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RE: Draft Staff Report to Support a Proposed Basin Plan Amendment to Establish and 

Implement Salinity Water Quality Objectives in the Lower San Joaquin River 

 

Dear Mr. Brownell: 

Thank you for the opportunity to review and comment on the above-referenced Draft Report 

and supporting materials. The documents were expertly prepared and clearly reflect a lot of 

hard work by a large number of people. 

My comments focus on the second scientific review question, i.e.  

It was appropriate to utilize the conservative, steady-state soil salinity Hoffman Model to 
calculate ranges of protective salinity criteria for irrigated agriculture in the Lower San 
Joaquin River Basin and work with local irrigators to determine appropriate parameter 
inputs to the model 

 
My judgement, after reviewing all documents, is that if one accepts that the application of the 

Hoffman modeling approach to the South Delta was correct, then the transference of the 

modeling approach to the Reach 83 setting was competently done and appropriate.  One 

caveat concerns the treatment of almond, which is clearly an important crop in the region. 

Relatively little is known about the applicability of a 1D salinity management model to drip 

irrigated orchards and their multi-dimensional salinity distributions. Drip irrigated orchards 
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evidently constitute about half of the almond acreage in the vicinity of Reach 83. I am aware of 

multiple current projects at the University of California and at USDA-ARS that are investigating 

salinity management in drip-irrigated orchards. When the planned re-assessment of the water 

quality criteria occurs in future years, it will be beneficial to specifically seek out any new 

information that might become available about almond.   

With regard to Section 7 (“Next Steps”) of the revised salt tolerance analysis (CVWB, 2016), I 

want to inform the Board and associated Committees that presently there is a better and 

simpler way to perform the type of analyses currently being done with the Hoffman model. 

Although it may be too late to reconsider the methodology used in the current Draft Report, it 

would be a mistake to continue using the Hoffman Report and model as some sort of template 

for all future assessments. The Hoffman model (which dates to 1983) has weaknesses, and an 

updated, improved alternative is available. In the remainder of this commentary, I will expand 

on that point. 

The Hoffman Report (Hoffman, 2010) and Revised Report (CVWB, 2016) both do a good job 

summarizing general scientific knowledge with respect to salinity and agriculture, and I agree 

with the conclusion that a 1D steady-state analysis is appropriate for evaluating possible water 

quality objectives. The reports also do a good job synthesizing available local and regional data 

and putting them into a form that is compatible with a 1D steady-state analysis.  My critique 

concerns Table 5.2, specifically the two Equations labeled “Steady-State Equations (without 

consideration of precipitation).” Those two equations are the steady-state leaching model for 

an “exponential” and “40-30-20-10” water uptake distribution, and they are the basis for the 

Hoffman model predictions and assessments.  

The equations in Table 5.2 are derived from a well-known mathematical model of the soil root 

zone, but that model is limited because it assumes that the rate that a crop extracts water from 

soil is not affected by the presence of root zone salinity. That is clearly not correct -- reduced 

water uptake (and thus reduced crop growth) is a basic feature of saline soils, and it should be 

accounted for when modeling systems that are yielding below 100% (e.g., the 95% and 75% 

levels considered in the Draft Report).  The transient-state numerical models that Hoffman 

(2010) reviews and ultimately concludes are more accurate use an expanded mathematical 

formulation that accounts for uptake reductions. However, Hoffman and van Genuchten (1983) 

were seeking to develop a simpler tool that could be evaluated analytically, and determined 

that at that time “no mathematical relationship has been developed to span this gap”. They 

used the simpler model, and consequently, the methodology used in the Draft Report to 

evaluate 75% and 95% crop yields ends up being rather ad hoc, involving an ill-defined 

“correction” term in the leaching equation, and the supposition that the resulting linearly 

averaged salt concentration corresponds to an effective root zone salinity that is compatible 
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with Maas-Hoffman salinity response curves. To my knowledge, such a scheme has not been 

demonstrated to correctly predict submaximal crop yields. 

