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EXECUTIVE SUMMARY 
California’s Central Valley is an agriculturally dominated region, with a broad valley floor that is 
bounded by mountain ranges. Concern is increasing about the effects associated with nutrient 
point and non-point source pollution and eutrophication, particularly in the region’s lakes and 
reservoirs. Eutrophication in lakes can result in the increased volume of hypoxia water, loss of 
biodiversity, decreased water clarity, as well as increases in both pH and harmful algal blooms. 
Harmful algal blooms, especially those caused by cyanobacteria (cyanoHABs), cause health and 
safety concerns for humans, domestic animals, and wildlife. To date, no widespread assessment 
of eutrophication has been conducted in the lakes and reservoirs of the region. Reports of 
cyanoHABs in the region are among the most frequent in the state, underscoring the 
importance of understanding the extent and magnitude of eutrophication in the region’s lakes 
and reservoirs.  

A challenge with conducting region wide assessment of eutrophication is the lack of routine 
water quality monitoring in many of the lakes and reservoirs of the Central Valley and the 
absence of a framework for routine interpretation of water quality data (e.g., report card). We 
addressed these data gaps by conducting the region’s first lakes and reservoirs eutrophication 
assessment. This consisted of 1) development of a multi-indicator eutrophication assessment 
framework; 2) compilation of a dataset of eutrophication relevant indicators from publicly 
available datasets that conform to this assessment approach; 3) application of the framework 
to quantify the extent and magnitude of eutrophication regionally and 4) assessment of the 
representativeness of assessed lakes and reservoirs and identification of priority data gaps. 

Key Product: Eutrophication Assessment 
Framework  
The eutrophication assessment framework consisted of three categories: 1) risk of 
eutrophication (as indicated by total nitrogen (TN) and total phosphorus concentrations (TP)), 
2) evidence of eutrophication (as indicated by in situ chlorophyll-a or satellite remotely sensed 
cyanobacterial biomass) and 3) eutrophication impact (as indicated by cyanobacterial toxin 
concentrations). Thresholds that were used to assign lakes into categories were derived from 
various sources. Evidence and risk of eutrophication were classified by trophic state (level of 
biological productivity at a specific point in time), an approach adapted from several existing 
frameworks, in categories ranging from oligotrophic, mesotrophic, eutrophic, and 
hypereutrophic (Table 1). Currently, no existing thresholds link cyanotoxin concentrations to 
trophic state. We evaluated our dataset to determine if we could identify suitable cyanotoxin 
thresholds for this purpose but were unable to do so due to a paucity cyanotoxin data from a 
gradient of trophic conditions. Additionally, we note that the assessment covered a mix of cold
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water (salmonid) and warm water lakes, and that the assessment framework categorization 
marks the degradation of cold-water fisheries support at mesotrophy, while for warm-water 
fisheries that occurs at categories of eutrophic 1 and beyond. Our assessment did not attempt 
to benchmark each lake in their reference state (e.g., cold versus warm water), as that was 
beyond the scope of this study.  

Table 1. Trophic state definitions, modified from Carlson et al. (1977), convey a narrative 
description of how the gradient of trophic state translates to use support.  

Trophic State Description/definition 
Oligotrophic Clear water, low algae and nutrient concentrations, usually blue in color. Oxygen 

is typically present throughout the year in the hypolimnion. Salmonid fisheries 
dominate, particularly in deep colder water lakes. 

Mesotrophic Moderate algae and nutrients and moderate water clarity. Increasing probability 
of hypolimnetic anoxia during summer. Iron, manganese, taste, and odor 
problems worsen. Raw water turbidity requires filtration. Hypolimnetic anoxia 
results in partial loss of salmonids in cold water lakes. Warm water fisheries are 
preserved. 

Eutrophic 1 High algae and nutrients, low water clarity, usually green in color. Anoxic 
hypolimnion, macrophyte problems possible. Salmonid fisheries lost in cold 
water; loss of some warm water fisheries. 

Eutrophic 2 Similar to Eutrophic 1, slightly higher of algae and nutrients, similar green color 
Blue-green algae dominate, algal scums and macrophyte problems. Episodes of 
severe taste and odor possible. Nuisance macrophytes, algal scums, and low 
transparency may discourage swimming and boating. 

Hypereutrophic High algae and nutrients, low to no water clarity, water color green. Higher 
severity of dense algae and macrophytes. Warm water pollution tolerant fish 
only.  

 

Assessment Findings 
Data were compiled from a publicly available database then employed in the assessment 
framework to assess eutrophication. A total of 86 lakes and reservoirs out of a regional target 
population of 4499 had appropriate data. 47 lakes had enough data to assess eutrophication 
risk and 71 lakes had sufficient data to assess eutrophication evidence; 35 waterbodies had 
data on cyanotoxins though roughly 2/3rds of the observations came from a single lake (Clear 
Lake). Our findings are substantially constrained by applying this assessment framework to 
existing data which were not specifically collected to support this study. There were substantial 
data gaps, both in terms of the number of lakes that could be assessed as well as coverage 
across indicators in any lakes that were included. Data gaps were particularly apparent for 
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eutrophication impact, as indicated by cyanotoxin concentrations, which were largely absent 
across the dataset, with a substantial proportion of the data coming from just a handful of 
lakes.  

Of assessable lakes, our findings indicate a roughly equal split of lakes and reservoirs at risk of 
being in a eutrophic state (44.7%) and those below the eutrophication risk threshold (55.3%) 
based on observed nutrient concentrations. Biomass indicators suggested 38% of assessed 
lakes had biomass levels indicating evidence of eutrophication, while 62% of lakes had biomass 
levels at the oligotrophic or mesotrophic level. The satellite remote sensing observations 
provided insights on the temporal variations in biomass and how that might influence the 
assessment. Our results indicated that most lakes and reservoirs in the Central Valley region 
experienced seasonal and interannual variations and trends in biomass that could impact the 
results of the assessment depending on the timing and frequency of when in situ observations 
were collected. 

The ecoregional distribution and land use characteristics of the assessed waterbodies were 
generally representative of the larger lake and reservoir population. However, the waterbodies 
identified as identified as either “at risk” or experiences eutrophication were disproportionately 
found in disadvantaged communities.  

Caveats and Recommendations 
Caveats in the scientific findings and research recommendations to address these uncertainties 
include:  

1. Our assessment was spatially limited, and insufficient data existed to investigate the 
statistical significance between eutrophication and variables such as land use and 
disadvantaged communities. Strategic collection of data is needed to support strategic 
monitoring and risk management in the future.  

2. Trophic status classification is not static. Seasonal and interannual variations in biomass 
accumulation underscore the importance of the timing and frequency of observations. 
Special studies should also be considered to untangle the effects of large-scale drivers such 
as precipitation and climate on the eutrophication status of the region’s lakes and 
reservoirs.  

3. Few lakes were able to be assessed using all the indicators we selected in our framework. 
Future work should assess the comparability of these indicators and the relationship 
between waterbodies ranked with eutrophication risk and eutrophication evidence.  
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4. Standardized operating procedures for combined harmful algal bloom and eutrophication 
assessments are needed for lakes and reservoirs to generate the dataset that can provide 
for more robust assessment in the future. This includes a more detailed classification of 
lakes by depth and the management goal (e.g., warm and/or cold-water fisheries). We note 
that waterbodies have both warm and cold beneficial use designations, however many 
waterbodies have been assigned both uses in the CV region and deeper investigation to 
assign classifications based on these uses will likely be needed. It is also notable that cold 
water lakes that are characterized by mesotrophy may have lost some fisheries support 
function, but this cannot be fully resolved at this time.  

5. Integration of satellite remote sensing technologies into the eutrophication assessment 
provided more insights and a broader, more comprehensive assessment than using only in 
situ datasets (as has traditionally been done). Future eutrophication assessments should 
prioritize using the combination of remotely sensed and in situ eutrophication information, 
including the integration of higher spatial resolution remote sensing platforms that are 
becoming more readily available that would increase the number of waterbodies with 
resolvable data.  
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INTRODUCTION  
Freshwater lakes and reservoirs are being increasingly stressed by the influence of global 
change ranging from increasing temperatures, drought and hydromodification to 
anthropogenic nutrients (Wurtsbaugh et al. 2019; Paerl and Huisman 2009). These causal 
factors increase the risk of eutrophication, defined as the accelerated delivery, in situ 
production, and/or accumulation of organic matter (Nixon 1995), one of the most common 
causes of water quality impairments in inland waters (Brooks et al. 2017; Le Moal et al. 2019). 
Eutrophication results in multiple pathways of impacts to humans and aquatic life in lakes and 
reservoirs, including hypoxia, taste and odor problems, impacts to biodiversity, fisheries yield, 
and water clarity, as well as toxic harmful algal blooms (Azevedo et al. 2013; Smith et al. 1999; 
O’Neil et al. 2012). The proliferations of toxic cyanobacteria (cyanoHABs) are of particular 
concern when it comes to the health and safety of lakes and reservoirs for humans, domestic 
animals, and wildlife (Paerl and Otten 2013; Brooks et al. 2017). Cyanotoxins pose serious 
threats to the health of humans, domestic pets, wildlife, and livestock (Li et al. 2011; Mehinto 
et al. 2021; Stewart et al. 2008; Trevino-Garrison et al. 2015). While nutrients are critical for the 
proper functioning of the aquatic food webs, excessive levels of nutrients, primarily nitrogen 
(N) and phosphorus (P), are one of the primary causes of eutrophic conditions in lakes and 
reservoirs (Wurtsbaugh et al. 2019). Eutrophication is particularly common in highly populated 
areas due to a combination of treated municipal or industrial wastewater point source or 
agricultural and urban non-point discharges (Hobaek et al. 2012; Withers et al. 2014).  

Reports of harmful algal blooms in the lakes and reservoirs of the Central Valley (CV) Region of 
California, U.S.A., particularly those caused by cyanoHABs, are among the most frequent in the 
state since tracking began in 2016 (Jang and Otim 2023). This region, which comprises nearly 40 
percent of the state, contains some of the most valuable and diverse habitats in the world, but 
also hosts 80 percent of California’s irrigated agricultural lands and the major population 
centers of Bakersfield, Fresno, Sacramento and Redding. Several large lakes and reservoirs in 
the region, including Clear Lake, Lake Hensley, and H.V. Eastman Lake (Smith et al. 2023a; Huie 
et al. in prep) have regular reports of cyanotoxins levels that are an order of magnitude or more 
above California’s human recreational guidelines (CCHABs 2016) as well as levels that are 
harmful to aquatic life (Mehinto et al. 2021). Eutrophic conditions have been implicated as one 
of the drivers of cyanoHABs in these waterbodies.  

Despite the growing concern with eutrophication and cyanoHABs in the region, no widespread 
assessment of eutrophication has been conducted to date in CV lakes and reservoirs. The goal 
of this study was to utilize a combination of existing in situ and satellite remote sensing imagery 
data to quantify the status and trends of eutrophication of the lakes and reservoirs in the CV 
Regional Water Quality Control Board geographic jurisdiction and identify key data gaps. To 
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conduct a regional assessment of eutrophication, we confronted multiple challenges. First, no 
centralized and publicly accessible database of water quality data exists for CV lakes and 
reservoirs in the Region. Second, no State-funded ambient monitoring programs exists for lakes 
or reservoirs and little public funding has been dedicated to routine monitoring, outside of 
monitoring mandated by site-specific actions such as total maximum daily loads and specific 
permitting actions. Most of the relevant data are held by privately managed water resource 
agencies who are not currently required to make these data public. Third, while California 
Water Boards have a narrative biostimulatory objective to protect beneficial uses from 
eutrophication, the State lacks numeric guidance to translate that narrative objective to goals 
that protect lakes and reservoirs from impairment from eutrophication. Therefore, our 
approach required: 1) development of a comprehensive inventory of lakes and reservoirs, from 
which we developed the target population for the assessment, 2) compilation of existing field 
and remote sensing data and 3) development of a numeric framework to assess eutrophication, 
prior to conducting an assessment, the details of which are described Materials and Methods 
below. We expected substantial data gaps and thus assessment of key gaps and future 
recommendations was a key step in the assessment.  

