applicable plans, policies, and regulations relevant to the discharge include the following:

A. Legal Authorities

This Order is issued pursuant to regulations in the Clean Water Act (CWA) and the California Water Code (Water Code) as specified in the Finding contained at section II.C of this Order.

B. California Environmental Quality Act (CEQA)

This Order meets the requirements of CEQA as specified in the Finding contained at section II.E of this Order.

C. State and Federal Regulations, Policies, and Plans

1. Water Quality Control Plans. This Order implements the following water quality control plans as specified in the Finding contained at section II.H of this Order.

A. National Toxics Rule (NTR) and California Toxics Rule (CTR). This Order implements the NTR and CTR as specified in the Finding contained at section II.I of this Order.

B. State Implementation Policy (SIP). This Order implements the SIP as specified in the Finding contained at section II.J of this Order.

C. Alaska Rule. This Order is consistent with the Alaska Rule as specified in the Finding contained at section II.L of this Order.

D. Antidegradation Policy. As specified in the Finding contained at section II.N of this Order and as discussed in detail in the Fact Sheet (Attachment F, Section IV.D.4.), the discharge is consistent with the antidegradation provisions of 40 CFR 131.12 and State Water Resources Control Board (State Water Board) Resolution 68-16.

E. Anti-Backsliding Requirements. This Order is consistent with anti-backsliding policies as specified in the Finding contained at section II.O of this Order. Compliance with the anti-backsliding requirements is discussed in the Fact Sheet (Attachment F, Section IV.D.3).

F. Emergency Planning and Community Right to Know Act
Section 13263.6(a) of the Water Code, requires that “the Regional Water Board shall prescribe effluent limitations as part of the waste discharge requirements of a POTW for all substances that the most recent toxic chemical release data reported to the state emergency response commission pursuant to Section 313 of the Emergency Planning and Community Right to Know Act of 1986 (42 U.S.C. Sec. 11023) (EPCRA) indicate as discharged into the POTW, for which the State Water Board or the Regional Water Board has established numeric water quality objectives, and has determined that the discharge is or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to, an excursion above any numeric water quality objective.”

The most recent toxic chemical data report does not indicate any reportable off-site releases or discharges to the collection system for this Facility. Therefore, a reasonable potential analysis based on information from EPCRA cannot be conducted. Based on information from EPCRA, there is no reasonable potential to cause or contribute to an excursion above any numeric water quality objectives included within the Basin Plan or in any State Water Board plan, so no effluent limitations are included in this permit pursuant to Water Code section 13263.6(a).

However, as detailed elsewhere in this Order, available effluent data indicate that there are constituents present in the effluent that have a reasonable potential to cause or contribute to exceedances of water quality standards and require inclusion of effluent limitations based on federal and state laws and regulations.

G. Storm Water Requirements

USEPA promulgated federal regulations for storm water on 16 November 1990 in 40 CFR Parts 122, 123, and 124. The NPDES Industrial Storm Water Program regulates storm water discharges from wastewater treatment facilities. Wastewater treatment plants are applicable industries under the storm water program and are obligated to comply with the federal regulations. The State Water Board does not require wastewater treatment facilities with design flows less than 1 MGD to obtain coverage under the Industrial Storm Water General Order. This Order does not regulate storm water.

H. Endangered Species Act. This Order is consistent with the Endangered Species Act as specified in the Finding contained at section II.P of this Order.

D. Impaired Water Bodies on CWA 303(d) List-Not Applicable

E. Other Plans, Polices and Regulations

1. Title 27, California Code of Regulations (CCR), section 20005 et seq. (hereafter Title 27). The discharge authorized herein and the treatment and storage facilities associated with the discharge of treated municipal wastewater, except for discharges of residual sludge and solid waste, are exempt from the requirements of Title 27, California Code of Regulations (CCR), section 20005 et seq (hereafter Title
27). The exemption, pursuant to Title 27 CCR section 20090(a), is based on the following:

a. The waste consists primarily of domestic sewage and treated effluent;

b. The waste discharge requirements are consistent with water quality objectives; and

c. The treatment and storage facilities described herein are associated with a municipal wastewater treatment plant.

IV. RATIONALE FOR EFFLUENT LIMITATIONS AND DISCHARGE SPECIFICATIONS

Effluent limitations and toxic and pretreatment effluent standards established pursuant to sections 301 (Effluent Limitations), 302 (Water Quality Related Effluent Limitations), 304 (Information and Guidelines), and 307 (Toxic and Pretreatment Effluent Standards) of the CWA and amendments thereto are applicable to the discharge.

The CWA mandates the implementation of effluent limitations that are as stringent as necessary to meet water quality standards established pursuant to state or federal law [33 U.S.C., §1311(b)(1)(C); 40 CFR 122.44(d)(1)]. NPDES permits must incorporate discharge limits necessary to ensure that water quality standards are met. This requirement applies to narrative criteria as well as to criteria specifying maximum amounts of particular pollutants. Pursuant to federal regulations, 40 CFR 122.44(d)(1)(i), NPDES permits must contain limits that control all pollutants that “are or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any state water quality standard, including state narrative criteria for water quality.” Federal regulations, 40 CFR 122.44(d)(1)(vi), further provide that “[w]here a state has not established a water quality criterion for a specific chemical pollutant that is present in an effluent at a concentration that causes, has the reasonable potential to cause, or contributes to an excursion above a narrative criterion within an applicable State water quality standard, the permitting authority must establish effluent limits.”

The CWA requires point source dischargers to control the amount of conventional, non-conventional, and toxic pollutants that are discharged into the waters of the United States. The control of pollutants discharged is established through effluent limitations and other requirements in NPDES permits. There are two principal bases for effluent limitations in the Code of Federal Regulations: 40 CFR 122.44(a) requires that permits include applicable technology-based limitations and standards; and 40 CFR 122.44(d) requires that permits include WQBELs to attain and maintain applicable numeric and narrative water quality criteria to protect the beneficial uses of the receiving water where numeric water quality objectives have not been established. The Basin Plan at page IV-17.00, contains an implementation policy, “Policy for Application of Water Quality Objectives”, that specifies that the Regional Water Board “will, on a case-by-case basis, adopt numerical limitations in orders which will implement the narrative objectives.” This Policy complies with 40 CFR 122.44(d)(1). With respect to narrative objectives, the Regional Water Board must establish effluent limitations using one or more of three specified sources, including: (1) USEPA’s published water quality criteria, (2) a proposed state criterion (i.e., water quality
objective) or an explicit state policy interpreting its narrative water quality criteria (i.e., the Regional Water Board’s “Policy for Application of Water Quality Objectives”)(40 CFR 122.44(d)(1)(vi)(A), (B) or (C)), or (3) an indicator parameter.

The Basin Plan includes numeric site-specific water quality objectives and narrative objectives for toxicity, chemical constituents, discoloration, radionuclides, and tastes and odors. The narrative toxicity objective states: “All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life.” (Basin Plan at III-8.00) The Basin Plan states that material and relevant information, including numeric criteria, and recommendations from other agencies and scientific literature will be utilized in evaluating compliance with the narrative toxicity objective. The narrative chemical constituents objective states that waters shall not contain chemical constituents in concentrations that adversely affect beneficial uses. At minimum, “…water designated for use as domestic or municipal supply (MUN) shall not contain concentrations of chemical constituents in excess of the maximum contaminant levels (MCLs)” in Title 22 of CCR. The Basin Plan further states that, to protect all beneficial uses, the Central Valley Water Board may apply limits more stringent than MCLs. The narrative tastes and odors objective states: “Water shall not contain taste- or odor-producing substances in concentrations that impart undesirable tastes or odors to domestic or municipal water supplies or to fish flesh or other edible products of aquatic origin, or that cause nuisance, or otherwise adversely affect beneficial uses.”

A. Discharge Prohibitions

1. **Prohibition III.A (No discharge or application of waste other than that described in this Order).** This prohibition is based on Water Code Section 13260 that requires filing of a report of waste discharge (ROWD) before discharges can occur. The Discharger submitted a ROWD for the discharges described in this Order; therefore, discharges not described in this Order are prohibited.

2. **Prohibition III.B (The by-pass or overflow of wastes to surface waters is prohibited, except as allowed by Federal Standard Provisions I.G. and I.H. (Attachment D).)** As stated in section I.G of Attachment D, Standard Provisions, this Order prohibits bypass from any portion of the treatment facility. Federal regulations, 40 CFR 122.41(m), define “bypass” as the intentional diversion of waste streams from any portion of a treatment facility. This section of the federal regulations, 40 CFR 122.41(m)(4), prohibits bypass unless it is unavoidable to prevent loss of life, personal injury, or severe property damage. In considering the Central Valley Water Board’s prohibition of bypasses, the State Water Board adopted a precedential decision, Order No. WQO 2002-0015, which cites the federal regulations, 40 CFR 122.41(m), as allowing bypass only for essential maintenance to assure efficient operation.

3. **Prohibition III.C (Neither the discharge nor its treatment shall create a nuisance as defined in section 13050 of the Water Code.).** This prohibition is based on Water Code Section 13050 that requires water quality objectives established for the prevention of nuisance within a specific area. The Basin Plan prohibits conditions that create a nuisance
4. Prohibition III.D (The Discharger shall not allow pollutant-free wastewater to be discharged into the treatment or disposal, system in amounts that significantly diminish the system’s capability to comply with this Order. Pollutant-free wastewater means rainfall, groundwater, cooling waters, and condensates that are essentially free of pollutants.). This prohibition is based on CFR Part 122.41 et seq. that requires the proper design and operation of treatment facilities.

5. Prohibition III.E (Discharge to the Middle Fork of the Feather River is prohibited when River flow as measured at the DWR Middle Fork Feather River Portola gauging station is less than 40 cfs.). This prohibition is included to assure adequate dilution and assimilative capacity for the wastewater.

6. Prohibition III.F (Discharge to the Middle Fork of the Feather River is prohibited between May 1 and October 31.). This prohibition is included to coincide with the recreation season in the Middle Fork of the Feather River.

B. Technology-Based Effluent Limitations

1. Scope and Authority

Section 301(b) of the CWA and implementing USEPA permit regulations at 40 CFR 122.44 require that permits include conditions meeting applicable technology-based requirements at a minimum, and any more stringent effluent limitations necessary to meet applicable water quality standards. The discharge authorized by this Order must meet minimum federal technology-based requirements based on Secondary Treatment Standards at 40 CFR Part 133.

Regulations promulgated in 40 CFR 125.3(a)(1) require technology-based effluent limitations for municipal Dischargers to be placed in NPDES permits based on Secondary Treatment Standards or Equivalent to Secondary Treatment Standards.

The Federal Water Pollution Control Act Amendments of 1972 (PL 92-500) established the minimum performance requirements for POTWs [defined in section 304(d)(1)]. Section 301(b)(1)(B) of that Act requires that such treatment works must, as a minimum, meet effluent limitations based on secondary treatment as defined by the USEPA Administrator.

Based on this statutory requirement, USEPA developed secondary treatment regulations, which are specified in 40 CFR Part 133. These technology-based regulations apply to all municipal wastewater treatment plants and identify the minimum level of effluent quality attainable by secondary treatment in terms of 5-day biochemical oxygen demand (BOD$_5$), total suspended solids (TSS), and pH.

Following publication of the secondary treatment regulations, legislative history indicates that Congress was concerned that USEPA had not “sanctioned” the use of certain biological treatment techniques that were effective in achieving significant reductions in 5-day biochemical oxygen demand (BOD$_5$) and total suspended solids.
(TSS) for secondary treatment. Therefore to prevent unnecessary construction of costly new facilities, Congress included language in the 1981 amendment to the Construction Grants statutes [Section 23 of Pub. L. 97-147] that required USEPA to provide allowance for alternative biological treatment technologies such as trickling filters or waste stabilization ponds. In response to this requirement, definition of secondary treatment was modified on 20 September 1984 and 3 June 1985, and published in the revised secondary treatment regulations contained in 40 CFR 133.105. These regulations allow alternative limitations for facilities using trickling filters and waste stabilization ponds that meet the requirements for “equivalent to secondary treatment.” These “equivalent to secondary treatment” limitations are up to 45 mg/L (monthly average) and up to 65 mg/L (weekly average) for BOD$_5$ and TSS.

Therefore, POTWs that use waste stabilization ponds, identified in 40 CFR 133.103, as the principal process for secondary treatment and whose operation and maintenance data indicate that the TSS values specified in the equivalent-to-secondary regulations cannot be achieved, can qualify to have their minimum levels of effluent quality for TSS adjusted upwards.

Furthermore, in order to address the variations in facility performance due to geographic, climatic, or seasonal conditions in different States; the Alternative State Requirements (ASR) provision contained in 40 CFR 133.105(d) was written. ASR allows States the flexibility to set permit limitations above the maximum levels of 45 mg/L (monthly average) and 65 mg/L (weekly average) for TSS from lagoons. However, before ASR limitations for suspended solids can be set, the effluent must meet the BOD$_5$ limitations as prescribed by 40 CFR 133.102(a). Presently, the maximum TSS value set by the State of California for lagoon effluent is 95 mg/L. This value corresponds to a 30-day consecutive average or an average over duration of less than 30 days.

In order to be eligible for equivalent-to-secondary limitations, a POTW must meet all of the following criteria:

a. The principal treatment process must be either a trickling filter or waste stabilization pond.

b. The effluent quality consistently achieved, despite proper operations and maintenance, is in excess of 30 mg/L BOD$_5$ and TSS.

c. Water quality is not adversely affected by the discharge. (40 CFR 133.101(g))

2. Applicable Technology-Based Effluent Limitations

a. BOD$_5$ and TSS. Federal regulations at 40 CFR Part 133, establish the minimum weekly and monthly average level of effluent quality attainable by secondary treatment for BOD$_5$ and TSS. A daily maximum effluent limitation for BOD$_5$ and TSS is also included in the Order to ensure that the treatment works are not organically overloaded and operate in accordance with design capabilities. In
addition, 40 CFR 133.102, in describing the minimum level of effluent quality attainable by secondary treatment, states that the 30-day average percent removal shall not be less than 85 percent. 40 CFR 33.105 provides adjustment of these limitations where waste stabilization ponds are the principal processes use for secondary treatment. Pursuant to the regulations at 40 CFR Parts 133.105(a), (b), and 133.103, absent any adjustment, the BOD and TSS 30-day average discharge limits for such pond stabilization systems shall not exceed 45 mg/L, the 7-day average shall not exceed 65 mg/L, and the 30-day BOS and TSS percent removal shall not be less than 65 percent.

This Order contains an effluent limitation requiring an AMEL of 45 mg/L, a weekly average of 65 mg/L and a MDEL of 90 mg/L for BOD and TSS, as has historically been the capability during the months discharge is authorized. In addition, this Order contains a limitation requiring an average of 65 percent removal of BOD$_5$ and TSS over each calendar month. These limitations have been carried over from the previous Order No. R5-2007-0019.

b. **Flow.** The Facility was designed to provide a secondary level of treatment for up to a design flow of 0.1 mgd. Therefore, this Order contains an average dry weather discharge flow effluent limit of 0.1 mgd.

Summary of Technology-based Effluent Limitations
Discharge Point No. 001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Average</th>
<th>Average</th>
<th>Maximum</th>
<th>Instantaneous</th>
<th>Instantaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Monthly</td>
<td>Weekly</td>
<td>Daily</td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>Flow</td>
<td>mgd</td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Biochemical Oxygen Demand 5-day @ 20°C</td>
<td>mg/L</td>
<td>45</td>
<td>65</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lbs/day</td>
<td>37.52</td>
<td>54.22</td>
<td>75.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>45</td>
<td>65</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lbs/day</td>
<td>37.52</td>
<td>54.22</td>
<td>75.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent Removal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65% removal BOD, TSS</td>
<td></td>
</tr>
</tbody>
</table>

1 The average dry weather discharge flow shall not exceed 0.1 mgd.

2 Mass limits are based upon dry weather design treatment capacity of 0.1 mgd.

C. Water Quality-Based Effluent Limitations (WQBELs)

1. **Scope and Authority**

 Section 301(b) of the CWA and 40 CFR 122.44(d) require that permits include limitations more stringent than applicable federal technology-based requirements where necessary to achieve applicable water quality standards.

 40 CFR 122.44(d)(1)(i) mandates that permits include effluent limitations for all pollutants that are or may be discharged at levels that have the reasonable potential to cause or contribute to an exceedance of a water quality standard, including
numeric and narrative objectives within a standard. Where reasonable potential has been established for a pollutant, but there is no numeric criterion or objective for the pollutant, WQBELs must be established using: (1) USEPA criteria guidance under CWA section 304(a), supplemented where necessary by other relevant information; (2) an indicator parameter for the pollutant of concern; or (3) a calculated numeric water quality criterion, such as a proposed state criterion or policy interpreting the state’s narrative criterion, supplemented with other relevant information, as provided in 40 CFR 122.44(d)(1)(vi).

The process for determining reasonable potential and calculating WQBELs when necessary is intended to protect the designated uses of the receiving water as specified in the Basin Plan, and achieve applicable water quality objectives and criteria that are contained in other state plans and policies, or any applicable water quality criteria contained in the CTR and NTR.

2. Applicable Beneficial Uses and Water Quality Criteria and Objectives

The Basin Plan designates beneficial uses, establishes water quality objectives, and contains implementation programs and policies to achieve those objectives for all waters addressed through the plan. In addition, the Basin Plan implements State Water Board Resolution No. 88-63, which established state policy that all waters, with certain exceptions, should be considered suitable or potentially suitable for municipal or domestic supply.

The Basin Plan on page II-1.00 states: “Protection and enhancement of existing and potential beneficial uses are primary goals of water quality planning...” and with respect to disposal of wastewaters states that “...disposal of wastewaters is [not] a prohibited use of waters of the State; it is merely a use which cannot be satisfied to the detriment of beneficial uses.”

The federal CWA section 101(a)(2), states: “it is the national goal that wherever attainable, an interim goal of water quality which provides for the protection and propagation of fish, shellfish, and wildlife, and for recreation in and on the water be achieved by July 1, 1983.” Federal Regulations, developed to implement the requirements of the CWA, create a rebuttable presumption that all waters be designated as fishable and swimmable. Federal Regulations, 40 CFR sections 131.2 and 131.10, require that all waters of the State regulated to protect the beneficial uses of public water supply, protection and propagation of fish, shell fish and wildlife, recreation in and on the water, agricultural, industrial and other purposes including navigation. Section 131.3(e), 40 CFR, defines existing beneficial uses as those uses actually attained after 28 November 1975, whether or not they are included in the water quality standards. Federal Regulation, 40 CFR section 131.10 requires that uses be obtained by implementing effluent limitations, requires that all downstream uses be protected and states that in no case shall a state adopt waste transport or waste assimilation as a beneficial use for any waters of the United States.
a. Receiving Water and Beneficial Uses. The Middle Fork of the Feather River is the receiving water for the Grizzly Lake Community Services District Wastewater Treatment Plant. Beneficial uses applicable to the Middle Fork of the Feather River are as follows:

Table F-4. Basin Plan Beneficial Uses

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Receiving Water Name</th>
<th>Beneficial Use(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Middle Fork of the Feather River</td>
<td>Municipal and domestic supply (MUN); Water contact recreation (REC-1); Non-contact water recreation (REC-2); Warm freshwater habitat (WARM); Cold freshwater habitat (COLD); Spawning, reproduction, and/or early development, warm and cold (SPWN); Wildlife habitat (WILD).</td>
</tr>
<tr>
<td></td>
<td>Underlying Groundwater</td>
<td>Municipal and domestic supply (MUN) Industrial service supply (IND) Industrial process water supply (PROC); and Agricultural supply and stock watering supply (AGR).</td>
</tr>
</tbody>
</table>

The Basin Plan includes a list of Water Quality Limited Segments (WQLSs), which are defined as “...those sections of lakes, streams, rivers or other fresh water bodies where water quality does not meet (or is not expected to meet) water quality standards even after the application of appropriate limitations for point sources (40 CFR 130, et seq.).” The Basin Plan also states, “Additional treatment beyond minimum federal standards will be imposed on dischargers to WQLSs. Dischargers will be assigned or allocated a maximum allowable load of critical pollutants so that water quality objectives can be met in the segment.” The Middle Fork of the Feather River is not listed as an impaired water body pursuant to Section 303(d) of the Clean Water Act. The most recent list of approved water quality limited segments can be found at: http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml

Requirements of this Order implement the Basin Plan.

b. Effluent and Ambient Background Data. The reasonable potential analysis (RPA), as described in section IV.C.3 of this Fact Sheet, was based on data from February 2008 through May 2011, which includes effluent and ambient background data submitted in SMRs and priority pollutant scans on January 22 and March 1, 2010, and May 11, 2011. In accordance with the discharge prohibition III.E. (Order No. R5-2007-0019), only data collected during the discharge season (November 1 through May 15 of each year) was used to conduct the RPA.

c. Assimilative Capacity/Mixing Zone. The CWA directs states to adopt water quality standards to protect the quality of its waters. USEPA’s current water
quality standards regulation authorizes states to adopt general policies, such as for mixing zones, to implement state water quality standards (40 CFR section 122.44 and section 122.45). The USEPA allows states to have broad flexibility in designing its mixing zone policies. Primary policy and guidance on determining mixing zone and dilution credits is provided by the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays and Estuaries of California (State Implementation Policy or SIP), the USEPA Technical Support Document for Water Quality-Based Toxics Control (EPA/505/2-90-001) (TSD), and the Basin Plan. For NPDES permits in California, the SIP policy supersedes the USEPA guidance for priority pollutants, to the extent that it addresses a particular procedure.

