


| Unit Definition               | Units and Conversion Factors |                                    |   | ersion Factors |                 | Area and Volume                                                                                   | Solutions                                                                                                                          |  |
|-------------------------------|------------------------------|------------------------------------|---|----------------|-----------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| % Percent                     | 1                            | %                                  | = | 10,000         | mg/L            | Area of Circle = $.785 \times D^2$                                                                | Solution (%) x 8.34 x Specific Gravity (SG)                                                                                        |  |
| A Area                        | 1                            | %                                  | = | 10,000         | ppm             |                                                                                                   | $(lbs/Gal) = \frac{Solution (\%) \times 8.34 \times Specific Gravity (SG)}{100}$                                                   |  |
| Acre Acre                     | 1                            | Acre                               | = | 43,560         | Ft <sup>2</sup> | Area of Rectangle = Length x Width                                                                |                                                                                                                                    |  |
| AF Acre Foot                  | 1                            | AF                                 | = | 325,851        | Gal             |                                                                                                   | (lbs) Chemical = SG x 8.34 x Solution (Gal) x Solution (%/100)                                                                     |  |
| C Concentration               | 1                            | CCF                                | = | 100            | Ft <sup>3</sup> | Area of Right Triangle = (Base x Height)/2                                                        |                                                                                                                                    |  |
| CCF Hundred Cubic Feet        | 1                            | CCF                                | = | 748            | Gal             |                                                                                                   | Specific Gravity (SG) = Chemical Weight (Lbs/Gal)                                                                                  |  |
| CFS Cubic Feet Per Second     | 1                            | CFS                                | = | 448.8          | GPM             | Cylinder Volume (Gal) = .785 x D <sup>2</sup> x Height or Length (Ft) x 7.48                      | 8.34                                                                                                                               |  |
| D Diameter                    | 1                            | day                                | = | 24             | hrs             |                                                                                                   |                                                                                                                                    |  |
| DT Detention Time             | 1                            | day                                | = | 1440           | min             | Rectangular Basin (Gal) = Length (Ft) x Width (Ft) x Height (Ft) x 7.48                           | Chemical in Solution (%)= Dry Chemical (Lbs) x 100                                                                                 |  |
| Eff Efficiency                | 1                            | day                                | = | 86400          | sec             |                                                                                                   | Solution Total Weight (lbs)                                                                                                        |  |
| Ft Feet                       | 1                            | Ft                                 | = | 0.305          | Meter           | Circumference of a Circle = 3.14 x D                                                              |                                                                                                                                    |  |
| Ft/Sec Feet Per Second        | 1                            | Ft (H <sub>2</sub> O)              | = | 0.433          | PSI             |                                                                                                   | MGD x mg/L x 8.34                                                                                                                  |  |
| $Ft^2$ Square Feet            | 1                            | Ft <sup>3</sup>                    | = | 7.48           | Gal             | Slope (%) = Rise x 100                                                                            | $GPD = \frac{MOD \times Mig/e \times OOV}{(\% \text{ purity/100}) \times \text{ Chemical Wt.(lbs/gal)}}$                           |  |
| $Ft^3$ Cubic Feet             | 1                            | Ft <sup>3</sup> (H <sub>2</sub> O) | = | 62.3832        | lbs             | Distance                                                                                          | (                                                                                                                                  |  |
| Gal Gallon(s)                 | 1                            | Gal                                | = | 3.79           | L               | Chlorination                                                                                      | GPD = (Feed, ml/min. x 1,440 min/day)                                                                                              |  |
| gm Gram(s)                    | 1                            | Gal (H₂O)                          | = | 8.34           | lbs             | Gas (lbs) = MG x mg/L x 8.34                                                                      | (1,000 ml/L x 3.785 L/gal)                                                                                                         |  |
| GPD Gallons per Day           | 1                            | gm                                 | = | 1000           | mg/L            |                                                                                                   |                                                                                                                                    |  |
| gpg Grains Per Gallon         | 1                            | gpg                                | = | 17.1           | mg/L            | MG x mg/L x 8.34                                                                                  | lbs                                                                                                                                |  |
