Water Boards

UNITS AND CONVERSION FACTORS

1 cubic foot of water weighs 62.3832 lb
1 gallon of water weighs 8.34 lb
1 liter of water weighs $1,000 \mathrm{gm}$
$1 \mathrm{mg} / \mathrm{L}=1$ part per million (ppm)
$1 \%=10,000 \mathrm{ppm}$
$\mathrm{ft}^{2}=$ square feet and $\mathrm{ft}^{3}=$ cubic feet
1 mile $=5,280$ feet (ft)
$1 \mathrm{yd}^{3}=27 \mathrm{ft}^{3}$ and 1 yard $=3$ feet
1 acre (a) = 43,560 square feet (ft ${ }^{2}$)
1 acre foot $=325,851$ gallons
1 cubic foot (ft ${ }^{3}$) $=7.48$ gallons (gal)
1 gal $=3.785$ liters (L)
$1 \mathrm{~L}=1,000$ milliliters (ml)
1 pound (lb) $=454$ grams (gm)
$1 \mathrm{lb}=7,000$ grains (gr)
1 grain per gallon $(\mathrm{gpg})=17.1 \mathrm{mg} / \mathrm{L}$
$1 \mathrm{gm}=1,000$ milligrams (mg)
1 day $=24 \mathrm{hr}=1,440 \mathrm{~min}=86,400 \mathrm{sec}$
$1,000,000 \mathrm{gal} / \mathrm{day} \div 86,400 \mathrm{sec} /$ day $\div 7.48 \mathrm{gal} / \mathrm{cu} \mathrm{ft}$
$=1.55 \mathrm{cu} \mathrm{ft} / \mathrm{sec} / \mathrm{MGD}$

CHLORINATION

Dosage, $\mathrm{mg} / \mathrm{l}=($ Demand, $\mathrm{mg} / \mathrm{l})+($ Residual, $\mathrm{mg} / \mathrm{l})$
(Gas) Ibs $=$ Vol, MG $\times \mathrm{ppm}$ or mg/L $\times 8.34 \mathrm{lbs} / \mathrm{gal}$
HTH Solid (lbs) =
(Vol, MG) $\times(\mathrm{ppm}$ or mg/L) $\times 8.34 \mathrm{lbs} / \mathrm{gal}$ (\% Strength / 100)

Liquid (gal) $=($ Vol, $M G) \times(\mathrm{ppm}$ or $\mathrm{mg} / \mathrm{L}) \times 8.34 \mathrm{lbs} / \mathrm{gal}$ (\% Strength /100) x Chemical Wt. (lbs/gal)

PRESSURE

PSI $=\frac{(\text { Head, ft. })}{2.31 \mathrm{ft} / \mathrm{ssi}} \quad$ PSI $=$ Head, ft. $\times 0.433$ PSI/ft.
$2.31 \mathrm{ft} . / \mathrm{psi}$
Ibs Force $=(0.785)(\mathrm{D}, \mathrm{ft})^{2} \times 144 \mathrm{in}^{2} / \mathrm{ft}^{2} \times \mathrm{PSI}$.

VOLUME

Rectangular Basin, Volume, gal =

(Length, ft) \times (Width, ft) \times (Height, ft) $\times 7.48$ gal/cu. ft.
Cylinder, Volume, gal =
(0.785) $\times(\text { (Dia, } \mathrm{ft})^{2} \times\left(\right.$ Height, Depth, or Length in ft .) $\times 7.48 \mathrm{gal} / \mathrm{ft}^{3}$

Time, Hrs. =
Volume, gallons
(Pumping Rate, GPM, x $60 \mathrm{Min} / \mathrm{Hr}$)
Supply, Hrs. $=\quad$ Storage Volume, Gals
(Flow In, GPM - Flow Out, GPM) $\times 60 \mathrm{Min} / \mathrm{Hr}$)

SOLUTIONS

Lbs/Gal $=($ Solution \%) $\times 8.34$ lbs/gal \times Specific Gravity 100

Lbs Chemical =
Specific Gravity x 8.34 lbs/gallons \times Solution(gal)
Specific Gravity $=$ Chemical Wt. (lbs/gal)
8.34 (lbs/gal)
\% of Chemical = (DryChemical, lbs) x 100
in Solution (Dry Wt. Chemical, lbs)+(Water, lbs)

GPD $=(\mathrm{MGD}) \times(\mathrm{ppm}$ or $\mathrm{mg} / \mathrm{L}) \times 8.34 \mathrm{lbs} / \mathrm{gal}$
(\% purity) \times Chemical Wt.(Ibs/gal)
GPD $=\quad($ Feed, $\mathrm{m} / / \mathrm{min} . \times 1,440 \mathrm{~min} /$ day $)$
($1,000 \mathrm{ml} / \mathrm{Lx} 3.785 \mathrm{~L} / \mathrm{gal}$)

Two-Normal Equations:

[^0]
PUMPING

1 horsepower $(\mathrm{Hp})=746$ watts $=0.746 \mathrm{kw}=3,960 \mathrm{ga} / \mathrm{min} / \mathrm{tt}$
Water Hp $=\quad(G P M) \times($ Total Head, ft$)$
(3,960 gal/min/ft)
Brake Hp $=\quad($ GPM $) \times($ Total Head,ft $)$
$(3,960) \times$ (Pump \% Efficiency)
Motor Hp $=\quad$ (GPM) $\times($ Total Head,ft) $(3,960)$ x Pump \% Eff. x Motor \% Eff.

