Making Conservation a Way of Life

Item 7 March 22, 2023

Office of Research, Planning, and Performance

IFORNIA

Water Boards

Agenda

Introduction

Overview

Impacts Analysis

Schedule

Next Steps

Droughts and conservation milestones in California

SWP (State Water Project); UWMP (Urban Water Management Plan); CUWCC (California Urban Water Conservation Council); BMP (best management practices); The Water Conservation Act of 2009 (SB X7-7); California Water Conservation and Drought Planning (SB 606 & AB 1668)

Total and Per Capita Water Urban Water Use in California, 1960-2015

Source: Pacific Institute, 2020. Urban and Agricultural Water Use in California, 1960–2015.

Total and per capita production for urban water supplies

Water Supply Strategy

- Create storage space for up to 4 million acre-feet of water
- Recycle and reuse at least 800,000 acre-feet of water per year by 2030
- Support local stormwater capture projects in cities and towns with the goal to increase annual supply capacity by at least 250,000 acre-feet by 2030 and 500,000 acrefeet by 2040.
- Reduce annual urban water demand by at least half a million acre-feet by 2030.

CALIFORNIA'S WATER SUPPLY STRATEGY Adapting to a Hotter, Drier Future

Conservation as a Way of Life: Milestones

MAKING WATER CONSERVATION A CALIFORNIA WAY OF LIFE

Primer of 2018 Legislation on Water Conservation and Drought Planning Senate Bill 606 (Hertzberg) and Assembly Bill 1668 (Friedman)

PREPARED BY

DWR recommendations in Fall 2022

• State Water Board rulemaking in 2023

• AB 1668 & SB 606 passed in 2018

- Urban Retail Water Suppliers to:
 - Calculate and comply with objectives
 - Carry CII out performance measures
 - Annually report

DWR

February 2020

Recommendation on Water Loss Reporting Requirements by Urban Wholesale Water Suppliers

Provided on November 2021 Recommendation on Indoor Residential Use Standard

Provided on October 28, 2022

- Recommendations on:
- Outdoor Residential Use Standard
- Standard for CII Outdoor Landscape Area with Dedicated Irrigation Meters
- Appropriate Variances
- Guidelines and Methodologies for Calculating Urban Water Use Objectives
- Performance Measures for CII Water Uses

Provided on October 28, 2022 Measurements for Residential Irrigable for Accuracy

Provided on October 28, 2022¹ Data Related to Unique Local Conditions for Calculating Urban Water Use Objectives

Legislature

Indoor Residential Use Standard Effective on the Jan 1, 2025, as provided by CWC §10609.4

by Jan 10, 2024 Legislative Analyst Review of Implementation of Urban Water Efficiency Standards

by Jan 1, 2026

Joint Policy Committee Hearing on Implementation of Urban Water Use Standard and Water Use Reporting Requirements with Attendance by State Water Board and DWR

State Water Board

Adopted on Oct 19, 2022 Adoption of Water Loss Standard²

Spring 2024

Adoption of:
Outdoor Residential Use Standard
Standard for CII Outdoor Landscape Area with Dedicated Irrigation Meters
Performance Measures for CII Water Uses

Spring 2024³

Adoption of:

- Appropriate Variances
- Guidelines and Methodologies for Calculating
- Urban Water Use Objectives

DWR Legislature State Water Board Urban Retail Water Suppliers

Urban Retail Water Suppliers

by Jul 1, 2021

UWMP Update Incorporating Water Loss Standard Implementation

By Jan 1, 2024 Annual Report to Urban Water Use Objective and Actual Use

by Jan 1, 2024

UWMP Supplement Incorporating Demand Management Measures to Achieve Urban Water Use Objective by Jan 1, 2027 and Other Water Use Efficiency Standard to be Implemented by 2027

Footnotes

DWR and State Water Board will include stakeholder engagement and public participation throughout the process to implement actions and develop products

- No specific date in the Legislation—assumed to match the date for recommending standards.
- 2 The water loss standard will be adopted pursuant to the CWC§10608.34(I).
- 3 No specific date in the Legislation—assumed to match the date for adopting standards.

