Design Flow (MGD)	Total Capital Cost	Flow Range	Slope	Y-int	Capital Cost Equation	0.03	0.07	0.09	0.1	0.11	0.124	0.2	0.25	0.305	0.45	0.6			
0.03	\$98,419	<0.03		98419	cost = 98419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419			
0.07	\$118,427	0.03-<0.07	500204	83413	cost $=500204 \mathrm{Q}+83413$	\$98,419	\$118,427	\$128,432	\$133,434	\$138,436	\$145,438	\$183,454	\$208,464	\$235,975	\$308,505	\$383,536			
0.09	\$124,249	0.07-<0.09	291078	98052	cost $=291078 \mathrm{Q}+98052$	\$106,784	\$118,427	\$124,249	\$127,160	\$130,071	\$134,146	\$156,268	\$170,822	\$186,831	\$229,037	\$272,699			
0.1	\$127,160	$0.09-<0.1$	291100	98050	cost $=291100 \mathrm{Q}+98050$	\$106,783	\$118,427	\$124,249	\$127,160	\$130,071	\$134,146	\$156,270	\$170,825	\$186,836	\$229,045	\$272,710			
0.11	\$130,069	$0.1-<0.11$	290947	98065	cost $=290947 \mathrm{Q}+98065$	\$106,794	\$118,432	\$124,251	\$127,160	\$130,069	\$134,143	\$156,255	\$170,802	\$186,804	\$228,991	\$272,633			
0.124	\$132,928	$0.11-<0.124$	204182	107609	cost $=204182 Q+107609$	\$113,735	\$121,902	\$125,986	\$128,028	\$130,069	\$132,928	\$148,446	\$158,655	\$169,885	\$199,491	\$230,119			
0.2	\$164,612	$0.124-<0.2$	416894	81233	cost $=416894 \mathrm{Q}+81233$	\$93,740	\$110,416	\$118,754	\$122,923	\$127,091	\$132,928	\$164,612	\$185,457	\$208,386	\$268,836	\$331,370			
0.25	\$176,615	$0.2-<0.25$	240060	116600	cost $=240060 \mathrm{Q}+116600$	\$123,802	\$133,404	\$138,205	\$140,606	\$143,007	\$146,367	\$164,612	\$176,615	\$189,818	\$224,627	\$260,636			
0.305	\$210,587	$0.25-<0.305$	617673	22197	cost = 617673Q + 22197	\$40,727	\$65,434	\$77,787	\$83,964	\$90,141	\$98,788	\$145,731	\$176,615	\$210,587	\$300,150	\$392,800			
0.45	\$255,605	$0.305-<0.45$	310469	115894	cost $=310469 \mathrm{Q}+115894$	\$125,208	\$137,627	\$143,836	\$146,941	\$150,046	\$154,392	\$177,988	\$193,511	\$210,587	\$255,605	\$302,175			
0.6	\$297,930	$0.45-<0.6$	282169	128629	cost $=282169 \mathrm{Q}+128629$	\$137,094	\$148,381	\$154,024	\$156,846	\$159,668	\$163,618	\$185,063	\$199,171	\$214,691	\$255,605	\$297,930			
0.74	\$330,538	$0.6-<0.74$	232912	158183	cost $=232912 \mathrm{Q}+158183$	\$165,170	\$174,487	\$179,145	\$181,474	\$183,803	\$187,064	\$204,765	\$216,411	\$229,221	\$262,993	\$297,930			
0.9	\$384,534	$0.74-<0.9$	337475	80807	cost $=337475 Q+80807$	\$90,931	\$104,430	\$111,179	\$114,554	\$117,929	\$122,653	\$148,302	\$165,175	\$183,736	\$232,670	\$283,292			
0.95	\$398,830	$0.9-<0.95$	285915	127210	cost $=285915 \mathrm{Q}+127210$	\$135,788	\$147,224	\$152,943	\$155,802	\$158,661	\$162,664	\$184,393	\$198,689	\$214,414	\$255,872	\$298,759			
0.99	\$409,690	0.95-<0.99	271517	140889	cost $=271517 \mathrm{Q}+140889$	\$149,034	\$159,895	\$165,325	\$168,041	\$170,756	\$174,557	\$195,192	\$208,768	\$223,701	\$263,071	\$303,799			