The Central Valley Water Board generally applies the procedure in the SIP for non-CTR and non-NTR constituents. However, with large assimilative capacities for the Middle Fork of the Feather River, this procedure would result in effluent limitations much higher than any value that has actually been discharged in the Discharger’s effluent. Therefore, for non-CTR constituents, the procedure in the TSD has been referenced, with appropriate consideration of dilution credits. The allowance of mixing zones by the Central Valley Water Board is discussed in the Basin Plan, Policy for Application of Water Quality Objectives, which states in part, “In conjunction with the issuance of NPDES and storm water permits, the Regional Board may designate mixing zones within which water quality objectives will not apply provided the discharger has demonstrated to the satisfaction of the Regional Board that the mixing zone will not adversely impact beneficial uses. If allowed, different mixing zones may be designated for different types of objectives, including, but not limited to, acute aquatic life objectives, chronic aquatic life objectives, human health objectives, and acute and chronic whole effluent toxicity objectives, depending in part on the averaging period over which the objectives apply. In determining the size of such mixing zones, the Regional Board will consider the applicable procedures and guidelines in the EPA’s Water Quality Standards Handbook and the [TSD]. Pursuant to EPA guidelines, mixing zones designated for acute aquatic life objectives will generally be limited to a small zone of initial dilution in the immediate vicinity of the discharge.” Section 1.4.2 of the SIP states, in part, “...with the exception of effluent limitations derived from TMDLs, in establishing and determining compliance with effluent limitations for applicable human health, acute aquatic life, or chronic aquatic life priority pollutant criteria/objectives or the toxicity objective for aquatic life protection in a basin plan, the Regional Board may grant mixing zones and dilution credits to dischargers. The applicable priority pollutant criteria and objectives are to be met throughout a water body except within any mixing zone granted by the Regional Board. The allowance of mixing zones is discretionary and shall be determined on a discharge-by-discharge basis. The Regional Board may consider allowing mixing zones and dilution credits only for discharges with a physically identifiable point of discharge that is regulated through an NPDES permit issued by the Regional Board.” Section 1.4.2.1 of the SIP defines a dilution credit as, “a numerical value associated with the mixing zone that accounts for the receiving water entrained into the discharge. The dilution credit is a value used in the
calculation of effluent limitations. Dilution credits may be limited or denied on a pollutant-by-pollutant basis, which may result in a dilution credit for all, some or no priority pollutants in a discharge." Regarding mixing zones, the SIP states, “A mixing zone shall be as small as practicable.” The following conditions must be met in allowing a mixing zone:

A mixing zone shall not:

- Compromise the integrity of the entire water body;
- Cause acutely toxic conditions to aquatic life passing through the mixing zone;
- Restrict passage of aquatic life;
- Adversely impact biologically sensitive or critical habitats, including but not limited to, habitat of species listed under Federal or State endangered species laws;
- Produce undesirable or nuisance aquatic life;
- Result in floating debris, oil, or scum;
- Produce objectionable color, odor, taste, or turbidity;
- Cause objectionable bottom deposits;
- Cause nuisance;
- Be allowed at or near any drinking water intake.
- Dominate the receiving water body; and,
- Overlap a mixing zone from a different outfall.

The mixing zone is a defined area around the outfall that may exceed water quality objectives, but is otherwise protective of the beneficial uses. Dilution is defined as the amount of mixing that has occurred at the edge of this mixing zone under critical conditions, thus protecting the beneficial uses at the concentration and for the duration and frequency required.

The previous Order No. R5-2007-0019 evaluated the available dilution for acute and chronic aquatic life criteria and human health criteria; the SIP and the procedures in the TSD were referenced to establish a dilution of 10:1 in the area of the outfall. For acute aquatic life criteria, the SIP requires an evaluation of the lowest one-day receiving water flow with a statistical frequency of once every 10 years (1Q10) compared against the maximum daily effluent flow during the discharge period. For chronic aquatic life criteria, the SIP requires an evaluation of the lowest seven day receiving water flow with a statistical frequency of once every 10 years (7Q10) compared against the four-day average daily maximum effluent flow during the discharge period. For human health criteria, the SIP requires an evaluation of the harmonic mean flow compared against the long-term arithmetic mean effluent flow during the discharge period. Discharge to the Middle Fork of the Feather River is prohibited when river flow is less than 40 cfs; therefore, 40 cfs can be used as the appropriate 1Q10, 7Q10, and harmonic mean values. Utilizing a 1Q10 flow of 40 cfs and the maximum permitted average daily dry weather effluent flow of 0.1 mgd; an ultimate dilution of 260:1 is achieved. During the previous permit term, a maximum observed daily effluent
flow of 0.335 mgd (77:1 dilution) was reported by the Discharger; this dilution assumes a worst-case river flow of 40 cfs (although the river flow was likely much higher). The Middle Fork of the Feather River is turbulent in the outfall area because of its location at the outside of a meander bend, where major turbulent and erosive forces occur. Some nearly instantaneous mixing of the effluent will result, however, there is not enough information to determine if the discharge meets the definition of a completely mixed or incompletely mixed discharge; best professional judgment by Central Valley Water Board staff allows the assumption of a dilution of at least 10:1 in the area of the outfall, which, at maximum effluent discharge rate and minimum river flow, is less than four per cent of the ultimate dilution in the Middle Fork of the Feather River. Given that the ultimate dilution in the Middle Fork of the Feather River exceeds 260:1 with worst-case conditions of effluent flow (0.1 mgd) and river flow (1Q10 of 40 cfs), this assumption is conservative.

In addition, a mixing model used in the State of Washington for its NPDES permits was consulted to verify the mixing regime of the outfall and river. The model is based on Mixing in Inland and Coastal Waters by H.B. Fischer et al. (1979, Academic Press Inc.). The model is applicable to point discharges where rapid vertical mixing occurs. At low flow in the receiving water, the Middle Fork of the Feather River is approximately 40 feet wide and approximately one foot deep, so the assumption of rapid vertical mixing is valid. This model predicts that a dilution of 10 to 1 is achieved within 30 feet, or less, downstream of the outfall and at a distance of less than one foot from the river bank.

This Order requires the Discharger to maintain a minimum complete mix dilution of 10:1 during discharge, which is carried over from the previous Order R5-2007-0019. The Discharger in accordance with General Provision VI.C.2.b of this Order must confirm, by a site specific Mixing Zone/Dilution Study that a dilution of 10:1 or greater is achieved at all times during discharge. In addition, this Order contains a reopener to modify effluent limitations based on an appropriate dilution factor upon completion of a Mixing Zone/Dilution Study.

d. Conversion Factors. The CTR contains aquatic life criteria for arsenic, cadmium, chromium III, chromium VI, copper, lead, nickel, silver, and zinc which are presented in dissolved concentrations. USEPA recommends conversion factors to translate dissolved concentrations to total concentrations. The default USEPA conversion factors contained in Appendix 3 of the SIP were used to convert the applicable dissolved criteria to total recoverable criteria.

e. Hardness-Dependent CTR Metals Criteria. The California Toxics Rule and the National Toxics Rule contain water quality criteria for seven metals that vary as a function of hardness. The lower the hardness the lower the water quality criteria. The metals with hardness-dependent criteria include cadmium, copper, chromium III, lead, nickel, silver, and zinc.
This Order has established the criteria for hardness-dependent metals based on the reasonable worst-case ambient hardness as required by the SIP\(^1\), the CTR\(^2\) and State Water Board Order No. WQO 2008-0008 (City of Davis). The SIP and the CTR require the use of “receiving water” or “actual ambient” hardness, respectively, to determine effluent limitations for these metals. (SIP, § 1.2; 40 CFR § 131.38(c)(4)). The CTR does not define whether the term “ambient,” as applied in the regulations, necessarily requires the consideration of upstream as opposed to downstream hardness conditions. Therefore, where reliable, representative data are available, the hardness value for calculating criteria can be the downstream receiving water hardness, after mixing with the effluent (Order WQO 2008-0008, p. 11). The Central Valley Water Board thus has considerable discretion in determining ambient hardness (\textit{Id.}, p.10). Guidance on the selection of the appropriate ambient hardness was provided by the State Water Board in Order No. WQO 2008-0008 (City of Davis).

The State Water Board allows, where reliable representative data are available; the hardness value for calculating criteria can be the downstream receiving water hardness, after mixing with the effluent. (Order WQO 2008-0008, p. 11.) Regional water boards have considerable discretion in determining ambient hardness as long as the hardness values are protective under all flow conditions. (\textit{Id.}, pp. 10-11).

As discussed below, scientific literature provides a reliable method for calculating protective hardness-dependent CTR criteria, considering all discharge conditions. This methodology produces hardness-dependent CTR criteria based on the reasonable worst-case downstream ambient hardness that ensure these metals do not cause receiving water toxicity under any downstream receiving water condition. Under this methodology, the Central Valley Water Board considers all hardness conditions that could occur in the ambient downstream receiving water after the effluent has mixed with the water body\(^3\). This ensures that effluent limitations are fully protective of aquatic life in all areas of the receiving water affected by the discharge under all flow conditions, at the fully mixed location, and throughout the water body including at the point of discharge into the water body.

\textbf{a. Conducting the RPA.} The SIP in Section 1.3 states, “\textit{The RWQCB shall…determine whether a discharge may: (1) cause, (2) have a reasonable potential to cause, or (3) contribute to an excursion above any applicable priority pollutant criterion or objective.}” Section 1.3 provides a step-by-step procedure for conducting the RPA. The procedure requires the comparison

\begin{itemize}
 \item \textit{The SIP} does not address how to determine the hardness for application to the equations for the protection of aquatic life when using hardness-dependent metals criteria. It simply states, in Section 1.2, that the criteria shall be properly adjusted for hardness using the hardness of the receiving water.
 \item The CTR requires that, for waters with a hardness of 400 mg/L (as CaCO\(_3\)), or less, the actual ambient hardness of the surface water must be used. It further requires that the hardness values used must be consistent with the design discharge conditions for design flows and mixing zones.
 \item All effluent discharges will change the ambient downstream metals concentration and hardness. It is not possible to change the metals concentration without also changing the hardness.
\end{itemize}
of the maximum effluent concentration Maximum Effluent Concentration (MEC) and maximum ambient background concentration Maximum Ambient Background Concentration to the applicable criterion that has been properly adjusted for hardness. Unless otherwise noted, for the hardness-dependent CTR metals criteria the following procedures were followed for properly adjusting the criterion for hardness when conducting the RPA.

i. The SIP requires a WQBEL if the MEC exceeds the applicable criterion, adjusted for hardness. For comparing the MEC to the applicable criterion, the “fully mixed” reasonable worst-case downstream ambient hardness was used to adjust the criterion. In this evaluation the portion of the receiving water affected by the discharge is analyzed. For hardness-dependent criteria, the hardness of the effluent has an impact on the determination of the applicable criterion in areas in the receiving water affected by the discharge. Therefore, for comparing the MEC to the applicable criterion, the reasonable worst-case downstream ambient hardness was used to adjust the criterion. For this situation it is necessary to consider the hardness of the effluent in determining the applicable hardness to adjust the criterion. The procedures for determining the applicable criterion after proper adjustment using the reasonable worst-case downstream hardness is outlined in subsection ii, below.

ii. The SIP requires a WQBEL if the receiving water is impaired upstream (outside the influence) of the discharge, i.e., if the Maximum Ambient Background Concentration of a pollutant exceeds the applicable criterion, adjusted for hardness\(^1\). For comparing the Maximum Ambient Background Concentration to the applicable criterion, the reasonable worst-case upstream ambient hardness was used to adjust the criteria. This is appropriate, because this area is outside the influence of the discharge. Since the discharge does not impact the upstream hardness, the effect of the effluent hardness was not included in this evaluation.

b. Calculating Water Quality-Based Effluent Limitations. The remaining discussion in this section relates to the development of WQBELs limits when it has been determined that the discharge has reasonable potential to cause or contribute to an exceedance of the CTR hardness-dependent metals criteria in the receiving water.

A 2006 Study\(^2\) developed procedures for calculating the effluent concentration allowance (ECA)\(^3\) for CTR hardness-dependent metals. The 2006 Study demonstrated that it is necessary to evaluate all discharge conditions (e.g. high and low flow conditions) and the hardness and metals concentrations of the effluent and receiving water when determining the

\(^1\) The pollutant must also be detected in the effluent.
\(^3\) The ECA is defined in Appendix 1 of the SIP (page Appendix 1-2). The ECA is used to calculate water quality-based effluent limitations in accordance with Section 1.4 of the SIP.
appropriate ECA for these hardness-dependent metals. This method is superior to relying on downstream receiving water samples alone because it captures all possible mixed conditions in the receiving water. Both receiving water and effluent hardness vary based on flow and other factors, but the variability of receiving water and effluent hardness is sometimes independent. Using a calculated hardness value ensures that the Central Valley Water Board considers all possible mixed downstream values that may result from these two independent variables. Relying on receiving water sampling alone is less likely to capture all possible mixed downstream conditions.

The equation describing the total recoverable regulatory criterion, as established in the CTR\(^1\), is as follows:

\[
\text{CTR Criterion} = \text{WER} \times (e^{m[\ln(H)]+b}) \quad \text{(Equation 1)}
\]

Where:

- \(H\) = hardness (as CaCO\(_3\))\(^2\)
- \(\text{WER}\) = water-effect ratio
- \(m, b\) = metal- and criterion-specific constants

In accordance with the CTR, the default value for the WER is 1. A WER study must be conducted to use a value other than 1. The constants “\(m\)” and “\(b\)” are specific to both the metal under consideration, and the type of total recoverable criterion (i.e., acute or chronic). The metal-specific values for these constants are provided in the CTR at paragraph (b)(2), Table 1.

The equation for the ECA is defined in Section 1.4, Step 2, of the SIP and is as follows:

\[
\text{ECA} = C \quad \text{(when } C \leq B) \quad \text{(Equation 2)}
\]

Where:

- \(C\) = the priority pollutant criterion/objective, adjusted for hardness (see Equation 1, above)
- \(B\) = the ambient background concentration

The 2006 Study demonstrated that the relationship between hardness and the calculated criteria is the same for some metals, so the same procedure for calculating the ECA may be used for these metals. The same procedure can be used for chronic cadmium, chromium III, copper, nickel, and zinc. These metals are hereinafter referred to as “Concave Down Metals”. “Concave Down” refers to the shape of the curve represented by the relationship between hardness and the CTR criteria in Equation 1. Another similar

\(^1\) 40 CFR § 131.38(b)(2).
\(^2\) For this discussion, all hardness values are in mg/L as CaCO\(_3\).
\(^3\) The 2006 Study assumes the ambient background metals concentration is equal to the CTR criterion (i.e. \(C \leq B\))
procedure can be used for determining the ECA for acute cadmium, lead, and acute silver, which are referred to hereafter as “Concave Up Metals”.

ECA for Chronic Cadmium, Chromium III, Copper, Nickel, and Zinc – For Concave Down Metals (i.e., chronic cadmium, chromium III, copper, nickel, and zinc) the 2006 Study demonstrates that when the effluent is in compliance with the CTR criteria and the upstream receiving water is in compliance with the CTR criteria, any mixture of the effluent and receiving water will always be in compliance with the CTR criteria. The 2006 Study proves that regardless of whether the effluent hardness is lower or greater than the upstream hardness, the reasonable worst-case flow condition is the effluent dominated condition (i.e., no receiving water flow). Consequently, for Concave Down Metals, the CTR criteria have been calculated using the downstream ambient hardness under this condition.

The effluent hardness ranged from 71 mg/L to 123 mg/L, based on 3 samples from January 2010 to May 2011. The upstream receiving water hardness varied from 32 mg/L to 67 mg/L, based on 13 samples from January 2010 to May 2011. Under the effluent dominated condition, the reasonable worst-case downstream ambient hardness is 71 mg/L. As demonstrated in the example shown in Table F 4, below, using this hardness to calculate the ECA for all Concave Down Metals will result in water quality-based effluent limitations that are protective under all flow conditions, from the effluent dominated condition to high flow condition. The following example for copper assumes the following conservative conditions for the upstream receiving water:

- Upstream receiving water always at the lowest observed upstream receiving water hardness (i.e., 32 mg/L)
- Upstream receiving water copper concentration always at the CTR criteria (i.e., no assimilative capacity).

Using these reasonable worst-case receiving water conditions, a simple mass balance (as shown in Equation 3, below) accounts for all possible mixtures of effluent and receiving water under all flow conditions.

\[C_{\text{MIX}} = C_{\text{RW}} x (1-EF) + C_{\text{Eff}} x (EF) \] \hspace{1cm} \text{(Equation 3)}

Where:

- \(C_{\text{MIX}} \) = Mixed concentration (e.g. metals or hardness)

1. 2006 Study, p. 5700
2. There are two typographical errors in the 2006 Study in the discussion of Concave Down Metals when the effluent hardness is less than the receiving water hardness. The effluent and receiving water hardness were transposed in the discussion, but the correct hardness values were used in the calculations. The typographical errors were confirmed by the author of the 2006 Study, by email dated 1 April 2011, from Dr. Robert Emerick to Mr. James Marshall, Central Valley Water Board.
\[C_{RW} = \text{Upstream receiving water concentration} \]
\[C_{Eff} = \text{Effluent concentration} \]
\[EF = \text{Effluent Fraction} \]

In this example, for copper, for any receiving water flow condition (high flow to low flow), the fully-mixed downstream ambient copper concentration is in compliance with the CTR criteria.\(^1\).

Table F-5a. Copper ECA Evaluation

<table>
<thead>
<tr>
<th>Effluent Fraction(^6)</th>
<th>Fully Mixed Downstream Ambient Concentration</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hardness (^3) (mg/L)</td>
<td>CTR Criteria (^4) (µg/L)</td>
<td>Copper (^5) (µg/L)</td>
<td>Complies with CTR Criteria</td>
</tr>
<tr>
<td>High Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>32.39</td>
<td>3.6</td>
<td>3.6</td>
<td>Yes</td>
</tr>
<tr>
<td>5%</td>
<td>33.95</td>
<td>3.7</td>
<td>3.7</td>
<td>Yes</td>
</tr>
<tr>
<td>15%</td>
<td>37.85</td>
<td>4.1</td>
<td>4.0</td>
<td>Yes</td>
</tr>
<tr>
<td>25%</td>
<td>41.75</td>
<td>4.4</td>
<td>4.4</td>
<td>Yes</td>
</tr>
<tr>
<td>50%</td>
<td>51.5</td>
<td>5.3</td>
<td>5.2</td>
<td>Yes</td>
</tr>
<tr>
<td>75%</td>
<td>61.25</td>
<td>6.1</td>
<td>6.1</td>
<td>Yes</td>
</tr>
<tr>
<td>100%</td>
<td>71</td>
<td>7.0</td>
<td>7.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Low Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Highest assumed upstream receiving water copper concentration calculated using Equation 1 for chronic criterion at a hardness of 32 mg/L.

\(^2\) ECA calculated using Equation 1 for chronic criterion at a hardness of 71 mg/L.

\(^3\) Fully mixed downstream ambient hardness is the mixture of the receiving water and effluent hardness at the applicable effluent fraction using Equation 3.

\(^4\) Fully mixed downstream ambient criteria are the chronic criteria calculated using Equation 1 at the mixed hardness.

\(^5\) Fully mixed downstream ambient copper concentration is the mixture of the receiving water and effluent copper concentrations at the applicable effluent fraction using Equation 3.

\(^6\) The effluent fraction ranges from 1% at the high receiving water flow condition, to 100% at the lowest receiving water flow condition (i.e., effluent dominated).

ECA for Acute Cadmium, Lead, and Acute Silver – For Concave Up Metals (i.e., acute cadmium, lead, and acute silver), the relationship between hardness and the metals criteria is different than for Concave Down Metals. The 2006 Study demonstrates that for Concave Up Metals, the effluent and upstream receiving water can be in compliance with the CTR criteria, but the resulting mixture may contain metals concentrations that exceed the CTR.