MATERIALS AND METHODS  

Approach to the Eutrophication Assessment 
To conduct the study, multiple steps were required (Figure 1.1). We first assembled an 
inventory of CV lakes and reservoirs and used that initial inventory to identify the targeted 
waterbodies. From a comprehensive review of eutrophication indicators and causal factors 
featured in the California FHAB monitoring strategy (from Table 2.3 and Table 2.4, respectively, 
found in Smith et al. 2021), we identified three categories of indicators: 1) risk of 
eutrophication, 2) evidence of eutrophication and 3) eutrophication impact (Figure 1.1). We 
also added to two landscape indicators (developed/undeveloped/agricultural land uses and 
disadvantaged community status) to provide context for interpretation of the findings. 
Cyanotoxins (with a focus on total microcystins due to extremely limited data availability for the 
other cyanotoxin classes) as an indicator was considered, then was ultimately not included in 
the assessment due to observations only being available from a limited number of waterbodies. 
Field (in situ) data and remote sensing data were compiled from public databases and quality 
assurance conducted. We then developed a multi-metric eutrophication assessment framework 
to score the status and trends in CV lakes and reservoirs, in multiple categories representing 
the disturbance gradient. We then applied this assessment framework to the compiled data 
and assessed both status and trends. Finally, we assessed the representativeness of the 
waterbodies included in the study and identified priority data gaps for the region. 
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Figure 1. Top panel of blue boxes shows an overview of conceptual approach to Central Valley lakes and reservoirs 
eutrophication assessment with white arrows indicating the flow of the steps. The assessment indicators considered are 
shown below the black box and include the key eutrophication impact and evidence indicators (green boxes), risk factors 
(blue boxes) and landscape context (grey boxes). 
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Description of Study Region and Target Population 
of Lakes and Reservoirs 

Study Region  
The California’s CV Region contains the basins of the Sacramento River, San Joaquin River and 
the Tulare Lake. This region encompasses a range of elevations and ecosystems with broad 
valley floor areas bounded by mountain ranges. The CV Region includes 36% of the State’s total 
acreage and spans approximately 50 miles in width and 400 miles in length. The valley floor 
region is marked by shallow gradients at elevations below 800 feet and is bounded by the 
foothills and mountains of the Sierra Nevada to the east, Cascade Range to the north, Coast 
Ranges to the west and Tehachapi Mountains to the south. The CV region is characterized by a 
Mediterranean climate and precipitation primarily occurs during the winter and spring, 
followed by a hot and dry summer and fall. 

The dominant land use in the valley floor is agriculture (71%), while developed urban and 
residential (10%) and open lands and natural habitats comprise the remainder (19%; Soulard 
and Wilson 2013). The valley floor supplies 8% of U.S. agricultural output (by value) and 
produces a quarter the U.S.'s food, including 40% of the fruits, nuts, and other table foods 
(Pathak et al. 2018). Up to 90% of the crops grown in agriculturally-dominated areas of 
California, including the valley floor, are irrigated (Pathak et al. 2018), particularly during hot 
dry summer months.  

Nonpoint pollution originating from agriculture can be a major contributor to eutrophication, 
making the lakes and reservoirs of the CV at particular risk for eutrophication. Previous studies 
in agricultural areas have suggested that a major proportion of N and P fertilizers can be lost 
from the fields where they were applied and enter the environment including local waterways 
(Sutton et al. 2013). Confined animal feedlots are an additional source, as excretion from 
manure is the second largest source of nitrogen in California and thus represents another 
pathway of enrichment (Tomich et al. 2016). Beyond agriculture, the CV is also home to several 
large population centers including Bakersfield, Sacramento and Redding. These developed land 
uses can contribute other sources of nutrient pollution occur, including municipal wastewater 
and septic systems, lawn fertilizer and pet wastes from residential areas. Finally, atmospheric 
wet and dry deposition of nutrients is an additional pathway, estimated to be among the 
highest rates in the U.S. (Tomich et al. 2016). Collectively, these sources of nutrient pollution 
have the potential to accelerate the eutrophication of lakes and reservoirs in the CV Region.  
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Inventory of CV Lakes and Reservoirs 
We created a lake and reservoir inventory to quantify the relative proportion of lakes and 
reservoirs that were able to be assessed in the region using the assembled in situ and remote 
sensing datasets. The target population of lakes and reservoirs included: 1) waterbodies greater 
than 1 hectare in size and 2) were dominated by open water habitats. We took steps to 
explicitly exclude agricultural ponds, because they can be typically large enough in size contain 
enough open water to be initially categorized as a lake in many databases. 

To identify the total number of lakes and reservoirs in the CV region, we used GIS to merge the 
National Hydrology Plus Dataset (NHDplus) maintained by US Geological Survey (USGS) as a 
base, then added additional waterbodies from the National Hydrology Dataset (NHD) and 
National Wetland Inventory maintained by US Fish and Wildlife Service. Additional metadata 
was added from the Beneficial Use GIS database from the Basin Plan GIS Library hosted by the 
California Water Boards. A preliminary match between the lake inventory and in situ 
waterbodies was done to manually draw polygons for waterbodies with in situ data compiled 
for this project that were lacking polygons. These waterbodies were manually inspected using 
Google Earth imagery to confirm that the data was from a waterbody in our target population. 
Polygons were classified as greater than 8 hectares or between 1 and 8 hectares. Polygons less 
than 8 hectares that were overlapping a greater than 8-hectare polygon were removed. To 
further consolidate, polygons were dissolved in GIS with adjacent polygons to form a singular 
larger polygon. If lake polygons were merged, then new resulting polygon surface area was the 
sum of all the merged polygons surface areas and was assigned the metadata of the dominant 
polygon. Since lake polygons maybe have multiple recorded surface areas from different 
datasets, the largest surface area was chosen. Polygons smaller than 1 hectare were removed. 

Following these initial filtering steps, the remaining polygons were evaluated against the 2021 
National Land Cover Database (NLCD) to remove waterbodies that were not identified as lakes, 
ponds or reservoirs in the available metadata, because not all polygons greater than 1 hectare 
had assigned waterbody type designations. The land use inside each of the polygons was 
evaluated and assigned the following categories: 1) High certainty perennial lake = 75th 
percentile open water level (this level was chosen to account for fluctuating lake levels during 
drought); 2) Medium certainty perennial lake = 50th percentile open water level; 3) Low 
certainty perennial lake = 10th percentile open water level; 4) Potential agricultural pond = 
>10th percentile agricultural land use; 5) potential intermittent lake/wetland = >50th percentile 
wetland and water are < 10th percentile open water level; and 6) Flagged polygons = < 50th 
percentile wetland or <10th percentile open water level. Polygons assigned categories 4, 5, and 
6 were removed unless in situ data existed for that waterbody. Due to the quantity of 
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waterbody polygons, a full manual inspection was not conducted, but a randomized spot check 
was done on each category to confirm that each category was appropriate.  

Following this procedure, the waterbodies for which data were available (see below) were 
compared against the waterbody inventory. A small number of waterbodies required additional 
data management to appropriately match with the lake inventory due to inaccurate in situ lake 
coordinates or misaligned polygons. The final inventory consisted of 4499 CV lakes, ponds, and 
reservoirs that are within the target population for the assessment. We acknowledge that the 
finalized waterbody inventory may still include non-target or exclude desired waterbodies. 

Compilation of Existing Data 
Three principal data sources were used for the assessment: 1) In situ (field) data, 2) remotely 
sensed satellite data processed for eutrophication indicators and 3) geographic information 
system data, specifically land use/land cover and shapefiles designated disadvantaged 
communities.  

In situ field data 
Multiple agencies have conducted water quality sampling of nutrient and biological indicators 
throughout the CV region; however, a majority of efforts were limited in scope either spatially 
or temporally. We targeted data collected between 2000-2022 with the goal of obtaining 
observations of as many eutrophication relevant indicators from as many lakes and reservoirs 
as possible in the region. In situ data were collated from two principal sources: 1) National 
Lakes Assessment (NLA) observations in the region from the surveys conducted in 2007, 2012 
and 2017 and 2) CV region relevant data from publicly accessible databases. The queried 
databases included the Department of Water Resources (DWR), Water Quality Program 
Database (for federally funded data; WQP); Surface Water Ambient Monitoring Program 
(SWAMP) and California Environmental Data Exchange Network (CEDEN). 

Data were downloaded based on search criteria corresponding to the targeted indicators 
(Figure 1), including laboratory-based measurements of chlorophyll-a and the forms of 
nutrients that alone or together could comprise the assessment of total nitrogen (TN) and total 
phosphorus (TP) for water grab samples. We ultimately only included direct measurements of 
TN and TP because there was rarely enough co-occurring measures of individual forms of 
nitrogen or phosphorus, respectively, to calculate estimates of the total fraction. Other 
collateral data that provided context or quality assurance support included water temperature, 
dissolved organic carbon and turbidity were compiled, but not assembled in the final dataset. A 
summary of the final dataset, including the analytical methodologies used for each of the in situ 
analytes in the final dataset is described in Supplemental Table 1. 
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From the initial suite of downloaded data, several data quality control procedures were taken. 
First, duplicate data entries across databases were also eliminated. These measures included 
removal of data based on incompatible measures, sampling locations, laboratory analytical 
procedures, and through outlier identification. All parameters were plotted and manually 
inspected for extreme values. It was expected that some parameters such as chlorophyll a may 
yield some extreme values due to biological variability, however, values well beyond reasonable 
limits were manually removed. After the removal of extreme values, data points which were 
three standard deviations from the mean were removed. 

Remotely sensed satellite imagery data 
In addition to in situ data, we also utilized remotely sensed cyanobacterial abundance derived 
from satellite imagery as an additional line of evidence of eutrophication and to widen expand 
the number of lakes and reservoirs that could be assessed. We used data collected by the 
Ocean and Land Colour Instrument (OLCI) onboard the Sentinel-3A and Sentinel-3B satellites, 
which provides a near-continuous time series of surface water observations. The OLCI sensor 
has a 300-meter by 300-meter (~22 acres) pixel resolution, though factors including cloud 
cover, sun glint, snow, and ice can limit image availability during satellite overpass.  