Summary of DWR Engagement: 2018 - 2022

29 PUBLIC MEETINGS

7 WORKING GROUP WORKSHOPS 6 STAKEHOLDER DISCUSSIONS

State Water Board 10609.2(c) workshops

URBAN TREE HEALTH

NATURAL & DEVELOPED PARKLANDS

LOCAL WASTEWATER MANAGEMENT

Urban water uses regulated under the new framework

Included in the Objective

Residential Indoor Use
Residential Outdoor Use
CII Landscapes with DIMs
Real Water Losses

Excluded from the Objective •Cll Indoor Use •Cll Outdoor Use, without DIMs •Other Uses •Apparent Water Losses

> CII = Commercial, Institutional, Industrial DIMs = Dedicated Irrigation Meters

Total Water Use

Urban Water Use Objective

Efficient Residential Indoor Budget

Example budget for Residential Indoor Water Use 47 Gallons Per Person per Day * 508,172 people * 365 days = around 26.3 thousand AF

	Year	Standard
	2020	55 GPCD
	2025	47 GPCD
	2030	42 GPCD

Efficient Residential Indoor Standard

- Statute directed DWR and Board to provide joint recommendations; report submitted to Legislature November 2021
- SB 1157 (Hertzberg) incorporated recommendations and was signed into law September 2022

Urban Water Use Objective

Water Loss

- Four components of the regulation
 - Individual volumetric real loss standard
 - Questionnaires on data quality, pressure management, asset management
 - Apparent loss data submission
 - Annual reports of breaks, repairs, and estimated water losses

Efficient Real Water Loss Budget

Example budget for water loss

41 Gallons Per Connection per Day * 365 days * 150 thousand connections =

around 2 billion gallons (around 7,000 AF)

Water loss timeline

Urban Water Use Objective

Efficient Residential Outdoor Budget

Example budget for Residential Outdoor use **0.80** * (55 in. - 2 in.) * 324 million sq. ft. * 0.62 = **8,500 MG**

Residential Outdoor Standards Statutory Requirements

- Long-term standards for the efficient use of water
- Incorporate the Principles of the Model Water Efficient Landscape Ordinance, including provisions such as:
 - Evapotranspiration Adjustment Factors
 - Landscape area
 - Maximum applied water allowance
 - Reference evapotranspiration
 - Special landscape areas

Evapotranspiration Adjustment Factor

Plant Factor (PF)

ETAF =

Irrigation Efficiency (IE)

Irrigation Efficiency = DU* IME DU = Distribution Uniformity IME = Irrigation Management Efficiency

60%

40%

20%

75%

50%

25%

30%

20%

10%

Low

Very low

Irrigation Efficiency

40%

27%

13%

California Water Boards

34%

22%

11%

30%

20%

10%

Plant Factor

Plant Water Use Type	Plant Factor	Sacramento examples
Very low	0.0 - 0.1	Valley oak
Low	0.2 - 0.3	Strawberry tree
Medium	0.4 - 0.6	Big tooth maple
High	0.7 - 1.0	Five-finger fern
Special landscape Area	1.0	Cool season turf on a baseball field

Irrigation Efficiency

Irrigation use type	Irrigation Efficiency	Examples
Very inefficient	Less than 0.40	Urban drool
Inefficient	0.40 - 0.64	Lawn sprinklers and traditional/fixed spray
Average	0.65 - 0.75	Rotors and stream rotators
Efficient	0.76 - 0.89	Microspray, pressure compensating drip
Efficient + managed	0.90 - 1.00	Efficient irrigation system installed & maintained

0.4:

A low water use turf alternative ground cover irrigated with overhead sprays, i.e., a low waterusing plant factor (0.3) divided by overhead spray IE (0.75)----0.3/0.75 = 0.4

0.5:

Quarter of the outdoor space is warm season grass well-irrigated with rotors and the remainder is a mix of medium and low water using plants irrigated with pressure compensating drip. (0.6/0.7)*0.25 + (0.3/0.8)*0.75 = 0.5

0.97:

.97

Warm season grass wellirrigated with lawn sprinklers 0.6/0.62 = 0.97

0.34:

Native plant garden on drip and micro spray irrigation with majority low and very low water using plants and a few medium water using plants (0.6/0.8)*0.15 + (0.3/0.8)*0.5 + (0.1/0.8)*0.35 = 0.34

.49 .55 9 .32

0.55: Yard is majority low water using plants (PF = 0.3) irrigated with drip (IE = 0.8), a few fruit trees (PF = 0.5) with

drip irrigation (IE = 0.8), and a small

with overhead sprays (IE = 0.75).

