Demonstrating Redundancy and Monitoring to Achieve Reliable Potable Reuse

Shane Trussell, Ph.D., P.E., BCEE

WEDECO

Direct Potable Reuse in California: Specialty Seminar September 23rd, 2015

Groundwater Recharge spreading (T22) Tertiary Water Chlorination Treatment Consumers Large Groundwater injection Full Aquifer Advanced Treatment **Surface Water Augmentation** Full Potable Water Large Water Advanced Treatment Reservoir Consumers Treatment Plant **Source Water Augmentation** Full **Potable Water Small** Water Advanced Treatment Reservoir Consumers Plant Treatment AWT as approved water supply Full Water Advanced Consumers Treatment

Groundwater Recharge

What are the paths to reliability?

Public Health Protection

OR

Dilution

Does Dilution Work?

Does Dilution Work?

Enhanced treatment provides same benefit

Enhanced treatment provides same benefit

What Else Does the AWPF Concept Consider?

Pathogens

Performance monitoring is crucial

•

Performance monitoring is crucial

Performance must be demonstrated

WateReuse Research Project 14-12

Title: Demonstrating Redundancy and Monitoring to Achieve Reliable Potable Reuse

18

Project Goal

To leverage industry "state of the art" to demonstrate how a combination of treatment redundancy and enhanced monitoring techniques can *reliably* achieve potable reuse treatment objectives

AWPF Concept Built on Reliability

Treatment Redundancy

Redundancy: Greater than Minimum

AWPF Concept Built on Reliability

Robustness: Incorporating more strength

Robustness: Proactively mitigates next "unknown"

MEASURING RELIABILITY

Performance Monitoring Data

Data Management

Data Analysis

System Operation

Data Analysis

Forms of Reliability

Mechanical Reliability

How frequently system is running as designed

System Up

System Down

Inherent Reliability

Quality of water produced when system is running properly

System Performance

Mechanical Reliability

Ozone Performance Calculation

Inputs

- Temperature
- Dissolved O₃
 Meters (x3)
- Contact Time

Calculations

• Determine total CT value

Assign LRV

- Use info from SWTRs to assign Crypto LRV
- If Crypto LRV ≥ 1, Giardia and virus = 6

Ozone Performance Data

Ozone Performance Data

Ozone Performance Curve

Mechanical Reliability

Planned Unplanned Downtime Downtime 1.6% 0.6% 2.7 Days 0.99 Days Uptime 98% 154 Days

BAC Performance Data

BAC Performance Data

Transformation of Organic Matter by Ozone

- Ozone oxidizes EfOM
- Quantifiable decrease in:
 - UVT
 - Fluorescence
 - Color
- Breaks down large MW and produces smaller MW, more polar, and more hydrophilic type organics

What does ozone do to TOC?

Process Monitoring by UVT Meters

EfOM Transformation by Fluorescence

 RO concentrate shows less fluorescence than the feed water (tertiary effluent) and contains 40% less TOC

Reduction in Feed TOC Benefits Product Water Quality

54

NDMA Formation and Removal

Mechanical Reliability

MF/UF Performance Calculation

Performance Criteria

- If filtrate Turbidity < 0.15 NTU over 24-h period
- Use daily membrane integrity test to determine LRV

Assign LRVs

 Crypto: determine LRV based on EPA calculations

$$LRV = \log\left(\frac{Q_p \bullet ALCR \bullet P_{atm}}{\Delta P_{test} \bullet V_{sys} \bullet VCF}\right)$$

- Giardia: assume equivalent to Crypto LRV
- Virus: assign LRV = 0 (or do study)

UF LRV Distribution

Mechanical Reliability

RO Performance Calculation

Performance Criteria

- RO Permeate TOC < 500 ppb
- Measure TOC reduction
- Measure conductivity reduction

Assign LRVs

 All pathogens: LRV equals log removal of TOC or conductivity (greater)

RO Performance Data

RO Train A Conductivity Influent (Black) & Effluent (Red) Conductivity (uS/cm)

RO Performance Data

RO Pathogen Removal

RO Performance Curve

UV Performance Calculation

Performance monitoring

- Measure power level
- Measure UV intensity
- Measure UV transmittance

Calculate LRV

- IF:
 - Power ≥ 60%
 - UV intensity > 5 mW/cm²
 - UVT > 95%
- LRV = 6 for all pathogens

UV/AOP Performance Data

UV/AOP

UV/AOP Performance Curve

System Performance Curve

System Performance Curve

Coming soon!

CHALLENGE TESTS

Expanding O₃ credit for Crypto

Exhibit 11.1 CT Values for Cryptosporidium Inactivation by Ozone (40 CFR 141.730)

Log credit	Water Temperature, ^o C ¹										
	<=0.5	1	2	3	5	7	10	15	20	25	≥30
0.25	6.0	5.8	5.2	4.8	4.0	3.3	2.5	1.6	1.0	0.6	0.39
0.5	12	12	10	9.5	7.9	6.5	4.9	3.1	2.0	1.2	0.78
1.0	24	23	21	19	16	13	9.9	6.2	3.9	2.5	1.6
1.5	36	35	31	29	24	20	15	9.3	5.9	3.7	2.4
2.0	48	46	42	38	32	26	20	12	7.8	4.9	3.1
2.5	60	58	52	48	40	33	25	16	9.8	6.2	3.9
3.0	72	69	63	57	47	39	30	19	12	7.4	4.7

¹CT value, between the indicated temperatures may be determined by linear interpolation.

Ozone credit maxes out at 3-logs for drinking water

Expanding O₃ credit for Crypto

- Experimental plan reviewed by IAP/PAC
- Comparing ozone inactivation of Crypto in surface water and 3ry effluent
- Assessing up to 5-log inactivation in 3ry water
- Two rounds of testing began in Sept 2015
- Biovir Labs providing safety oversight

Chemical Challenge Test

Chemical Challenge Test

Chemical Challenge Test

Testing at Demonstration Facility on September 18, 2015

REGULATORY INTERACTIONS

Moving Crediting Schemes into Potable Reuse

- Ozone crediting from Surface Water Treatment Rules
- MF/UF crediting from EPA Guidance
- Expanding ozone credit for Crypto

LESSONS LEARNED

Data management is a big deal

Data management is a big deal

Data filtering takes time

Learning some logged data are unnecessary – while some unlogged data are!

More is not necessarily better....

Strategies for Future Implementation

- Connect all monitors to a single data storage system
- Ensure data is easily accessible for analysis
- Develop data processing logic prior to start-up can save time
- Provide adequate time for meter commissioning

Next Steps

- Continue data collection and data mining (April 2015 – April 2016)
- Adapt monitoring strategies based on findings
- Build performance curves to assess reliability
- Report on challenge test results

Acknowledgements

- WateReuse Research Foundation's financial, technical, and administrative assistance in funding and managing the project through which this information was discovered, developed, and presented
- San Diego County Water Authority for its support in the administration of the project funding.
- Project funding under the Safe Drinking Water, Water Quality and Supply, Flood Control, River and Coastal Protection Bond Act of 2006, administered by the State of California, **Department of Water Resources**.

Supporting Utilities

Questions?

WEDECO

Direct Potable Reuse in California: Specialty Seminar September 23rd, 2015