OLCI imagery data processed by the Cyanobacterial Assessment Network (CyAN) project were 
downloaded from the online data portal 
(https://oceancolor.gsfc.nasa.gov/about/projects/cyan/; Version 5 data following May 2023 
processing procedures). Level 3 mapped data were downloaded for the years of 2017-2023 in 
order to only consider years where the full calendar year of data were available. These data 
underwent several processing steps by the CyAN project which will be briefly described. The 
imagery was geolocated, converted to an Albers Equal Area projection, and corrected for top-
of-atmosphere reflectance to remove the spectral contribution of Rayleigh scattering. Data 
flags were applied to pixels that were identified by the processing algorithm as containing 
clouds, land, and mixed land-water pixels. CI-cyano values were calculated for remaining pixels. 
The CI-cyano value is a proxy of cyanobacteria specific Chl-a absorption and estimates the 
cyanobacterial biomass using a distinct spectral shape signature that allows for the 
differentiation of cyanobacterial biomass from other eukaryotic algae and reflective matter 
present in water (Lunetta et al. 2015; Wynne et al. 2018). The CI-cyano value was calculated 
using established spectral shape algorithms that utilize the spectral bands centered at 665 nm, 
681 nm, and 709 nm to estimate bloom biomass and the spectral bands centered at 620 nm, 
665 nm, and 681 nm to differentiate between cyanobacterial and non-cyanobacterial biomass. 
A detailed description of the CI-cyano calculations can be found in Lunetta et al. (2015) and 
Wynne et al. (2010, 2008).  
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For our analyses, we utilized 7-day maximum temporal composite images. These imagery 
composites were generated by compositing the maximum pixel value observed within a 7-day 
period for all resolvable pixels within that timeframe. This helps to mitigate the loss of data 
from interfering factors like clouds and also capture the highest observed cyanobacterial 
biomass within that timeframe. Composites from 2017 only represent imagery collected by 
Sentinel-3A, while composites from May 2018-present represent merged Sentinel-3A and 3B 
imagery, meaning that the number of available images to composite within a 7-day period 
effectively doubled following this addition. We utilized the resolvable lakes inventory 
developed by the CyAN project to extract data from lakes present in the CV regional lakes (Clark 
et al. 2017). The inventory included only lakes with a unique COMID and a minimum of 3 
resolvable pixels within the lake surface. Ultimately a total of 47 lakes were identified in the CV 
Region (Figure 1; see Supplementary Table 1 for individual lake summaries). 

We then conducted additional post-processing steps on downloaded data. All satellite pixels 
flagged for clouds, land, and mixed land-water pixels by CyAN processing procedures were 
masked and discarded. We took additional steps to remove pixels potentially containing ice or 
snow or pixels that may intermittently overlap with the shoreline with variable lake levels 
following the approaches described in Urquhart and Schaeffer et al. (2020) to ensure only pixels 
with a high degree of confidence were included in later analysis. Pixels containing ice and snow 
can sometimes wrongly appear as cyanobacteria by the CI-cyano algorithm. To avoid incidences 
of false positives due to interference from ice and snow, these pixels were removed. Following 
the approach described in Urquhart and Schaeffer (2020), pixels where ice might have been 
present were masked. In brief, daily snow and ice cover in the Northern Hemisphere were 
downloaded from the National Snow and Ice Data Center 
(https://nsidc.org/data/G02156/versions/1). Snow and ice cover data were composited into 
weekly maps of maximal ice extent in the state, which was determined from daily 4 km 
resolution Iterative Multisensor Snow and Ice Mapping System Northern Hemisphere Snow and 
Ice Analysis data. These maps were used to flag and mask any pixels containing ice and snow. 
An additional 1-pixel buffer of the nearshore region of a waterbody was applied to reduce 
interference related to adjacency effects (Bulgarelli et al. 2014) or mixed pixels that were 
missed by the processing algorithm, again following the approaches described in Urquhart and 
Schaeffer et al. (2020). 

Landscape context: land use and disadvantaged 
communities 
We compared eutrophication risk and evidence against developed and agriculture land use 
group percentages using the National Land Cover Dataset (NLCD; database available at 

https://nsidc.org/data/G02156/versions/1
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https://www.mrlc.gov/) and against the geographic distribution of disadvantaged communities 
to provide context for the findings of our eutrophication assessment.  

To achieve this, the major land use categories for each lake or reservoir in the lake inventory 
were calculated for the HUC12 watershed area. Within the NLCD, there are 16 unique land use 
categories but for the purposes of these analyses we consolidated these categories into 
developed lands (4 categories of developed lands spanning a range of impervious surfaces from 
<20% to >80%), undeveloped lands (barren land, 3 forest types, shrubland, 
grassland/herbaceous cover and 2 types of wetlands), and agricultural lands (cultivated crops 
and pasture/hay). We excluded land identified as open water and perennial ice/snow from all 
statistical comparisons. All statistical comparisons were made within similar ecoregions within 
the CV regional bounds to account for areas with known ecological similarities (see Statistical 
Analyses section below). Collectively, there are six Level-3 EPA ecoregions (Omernik and Griffith 
2014) within the bounds of the CV Regional Water Board and these were consolidated due to 
small sample sizes within individual ecoregions into a combined mountain ecoregion 
(containing Level-3 ecoregions 4, 5, 6, 9, 78) and valley ecoregion (containing Level-3 ecoregion 
7). 

Disadvantaged communities were determined using the 2020 California Division of Water 
Rights disadvantaged community (DAC) Mapping Tool (https://gis.water.ca.gov/app/dacs/). The 
i16 Census Track layer summarizing data from 2016-2020 was used. This tool identified if a 
census tract was a DAC based on median household income data derived from the American 
Community Survey. In situ and remotely sensed lakes centroids were used to determine if the 
lake was located inside or outside a DAC. 

Eutrophication Assessment Framework 

Terminology 
An assessment framework (AF) is a quantitative scheme intended to classify aquatic waterbody 
segments in tiers representing a gradient in ecological condition, from very high ecological 
condition to very low, based on risk of potential adverse effects of eutrophication (Sutula et al. 
2014), similar to the construct of a biological condition gradient (BCG) model (Davies and Jackson, 
2005). This concept has its roots in ecological risk assessment (EPA 1998), in which multiple 
ecological response indicators (e.g., chlorophyll-a, cyanobacterial biomass, cyanotoxins) are 
assessed in combination with causal factors that represent the risk of eutrophication (e.g., total 
nitrogen and total phosphorus).  

https://gis.water.ca.gov/app/dacs/
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In this document, we define “thresholds” as the endpoints that define break between 
categories; these thresholds should not be mistaken as recommendations for policy or regulatory 
assessment endpoints as those are not the intended product of this study.  

Selection of priority indicators and categorical thresholds 
There is a rich literature of scientific approaches to assess eutrophication and investigate its 
causal drivers, particularly in lakes, dating from the mid-20th century (Carlson 1977; Davis et al. 
2019; Zhang et al. 2021; USEPA 2021). For that reason, we did not create a new framework, but 
rather reviewed and adapted as needed from existing approaches and frameworks, based on 
what was most suitable for this non-regulatory application. The eutrophication assessment 
framework consisted of three categories: 1) risk of eutrophication (as indicated by total 
nitrogen (TN) and total phosphorus concentrations (TP)), 2) evidence of eutrophication (as 
indicated by in situ chlorophyll-a or satellite remotely sensed cyanobacterial biomass) and 3) 
eutrophication impact (as indicated by cyanobacterial toxin concentrations). Thresholds that 
were used to assign lakes into categories were derived from various sources. The categories for 
this assessment were based on the five trophic states described in the Trophic State Index (TSI) 
are summarized in Table 1, while the final selected thresholds for each trophic state are 
described in Table 2. 

For eutrophication evidence and risk, we based the classification on the work of Carlson (1977), 
who developed the TSI for lakes and reservoirs. TSI is a numerical scale based on the weight of 
living biological material (biomass) at a specific place and time. It has been used and adapted by 
several states to assess eutrophication. Within this framework, there is a continuum of trophic 
states including oligotrophic, mesotrophic, eutrophic 1, eutrophic 2, and hypereutrophic (Table 
1) that represents a biological condition gradient in response to eutrophication. The original TSI 
(Carlson 1977) uses three different indicators to define these trophic states, including chl-a, TP, 
and Secchi depth, a measure of water clarity. These indicators are all statistically related and 
thus the application of any combination of these indicators may result in the same trophic 
classification for a waterbody, but total phosphorus and total nitrogen represent eutrophication 
potential or risk, while chlorophyll-a represents the expression of eutrophication. Since the TSI 
was introduced, others have adapted it to include total nitrogen (Hopkinson et al. 1997).

We evaluated nutrients through a risk-based lens given the fact that over enrichment with 
nutrients does not always result in eutrophication effects. We combined observations of TN 
and total phosphorus (TP) into an assessment of eutrophication risk based on nutrient 
concentrations. The categories for this assessment were based on the five trophic states 
described in the TSI (Table 1). The thresholds for each trophic state are described in Table 2. 
The TP thresholds are from the Carlson TSI (Carlson 1977) and the TN thresholds are based on 
the EPA modeling effort as adjusted by Sutula et al. 2025. 
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Eutrophication evidence was evaluated using the two biomass indicators, in situ measured 
chlorophyll-a and counts of cyano-bloom occurrences from remotely sensed cyanobacterial 
biomass. In order to combine in situ chlorophyll-a concentrations and mean number of cyano-
bloom occurrences via remote sensing imagery, the EE assessment had a binary output of 
either no evidence or evidence. A summary of the thresholds and indicators for this component 
of the framework are described in Table 2. 

For eutrophication impact, we scoped the use of cyanotoxins as the principal metric, which 
includes three classes of cyanotoxins: 1) microcystin, 2) anatoxin-a, and 3) cylindrospermopsin. 
Initial compilation of data identified major data gaps which presented an impediment to using 
cyanotoxin data in this first assessment. Observations of anatoxin-a and cylindrospermopsin 
were extremely rare (< 40 observations total); microcystin was more abundant but nearly 2/3 
of the observations were from a single lake (Clear Lake). For this reason, although there is an 
intent on including eutrophication impact over the long term, we chose not to create 
categorical thresholds time. Instead, the relationship between microcystin concentrations 
relative to eutrophication evidence and risk are presented in Appendix 1 (Supplemental Figure 
1). Future iterations of this assessment should include that component as this major data gap is 
addressed.  

Table 1. Trophic state definitions, modified from Carlson (1977), convey a narrative 
description of how the gradient of trophic state translates to use support. 

Trophic State Description/definition 
Oligotrophic Clear water, low algae and nutrient concentrations, usually blue in color. Oxygen 

is typically present throughout the year in the hypolimnion. Salmonid fisheries 
dominate, particularly in deep colder water lakes. 

Mesotrophic Moderate algae and nutrients and moderate water clarity. Increasing probability 
of hypolimnetic anoxia during summer. Iron, manganese, taste, and odor 
problems worsen. Raw water turbidity requires filtration. Hypolimnetic anoxia 
results in partial loss of salmonids in cold water lakes. Warm water fisheries are 
preserved. 

Eutrophic 1 High algae and nutrients, low water clarity, usually green in color. Anoxic 
hypolimnion, macrophyte problems possible. Salmonid fisheries lost in cold 
water; loss of some warm water fisheries diversity. 

Eutrophic 2 Similar to Eutrophic 1, slightly higher of algae and nutrients, similar green color 
Blue-green algae dominate, algal scums and macrophyte problems. Episodes of 
severe taste and odor possible. Nuisance macrophytes, algal scums, and low 
transparency may discourage swimming and boating. 

Hypereutrophic High algae and nutrients, low to no water clarity, water color green. Higher 
severity of dense algae and macrophytes. Warm water pollution tolerant fish 
only.  