(0.3/0.8)*0.5 + (0.5/0.8)*0.2 +

(0.6/0.75)*0.3 = 0.55

patch of warm season grass (PF =0.6)

0.73: Warm season grass moderately irrigated with efficient rotors 0.55/0.75 = 0.73

1.14

1.14:

Cool season grass moderately well-irrigated (e.g., some maintenance, irrigation schedule) with rotors 0.8/0.7 = 1.14

1.4:

1.4

Warm season grass inefficiently irrigated (e.g. not properly tuned, running too long) with lawn sprinklers 0.6/0.43= 1.4

Source: Irvine Ranch Water District

	MWELO	Budget-based rates	New Framework
Application	Design standard	Rate structure	Performance Standard
Factor	Evapotranspiration Adjustment Factor	Efficiency factor	Landscape Efficiency Factor
Scale	Individual parcel	Individual parcel	Supplier's service area
Water Source	Water delivered by a supplier, captured rainwater, graywater, etc.	Water delivered by Suppliers	Water delivered by Suppliers
Landscape Type	Planting areas, turf areas, and water features	Irrigated area	"Irrigable lands"

"The standards shall apply to irrigable lands"

- The Department measured and classified suppliers' residential areas using county assessor parcel classifications, aerial imagery, remote sensing, and advanced machine learning techniques.
- Residential areas were classified as either:
 - Irrigable Irrigated
 - Irrigable Not Irrigated
 - Not Irrigable

Methods informing DWR's Recommendation Two approaches: theoretical and empirical

Theoretical

- Estimated canopy & noncanopy area & then assumed:
 - Canopy PF = 0.58
 - Non-canopy PF = 0.70
 - IE = 0.80
- Statewide ETF = 0.76

Empirical

- Calculated unique ETF values based on:
 - Res-Indoor study
 - II & INI area
 - CIMIS & Cal-SIMETAW
- Statewide ETF = 0.63

Averaging the empirical methods: Statewide ETF was 0.63 (II + 20% INI)

Irrigated + 20% INI, Current, all suppliers in dataset

	Landscape Area = II		Landscape Area = II + 20% INI			
	ETF Irrigated	ETF Irrigated min/max range: 0.1 - 1.0	ETF Irrigated bottom & top coded: 0.1 - 1.0	ETF Irrigated	ETF Irrigated max range: 0.1 - 1.0	ETF Irrigated bottom & top coded 0.1 - 1.0
Number of URWS	249	192	249	249	215	249
Mean ETF*	0.74	0.62	0.70	0.66	0.60	0.64

Residential Outdoor Standard Staff Proposal

Existing landscapes

Year	Standard	INI Buffer
2020	0.80	Up to 20%
2030	0.63	Up to 20%
2035	0.55	Up to 20%
Special Landscape Areas	1.00	NA

Landscapes associated with new construction

Year	Standard	INI Buffer
Any	0.55	NA

Residential Outdoor Standard Comparing to DWR Recommendations

Staff Proposal

Existing landscapes

Year	Standard	INI Buffer
2020	0.80	Up to 20%
2030	0.63	Up to 20%
2035	0.55	Up to 20%
Special Landscape Areas	1.00	NA

Landscapes associated with new construction

Year	Standard	INI Buffer
Any	0.55	NA

DWR Recommendations

Existing landscapes

Year	Standard	INI Buffer
2020	0.80	20%
2030	0.63	20%
Special Landscape Areas	NA	NA