| gpm Gallons per Minute        | 1                            | HP                                 | = | 33000          | Ft Lbs/Min      | HTH Solid (lbs) = Strength (%)/100                                                                | $mg/L = \frac{100}{MG \times 8.34}$                                                                                                |  |
| gr Grain(s)                   | 1                            | HP                                 | = | 0.746          | kW              |                                                                                                   | Pumping                                                                                                                            |  |
| HP Horse Power                | 1                            | HP                                 | = | 746            | Watts           | MG x mg/L x 8.34                                                                                  | GPM x Head (Ft)                                                                                                                    |  |
| hrs Hour(s)                   | 1                            | L                                  | = | 1000           | mL              | Liquid (Gal) =<br>Strength (%)/100 x Chemical Weight (lbs/gal)                                    | Water HP = $\frac{GHWAHead(HY)}{3960}$                                                                                             |  |
| HTH High Test Hypochlorite    | 1                            | L (H <sub>2</sub> O)               | = | 1000           | gm              |                                                                                                   |                                                                                                                                    |  |
| in <sup>2</sup> Square Inches | 1                            | lb                                 | = | 454            | gm              | Dosage (mg/L) = Demand (mg/L) + Residual (mg/L)                                                   | GPM x Head (Ft)                                                                                                                    |  |
| kWh Kilowatt-Hour(s)          | 1                            | lb                                 | = | 7000           | gr              | Flow & Velocity                                                                                   | Brake HP = $\frac{3960 \text{ x}(\text{Pump \% Eff}/100)}{3960 \text{ x}(\text{Pump \% Eff}/100)}$                                 |  |
| L Liter(s)                    | 1                            | lb                                 | = | 0.454          | kg              | (Q) Flow ( $Ft^3$ /Sec) = (A)Area ( $Ft^2$ ) x (V)Velocity ( $Ft$ /Sec)                           |                                                                                                                                    |  |
| lbs Pound(s)                  | 1                            | mg/L                               | = | 1              | ppm             |                                                                                                   | GPM x Head (Ft)                                                                                                                    |  |
| mA Milliamps                  | 1                            | MGD                                | = | 1.55           | CFS             | $Q(Ft^3/Sec)$ Q( $Ft^3/Sec$ ) Q( $Ft^3/Sec$ )                                                     | Motor HP =                                                                                                                         |  |
| MG Million Gallons            | 1                            | MGD                                | = | 694            | GPM             | $A (Ft2) = \frac{Q (Ft3/Sec)}{V (Ft/Sec)} V (Ft/Sec) = \frac{Q (Ft3/Sec)}{A (Ft2)}$               |                                                                                                                                    |  |
| mg/L Milligrams Per Liter     | 1                            | Mile                               | = | 5280           | Ft              |                                                                                                   | WWE (%) = (Pump % Eff/100) x (Motor % Eff/100)                                                                                     |  |
| MGD Million Gallons Per Day   | 1                            | PSI                                | = | 2.31           | Ft              | GPM = <u>Volume (Gal)</u>                                                                         |                                                                                                                                    |  |
| min Minute(s)                 | 1                            | ton                                | = | 2000           | lbs             | Time (Min)                                                                                        | Cost (\$) = HP x .746 x Operating Hours (hrs) x \$/kWh                                                                             |  |
| mL Milliliter(s)              | 1                            | yd                                 | = | 3              | Ft              | Dilution/ Blending                                                                                |                                                                                                                                    |  |
| °C Degrees Celsius            | 1                            | yd <sup>3</sup>                    | = | 27             | Ft <sup>3</sup> | $C_1 \times V_1 = C_2 \times V_2 \qquad \qquad Q_1 = Q_2$                                         | Specific Capacity (GPM/Ft) = $\frac{\text{Well Yield (GPM)}}{2}$                                                                   |  |
| °F Degrees Fahrenheight       |                              |                                    |   |                |                 | V <sub>1</sub> V <sub>2</sub>                                                                     | Drawdown (Ft)                                                                                                                      |  |
| ppm Parts Per Million         |                              |                                    |   |                |                 | $(C_1 \times V_1) + (C_2 \times V_2) = C_3 \times V_3$                                            | Sedimentation                                                                                                                      |  |
| PSI lbs/in <sup>2</sup>       |                              |                                    |   |                |                 | Electrical/SCADA                                                                                  | DT (Min) = Volume (Gal) DT (hrs) = $\frac{Ft^3 x 7.48 x 24}{Tt^3 x 7.48 x 24}$                                                     |  |