12 
 

For our use, we employed the chl-a and TP classification scheme of the TSI but added TN, 
because nitrogen availability is an important risk factor for biomass accumulation and on the 
formation of cyanoHABs (Wurtsbaugh et al. 2019; Paerl et al. 2016). We chose not to utilize the 
TSI index itself but preferred to leave the individual metrics unaggregated to look at agreement 
among combined lines of evidence. We excluded the measurement of water clarity via Secchi 
depth, for example, as it can be reduced by non-biological turbidity (Xu et al. 2015).  

To this suite of traditional trophic state metrics, we chose to add one metric related to 
cyanoHABs: cyanobacterial biomass, measured as CI-cyano via satellite remote sensing (see 
compilation of existing data for details).  

For total nitrogen as well as CI-cyano measures, additional science was used to determine 
thresholds associated with trophic state. Evidence for total nitrogen thresholds that correspond 
to chl-a trophic classifications came from statistical models originally developed by US EPA, 
then modified for California lakes and reservoirs by Sutula et al. (2025). As brief context, US EPA 
has recently provided national statistical stress-response models that link beneficial uses to 
ecoregional thresholds of chl-a, TN and TP in lakes and reservoirs (US EPA 2021). Sutula et al. 
(2025) refined these models, augmenting them with CA-relevant ecoregional data sources, 
including available data from the CV Regional Water Board jurisdiction. We utilized the Sutula 
et al. (2025) model identify the TN concentrations associated with the chlorophyll-a thresholds 
that defines the boundary between each trophic state described by Carlson (1996). In order to 
derive these values, the US EPA-adapted statistical model requires the inputs of dissolved 
organic carbon concentration and statistical confidence required in achieving the predicted chl-
a endpoint. Per the methods of Sutula et al. (2025), we applied dissolved organic carbon levels 
of 3.9 mg/L, 4.4 mg/L, 5.9 mg/L, and 8.1 mg/L as the inputs for mesotrophic, eutrophic 1, 
eutrophic 2, and hypereutrophic, respectively. We utilized an 80% confidence level in achieving 
the targeted chl-a threshold, which is the default recommendation of the US EPA (2021). This 
was translated to suite of TN thresholds corresponding to each chlorophyll-a threshold per 
trophic state boundary captured in Table 2. R script and associated data for calculating these 
thresholds are provided at https://github.com/SCCWRP/CA_Biostim_Lakes_2021. Detailed 
information on model development is provided in US EPA (2021), with model updates and 
documentation in Sutula et al. (2025).  
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Table 2. Total phosphorus and total nitrogen concentrations associated with each of the 
five trophic states that comprise the eutrophication risk categories. 

Type Indicator 
Trophic State 

Oligotrophic Mesotrophic Eutrophic 1 Eutrophic 2 Hypereutrophic 

Eviden
ce 

In situ Chl-a 
(µg/L) 

< 0.95 2.6- 7.3 7.3- 20 20-56 >56 

Cyano-
bloom 
occurrence 
via imagery 

< 3 years with 3 blooms at 
the 7 µg/L cyanobacterial 
chl-a intensity  

≥ 3 years 
with 3 
blooms at 
the 7 µg/L 
cyanobacte
rial chl-a 
intensity 

≥ 3 years 
with 3 
blooms at 
the 20 µg/L 
cyanobacte
rial chl-a 
intensity 

≥ 3 years with 3 
blooms at the 
56 µg/L 
cyanobacterial 
chl-a intensity 

Risk TP (mg/L) <0.012 0.012 - 0.024 0.024 - 
0.048 

0.048 -
0.096 

> 0.096 

TN (mg/L) <0.277 0.277 - 0.393 0.393 - 
0.651 

0.651 - 
1.129 

> 1.129 

 

Our satellite imagery metric mimics the satellite imagery impairment framework described in 
Davis et al. (2019) for Lake Erie that examines the estimated lake area exceeding a bloom 
intensity threshold within a set time period. For remotely sensed biomass thresholds, we 
utilized the cyanobacterial bloom occurrence metric (hereafter called cyano-bloom 
occurrence). For this metric, a cyano-bloom is defined as a binary occurrence (e.g., a cyano-
bloom is or is not present) based on the percentage of pixels in the lake (e.g., the spatial bloom 
area) at or above a given cyanobacterial concentration threshold from a 7-day maximum 
temporal imagery composite (Coffer et al. 2020).  

Here, we applied a spatial threshold of 10%, meaning that for a lake to be considered as 
experiencing a cyano-bloom, at least 10% of the total number of detectable pixels must be at a 
specific pixel intensity threshold. We selected the 10% spatial threshold based on the 
recommendations of Coffer et al. (2020) because in their analysis it reduced the variance in 
occurrence across differently sized lakes. We used three different pixel intensity thresholds to 
define blooms that correspond with an estimated cyanobacterial chl-a concentration of 7 µg/L, 
20 µg/L, and 56 µg/L, using the conversion equation for CI-cyano to cyanobacterial chl-a 
described in Seegers et al. (2022) and aligning with the chl-a levels associated with the trophic 



14 
 

state eutrophic 1, eutrophic 2, and hypereutrophic, respectively (Table 2). Cyanobacterial chl-a 
concentrations of <7 µg/L were not reliably differentiated by Seegers et al. (2022), thus we did 
not calculate the number of cyano-bloom occurrences at concentrations below this level. We 
then counted how many years between 2017-2023 had at least 3 blooms at each cyano-bloom 
intensity threshold. A lake was placed lakes into a trophic state if at least 3-years had a 
minimum of 3 blooms at a given intensity (Table 2). If less than 3-years were observed, the lake 
was placed into a combined oligotrophic/mesotrophic category, similar to the trophic state 
grouping applied in Seegers et al. (2022). 

Data inclusion criteria and data calculations 
We developed a rule set for evaluating data that was designed to be flexible in nature to 
accommodate a varied dataset for lakes that may have one or more of the priority indicators. In 
recognition that our indicators included both direct measures of nutrient concentrations as well 
as measures of algal or cyanobacterial biomass we created distinctive evaluation assessments 
that synthesized each group of indicators within the framework.  

We set a minimum observation requirement of three observations of at least one indicator 
from eutrophication risk or evidence scoring for a lake to be included in the assessment. This 
minimum observation requirement was included to help ensure representativeness and avoid 
making a risk or evidence status based on a single observation. We then considered several 
types of descriptive statistics to use for making the scoring assignment including the mean, 
median, maximum and 90th percentile. We tested these statistics using model dataset of 2 lakes 
in the region (H.V. Eastman Lake and Hensley Lake) for which there was a spatial and 
temporally comprehensive dataset of both in situ and remotely sensed observations over two 
years (Huie et al, in prep). When looking at the time series data for individual lake systems, the 
trophic state (as indicated by either nutrient concentrations or by biomass) was not a constant 
state over time and each lake shifted between trophic state categories multiple times over the 
observational period. Thus, we ultimately opted to use the mean in the assessment framework 
in order to understand the central tendency of the observations, while still considering the 
entire distribution of available data for a given indicator. 

The mean of the observations for a given indicator was then used for comparison against the 
thresholds for the respective assessment elements (TN, TP, or biomass). A trophic state was 
assigned for each indicator available within a given waterbody. If multiple indicators are 
available for a given lake, then the “worst case” trophic state was then used for each element 
of the framework where data was available.  

We note that the assessment covered a mix of cold water (salmonid) and warm water lakes, 
and that the assessment framework categorization marks the degradation of cold-water 
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fisheries support at mesotrophy, while for warm-water fisheries that occurs at categories of 
eutrophic 1 and beyond. Our assessment did not attempt to benchmark each lake in their 
reference state (e.g., cold versus warm water), as that was beyond the scope of this study. 

Statistical Analyses 

Land Use  
Due to extreme differences in sample size between the total inventory of CV lakes and 
reservoirs and assessed lakes and reservoirs, statistical differences between land use between 
these two groups were not able to be calculated. Instead, the mean percentage and standard 
deviation of land use within each of the three main land use categories was calculated for the 
HUC12 watershed area of each lake or reservoir in the lake inventory by ecoregion. The means 
and standard deviations were compared, looking for overlaps in ranges of standard deviations 
to identify any notable differences in land use characteristics of the HUC12 watersheds 
between the two groups.  

We compared eutrophication risk and evidence against developed, undeveloped and 
agriculture land use group percentages using the NLCD (see Landscape Context section above 
for details). To achieve this, the percentage of land use within each of the three main categories 
was calculated for the HUC12 watershed area of each lake or reservoir in the lake inventory. 
Comparisons were made within similar ecoregions within the CV regional bounds to account for 
areas with known ecological similarities. For all groupings, Shapiro–Wilk test and Levene’s test 
were done to check for normality and equal variances, respectively. Due to nonnormality, the 
Wilcoxon ranked sum test was selected to determine median differences for all comparisons. 
For some comparisons, there was unequal variance which lowers the power of the test and only 
allowed for comparison of differences but not the magnitude of differences (Mann and 
Whitney 1947). Statistically significant differences were determined at p<0.05. All statistical 
tests were conducted using R statistical software (R Core Team 2024).  

Remotely sensed satellite imagery data time series 
analysis 
Annual and interannual variations in cyano-bloom occurrence were explored to investigate how 
temporal variation might influence assessment results, due to the high temporal resolution of 
satellite imagery data (e.g., weekly observations). Seasonality within was explored within the 7 
µg/L cyano-bloom occurrences timeseries. A regional climatology was calculated using the 
average number of weekly cyano-bloom occurrences across the seven years of available 
satellite observations and was compared to the seasonal patterns observed within each year to 
assess interannual variations in cyano-bloom patterns. Each week was assigned a 
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corresponding season to examine which seasons experienced the most frequent cyano-bloom 
occurrences during the timeseries. For this analysis, spring was defined as weeks 10-22 out of 
52 in a year; summer was defined as weeks 23-35; autumn was defined as weeks 36-48; and 
winter was defined as weeks 1-9 and 49-52.  

Annual variations in regional bloom occurrence were also examined in relation to hydrologic 
conditions by comparing regional mean cyano-bloom occurrences to the annual water year 
hydrologic classification index for the Sacramento and San Joaquin Valley developed by the 
California Department of Water Resources (https://cdec.water.ca.gov/reportapp/). Water year 
classifications are determined based on measured, unimpaired runoff for the basin. The 
California Department of Water Resources defines unimpaired runoff as the natural water 
production of a river basin, unaltered by upstream diversions, storage, export of water to or 
import of water from other basins. For the years considered, the designations were the same 
for the Sacramento Valley and the San Joaquin Valley. 

RESULTS 

Lake and Reservoir data availability and 
distributions in the Central Valley region 
A total of 91 lakes and reservoirs in the region had in situ data relevant for assessment and 47 
lakes had data with remotely sensed imagery data (Table 3). After considering assessment 
inclusion criteria described below (requirement of at least 3 repeated observations of an 
indicator), this resulted in the ability to assess 86 distinct lakes and reservoirs in the region. The 
lakes were distributed throughout the region (Figure 2). Overall, the most common indicator 
within the database was total phosphorus with a total of 3103 observations within the 
database, with just over a third of those observations collected from Clear Lake. Observations 
of total nitrogen were the least common, with a total of 314 observations (Table 3).  

  

https://cdec.water.ca.gov/reportapp/
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Table 3. Summary counts of lakes and reservoirs in the Central Valley region with data 
relevant to the eutrophication assessment framework. 