Landscapes associated with new construction

Year	Standard	INI Buffer
Any	0.55	NA

Res. Outdoor Standard – Special Landscape Areas Comparing to DWR Recommendations

Landscape Types included as SLAs	Staff Proposal	DWR Recommendation
Areas with edible plants	Yes	No
Areas irrigated with recycled water	Yes (excluding non-functional turf)	No

Urban Water Use Objective

Standard for CII landscapes with DIMs Staff Proposal

Existing landscapes

Year	Standard	INI Buffer
2020	0.80	NA
2030	0.63	NA
2035	0.45	NA
Special Landscape Areas	1.00	NA

Landscapes associated with new construction

Year	Standard	INI Buffer
Any	0.45	NA

Standard for CII landscapes with DIMs Comparing to DWR Recommendations

Staff Proposal

Existing landscapes

Year	Standard	INI Buffer
2020	0.80	NA
2030	0.63	NA
2035	0.45	NA
Special Landscape Areas	1.00	NA

Landscapes associated with new construction

Year	Standard	INI Buffer
Any	0.45	NA

DWR Recommendations

Existing landscapes

Year	Standard	INI Buffer
2020	0.80	NA
2030	0.63	NA
Special Landscape Areas	1.00	NA

Landscapes associated with new construction

Year	Standard	INI Buffer
Any	0.45	NA

Comparing to DWR Recommendations

Landscape Types included as SLAs	Staff Proposal	DWR Recommendation
Recreational areas	Yes	Yes
Areas with edible plants	Yes	Yes
Areas irrigated with recycled water	Yes	Yes
Bioengineered slopes	Yes	Yes
Supplemental water for ponds and lakes	Yes	Yes
Public swimming pools	Yes	Yes
Cemeteries built before 2015	Yes	Excluded from Objective
Existing plant collections, botanical gardens, and arboretums	Yes	Excluded from Objective
Registered historic sites	No	Excluded from Objective
Mined-land reclamation projects	Νο	Excluded from Objective
Ecological projects w/o permanent irrigation system	Νο	Excluded from Objective

Making Conservation a California Way of Life Small, informal meetings held in February & March 2023

ENGAGING DIVERSE ORGANIZATIONS GATHERING IN SMALL GROUPS **ASKING BIG QUESTIONS**
Opportunities & benefits of conservation beyond saving water

New Conservation Framework

Conservation Measures (I.e. Rebates)

Opportunities

Increase stormwater capture Increase native plants & tree cover Augment soils with compost & mulch Grow green jobs

Benefits

Mitigating rate increases Increasing biodiversity Reducing heat island effect Creating more livable communities Building healthier soils Conserving energy Reducing flood risk

Urban Water Use Objective

Variances & Provisions Statutory requirements

• Variances

- Unique uses with a material effect
- Threshold of significance
- Special Provisions
 - For pools and spas

Variances Comparing to DWR Recommendations

	State Water Board Staff proposal	Department Recommendation
Evaporative Coolers		
Fluctuation in seasonal populations	\checkmark	\checkmark
Populations of horses & other livestock		
Areas irrigated with high TDS recycled water		\checkmark
Water to supplement ponds and lakes to sustain wildlife	\checkmark	
Water needed to respond to emergency events		
Dust control on horse corrals or other exercise arenas		
Water used to irrigate residential-agricultural landscapes		

Most of the time, the recommended threshold of

significance is that the water use associated with

Standard-based budgets

Variances

Thresholds of Significance for Variances Comparing to DWR Recommendations

	Threshold of Significance	State Water Board Staff proposal	Department Recommendation
Evaporative Coolers	5%		
Fluctuation in seasonal populations	5% or 1%	\checkmark	
Populations of horses & other livestock	5%		
Areas irrigated with high TDS recycled water	5% or 1%	\checkmark	\checkmark
Water to supplement ponds and lakes to sustain wildlife	0%		
Water needed to respond to emergency events	5%		
Dust control on horse corrals or other exercise arenas	5%		
Water used to irrigate residential-agricultural landscapes	5% or 1%	\checkmark	\checkmark