\(^1\) This method considers the actual lowest upstream hardness and actual lowest effluent hardness to determine the reasonable worst-case ambient downstream hardness under all possible receiving water flow conditions. Table F-4 demonstrates that the receiving water is always in compliance with the CTR criteria at the fully-mixed location in the receiving water. It also demonstrates that the receiving water is in compliance with the CTR criteria for all mixtures from the point of discharge to the fully-mixed location. Therefore, a mixing zone is not used for compliance.
criteria and could cause toxicity. For these metals, the 2006 Study provides a mathematical approach to calculate the ECA that is protective of aquatic life, in all areas of the receiving water affected by the discharge, under all discharge and receiving water flow (see Equation 4, below).

The ECA, as calculated using Equation 4, is based on the reasonable worst-case upstream receiving water hardness; the lowest observed effluent hardness, and assuming no receiving water assimilative capacity for metals (i.e., ambient background metals concentrations are at their respective CTR criterion). Equation 4 is not used in place of the CTR equation (Equation 1). Rather, Equation 4, which is derived using the CTR equation, is used as a direct approach for calculating the ECA. This replaces an iterative approach for calculating the ECA. The CTR equation has been used to evaluate the receiving water downstream of the discharge at all discharge and flow conditions to ensure the ECA is protective (e.g., see Table F-5b).

\[
ECA = \left(\frac{m(H_c - H_{rw})(e^{m\ln(H_{rw})} + b)}{H_{rw}} \right) + e^{m\ln(H_{rw})} + b
\]
(Equation 4)

where:

- \(m, b \) = criterion specific constants (from CTR)
- \(H_o \) = lowest observed effluent hardness
- \(H_{rw} \) = reasonable worst-case upstream receiving water hardness

An example similar to the Concave Down Metals is shown for lead a Concave Up Metal, in Table F-5b, below. As previously mentioned, the lowest effluent hardness is 71 mg/L, while the upstream receiving water hardness ranged from 32 mg/L to 67 mg/L. In this case, the reasonable worst-case upstream receiving water hardness to use in Equation 4 to calculate the ECA is 32 mg/L.

Using the procedures discussed above to calculate the ECA for all Concave Up Metals will result in WQBELs that are protective under all potential effluent/receiving water flow conditions (high flow to low flow) and under all known hardness conditions, as demonstrated in Table F-5b, for lead.

Table F-5b. Lead ECA Evaluation
Lowest Observed Effluent Hardness	71 mg/L
Reasonable Worst-case Upstream Receiving Water Hardness | 32 mg/L
Reasonable Worst-case Upstream Receiving Water Lead Concentration | 0.4 μg/L
Lead ECA_{chronic} | 1.9 μg/L

<table>
<thead>
<tr>
<th>Effluent Fraction<sup>6</sup></th>
<th>Hardness<sup>3</sup> (mg/L) as CaCO<sub>3</sub></th>
<th>CTR Criteria<sup>4</sup> (μg/L)</th>
<th>Lead<sup>5</sup> (μg/L)</th>
<th>Complies with CTR Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Flow</td>
<td>1%</td>
<td>32.4</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>34.0</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>37.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>41.8</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>51.5</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>75%</td>
<td>61.3</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>71.0</td>
<td>2.1</td>
<td>1.9</td>
</tr>
</tbody>
</table>

1. Reasonable worst-case upstream receiving water lead concentration calculated using Equation 1 for chronic criterion at a hardness of 32 mg/L.
2. ECA calculated using Equation 4 for chronic criteria.
3. Fully mixed downstream ambient hardness is the mixture of the receiving water and effluent hardness at the applicable effluent fraction.
4. Fully mixed downstream ambient criteria are the chronic criteria calculated using Equation 1 at the mixed hardness.
5. Fully mixed downstream ambient lead concentration is the mixture of the receiving water and effluent lead concentrations at the applicable effluent fraction.
6. The effluent fraction ranges from 1% at the high receiving water flow condition, to 100% at the lowest receiving water flow condition (i.e., effluent dominated).

Based on the procedures discussed above, Table F-6 lists all the CTR hardness-dependent metals and the associated ECA used in this Order.

Table F-6. Summary of ECA Evaluations for CTR Hardness-dependent Metals

<table>
<thead>
<tr>
<th>CTR Metals</th>
<th>ECA (μg/L, total recoverable)</th>
<th>acute</th>
<th>chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>10.1</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Chromium III</td>
<td>1311.8</td>
<td>156.4</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>2.97</td>
<td>1.88</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>48.8</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>351.2</td>
<td>39.0</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>1.77</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>89.6</td>
<td>89.6</td>
<td></td>
</tr>
</tbody>
</table>

3. Determining the Need for WQBEls
 a. The Central Valley Water Board conducted the RPA in accordance with section 1.3 of the SIP. Although the SIP applies directly to the control of CTR priority pollutants, the State Water Board has held that the Regional Water Board may use the SIP as guidance for water quality-based toxics control. The SIP states

¹ See Order WQO 2001-16 (Napa) and Order WQO 2004-0013 (Yuba City).
in the introduction "The goal of this Policy is to establish a standardized approach for permitting discharges of toxic pollutants to non-ocean surface waters in a manner that promotes statewide consistency." Therefore, in this Order the RPA procedures from the SIP were used to evaluate reasonable potential for both CTR and non-CTR constituents based on information submitted as part of the application, in studies, and as directed by monitoring and reporting programs.

b. Constituents with No Reasonable Potential. WQBELs are not included in this Order for constituents that do not demonstrate reasonable potential; however, monitoring for those pollutants is established in this Order as required by the SIP. If the results of effluent monitoring demonstrate reasonable potential, this Order may be reopened and modified by adding an appropriate effluent limitation.

c. Constituents with Limited Data. Reasonable potential cannot be determined for the following constituents because effluent data are limited or ambient background concentrations are limited or not available. The Discharger is required to continue to monitor for these constituents in the effluent and receiving water using analytical methods that provide the best feasible detection limits. When additional data become available, further analysis will be conducted to determine whether to add numeric effluent limitations or to continue monitoring.

i. Aluminum. Aluminum is not a CTR constituent. The Basin Plan includes the narrative toxicity objective, which states that, "All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life." (Basin Plan at III-8.00) The Basin Plan’s Policy for Application of Water Quality Objectives requires the Central Valley Water Board to consider, “on a case-by-case basis, direct evidence of beneficial use impacts, all material and relevant information submitted by the discharger and other interested parties, and relevant numerical criteria and guidelines developed and/or published by other agencies and organizations. In considering such criteria, the Board evaluates whether the specific numerical criteria which are available through these sources and through other information supplied to the Board, are relevant and appropriate to the situation at hand and, therefore, should be used in determining compliance with the narrative objective.” (Basin Plan, p. IV.-17.00; see also, 40 CFR 122.44(d)(vi).)

The Central Valley Water Board considered all available material and relevant information submitted by the Discharger, and relevant numerical criteria and guidelines developed and/or published by other agencies and organizations, the USEPA National Recommended Ambient Water Quality Criteria (NAWQC) and supporting studies, National Recommended Water Quality Criteria-Correction, and site-specific aluminum studies conducted by other dischargers within the Central Valley Region in evaluating the appropriate criteria for protection of the beneficial uses to comply with the narrative toxicity objective.
USEPA developed the NAWQC for protection of freshwater aquatic life for aluminum. The recommended 4-day average (chronic) and 1-hour average (acute) criteria for aluminum are 87 μg/L and 750 μg/L, respectively, for waters with a pH of 6.5 to 9.0. The NAWQC chronic aquatic life criterion of 87 μg/L is based on studies conducted under conditions with low pH (6.5 – 6.6) and low hardness (<10 mg/L as CaCO₃) to determine the effects on striped bass and brook trout. During the 7-day long test with aluminum concentration averaged at 87 μg/L, no mortality occurred to 160 day old striped bass. This study, conducted with pH variations of 7.2 to 6.5 to 6.0 s.u. also indicated that pH variation has a large effect on aluminum toxicity.

In April 1999, USEPA released the National Recommended Water Quality Criteria-Correction. There were no corrections to the 1988 aluminum recommended criteria; however, USEPA recognized that they were aware of field data indicating that many high quality waters of the U.S. contain more than 87 μg/L aluminum, when either total recoverable or dissolved is measured (i.e., the higher levels of aluminum did not affect beneficial uses). Information in Footnote L to the NAWQC Correction summary table for aluminum suggests the use of a WER may be appropriate in instances where water quality ambient conditions differ from those used by EPA.

As shown in the table below, monitoring data indicates that the water quality conditions for pH and hardness of the effluent and receiving water are not similar to the low pH and hardness conditions under which the aluminum chronic criterion of 87 μg/L was developed. Thus, although the Discharger has not conducted a site-specific WER study, it appears as if the NAWQC chronic criterion of 87 μg/L may not be appropriate as the basis for determining compliance with the Basin Plan narrative toxicity objective and subsequently establishing effluent limitations for the discharge to the Middle Fork of the Feather River.

Table F-7. Site-Specific pH and Hardness Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Test Conditions for Applicability of Chronic Criterion</th>
<th>Effluent</th>
<th>Receiving Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Striped Bass</td>
<td>6.5</td>
<td>6.5 – 6.6</td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>6.5</td>
<td>6.5 – 6.6</td>
<td>5.0 – 8.8</td>
</tr>
<tr>
<td>Hardness, Total (as CaCO₃)</td>
<td>mg/L</td>
<td><10</td>
<td>12.3</td>
<td>71 – 123</td>
</tr>
<tr>
<td>Aluminum, Total Recoverable</td>
<td>μg/L</td>
<td>87.2</td>
<td>88</td>
<td>53.4¹</td>
</tr>
</tbody>
</table>

¹ Result for one sample collected on March 1, 2010

The Secondary Maximum Contaminant Level – Consumer Acceptance Limit for aluminum is 200 μg/L for the protection of MUN beneficial used, applied as an annual average.

There is insufficient data available for the Facility to determine an appropriate numeric limitation for aluminum. The MEC for aluminum was 53.4 μg/L based on one sample collected on March 1, 2010. The maximum observed
upstream receiving water concentration in the Middle Fork of the Feather River was 891 μg/L based on one sample collected on March 1, 2010. Based on the limited data provided, the Central Valley Water Board is unable to determine if the discharge has a reasonable potential to cause or contribute to an in-stream excursion above a numeric criterion or the MCL. This Order does not establish an effluent limitation for aluminum but requires the Discharger to conduct effluent and receiving water monitoring for aluminum to provide sufficient data for an RPA and development of a numeric criterion. Should monitoring results indicate that the discharge has the reasonable potential to cause or contribute to an exceedance of a water quality standard, then this Order may be reopened and modified by adding an appropriate effluent limitation.

ii. **Iron.** The secondary MCL established for iron is 300 μg/L, used to implement the Basin Plans chemical constituent objective for the protection of municipal and domestic supply. Secondary MCLs are drinking water standards contained in Title 22 of the California Code of Regulations. Title 22 requires compliance with these standards on an annual average basis, when sampling at least quarterly. A single sample result for iron was reported for the effluent as 350 μg/L for a sample collected by the Discharger on 31 March 2009. The result for an upstream receiving water sample collected on the same date was reported as 480 μg/L. Based on the limited data provided, the Central Valley Water Board is unable to determine if the discharge has a reasonable potential to cause or contribute to an in-stream excursion above the MCL. Should monitoring results indicate that the discharge has the reasonable potential to cause or contribute to an exceedance of a water quality standard, then this Order may be reopened and modified by adding an appropriate effluent limitation.

iii. **Thallium.** The most stringent criterion for thallium is the current CTR Inland Surface Waters Criteria for the Protection of Human Health for the consumption of Aquatic Organisms, 30-day Average of 1.7 μg/L. In one of three samples of the effluent, the MEC for thallium was detected at 2.7 μg/L; however, the ML was reported as 2.4 μg/L and the detected value, was an estimated value (i.e., j-flagged). In two additional samples at a lower reported ML (0.2 μg/L) thallium was not detected in the effluent or upstream receiving water. Based on the limited data provided, the Central Valley Water Board is unable to determine if the discharge has a reasonable potential to cause or contribute to an in-stream excursion above the MCL. Should monitoring results indicate that the discharge has the reasonable potential to cause or contribute to an exceedance of a water quality standard, then this Order may be reopened and modified by adding an appropriate effluent limitation.

iv. **Mercury.** The current NAWQC for protection of freshwater aquatic life, continuous concentration for mercury is 0.77 μg/L (30-day average, chronic criteria). The CTR contains a human health criterion (based on a threshold dose level causing neurological effects in infants) of 0.050 μg/L for waters
from which both water and aquatic organisms are consumed. Both values are controversial and subject to change. In 40 CFR Part 131, USEPA acknowledges that the human health criteria may not be protective of some aquatic or endangered species and that “…more stringent mercury limits may be determined and implemented through use of the State’s narrative criterion.” In the CTR, USEPA reserved the mercury criteria for freshwater and aquatic lime and may adopt new criteria at a later date.

The Middle Fork of the Feather River has not been listed as an impaired water body pursuant to Section 303(d) of the Clean Water Act because of mercury. The MEC for mercury was detected at 0.0047 μg/L. Mercury was detected in the upstream receiving water at 0.081 μg/L; however, the detected value, was an estimated value (i.e., j-flagged). Based on the limited data set, the Central Valley Water Board is unable to determine if the discharge has a reasonable potential to cause or contribute to an in-stream excursion above the CTR criterion. Should monitoring results indicate that the discharge has the reasonable potential to cause or contribute to an exceedance of a water quality standard, then this Order may be reopened and modified by adding an appropriate effluent limitation.

d. Constituents with Reasonable Potential. The Central Valley Water Board finds that the discharge has a reasonable potential to cause or contribute to an in-stream excursion above a water quality standard for ammonia and copper. WQBELs for these constituents are included in this Order. A summary of the RPA is provided in Attachment G, and a detailed discussion of the RPA for each constituent is provided below.

i. Ammonia

i. WQO. The NAWQC for the protection of freshwater aquatic life for total ammonia, recommends acute (1-hour average; criteria maximum concentration or CMC) standards based on pH and chronic (30-day average; criteria continuous concentration or CCC) standards based on pH and temperature. USEPA also recommends that no 4-day average concentration should exceed 2.5 times the 30-day CCC. USEPA found that as pH increased, both the acute and chronic toxicity of ammonia increased. Salmonids were more sensitive to acute toxicity effects than other species. However, while the acute toxicity of ammonia was not influenced by temperature, it was found that invertebrates and young fish experienced increasing chronic toxicity effects with increasing temperature. Because the Middle Fork of the Feather River has a beneficial use of cold freshwater habitat and the presence of salmonids and early fish life stages in the Middle Fork of the Feather River is well-documented, the recommended criteria for waters where salmonids and early life stages are present were used.

The maximum permitted effluent pH is 8.5. The Basin Plan objective for pH in the receiving stream is the range of 6.5 to 8.5. In order to protect
against the worst-case short-term exposure of an organism, a pH value of 8.5 was used to derive the acute criterion. The resulting acute criterion is 2.14 mg/L.

A chronic criterion was calculated for each day when paired temperature and pH were measured using receiving water data for temperature and pH recorded during the discharge season from the Discharger’s monthly monitoring reports. Rolling 30-day average criteria were calculated using the criteria calculated for each day and the minimum observed 30-day average criterion was established as the applicable 30-day average chronic criterion, or 30-day CCC. The resulting 30-day CCC is 1.52 mg/L (as N). The 4-day average concentration is derived in accordance with the USEPA criterion as 2.5 times the 30-day CCC. Based on the 30-day CCC of 1.52 mg/L (as N), the 4-day average concentration that should not be exceeded is 3.8 mg/L (as N).

ii. **RPA Results.** The maximum effluent concentration (MEC) for ammonia was 20 mg/L. The maximum upstream ammonia concentration was 0.5 mg/L. The lowest applicable water quality objective is 1.52 mg/L. Therefore, ammonia in the discharge has a reasonable potential to cause or contribute to an in-stream excursion above the NAWQC. Furthermore, the Discharger is a POTW that treats domestic wastewater. Untreated domestic wastewater contains ammonia. Nitrification is a biological process that converts ammonia to nitrite and nitrite to nitrate. Denitrification is a process that converts nitrate to nitrite or nitric oxide and then to nitrous oxide or nitrogen gas, which is then released to the atmosphere. The Discharger does not currently use nitrification to remove ammonia from the waste stream. Inadequate or incomplete nitrification may result in the discharge of ammonia to the receiving stream. Ammonia is known to cause toxicity to aquatic organisms in surface waters at elevated concentrations.

iii. **WQBELs.** The Central Valley Water Board calculates WQBELs in accordance with SIP procedures for non-CTR constituents, and ammonia is a non-CTR constituent. The SIP procedure assumes a 4-day averaging period for calculating the long-term average discharge condition (LTA). However, USEPA recommends modifying the procedure for calculating permit limits for ammonia using a 30-day averaging period for the calculation of the LTA corresponding to the 30-day CCC. Therefore, while the LTAs corresponding to the acute and 4-day chronic criteria were calculated according to SIP procedures, the LTA corresponding to the 30-day CCC was calculated assuming a 30-day averaging period. The lowest LTA representing the acute, 4-day CCC, and 30-day CCC is then selected for deriving the AMEL and the MDEL. The remainder of the WQBEL calculation for ammonia was performed according to the SIP procedures using a dilution credit of 10 as described in Fact Sheet section VI.C.2.b. This Order contains a final AMEL and
MDEL for ammonia, with a dilution credit of 10, of 7.46 mg/L and 18.54 mg/L, respectively.

Table F-8. WQBEL Calculations for Ammonia

<table>
<thead>
<tr>
<th></th>
<th>Acute</th>
<th>Chronic (30-day)</th>
<th>Chronic (4-day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria, total (mg/L)</td>
<td>2.14</td>
<td>1.52</td>
<td>3.8</td>
</tr>
<tr>
<td>Dilution Credit</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ECA</td>
<td>18.54</td>
<td>11.72</td>
<td>36.8</td>
</tr>
<tr>
<td>ECA Multiplier</td>
<td>0.210</td>
<td>0.676</td>
<td>0.382</td>
</tr>
<tr>
<td>LTA²</td>
<td>3.897</td>
<td>7.918</td>
<td>14.075</td>
</tr>
<tr>
<td>AMEL Multiplier 95(^{th}%)</td>
<td>1.91</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AMEL (mg/L)</td>
<td>7.46</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MDEL Multiplier 95(^{th}%)</td>
<td>4.76</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MDEL (mg/L)</td>
<td>18.54</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1. USEPA Ambient Water Quality Criteria
2. LTA developed based on Acute and Chronic ECA Multipliers.
3. Limitations based on acute<chronic (30-day)<chronic (4-day).

iv. **Plant Performance and Attainability.** Analysis of the effluent data shows that the MEC of 20 mg/L is greater than applicable WQBELs calculated with a dilution credit of 10. Based on the sample results for the effluent, the limitations appear to put the Discharger in immediate non-compliance. New or modified control measures may be necessary in order to comply with the effluent limitations, and the new or modified control measures cannot be designed, installed and put into operation within 30 calendar days. Furthermore, the effluent limitations for ammonia are a new regulatory requirement within this permit, which becomes applicable to the waste discharge with the adoption of this Order, which was adopted after 1 July 2000. Therefore, a compliance time schedule for compliance with the ammonia effluent limitations has been included in this Order, which requires preparation and implementation of a pollution prevention plan in compliance with Water Code section 13263.3. In addition, an interim ammonia effluent limitation of 27.3 mg/L has been included in this Order.

c. **Chlorine Residual**

i. **WQO.** USEPA developed NAWQC for protection of freshwater aquatic life for chlorine residual. The recommended 4-day average (chronic) and 1-hour average (acute) criteria for chlorine residual are 0.011 μg/L and 0.019 μg/L, respectively. These criteria are protective of the Basin Plan’s narrative toxicity objective.

ii. **RPA Results.** The Discharger uses chlorine for disinfection, which is extremely toxic to aquatic organisms. The Discharger uses a sulfur
dioxide process to dechlorinate the effluent prior to discharge to the Middle Fork of the Feather River. Due to the existing chlorine use and the potential for chlorine to be discharged if an upset occurs or if the Facility is not operated properly, this Order establishes effluent limitations for chlorine residual.

iii. **WQBELs.** The USEPA Technical Support Document for Water Quality-Based Toxics Control [EPA/505/2-90-001] contains statistical methods for converting chronic (4-day) and acute (1-hour) aquatic life criteria to average monthly and maximum daily effluent limitations based on the variability of the existing data and the expected frequency of monitoring. However, because chlorine is an acutely toxic constituent that can and will be monitored continuously, an average 1-hour limitation is considered more appropriate than an average daily limitation. This Order contains a 4-day average effluent limitation and 1-hour average effluent limitation for chlorine residual of 0.011 \(\mu g/L \) and 0.019 \(\mu g/L \), respectively, based on USEPA’s NAWQC, which implements the Basin Plan’s narrative toxicity objective for protection of aquatic life.

iv. **Plant Performance and Attainability.** Prior to discharging, the Discharger dechlorinates the treated effluent using sulfur dioxide. The Central Valley Water Board concludes, therefore, that immediate compliance with these effluent limitations is feasible.