 Lakes with at 
least one 
observation 

Lakes with 
three or more 
observations 

Total 
number of 
observations 

Lake with the 
greatest number 
of observations 

In situ assessment data 
for any indicator 

90 61 3842 Clear Lake 
(1252) 

Total phosphorus 
observations 

85 46 3103 Clear Lake 
(1186) 

Total nitrogen 
observations 

60 24 314 H.V. Eastman 
Lake (59) 

In situ Chlorophyll-a 
observations 

49 30 425 Clear Lake (66) 

Remotely sensed 
imagery observations 

47 47 Not 
applicable 

Not applicable 

Microcystin observations 35 17 865 Clear Lake (662) 
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Figure 2. Maps of the Central Valley region of California showing the geographic 
distributions of waterbodies with assessment data. Points indicate locations with 
framework indicator data, both in situ and remotely sensed. Data type is indicated by the 
colors of the points. Locations with more than one type of indicator present are indicated 
with wedges that are colored by the types of indicators present. This data is available in 
tabular format in Supplemental Table 2. 

A wide range of nutrient and biomass concentrations are observed across the lakes and 
reservoirs across the region (Table 4). The mean concentrations of total phosphorus and total 
nitrogen were at the eutrophic 1 and eutrophic 2 risk levels, respectively, however, the 
standard deviation for each indicator highlights the wide variance in concentrations observed 
for these indicators (Table 4). Similarly, in situ chlorophyll-a concentrations indicate that 
extreme and widely variable levels of algal biomass have been observed in some lakes within 
the region with the mean of all observations exceeding the hypereutrophic levels (Table 4). 
Imagery based estimates of cyano-blooms indicate that 26 resolvable lakes experienced 
cyanobacterial blooms at least 3 or more weeks per year, on average in the last seven years 
(Table 4, Supplemental Figure 2). 
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Table 4. Data distributions and summary statistics from the assembled dataset. Standard 
deviation was calculated including non-detect values which were set to zero. 

Indicator Range  Average Median Standard deviation  

Total nitrogen (mg/L) 0 – 8.2 0.661 0.273 0.969 

Total phosphorus (mg/L) 0 – 2.2 0.088 0.03 0.145 

Chlorophyll-a (µg/L) 0 - 7121 111 4.7 469 

Annual 7 µg/L intensity 
cyano-bloom 
occurrences (n) 

0-35 2.8 1 6.0 

Total Microcystin (µg/L) 0-5554 19.9 0 266 

Application of eutrophication assessment 
framework in the Central Valley region 

Eutrophication Risk 
There were 47 lakes that had enough data to meet the inclusion criteria for the assessment of 
eutrophication risk. Of these 47 lakes, 46 were able to be scored based on TP concentrations, 
while 24 were able to be scored based on TN concentrations (Figure 3). Assessable lakes were 
distributed throughout the region (Figure 4, Supplemental Table 2).  

When scoring individually based on TP concentrations, 44% of assessed lakes were at risk of 
being in eutrophic state (43.5%), with 10.9%, 15.2% and 17.4% of lakes being ranked with risk 
of eutrophic 1, eutrophic 2 or hypereutrophic state conditions, respectively. Conversely, 55.3% 
of assessed lakes were not at risk of a eutrophic state (Figure 3A). Different distribution of 
eutrophication risk was observed using TN concentrations. The majority (66.7%) of assessed 
lakes were likely in an oligotrophic condition based on TN concentrations (Figure 3B). A smaller 
proportion of assessed lakes were ranked as being at risk of a eutrophic state (20.9%) when 
considering TN concentrations. Importantly, however, a smaller number of lakes (n = 45) had 
TN data that met the assessment inclusion criteria than for eutrophication risk assessment via 
TP.  

Overall, the findings indicate a slightly lower percentage of lakes at risk of being in a eutrophic 
state (44.7%) than being ranked as oligotrophic or mesotrophic (55.3%). Additionally, within the 
spectrum of eutrophic conditions, lakes were nearly evenly distributed across eutrophic 
categories (e.g., eutrophic 1, eutrophic 2 and hypereutrophic) (Figure 3C). 
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Figure 3. Percentage of lakes with each trophic risk state observed based on total 
phosphorus (A) and total nitrogen (B) thresholds and measurements. Panel C shows the 
breakdown of overall risk scores for all lakes with nutrient measurements meeting the 
assessment inclusion criteria of at least 3 or more observations. 

 

  
Figure 4. Map of lakes and their overall eutrophication risk levels. 
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Eutrophication Evidence 
A total of 71 lakes met the data inclusion criteria to assess evidence of eutrophication. A total 
of 30 waterbodies were assessable based on available in situ chlorophyll-a measurements. 
Remotely sensed imagery more than doubled the number of assessable waterbodies by adding 
41 additional lakes and reservoirs that did not otherwise have in situ chlorophyll-a 
measurements. (Figure 5, Supplemental Table 2).  

When scoring individually based on chlorophyll-a concentrations, 46.7% of assessed lakes had 
evidence of eutrophic or hypereutrophic state based on mean chlorophyll-a concentrations of 
>7.3 µg/L. Of these, a majority had evidence of hypereutrophic conditions with mean 
chlorophyll-a concentrations exceeding 56 µg/L (Figure 5A). A larger proportion of lakes (60%) 
were scored as being in an oligotrophic or mesotrophic state based on remotely sensed cyano-
bloom occurrence, but notably, most of these lakes (89%) did not have paired in situ 
observations (Figure 5B). When the individual metrics were combined, a similar split was 
observed between lakes with evidence for a eutrophic or hypereutrophic state (38%) and lakes 
with evidence of an oligotrophic or mesotrophic state (62%; Figure 5C).  

 
Figure 5. Percentage of lakes with eutrophication evidence indicators. Panel A shows the 
chlorophyll-a based metric, panel B shows the percentage of lakes in each trophic 
category derived from remotely sensed imagery data (note that the oligotrophic and 
mesotrophic categories are combined due to the decreased sensitivity at lower 
cyanobacterial biomass levels making it difficult to differentiate these categories) and 
panel C shows the integrated evidence of eutrophication. 
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Seasonal and Interannual Trends in the Central 
Valley Region  
In situ datasets tend to be limited over time due to the expense of sample collection which 
limits our ability to assess temporal variations in response to variations in large scale 
environmental conditions such as climate and seasonality. Remote sensing via satellite imagery 
allows for a comprehensive temporal trend assessment for larger lakes and reservoirs. We have 
seven years of routine observations of satellite imagery measuring cyanobacterial biomass 
which we analyzed to determine the number cyano-bloom occurrences during this timeframe. 
The analysis revealed clear seasonal and interannual variations in cyano-bloom occurrences 
across the CV region (Figure 6). Cyano-bloom occurrences typically occurred in the summer and 
fall for most lakes and reservoirs, however many lakes in the CV region also experienced 
blooms in the winter and spring (Figure 6A). Interestingly, cyano-bloom occurrences were the 
least common during the spring season in the CV region. 

 

Figure 6. (A) Summary of total annual weekly cyano-bloom occurrence counts at the 7 
µg/L cyanobacterial chl-a intensity between 2017-2023 from remote sensing imagery 
observations, colored by season. The season during which blooms were detected 
throughout the year are indicated in the legend. (B) Annual total count of cyano-blooms 
per year for each lake plotted by year between 2017-2023, which each point colored by 
year. The black dashed line (n=3) indicates the number of weeks used within the 
assessment framework to identify a given lake as eutrophic. Lakes with a minimum of 3 
years with 3 blooms were identified as eutrophic 1 or greater. 



23 
 

Some lakes and reservoirs, such as Clear Lake and San Luis Reservoir, experienced multiple 
years with 20 or more weeks with cyano-blooms (Table 2, Figure 6B), indicating a chronic issue 
with cyanobacterial blooms. Most lakes and reservoirs, however, demonstrated clear 
interannual variability in the number of cyano-bloom occurrence detected each year. When 
looking at the broader regional patters in cyano-bloom occurrence, we can see that the within 
lake variation in cyano-blooms often matches a broader regional trend in the weekly counts of 
cyano-blooms in the region (Figure 7). Precipitation patterns may be one important factor in 
interannual differences in biomass accumulation. In our time series of annual cyano-bloom 
occurrences, we observed that median cyano-bloom occurrences were generally higher in drier 
years than in wetter years across the region (Figure 8). For example, the years 2017 and 2023 
(wet years) both show lower weekly counts of cyano-bloom occurrences for a majority of the 
year when compared to the seven-year average count of blooms for the region (e.g., the 
colored lines in the 2017 and 2023 panels both fall below the black line denoting the long-term 
average for the region). Similarly, 2021 and 2022 (critically dry years) show routinely higher 
counts of weekly cyano-bloom occurrences for the region (Figure 7, Figure 8). 

Figure 7. Annual time series of weekly cyano-bloom occurrences at the 7 µg/L 
cyanobacterial chl-a intensity detected via satellite remote sensing across the Central 
Valley. The colored line in each panel shows the count of blooms in all resolvable lakes 
each week for that specific year. The black solid line is the average number of blooms 
per week across all seven years, providing a ‘typical’ bloom climatology for the 
resolvable lakes in the region. The grey intervals show the maximum and minimum 
weekly count of cyano-blooms observed between 2017 and 2023. 
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Figure 8. Box plot of average weekly cyano-bloom occurrence counts at the 7 µg/L 
cyanobacterial chl-a intensity by year for each lake assessed by satellite imagery. Boxes 
are colored based on the Water Year Hydrologic Classification Indices for the 
Sacramento and San Joaquin Valley conducted by the California Department of Water 
Resources to indicate if the year was designated as a wet water year (wet, indicated in 
purple), below normal water year (below normal, indicated with red), dry water year (dry, 
indicated with aqua) or critically dry water year (critically dry, indicated with green) based 
on the historical climate of the region. 

Spatial Characteristics and Representativeness of 
Assessment 

Land Use 
Despite only having sufficient data to assess a small percentage (~2%) of the CV region’s 
estimated 4490 lakes and reservoirs, the ecoregional distribution and land use characteristics of 
the assessed waterbodies were generally representative of the larger lake and reservoir 
population (Table 5, Supplemental Table 2). A majority of the region’s lakes and reservoirs 
were located within the mountain ecoregion grouping (80%), and a much smaller percentage 
were located within the valley ecoregion (20%). The spatial distribution of assessed lakes and 
reservoirs mimicked the overall regional pattern with 87.2% of assessed lakes located in the 
mountain ecoregional group and 12.8% located in the valley ecoregion. As expected, our 
analysis showed that major land uses within the HUC12 watersheds of the total inventory of 
lakes and reservoirs were distinctive between the mountain and valley ecoregion groups, thus 
comparisons between watershed land uses were conducted by ecoregional group.  
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Undeveloped land uses were the most dominant category of the mountain ecoregion grouping, 
while agricultural uses were the most dominant land uses in the valley ecoregion 
(Supplemental Table 3). Within the mountain ecoregion grouping, similar percentages 
undeveloped land uses were observed with overlapping standard deviations. Similar 
overlapping standard deviations were observed for agricultural and developed land uses, but 
these land uses are a much smaller proportion of the overall land used within lake and reservoir 
watersheds of the mountain ecoregion group (Table 5). A larger difference between watershed 
land uses of total inventory and the assessed waterbodies were observed in the valley 
ecoregion for agricultural and undeveloped land uses, but ultimately standard deviations 
overlapped. Mean developed land use percentages within the valley ecoregion, however, were 
relatively similar (Table 5). 

Table 5. Data count and mean watershed land use percentages from the total inventory of 
Central Valley lakes and reservoirs and of assessed lakes and reservoirs separated by 
ecoregion groups. 

