

	PUMPING
ces Control Board	1 horsepower (Hp) = 746 watts = 0.746 kw = 3,960 gal/min/ft
<u>VOLUME</u> Restangular Resin, Volume gel. -	Water Hp = (GPM)x(Total Head, ft) (3,960 gal/min/ft)
(Length, ft) \times (Width, ft) \times (Height, ft) \times 7.48 gal/cu. ft.	Brake Hp = $(GPM)x(TotalHead,ft)$ (3.960) x (Pump % Efficiency)
Cylinder , Volume, gal = $(0.785) \times (\text{Dia, ft})^2 \times (\text{Height, Depth, or Length in ft.}) \times 7.48 \text{ gal/ft}^3$	$Motor Hp = (GPM) \times (Total Head, ft)$ (3,960) x Pump % Eff. x Motor % Eff.
Time, Hrs. = <u>Volume, gallons</u> (Pumping Rate, GPM, x 60 Min/Hr)	<pre>"Wire-to-Water" Efficiency</pre>
Supply, Hrs. = <u>Storage Volume, Gals</u> (Flow In, GPM - Flow Out, GPM) x 60 Min/Hr)	Cost, \$ = (Hp) x (0.746 Kw/Hp) x (Operating Hrs.) x cents/Kw-Hr
SOLUTIONS Lbs/Gal = (Solution %) x 8.34 lbs/gal x Specific Gravity 100	Flow. velocity. area Q = A x V Quantity = Area x Velocity
Lbs Chemical = Specific Gravity x 8.34 lbs/gallons x Solution(gal)	Flow (ft ³ /sec) = Area(ft ²) x Velocity (ft/sec) <u>MGD x 1.55 cuft/sec/MGD</u> = $cu ft/sec$ = ft/sec .785 xpipe diameter ft x pipe diameter ft = sqft
<pre>% of Chemical = (Dry Chemical, lbs) x 100 in Solution (Dry Wt. Chemical, lbs)+ (Water, lbs)</pre>	$\frac{\text{General}}{(\$)\text{Cost}/\text{day}} = \frac{\text{lbs/day x (\$)Cost/lb}}{100}$ Removal, Percent = $\frac{(\ln - \text{Out})}{\ln}$ x 100
GPD = (MGD) x (ppm or mg/L) x 8.34 lbs/gal (% purity) x Chemical Wt.(lbs/gal)	Specific Capacity, GPM/ft. = <u>Well Yield, GPM</u> Drawdown, ft.
GPD = (Feed, ml/min. x 1,440 min/day) (1,000 ml/Lx 3.785 L/gal)	Gals/Day = (Population) x (Gals/Capita/Day) GPD = (Meter Read 2 - Meter Read 1) (Number of Days)
Two-Normal Equations: a) $C_1V_1 = C_2V_2$ $\frac{Q_1}{V_1} = \frac{Q_2}{V_2}$	Volume, Gals = GPM x Time, minutes
b) $C_1V_1+C_2V_2 = C_3V_3$	SCADA = 4 mA to 20 mA analog signal
C = Concentration V = Volume Q = Flow	(live signalmA - 4 mA offset) x process unit and range (16 mA span)
	4 mA=0 20 mA full-range

State Water Resources Control Board

UNITS AND CONVERSION FACTORS

1 cubic foot of water weighs 62.3832 lb 1 gallon of water weighs 8.34 lb 1 liter of water weighs 1,000 gm 1 mg/L = 1 part per million (ppm)1% = 10,000 ppm ft^2 = square feet and ft^3 = cubic feet 1 mile = 5.280 feet (ft) $1 \text{ yd}^3 = 27 \text{ ft}^3$ and 1 yard = 3 feet1 acre (a) = 43,560 square feet (ft²) 1 acre foot = 325,851 gallons 1 cubic foot (ft^3) = 7.48 gallons (gal) 1 gal = 3.785 liters (L)1 L = 1,000 milliliters (ml)1 pound (lb) = 454 grams (gm) 1 lb = 7.000 grains (gr)1 grain per gallon (gpg) = 17.1 mg/L 1 gm = 1.000 milligrams (mg)1 day = 24 hr = 1,440 min = 86,400 sec 1,000,000 gal/day ÷ 86,400 sec/day ÷ 7.48 gal/cu ft = 1.55 cu ft/sec/MGD