d. **Copper**

i. **WQO.** The CTR includes hardness dependent criteria for the protection of freshwater aquatic life for copper. Using the default conversion factors and reasonable worst-case measured hardness, as described in section VI.C.2.c of this Fact Sheet, the applicable acute (1-hour average) criterion is 10.14 \(\mu g/L \) and the applicable chronic (4-day average) criterion is 6.96 \(\mu g/L \), as total recoverable.

ii. **RPA Results.** The maximum effluent concentration (MEC) for copper was 9.0 \(\mu g/L \) while the maximum observed upstream receiving water concentration was 2.7 \(\mu g/L \). Therefore, copper in the discharge has a reasonable potential to cause or contribute to an in-stream excursion above the CTR criterion for the protection of aquatic life.

iii. **WQBELs.** No dilution was granted in the development of the effluent limits because the Discharger has not conducted a dilution/mixing zone study, which is required prior to granting dilution credits for priority pollutants. This Order contains a final AMEL and MDEL for copper of 5.0 \(\mu g/L \) and 10.1 \(\mu g/L \), respectively; as shown in Table F-11 of this Fact Sheet, based on the CTR criterion for the protection of freshwater aquatic life.
iv. **Plant Performance and Attainability.** Analysis of the effluent data shows that the MEC of 9.0 μg/L is greater than applicable WQBELs. Based on the sample results for the effluent, the limitations appear to put the Discharger in immediate non-compliance. New or modified control measures may be necessary in order to comply with the effluent limitations, and the new or modified control measures cannot be designed, installed and put into operation within 30 calendar days. Furthermore, the effluent limitations for copper are a new regulatory requirement within this permit, which becomes applicable to the waste discharge with the adoption of this Order, which was adopted after 1 July 2000. Therefore, a compliance time schedule for compliance with the copper effluent limitations is established in TSO No. R5-2012-0047, in accordance with Water Code section 13300, that requires preparation and implementation of a pollution prevention plan in compliance with Water Code section 13263.3.

e. **Pathogens**

i. **WQO.** The Central Valley Water Board, when developing NPDES permits, implements recommendations by DPH for appropriate disinfection requirements for protection of MUN, Rec-1, and AGR. In a letter to the Central Valley Water Board dated 8 April 1999, DPH indicated it would consider wastewater discharges to water bodies with identified beneficial uses of irrigation or contact recreation, and where the wastewater receives dilution of more than 20:1, to be adequately disinfected if the effluent coliform concentration does not exceed 23 MPN/100 mL as a 7-day median and if the effluent coliform concentration does not exceed 240 MPN/100 mL more than once in any 30 day period.

ii. **RPA Results.** Identified beneficial uses of the Middle Fork of the Feather River include MUN and Rec-1. Discharge to the Middle Fork of the Feather River is prohibited unless an average daily flow of 40 cfs is present as measured at the Department of Water Resources gauging station approximately four miles upstream of the discharge. A Prohibition places a seasonal restriction on the discharge. A dilution of at least 10:1 in a very small mixing zone near the outfall is required to be met at all times. Ultimate dilution in the Middle Fork of the Feather River exceeds 260:1 with worst-case conditions of effluent flow (0.1 mgd) and river flow of 40 cfs. No water intakes are located in the vicinity of the outfall. Therefore, the DPH requirements are adequately protective of the beneficial uses of MUN and Rec-1 in the Middle Fork of the Feather River.

iii. **WQBELs.** Pursuant to guidance from DPH, this Order includes effluent limitations for total coliform organisms of 23 MPN/100 mL as a 7-day median and 240 MPN/100 mL, not to be exceeded more than once in a 30-day period. In addition, the instantaneous maximum requirement of 500 MPN/100 mL is carried over from the previous Order No. R5-2007-0019. These coliform limits are imposed to protect the beneficial uses of
the receiving water, including public health through contact recreation and drinking water pathways.

iv. **Plant Performance and Attainability.** Analysis of the effluent data indicates that immediate compliance with these effluent limitations is feasible.

ii. **pH**

(a) **WQO.** The Basin Plan includes a water quality objective for surface waters (except for Goose Lake) that the “…pH shall not be depressed below 6.5 nor raised above 8.5. Changes in normal ambient pH levels shall not exceed 0.5 in fresh waters with designated COLD or WARM beneficial uses.”

(b) **RPA Results.** The discharge of secondary treated domestic wastewater has a reasonable potential to cause or contribute to an excursion above the Basin Plan’s numeric objectives for pH.

(c) **WQBELs.** Previous Order No. R5-2007-0019, contained equivalent to secondary treatment technology based pH effluent limitations of 6.0 as an instantaneous minimum and 9.0 as an instantaneous maximum; this Order includes a new instantaneous maximum pH effluent limitation of 8.5. The new instantaneous maximum pH effluent limitation of 8.5 is based on the water quality objective in the Basin Plan; in addition, the instantaneous maximum pH effluent limitation is used to calculate the acute criteria for ammonia. This Order includes new effluent limitations for ammonia based on the acute criteria; due to ammonia compliance issues, the Discharger has requested that the instantaneous maximum pH effluent limitation be changed from 9.0 to 8.5.

The instantaneous minimum pH effluent limitation will remain 6.0. From March 2008 through May 2011, the Discharger’s effluent complied with the Basin Plan’s instantaneous minimum pH water quality objective of 6.5 97% of the time. However, the discharge is seasonal and the effluent pH dataset is limited; therefore, the Discharger is unsure whether they can consistently comply with 6.5 as an instantaneous minimum pH effluent limitation. Therefore, this Order retains the instantaneous minimum pH effluent limitation of 6.0. Review of downstream receiving water data for pH showed that the receiving water consistently meets the Basin Plan’s water quality objective instantaneous minimum of 6.5 for pH; except for one outlier that occurred during the last four years. Therefore, based on the assimilative capacity/mixing zone analysis discussed on pages F-16 and -17 and review of pH receiving water data, there is adequate mixing in the receiving water to justify retaining the instantaneous minimum pH effluent limitation of 6.0.
(d) **Plant Performance and Attainability.** Analysis of the effluent data shows that the Discharger can immediately comply with the instantaneous minimum pH effluent limitation of 6.0. Analysis of the effluent data shows that the Discharger may have an issue complying with the instantaneous maximum pH effluent limitation of 8.5; however, the Discharger has opted for an instantaneous maximum limit of 8.5 verses 9.0 due to ammonia compliance issues.

f. **Salinity**

i. **WQO.** The Basin Plan contains a chemical constituent objective that incorporates state MCLs, contains a narrative objective, and contains numeric water quality objectives for certain specified water bodies for electrical conductivity, total dissolved solids, sulfate, and chloride. The USEPA Ambient Water Quality Criteria for Chloride recommends acute and chronic criteria for the protection of aquatic life. There are no USEPA water quality criteria for the protection of aquatic life for electrical conductivity, total dissolved solids, and sulfate. Additionally, there is no USEPA numeric water quality criteria for the protection of agriculture, industrial and livestock are typical. Numeric values for the protection of these uses are typically done based on site specific conditions and evaluations to determine the appropriate constituent threshold necessary to interpret the narrative chemical constituent Basin Plan objective.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Agricultural WQ Objective</th>
<th>Secondary MCL</th>
<th>Basin Plan</th>
<th>USEPA NAWQC</th>
<th>Effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
</tr>
<tr>
<td>EC (μmhos/cm)</td>
<td>Varies²</td>
<td>900, 1600, 2200</td>
<td>150 μmhos/cm⁴</td>
<td>N/A</td>
<td>418</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>Varies</td>
<td>500, 1000, 1500</td>
<td>--</td>
<td>N/A</td>
<td>--</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>Varies</td>
<td>250, 500, 600</td>
<td>--</td>
<td>N/A</td>
<td>35⁶</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>Varies</td>
<td>250, 500, 600</td>
<td>--</td>
<td>860 1-hr, 230 4-day</td>
<td>--</td>
</tr>
</tbody>
</table>

¹ Narrative chemical constituent objective of the Basin Plan. Procedures for establishing the applicable numeric limitation to implement the narrative objective can be found in the Policy for Application of Water Quality, Chapter IV, Section 8 of the Basin Plan. However, the Basin Plan does not require improvement over naturally occurring background concentrations. In cases where the natural background concentration of a particular constituent exceeds an applicable water quality objective, the natural background concentration will be considered to comply with the objective.

² The EC level in irrigation water that harms crop production depends on the crop type, soil type, irrigation methods, rainfall, and other factors.

³ The secondary MCLs are stated as a recommended level, upper level, and a short-term maximum level.

⁴ At a 90th percentile for well mixed waters of the Middle Fork of the Feather River at 25°C.

⁵ Value for a single sample.

⁶ Average for two samples.

(a) **Chloride.** The secondary MCL for chloride is 250 mg/L, as a recommended level, 500 mg/L as an upper level, and 600 mg/L as a short-term maximum. The Central Valley Water Board must determine the applicable numeric limit to implement the narrative objective for the protection of agricultural supply. The most limiting...
agricultural water quality goal to interpret the narrative chemical constituents objective, is 106 mg/L as a long-term average based on Water Quality for Agriculture, Food and Agriculture Organization of the United Nations—Irrigation and Drainage Paper No. 29, Rev. 1 (R.S. Ayers and D.W. Westcot, Rome, 1985). The 106 mg/L water quality goal is intended to protect against adverse effects on sensitive crops when irrigated via sprinklers. However, the agricultural water quality goal is not a site-specific goal or objective, but rather a general measure to protect salt-sensitive crops. Site specific levels of chloride for the receiving waters are necessary to interpret the narrative chemical constituents objective for protection of agricultural supply.

The Central Valley Water Board is currently implementing the CV-SALTS initiative to develop a Basin Plan Amendment that will establish a salt and nitrate Management Plan for the Central Valley. Through this effort the Basin Plan will be amended to define how the narrative water quality objective is to be interpreted for the protection of agricultural use. All studies conducted through this Order to establish an agricultural limit to implement the narrative objective will be reviewed by and consistent with the efforts currently underway by CV-SALTS.

(b) **Electrical Conductivity.** The Basin Plan water quality objective for the Middle Fork of the Feather River is 150 μmhos/cm as a 90th percentile in well mixed waters of the River.

The secondary MCL for EC is 900 μmhos/cm as a recommended level, 1600 μmhos/cm as an upper level, and 2200 μmhos/cm as a short-term maximum. The Central Valley Water Board must determine the applicable numeric limit to implement the narrative objective for the protection of agricultural supply. The most limiting agricultural water quality goal may be as low at 700 μmhos/cm as a long-term average based on Water Quality for Agriculture, Food and Agriculture Organization of the United Nations—Irrigation and Drainage Paper No. 29, Rev. 1 (R.S. Ayers and D.W. Westcot, Rome, 1985). However, the 700 μmhos/cm agricultural water quality goal is not a site-specific goal or objective, but rather a general measure of electrical conductivity that was determined to protect salt-sensitive crops, such as beans, carrots, turnips, and strawberries under certain soil and climate conditions. Site specific levels of EC for the receiving waters to interpret the narrative chemical constituents objective in the Basin Plan for protection of agricultural supply are necessary. Overall, however, the salinity of the agricultural irrigation water must be maintained at levels in which growers do not need to take extra measures to minimize or eliminate any harmful impacts.

The Central Valley Water Board is currently implementing the CV-SALTS initiative to develop a Basin Plan Amendment that will
establish a salt and nitrate Management Plan for the Central Valley. Through this effort the Basin Plan will be amended to define how the narrative water quality objective is to be interpreted for the protection of agricultural use. All studies conducted through this Order to establish an agricultural limit to implement the narrative objective will be reviewed by and consistent with the efforts currently underway by CV-SALTS.

(c) **Sulfate.** The secondary MCL for sulfate is 250 mg/L as a recommended level, 500 mg/L as an upper level, and 600 mg/L as a short-term maximum.

(d) **Total Dissolved Solids.** The secondary MCL for TDS is 500 mg/L as a recommended level, 1000 mg/L as an upper level, and 1500 mg/L as a short-term maximum. The Central Valley Water Board must determine the applicable numeric limit to implement the narrative objective for the protection of agricultural supply. The most limiting agricultural water quality goal may be as low as 450 mg/L as a long-term average based on Water Quality for Agriculture, Food and Agriculture Organization of the United Nations—Irrigation and Drainage Paper No. 29, Rev. 1 (R.S. Ayers and D.W. Westcot, Rome, 1985). Water Quality for Agriculture evaluates the impacts of salinity levels on crop tolerance and yield reduction, and establishes water quality goals that is not a site-specific goal, but rather a general measure of TDS that was determined to protect salt-sensitive crops. Only the most salt sensitive crops require irrigation water of 450 mg/L or less to prevent loss of yield. Most other crops can tolerate higher TDS concentrations without harm. Site specific levels of TDS for the receiving waters to interpret the narrative chemical constituents objective are necessary.

The Central Valley Water Board is currently implementing the CV-SALTS initiative to develop a Basin Plan Amendment that will establish a salt and nitrate Management Plan for the Central Valley. Through this effort the Basin Plan will be amended to define how the narrative water quality objective is to be interpreted for the protection of agricultural use. All studies conducted through this Order to establish an agricultural limit to implement the narrative objective will be reviewed by and consistent with the efforts currently underway by CV-SALTS.

ii. **RPA Results.**

(a) **Chloride.** The Discharger sampled the effluent for chloride once in March 2009 and reported a concentration of 48 mg/L. A background concentration of 3 mg/L for a single sample collected on the same date was reported for the upstream receiving water. Based on this result the discharge does not have reasonable potential to cause or
contribute to an instream excursion of the applicable water quality objective for chloride.

b) Electrical Conductivity. A review of the Discharger's monitoring reports shows an average effluent EC of 418 μmhos/cm, with a range from 112 μmhos/cm to 711 μmhos/cm. The background receiving water EC averaged 138 μmhos/cm with a range from 72 to 197 μmhos/cm. The downstream EC averaged 132 μmhos/cm with a range from 17 μmhos/cm to 191 μmhos/cm. The effluent levels can exceed the water quality objective of 150 μmhos/cm as a 90th percentile for the Middle Fork of the Feather River is 150 μmhos/cm as a 90th percentile in well mixed waters of the River; however, receiving water sampling shows that the discharge is not causing an increase in EC concentrations in the downstream receiving water. Based on these results the discharge does not have reasonable potential to cause or contribute to an instream excursion of the applicable water quality objective for EC.

c) Sulfate. The Discharger sampled the effluent and receiving water twice for sulfate during the term of the previous permit. Sulfate concentrations in the effluent were 16 mg/L and 53 mg/L. Background concentrations in Middle Fork of the Feather River were 5 mg/L and 41 mg/L. Based on these results the discharge does not have reasonable potential to cause or contribute to an instream excursion of the applicable water quality objective for sulfate.

d) Total Dissolved Solids. The Discharger sampled the effluent once for TDS in April 2011 and reported a concentration of 210 mg/L. Based on these results the discharge does not have reasonable potential to cause or contribute to an instream excursion of the applicable water quality objective for TDS. The background receiving water TDS was 120 mg/L.

iii. WQBELs. The discharge does not have reasonable potential to cause or contribute to an in-stream excursion of water quality objectives for salinity; therefore, WQBELs are not needed. However, since the Facility discharges to the Middle Fork of the Feather River, a tributary of the Feather River, and eventually the Sacramento-San Joaquin Delta, of additional concern is the salt contribution to Delta waters. Allowing the Discharger to increase its current salt loading is contrary to the Region-wide effort to address salinity in the Central Valley.

Furthermore, in order to ensure that the Discharger will continue to control the discharge of salinity, this Order includes a requirement to develop and implement a salinity evaluation and minimization plan, and water supply monitoring is required to evaluate the relative contribution of salinity from the source water to the effluent.
4. WQBEL Calculations

a. This Order includes WQBELs for ammonia, chlorine residual, copper, pH, and total coliform organisms. The general methodology for calculating WQBELs based on the different criteria/objectives is described in subsections IV.C.4.b through e, below. See Attachment H for the WQBEL calculations.

b. Effluent Concentration Allowance. For each water quality criterion/objective, the ECA is calculated using the following steady-state mass balance equation from Section 1.4 of the SIP:

\[
ECA = C + D(C - B) \quad \text{where } C > B, \text{ and} \\
ECA = C \quad \text{where } C \leq B
\]

where:

- \(ECA\) = effluent concentration allowance
- \(D\) = dilution credit
- \(C\) = the priority pollutant criterion/objective
- \(B\) = the ambient background concentration.

According to the SIP, the ambient background concentration \(B\) in the equation above shall be the observed maximum with the exception that an ECA calculated from a priority pollutant criterion/objective that is intended to protect human health from carcinogenic effects shall use the arithmetic mean concentration of the ambient background samples. For ECAs based on MCLs, which implement the Basin Plan’s chemical constituents objective and are applied as annual averages, an arithmetic mean is also used for \(B\) due to the long-term basis of the criteria.

c. Basin Plan Objectives and MCLs. For WQBELs based on site-specific numeric Basin Plan objectives or MCLs, the effluent limitations are applied directly as the ECA as either an MDEL, AMEL, or average annual effluent limitations, depending on the averaging period of the objective.

d. Aquatic Toxicity Criteria. WQBELs based on acute and chronic aquatic toxicity criteria are calculated in accordance with Section 1.4 of the SIP. The ECAs are converted to equivalent long-term averages (i.e., \(LTA_{acute}\) and \(LTA_{chronic}\)) using statistical multipliers and the lowest \(LTA\) is used to calculate the AMEL and MDEL using additional statistical multipliers.

e. Human Health Criteria. WQBELs based on human health criteria, are also calculated in accordance with Section 1.4 of the SIP. The ECAs are set equal to the AMEL and a statistical multiplier was used to calculate the MDEL.

\[
AMEL = mult_{AMEL} \left[\min \left(M_A ECA_{acute} , M_C ECA_{chronic} \right) \right] \text{ LTA}_{acute}
\]
where:
\[\text{mult}_{\text{AMEL}} = \text{statistical multiplier converting minimum LTA to AMEL} \]
\[\text{mult}_{\text{MDEL}} = \text{statistical multiplier converting minimum LTA to MDEL} \]
\[M_A = \text{statistical multiplier converting acute ECA to } LTA_{\text{acute}} \]
\[M_C = \text{statistical multiplier converting chronic ECA to } LTA_{\text{chronic}} \]

5. Whole Effluent Toxicity (WET)

For compliance with the Basin Plan’s narrative toxicity objective, this Order requires
the Discharger to conduct whole effluent toxicity testing for acute and chronic
toxicity, as specified in the Monitoring and Reporting Program (Attachment E section
V.). This Order also contains effluent limitations for acute toxicity and requires the
Discharger to implement best management practices to investigate the causes of,
and identify corrective actions to reduce or eliminate effluent toxicity.

a. Acute Aquatic Toxicity. The Basin Plan contains a narrative toxicity objective
that states, “All waters shall be maintained free of toxic substances in
concentrations that produce detrimental physiological responses in human, plant,
animal, or aquatic life." (Basin Plan at page <III-8.00). The Basin Plan also states that, “...effluent limits based upon acute biotoxicity tests of effluents will be prescribed where appropriate...". USEPA Region 9 provided guidance for the development of acute toxicity effluent limitations in the absence of numeric water quality objectives for toxicity in its document titled "Guidance for NPDES Permit Issuance", dated February 1994. In section B.2. "Toxicity Requirements" (pgs. 14-15) it states that, "In the absence of specific numeric water quality objectives for acute and chronic toxicity, the narrative criterion 'no toxics in toxic amounts' applies. Achievement of the narrative criterion, as applied herein, means that ambient waters shall not demonstrate for acute toxicity: 1) less than 90% survival, 50% of the time, based on the monthly median, or 2) less than 70% survival, 10% of the time, based on any monthly median. For chronic toxicity, ambient waters shall not demonstrate a test result of greater than 1 TUC."

Accordingly, effluent limitations for acute toxicity have been included in this Order as follows:

Acute Toxicity. Survival of aquatic organisms in 96-hour bioassays of undiluted waste shall be no less than:

- Minimum for any one bioassay: 70%
- Median for any three consecutive bioassays: 90%

2. **Chronic Aquatic Toxicity.** The Basin Plan contains a narrative toxicity objective that states, "All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life." (Basin Plan at page III-8.00.) Two chronic WET tests were performed by the Discharger on May 11, 2011 and February 26, 2009; adequate chronic WET data is not available to determine if the discharge has reasonable potential to cause or contribute to an in-stream excursion above the Basin Plan’s narrative toxicity objective, as shown below:

<table>
<thead>
<tr>
<th>Date</th>
<th>Fathead Minnow</th>
<th>Water Flea</th>
<th>Green Algae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pimephales promelas</td>
<td>Ceriodaphnia dubia</td>
<td>Selenastrum capricornutum</td>
</tr>
<tr>
<td></td>
<td>Survival (TUC)</td>
<td>Growth (TUC)</td>
<td>Survival (TUC)</td>
</tr>
<tr>
<td>5/11/20111</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2/26/20092</td>
<td>>1</td>
<td>>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1Chronic testing performed using dilution series specified in Order No. R5-2007-0019.
2Chronic testing performed using 100% effluent. TUC trigger in Order No. R5-2007-0019 was 10.