Analysis Total 
Inventory 

Assessed 
Waterbodies 

Waterbodies in Mountain Ecoregion group (n) 3594 76 

Agricultural Watershed Area in Mountain Ecoregion Group 
(Mean % ± Standard Deviation) 3.8±6.0 1.6±3.8 

Developed Watershed Area in Mountain Ecoregion Group 
(Mean % ± Standard Deviation) 1.5±1.2 2.8±3.9 

Undeveloped Watershed Area in Mountain Ecoregion 
Group (Mean % ± Standard Deviation) 74.4±36.8 88.9±15.8 

Waterbodies in Valley Ecoregion (n) 895 10  

Agricultural Watershed Area in Valley Ecoregion Group 
(Mean % ± Standard Deviation) 49.5±26.1 24.0±25.5 

Developed Watershed Area in Valley Ecoregion Group 
(Mean % ± Standard Deviation) 16.5±12.5 21.6±28.6 

Undeveloped Watershed Area in Valley Ecoregion Group 
(Mean % ± Standard Deviation) 27.6±22.1 48.2±27.9 
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Given the similarities of the assessed waterbodies to the larger population of lakes and 
reservoirs in the CV region, we investigated if there were significant differences in watershed 
land use class percentages between lakes based on their eutrophication risk and eutrophication 
evidence status. Overall, however, significant differences were not observed for either 
assessment component in either ecoregion for any land use category for pairwise comparisons, 
with most p-values indicating non-significant results (Table 6).  

Table 6. Wilcoxon test results comparing eutrophication risk with no eutrophication risk 
and evidence of a eutrophic/hypereutrophic state with evidence of an 
oligotrophic/mesotrophic state for the different land use categories and ecoregions. 

Ecoregion Group Land Use Category Comparison p-value 
Mountain Ag Eutrophication Risk Status 1 

Valley Ag Eutrophication Risk Status 0.229 
Mountain Developed Eutrophication Risk Status 0.218 

Valley Developed Eutrophication Risk Status 0.786 
Mountain Undeveloped Eutrophication Risk Status 0.119 

Valley Undeveloped Eutrophication Risk Status 1 
Mountain Ag Eutrophication Evidence Status 0.520 

Valley Ag Eutrophication Evidence Status 0.400 
Mountain Developed Eutrophication Evidence Status 0.038 

Valley Developed Eutrophication Evidence Status 1 
Mountain Undeveloped Eutrophication Evidence Status 0.063 

Valley Undeveloped Eutrophication Evidence Status 0.571 

Distribution of Assessed Lake Across Disadvantaged 
Communities 
Numerous disadvantaged communities are located within the CV region (Figure 9, 
Supplemental Table 2) and of the assessed lakes and reservoirs, 60.4% of those assessed for 
eutrophication risk and 50.7% of those assessed for eutrophication evidence were located 
within these communities. Our assessment, though numerically limited, showed that of the 
waterbodies ranked as experiencing eutrophication risk (Table 7, Supplemental Figure 3), a 
slightly larger percentage of these waterbodies are located within a disadvantaged community 
(52.2%) than in non-disadvantaged communities (47.8%). Similarly, a larger percentage of 
waterbodies ranked as having evidence of eutrophication (Table 7, Supplemental Table 2) are 
also located with disadvantaged communities (61.8%) than in non-disadvantaged communities 
(38.2%). Given the overall small sample size, however, it is difficult to determine if these results 
are broadly applicable. 
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Table 7. Count of lakes in disadvantaged communities based on the trophic risk and 
eutrophication evidence. The presence of an assessed waterbody in a DAC was 
determined based on if the lake or reservoir was located directly within the geographic 
area designated as a DAC. Note that lakes and reservoirs assessed for eutrophication 
risk do not fully overlap with those assessed for eutrophication evidence. 

Assessment Status Count of waterbodies within a 
disadvantaged community (n) 

Count of waterbodies outside a 
disadvantaged community (n) 

Eutrophication risk 
observed 13 8 

Eutrophication risk not 
observed 16 10 

Insufficient data to 
assess eutrophication 
risk  

15 24 

Evidence of 
eutrophic/hypereutrophic 
state 

17 10 

Evidence of 
oligotrophic/mesotrophic 
state 

18 26 

Insufficient data to 
assess eutrophication 
evidence  

9 6 
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Figure 9. Map of disadvantaged communities and the 86 assessed lakes and reservoirs 
within the Central Valley region. Panel A shows a synoptic view of the entire region 
outlined in with a dark black line, Panel B shows a zoomed view of the Sacramento River 
Basin subregion, Panel C shows a zoomed view of the Tulare Lake Basin subregion, and 
Panel D shows a zoomed in view of the San Joaquin River Basin and the Sacramento-
San Joaquin Delta. Shaded areas with grey outlines are individual census tract areas and 
are colored based on light pink if the track is identified as a disadvantaged community, 
light grey if not identified as a disadvantaged community and dark grey if data is not 
available for that tract. Points indicate locations of the assessed lakes and the point 
colors are based on the data sources available to conduct the assessment. 
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DISCUSSION 
This study adapted and applied a framework, based on a combination field and remote sensing 
data, to create the first regional assessment of eutrophication in California’s CV Region. The 
framework utilized an innovative combination of remote sensing and in situ field data to 
assessment both the evidence of eutrophication (based on algal biomass) and risk of 
eutrophication based on TN and TP. About 40% of the lakes and reservoirs for which data were 
available were found to have evidence of eutrophication, with some ranging up to hypertrophy. 
Slightly higher numbers had evidence of eutrophication, based on thresholds for TN and TP. A 
proportion of waterbodies at risk for or experiencing evidence of eutrophication were in 
disadvantaged communities. However, our sample size was small and more observations would 
be needed for this analysis to be robust. However, it does point to the utility of this 
eutrophication assessment framework to help prioritize monitoring effort and management 
support actions in the future.  

Forty Percent of Central Valley Lakes and 
Reservoirs Show Evidence or Risk of Eutrophication 
In this study, we gathered sufficient data to evaluate 86 lakes and reservoirs in the CV region. 
Of these, 47 lakes met the criteria for assessing eutrophication risk, while 71 qualified for an 
evaluation of eutrophication evidence. The results revealed a slightly lower percentage of lakes 
were at risk of eutrophication (44.7%), while 55.3% fell below the risk threshold. Similarly, 38% 
of the lakes showed biomass-based evidence of waterbodies experiencing a eutrophic or 
hypereutrophic state, while 62% showed no such evidence. The results indicate that 
eutrophication is prevalent in many water bodies, with observable impacts on water quality 
and ecosystem health. This underscores the need for proactive monitoring and mitigation 
efforts, where the framework can serve as a valuable tool for guiding decision-making and 
policy development. 

A variety of factors that vary on seasonal, annual, or multiannual timescales contribute to 
excessive biomass accumulation. These factors are multiple and include variations in the 
nutrient levels within individual lakes and reservoirs due to shifts in internal and external 
nutrient loading dynamics, changes to the biological communities within lakes, or changes in 
climate such as temperature regimes or precipitation patterns (Lau et al. 2002, Liu et al. 2010, 
Jones and Brett 2014). The region has previously been reported to experience public reports of 
algal blooms throughout the calendar year (Jang and Otim 2023), however our analysis shows 
that while this is true in some lakes, blooms in the region most typically occur during the 
summer and fall. Our findings mirror the typical bloom phenology observed in many other 
studies (Coffer et al. 2020, Jang and Otim 2023). This is an important consideration for any 
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future sampling efforts, as the timing of sample collection may predispose the dataset to either 
see higher or lower instances of high algal biomass depending on the timing selected for 
sampling. As currently applied, our framework considers data collected throughout the annual 
cycle, however this decision was made to maximize the number of waterbodies we could 
assess. This does risk the underestimation or overestimation of potential biomass accumulation 
observed depending on when samples were collected and if they were all collected in a single 
season. We attempted to offset this effect through averaging at least three observations of 
biomass from a waterbody to understand the central tendency of the data, however we also 
did not consider the timing of sample collection. It might be appropriate to limit the temporal 
scope of data included in the assessment in the future depending on the nature of future data 
collection efforts. 

One important factor that modulates biomass accumulation in lakes and reservoirs is changes 
in precipitation and the cascade of impacts this may have on biomass accumulation dynamics 
within an individual waterbody (Ho and Michalak 2020). In our study, we found evidence that 
cyanobacterial blooms, as detected by satellite remote sensing, were more frequent and 
occurred in more waterbodies during drier years than in wetter years. Cyanobacterial blooms 
may be more frequent and intense in years with low precipitation due to reduced water inflow, 
longer water residence times, and increased water temperature (Paerl and Otten 2013). Lower 
precipitation leads to decreased flushing of lakes and reservoirs, allowing nutrients to 
accumulate and remain available for cyanobacterial growth. Additionally, reduced cloud cover 
and higher solar radiation in dry years can enhance water column stratification, creating stable, 
warm surface layers that favor cyanobacterial dominance (Paerl and Huisman 2009; O’Neil et al. 
2012). In contrast, years with high precipitation typically experience increased water exchange, 
dilution of nutrients, and stronger mixing, which can disrupt stratification and limit conditions 
favorable for bloom formation. The duration of our timeseries is somewhat limited (seven 
years) and not currently able to fully resolve the influence of these factors on biomass 
accumulation within the CV, but this analysis points to the importance of considering how 
multiple factors influence biomass accumulation. It also points to the value of collecting 
repeated observations over time to ensure that the eutrophication assessment is not heavily 
influenced by years with higher or lower than typical cyano-bloom counts.  

The CV region is large and encompasses a range of ecoregions and land uses. These landscape 
level characteristics are an important factor in modulating eutrophication and also might be 
predictive of where waterbodies might be at an increased risk of eutrophication related 
impacts. Based on our analysis, the waterbodies we were able to assess, albeit limited, were 
located in watersheds with land use characteristics that were similar to the large lake and 
reservoir population. Watershed level characteristics have previously been modeled and were 
able to successfully predict the eutrophication status of thousands of unsampled lakes 
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throughout the continental United States (Hill et al. 2018). Given the large number of lakes and 
reservoirs in the CV, we attempted to derive similar risk-based predictive relationships based 
on our assessment data since this would provide a valuable tool for guiding future sampling 
efforts. Unfortunately, our dataset was not robust enough to develop regionally specific 
relationships of this nature. To move towards this ability, future sampling efforts should 
strategically consider the ecoregions and land use characteristics when selecting which lakes 
and reservoirs to target for sample collection. 

We attempted to understand if eutrophication disproportionately impacted the disadvantaged 
communities within the CV region. Our high-level analysis suggested that a larger proportion of 
waterbodies at risk for or experiencing evidence of eutrophication were in disadvantaged 
communities. However, our sample size was small and more observations would be needed for 
this analysis to be robust. Additionally, more work is needed to understand the specific impact 
pathways of eutrophication that are meaningful to these communities and the appropriate 
mitigation approaches (Fernandez-Bou et al. 2021). 

Eutrophication Assessment as a Decision Support 
Tool for Prioritizing Monitoring 
The eutrophication assessment framework utilized in this study represents an important 
advance in an important advancement in understanding and managing eutrophication in the CV 
region. Rather than creating a new framework, we reviewed and adapted existing approaches 
based on their suitability for this non-regulatory application. This process ensured that the 
framework remains grounded in established methodologies while being tailored to provide 
practical and actionable insights. Designed to be broadly applicable, the framework can be used 
in other regions to assess eutrophication risk and inform management decisions. In the CV 
region, it serves as a foundational tool for future assessments, with the potential to be refined 
as additional data become available. By synthesizing complex ecological data into an accessible 
format, the framework offers a clear indication of eutrophication risk, which can directly inform 
lake and reservoir management strategies.  

