Capital Cost Curve

Design Flow (MGD)	Total Capital Cost	Flow Range	Slope	Y-int	Capital Cost Equation	0.03	0.07	0.09	0.1	0.11	0.124	0.2	0.25	0.305	0.45	0.6
0.03	\$98,419	<0.03		98419	cost = 98419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419
0.07	\$118,427	0.03 - < 0.07	500204	83413	cost = 500204Q + 83413	\$98,419	\$118,427	\$128,432	\$133,434	\$138,436	\$145,438	\$183,454	\$208,464	\$235,975	\$308,505	\$383,536
0.09	\$124,249	0.07 - < 0.09	291078	98052	cost = 291078Q + 98052	\$106,784	\$118,427	\$124,249	\$127,160	\$130,071	\$134,146	\$156,268	\$170,822	\$186,831	\$229,037	\$272,699
0.1	\$127,160	0.09 - < 0.1	291100	98050	cost = 291100Q + 98050	\$106,783	\$118,427	\$124,249	\$127,160	\$130,071	\$134,146	\$156,270	\$170,825	\$186,836	\$229,045	\$272,710
0.11	\$130,069	0.1 - < 0.11	290947	98065	cost = 290947Q + 98065	\$106,794	\$118,432	\$124,251	\$127,160	\$130,069	\$134,143	\$156,255	\$170,802	\$186,804	\$228,991	\$272,633
0.124	\$132,928	0.11 - < 0.124	204182	107609	cost = 204182Q + 107609	\$113,735	\$121,902	\$125,986	\$128,028	\$130,069	\$132,928	\$148,446	\$158,655	\$169,885	\$199,491	\$230,119
0.2	\$164,612	0.124 - < 0.2	416894	81233	cost = 416894Q + 81233	\$93,740	\$110,416	\$118,754	\$122,923	\$127,091	\$132,928	\$164,612	\$185,457	\$208,386	\$268,836	\$331,370
0.25	\$176,615	0.2 - < 0.25	240060	116600	cost = 240060Q + 116600	\$123,802	\$133,404	\$138,205	\$140,606	\$143,007	\$146,367	\$164,612	\$176,615	\$189,818	\$224,627	\$260,636
0.305	\$210,587	0.25 - < 0.305	617673	22197	cost = 617673Q + 22197	\$40,727	\$65,434	\$77,787	\$83,964	\$90,141	\$98,788	\$145,731	\$176,615	\$210,587	\$300,150	\$392,800
0.45	\$255,605	0.305 - < 0.45	310469	115894	cost = 310469Q + 115894	\$125,208	\$137,627	\$143,836	\$146,941	\$150,046	\$154,392	\$177,988	\$193,511	\$210,587	\$255,605	\$302,175
0.6	\$297,930	0.45 - < 0.6	282169	128629	cost = 282169Q + 128629	\$137,094	\$148,381	\$154,024	\$156,846	\$159,668	\$163,618	\$185,063	\$199,171	\$214,691	\$255,605	\$297,930
0.74	\$330,538	0.6 - < 0.74	232912	158183	cost = 232912Q + 158183	\$165,170	\$174,487	\$179,145	\$181,474	\$183,803	\$187,064	\$204,765	\$216,411	\$229,221	\$262,993	\$297,930
0.9	\$384,534	0.74 - < 0.9	337475	80807	cost = 337475Q + 80807	\$90,931	\$104,430	\$111,179	\$114,554	\$117,929	\$122,653	\$148,302	\$165,175	\$183,736	\$232,670	\$283,292
0.95	\$398,830	0.9 - < 0.95	285915	127210	cost = 285915Q + 127210	\$135,788	\$147,224	\$152,943	\$155,802	\$158,661	\$162,664	\$184,393	\$198,689	\$214,414	\$255,872	\$298,759
0.99	\$409,690	0.95 - <0.99	271517	140889	cost = 271517Q + 140889	\$149,034	\$159,895	\$165,325	\$168,041	\$170,756	\$174,557	\$195,192	\$208,768	\$223,701	\$263,071	\$303,799
1	\$1,275,084	0.99 - 1.0			cost = 1275084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084
1.5	\$1,528,884	1.0 - <1.5	507600	767484	cost = 507600Q + 767484	\$782,712	\$803,016	\$813,168	\$818,244	\$823,320	\$830,426	\$869,004	\$894,384	\$922,302	\$995,904	\$1,072,044
2.152	\$1,847,243	1.5 - <2.152	488280	796464	cost = 488280Q + 796464	\$811,112	\$830,644	\$840,409	\$845,292	\$850,175	\$857,011	\$894,120	\$918,534	\$945,389	\$1,016,190	\$1,089,432
3	\$2,189,971	2.152 - <3.0	404161	977488	cost = 404161Q + 977488	\$989,613	\$1,005,780	\$1,013,863	\$1,017,905	\$1,021,946	\$1,027,604	\$1,058,321	\$1,078,529	\$1,100,758	\$1,159,361	\$1,219,985
5	\$3,081,241	3.0 - < 5.0	445635	853066	cost = 445635Q + 853066	\$866,435	\$884,261	\$893,173	\$897,630	\$902,086	\$908,325	\$942,193	\$964,475	\$988,985	\$1,053,602	\$1,120,447
7.365	\$3,848,761	5.0 - <7.365	324533	1458578	cost = 324533Q + 1458578	\$1,468,314	\$1,481,295	\$1,487,786	\$1,491,031	\$1,494,276	\$1,498,820	\$1,523,484	\$1,539,711	\$1,557,560	\$1,604,618	\$1,653,297
10	\$4,656,524	7.365 - 10	306551	1591011	cost = 306551Q + 1591011	\$1,600,208	\$1,612,470	\$1,618,601	\$1,621,666	\$1,624,732	\$1,629,023	\$1,652,321	\$1,667,649	\$1,684,509	\$1,728,959	\$1,774,942

