CALIFORNIA WILDFIRE DRINKING WATER IMPACTS

BRUCE MACLER USEPA REGION 9

WILDFIRES

 About two-thirds of western US municipalities rely on water from forested watersheds

Wildfires can abruptly and adversely impact these watersheds

These effects of wildfires are complex and long-lasting

US WILDFIRE ACTIVITY (1994-2013)

CALIFORNIA WILDFIRES OCTOBER, DECEMBER 2017

9900 HOMES AND STRUCTURES

WILDFIRE VICTIMS

WHAT'S IN THE ASHES?

AND WHERE MIGHT IT GO?

00

AND THEN THE RAINS COME....

Fire debris materials dissolve and soak into the earth
They run off into streams and lakes
Soil erosion increases

WATER + BURNED MATERIALS = WHAT?

- From burned wildlands vegetation
 - Nutrients: nitrogen and phosphorous
 - Organic carbon and carbon combustion products (PAHs)
 - Agricultural chemicals (eg, simazine)
- From burned structures
 - Metals: lead, aluminum, mercury, arsenic
 - Organic carbon and carbon combustion products
- From ash
 - pH changes
 - Sediment and turbidity

POSSIBLE IMPACTS FOR DRINKING WATER

- Increased solids and turbidity from sediment (soil and ash)
- Increased organic carbon (TOC)
- Algal growth and species changes from nutrients
- Toxic metals and organics
- pH changes

CONSEQUENCES FOR DRINKING WATER TREATMENT

- Increased turbidity: increased filtration
- Increased algae: increased filtration, pH adjustment, taste & odor, and disinfection byproducts (DBPs)
- Increased organic carbon: increased coagulation, membrane fouling, DBPs, biological activity, chlorine demand
- Increased toxic materials: possible Maximum Contaminant Level violations

INFRASTRUCTURE DAMAGE

- Many small water systems (mostly mutuals and camps) were burned out in last year's fires
- Others lost power or power infrastructure
- Many storage tanks were damaged or destroyed
- Service connections, meters were generally lost as homes burned

DISTRIBUTION SYSTEM CONTAMINATION

- In the Fountaingrove area of Santa Rosa, the water distribution system depressurized during the fire
- During recovery, citizen reports of solvent smell in DW
- Testing showed many VOCs, especially benzene
- Benzene generally elevated all over, up to 900 ug/L in some areas

HOW DID BENZENE GET THERE?

- No evidence of on-site or historical sources
- Service lines were PVC and HDPE
- Believe caused by pyrolysis of PVC service connections to homes
- Hot anoxic gases, smoke pulled into system

WHAT HAPPENED NEXT?

- Bulk benzene flushed out
 - Levels lowered to ~1ug/L
- But benzene absorbed into PVC and pipe gaskets...
 - Only slowly leaching out
- Ongoing monitoring, flushing and replacement
- Close collaboration of CA DDW, City of Santa Rosa, EPA and FEMA

SURFACE WATER QUALITY MONITORING

- Monitoring may be useful for surface water sources of drinking water
- There is a general consensus on what should be monitored:
 - Turbidity/ total suspended solids
 - Total organic carbon
 - Total nitrogen (nitrate, ammonia)
 - Phosphorous
 - pH

WORTH MONITORING, IF INDICATED

- Metals (especially, lead and mercury)
- Arsenic
- Bromide (DBP precursor)
- Total trihalomethane (TTHM) formation potential
- Alkalinity
- Any constituents required for permits (zinc, chromium, copper, etc)

SAMPLING STRATEGIES

- Post-fire water quality can change over <u>months or years</u>, depending on rainfall and recovery
- Useful to have a baseline sample before first significant runoff
- Sample "first flush" (first storm-related increase in flows)
- Sample subsequent flushes from later storms
- If in snow country, sample during spring melt

SHORT-TERM MITIGATION STRATEGIES

- Removal of toxic materials and debris from burned structures and adjacent land
- Installation of wattles, hay bales and silt screens to control bulk sediment and ash flows into waterbodies
- Installation of artificial groundcover
- Reseeding

WATTLE INSTALLATION IN COFFEY PARK, SANTA ROSA

SURFACE WATER TREATMENT ISSUES

- Use water quality data from source monitoring
- May need to adjust coagulant addition, pH, pre-chlorination to address increased turbidity and TOC
- Algal blooms require additional attention to diurnal pH changes, taste and odor problems
- Filter runs may be shorter
- Membrane fouling likely to increase
- Disinfectant demand may increase

GROUNDWATER IMPACTS

- For most unconsolidated soils, little or no impacts expected for groundwater
- Natural filtration controls sediment/turbidity
- Nitrate, phosphate could slowly increase
- Some metals and organic contaminants from structures may migrate downward around immediate area
 - Lead, arsenic

QUESTIONS?

THE END