Recently, we developed a steady-state analytical model (Skaggs et al., 2014) that spans the 

“gap” noted by Hoffman and van Genuchten (1983). In a sense, the new model represents a 

continuation of the progression of steady-state models that was observed by Hoffman (2010).  

The new model uses a mathematical formulation that is comparable to the one used by 

Hoffman and van Genuchten (1983), except that it is expanded to include the uptake reduction 

functions that are used in transient-state models. 

Perhaps counterintuitively, the more complicated underlying mathematical framework results 

in a steady-state model that in many ways simplifies the analyses currently performed with the 

Hoffman model: 

 In the new model, the effects of salinity are uptake weighted, so results are 

independent of the assumed “uptake” or “root” distribution.  Thus all complications of 

“exponential” vs. “40-30-20-10” go away. 

 

 The new model does not use leaching fraction as an input value, which is at best an 

elusive parameter that is hard to specify for a given location or region. Instead, the 

model uses the rate of irrigation as input, a value that can be quantified in accord with 

evapotranspiration-based methods of irrigation scheduling, something about which 

local irrigators will have direct knowledge. For example, some recommendations for 

almond are that seasonal irrigation should be 1.15 times the crop water demand, or 

1.15 ETc.  The 1.15 value is all that is needed for input. Note also that leaching fraction 

and irrigation rate are no longer simply related due to the dependence of uptake on 

salinity. The leaching fraction can be computed as a model output.  

 

 Ambiguity about the relationship between steady-state and transient-state models is 

eliminated. Under certain specific conditions, the transient models reduce exactly to the 

steady-state model. 

 

 The model computes relative crop yield (Yr) from up to four input parameters: irrigation 

water salinity (ECiw), crop salt tolerance (ECsw50), potential crop water demand (ETc), and 

irrigation amount (IR). However, the computed relative yield actually depends only on 

two dimensionless ratios of those four parameters, the relative irrigation rate or 

amount, IRr = IR / ETc, and the relative irrigation water salinity, ECiw;r = ECiw / ECsw50.   
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For the sake of brevity, I’m skipping over nuances such as the relationship between relative 

transpiration and relative yield, the effect of rainfall and direct evaporation, etc. If the Board is 

interesting in pursuing this analysis further I can in the future expand on these details. 

According to the model, the general relationship between irrigation rate, irrigation water 

quality, crop salt tolerance, and crop yield can be illustrated as:  

 

 

 

IRr = 1 corresponds to an irrigation level that exactly meets the potential water demand of an 

unstressed crop.  The almond recommendation noted previously would be IRr = 1.15. For a 

given water (ECiw) and crop (ECsw50) combination, the irrigation requirement (note: not leaching 

requirement) for a particular yield is found by locating ECiw/ECsw50 along the x axis and going up 

from there to find the irrigation rate IRr that intersects with the target yield. Notice the 

diminishing returns that are obtained from increasing irrigation as yield approaches 100%. 

Alternatively, for a specific crop and irrigation water, the prediction can be viewed as a crop-

water production function, e.g.: 
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The Skaggs et al. (2014) paper includes comparisons with experimental crop yield data, but 

unfortunately not for almond, alfalfa, or bean. The model itself can be written as:  

𝑌𝑟 = {
(𝑅 + √∆)

1/3
+ (𝑅 − √∆)

1/3
∆≥ 0

2√−𝑄cos⁡(𝜃/3) ∆< 0
 

where:  

(∙)1/3 = real⁡cube⁡root 𝐽 = 1 − 1/𝐼𝑅𝑟 ∆= 𝑄3 + 𝑅2 

 𝑅 = (𝐸𝐶𝑖𝑤;𝑟)
−3

 𝑄 = (2𝐽𝑅 − 1)/3 𝜃 = cos−1 (𝑅/√−𝑄3) 

That may look complicated at first glance, but note that only two variables need to be specified 

to compute Yr : IRr and ECiw;r. The rest of the symbols are just intermediate parameters used for 

notational convenience. 

… 
 
Again, thank you for the opportunity to review and comment on these documents. I am of course happy 
to answer any questions that may arise about my review. 
 
Sincerely, 

 
Todd Skaggs, PhD, PE 
Research Soil Scientist 
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