Special Provisions Comparing to DWR Recommendations

	State Water Board Staff proposal	Department Recommendation
Pools and spas		×
Urban tree health (e.g., establishing climate-ready trees)		×
Landscapes requiring temporary irrigation (e.g., LID projects)		×

Desert Willow

Valley Oak

Urban Water Use Objective

Bonus Incentive Statutory Requirements

- Potable reuse only
 - For existing facilities, may be up to 15 percent of objective
 - For all other facilities, may be up to 10 percent of objective
- Potable reuse includes:
 - Microfiltration
 - Reverse osmosis
- Applies to residential deliveries and to deliveries to CII landscapes with DIMs

Bonus Incentive for Potable Reuse

Calculating volume of potable reuse water: Sourced from groundwater

Urban water uses regulated under the new framework

Included in the Objective

Residential Indoor Use
Residential Outdoor Use
CII Landscapes with DIMs
Real Water Losses

Excluded from the Objective

CII Indoor Use
CII Outdoor Use, without DIMs
Other Uses
Apparent Water Losses

CII = Commercial, Institutional, Industrial DIMs = Dedicated Irrigation Meters

Total Water Use

Demands excluded from the Objective

Some of which will be subject to CII Performance Measures

California Department of Water Resources

Commercial, Industrial, and Institutional Task Force Water Use Best Management Practices Report to the Legislature Volume I: A Summary

CII Performance Measures Statutory Requirements

- Address significant uses of water
- Consistent with the 2013 CII report
- Will result in increased water use efficiency by CII water user
- Support the economic productivity of California's CII sectors

CII Performance Measure: Proposed Classification system

- Primarily broad categories in U.S. EPA's ENERGYSTAR Portfolio Manager tool
- Aligns with CEC's benchmarking program
- Already in use in California

Classification System: Comparing to DWR Recommendations

	State Water Board Staff Proposal		DWR
Categories	Additional	ESPM	Recommendation
Banking/Financial		\checkmark	×
Laundry		×	
Parking		\checkmark	×
Technology/Science			×
Warehouse/Storage		\checkmark	×
Water Recreation		×	
Vehicle Wash	\checkmark	×	
Large CII Landscapes	\checkmark	×	

Cll Performance Measure: Proposal for DIMs or "in-lieu" tech for qualifying landscapes

- Threshold to determine which CII landscapes qualify
 - 500,000 gallons annually
- Defining "in-lieu" technologies
 - Hardware, software, actions

DIMs or "in-lieu" tech for qualifying landscapes Comparing to DWR Recommendations

WB Staff Proposal

- Volumetric Threshold
 - 500,000 gallon/year
- At least 5 of the in-lieu technologies, including:
 - DWR recommendations
 - Measures to "slow the flow"

DWR Recommendation

- Area Threshold
 - 1 Acre
- In-lieu technologies
 - Detailed implementation required

Staff proposal: Fewer Parcels Impacted, More Water Saved, Lower Cost

	DWR Recommendation (Threshold = 1 Acre)	Staff Proposal (Threshold = 500,000 gallons/year)
Qualifying properties	83,571 properties	72,033 properties
Annual savings	17,830 AF/year	21,270 AF/year
Statewide costs	\$712 million	\$519 million

Performance Measure Proposal for Best Management Practices (BMPs)

- Threshold to determine
 which CII accounts qualify
- Recommend BMPs

Performance Measure

Comparing to DWR Recommendations

Staff Proposal

- Top 20% threshold
 - 1 BMP per category
- Top 2.5% threshold
 2 BMPs per category
- "Disclosable building" threshold
- BMPs
 - DWR recommendations
 - Measures to:
 - Prioritize water for trees
 - "Slow the flow"

DWR Recommendations

- 20% Threshold
- 2.5% Threshold
- BMPs
 - Outreach, Technical Assistance and Education
 - Incentive
 - Landscapes
 - Collaboration and Coordination
 - Operational

Disclosable Buildings

- As defined by the CEC regulation
- Multiple steps needed:
 - Identify building owners
 - Collect 12 months water use
 - Provide building owners with water use data in an ESPM format

www.waterboards.ca.gov/water_issues/programs/conservation_portal/regs/objective-exploration.html

Water Use Objective Exploration Tool

Savings associated with the staff proposal

Conservation potential in California

Percent savings from 2017-2019 baseline

Pacific Institute found conservation and efficiency could reduce statewide urban water use by 2-3.1 MAF per year.

