Division of Drinking Water

Welcome Workshop Rules Workshop Overview

Public Workshop – Southern CA April 26, 2018

Workshop Overview

Welcome & Review of Workshop Rules Kurt Souza, SWRCB-DDW, Assistant Deputy Director

Framework for Regulating Direct Potable Reuse Randy Barnard, SWRCB-DDW, Chief – Recycled Water Unit Robert Hultquist, SWRCB-DDW, Recycled Water Specialist

Conclusion, Schedule, and Additional Information Randy Barnard, SWRCB-DDW, Chief – Recycled Water Unit

Open for Public Comments

Workshop Rules

Please sign in.

- Silence electronic devices.
- Fill out a speaker card.
- Please hold comments until the Q&A sections.
- State name and affiliation before you speak.
- Comment time may be limited due to number of speakers.

Division of Drinking Water

Framework for Regulating Direct Potable Reuse (DPR)

Public Workshop

DPR Framework

- DDW thinking on DPR
- Risk across the forms of DPR
- Research to fill knowledge gaps
- New SWA definition
- Stakeholder outreach
- Not a regulatory document

Assembly Bill 574

- Defines "raw water augmentation" and "treated water augmentation"
- Changed SWA definitions
- RWA by December 31, 2023
- Framework by June 1, 2018

Recent & Planned State Water Board Activities Related to Potable Reuse

- Section 1: Introduction
- Section 2: Types of potable reuse
- Section 3: DPR scenarios
- Section 4: Environmental buffer
- Section 5: Risk management approach
- Section 6: DPR criteria elements
- Section 7: Other considerations
- Section 8: Research status
- Section 9: Revising SWA regulations

Section 1: Introduction

- Section 2: Types of potable reuse
- Section 3: DPR scenarios
- Section 4: Environmental buffer
- Section 5: Risk management approach
- Section 6: DPR criteria elements
- Section 7: Other considerations
- Section 8: Research status
- Section 9: Revising SWA regulations

- Section 1: Introduction
 Section 2: Types of potable reuse
 Section 3: DPR scenarios
 - Section 4: Environmental buffer
 - Section 5: Risk management approach
 - Section 6: DPR criteria elements
 - Section 7: Other considerations
 - Section 8: Research status
 - Section 9: Revising SWA regulations

Types of Potable Reuse

- Indirect potable reuse
 - Groundwater replenishment
 - Surface water augmentation
 - (now => Reservoir Water Augmentation)

- Direct potable reuse
 - Raw water augmentation
 - Treated water augmentation

- Section 1: Introduction
- Section 2: Types of potable reuse
- Section 3: DPR scenarios
 - Section 4: Environmental buffer
 - Section 5: Risk management approach
 - Section 6: DPR criteria elements
 - Section 7: Other considerations
 - Section 8: Research status
 - Section 9: Revising SWA regulations

DPR Scenarios

- Forms of DPR:
 - "Treated Water Augmentation"
 - "Raw Water Augmentation"
- Challenge develop appropriate DPR criteria

DPR - Raw Water Augmentation

DPR - Raw Water Augmentation

DPR - Raw Water Augmentation

DPR - Treated Water Augmentation

- Section 1: Introduction
- Section 2: Types of potable reuse
- Section 3: DPR scenarios

Section 4: Environmental buffer

- Section 5: Risk management approach
- Section 6: DPR criteria elements
- Section 7: Other considerations
- Section 8: Research status
- Section 9: Revising SWA regulations

IPR - Environmental Buffer

- Reliable
- Provide benefits such as:
 - Attenuation of chemical peaks
 - Robust pathogen barrier
 - Response time

Barrier Loss

- Lack of substantial environmental barrier.
- Ensure reliable, robust, redundant, resilient treatment and optimization control.

- Section 1: Introduction
- Section 2: Types of potable reuse
- Section 3: DPR scenarios
- Section 4: Environmental buffer

Section 5: Risk management approach

- Section 6: DPR criteria elements
- Section 7: Other considerations
- Section 8: Research status
- Section 9: Revising SWA regulations

RISK MANAGEMENT APPROACH

Compensate for the loss of meaningful environmental buffer

PATHOGEN CONTROL

- Establish pathogen removal targets to achieve specific health risk goals
 - Engineered treatment Redundant treatment; Measures to ensure reliability and resiliency
 - Validate treatment trains to ensure pathogen removal targets and health risk goals can be met

Monitoring and control system Real time monitoring; Critical control point (CCP) program

