State Water Board DPR Pathogen Research

Tools to Evaluate Microbial Risk, Plant Performance, and Reliability (DPR-1)

Raw Wastewater Pathogen Monitoring (DPR-2)

Brian Pecson, P.I. for DPR-1 and DPR-2, Trussell Technologies

How Much Pathogen Treatment?

Wastewater

20-log virus 14-log *Giardia* 15-log *Crypto*

Drinking Water

How Much Pathogen Treatment?

DPR-1 Technical Work Group and Research Team

Brian Pecson (chair) Trussell Technologies

Nick Ashbolt Southern Cross University

Charles Haas Drexel University

Technical Work Group

Theresa Slifko Metropolitan Water District

Research Team

Dan Gerrity SNWA

Edmund Seto University of Washington

DPR-1 Staff

Anya Kaufmann Trussell Technologies

Adam Olivieri WRF/State Board Coordination

Motivation for Research

- Wastewater pathogen concentrations are key inputs
- Industry does not have sufficient high-quality data
- SOPs needed to address previous limitations

DPR-2 Technical Work Group

George Di Giovanni Metropolitan Water District

Menu Leddy Essential Environmental & Engineering Systems

Kara Nelson UC, Berkeley

Brian Pecson Trussell Technologies

Channah Rock University of Arizona

Theresa Slifko (chair) Metropolitan Water District

cel analytical, inc. water, wastewater, and soil laboratory services

DPR-2 Staff:

Emily Darby Trussell Technologies

Adam Olivieri WRF/State Board Coordination

Walt Jakubowski QA/QC Officer

DPR-2 Labs:

SCIENTIFIC METHODS

BIOLOGICAL CONSULTING SERVICES OF NORTH FLORIDA, INC.

Literature Review

- Limited number of studies
- Low method sensitivity and high frequency of non-detects
- Recovery often not measured
- QA/QC often not strictly followed

- Conclusions
 - Possible to measure pathogens in raw WW
 - -<u>Amount</u> and <u>quality</u> of data are insufficient

Method Optimization

- Used to address limitations of past studies
 - Concentration method
 - Volume of sample to process
- Require strict QA/QC
 - Matrix spikes in 75% of all samples
 - Full set of controls
- Recommendation: use DPR-2 QAPP for future studies

	QAPP Analytical Microbiology Supporting Version 4.0.	WRF Contract No: 4952 Date: 05.06.20
	Quality Assurance Project Pla	in
	Analytical Microbiology Services	
	Water Research Foundation Contract #4952	
	Prepared for:	
	The Water Research Foundation	
	Prepared by:	
4 :::	<i>cel analytical, inc.</i> weter, westewater, and soil laboratory services	
	82 Mary Street Suite 2 San Francisco, CA 94103	
	Yeggie Dearborn Ph.D. Program Manager	
	Email: yeggie@celanalytical.com	
	ugust; October Version 1.0, Rev.01 November	
	Version 2.0, Rev.02 Version 2.0, Rev.03	Eabruary 2021
1	Version 3.0	February 2021

Sampling campaign

Percentile

• High rate of <u>detects</u> across full range

• High rate of <u>detects</u> across full range

- Matrix spikes used to <u>correct</u> for losses
- High <u>recovery efficiency</u>

- High rate of <u>detects</u> across full range
- Matrix spikes used to <u>correct</u> for losses
- High <u>recovery efficiency</u>
- Models estimate past measured range

- High rate of <u>detects</u> across full range
- Matrix spikes used to <u>correct</u> for losses
- High <u>recovery efficiency</u>
- Models estimate past measured range
- Allows for <u>comparison</u> with IPR regs

- High rate of <u>detects</u> across full range
- Matrix spikes used to <u>correct</u> for losses
- High <u>recovery efficiency</u>
- <u>Models</u> estimate past measured range
- Allows for <u>comparison</u> with IPR regs

Recommendation:

Use modeled distributions for probabilistic assessments of treatment targets

Other Key Findings

- Pathogen distributions similar across treatment plants
 - 94% of comparisons had no significant differences between facilities
- Minimal level of seasonality observed
 - Enterovirus higher in summer / adenovirus higher in winter
- No clear impact of COVID-19 on concentrations
 - Data collected before and after Stay-at-Home order showed minimal change
- Uncertainties associated with the use of molecular data

Issues with the use of molecular data

 Genome copies (GC) not always associated with *infective* virus

• Difficult to link GC with infectivity

- DPR-2 ratios span orders of magnitude:
 - 10,000:1 to 1:1 (enterovirus)
 - 100,000:1 to 1:1 (adenovirus)

When is this important?

Norovirus not culturable

 Dose-response function makes assumptions about "infectivity" of genome copies

 If we assume 1:1, then each GC is an infectious unit (IU)

Percentile

When is this important?

Norovirus not culturable

 Dose-response function makes assumptions about "infectivity" of genome copies

 If we assume 1:1, then each GC is an infectious unit (IU)

Percentile

Legend		
O This work - corrected data		O San Diego 2016
O This work - raw data	O Simmons & Xagoraraki 2011b	

Incorporate uncertainty in risk analyses

 DPR-1 Final Report shows how to incorporate molecular data into analysis

 Results in a "band" of potential values

iego 2016
goraraki 2011b

Recommendations for Regulatory Development

- Use DPR-2 datasets as the raw wastewater inputs for QMRA
- Correct pathogen data for recovery using matrix spikes
- Use culture data to reduce uncertainties with molecular interpretation; follow TWG recommendations for the use of molecular data
- Model the DPR-2 distributions (and relevant literature) for use in probabilistic assessments
- Require DPR-2 QAPP/SOPs for future pathogen monitoring studies

How Much Pathogen Treatment?