Source: Pacific Institute, 2022. The Untapped Potential of California's Urban Water Supply: Water Efficiency, Water Reuse, and Stormwater Capture

Savings associated with meeting *objectives* in 2035

Savings Category	Percent of Suppliers	Percent of Population
Meets objective	28%	48%
Savings of 10% or less	32%	24%
10% to 20% savings	19%	13%
20% to 30% savings	12%	10%
Savings more than 30%	9%	4%

Conservation potential in Los Angeles

LA Los Angeles DWP Water & Power Water Conservation **Potential Study Executive Report** nt of Water and Power (LADWP) h utting edge of water use efficie for the future. LADWP needs to **Theoretical Ceiling** Max Cost-Effective Potential Passive Program Potential 2015 2020 2025 2030 YEAR 2035

Water Conservation Potential Study: Water Conservation Levels

By 2035, the staff proposal would realize around 70% of the savings LADWP's identified as cost-effective

	Water Savings in AF/year		
LADWP's Conservation Potential Study	2025	2030	2035
Technical Maximum Potential	132,000	168,000	204,000
Maximum Cost-Effective Potential	107,000	127,000	140,000
Passive Program Potential	74,000	84,000	88,000
State Water Board analysis	2025	2030	2035
Baseline decline	73,000	81,000	92,000
Proposed regulation	0	4,000	4,000
Total savings	73,000	85,000	96,000

Factors related to Reg-driven water savings

~ based on forecast & without accounting for variances ~

Current analysis shows Regulation leads to savings ≥ 20%

For 81 suppliers, serving 14% of population

The majority serve communities:

- In the Central Valley
- Where local MHI is lower than statewide MHI
- Where turf dominates

Updated data from DWR show:

- For 5 suppliers, II area has increased by over 15%
- For 28 suppliers, res- ag area \geq 5% of II
 - For 16, res-ag area \geq 20% of II

Next steps: Rerun the analysis with more and better data

Projected Water Use Reduction

Proposed regulation would save (*compared to assumed future baseline water use*):

~235,000 ac-ft in 2025 ~440,000 ac-ft in 2040 ~6.3 million ac-ft in 2025-2040

Conservation Strategies Assumed

Residential

Suppliers would:

- 1. Offer rebate program so that households would install premium high efficiency toilets
- 2. Offer rebate program for high efficiency clothes washing machines
- 3. Send home leak detection alerts that can capture losses from indoor and outdoor leaks
- 4. Promote conversion of lawn to California-friendly gardens

CII

Suppliers would:

- 1. Install dedicated irrigation meters (or an equivalent or in-lieu technology), DIM tie-ins, and backflow devices
- 2. Implement program and account management and parcel water budget development
- 3. Provide owners of "disclosable buildings" with water use data in a format compatible with ESPM

2025-2040 Projected Benefit Exceeds Cost

2025-2040 Projected Benefit Exceeds Cost

- *Timing*: most of the projected costs would be incurred in the earlier years, whereas most of the projected benefits would be accrued in later years
- Net benefits reflect assumptions about the future price of water: price paid by suppliers to purchase/produce water is assumed to increase by 4% per year in <u>real</u> terms
 - This was an assumption made given a lack of regional data or projections; the change over time will be different in different regions and time periods
- *Water rates*: rates charged by suppliers would likely have an important role, for example, in:
 - offsetting the amount of revenue lost by suppliers
 - passing on suppliers' savings (avoided water costs) to customers

Proposed timeline

Task	Start date
Board workshop	March 22, 2023
Start rulemaking (45-day public comment period)	May 2023
Final 15-day comment period	Winter 2023-24
Consideration of Adoption (NOT scheduled yet)	Winter 2023-24
Submit to OAL	Spring 2024
Rule becomes effective	Summer 2024
	California Water Board