Design Flows generated from pre-built flows in the U.S. EPA cost model and user-generated flows. Total Capital Cost values generated from the U.S. EPA cost model.

LINEST was run on the cost vs flow values for each flow range to derive miniature cost curves - if the full-spectrum cost curves were unable to sufficiently calculate costs each of these linear curves could be used for final cost estimation.

Cells highlighted in blue represent where the derived curves intersect; if the formula is correct then the values should be identical between two equations at the same flow. The non-shaded cells represent further estimates of the curves but are not likely to be useful, and are mostly artifcats of doing a big copy/paste instead of individual cells.

Based on LINEST	0.399	320867	97613	cost = 320867Q + 97613	\$107,239	\$120,073	\$126,491	\$129,699	\$132,908	\$137,400	\$161,786	\$177,829	\$195,477	\$242,003	\$290,133
Based OII LINEST	percent higher t	flow range		8.96	1.39	1.80	2.00	2.18	3.36	(1.72)	0.69	(7.18)	(5.32)	(2.62)	
Based on LINEST	1.0 - 10.0	376971	1016026	cost = 376971Q + 1016026											
based on Enves	percent higher t														
Based on trendline	0.399	see	below		\$100,380	\$115,780	\$123,396	\$127,182	\$130,954	\$136,211	\$164,266	\$182,276	\$201,679	\$250,777	\$298,433
based on trendine	percent higher t	han specific t	flow range		1.99	(2.24)	(0.69)	0.02	0.68	2.47	(0.21)	3.21	(4.23)	(1.89)	0.17
Based on trendline	1.0 - 10.0	see	below												
based on trendine	and the second section of the second														

 Design Flow (MGD)
 q²
 q
 y-int

 0.3-0.99
 -70845
 392093
 88681

 1.0-10.0
 -13219
 519119
 776850

XY plots based off the flow and cost data with a polynomial trendline. The goal is to get a trendline that closely matches the known data points to predict costs based on flow.

The numbers to the left are copied from the calculated trendlines for ease in Excel calculations.

Known flow rates were inserted into the LINEST and polynomial trendline equations to verify the predictive accuracy of the equations. The percentage indicates how much above or below the calculated cost is from the actual number. Based on the percentages the polynomial trendlines are more accurate than the linear trendlines.

The EPA cost model uses flow rates of 1 MGD to separate SMALL from MEDIUM sources, and a significant increase in cost estimate occurs when that threshold is crossed. Separate cost curves were modeled for those flow rate ranges for capital cost, 0&M cost, and GAC recharge in order to produce more reliable curve equations.

The final trendlines were used to estimate capital costs at estimated flow rates from sources identified as likely requiring treatment for 1,2,3-TCP.