The Monitoring and Reporting Program of this Order requires the Discharger to sample for chronic toxicity once during the term of the permit (once no later than 365 days prior to permit expiration) for demonstration of compliance with the narrative toxicity objective. In addition to WET monitoring, the Special Provision in section VI.C.2.a of the Order requires the Discharger to submit to the Central Valley Water Board an Initial Investigative TRE Workplan for approval by the Executive Officer, to ensure the Discharger has a plan to immediately move forward with the initial tiers of a TRE, in the event effluent toxicity is encountered.
in the future. The provision also includes a numeric toxicity monitoring trigger, requirements for accelerated monitoring, and requirements for TRE initiation if toxicity is demonstrated.

Numeric chronic WET effluent limitations have not been included in this Order. The SIP contains implementation gaps regarding the appropriate form and implementation of chronic toxicity limits. This has resulted in the petitioning of a NPDES permit in the Los Angeles Region\(^1\) that contained numeric chronic toxicity effluent limitations. To address the petition, the State Water Board adopted WQO 2003-012 directing its staff to revise the toxicity control provisions in the SIP. The State Water Board states the following in WQO 2003-012, “In reviewing this petition and receiving comments from numerous interested persons on the propriety of including numeric effluent limitations for chronic toxicity in NPDES permits for publicly-owned treatment works that discharge to inland waters, we have determined that this issue should be considered in a regulatory setting, in order to allow for full public discussion and deliberation. We intend to modify the SIP to specifically address the issue. We anticipate that review will occur within the next year. We therefore decline to make a determination here regarding the propriety of the final numeric effluent limitations for chronic toxicity contained in these permits.” The process to revise the SIP is currently underway. Proposed changes include clarifying the appropriate form of effluent toxicity limits in NPDES permits and general expansion and standardization of toxicity control implementation related to the NPDES permitting process. Since the toxicity control provisions in the SIP are under revision it is infeasible to develop numeric effluent limitations for chronic toxicity. Therefore, this Order requires that the Discharger meet best management practices for compliance with the Basin Plan’s narrative toxicity objective, as allowed under 40 CFR 122.44(k).

To ensure compliance with the Basin Plan’s narrative toxicity objective, the Discharger is required to conduct chronic WET testing, as specified in the Monitoring and Reporting Program (Attachment E section V.). Furthermore, the Special Provision contained at VI.C.2.a of this Order requires the Discharger to investigate the causes of, and identify and implement corrective actions to reduce or eliminate effluent toxicity. If the discharge demonstrates toxicity exceeding the numeric toxicity monitoring trigger, the Discharger is required to initiate a Toxicity Reduction Evaluation (TRE) in accordance with an approved TRE workplan. The numeric toxicity monitoring trigger is not an effluent limitation; it is the toxicity threshold at which the Discharger is required to perform accelerated chronic toxicity monitoring, as well as, the threshold to initiate a TRE if effluent toxicity has been demonstrated.

\(^1\) In the Matter of the Review of Own Motion of Waste Discharge Requirements Order Nos. R4-2002-0121 [NPDES No. CA0054011] and R4-2002-0123 [NPDES NO. CA0055119] and Time Schedule Order Nos. R4-2002-0122 and R4-2002-0124 for Los Coyotes and Long Beach Wastewater Reclamation Plants Issued by the California Regional Water Quality Control Board, Los Angeles Region SWRCB/OCC FILES A-1496 AND 1496(a)
D. Final Effluent Limitations

1. Mass-based Effluent Limitations

40 CFR 122.45(f)(1) requires effluent limitations be expressed in terms of mass, with some exceptions, and 40 CFR 122.45(f)(2) allows pollutants that are limited in terms of mass to additionally be limited in terms of other units of measurement. This Order includes effluent limitations expressed in terms of mass and concentration. In addition, pursuant to the exceptions to mass limitations provided in 40 CFR 122.45(f)(1), some effluent limitations are not expressed in terms of mass, such as pH and temperature, and when the applicable standards are expressed in terms of concentration (e.g., CTR criteria and MCLs) and mass limitations are not necessary to protect the beneficial uses of the receiving water.

Mass-based effluent limitations were calculated based upon the design flow (Average Dry Weather Flow) permitted in section IV.A.1.d of this Order.

2. Averaging Periods for Effluent Limitations

40 CFR 122.45 (d) requires average weekly and average monthly discharge limitations for publicly owned treatment works (POTWs) unless impracticable. However, for toxic pollutants and pollutant parameters in water quality permitting, USEPA recommends the use of a maximum daily effluent limitation in lieu of average weekly effluent limitations for two reasons. “First, the basis for the 7-day average for POTWs derives from the secondary treatment requirements. This basis is not related to the need for assuring achievement of water quality standards. Second, a 7-day average, which could comprise up to seven or more daily samples, could average out peak toxic concentrations and therefore the discharge’s potential for causing acute toxic effects would be missed.” (TSD, pg. 96) This Order uses maximum daily effluent limitations in lieu of average weekly effluent limitations for ammonia and copper as recommended by the TSD for the achievement of water quality standards and for the protection of the beneficial uses of the receiving stream. Furthermore, for pH, total chlorine residual, and total coliform organisms, weekly average effluent limitations have been replaced or supplemented with effluent limitations utilizing shorter averaging periods. The rationale for using shorter averaging periods for these constituents is discussed in section IV.C.3 of this Fact Sheet.

For effluent limitations based on Primary and Secondary MCLs, except nitrate and nitrite, this Order includes annual average effluent limitations. The Primary and Secondary MCLs are drinking water standards contained in Title 22 of the California Code of Regulations. Title 22 requires compliance with these standards on an annual average basis (except for nitrate and nitrite), when sampling at least quarterly. Since it is necessary to determine compliance on an annual average basis, it is impracticable to calculate average weekly and average monthly effluent limitations.
3. Satisfaction of Anti-Backsliding Requirements

The Clean Water Act specifies that a revised permit may not include effluent limitations that are less stringent than the previous permit unless a less stringent limitation is justified based on exceptions to the anti-backsliding provisions contained in Clean Water Act sections 402(o) or 303(d)(4), or, where applicable, 40 CFR 122.44(l).

All effluent limitations in this Order are at least as stringent as the effluent limitations in the existing Order.

4. Satisfaction of Antidegradation Policy

This Order does not allow for an increase in flow or mass of pollutants to the receiving water. Therefore, a complete antidegradation analysis is not necessary. The Order requires compliance with applicable federal technology-based standards and with WQBELs where the discharge could have the reasonable potential to cause or contribute to an exceedance of water quality standards. The permitted discharge is consistent with the antidegradation provisions of 40 CFR 131.12 and State Water Board Resolution No. 68-16. Compliance with these requirements will result in the use of best practicable treatment or control of the discharge. The impact on existing water quality will be insignificant.

a. Surface Water. The permitted surface water discharge is consistent with the antidegradation provisions of 40 CFR 131.12 and State Water Board Resolution No. 68-16. Compliance with these requirements will result in the use of best practicable treatment or control of the discharge. The impact on existing water quality will be insignificant.

b. Groundwater. The Discharger utilizes facultative ponds for treatment of domestic wastewater. Domestic wastewater contains constituents such as total dissolved solids (TDS), specific conductivity, pathogens, nitrates, organics, metals and oxygen demanding substances (BOD). Percolation from the ponds may result in an increase in the concentration of these constituents in groundwater. The increase in the concentration of these constituents in groundwater must be consistent with Resolution No. 68-16. Any increase in pollutant concentrations in groundwater must be shown to be necessary to allow wastewater utility service necessary to accommodate housing and economic expansion in the area and must be consistent with maximum benefit to the people of the State of California. Some degradation of groundwater by the Discharger is consistent with Resolution No. 68-16 provided that:

i. the degradation is limited in extent;

ii. the degradation after effective source control, treatment, and control is limited to waste constituents typically encountered in municipal wastewater as specified in the groundwater limitations in this Order;
iii. the Discharger minimizes the degradation by fully implementing, regularly maintaining, and optimally operating best practicable treatment and control (BPTC) measures; and

iv. the degradation does not result in water quality less than that prescribed in the Basin Plan.

A groundwater limitation for total coliform organisms, EC, Nitrate Nitrogen (Total as N) and ammonia has been included in this order (at or below) the water quality objective for protection of the MUN beneficial use of groundwater.

5. Stringency of Requirements for Individual Pollutants

This Order contains both technology-based effluent limitations and WQBELs for individual pollutants. The technology-based effluent limitations consist of restrictions on flow, BOD$_5$, and TSS. The WQBELs consist of restrictions on ammonia, chlorine residual, copper, pH, and total coliform organisms. This Order’s technology-based pollutant restrictions implement the “equivalent to secondary treatment”, applicable federal technology-based requirements. The rationale for including these limitations is explained in the Fact Sheet.

WQBELs have been scientifically derived to implement water quality objectives that protect beneficial uses. Both the beneficial uses and the water quality objectives have been approved pursuant to federal law and are the applicable federal water quality standards. To the extent that toxic pollutant WQBELs were derived from the CTR, the CTR is the applicable standard pursuant to 40 CFR 131.38. The scientific procedures for calculating the individual WQBELs for priority pollutants are based on the CTR-SIP, which was approved by USEPA on 18 May 2000. All beneficial uses and water quality objectives contained in the Basin Plan were approved under state law and submitted to and approved by USEPA prior to 30 May 2000. Any water quality objectives and beneficial uses submitted to USEPA prior to 30 May 2000, but not approved by USEPA before that date, are nonetheless “applicable water quality standards for purposes of the CWA” pursuant to 40 CFR 131.21(c)(1). Collectively, this Order’s restrictions on individual pollutants are no more stringent than required to implement the requirements of the CWA.
Summary of Final Effluent Limitations

Discharge Point No. 001

Table F-11. Summary of Final Effluent Limitations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Average Monthly</th>
<th>Average Weekly</th>
<th>Maximum Daily</th>
<th>Instantaneous Minimum</th>
<th>Instantaneous Maximum</th>
<th>Basis ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Dry Weather Flow</td>
<td>mgd</td>
<td>0.1²</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>DC</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand</td>
<td>mg/L</td>
<td>45</td>
<td>65</td>
<td>90</td>
<td>--</td>
<td>--</td>
<td>CFR</td>
</tr>
<tr>
<td>5-day @ 20°C</td>
<td>lbs/day¹</td>
<td>37.5³</td>
<td>54.2³</td>
<td>75.1³</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>45</td>
<td>65</td>
<td>90</td>
<td>--</td>
<td>--</td>
<td>CFR</td>
</tr>
<tr>
<td>5-day @ 20°C</td>
<td>lbs/day¹</td>
<td>37.5³</td>
<td>54.2³</td>
<td>75.1³</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Chlorine, Total Residual</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>0.011¹</td>
<td>0.019⁵</td>
<td>--</td>
<td>NAWQC</td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>6.0</td>
<td>8.5</td>
<td>BP</td>
</tr>
<tr>
<td>Total Coliform Organisms</td>
<td>MPN/100mL</td>
<td>--</td>
<td>23⁶</td>
<td>240⁷</td>
<td>--</td>
<td>500</td>
<td>BP</td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>7.46</td>
<td>--</td>
<td>18.54</td>
<td>--</td>
<td>--</td>
<td>NAWQC</td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>µg/L</td>
<td>5.0</td>
<td>--</td>
<td>10.1</td>
<td>--</td>
<td>--</td>
<td>CTR</td>
</tr>
</tbody>
</table>

¹ DC – Based on the design capacity of the Facility.
CFR – Based on secondary treatment standards “equivalent to secondary treatment” contained in 40 CFR Part 133.
BP – Based on water quality objectives contained in the Basin Plan.
CTR – Based on water quality criteria contained in the California Toxics Rule and applied as specified in the SIP.
NAWQC – Based on USEPA’s National Ambient Water Quality Criteria for the protection of freshwater aquatic life.

² The average dry weather flow shall not exceed 0.1 mgd. The average dry weather discharge flow represents the daily average flow when groundwater is at or near normal and runoff is not occurring. Compliance with the average dry weather flow effluent limitations will be determined annually based on the average daily flow over three consecutive dry weather months (i.e., July, August, and September).
³ Based on average dry weather flow of 0.1 mgd.
⁴ Applied as a 4-day average effluent limitation.
⁵ Applied as a 1-hour average effluent limitation.
⁶ Applied as a 7-day median effluent limitation.
⁷ Total coliform organisms shall not exceed 240 more than once in any 30-day period.

E. Interim Effluent Limitations

1. **Compliance Schedule for Ammonia.** The permit limitations for ammonia are new limitations and are based on a new interpretation of the narrative objective for toxicity. The Discharger has complied with the application requirements in paragraph 4 of the State Water Board’s Compliance Schedule Policy, and the Discharger’s application demonstrates the need for additional time to implement actions to comply
with the new limitations, as described below. Therefore, a compliance schedule for compliance with the effluent limitations for ammonia is established in the Order.

A compliance schedule is necessary because the Discharger must implement actions, including new or modified control measures and/or a mixing zone/dilution study for ammonia upon issuance of the permit. New or modified control measures may be necessary in order to comply with the effluent limitations and the new or modified control measures cannot be designed, installed and put into operation within 30 calendar days. The Basin Plan for the Sacramento and San Joaquin River Basins includes a provision that authorizes the use of compliance schedules in NPDES permits for water quality objectives adopted after 25 September 1995 (See Basin Plan at page IV-16).

Interim performance-based limitations have been established in this Order. The interim limitations were determined as described in section IV.E.2 below, and are in effect until the final limitations take effect. As part of the compliance schedule, this Order requires the Discharger to submit a corrective action plan and implementation schedule to assure compliance with the final effluent limitations for ammonia. In addition, the Discharger shall submit an engineering treatment feasibility study and prepare and implement a pollution prevention plan that is in compliance with Water Code section 13263.3(d)(3). The interim numeric effluent limitations and source control measures will result in the highest discharge quality that can reasonably be achieved until final compliance is attained.

2. **Interim Limits for Ammonia.** The Compliance Schedule Policy requires the Central Valley Water Board to establish interim requirements and dates for their achievement in the NPDES permit. Interim numeric effluent limitations are required for compliance schedules longer than one year. Interim effluent limitations must be based on current treatment plant performance or existing permit limitations, whichever is more stringent. When feasible, interim limitations must correspond with final permit effluent limitations with respect to averaging bases (e.g., AMEL, MDEL, average monthly, etc.) for effluent limitations for which compliance protection is intended.

The interim limitations for ammonia in this Order are based on the current treatment plant performance. In developing the interim limitation, where there are 10 sampling data points or more, sampling and laboratory variability is accounted for by establishing interim limits that are based on normally distributed data where 99.9% of the data points will lie within 3.3 standard deviations of the mean (Basic Statistical Methods for Engineers and Scientists, Kennedy and Neville, Harper and Row). Therefore, since there are more than 10 sampling data points, interim limitations in this Order are established as the mean plus 3.3 standard deviations of the available data.

The Central Valley Water Board finds that the Discharger can undertake source control and treatment plant measures to maintain compliance with the interim limitations included in this Order. Interim limitations are established when compliance with final effluent limitations cannot be achieved by the existing
discharge. Discharge of constituents in concentrations in excess of the final effluent limitations, but in compliance with the interim effluent limitations, can significantly degrade water quality and adversely affect the beneficial uses of the receiving stream on a long-term basis. The interim limitations, however, establish an enforceable ceiling concentration until compliance with the effluent limitation can be achieved. The limited, short-term degradation associated with the compliance schedule is consistent with State and federal policies and is authorized by 40 CFR 122.47 and the Compliance Schedule Policy.

The following table summarizes the calculations of the interim effluent limitations for ammonia:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Maximum Effluent Concentration</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Number of Samples</th>
<th>Interim AMEL</th>
<th>Interim MDEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>20</td>
<td>6.5</td>
<td>6.3</td>
<td>16</td>
<td>27.3(^1)</td>
<td>27.3</td>
</tr>
</tbody>
</table>

\(^1\) AMEL set equal to MDEL based on required monitoring once per month.

F. Land Discharge Specifications – Not Applicable

G. Reclamation Specifications – Not Applicable

V. RATIONALE FOR RECEIVING WATER LIMITATIONS

Basin Plan water quality objectives to protect the beneficial uses of surface water and groundwater include numeric objectives and narrative objectives, including objectives for chemical constituents, toxicity, and tastes and odors. The toxicity objective requires that surface water and groundwater be maintained free of toxic substances in concentrations that produce detrimental physiological responses in humans, plants, animals, or aquatic life. The chemical constituent objective requires that surface water and groundwater shall not contain chemical constituents in concentrations that adversely affect any beneficial use or that exceed the maximum contaminant levels (MCLs) in Title 22, CCR. The tastes and odors objective states that surface water and groundwater shall not contain taste- or odor-producing substances in concentrations that cause nuisance or adversely affect beneficial uses. The Basin Plan requires the application of the most stringent objective necessary to ensure that surface water and groundwater do not contain chemical constituents, toxic substances, radionuclides, or taste and odor producing substances in concentrations that adversely affect domestic drinking water supply, agricultural supply, or any other beneficial use.

A. Surface Water

1. CWA section 303(a-c), requires states to adopt water quality standards, including criteria where they are necessary to protect beneficial uses. The Central Valley Water Board adopted water quality criteria as water quality objectives in the Basin Plan. The Basin Plan states that "[t]he numerical and narrative water quality
objectives define the least stringent standards that the Regional Water Board will apply to regional waters in order to protect the beneficial uses." The Basin Plan includes numeric and narrative water quality objectives for various beneficial uses and water bodies. This Order contains receiving surface water limitations based on the Basin Plan numerical and narrative water quality objectives for bacteria, biostimulatory substances, chemical constituents, color, dissolved oxygen, floating material, oil and grease, pH, pesticides, radioactivity, salinity, sediment, settleable material, suspended material, tastes and odors, temperature, toxicity and turbidity.

B. Groundwater

1. The beneficial uses of the underlying ground water are municipal and domestic supply, industrial service supply, industrial process supply, and agricultural supply.

2. Basin Plan water quality objectives include narrative objectives for chemical constituents, tastes and odors, and toxicity of groundwater. The toxicity objective requires that groundwater be maintained free of toxic substances in concentrations that produce detrimental physiological responses in humans, plants, animals, or aquatic life. The chemical constituent objective states groundwater shall not contain chemical constituents in concentrations that adversely affect any beneficial use. The tastes and odors objective prohibits taste- or odor-producing substances in concentrations that cause nuisance or adversely affect beneficial uses. The Basin Plan also establishes numerical water quality objectives for chemical constituents and radioactivity in groundwaters designated as municipal supply. These include, at a minimum, compliance with MCLs in Title 22 of the CCR. The bacteria objective prohibits coliform organisms at or above 2.2 MPN/100 mL. The Basin Plan requires the application of the most stringent objective necessary to ensure that waters do not contain chemical constituents, toxic substances, radionuclides, taste- or odor-producing substances, or bacteria in concentrations that adversely affect municipal or domestic supply, agricultural supply, industrial supply or some other beneficial use.

3. Total dissolved solids have the potential to degrade groundwater quality at this site because there is little ability for attenuation in the shallow permeable vadose zone beneath this Facility. The applicable water quality objective to protect the domestic use from discharges of total dissolved solids is the narrative Chemical Constituents objective, which is applied following the "Policy of Application of Water Quality Objectives" in the Basin Plan. A numerical groundwater limitation of EC of 900 μmhos/cm (annual average), based on secondary MCLs, is appropriate to apply the narrative Chemical Constituents objective to protect the unrestricted domestic use of groundwater in the absence of information to support a less protective limit.

4. Nitrate has the potential to degrade groundwater quality because there is little ability for attenuation in the shallow permeable vadose zone beneath the Facility. The Chemical Constituents objective prohibits concentrations of chemical constituents in excess of California MCLs in groundwater that is designated as municipal or domestic supply. The California primary MCL for nitrate is equivalent to 10 mg/L as nitrogen, and groundwater beneath the facility is designated as municipal or
domestic supply. It is therefore appropriate to adopt a numerical groundwater limitation of 10 mg/L for nitrate as nitrogen to implement the Chemical Constituents objective to protect the municipal and domestic use of groundwater.