GOAL OF DPR REGULATIONS

Protect public health as the form of direct potable reuse changes

CHEMICAL CONTROL

- Advanced Treatment to reduce concentrations to safe levels
- Attenuation of short term pulses of chemicals likely to persist through AWT Requirement to mitigate peaks
- Effective source control & public
 education
 Enhanced industrial source control program
- Use drinking water Notification Levels to address contaminants of concern Health based advisory levels addressing unregulated contaminants
- Monitoring and control system On-line continuous monitoring with CCP

Pathogens – Removal Targets

- Reference pathogens
- Worst case wastewater pathogen density
 - Uniform statewide criteria
 - Case—by-case requires method & duration (peaks infrequent)
 - At what point is it OK for pathogens to leak through?
- LRV calculated from ratio of safe density to worst case wastewater density
- Quantitative microbial risk assessment (QMRA) used to verify LRVs meet risk goal
 - Annual or daily risk

Cryptosporidium

Figure 2 Raw sewage and secondary effluent *Cryptosporidium* concentrations compared reported cases of Cryptosporidiosis

Analytical Methods

- Research Recommendation #3:
 - To better inform . . .QMRA modeling, ... measure pathogens ... in raw . . . that provide more complete information on concentrations and variabilities.
- Improved methods should be used that will allow better characterization and improved precision of concentrations of pathogens.
 - Cell culture or molecular methods?
 - See Chapters 5 and 7.

Quantitative Microbial Risk Assessment

- Research Recommendation #2:
 - "...adopt the use of probabilistic QMRA to confirm the necessary LRVs of viruses, *Cryptosporidium*, and *Giardia* needed to maintain a risk of infection equal to or less than 10⁻⁴ per person / year."

Quantitative Microbial Risk Assessment

- Regulators should be aware of the various model inputs to the QMRA. Some have wide ranges, including several orders of magnitude:
 - Pathogen concentrations
 - Selection of the target pathogen
 - Which virus?
 - Dose-response models
 - Selection of overall treatment train
 - Treatment process removal effectiveness

Pathogens - Treatment

- Redundant treatment (extra log reduction capacity) may be required:
 - To compensate for the lack of an effective environmental buffer
 - A tolerable (very low) probability of failure to meet the LRV may be established
- Probabilistic analysis of treatment train performance (PATTP) will be used
 - Use Monte Carlo approach to create a cumulative distribution function for a set of treatment process

 a treatment train

Example PATTP - Cryptosporidium

Pathogens - Treatment

- Validate processes and trains
 - Determine the LRV a treatment will achieve most of the time (5th percentile)
 - Correlate performance with a measurable parameter and identify limits indicating failure

Pathogens - Treatment

- Monitoring and Control
 - Close proximity of wastewater pathogen densities to drinking water for DPR
 - The need for knowledge of water quality and the ability to take corrective action is urgent
 - Provide continuous monitoring of critical processes and fail-safe control
 - Fail-safe is not intended to mean failure proof
 - Fail-safe means the system will revert to a safe condition if a critical component fails

Chemicals

The threat posed by chemicals in DPR is similar to that for IPR in that advanced treatment must be provided to control the potential chronic exposure hazard from a wide variety of unregulated chemicals.

The threat posed by chemicals in DPR is different for IPR in two important ways:

- Without an environmental buffer pulses of low molecular weight chemicals may pose an acute threat
- Without an environmental buffer the urgency of recognizing and responding to treatment deficiencies increases

Chemicals

- The goal:
 - remove chemicals to levels that are below public health concern
- The approach:

- Enhanced source control and public education
- Conformance with MCL and Notification Level (NL) requirements
 - Development of additional NLs as appropriate
- Required advanced treatment
- Something to deal with pulses of low molecular weight chemicals
- Rigorous monitoring and treatment control

DPR Report Chapter 8 Chemical Unknowns

- Research Recommendation #6:
 - "It is important to focus on non-targeted analysis and .. low molecular weight compounds."
 - "these methods also could address the potential vulnerability of AWTF treatment processes to

unintended spills or batch releases of chemicals in the sewershed. See Chapter 3."