DPRisk Tool and Guidance Document

DPRisk: QMRA Tool

DPRisk		Guidance Do
ersion 1.0.1 (11.05.2020) ponsored by: The Water Research Foundation opyright (C)2017 by The Water Research Foundation. ALL	Research FOUNDATION	Table of Conten
Introduction	Quantitative Microbial Risk Assessment and Probabilistic Assessment of Treatment Train Performance for Direct Potable Reuse Scenarios	List of Acronyms Project Definition a
Background	This tool is intended to facilitate quantitative microbial risk assessment (QMRA) and probabilistic assessment of treatment train	Historical Context . Overview of DPRisl
How to use the tool	performance (PATTP) for various direct potable reuse (DPR) scenarios. There are many possible analyses that you can conduct with this tool, including:	Step 1: Target Path
License	There are many possible analyses that you can conduct with this tool, including:	Step 2: Raw Waste
Litense	Developing a distribution of treatment train performance for different potential DPR treatment trains.	Step 3: Raw Waste
Model Specification	 Evaluating daily and annual risks of infection for multiple microbial pathogens for different potential DPR treatment trains. Comparing different DPR treatment trains in terms of treatment performance and risk. 	Step 4: Identifying
Raw Wastewater Pathogen Concentrations	Evaluating the impact of failures on treatment performance and risk.	Step 5: Assigning T
Treatment Train	The accompanying Guidance Document provides useful context for this tool, including: The background motivation for the creation of the tool. 	Step 6: Treatment
	• The historical context for the use of PATTP and QMRA in DPR.	Step 7: Manageme
Treatment Failure	 The project process that resulted in this tool. Detailed descriptions of each step of the tool, including references for default assumptions. 	Step 8: Drinking W
Management Barriers	 Details on the computations implemented by the tool. Example case studies to help you get started with using the tool. 	Step 9: Pathogen D
Exposure	This tool was developed in the R statistical language.	Step 10: Risk Chard
Dose-Response		Final Tool Consider
Juse-Response		Case Study 1: QMR
Results		Case Study 2: QMR
PATTP Output		Case Study 3: QMR
QMRA Output		Conclusions
-		References
Summary of PATTP and QMRA Output		Appendix 1 – Sumn
Comparison of Risk Curves		Appendix 2 – Instal

DPRisk: Guidance Document

Document for DPRisk

nts

List of Acronyms
Project Definition and Background
Historical Context
Overview of DPRisk
Step 1: Target Pathogens (Hazard Identification)7
Step 2: Raw Wastewater Pathogen Datasets9
Step 3: Raw Wastewater Pathogen Distributions13
Step 4: Identifying Unit Processes for the Treatment Train
Step 5: Assigning Treatment Process Log Reduction Values
Step 6: Treatment Process Failure Framework
Step 7: Management Barriers (Blending, Dilution, and Die-off)
Step 8: Drinking Water Ingestion (Exposure Assessment)
Step 9: Pathogen Dose Response Models (Dose Response Assessment)
Step 10: Risk Characterization
Final Tool Considerations
Case Study 1: QMRA for Enterovirus in a Default DPR Scenario
Case Study 2: QMRA for Cryptosporidium in a FAT-Based DPR Scenario
Case Study 3: QMRA for Adenovirus in an FAT-Based DPR Scenario
Conclusions
References
Appendix 1 – Summary of Output File Headers
Appendix 2 – Installation of DPRisk on Shinyapps.io

Also: User Input Files for 3 Case Studies

DPRisk Features

INPUTS:

- Raw Wastewater Pathogen Concentrations
- Treatment Train
- Treatment Failure
- Exposure
- Dose Response

DPRisk Features

INPUTS:

- Raw Wastewater Pathogen Concentrations
- Treatment Train
- Treatment Failure
- Exposure
- Dose Response

DPRisk Features

INPUTS:

- Raw Wastewater Pathogen Concentrations
- Treatment Train
- Treatment Failure
- Exposure
- Dose Response

DPRisk Outputs

• Probabilistic Assessment of Treatment Train Performance (PATTP)

Quantitative Microbial Risk Assessment

Not All DPR Projects Are Alike

Not All DPR Projects Are Alike

DPRisk Includes Management Barriers

	Blending	
	Specify the log removal associated with blending.	
	Specify log removal for blending as:	
	Point estimate	
	Log Removal:	
	0	
DPRisk Inputs		
	Dilution	
	Specify the log removal associated with dilution.	
	Specify log removal for dilution as:	
	Point estimate	
	Log Removal:	
	0	

Risk Profiles of RWA and TWA Trains (no failures)

Risk Profiles of RWA and TWA with Failure Analysis

Risk Profiles of RWA and TWA with Failure Analysis

Recommendations

• Select modeled distributions from DPR-2 as raw wastewater inputs

• Use DPRisk for *probabilistic* assessments of performance and risk

 Develop frameworks to incorporate the benefits of non-treatment (management) barriers in RWA and TWA

Acknowledgements

- Anya Kaufmann, Trussell Technologies (DPR-1)
- Dan Gerrity, Southern Nevada Water Authority (DPR-1)
- Emily Darby, Trussell Technologies (DPR-2)

Questions?

Contact information: brianp@trusselltech.com