| Q Flow                        |                              |                                    |   |                |                 | Process Units = (Live Signal (mA) - 4 mA) x Process Range                                         | Flow (GPM) Gal/Day                                                                                                                 |  |
| sec Second(s)                 |                              |                                    |   |                |                 | 16 mA                                                                                             |                                                                                                                                    |  |
| SG Specific Gravity           |                              |                                    |   |                |                 | <u>Other</u>                                                                                      | SLR (GPD/Ft <sup>2</sup> ) = $\frac{\text{Total Flow (GPD)}}{\text{Surface Area (Ft2)}}$ low = $\frac{\text{Volume}}{\text{Time}}$ |  |
| SLR Surface Loading Rate      |                              |                                    |   |                |                 | Cost/Day (\$) = Lbs/Day x Cost/lb (\$)                                                            | SLR (GPD/Ft <sup>-</sup> ) = Surface Area (Ft <sup>2</sup> ) Time                                                                  |  |
| UFRV Unit Filter Run Volume   |                              |                                    |   |                |                 |                                                                                                   |                                                                                                                                    |  |
| V Velocity                    |                              |                                    |   |                |                 | Removal (%) = $\frac{(\text{In-Out})}{\ln 2} \times 100$ °C = $\frac{^{\circ}\text{F} - 32}{1.8}$ | Weir Overflow Rate (GPD/Ft) = $\frac{\text{Flow (GPD)}}{\text{Weir loss of }}$                                                     |  |
| WWE Wire To Water Efficiency  |                              |                                    |   |                |                 | `´ In 1.8                                                                                         | weir Length (Ft)                                                                                                                   |  |
| yd Yard(s)                    |                              |                                    |   |                |                 |                                                                                                   | Pounds Force                                                                                                                       |  |
| yd <sup>3</sup> Cubic Yard(s) |                              |                                    |   |                |                 | Gal/Capita/Day = $\frac{\text{GPD}}{\text{Population}}$ °F = (°C x 1.8)+32                        | lbs Force = PSI x Area (in <sup>2</sup> )                                                                                          |  |
|                               |                              |                                    |   |                |                 | Population                                                                                        |                                                                                                                                    |  |



| Chemical Dosage Calculations          |                           |                                                                                     |  |  |  |  |  |
|---------------------------------------|---------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| Gas Feed Dry (Lbs) = MG x mg/L x 8.34 |                           |                                                                                     |  |  |  |  |  |
| Solid (Lbs                            | ) =                       | <u>MG x mg/L x 8.34</u><br>Strength (%)/100                                         |  |  |  |  |  |
|                                       | Liquid (Gal) =            | MG x mg/L x 8.34<br>Strength (%)/100 x Chemical Weight (Lbs/gal)                    |  |  |  |  |  |
| Liquid (Gal)                          | =<br>Commercia            | MG x mg/L x 8.34<br>Purity (%)/100 x Ion Purity (%)/100 x Chemical Weight (Lbs/gal) |  |  |  |  |  |
| ppm or mg/L                           | = <u>lbs</u><br>MG x 8.34 | ppm or mg/L =gallons x % purity x lbs/gal<br>MG x 8.34                              |  |  |  |  |  |



| Filtration                                                                                          |                                  |                               |        |                                                                            |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|--------|----------------------------------------------------------------------------|--|--|--|--|
|                                                                                                     | Filtration Rate                  | <u>GPM</u><br>Ft <sup>2</sup> | =      | <u>Filter Production (GPD)</u><br>Filter Area (Ft <sup>2</sup> ) x 1440    |  |  |  |  |
|                                                                                                     | Loading Rate                     | <u>GPM</u><br>Ft <sup>2</sup> | =      | <u>Flow Rate (GPM)</u><br>Filter Area (Ft <sup>2</sup> )                   |  |  |  |  |
| Daily Filter Production (GPD) = Filter Area ( $Ft^2$ ) x (GPM/ $Ft^2$ ) x 1440                      |                                  |                               |        |                                                                            |  |  |  |  |
| Backwash Pumping Rate (GPM) = Filter Area (Ft <sup>2</sup> ) x Backwash Rate (GPM/Ft <sup>2</sup> ) |                                  |                               |        |                                                                            |  |  |  |  |
| Backwash Volume (Gal) = Filter Area ( $Ft^2$ ) x Backwash Rate (GPM/ $Ft^2$ ) x Time (min)          |                                  |                               |        |                                                                            |  |  |  |  |
| Back                                                                                                | wash Rate GPN<br>Ft <sup>2</sup> | 1=                            |        | <u>Flow Rate (GPM)</u><br>Filter Area (Ft <sup>2</sup> )                   |  |  |  |  |
| Rate of Rise                                                                                        | Inches = min                     | <u>B</u>                      | ackwas | sh Rate (GPM/Ft <sup>2</sup> ) x 12 (in/Ft)<br>7.48 (gal/Ft <sup>3</sup> ) |  |  |  |  |
| Unit Filter Ru                                                                                      | n Volume (UFRV)                  | = ⊻                           | olume  | <u>Produced in a Filter Run (Gal)</u><br>Filter Area (Ft <sup>2</sup> )    |  |  |  |  |