UNITS AND CONVERSION FACTORS

- 1 cubic foot of water weighs 62.3832 lb
- 1 gallon of water weighs 8.34 lb
- 1 liter of water weighs 1,000 gm
- 1 mg/L = 1 part per million (ppm)
- 1% = 10,000 ppm
- feet² = square feet and feet³ = cubic feet
- 1 mile = 5,280 feet (ft)
- 1 yard = 3 feet
- 1 acre (a) = 43,560 square feet (ft²)
- 1 acre foot = 325,851 gal
- 1 yard = 3 feet
- 1 mile = 5,280 feet (ft)
- 1% = 10,000 ppm
- 1 gm = 1,000 milligrams (mg)
- 1 grain per gallon (gpg) = 17.1 mg/L
- 1 lb = 7,000 grains (gr)
- 1 pound (lb) = 454 grams (gm)
- 1 L = 1,000 milliliters (ml)
- 1 kg = 2.20462 lb
- 1 Liter of water weighs 1 kg
- 1 gallon of water weighs 8.34 lb
- 1 cubic foot of water weighs 62.2 lb
- 1 cu ft = 7.48 gal
- 1 acre ft = 325,851 gal
- 1 ft = 0.3048 m
- 1 m = 3.28084 ft
- 1 mile = 1,609.34 m

CHLORINATION

Dosage, mg/l = (Demand, mg/l) + (Residual, mg/l)

(Gas) lbs = Vol, MG x ppm or mg/L x 8.34 lbs/gal

HTH Solid (lbs) = (Vol, MG) x (ppm or mg/L) x 8.34 lbs/gal

Liquid (gal) = (Vol, MG) x (ppm or mg/L) x 8.34 lbs/gal

% of Chemical in Solution = (Dry Chemical, lbs) / (Vol, MG) x (ppm or mg/L) x 8.34 lbs/gal

Specific Gravity = Chemical Wt. (lbs/gal) / 8.34 lbs/gal

% of Chemical = (Dry Chemical, lbs) / (Dry Wt. Chemical, lbs) + (Water, lbs)

GPD = (MGD) x (ppm or mg/L) x 8.34 lbs/gal (ppm purity) x Chemical Wt. (lbs/gal)

GPD = (Feed, m³/min x 1,440 min/day) / (1,000 mL/L x 3,785 L/gal)

SOLUTIONS

Lbs/Gal = (Solution %) x 8.34 lbs/gal x Specific Gravity / 100

Lbs Chemical = Specific Gravity x 8.34 lbs/gallons x Solution(gal)

Specific Gravity = Chemical Wt. (lbs/gal) / 8.34 lbs/gal

VOLUME

Rectangular Basin, Volume, gal = (Length, ft) x (Width, ft) x (Height, ft) x 7.48 gal/ft³

Cylinder, Volume, gal = (0.785) x (Dia, ft)² x (Height, ft) x 7.48 gal/ft³

Time, Hrs. = (Pumping Rate, GPM) x 60 Min/Hr

Supply, Hrs. = Storage Volume, Gals / (Flow In, GPM - Flow Out, GPM) x 60 Min/Hr

PUMPING

1 horsepower (Hp) = 746 watts = 0.746 Kw = 3,960 gal/min/ft

Water Hp = (GPM x (Total Head, ft)) / (3,960 gal/min/ft)

Brake Hp = (GPM x (Total Head, ft)) / (3,960) x (Pump % Efficiency)

Motor Hp = (GPM x (Total Head, ft)) / (3,960) x Pump % Eff. x Motor % Eff.

SCADA

4 mA = 0 to 20 mA analog signal

(live signal mA - 4 mA offset) x process unit and range (16 mA span)
FILTRATION

Filtration Rate (GPM/sq.ft) = \(\text{Filter Production (gallons per day)} \div \text{(Filter area sq. ft.)} \times (1,440 \text{ min/day}) \)

Loading Rate (GPM/ sq. ft.) = \(\frac{\text{(Flow Rate, GPM)}}{\text{(Filter Area, sq. ft.)}} \)

Daily Filter Production (GPD) = \(\text{(Filter Area, sq. ft.)} \times \text{(GPM/sq. ft. x 1,440 min/day)} \)

Backwash Pumping Rate (GPM) = \(\text{(Filter Area, sq. ft.)} \times \text{(Backwash Rate, GPM/sq. ft.)} \)

Backwash Volume (Gallons) = \(\text{(Filter Area, sq. ft.)} \times \text{(Backwash Rate, GPM/sq. ft.)} \times \text{(Time, min)} \)

Backwash Rate, GPM/ sq. ft. = \(\frac{\text{(Backwash Volume, gallons)}}{\text{(Filter Area, sq. ft.)} \times \text{(Time, min)}} \)

Rate of Rise (inches per min.) = \(\frac{\text{(Backwash Rate gpm/sq.ft.)} \times 12 \text{ inches/ft}}{7.48 \text{ gal/cu.ft.}} \)

Unit Filter Run Volume, (UFRV) = \(\frac{\text{(gallons produced in a filter run)}}{\text{(Filter Area sq. ft.)}} \)

CHEMICAL DOSAGE CALCULATIONS

Note: (% purity) and (% commercial purity) used in decimal form

Lbs/day gas feed dry = MGD x (ppm or mg/L) x 8.34 lbs/gal

Lbs/day = MGD x (ppm or mg/L) x 8.34 lbs/gal x % purity

GPD = \(\frac{\text{MGD x (ppm or mg/L) x 8.34 lbs/gal}}{\text{(% purity) x lbs/gal}} \)

GPD = \(\frac{\text{MGD x (ppm or mg/L) x 8.34 lbs/gal}}{\text{(commercial purity %) x (ion purity %) x (lbs/gal)}} \)

ppm or mg/l = lbs/day x % purity x lbs/gal

C•T CALCULATIONS

\(C \cdot t = (\text{Chlorine Residual, mg/L}) \times (\text{Time, minutes}) \)

Time, minutes = \(\frac{C \cdot t}{\text{(Chlorine Residual, mg/L)}} \)

Chlorine Residual (mg/L) = \(\frac{C \cdot t}{\text{(Time, minutes)}} \)

Inactivation Ratio = \(\frac{\text{(Actual System C•t)}}{\text{(Table “E” C•t)}} \)

C•t Calculated = \(\frac{T_{10} \text{ Value, minutes} \times \text{Chlorine Residual, mg/L}}{100} \)

Log Removal = \(1.0 - \frac{\% \text{ Removal}}{100} \times \log \text{key} \times (-1) \)

SEDIMENTATION

Surface Loading Rate, (GPD/ sq. ft.) = \(\frac{(\text{Total Flow, GPD})}{\text{(Surface Area, sq.ft.)}} \)

Detention Time = \(\frac{\text{Volume}}{\text{flow}} \)

Detention Time hours = \(\frac{\text{volume (cu ft) x 7.48 gal/cu ft x 24 hr/day}}{\text{Gal/day}} \)

Flow Rate = \(\frac{\text{Volume}}{\text{Time}} \)

Weir Overflow Rate, GPD/L.F. = \(\frac{\text{(Flow, GPD)}}{\text{(Weir length, ft.)}} \)