1	\$1,275,084	0.99-1.0			cost $=1275084$	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084			
1.5	\$1,528,884	$1.0-<1.5$	507600	767484	cost $=507600 Q+767484$	\$782,712	\$803,016	\$813,168	\$818,244	\$823,320	\$830,426	\$869,004	\$894,384	\$922,302	\$995,904	\$1,072,044			
2.152	\$1,847,243	1.5-<2.152	488280	796464	cost $=4882800+796464$	\$811,112	\$830,644	\$840,409	\$845,292	\$850,175	\$857,011	\$894,120	\$918,534	\$945,389	\$1,016,190	\$1,089,432			
3	\$2,189,971	$2.152-<3.0$	404161	977488	cost $=404161 \mathrm{Q}+977488$	\$989,613	\$1,005,780	\$1,013,863	\$1,017,905	\$1,021,946	\$1,027,604	\$1,058,321	\$1,078,529	\$1,100,758	\$1,159,361	\$1,219,985			
5	\$3,081,241	3.0-<5.0	445635	853066	cost $=445635 \mathrm{Q}+853066$	\$866,435	\$884,261	\$893,173	\$897,630	\$902,086	\$908,325	\$942,193	\$964,475	\$988,985	\$1,053,602	\$1,120,447			
7.365	\$3,848,761	$5.0-<7.365$	324533	1458578	cost $=324533 \mathrm{Q}+1458578$	\$1,468,314	\$1,481,295	\$1,487,786	\$1,491,031	\$1,494,276	\$1,498,820	\$1,523,484	\$1,539,711	\$1,557,560	\$1,604,618	\$1,653,297			
10	\$4,656,524	7.365-10	306551	1591011	cost $=306551 \mathrm{Q}+1591011$	\$1,600,208	\$1,612,470	\$1,618,601	\$1,621,666	\$1,624,732	\$1,629,023	\$1,652,321	\$1,667,649	\$1,684,509	\$1,728,959	\$1,774,942			
Design Flows gener in the U.S. EPA cos generated flows. generated from th	d from pre-built flow del and userCapital Cost valu . EPA cost mode		was run miniature to suffici for final	the cost vs st curves ly calculate st estimati	w values for each flow range the full-spectrum cost curves asts each of these linear curv	uld			Is highlighted ould be identic imates of the tead of indiv	in blue represe al between tw urves but are ual cells.	nt where the equations at not likely to be	erived curves he same flow. useful, and ar	intersect; if the The non-shad mostly artifc	formula is cor ed cells repres ts of doing a bi	rect then the valu ent further g copy/paste				
Based on LINEST		0.3-99percent higher than specific flow range			cost = 320867Q + 97613	\$107,239	\$120,073	\$126,491	\$129,699	\$132,908	\$137,400	\$161,786	\$177,829	\$195,477	\$242,003	\$290,133			
			8.96	1.39	1.80	2.00	2.18	3.36	(1.72)	0.69	(7.18)	(5.32)	(2.62)						
Based on LINEST					percent higher than specific flow range			cost $=376971 \mathrm{Q}+1016026$											
Based on trendline		$0.3-.99$percent higher than specific flow range				\$100,380	\$115,780	\$123,396	\$127,182	\$130,954	\$136,211	\$164,266	\$182,276	\$201,679	\$250,777	\$298,433			
			1.99	(2.24)	(0.69)	0.02	0.68	2.47	(0.21)	3.21	(4.23)	(1.89)	0.17						
Based on trendline					1.0-10.0 see below percent higher than specific flow range														