5. pH, which ranged 5.8 to 8.8 standard units in the domestic wastewater, has the ability to degrade groundwater quality at this site because there is little potential for buffering in the shallow permeable vadose zone. According to Ayers and Westcot, pH less than 6.5 or greater than 8.4 can cause yield or vegetative growth reductions of sensitive crops if present in irrigation water, thereby impairing agricultural use of the water resource. The applicable water quality objective to protect the agricultural use from discharges of substances that affect pH is the narrative Chemical Constituents objective, which is applied following the “Policy of Application of Water Quality Objectives” in the Basin Plan. A numerical groundwater limitation range of 6.5 to 8.4 for pH, based on Ayers and Westcot, is relevant and appropriate to apply the narrative Chemical Constituents objective to protect unrestricted agricultural use of groundwater in the absence of information to support a less protective limit.

6. Ammonia has the potential to degrade groundwater quality because there is little ability for ammonia attenuation in the shallow permeable vadose zone at this site. According to Amoore and Hautala \(^1\), who evaluated odor of ammonia in water, the odor threshold for ammonia in water is 1.5 mg/L (as NH\(_4\)). These authors studied the concentration of chemicals in air that caused adverse odors and then calculated the concentration in water that would be equivalent to that amount in air. Therefore, it is appropriate to use the data contained therein to apply the narrative Tastes and Odors water quality objective. Concentrations that exceed this value can impair the municipal or domestic use of the resource by causing adverse odors. The applicable water quality objective to protect the municipal and domestic use from discharges of odor producing substances is the narrative Tastes and Odors objective, which is applied following the “Policy of Application of Water Quality Objectives” in the Basin Plan. A numerical groundwater limitation of 1.5 mg/L for ammonia (as NH\(_4\)), based on Amoore and Hautala, is relevant and appropriate to apply the narrative Tastes and Odors objective to protect the municipal and domestic use of groundwater.

7. Groundwater limitations are required to protect the beneficial uses of the underlying groundwater.

VI. RATIONALE FOR MONITORING AND REPORTING REQUIREMENTS

40 CFR 122.48 requires that all NPDES permits specify requirements for recording and reporting monitoring results. Water Code sections 13267 and 13383 authorizes the Central Valley Water Board to require technical and monitoring reports. The Monitoring and Reporting Program (Attachment E) of this Order, establishes monitoring and reporting requirements to implement federal and state requirements. The following provides the rationale for the monitoring and reporting requirements contained in the Monitoring and Reporting Program for the Facility.

A. Influent Monitoring

1. Influent monitoring is required to collect data on the characteristics of the wastewater and to assess compliance with effluent limitations (e.g., BOD_5 and TSS reduction requirements). The monitoring frequencies for flow, BOD_5, TSS, pH, and EC have been retained from Order No. R5-2007-0019 when discharging to the River; monitoring frequencies for BOD_5, TSS, and EC have been reduced when discharging to land.

2. Influent monitoring requirements for untreated septage received at the Facility, monthly for BOD and TSS and twice per year for priority pollutant metals have been retained from Order No. R5-2007-0019; monthly monitoring for ammonia and twice yearly for aluminum has been added. Influent monitoring requirements for septage supernatant received at the Facility has been added; the monitoring is the same as for untreated septage described above.

B. Effluent Monitoring

1. Pursuant to the requirements of 40 CFR 122.44(i)(2) effluent monitoring is required for all constituents with effluent limitations. Effluent monitoring is necessary to assess compliance with effluent limitations, assess the effectiveness of the treatment process, and to assess the impacts of the discharge on the receiving stream and groundwater.

I. Effluent monitoring frequencies and sample types for flow, pH, total chlorine residual, BOD, TSS, total coliform organisms, ammonia, acute and chronic toxicity have been retained from Order No. R5-2007-0019 to determine compliance with effluent limitations for these parameters. New monitoring requirements for copper and hardness have been added to determine compliance with effluent limitations for copper. Monitoring frequencies and sample types for temperature, nitrate nitrogen, and standard minerals (constituents that do not have effluent limitations) have been retained from Order No. R5-2007-0019.

J. In addition to the continuous monitoring for chlorine residual, this Order establishes annual monitoring requirements for trihalomethanes to assess the presence of disinfection byproducts.
K. This Order includes a new annual monitoring requirement for priority pollutant metals in the effluent discharged to the Middle Fork of the Feather River.

L. As discussed in section IV.C.3.c of this Fact Sheet, due to the limited amount of data available, it is uncertain whether aluminum, iron, thallium, and mercury are truly present in the effluent at concentrations that have a reasonable potential to cause or contribute to an exceedance of applicable water quality criteria. To collect the data necessary to determine the prevalence in the effluent, this Order establishes monitoring and requires the Discharger to conduct a constituent study to determine potential sources of these constituents.

M. Priority pollutant data for the effluent has been provided by the Discharger over the term of Order No. R5-2007-0019, and was used to conduct a meaningful RPA. In accordance with Section 1.3 of the SIP, periodic monitoring is required for priority pollutants for which criteria or objectives apply and for which no effluent limitations have been established. This Order requires monitoring for priority pollutants and other constituents of concern twice during the third year of the permit term in order to collect data to conduct an RPA for the next permit renewal. See Attachment I for more detailed requirements related to performing priority pollutant monitoring.

N. California Water Code section 13176, subdivision (a), states: “The analysis of any material required by [Water Code sections 13000-16104] shall be performed by a laboratory that has accreditation or certification to Article 3 (commencing with Section 100825) of Chapter 4 of Part 1 of Division 101 of the Health and Safety Code.” The Department of Public Health certifies laboratories through its Environmental Laboratory Accreditation Program (ELAP).

Section 13176 cannot be interpreted in a manner that would violate federal holding time requirements that apply to NPDES permits pursuant to the Clean Water Act. (Water Code §§ 13370, subd. (c), 13372, 13377.) Section 13176 is inapplicable to NPDES permits to the extent it is inconsistent with Clean Water Act requirements. (Water Code § 13372, subd. (a)). The holding time requirements are 15 minutes for chlorine residual, dissolved oxygen, and pH, and immediate analysis is required for temperature. (40 C.F.R. § 136.3(e), Table II). Due to the location of the Facility, it is both legally and factually impossible for the Discharger to comply with section 13176 for constituents with short holding times. Analyses for these constituents are conducted on site by the Discharger.

C. Whole Effluent Toxicity Testing Requirements

1. **Acute Toxicity.** Consistent with Order No. R5-2007-0019, 96-hour bioassay testing is required once during the discharge season to demonstrate compliance with the effluent limitation for acute toxicity.

2. **Chronic Toxicity.** Chronic whole effluent toxicity testing is required once during the permit term in order to demonstrate compliance with the Basin Plan’s narrative toxicity objective.
D. Receiving Water Monitoring

1. Surface Water

1. Receiving water monitoring is necessary to assess compliance with receiving water limitations and to assess the impacts of the discharge on the receiving stream.

2. This Order retains sample types and monitoring frequencies from Order No. R5-2007-0019 for the receiving water at Monitoring Locations RSW-001 and RSW-002 for pH, dissolved oxygen, electrical conductivity, hardness, temperature, fecal coliform organisms, and ammonia.

3. Consistent with the effluent monitoring requirements and the constituent study for aluminum, iron, thallium, and mercury, monitoring for these constituents is included for Monitoring Location RSW-001 to establish background concentrations.

4. Consistent with the effluent monitoring requirements, monitoring for priority pollutants and other constituents of concern upstream of Discharge Point No. 001 at Monitoring Location RSW-001 is required twice during the third year of the permit term to collect the necessary data to determine reasonable potential as required in section 1.2 of the SIP. The hardness (as CaCO₃) of the upstream receiving water shall also be monitored concurrently with the priority pollutants as well as pH to ensure the water quality criteria/objectives are correctly adjusted for the receiving water when determining reasonable potential as specified in section 1.3 of the SIP. See Attachment I for more detailed requirements related to performing priority pollutant monitoring.

2. Groundwater

a. Water Code section 13267 states, in part, “(a) A Regional Water Board, in establishing…waste discharge requirements… may investigate the quality of any waters of the state within its region” and “(b) (1) In conducting an investigation…, the Regional Water Board may require that any person who… discharges… waste…that could affect the quality of waters within its region shall furnish, under penalty of perjury, technical or monitoring program reports which the Regional Water Board requires. The burden, including costs, of these reports shall bear a reasonable relationship to the need for the report and the benefits to be obtained from the reports.” The burden, including costs, of these reports shall bear a reasonable relationship to the need for the report and the benefits to be obtained from the reports. In requiring those reports, the Central Valley Water Board shall provide the person with a written explanation with regard to the need for the reports, and shall identify the evidence that supports requiring that person to provide the reports. The Monitoring and Reporting Program is issued pursuant to Water Code section 13267. The groundwater monitoring and reporting program required by this Order and the Monitoring and Reporting Program are necessary to assure compliance with
these waste discharge requirements. The Discharger is responsible for the discharges of waste at the facility subject to this Order.

5. Monitoring of the groundwater must be conducted to determine if the discharge has caused an increase in constituent concentrations, when compared to background. The monitoring must, at a minimum, require a complete assessment of groundwater impacts including the vertical and lateral extent of degradation, an assessment of all wastewater-related constituents which may have migrated to groundwater, an analysis of whether additional or different methods of treatment or control of the discharge are necessary to provide best practicable treatment or control to comply with Resolution No. 68-16. Economic analysis is only one of many factors considered in determining best practicable treatment or control. If monitoring indicates that the discharge has incrementally increased constituent concentrations in groundwater above background, this permit may be reopened and modified. Until groundwater monitoring is sufficient, this Order contains Groundwater Limitations that allow groundwater quality to be degraded for certain constituents when compared to background groundwater quality, but not to exceed water quality objectives. If groundwater quality has been degraded by the discharge, the incremental change in pollutant concentration (when compared with background) may not be increased. If groundwater quality has been or may be degraded by the discharge, this Order may be reopened and specific numeric limitations established consistent with Resolution No. 68-16 and the Basin Plan.

6. This Order requires the Discharger to install groundwater monitoring wells and includes a regular schedule of groundwater monitoring in the attached Monitoring and Reporting Program (Attachment E). The groundwater monitoring is necessary to evaluate impacts to waters of the State to assure protection of beneficial uses and compliance with Regional Water Board plans and policies, including Resolution No. 68-16. Evidence in the record includes effluent monitoring data that indicates the presence of constituents that may degrade groundwater and surface water.

E. Other Monitoring Requirements

1. Water Supply Monitoring

Water supply monitoring is required to evaluate the source of constituents in the wastewater.

2. Biosolids Monitoring

Biosolids monitoring is required to ensure compliance with the biosolids disposal requirements contained in the Special Provision contained in section VI.C.6.a of this Order. Biosolids disposal requirements are imposed pursuant to 40 CFR Part 503 to protect public health and prevent groundwater degradation.
3. Pond Monitoring

Treatment pond monitoring is required to ensure proper operation of the storage pond. Monthly monitoring for dissolved oxygen, freeboard, odors, excessive weed growth and other nuisances has been retained from Order No. R5-2007-0019.

4. Effluent and Receiving Water Characterization Study.

An effluent and receiving water monitoring study is required to ensure adequate information is available for the next permit renewal. **Twice during the third year of this permit term**, the Discharger is required to conduct monitoring of the effluent at EFF-001 and of the receiving water at RSW-001 for all priority pollutants and other constituents of concern as described in Attachment I. Dioxin and furan sampling shall be performed **once during the third year**, as described in Attachment J.

VII. RATIONALE FOR PROVISIONS

A. Standard Provisions

Standard Provisions, which apply to all NPDES permits in accordance with 40 CFR 122.41, and additional conditions applicable to specified categories of permits in accordance with 40 CFR 122.42, are provided in Attachment D. The discharger must comply with all standard provisions and with those additional conditions that are applicable under 40 CFR 122.42.

40 CFR 122.41(a)(1) and (b) through (n) establish conditions that apply to all State-issued NPDES permits. These conditions must be incorporated into the permits either expressly or by reference. If incorporated by reference, a specific citation to the regulations must be included in the Order. 40 CFR 123.25(a)(12) allows the state to omit or modify conditions to impose more stringent requirements. In accordance with 40 CFR 123.25, this Order omits federal conditions that address enforcement authority specified in 40 CFR 122.41(j)(5) and (k)(2) because the enforcement authority under the Water Code is more stringent. In lieu of these conditions, this Order incorporates by reference Water Code section 13387(e).

B. Special Provisions

1. Reopener Provisions

 a. **Mercury.** This provision allows the Central Valley Water Board to reopen this Order in the event mercury is found to be causing toxicity based on acute or chronic toxicity test results, or if a TMDL program is adopted. In addition, this Order may be reopened if the Central Valley Water Board determines that a mercury offset program is feasible for dischargers subject to NPDES permits.

 7. **Pollution Prevention.** This Order requires the Discharger prepare pollution prevention plans following Water Code section 13263.3(d)(3) for ammonia. This reopener provision allows the Central Valley Water Board to reopen this Order.
for addition and/or modification of effluent limitations and requirements for these constituents based on a review of the pollution prevention plans.

8. **Whole Effluent Toxicity.** This Order requires the Discharger to investigate the causes of, and identify corrective actions to reduce or eliminate effluent toxicity through a Toxicity Reduction Evaluation (TRE). This Order may be reopened to include a numeric chronic toxicity limitation, a new acute toxicity limitation, and/or a limitation for a specific toxicant identified in the TRE. Additionally, if a numeric chronic toxicity water quality objective is adopted by the State Water Board, this Order may be reopened to include a numeric chronic toxicity limitation based on that objective.

9. **Water Effects Ratio (WER) and Metal Translators.** A default WER of 1.0 has been used in this Order for calculating CTR criteria for applicable priority pollutant inorganic constituents. In addition, default dissolved-to-total metal translators have been used to convert water quality objectives from dissolved to total recoverable when developing effluent limitations. If the Discharger performs studies to determine site-specific WERs and/or site-specific dissolved-to-total metal translators, this Order may be reopened to modify the effluent limitations for the applicable inorganic constituents.

10. **Mixing Zone/Dilution Study.** The Order requires the Discharger to conduct a Dilution/Mixing Zone Study which meets the requirements of Section 1.4.2.2 of the SIP. This Order includes a reopener for effluent limitations and the chronic toxicity monitoring trigger, based on an appropriate dilution factor if the Discharger submits and approved Dilution/Mixing Zone Study, makes any necessary physical improvements, and the Central Valley Water Board decides to grant dilution credits and mixing zones.

11. **Constituent Study.** There are indications that the discharge may contain constituents that have a reasonable potential to cause or contribute to an exceedance of water quality objectives. This Order requires the Discharger to complete a study of these constituents' potential effect in the receiving water. This reopener provision allows the Central Valley Water Board to reopen this Order for addition of effluent limitations and requirements for these constituents if after review of the study results it is determined that the discharge has reasonable potential to cause or contribute to an exceedance of a water quality objective.

2. **Special Studies and Additional Monitoring Requirements**

 a. **Chronic Whole Effluent Toxicity Requirements.** The Basin Plan contains a narrative toxicity objective that states, “All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life.” (Basin Plan at page III-8.00.)

 The Monitoring and Reporting Program of this Order requires chronic WET monitoring for demonstration of compliance with the narrative toxicity objective.
In addition to WET monitoring, this provision requires the Discharger to submit to the Central Valley Water Board an Initial Investigative TRE Workplan for approval by the Executive Officer, to ensure the Discharger has a plan to immediately move forward with the initial tiers of a TRE, in the event effluent toxicity is encountered in the future. The provision also includes a numeric toxicity monitoring trigger, requirements for accelerated monitoring, and requirements for TRE initiation if toxicity is demonstrated.

Monitoring Trigger. A numeric toxicity monitoring trigger of \(> 1 \) TUs (where TUs = 100/NOEC) is applied in the provision, because this Order does not allow any dilution for the chronic condition. Therefore, a TRE is triggered when the effluent exhibits toxicity at 100% effluent.

Accelerated Monitoring. The provision requires accelerated WET testing when a regular WET test result exceeds the monitoring trigger. The purpose of accelerated monitoring is to determine, in an expedient manner, whether there is toxicity before requiring the implementation of a TRE. Due to possible seasonality of the toxicity, the accelerated monitoring should be performed in a timely manner, preferably taking no more than 2 to 3 months to complete.

The provision requires accelerated monitoring consisting of four chronic toxicity tests in a six-week period (i.e., one test every two weeks) using the species that exhibited toxicity. Guidance regarding accelerated monitoring and TRE initiation is provided in the *Technical Support Document for Water Quality-based Toxics Control*, EPA/505/2-90-001, March 1991 (TSD). The TSD at page 118 states, “*EPA recommends if toxicity is repeatedly or periodically present at levels above effluent limits more than 20 percent of the time, a TRE should be required.*” Therefore, four accelerated monitoring tests are required in this provision. If no toxicity is demonstrated in the four accelerated tests, then it demonstrates that toxicity is not present at levels above the monitoring trigger more than 20 percent of the time (only 1 of 5 tests are toxic, including the initial test). However, notwithstanding the accelerated monitoring results, if there is adequate evidence of effluent toxicity (i.e. toxicity present exceeding the monitoring trigger more than 20 percent of the time), the Executive Officer may require that the Discharger initiate a TRE.

See the WET Accelerated Monitoring Flow Chart (Figure F-1), below, for further clarification of the accelerated monitoring requirements and for the decision points for determining the need for TRE initiation.

TRE Guidance. The Discharger is required to prepare a TRE Workplan in accordance with USEPA guidance. Numerous guidance documents are available, as identified below:

Regular Effluent Toxicity Monitoring

- Test Acceptability Criteria (TAC) Met?
 - Yes: **Initiate Accelerated Monitoring** using the toxicity testing species that exhibited toxicity
 - No: Continue regular chronic toxicity monitoring

Monitoring Trigger Exceeded?

- Yes: Effluent toxicity easily identified (e.g., plant upset)
 - Yes: Implement Toxincity Reduction Evaluation
 - No: Continue regular chronic toxicity monitoring
- No: Re-sample and re-test as soon as possible, not to exceed 14-days from notification of test failure

Make facility corrections and complete accelerated monitoring to confirm removal of effluent toxicity

- No: Cease accelerated monitoring and resume regular chronic toxicity monitoring

Figure F-1

WET Accelerated Monitoring Flow Chart
12. **Constituent Study.** There are indications that the discharge may contain constituents that have a reasonable potential to cause or contribute to an exceedance of water quality objectives including aluminum, iron, thallium, and mercury. This Order requires the Discharger to complete a study of these constituents’ potential effect in the receiving water. If after a review of the study results it is determined that the discharge has reasonable potential to cause or contribute to an exceedance of a water quality objective this Order may be reopened and effluent limitations added for the subject constituents.

13. **Groundwater Monitoring.** To determine compliance with the groundwater limitations contained in section V.B. of this Order, the Discharger is required to install and monitor a groundwater monitoring well network. This provision requires the Discharger to install a groundwater monitoring network and ensure there are one or more background monitoring wells and a sufficient number of designated monitoring wells downgradient of every treatment, storage, and disposal unit that does or may release waste constituents to groundwater. Currently, there are no groundwater monitoring wells downgradient of the treatment ponds. The Discharger must install new groundwater monitoring wells, collect 2 years of monitoring data, and submit a report evaluating the underlying groundwater within 42 months following adoption of this Order.

14. **Best Practical Treatment or Control (BPTC).** If the groundwater monitoring results show that the discharge of waste is threatening to cause or has caused groundwater to contain waste constituents in concentrations statistically greater than background water quality, the Discharger shall submit, within 48 months following adoption of this Order, months following the first year of monitoring that documents constituent concentrations increased beyond background water quality, a BPTC Evaluation Work Plan. This work plan shall set forth a scope and schedule for a systematic and comprehensive technical evaluation of each component of the Facility’s waste management system to determine best practicable treatment or control for each of the waste constituents of concern. The work plan shall include a preliminary evaluation of each component of the waste management system and propose a time schedule for completing the comprehensive technical evaluation. The schedule to complete the evaluation shall be as short as practicable, and shall not exceed one year.

3. **Best Management Practices and Pollution Prevention**

 a. **Water Code section 13263.3(d)(3) Pollution Prevention Plans.** A pollution prevention plan for ammonia is required in this Order per Water Code section 13263.3(d)(1)(C). The pollution prevention plan required in section Vi.C.7.a of this Order, shall at a minimum meet the requirements outlined in Water Code section 13263.3(d)(3). The following minimum requirements for the pollution prevention plan include the following:

 i. An estimate of all of the sources of a pollutant contributing, or potentially contributing, to the loadings of a pollutant in the treatment plant influent.
ii. An analysis of the methods that could be used to prevent the discharge of the pollutants into the Facility, including application of local limits to industrial or commercial dischargers regarding pollution prevention techniques, public education and outreach, or other innovative and alternative approaches to reduce discharges of the pollutant to the Facility. The analysis also shall identify sources, or potential sources, not within the ability or authority of the Discharger to control, such as pollutants in the potable water supply, airborne pollutants, pharmaceuticals, or pesticides, and estimate the magnitude of those sources, to the extent feasible.

iii. An estimate of load reductions that may be attained through the methods identified in subparagraph ii.

iv. A plan for monitoring the results of the pollution prevention program.

v. A description of the tasks, cost, and time required to investigate and implement various elements in the pollution prevention plan.

vi. A statement of the Discharger’s pollution prevention goals and strategies, including priorities for short-term and long-term action, and a description of the Discharger’s intended pollution prevention activities for the immediate future.

vii. A description of the Discharger’s existing pollution prevention programs.

viii. An analysis, to the extent feasible, of any adverse environmental impacts, including cross-media impacts or substitute chemicals that may result from the implementation of the pollution prevention program.

ix. An analysis, to the extent feasible, of the costs and benefits that may be incurred to implement the pollution prevention program.

b. Salinity Evaluation and Minimization Plan. An Evaluation and Minimization Plan for salinity is required in this Order to ensure adequate measures are developed and implemented by the Discharger to reduce the discharge of salinity to the Middle Fork of the Feather River.