"Wire-to-Water" Efficiency

$=\quad($ Motor, \% Efficiency \times Pump\% Efficiency $)$
Cost, $\$=$
(Hp) x ($0.746 \mathrm{Kw} / \mathrm{Hp}$) \times (Operating Hrs.) \times cents/Kw-Hr

Flow, velocity, area

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{Q}=\mathrm{A} \times \mathrm{V} \quad \text { Quantity }=\text { Area } \times \text { Velocity } \\
\text { Flow }\left(\mathrm{ft}^{3} / \mathrm{sec}\right)=\text { Area }\left(\mathrm{ft}^{2}\right) \times \text { Velocity }(\mathrm{ft} / \mathrm{sec}) \\
.785 \frac{\mathrm{MGD} \times 1.55 \mathrm{cuft} / \mathrm{sec} / \mathrm{MGD}}{\times \text { pipe diameter } \mathrm{ft} \times \text { pipe diameter } \mathrm{ft}}=\frac{\mathrm{cu} \mathrm{ftsec}}{\mathrm{sqft}}=\mathrm{ft} / \mathrm{sec}
\end{array}
\end{aligned}
$$

General

(\$)Cost/day = lbs/day x (\$)Costllb
Removal, Percent $=\frac{(\ln -\text { Out })}{\ln } \times 100$
Specific Capacity, GPM/ft. = Well Yield, GPM Drawdown, ft.

Gals/Day $=$ (Population) \times (Gals/Capita/Day)
GPD $=($ Meter Read $2-$ Meter Read 1$)$
(Number of Days)
Volume, Gals $=$ GPM \times Time, minutes

SCADA $=4 \mathrm{~mA}$ to 20 mA analog signal
(livesignalmA - 4 mA offset) x process unit and range
(16 mA span)
$4 \mathrm{~mA}=0 \quad 20 \mathrm{~mA}$ full- range

FILTRATION	C. T CALCULATIONS
CHEMICAL DOSAGE CALCULATIONS Note: (\% purity) and (\% commercial purity) used in decimal form $\begin{aligned} & \text { Lbs/day gas feed dry }=\mathrm{MGD} \times(\mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{L}) \times 8.34 \mathrm{lbs} / \mathrm{gal} \\ & \text { Lbs/day }=\frac{\text { MGD } \times(\mathrm{ppm} \mathrm{or} \mathrm{mg/L}) \times 8.34 \mathrm{lbs} / \mathrm{gal}}{\% \text { purity }} \\ & \text { GPD }=\frac{\text { MGD } \times(\mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{L}) \times 8.34 \mathrm{lbs} / \mathrm{gal}}{(\% \text { purity } \times \mathrm{lbs} / \mathrm{gal}} \\ & \text { GPD }=\frac{\text { MGD } \times(\mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{L}) \times 8.34 \mathrm{lbs} / \text { gal }}{(\text { commercial purity } \%) \times(\text { ion purity } \%) \times(\mathrm{lbs} / \mathrm{gal})} \end{aligned}$ $\text { ppm or } \mathrm{mg} / \mathrm{l}=\frac{\mathrm{lbs} / \text { day }}{M G D \times 8.34 \mathrm{lbs} / \mathrm{gal}} \quad \text { or } \quad \frac{\text { gallons } \times \% \text { purity } \times \mathrm{lbs} / \mathrm{gal}}{M G \times 8.34 \mathrm{lbs} / \mathrm{gal}}$	SEDIMENTATION $\begin{aligned} & \text { Surface Loading Rate, (GPD/ sq. ft.) }=\frac{(\text { Total Flow, GPD })}{(\text { Surface Area, sq.ft.) }} \\ & \text { Detention Time }=\frac{\text { Volume }}{\text { flow }} \\ & \text { Detention Time hours }= \\ & \qquad \frac{\text { volume }(\mathrm{cu} \mathrm{ft}) \times 7.48 \mathrm{gal} / \mathrm{cu} \mathrm{ft} \times 24 \mathrm{hr} / \mathrm{day}}{\mathrm{Gal} / \mathrm{day}} \\ & \text { Flow Rate }=\frac{\text { Volume }}{\text { Time }} \end{aligned}$ $\text { Weir Overflow Rate, GPD/L.F. }=\frac{(\text { Flow, GPD })}{(\text { Weir length, ft. })}$

[^0]: a) $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
 $\frac{\mathrm{Q}_{1}}{\mathrm{~V}_{1}}=\frac{\mathrm{Q}_{2}}{\mathrm{~V}_{2}}$
 b) $\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}=\mathrm{C}_{3} \mathrm{~V}_{3}$
 $\mathrm{C}=$ Concentration $\quad \mathrm{V}=$ Volume $\quad \mathrm{Q}=$ Flow