[^0]| Design Flow (MGD) | q^{2} | q | y-int |
| :---: | :---: | :---: | :---: |
| 0.3-0.99 | -70845 | 392093 | 88681 |
| 1.0-10.0 | -13219 | 519119 | 776850 |

[^1]
Capital Cost Curve

0.74	0.9	0.95	0.99	1	1.5	2.152	3	5	7.365	10
\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419
\$453,564	\$533,597	\$558,607	\$578,616	\$583,618	\$833,720	\$1,159,853	\$1,584,027	\$2,584,435	\$3,767,419	\$5,085,458
\$313,450	\$360,022	\$374,576	\$386,219	\$389,130	\$534,669	\$724,452	\$971,286	\$1,553,443	\$2,241,843	\$3,008,833
\$313,464	\$360,040	\$374,595	\$386,239	\$389,150	\$534,700	\$724,497	\$971,350	\$1,553,550	\$2,242,002	\$3,009,050
\$313,366	\$359,917	\$374,465	\$386,103	\$389,012	\$534,486	\$724,183	\$970,906	\$1,552,799	\$2,240,889	\$3,007,533
\$258,704	\$291,373	\$301,582	\$309,750	\$311,792	\$413,883	\$547,009	\$720,156	\$1,128,520	\$1,611,411	\$2,149,431
\$389,735	\$456,438	\$477,283	\$493,959	\$498,128	\$706,575	\$978,390	\$1,331,917	\$2,165,706	\$3,151,661	\$4,250,178
\$294,244	\$332,654	\$344,657	\$354,259	\$356,660	\$476,690	\$633,209	\$836,780	\$1,316,900	\$1,884,642	\$2,517,200
\$479,275	\$578,102	\$608,986	\$633,693	\$639,870	\$948,706	\$1,351,429	\$1,875,215	\$3,110,560	\$4,571,356	\$6,198,924
\$345,641	\$395,316	\$410,839	\$423,258	\$426,363	\$581,597	\$784,023	\$1,047,301	\$1,668,239	\$2,402,498	\$3,220,584
\$337,434	\$382,581	\$396,689	\$407,976	\$410,798	\$551,882	\$735,856	\$975,135	\$1,539,472	\$2,206,801	\$2,950,315
\$330,538	\$367,804	\$379,450	\$388,766	\$391,095	\$507,551	\$659,410	\$856,920	\$1,322,744	\$1,873,582	\$2,487,305
\$330,538	\$384,534	\$401,408	\$414,907	\$418,282	\$587,019	\$807,053	\$1,093,232	\$1,768,182	\$2,566,310	\$3,455,557
\$338,788	\$384,534	\$398,830	\$410,266	\$413,126	\$556,083	\$742,500	\$984,956	\$1,556,787	\$2,232,977	\$2,986,364
\$341,811	\$385,254	\$398,830	\$409,690	\$412,406	\$548,164	\$725,193	\$955,439	\$1,498,472	\$2,140,609	\$2,856,056
\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084
\$1,143,108	\$1,224,324	\$1,249,704	\$1,270,008	\$1,275,084	\$1,528,884	\$1,859,840	\$2,290,285	\$3,305,485	\$4,505,960	\$5,843,487
\$1,157,791	\$1,235,916	\$1,260,330	\$1,279,861	\$1,284,744	\$1,528,884	\$1,847,243	\$2,261,304	\$3,237,864	\$4,392,647	\$5,679,265
\$1,276,568	\$1,341,233	\$1,361,441	\$1,377,608	\$1,381,649	\$1,583,730	\$1,847,243	\$2,189,971	\$2,998,293	\$3,954,134	\$5,019,098
\$1,182,836	\$1,254,138	\$1,276,419	\$1,294,245	\$1,298,701	\$1,521,519	\$1,812,073	\$2,189,971	\$3,081,241	\$4,135,168	\$5,309,416
\$1,698,732	\$1,750,657	\$1,766,884	\$1,779,865	\$1,783,111	\$1,945,377	\$2,156,972	\$2,432,176	\$3,081,241	\$3,848,761	\$4,703,905
\$1,817,859	\$1,866,907	\$1,882,235	\$1,894,497	\$1,897,562	\$2,050,838	\$2,250,709	\$2,510,665	\$3,123,767	\$3,848,761	\$4,656,524

Continuation from other page

$\begin{array}{r} \$ 335,054 \\ 1.37 \end{array}$	$\begin{array}{r} \hline \$ 386,393 \\ 0,48 \end{array}$	$\begin{array}{r} \hline \$ 402,437 \\ 0.90 \end{array}$	$\begin{array}{r} \hline \$ 45,271 \\ 1.36 \end{array}$							
1.37				\$ 1,392,996	\$ 1,581,4823.44	$\begin{array}{r} \hline \$ 1,827,267 \\ (1.08) \\ \hline \end{array}$	$\begin{array}{r} \$ 2,146,938 \\ (1.97) \\ \hline \end{array}$	$\begin{array}{r} \$ 2,900,879 \\ (5.85) \\ \hline \end{array}$	$\begin{array}{r} \$ 3,792,414 \\ (1.46) \end{array}$	$\begin{array}{r} \$ 4,785,732 \\ 2.77 \\ \hline \end{array}$
				9.25						
\$340,035	\$384,180	\$397,232	\$407,418							
2.87	(0.09)	(0.40)	(0.55)							
				\$1,282,750	\$1,525,786	\$1,832,776	\$2,215,236	\$3,041,970	\$3,883,120	\$4,646,140
				0.60	(0.20)	(0.78)	1.15	(1.27)	0.89	(0.22)

[^0]: Known flow rates were inserted into the LINEST and polynomial trendline equations to verify the predictive accuracy of the equations. The percentage indicates how much above or below the calculated cost is from the actua number. Based on the percentages the polynomial trendlines are more accurate than the linear trendlines.
 The EPA cost model uses flow rates of 1 MGD to separate SMALL from MEDIUM sources, and a significant increase in cost estimate occurs when that threshold is crossed. Separate cost curves were modeled for those flow rate reliable curve equations.

 The final trendlines were used to estimate capital costs at estimated flow rates from sources identified as likely requiring treatment for 1,2,3-TCP.

[^1]: XY plots based off the flow and cost data with a polynomial trendline. The goal is to get a trendline that closely matches the known data points to predict costs based on flow.

 The numbers to the left are copied from the calculated trendlines for ease in Excel calculations.