4. Construction, Operation, and Maintenance Specifications

a. Certified Operator Requirement. The Discharger shall provide certified wastewater treatment plant operators in accordance with regulations adopted by the State Board.

b. Pond Operating Requirements. The operation and maintenance specifications for the treatment ponds are necessary to protect the beneficial uses of the groundwater. The specifications included in this Order are retained from Order No. R5-2007-0019. In addition, reporting requirements related to use of the treatment ponds are required to monitor their use and the potential impact on groundwater.
5. Special Provisions for Municipal Facilities (POTWs Only)

a. Pretreatment Requirements. Consistent with Order No. R5-2007-0019, this Order requires the Discharger to implement the necessary legal authorities, programs, and controls to ensure that incompatible wastes are not introduced into the treatment system and to ensure that indirect discharges do not introduce pollutants into the sewerage system.

The design flow of the Facility is less than 5 mgd, and the facility does not receive discharges from industrial users. Under these conditions, the Discharger is not required to develop a pretreatment program pursuant to USEPA regulations at 40 CFR Part 403.

b. Collection System. The State Water Board issued General Waste Discharge Requirements for Sanitary Sewer Systems, Water Quality Order No. 2006-0003-DWQ (General Order) on 2 May 2006. The General Order requires public agencies that own or operate sanitary sewer systems with greater than one mile of pipes or sewer lines to enroll for coverage under the General Order. The General Order requires agencies to develop sanitary sewer management plans (SSMPs) and report all sanitary sewer overflows (SSOs), among other requirements and prohibitions.

Furthermore, the General Order contains requirements for operation and maintenance of collection systems and for reporting and mitigating sanitary sewer overflows. Inasmuch that the Discharger’s collection system is part of the system that is subject to this Order, certain standard provisions are applicable as specified in Provisions, section VI.C.5. For instance, the 24-hour reporting requirements in this Order are not included in the General Order. The Discharger must comply with both the General Order and this Order. The Discharger and public agencies that are discharging wastewater into the facility were required to obtain enrollment for regulation under the General Order by 1 December 2006.

c. Continuous Monitoring Systems. This Order, and the Monitoring and Reporting Program which is a part of this Order, requires that certain parameters be monitored on a continuous basis. The Facility is not staffed 24 hours a day. Permit violations or system upsets can go undetected during the time when there is no staff on-site. The Discharger is required to establish an electronic system for operator notification based on continuous recording device alarms. For any future Facility upgrades, the Discharger shall upgrade the continuous monitoring and notification system simultaneously.

6. Other Special Provisions – Not Applicable

7. Compliance Schedules

a. The Discharger submitted a request, and justification on 28 March 2012 for a compliance schedule for ammonia. The compliance schedule justification
included all items specified in the Compliance Schedule Policy. This Order establishes a compliance schedule for the new, final, WQBELs for ammonia and requires full compliance by the permit expiration date.

VIII. PUBLIC PARTICIPATION

The Central Valley Water Board is considering the issuance of WDRs that will serve as an NPDES permit for the Facility. As a step in the WDR adoption process, the Central Valley Water Board staff has developed tentative WDRs. The Central Valley Water Board encourages public participation in the WDR adoption process.

A. Notification of Interested Parties

The Central Valley Water Board has notified the Discharger and interested agencies and persons of its intent to prescribe waste discharge requirements for the discharge and has provided them with an opportunity to submit their written comments and recommendations. Notification was provided through direct mailings and internet posting.

B. Written Comments

The staff determinations are tentative. Interested persons are invited to submit written comments concerning these tentative WDRs. Comments must be submitted either in person or by mail to the Executive Office at the Central Valley Water Board at the address above on the cover page of this Order.

To be fully responded to by staff and considered by the Central Valley Water Board, written comments must be received at the Central Valley Water Board offices by 5:00 p.m. on 2 May 2012.

C. Public Hearing

The Central Valley Water Board will hold a public hearing on the tentative WDRs during its regular Board meeting on the following date and time and at the following location:

Date: 7, 8 June 2012
Time: 8:30 a.m.
Location: Regional Water Quality Control Board, Central Valley Region
11020 Sun Center Dr., Suite #200
Rancho Cordova, CA 95670

Interested persons are invited to attend. At the public hearing, the Central Valley Water Board will hear testimony, if any, pertinent to the discharge, WDRs, and permit. Oral testimony will be heard; however, for accuracy of the record, important testimony should be in writing.

Please be aware that dates and venues may change. Our Web address is www.waterboards.ca.gov/centralvalley where you can access the current agenda for changes in dates and locations.
D. Waste Discharge Requirements Petitions

Any aggrieved person may petition the State Water Board to review the decision of the Central Valley Water Board regarding the final WDRs. The petition must be submitted within 30 days of the Central Valley Water Board’s action to the following address:

State Water Resources Control Board
Office of Chief Counsel
P.O. Box 100, 1001 I Street
Sacramento, CA 95812-0100

E. Information and Copying

The Report of Waste Discharge, related documents, tentative effluent limitations and special provisions, comments received, and other information are on file and may be inspected at the address above at any time between 8:30 a.m. and 4:45 p.m., Monday through Friday. Copying of documents may be arranged through the Central Valley Water Board by calling (916) 464-3291.

F. Register of Interested Persons

Any person interested in being placed on the mailing list for information regarding the WDRs and NPDES permit should contact the Central Valley Water Board, reference this Facility, and provide a name, address, and phone number.

G. Additional Information

Requests for additional information or questions regarding this order should be directed to Jacqueline Matthews at (530) 224-3249.
ATTACHMENT G – SUMMARY OF REASONABLE POTENTIAL ANALYSIS

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>MEC</th>
<th>B</th>
<th>C</th>
<th>CMC</th>
<th>CCC</th>
<th>Water & Org</th>
<th>Org. Only</th>
<th>Basin Plan</th>
<th>MCL</th>
<th>Reasonable Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>μg/L</td>
<td>9</td>
<td>2.7</td>
<td>6.96</td>
<td>10.14</td>
<td>6.96</td>
<td>1300</td>
<td>--</td>
<td>--</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>Ammonia</td>
<td>mg/L</td>
<td>20</td>
<td>0.5</td>
<td>2.14</td>
<td>2.14</td>
<td>1.52</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
</tr>
<tr>
<td>Thallium</td>
<td>μg/L</td>
<td>2.7J</td>
<td>ND (2.4)</td>
<td>1.7</td>
<td>--</td>
<td>--</td>
<td>1.7</td>
<td>6.3</td>
<td>--</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Mercury</td>
<td>μg/L</td>
<td>0.0047</td>
<td>0.081J</td>
<td>0.05</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Aluminum</td>
<td>μg/L</td>
<td>53.4</td>
<td>891</td>
<td>87</td>
<td>750</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>200</td>
<td>Unknown</td>
</tr>
<tr>
<td>Iron</td>
<td>μg/L</td>
<td>350</td>
<td>480</td>
<td>300</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>300</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

General Note: All inorganic concentrations are given as a total recoverable.

MEC = Maximum Effluent Concentration
B = Maximum Receiving Water Concentration or lowest detection level, if non-detect
C = Criterion used for Reasonable Potential Analysis
CMC = Criterion Maximum Concentration (CTR or NTR)
CCC = Criterion Continuous Concentration (CTR or NTR)
Water & Org = Human Health Criterion for Consumption of Water & Organisms (CTR or NTR)
Org. Only = Human Health Criterion for Consumption of Organisms Only (CTR or NTR)
Basin Plan = Numeric Site-specific Basin Plan Water Quality Objective
MCL = Drinking Water Standards Maximum Contaminant Level
NA = Not Available
ND = Non-detect
J = Estimated Value

Footnotes:
1. USEPA National Recommended Ambient Water Quality Criteria, Freshwater Aquatic Life Protection, 1-hour Average.
2. USEPA National Recommended Ambient Water Quality Criteria, Freshwater Aquatic Life Protection, 30-day Average.
ATTACHMENT H – CALCULATION OF WQBELS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Most Stringent Criteria</th>
<th>HH Calculations</th>
<th>Aquatic Life Calculations<sup>1</sup></th>
<th>Final Effluent Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HH</td>
<td>CMC</td>
<td>CCC</td>
<td>ECA<sub>HH</sub></td>
</tr>
<tr>
<td>Ammonia Nitrogen, Total (as N)</td>
<td>μg/L</td>
<td>3.8<sup>3</sup></td>
<td>2.14</td>
<td>1.52</td>
<td>--</td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>μg/L</td>
<td>200</td>
<td>10.14</td>
<td>6.96</td>
<td>--</td>
</tr>
</tbody>
</table>

¹ As described in section IV.C.2.c and VI.C.3.d.i of the Fact Sheet (Attachment F), calculation of the ammonia effluent limitation (non-CTR constituent) for the protection aquatic life is determined with a dilution credit of 10.

² As described in section IV.C.2.c and VI.C.3.d.iii of the Fact Sheet (Attachment F), calculation of the copper effluent limitation (CTR constituent) for the protection of aquatic life is determined without the benefit of dilution.

³ Chronic 4-day.
ATTACHMENT I – EFFLUENT AND RECEIVING WATER CHARACTERIZATION STUDY

I. Background. Sections 2.4.1 through 2.4.4 of the SIP provide minimum standards for analyses and reporting. (Copies of the SIP may be obtained from the State Water Resources Control Board, or downloaded from http://www.waterboards.ca.gov/iswp/index.html). To implement the SIP, effluent and receiving water data are needed for all priority pollutants. Effluent and receiving water pH and hardness are required to evaluate the toxicity of certain priority pollutants (such as heavy metals) where the toxicity of the constituents varies with pH and/or hardness. Section 3 of the SIP prescribes mandatory monitoring of dioxin congeners. In addition to specific requirements of the SIP, the Central Valley Water Board is requiring the following monitoring:

A. Drinking water constituents. Constituents for which drinking water Maximum Contaminant Levels (MCLs) have been prescribed in the California Code of Regulation are included in the Water Quality Control Plan, Fourth Edition, for the Sacramento and San Joaquin River Basins (Basin Plan). The Basin Plan defines virtually all surface waters within the Central Valley Region as having existing or potential beneficial uses for municipal and domestic supply. The Basin Plan further requires that, at a minimum, water designated for use as domestic or municipal supply shall not contain concentrations of chemical constituents in excess of the MCLs contained in the California Code of Regulations.

B. Effluent and receiving water temperature. This is both a concern for application of certain temperature-sensitive constituents, such as fluoride, and for compliance with the Basin Plan’s thermal discharge requirements.

C. Effluent and receiving water hardness and pH. These are necessary because several of the CTR constituents are hardness and pH dependent.

D. Dioxin and furan sampling. Section 3 of the SIP has specific requirements for the collection of samples for analysis of dioxin and furan congeners, which are detailed in Attachment J. Pursuant to Section 13267 of the California Water Code, this Order includes a requirement for the Discharger to submit monitoring data for the effluent and receiving water as described in Attachment J.

II. Monitoring Requirements.

A. Priority pollutant samples shall be collected from the effluent and upstream receiving water (EFF-001 and RSW-001) and analyzed for the constituents listed in Table I-1 twice during the third year and the results of such monitoring be submitted to the Central Valley Water Board, during the fourth year of the permit term. Each individual monitoring event shall provide representative sample results for the effluent and upstream receiving water.

B. Semi-annual Monitoring (dioxins and furans only). Monitoring once during the third year of permit term is required for dioxins and furans, as specified in Attachment J.
results of dioxin and furan monitoring shall be submitted to the Central Valley Water Board with the priority data at the completion of the Effluent and Receiving Water Characterization Study (during the fourth year of the permit term).

C. **Concurrent Sampling.** Effluent and receiving water sampling shall be performed at approximately the same time, on the same date.

D. **Sample type.** All effluent samples shall be taken as 24-hour flow proportioned composite samples (samples taken from the last connection through which wastes can be admitted into the outfall will be considered adequately composited). All receiving water samples shall be taken as grab samples.