Scientific Data Gaps and Management 
Recommendations 
Our assessment did not have a comprehensive enough dataset to conduct statistical analyses to 
conclusively determine if there are statistically significant relationships between eutrophication 
and land use or if disadvantaged communities are disproportionally impacted by 
eutrophication. Strategic collection of data is needed to more quantitively address these 
questions including strategic collection of data from within lakes and reservoirs within different 
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ecoregions, with diverse watershed land uses and from within and outside of disadvantaged 
communities. These analyses are important to support strategic monitoring and risk 
management in the future. 

We highlighted that seasonal and interannual variations in biomass accumulation are present in 
many lakes across the region. This is clearly observed though the variations in the number of 
cyano-bloom occurrences via remote sensing between 2017-2023 (Figure 6B). This dynamic has 
also been observed in situ in routinely sampled lakes in the Central Valley (Huie et al, in prep) 
and in lakes in the Los Angeles area (Smith et al. 2023b). The factors driving this variation are 
multiple and include large scale dynamics such as regional precipitation factors. These factors 
almost certainly influence assessment results, particularly when looking at biomass 
accumulation indicators. Future studies and data collection efforts should carefully consider the 
timing and frequency of observations as well as the larger environmental factors such as 
climatology and precipitation. Special studies should also be considered to untangle the effects 
of large-scale drivers like precipitation and climate on the eutrophication status of the region’s 
lakes and reservoirs.  

Table 8. Sensitivity comparison of trophic state assignments based on eutrophication 
risk nutrient indicators and eutrophication evidence biomass indicators for the 32 lakes 
and reservoirs where data were available for each type of assessment. 

- - Eutrophication Evidence 

- 
- Oligotrophic/Mesotrophic Eutrophic 1 Eutrophic 2 

Hyper-
eutrophic 

Eu
tro

ph
ic

at
io

n 
R

is
k 

Oligotrophic/
Mesotrophic 9 2  0 7 

Eutrophic 1 3  0     

Eutrophic 2 1  0 1 2 

Hyper-
eutrophic 1  0 4 2 

 

A total of 32 were able to be assessed using all the indicators we selected in our framework 
(Table 8). We saw general agreement amongst assessment results where multiple indicators 
were available within the same waterbody (agreement for 18 or 56.3% of waterbodies with 
multiple indicators). A total of 12 (37.5%) waterbodies had full agreement between the risk and 
evidence indicators and 6 (18.8%) of waterbodies both placing a waterbody into a eutrophic or 
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hypereutrophic category. A mismatch was observed in 5 (15.6%) waterbodies where risk 
indicators suggested the waterbody was in an oligotrophic/mesotrophic state and evidence 
indicators indicated a eutrophic 1 status, or vice versa. Larger mismatches where one 
component of the assessment suggested an oligotrophic/mesotrophic state and the other 
suggested a state of eutrophic 2 or hypereutrophic occurred in 9 (28.1%) waterbodies. Overall, 
the instances of multiple data types from the same waterbody were rare enough that we were 
not able to fully understand the cross comparability of indicators or the relationship between 
waterbodies ranked with eutrophication risk and eutrophication evidence. The reasons for the 
observed mismatches could be multiple and include that we did not have a strict requirement 
that all observations be co-located in time or space. Thus, observations of risk and evidence 
indicators could be significantly staggered in time and/or space within a given waterbody. 
Future efforts should focus on co-locating nutrient and biomass measures temporally and 
spatially to better understand cross comparability of indicators. 

Overall, standardized operating procedures for combined harmful algal bloom and 
eutrophication assessments are needed for lakes and reservoirs to generate the datasets that 
allow for more robust assessments in the future. Additionally, integration of satellite remote 
sensing technologies into future assessment efforts should also be prioritized as they show 
great promise in supporting broader assessment than would otherwise be possible with in situ 
sampling efforts alone. 
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APPENDIX A. SUPPLEMENTARY MATERIALS 
 

 
Supplemental Figure 1. Box plot of comparison of mean microcystins concentrations 
(µg/L) for a given lake to the corresponding (A) in situ chlorophyll-a based evidence 
status and (B) eutrophication risk status. The NA box represents lakes or reservoirs for 
which total microcystin observations were available but data to assess trophic status 
were not. 

 

 
Supplemental Figure 2. Histogram of the count cyano-bloom occurrences between 2017-
2023 at the 7 µg/L cyanobacterial chl-a intensity in resolvable lakes based on remotely 
sensed imagery data. 
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Supplemental Figure 3. Map of disadvantaged communities and the 48 lakes and 
reservoirs assessed for eutrophication risk within the Central Valley region. Panel A 
shows a synoptic view of the entire region outlined in with a dark black line, Panel B 
shows a zoomed view of the Sacramento River Basin subregion, Panel C shows a 
zoomed view of the Tulare Lake Basin subregion, and Panel D shows a zoomed in view 
of the San Joaquin River Basin and the Sacramento-San Joaquin Delta. Shaded areas 
with grey outlines are individual census tract areas and are colored based on light pink if 
the track is identified as a disadvantaged community, light grey if not identified as a 
disadvantaged community and dark grey if data is not available for that tract. Points 
indicate locations of the assessed lakes, and the point colors are based on the 
eutrophication risk status of that lake. 
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Supplemental Table 1. Summary of data analysis methods for each in situ parameter 
included in the assessment framework. Table includes the parameters, the reporting 
agency(s), and the methods used to collect the data. Analysis methods were reported 
according to the available agency metadata. In some cases, observations were reported 
as unknown methods (generally less than 8% of observations). All observations were 
derived from water grab samples. Data source abbreviations indicate U.S. Geological 
Survey (USGS), Department of Water Resources (DWR), National Park Service Water 
Resources Division (NPSWRD), California State Water Boards (CWBs), Aquatic Pesticide 
Monitoring Program (APMP), Big Valley Rancheria EPA (BVR), Hensley and Eastman 
HABs Study (HEHAB), National Lakes Assessment (NLA), Tuolumne Band of Me-Wuk 
Indians Monitoring (TMTC), U.S. Army Corps of Engineers (USACE), and U.S. Forest 
Services (USFS). 

Assessment Element Parameter Reporting Agencies Analysis Methods 
Eutrophication Evidence Chlorophyll-a APMP, CWBs, DWR, 

HEHAB, NLA, 
NPSWRD, USGS 

EPA 445.0, SM 10200 
H, SM 10200 Hb, 
Unspecified 
fluorometric 

Eutrophication Risk Total Nitrogen APMP, CWBs, 
HEHAB, NLA, 
NPSWRD, TMTC, 
USFS, USGS 

SM 4500 NO3 and SM 
4500 with 
modifications, QC 
10107062E, Unknown 

Eutrophication Risk Total Phosphorus APMP, BVR, CWBs, 
DWR, HEHAB, NLA, 
NPSWRD, TMTC, 
USACE, USFS, 
USGS 

EPA 365.1 with 
modifications, EPA 
365.3 and 365.3 with 
modifications , EPA 
365.4 and 365.4 with 
modifications, SM 
4500-P E, QC 
10115011D, Unknown 

Eutrophication Impact Total Microcystins BVR, CWBs, 
HEHAB, NLA 

ELISA, LC-MS 
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Supplemental Table 2: Summary of all assessable lakes showing what data types were available, the eutrophication risk 
status, and eutrophication evidence status. 

Lake Name Lat Long Chl-a TP TN Remote 
Sensing 

Eutro Risk Eutro Evidence DAC20 

Alder Creek  38.636 -121.206 NA X NA NA Eutrophic 2 NA N 
Antelope Lake 40.180 -120.607 X X NA NA Eutrophic 2 Oligo/Meso Y 
Bass Lake 37.313 -119.551 X NA NA NA NA Oligo/Meso N 
Black Butte Lake 39.794 -122.358 NA X NA X Hypereutrophic Oligo/Meso Y 
Bowman Lake 39.452 -120.636 NA NA NA X NA Oligo/Meso Y 
Bucks Lake 39.882 -121.165 NA X NA X Oligotrophic Oligo/Meso N 
Butt Valley Reservoir 40.143 -121.172 NA X NA X Oligotrophic Oligo/Meso N 
Camanche Reservoir 38.223 -120.950 NA X X X Oligotrophic Oligo/Meso N 
Camp Far West Reservoir 39.048 -121.295 X X X X Oligotrophic Oligo/Meso Y 
Cherry Lake 38.001 -119.907 NA NA NA X NA Oligo/Meso N 
Clear Lake 39.039 -122.800 X X NA X Hypereutrophic Hypereutrophic N 
Cliff Lake 40.477 -121.455 X X X NA Mesotrophic Hypereutrophic Y 
Clifton Court Forebay 37.838 -121.576 NA NA NA X NA Eutrophic 1 N 
Costa Ponds 36.087 -118.839 NA NA X NA Oligotrophic NA Y 
Courtright Reservoir 37.102 -118.972 NA NA NA X NA Oligo/Meso Y 
Crystal Lake 40.459 -121.291 X NA NA NA NA Oligo/Meso Y 
Don Pedro Reservoir 37.698 -120.375 NA X X X Eutrophic 1 Oligo/Meso Y 
Dorris Reservoir 41.488 -120.490 NA X NA NA Eutrophic 2 NA N 
East Park Reservoir 39.361 -122.509 NA X NA NA Eutrophic 1 NA Y 
Eastman Lake 41.108 -121.489 NA X NA NA Eutrophic 2 NA Y 
Folsom Lake 38.728 -121.133 X NA NA X NA Oligo/Meso N 
French Meadows Reservoir 39.112 -120.442 X X X X Oligotrophic Oligo/Meso N 
Frenchman Lake 39.908 -120.186 NA X NA X Eutrophic 1 Oligo/Meso Y 
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Lake Name Lat Long Chl-a TP TN Remote 
Sensing 

Eutro Risk Eutro Evidence DAC20 

Goose Lake 41.947 -120.419 NA NA NA X NA Eutrophic 1 N 
H. V. Eastman Lake 37.225 -119.975 X X X NA Hypereutrophic Hypereutrophic Y 
Hensley Lake 37.121 -119.885 X X X NA Hypereutrophic Eutrophic 2 Y 
Hetch Hetchy Reservoir 37.958 -119.757 NA NA NA X NA Oligo/Meso N 
Homer Lake 40.221 -120.967 NA X X NA Mesotrophic NA Y 
Horr Pond Big Lake 41.106 -121.425 NA NA NA X NA Oligo/Meso Y 
Indian Valley Reservoir 39.122 -122.540 NA NA NA X NA Eutrophic 2 Y 
Isabella Lake 35.670 -118.427 NA X NA X Eutrophic 2 Hypereutrophic Y 
Jackson Meadows  
Reservoir 