Capital Cost Curve

0.74	0.9	0.95	0.99	<u>1</u>	<u>1.5</u>	2.152	<u>3</u>	<u>5</u>	7.365	<u>10</u>
\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419	\$98,419
\$453,564	\$533,597	\$558,607	\$578,616	\$583,618	\$833,720	\$1,159,853	\$1,584,027	\$2,584,435	\$3,767,419	\$5,085,458
\$313,450	\$360,022	\$374,576	\$386,219	\$389,130	\$534,669	\$724,452	\$971,286	\$1,553,443	\$2,241,843	\$3,008,833
\$313,464	\$360,040	\$374,595	\$386,239	\$389,150	\$534,700	\$724,497	\$971,350	\$1,553,550	\$2,242,002	\$3,009,050
\$313,366	\$359,917	\$374,465	\$386,103	\$389,012	\$534,486	\$724,183	\$970,906	\$1,552,799	\$2,240,889	\$3,007,533
\$258,704	\$291,373	\$301,582	\$309,750	\$311,792	\$413,883	\$547,009	\$720,156	\$1,128,520	\$1,611,411	\$2,149,431
\$389,735	\$456,438	\$477,283	\$493,959	\$498,128	\$706,575	\$978,390	\$1,331,917	\$2,165,706	\$3,151,661	\$4,250,178
\$294,244	\$332,654	\$344,657	\$354,259	\$356,660	\$476,690	\$633,209	\$836,780	\$1,316,900	\$1,884,642	\$2,517,200
\$479,275	\$578,102	\$608,986	\$633,693	\$639,870	\$948,706	\$1,351,429	\$1,875,215	\$3,110,560	\$4,571,356	\$6,198,924
\$345,641	\$395,316	\$410,839	\$423,258	\$426,363	\$581,597	\$784,023	\$1,047,301	\$1,668,239	\$2,402,498	\$3,220,584
\$337,434	\$382,581	\$396,689	\$407,976	\$410,798	\$551,882	\$735,856	\$975,135	\$1,539,472	\$2,206,801	\$2,950,315
\$330,538	\$367,804	\$379,450	\$388,766	\$391,095	\$507,551	\$659,410	\$856,920	\$1,322,744	\$1,873,582	\$2,487,305
\$330,538	\$384,534	\$401,408	\$414,907	\$418,282	\$587,019	\$807,053	\$1,093,232	\$1,768,182	\$2,566,310	\$3,455,557
\$338,788	\$384,534	\$398,830	\$410,266	\$413,126	\$556,083	\$742,500	\$984,956	\$1,556,787	\$2,232,977	\$2,986,364
\$341,811	\$385,254	\$398,830	\$409,690	\$412,406	\$548,164	\$725,193	\$955,439	\$1,498,472	\$2,140,609	\$2,856,056
\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084	\$1,275,084
\$1,143,108	\$1,224,324	\$1,249,704	\$1,270,008	\$1,275,084	\$1,528,884	\$1,859,840	\$2,290,285	\$3,305,485	\$4,505,960	\$5,843,487
\$1,157,791	\$1,235,916	\$1,260,330	\$1,279,861	\$1,284,744	\$1,528,884	\$1,847,243	\$2,261,304	\$3,237,864	\$4,392,647	\$5,679,265
\$1,276,568	\$1,341,233	\$1,361,441	\$1,377,608	\$1,381,649	\$1,583,730	\$1,847,243	\$2,189,971	\$2,998,293	\$3,954,134	\$5,019,098
\$1,182,836	\$1,254,138	\$1,276,419	\$1,294,245	\$1,298,701	\$1,521,519	\$1,812,073	\$2,189,971	\$3,081,241	\$4,135,168	\$5,309,416
\$1,698,732	\$1,750,657	\$1,766,884	\$1,779,865	\$1,783,111	\$1,945,377	\$2,156,972	\$2,432,176	\$3,081,241	\$3,848,761	\$4,703,905
\$1,817,859	\$1,866,907	\$1,882,235	\$1,894,497	\$1,897,562	\$2,050,838	\$2,250,709	\$2,510,665	\$3,123,767	\$3,848,761	\$4,656,524

Continuation from other page

\$335,054	\$386,393	\$402,437	\$415,271							
1.37	0.48	0.90	1.36							
				\$ 1,392,996	\$ 1,581,482	\$ 1,827,267	\$ 2,146,938	\$ 2,900,879	\$ 3,792,414	\$ 4,785,732
				9.25	3.44	(1.08)	(1.97)	(5.85)	(1.46)	2.77
\$340,035	\$384,180	\$397,232	\$407,418							
2.87	(0.09)	(0.40)	(0.55)							
				\$1,282,750	\$1,525,786	\$1,832,776	\$2,215,236	\$3,041,970	\$3,883,120	\$4,646,140
				0.60	(0.20)	(0.78)	1.15	(1.27)	0.89	(0.22)
				0.00	(0.20)	(0.76)	1.13	(1.27)	0.85	(0.22)