Table I-1. Priority Pollutants

<table>
<thead>
<tr>
<th>CTR #</th>
<th>Constituent</th>
<th>CAS Number</th>
<th>Criterion Quantitation Limit µg/L or noted</th>
<th>Suggested Test Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>1,1-Dichloroethane</td>
<td>75343</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>30</td>
<td>1,1-Dichloroethene</td>
<td>75354</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>41</td>
<td>1,1,1-Trichloroethane</td>
<td>71556</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>42</td>
<td>1,1,2-Trichloroethane</td>
<td>79005</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>37</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>79345</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>75</td>
<td>1,2-Dichlorobenzene</td>
<td>95501</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>29</td>
<td>1,2-Dichloroethane</td>
<td>107062</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethene</td>
<td>156592</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>31</td>
<td>1,2-Dichloropropane</td>
<td>78875</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>101</td>
<td>1,2,4-Trichlorobenzene</td>
<td>120821</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>76</td>
<td>1,3-Dichlorobenzene</td>
<td>541731</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>32</td>
<td>1,3-Dichloropropene</td>
<td>542756</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>77</td>
<td>1,4-Dichlorobenzene</td>
<td>106467</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>17</td>
<td>Acrolein</td>
<td>107028</td>
<td>2</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>18</td>
<td>Acrylonitrile</td>
<td>107131</td>
<td>2</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>19</td>
<td>Benzene</td>
<td>71432</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>20</td>
<td>Bromoform</td>
<td>75252</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>34</td>
<td>Bromomethane</td>
<td>74839</td>
<td>1</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>21</td>
<td>Carbon tetrachloride</td>
<td>56235</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>22</td>
<td>Chlorobenzene (mono chlorobenzene)</td>
<td>108907</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>24</td>
<td>Chloroethane</td>
<td>75003</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>25</td>
<td>2-Chloroethyl vinyl ether</td>
<td>110758</td>
<td>1</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>26</td>
<td>Chloroform</td>
<td>67663</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>35</td>
<td>Chloromethane</td>
<td>74873</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>23</td>
<td>Dibromochloromethane</td>
<td>124481</td>
<td>0.5</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>CTR #</td>
<td>Constituent</td>
<td>CAS Number</td>
<td>Criterion Quantitation Limit</td>
<td>Suggested Test Methods</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------------</td>
<td>------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>27</td>
<td>Dichlorobromomethane</td>
<td>75274</td>
<td>0.5 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>36</td>
<td>Dichloromethane</td>
<td>75092</td>
<td>0.5 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>33</td>
<td>Ethylbenzene</td>
<td>100414</td>
<td>0.5 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>88</td>
<td>Hexachlorobenzene</td>
<td>118741</td>
<td>1 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>89</td>
<td>Hexachlorobutadiene</td>
<td>87683</td>
<td>1 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>91</td>
<td>Hexachloroethane</td>
<td>67721</td>
<td>1 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>94</td>
<td>Naphthalene</td>
<td>91203</td>
<td>10 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>38</td>
<td>Tetrachloroethene</td>
<td>127184</td>
<td>0.5 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>39</td>
<td>Toluene</td>
<td>108883</td>
<td>0.5 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>40</td>
<td>trans-1,2-Dichloroethylene</td>
<td>156605</td>
<td>0.5 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>43</td>
<td>Trichloroethene</td>
<td>79016</td>
<td>0.5 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>44</td>
<td>Vinyl chloride</td>
<td>75014</td>
<td>0.5 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td></td>
<td>Methyl-tert-butyl ether (MTBE)</td>
<td>1634044</td>
<td>0.5 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>75694</td>
<td>5 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>76131</td>
<td>10 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td>100425</td>
<td>0.5 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td>1330207</td>
<td>0.5 μg/L or noted</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td>60</td>
<td>1,2-Benzanthracene</td>
<td>56553</td>
<td>5 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>85</td>
<td>1,2-Diphenylhydrazine</td>
<td>122667</td>
<td>1 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>45</td>
<td>2-Chlorophenol</td>
<td>95578</td>
<td>2 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>46</td>
<td>2,4-Dichlorophenol</td>
<td>120832</td>
<td>1 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>47</td>
<td>2,4-Dimethylphenol</td>
<td>105679</td>
<td>2 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>49</td>
<td>2,4-Dinitrophenol</td>
<td>51285</td>
<td>5 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>82</td>
<td>2,4-Dinitrotoluene</td>
<td>121142</td>
<td>5 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>55</td>
<td>2,4,6-Trichlorophenol</td>
<td>88062</td>
<td>10 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>83</td>
<td>2,6-Dinitrotoluene</td>
<td>606202</td>
<td>5 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>50</td>
<td>2-Nitrophenol</td>
<td>25154557</td>
<td>10 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>71</td>
<td>2-Chloronaphthalene</td>
<td>91587</td>
<td>10 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>78</td>
<td>3,3'-Dichlorobenzidine</td>
<td>91941</td>
<td>5 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>62</td>
<td>3,4-Benzofluoranthene</td>
<td>205992</td>
<td>10 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>52</td>
<td>4-Chloro-3-methylphenol</td>
<td>59507</td>
<td>5 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>48</td>
<td>4,6-Dinitro-2-methylphenol</td>
<td>534521</td>
<td>10 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>51</td>
<td>4-Nitrophenol</td>
<td>100027</td>
<td>5 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>69</td>
<td>4-Bromophenyl phenyl ether</td>
<td>101553</td>
<td>10 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>72</td>
<td>4-Chlorophenyl phenyl ether</td>
<td>7005723</td>
<td>5 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>56</td>
<td>Acenaphthene</td>
<td>83329</td>
<td>1 μg/L or noted</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>CTR #</td>
<td>Constituent</td>
<td>CAS Number</td>
<td>Criterion Quantitation Limit μg/L or noted</td>
<td>Suggested Test Methods</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>57</td>
<td>Acenaphthylene</td>
<td>208968</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>58</td>
<td>Anthracene</td>
<td>120127</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>59</td>
<td>Benzidine</td>
<td>92875</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>60</td>
<td>Benzo(a)pyrene (3,4-Benzo(pyrene)</td>
<td>50328</td>
<td>0.1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>63</td>
<td>Benzo(g,h,i)perylene</td>
<td>191242</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>64</td>
<td>Benzo(k)fluoranthene</td>
<td>207089</td>
<td>2</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>65</td>
<td>Bis(2-chloroethoxy) methane</td>
<td>111911</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>66</td>
<td>Bis(2-chloroethyl) ether</td>
<td>111444</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>67</td>
<td>Bis(2-chloroisopropyl) ether</td>
<td>39638329</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>68</td>
<td>Bis(2-ethylhexyl) phthalate</td>
<td>117817</td>
<td>3</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>70</td>
<td>Butyl benzyl phthalate</td>
<td>85687</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>73</td>
<td>Chrysene</td>
<td>218019</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>81</td>
<td>Di-n-butylphthalate</td>
<td>84742</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>84</td>
<td>Di-n-octylphthalate</td>
<td>117840</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>74</td>
<td>Dibenzo(a,h)-anthracene</td>
<td>53703</td>
<td>0.1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>79</td>
<td>Diethyl phthalate</td>
<td>84662</td>
<td>2</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>80</td>
<td>Dimethyl phthalate</td>
<td>131113</td>
<td>2</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>86</td>
<td>Fluoranthene</td>
<td>206440</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>87</td>
<td>Fluorene</td>
<td>86737</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>90</td>
<td>Hexachlorocyclopentadiene</td>
<td>77474</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>92</td>
<td>Indeno(1,2,3-c,d)pyrene</td>
<td>193395</td>
<td>0.05</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>93</td>
<td>Isophorone</td>
<td>78591</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>98</td>
<td>N-Nitrosodiphenylamine</td>
<td>86306</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>96</td>
<td>N-Nitrosodimethylamine</td>
<td>62759</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>97</td>
<td>N-Nitrosodi-n-propylamine</td>
<td>621647</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>95</td>
<td>Nitrobenzene</td>
<td>98953</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>53</td>
<td>Pentachlorophenol</td>
<td>87865</td>
<td>0.2</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>99</td>
<td>Phenanthrene</td>
<td>85018</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>54</td>
<td>Phenol</td>
<td>108952</td>
<td>1</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td>100</td>
<td>Pyrene</td>
<td>129000</td>
<td>10</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td></td>
<td>Aluminum</td>
<td>7429905</td>
<td>50</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>1</td>
<td>Antimony</td>
<td>7440360</td>
<td>5</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>2</td>
<td>Arsenic</td>
<td>7440382</td>
<td>0.01</td>
<td>EPA 1632</td>
</tr>
<tr>
<td>15</td>
<td>Asbestos</td>
<td>1332214</td>
<td>0.2 MFL</td>
<td>EPA/600/R-93/116(PCM)</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>7440393</td>
<td>100</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>3</td>
<td>Beryllium</td>
<td>7440417</td>
<td>1</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>CTR #</td>
<td>Constituent</td>
<td>CAS Number</td>
<td>Criterion Quantitation Limit</td>
<td>Suggested Test Methods</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Cadmium</td>
<td>7440439</td>
<td>0.25 µg/L or noted</td>
<td>EPA 1638/200.8</td>
</tr>
<tr>
<td>5a</td>
<td>Chromium (total)</td>
<td>7440473</td>
<td>2 µg/L</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>5b</td>
<td>Chromium (VI)</td>
<td>18540299</td>
<td>0.5 µg/L</td>
<td>EPA 7199/1636</td>
</tr>
<tr>
<td>6</td>
<td>Copper</td>
<td>7440508</td>
<td>0.5 µg/L</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>14</td>
<td>Cyanide</td>
<td>57125</td>
<td>5 µg/L</td>
<td>EPA 9012A</td>
</tr>
<tr>
<td></td>
<td>Fluoride</td>
<td>7782414</td>
<td>0.1 µg/L</td>
<td>EPA 300</td>
</tr>
<tr>
<td>7</td>
<td>Lead</td>
<td>7439921</td>
<td>0.5 µg/L</td>
<td>EPA 1638</td>
</tr>
<tr>
<td>8</td>
<td>Mercury</td>
<td>7439976</td>
<td>0.0002 (11) µg/L</td>
<td>EPA 1669/1631</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>7439965</td>
<td>20 µg/L</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>9</td>
<td>Nickel</td>
<td>7440020</td>
<td>5 µg/L</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>10</td>
<td>Selenium</td>
<td>7782492</td>
<td>5 µg/L</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>11</td>
<td>Silver</td>
<td>7440224</td>
<td>1 µg/L</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>12</td>
<td>Thallium</td>
<td>7440280</td>
<td>1 µg/L</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td></td>
<td>Tributyltin</td>
<td>688733</td>
<td>0.002 µg/L</td>
<td>EV-024/025</td>
</tr>
<tr>
<td>13</td>
<td>Zinc</td>
<td>7440666</td>
<td>10 µg/L</td>
<td>EPA 6020/200.8</td>
</tr>
<tr>
<td>102</td>
<td>Aldrin</td>
<td>309002</td>
<td>0.005 µg/L</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td>113</td>
<td>beta-Endosulfan</td>
<td>33213659</td>
<td>0.01 µg/L</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td>104</td>
<td>beta-Hexachlorocyclohexane</td>
<td>319857</td>
<td>0.05 µg/L</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td>107</td>
<td>Chlordane</td>
<td>57749</td>
<td>0.1 µg/L</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td>106</td>
<td>delta-Hexachlorocyclohexane</td>
<td>319868</td>
<td>0.05 µg/L</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td>111</td>
<td>Dieldrin</td>
<td>60571</td>
<td>0.01 µg/L</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td>114</td>
<td>Endosulfan sulfate</td>
<td>1031079</td>
<td>0.05 µg/L</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td>115</td>
<td>Endrin</td>
<td>72208</td>
<td>0.01 µg/L</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td>116</td>
<td>Endrin Aldehyde</td>
<td>7421934</td>
<td>0.01 µg/L</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td>117</td>
<td>Heptachlor</td>
<td>76448</td>
<td>0.01 µg/L</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td>118</td>
<td>Heptachlor Epoxide</td>
<td>1024573</td>
<td>0.01 µg/L</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td>105</td>
<td>Lindane (gamma-Hexachlorocyclohexane)</td>
<td>58899</td>
<td>0.019 µg/L</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td>119</td>
<td>PCB-1016</td>
<td>12674112</td>
<td>0.5 µg/L</td>
<td>EPA 8082</td>
</tr>
<tr>
<td>120</td>
<td>PCB-1221</td>
<td>11104282</td>
<td>0.5 µg/L</td>
<td>EPA 8082</td>
</tr>
<tr>
<td>CTR #</td>
<td>Constituent</td>
<td>CAS Number</td>
<td>Criterion Limit (µg/L or noted)</td>
<td>Suggested Test Methods</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
<td>------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>121</td>
<td>PCB-1232</td>
<td>11141165</td>
<td>0.5</td>
<td>EPA 8082</td>
</tr>
<tr>
<td>122</td>
<td>PCB-1242</td>
<td>53469219</td>
<td>0.5</td>
<td>EPA 8082</td>
</tr>
<tr>
<td>123</td>
<td>PCB-1248</td>
<td>12672296</td>
<td>0.5</td>
<td>EPA 8082</td>
</tr>
<tr>
<td>124</td>
<td>PCB-1254</td>
<td>11097691</td>
<td>0.5</td>
<td>EPA 8082</td>
</tr>
<tr>
<td>125</td>
<td>PCB-1260</td>
<td>11096825</td>
<td>0.5</td>
<td>EPA 8082</td>
</tr>
<tr>
<td>126</td>
<td>Toxaphene</td>
<td>8001352</td>
<td>0.5</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td></td>
<td>Atrazine</td>
<td>1912249</td>
<td>1</td>
<td>EPA 8141A</td>
</tr>
<tr>
<td></td>
<td>Bentazon</td>
<td>25057890</td>
<td>2</td>
<td>EPA 643/515.2</td>
</tr>
<tr>
<td></td>
<td>Carbofuran</td>
<td>1563662</td>
<td>5</td>
<td>EPA 8318</td>
</tr>
<tr>
<td></td>
<td>2,4-D</td>
<td>94757</td>
<td>10</td>
<td>EPA 8151A</td>
</tr>
<tr>
<td></td>
<td>Dalapon</td>
<td>75990</td>
<td>10</td>
<td>EPA 8151A</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropane (DBCP)</td>
<td>96128</td>
<td>0.01</td>
<td>EPA 8260B</td>
</tr>
<tr>
<td></td>
<td>Di(2-ethylhexyl)adipate</td>
<td>103231</td>
<td>5</td>
<td>EPA 8270C</td>
</tr>
<tr>
<td></td>
<td>Dinoseb</td>
<td>88857</td>
<td>2</td>
<td>EPA 8151A</td>
</tr>
<tr>
<td></td>
<td>Diquat</td>
<td>85007</td>
<td>4</td>
<td>EPA 8340/549.1/HPLC</td>
</tr>
<tr>
<td></td>
<td>Endothal</td>
<td>145733</td>
<td>45</td>
<td>EPA 548.1</td>
</tr>
<tr>
<td></td>
<td>Ethylene Dibromide</td>
<td>106934</td>
<td>0.02</td>
<td>EPA 8260B/504</td>
</tr>
<tr>
<td></td>
<td>Glyphosate</td>
<td>1071836</td>
<td>25</td>
<td>HPLC/EPA 547</td>
</tr>
<tr>
<td></td>
<td>Methoxychlor</td>
<td>72435</td>
<td>10</td>
<td>EPA 8081A</td>
</tr>
<tr>
<td></td>
<td>Molinate (Ordram)</td>
<td>2212671</td>
<td>2</td>
<td>EPA 634</td>
</tr>
<tr>
<td></td>
<td>Oxamyl</td>
<td>23135220</td>
<td>20</td>
<td>EPA 8318/632</td>
</tr>
<tr>
<td></td>
<td>Picloram</td>
<td>1918021</td>
<td>1</td>
<td>EPA 8151A</td>
</tr>
<tr>
<td></td>
<td>Simazine (Princep)</td>
<td>122349</td>
<td>1</td>
<td>EPA 8141A</td>
</tr>
<tr>
<td></td>
<td>Thiobencarb</td>
<td>28249776</td>
<td>1</td>
<td>HPLC/EPA 639</td>
</tr>
<tr>
<td>16</td>
<td>2,3,7,8-TCDD (Dioxin)</td>
<td>1746016</td>
<td>5.00E-06</td>
<td>EPA 8290 (HRGC) MS</td>
</tr>
<tr>
<td></td>
<td>2,4,5-TP (Silvex)</td>
<td>93765</td>
<td>1</td>
<td>EPA 8151A</td>
</tr>
<tr>
<td></td>
<td>Diazinon</td>
<td>333415</td>
<td>0.25</td>
<td>EPA 8141A/GCMS</td>
</tr>
<tr>
<td></td>
<td>Chlorpyrifos</td>
<td>2921882</td>
<td>1</td>
<td>EPA 8141A/GCMS</td>
</tr>
<tr>
<td></td>
<td>Ammonia (as N)</td>
<td>7664417</td>
<td>1</td>
<td>EPA 350.1</td>
</tr>
<tr>
<td></td>
<td>Chloride</td>
<td>16887006</td>
<td>1</td>
<td>EPA 300.0</td>
</tr>
<tr>
<td></td>
<td>Flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardness (as CaCO₃)</td>
<td></td>
<td></td>
<td>EPA 130.2</td>
</tr>
<tr>
<td></td>
<td>Foaming Agents (MBAS)</td>
<td></td>
<td></td>
<td>SM5540C</td>
</tr>
<tr>
<td></td>
<td>Nitrate (as N)</td>
<td>14797558</td>
<td>2,000</td>
<td>EPA 300.0</td>
</tr>
<tr>
<td></td>
<td>Nitrite (as N)</td>
<td>14797650</td>
<td>400</td>
<td>EPA 300.0</td>
</tr>
<tr>
<td>CTR #</td>
<td>Constituent</td>
<td>CAS Number</td>
<td>Criterion Quantitation Limit $\mu g/L$ or noted</td>
<td>Suggested Test Methods</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td></td>
<td>0.1</td>
<td>EPA 150.1</td>
</tr>
<tr>
<td></td>
<td>Phosphorus, Total (as P)</td>
<td>7723140</td>
<td></td>
<td>EPA 365.3</td>
</tr>
<tr>
<td></td>
<td>Specific conductance (EC)</td>
<td></td>
<td></td>
<td>EPA 120.1</td>
</tr>
<tr>
<td></td>
<td>Sulfate</td>
<td></td>
<td>500</td>
<td>EPA 300.0</td>
</tr>
<tr>
<td></td>
<td>Sulfide (as S)</td>
<td></td>
<td></td>
<td>EPA 376.2</td>
</tr>
<tr>
<td></td>
<td>Sulfite (as SO$_3$)</td>
<td></td>
<td></td>
<td>SM4500-SO3</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Dissolved Solids (TDS)</td>
<td></td>
<td></td>
<td>EPA 160.1</td>
</tr>
</tbody>
</table>

III. Additional Study Requirements

A. Laboratory Requirements. The laboratory analyzing the monitoring samples shall be certified by the Department of Health Services in accordance with the provisions of Water Code 13176 and must include quality assurance/quality control data with their reports (ELAP certified).

B. Criterion Quantitation Limit (CQL). The criterion quantitation limits will be equal to or lower than the minimum levels (MLs) in Appendix 4 of the SIP or the detection limits for purposes of reporting (DLRs) below the controlling water quality criterion concentrations summarized in Table I-1 of this Order. In cases where the controlling water quality criteria concentrations are below the detection limits of all approved analytical methods, the best available procedure will be utilized that meets the lowest of the MLs and DLR. Table I-1 contains suggested analytical procedures. The Discharger is not required to use these specific procedures as long as the procedure selected achieves the desired minimum detection level.

C. Method Detection Limit (MDL). The method detection limit for the laboratory shall be determined by the procedure found in 40 CFR Part 136, Appendix B (revised as of May 14, 1999).

D. Reporting Limit (RL). The reporting limit for the laboratory. This is the lowest quantifiable concentration that the laboratory can determine. Ideally, the RL should be equal to or lower than the CQL to meet the purposes of this monitoring.

E. Reporting Protocols. The results of analytical determinations for the presence of chemical constituents in a sample shall use the following reporting protocols:

1. Sample results greater than or equal to the reported RL shall be reported as measured by the laboratory (i.e., the measured chemical concentration in the sample).
2. Sample results less than the reported RL, but greater than or equal to the laboratory’s MDL, shall be reported as “Detected, but Not Quantified,” or DNQ. The estimated chemical concentration of the sample shall also be reported.

3. For the purposes of data collection, the laboratory shall write the estimated chemical concentration next to DNQ as well as the words “Estimated Concentration” (may shortened to “Est. Conc.”). The laboratory, if such information is available, may include numerical estimates of the data quantity for the reported result. Numerical estimates of data quality may be percent accuracy (+ or – a percentage of the reported value), numerical ranges (low and high), or any other means considered appropriate by the laboratory.

4. Sample results that are less than the laboratory’s MDL shall be reported as “Not Detected” or ND.

F. **Data Format.** The monitoring report shall contain the following information for each pollutant:

1. The name of the constituent.
2. Sampling location.
3. The date the sample was collected.
4. The time the sample was collected.
5. The date the sample was analyzed. For organic analyses, the extraction data will also be indicated to assure that hold times are not exceeded for prepared samples.
6. The analytical method utilized.
7. The measured or estimated concentration.
8. The required Criterion Quantitation Limit (CQL).
10. The laboratory’s lowest reporting limit (RL).
11. Any additional comments.
ATTACHMENT J – DIOXIN AND FURAN SAMPLING

The CTR includes criteria for 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). In addition to this compound, there are many congeners of chlorinated dibenzodioxins (2,3,7,8-CDDs) and chlorinated dibenzofurans (2,3,7,8-CDFs) that exhibit toxic effects similar to those of 2,3,7,8-TCDD. The USEPA has published toxic equivalency factors (TEFs) for 17 of the congeners. The TEFs express the relative toxicities of the congeners compared to 2,3,7,8-TCDD (whose TEF equals 1.0). In June 1997, participants in a World Health Organization (WHO) expert meeting revised TEF values for 1,2,3,7,8-PentaCDD, OctaCDD, and OctaCDF. The current TEFs for the 17 congeners, which include the three revised values, are shown below:

<table>
<thead>
<tr>
<th>Congener</th>
<th>TEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,7,8-TetraCDD</td>
<td>1</td>
</tr>
<tr>
<td>1,2,3,7,8-PentaCDD</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HexaCDD</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,6,7,8-HexaCDD</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,7,8,9-HexaCDD</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HeptaCDD</td>
<td>0.01</td>
</tr>
<tr>
<td>OctaCDD</td>
<td>0.0001</td>
</tr>
<tr>
<td>2,3,7,8-TetraCDF</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,7,8-PentaCDF</td>
<td>0.05</td>
</tr>
<tr>
<td>2,3,4,7,8-PentaCDF</td>
<td>0.5</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HexaCDF</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,6,7,8-HexaCDF</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,7,8,9-HexaCDF</td>
<td>0.1</td>
</tr>
<tr>
<td>2,3,4,6,7,8-HexaCDF</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HeptaCDF</td>
<td>0.01</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-HeptaCDF</td>
<td>0.01</td>
</tr>
<tr>
<td>OctaCDF</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

The Discharger shall conduct effluent and upstream receiving water monitoring for the 2,3,7,8-TCDD congeners listed above to assess the presence and amounts of the congeners being discharged and already present in the receiving water. Effluent and upstream upstream receiving water shall be monitored for the presence of the 17 congeners once during the third year of the permit term.

The Discharger shall report, for each congener, the analytical results of the effluent and receiving water monitoring, including the quantifiable limit and the method detection limit, and the measured or estimated concentration.

In addition, the Discharger shall multiply each measured or estimated congener concentration by its respective TEF value and report the sum of these values.
ATTACHMENT K – REQUIREMENTS FOR MONITORING WELL INSTALLATION WORKPLANS AND REPORTS

Prior to installation of groundwater monitoring wells, the Discharger shall submit a workplan containing, at a minimum, the information listed in Section 1, below. Wells may be installed after staff approval of the workplan. Upon installation of the monitoring wells, the Discharger shall submit a well installation report which includes the information contained in Section 2, below. All workplans and reports must be prepared under the direction of, and signed by, a registered geologist or civil engineer licensed by the State of California.

SECTION 1 - MONITORING WELL INSTALLATION WORKPLAN AND GROUNDWATER SAMPLING AND ANALYSIS PLAN

The monitoring well installation workplan shall contain the following minimum information:

A. General Information:
 - Purpose of the well installation project
 - Brief description of local geologic and hydrogeologic conditions
 - Proposed monitoring well locations and rationale for well locations
 - Topographic map showing facility location, roads, and surface water bodies
 - Large scaled site map showing all existing on-site wells, proposed wells, surface drainage courses, surface water bodies, buildings, waste handling facilities, utilities, and major physical and man-made features

B. Drilling Details:
 - On-site supervision of drilling and well installation activities
 - Description of drilling equipment and techniques
 - Equipment decontamination procedures
 - Soil sampling intervals (if appropriate) and logging methods

C. Monitoring Well Design (in narrative and/or graphic form):
 - Diagram of proposed well construction details
 - Borehole diameter
 - Casing and screen material, diameter, and centralizer spacing (if needed)
 - Type of well caps (bottom cap either screw on or secured with stainless steel screws)
 - Anticipated depth of well, length of well casing, and length and position of perforated interval
 - Thickness, position and composition of surface seal, sanitary seal, and sand pack
 - Anticipated screen slot size and filter pack

D. Well Development (not to be performed until at least 48 hours after sanitary seal placement):
 - Method of development to be used (i.e., surge, bail, pump, etc.)
 - Parameters to be monitored during development and record keeping technique
Method of determining when development is complete
Disposal of development water

E. Well Survey (precision of vertical survey data shall be at least 0.01 foot):
 Identify the Licensed Land Surveyor or Civil Engineer that will perform the survey
 Datum for survey measurements
 List well features to be surveyed (i.e. top of casing, horizontal and vertical coordinates, etc.)

F. Schedule for Completion of Work

G. Appendix: Groundwater Sampling and Analysis Plan (SAP)
The Groundwater SAP shall be included as an appendix to the workplan, and shall be utilized as a guidance document that is referred to by individuals responsible for conducting groundwater monitoring and sampling activities.

Provide a detailed written description of standard operating procedures for the following:
 - Equipment to be used during sampling
 - Equipment decontamination procedures
 - Water level measurement procedures
 - Well purging (include a discussion of procedures to follow if three casing volumes cannot be purged)
 - Monitoring and record keeping during water level measurement and well purging (include copies of record keeping logs to be used)
 - Purge water disposal
 - Analytical methods and required reporting limits
 - Sample containers and preservatives
 - Sampling
 - General sampling techniques
 - Record keeping during sampling (include copies of record keeping logs to be used)
 - QA/QC samples
 - Chain of Custody
 - Sample handling and transport

SECTION 2 - MONITORING WELL INSTALLATION REPORT

The monitoring well installation report must provide the information listed below. In addition, the report must also clearly identify, describe, and justify any deviations from the approved workplan.

A. General Information:
 Purpose of the well installation project
 Brief description of local geologic and hydrogeologic conditions encountered during installation of the wells
 Number of monitoring wells installed and copies of County Well Construction Permits
 Topographic map showing facility location, roads, surface water bodies
Scaled site map showing all previously existing wells, newly installed wells, surface water bodies, buildings, waste handling facilities, utilities, and other major physical and man-made features.

B. Drilling Details (in narrative and/or graphic form):
 - On-site supervision of drilling and well installation activities
 - Drilling contractor and driller’s name
 - Description of drilling equipment and techniques
 - Equipment decontamination procedures
 - Soil sampling intervals and logging methods
 - Well boring log
 - Well boring number and date drilled
 - Borehole diameter and total depth
 - Total depth of open hole (same as total depth drilled if no caving or back-grouting occurs)
 - Depth to first encountered groundwater and stabilized groundwater depth
 - Detailed description of soils encountered, using the Unified Soil Classification System

C. Well Construction Details (in narrative and/or graphic form):
 - Well construction diagram, including:
 - Monitoring well number and date constructed
 - Casing and screen material, diameter, and centralizer spacing (if needed)
 - Length of well casing, and length and position of perforated interval
 - Thickness, position and composition of surface seal, sanitary seal, and sand pack
 - Type of well caps (bottom cap either screw on or secured with stainless steel screws)

E. Well Development:
 - Date(s) and method of development
 - How well development completion was determined
 - Volume of water purged from well and method of development water disposal
 - Field notes from well development should be included in report

F. Well Survey (survey the top rim of the well casing with the cap removed):
 - Identify the coordinate system and datum for survey measurements
 - Describe the measuring points (i.e. ground surface, top of casing, etc.)
 - Present the well survey report data in a table
 - Include the Registered Engineer or Licensed Surveyor’s report and field notes in appendix