Low Molecular Weight Chemicals Detected

Chemical	Use or Byproduct	MW
N-nitrosodimethylamine (NDMA)	Disinfection Byproduct	74
N-nitrosomorpholine (NMOR)	Disinfection Byproduct	116
1,4-dioxane	Solvent	88
Chloroform	Disinfection Byproduct	119
Acetone	Solvent	58
Methyl isothiocyanate (MITC)	Soil fumigant for fungi and nematodes	73

Problem & Strategy

- **Problem**: DPR –the lack of an environmental buffer that could provide substantial:
 - Attenuation of chemical spikes or peak pathogen levels,
 - Robust pathogen reduction, or
 - Response time
- Regulatory strategy:
 - Set protective contaminant control objectives, and
 - Ensure effective, reliable, robust treatment with performance monitoring and controls that enable immediate corrective action or interruption of drinking water production

- Section 1: Introduction
- Section 2: Types of potable reuse
- Section 3: DPR scenarios
- Section 4: Environmental buffer

Section 5: Risk management approach
Section 6: DPR criteria elements

- Section 7: Other considerations
- Section 8: Research status
- Section 9: Revising SWA regulations

DPR Criteria Elements

- DPR Permitting Authority
- Addressing Pathogens
- Chemical Control
- Source Control
- Critical Control Point Approach
- Cross Connection

DPR Permitting Authority

- Facilities co-located or separate
- Various ownership scenarios
- Regional Board regulatory approvals
- Regional Board authority
- Possible dual permits

Addressing Pathogens

- Identify LRVs
- Set LRV compliance criteria
 - Treatment train minimum LRV (using QMRA)
 - Multi-barrier requirements
 - Tolerable excursions (using QMRA)
- Treatment validation criteria
- Treatment train evaluation with PATTP
- Perhaps preapproved treatment train(s)
- Operations plan to assure treatment efficacy

Example PATTP - Cryptosporidium

Chemical Control

Source Control

Critical Control Point Approach

Cross-Connection

- Section 1: Introduction
- Section 2: Types of potable reuse
- Section 3: DPR scenarios
- Section 4: Environmental buffer
- Section 5: Risk management approach
- Section 6: DPR criteria elements
 Section 7: Other considerations
 Section 8: Research status
 - Section 9: Revising SWA regulations

Other Considerations

- Potable reuse inspection and supervision program
- Treatment system resilience
- Operations quality control
- Public health protection culture
- Public health surveillance

Inspection and Audits

Treatment System Resilience

Operators

Public Health Minded

Public Health Surveillance

- Section 1: Introduction
- Section 2: Types of potable reuse
- Section 3: DPR scenarios
- Section 4: Environmental buffer
- Section 5: Risk management approach
- Section 6: DPR criteria elements
- Section 7: Other considerations
 Section 8: Research status
 Section 9: Revising SWA regulations

DPR Research

- QMRA
- Raw wastewater monitoring
- Outbreak data collection
- Averaging
- Unknown-CEC methods

DPR Research Timeline

- Grant agreement to TWRF executed February 2018 provides funding for 5 DPR research projects
- Grant funding for the benefit of TWRF, not the State Water Board
- DDW role as observer
- Project descriptions being drafted
- Research completion 2021

- Section 1: Introduction
- Section 2: Types of potable reuse
- Section 3: DPR scenarios
- Section 4: Environmental buffer
- Section 5: Risk management approach
- Section 6: DPR criteria elements
- Section 7: Other considerations

Section 8: Research status
Section 9: Revising SWA regulations

New SWA Definition

Tentative Schedule for the Framework for Regulating DPR

april	APRIL	APRIL	MAY	JUNE
19	23	26	20	5
				İ
Start 30-day	Workshop in	Workshop in	End 30-day	State Board
comment	Northern	Southern	comment	info item in
period	California	California	period	Sacramento

STATE WATER BOARD CONTINUE ACCEPTING COMMENTS AFTER MAY 20TH For today's presentation, Framework, comment & contact info, visit SWRCB DDW Direct Potable Reuse webpage

https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/direct _potable_reuse.html

For future updates, visit and subscribe to **SWRCB electronic mailing list**

http://www.waterboards.ca.gov/resources/email_subscriptions/swrcb_subs cribe.shtml

Drinking Water → "Recycled Surface Water Augmentation & Direct Potable Reuse"

For more information on 2016 Report to Legislature, visit **DDW Report to the Legislature webpage**

http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/rw_dpr _criteria.shtml

Randy Barnard, P.E. Recycled Water Unit, Division of Drinking Water

DDWrecycledwater@waterboards.ca.gov

Submit comments on the Framework		
By email	DDWrecycledwater@waterboards.ca.gov PDF preferred (15 MB max)	
By mail	Sherly Rosilela, P.E. Division of Drinking Water, Recycled Water Unit State Water Resources Control Board P.O. Box 100 Sacramento, CA 95812-100	