CHLORINATION

Dosage, mg/l = (Demand, mg/l) + (Residual, mg/l) (Gas) lbs = Vol, MG x ppm or mg/L x 8.34 lbs/gal GPD = HTH Solid (lbs) = (Vol, MG) x (ppm or mg/L) x 8.34 lbs/gal GPD = (% Strength / 100)

Liquid (gal) = (Vol, MG) x (ppm or mg/L) x 8.34 lbs/gal (% Strength /100) x Chemical Wt. (lbs/gal)

PRESSURE

PSI = (Head, ft.) **PSI =** Head. ft. \times 0.433 PSI/ft. 2.31ft./psi

Ibs Force = $(0.785) (D, ft.)^2 x 144 in^2/ft^2 x PSI.$

FILTRATION	<u>C·T CALCULATIONS</u>
Filtration Rate (GPM/sq.ft)=Filter Production (gallons per day) (Filter area sq. ft.) x (1,440 min/day)sq. ft. = square feetLoading Rate (GPM/ sq. ft.)=(Flow Rate, GPM) (Filter Area, sq. ft.)	$C \cdot t = (Chlorine Residual, mg/L) \times (Time, minutes)$ Time, minutes = $(C \cdot t)$ (Chlorine Residual, mg/L) Chlorine Residual (mg/L) = $(C \cdot t)$
Daily Filter Production (GPD) = (Filter Area, sq. ft.) x (<u>GPM</u> /sq. ft. x 1,440 min/day)	(Time, minutes)
Backwash Pumping Rate (GPM) = (Filter Area, sq. ft.) x (Backwash Rate, <u>GPM/</u> sq. ft.) Backwash Volume (Gallons) =	Inactivation Ratio = $\frac{(\text{Actual System C} \cdot t)}{(\text{Table "E" C} \cdot t)}$
(Filter Area, sq. ft.) X (Backwash Rate, <u>GPM</u> /sq. ft.) X (Time, min)	T_{10} Value, minutes x Chlorine Residual, mg/L
(Filter Area, sq. ft.) x (Time, min)	$Log Removal = 1.0 - \frac{\% Removal}{100} \times Log key \times (-1)$
Rate of Rise (inches per min.) = (<u>Backwash Rate gpm/sq.ft.) x 12 inches /tt</u> 7.48 gal/cu.ft.	
Unit Filter Run Volume, (UFRV) = (gallons produced in a filter run) (Filter Area sq. ft.)	
CHEMICAL DOSAGE CALCULATIONS	SEDIMENTATION
Note: (% purity) and (% commercial purity) used in decimal form	Surface Loading Rate, (GPD/ sq. ft.) = (Total Flow, GPD) (Surface Area, sq.ft.)
Lbs/day gas feed dry = MGD x (ppm or mg/L) x 8.34 lbs/gal Lbs/day = MGD x (ppm or mg/L) x 8.34 lbs/gal % purity	Detention Time = <u>Volume</u> flow
GPD = MGD x (ppm or mg/L) x 8.34 lbs/gal (% purity) x lbs/gal	Detention Time hours = volume (cu ft) x 7.48 gal/cu ft x 24 hr/day Gal/day
GPD = <u>MGD x (ppm or mg/L) x 8.34 lbs/gal</u> (commercial purity %) x (ion purity %) x (lbs/gal)	Flow Rate = <u>Volume</u> Time
ppm or mg/l=lbs/dayorgallons x % purity x lbs/galMGD x 8.34 lbs/galMG x 8.34 lbs/gal	Weir Overflow Rate, GPD/L.F. = <u>(Flow, GPD)</u> (Weir length, ft.)