39.499 -120.552 NA NA NA X NA Oligo/Meso Y 

Jenkinson Lake 38.724 -120.565 NA X X NA Oligotrophic NA N 
Kerckhoff Lake 37.149 -119.511 X NA NA NA NA Oligo/Meso N 
Lake Almanor 40.236 -121.111 NA X NA X Mesotrophic Eutrophic 1 N 
Lake Alpine 38.476 -120.000 X NA NA NA NA Oligo/Meso N 
Lake Amador 38.302 -120.887 NA X X NA Eutrophic 1 NA N 
Lake Berryessa 38.589 -122.230 NA NA NA X NA Oligo/Meso N 
Lake Combie 39.014 -121.041 X X X NA Oligotrophic Oligo/Meso N 
Lake Davis 39.915 -120.513 NA X NA X Eutrophic 2 Eutrophic 2 Y 
Lake Eleanor 37.986 -119.858 NA NA NA X NA Oligo/Meso N 
Lake Greenhaven 38.508 -121.535 X X X NA Hypereutrophic Eutrophic 2 N 
Lake Helen 40.467 -121.510 X X X NA Oligotrophic Hypereutrophic Y 
Lake McClure 37.612 -120.135 X NA NA NA NA Oligo/Meso Y 
Lake near Tuolumne 
Meadows 

37.704 -119.289 NA X NA NA Oligotrophic NA Y 

Lake of the Pines 39.036 -121.063 X NA NA NA NA Oligo/Meso N 
Lake Oroville 39.552 -121.425 NA X NA X Mesotrophic Oligo/Meso Y 
Lake Success 36.079 -118.913 NA X NA X Eutrophic 1 Oligo/Meso Y 
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Lake Name Lat Long Chl-a TP TN Remote 
Sensing 

Eutro Risk Eutro Evidence DAC20 

Lake Thomas A Edison 37.378 -118.979 NA NA NA X NA Oligo/Meso Y 
Little Bear Lake 40.523 -121.406 X X X NA Oligotrophic Hypereutrophic Y 
Little Grass Valley Reservoi
r 

39.727 -120.995 NA X NA X Oligotrophic Oligo/Meso N 

Merle Collins Reservoir 39.339 -121.317 NA NA NA X NA Oligo/Meso N 
Millerton Lake 37.005 -119.687 NA NA NA X NA Eutrophic 1 N 
Moon Lake 41.095 -120.401 NA NA NA X NA Eutrophic 1 Y 
Mountain Meadows Reserv
oir 

40.270 -120.961 NA NA NA X NA Eutrophic 1 Y 

New Bullards Bar Reservoir 39.439 -121.132 NA NA NA X NA Oligo/Meso Y 
New Hogan Lake 38.172 -120.802 NA X X NA Oligotrophic NA N 
New Melones Lake 37.954 -120.497 X NA NA NA NA Oligo/Meso N 
O'Neill Forebay 37.081 -121.049 X X NA X Hypereutrophic Eutrophic 2 N 
Pardee Reservoir 38.253 -120.839 NA NA NA X NA Oligo/Meso N 
Pine Flat Lake 36.886 -119.241 NA X NA X Hypereutrophic Eutrophic 2 N 
Pond in Yuba Goldfields 39.216 -121.398 NA X X NA Oligotrophic NA Y 
Rainbow Lake 40.508 -122.694 X NA NA NA NA Oligo/Meso N 
San Luis Reservoir 37.057 -121.121 X X NA X Eutrophic 2 Hypereutrophic N 
Scotts Flat Reservoir 39.277 -120.918 NA NA NA X NA Oligo/Meso N 
Shasta Lake 40.767 -122.368 NA NA NA X NA Oligo/Meso Y 
Shaver Lake 37.121 -119.286 NA NA NA X NA Oligo/Meso N 
Silva Flat Reservoir 40.954 -120.909 NA NA NA X NA Oligo/Meso Y 
Silver Lake 40.529 -121.386 X X X NA Mesotrophic Hypereutrophic Y 
Sly Creek Reservoir 39.614 -121.097 NA X NA NA Oligotrophic NA N 
Stone Lake 38.352 -121.495 X X X NA Oligotrophic Eutrophic 1 Y 
Stony Gorge Reservoir 39.586 -122.532 NA X NA NA Eutrophic 1 NA Y 
Summit Lake 40.493 -121.422 X X X NA Mesotrophic Hypereutrophic Y 
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Lake Name Lat Long Chl-a TP TN Remote 
Sensing 

Eutro Risk Eutro Evidence DAC20 

Swan Lake 40.499 -121.362 X X X NA Oligotrophic Hypereutrophic Y 
Thermalito Afterbay 39.456 -121.673 NA X NA X Mesotrophic Oligo/Meso Y 
Thomas Pond Behind Fire 
Station 

37.972 -120.245 NA X X NA Hypereutrophic NA Y 

Turlock Lake 37.609 -120.568 NA NA NA X NA Oligo/Meso N 
Twin Lakes Reservoir 38.702 -120.049 X NA NA NA NA Oligo/Meso N 
Union Valley Reservoir 38.872 -120.407 NA NA NA X NA Oligo/Meso N 
Unnamed LAVO Lake 1135
4 

40.446 -121.285 NA X X NA Mesotrophic NA Y 

Unnamed NLA12 Lake 141 39.096 -122.932 X NA NA NA NA Eutrophic 1 Y 
West Valley Reservoir 41.201 -120.400 NA NA NA X NA Eutrophic 2 N 
Whiskeytown Lake 40.626 -122.560 NA NA NA X NA Oligo/Meso N 
Widow Lake 40.535 -121.263 X X X NA Mesotrophic Hypereutrophic Y 
Willow Lake 40.404 -121.359 X NA NA NA NA Oligo/Meso Y 
Woodward Reservoir 37.848 -120.836 NA NA NA X NA Oligo/Meso N 
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Supplemental Table 3: Summary of all assessable lakes showing the percentages of agricultural, developed, and 
undeveloped land uses in the HUC12 watershed of the lake.  

Lake Name Ecoregion Agricultural Land Uses 
(%) 

Developed Land Uses 
(%) 

Undeveloped Land Uses 
(%) 

Antelope Lake Mountain NA 2.3 97.7 
Bass Lake Mountain NA 4.0 93.1 
Bowman Lake Mountain NA 0.8 94.7 
Bucks Lake Mountain NA 1.1 93.3 
Butt Valley Reservoir Mountain NA 1.3 91.2 
Camanche Reservoir Mountain 0.5 5.4 75.0 
Camp Far West Reservoir Mountain NA 5.0 93.4 
Cherry Lake Mountain NA 0.0 93.1 
Clear Lake Mountain NA 2.3 2.5 
Cliff Lake Mountain NA 0.3 99.7 
Costa Ponds Mountain 0.9 5.4 93.5 
Courtright Reservoir Mountain NA 0.0 95.5 
Crystal Lake Mountain NA 0.6 97.4 
Don Pedro Reservoir Mountain NA 3.6 71.9 
Dorris Reservoir Mountain 14.3 1.7 81.5 
East Park Reservoir Mountain NA 4.3 93.7 
Eastman Lake Mountain 7.5 1.9 86.6 
Folsom Lake Mountain NA 17.8 73.5 
French Meadows Reservoir Mountain NA 0.0 97.0 
Frenchman Lake Mountain NA 0.6 96.6 
Goose Lake Mountain 0.1 0.0 99.7 
H. V. Eastman Lake Mountain 0.1 0.7 96.3 
Hensley Lake Mountain NA 1.3 95.9 
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Lake Name Ecoregion Agricultural Land Uses 
(%) 

Developed Land Uses 
(%) 

Undeveloped Land Uses 
(%) 

Hetch Hetchy Reservoir Mountain NA 0.0 91.9 
Homer Lake Mountain NA 0.2 87.8 
Horr Pond Big Lake Mountain 7.5 1.9 86.6 
Indian Valley Reservoir Mountain NA 0.7 96.5 
Isabella Lake Mountain 0.3 3.3 92.7 
Jackson Meadows Reservoir Mountain NA 1.0 92.2 
Jenkinson Lake Mountain NA 5.5 90.5 
Kerckhoff Lake Mountain NA 3.2 96.1 
Lake Almanor Mountain NA 0.3 7.9 
Lake Alpine Mountain NA 2.2 95.7 
Lake Amador Mountain 0.0 4.3 94.1 
Lake Berryessa Mountain NA 1.8 69.7 
Lake Combie Mountain NA 18.8 79.6 
Lake Davis Mountain NA 2.7 87.9 
Lake Eleanor Mountain NA 0.0 93.6 
Lake Helen Mountain NA 1.8 98.2 
Lake McClure Mountain NA 1.1 96.4 
Lake near Tuolumne Meadows Mountain NA NA 98.5 
Lake of the Pines Mountain NA 18.8 79.6 
Lake Oroville Mountain NA 6.5 78.4 
Lake Success Mountain 0.3 3.1 91.1 
Lake Thomas A Edison Mountain NA 0.0 95.4 
Little Bear Lake Mountain 0.0 1.4 98.4 
Little Grass Valley Reservoir Mountain NA 0.8 91.7 
Merle Collins Reservoir Mountain 0.3 5.0 91.6 
Millerton Lake Mountain NA 0.5 89.9 



48 
 

Lake Name Ecoregion Agricultural Land Uses 
(%) 

Developed Land Uses 
(%) 

Undeveloped Land Uses 
(%) 

Moon Lake Mountain NA NA 86.4 
Mountain Meadows Reservoir Mountain NA 0.2 87.8 
New Bullards Bar Reservoir Mountain NA 1.2 91.4 
New Hogan Lake Mountain 0.0 1.4 88.0 
New Melones Lake Mountain 0.0 5.3 72.1 
Pardee Reservoir Mountain 0.0 1.8 86.0 
Pine Flat Lake Mountain NA 0.0 97.3 
Rainbow Lake Mountain NA 1.7 98.1 
San Luis Reservoir Mountain 0.0 1.6 73.8 
Scotts Flat Reservoir Mountain NA 5.5 89.4 
Shasta Lake Mountain NA 1.7 78.4 
Shaver Lake Mountain NA 2.1 88.9 
Silva Flat Reservoir Mountain NA 1.1 98.9 
Silver Lake Mountain 0.0 1.4 98.4 
Sly Creek Reservoir Mountain NA 1.0 96.7 
Stony Gorge Reservoir Mountain NA 2.4 96.7 
Summit Lake Mountain NA 0.6 97.4 
Swan Lake Mountain NA NA 97.2 
ThomasPondBehindFireStation Mountain 0.0 13.3 86.6 
Twin Lakes Reservoir Mountain NA 2.0 94.5 
Union Valley Reservoir Mountain NA 1.6 89.7 
Unnamed LAVO Lake 11354 Mountain NA 0.3 99.7 
Unnamed NLA12 Lake 141 Mountain 1.4 5.8 92.1 
West Valley Reservoir Mountain NA 0.0 98.2 
Whiskeytown Lake Mountain NA 3.9 86.3 
Widow Lake Mountain NA 0.4 99.0 
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Lake Name Ecoregion Agricultural Land Uses 
(%) 

Developed Land Uses 
(%) 

Undeveloped Land Uses 
(%) 

Willow Lake Mountain NA 0.0 99.8 
Alder Creek Valley 0.4 56.9 40.8 
Black Butte Lake Valley NA 0.5 94.1 
Clifton Court Forebay Valley 17.2 4.6 61.9 
Lake Greenhaven Valley 2.1 88.6 6.4 
O'Neill Forebay Valley 0.1 6.9 75.2 
Pond in Yuba Goldfields Valley 26.5 5.4 62.4 
Stone Lake Valley 59.3 17.0 23.2 
Thermalito Afterbay Valley 3.8 14.0 58.6 
Turlock Lake Valley 62.4 19.8 13.0 
Woodward Reservoir Valley 44.3 2.8 46.7 
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