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Outline

1. SVIHM basics
2. Guide to reading and interpreting SVIHM results (key graphs)
3. Model scenarios 

• Using SVIHM to ask “What If” questions with model scenarios
• Using SVIHM to calculate stream depletion 
• Catalog of other scenarios

4. Upcoming SVIHM updates and new data sources
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Motivation
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Difference in 
average minimum 
discharge ~ 6,000 

– 9,000 AF

~5.5 – 8 in over 
13,000 acres 

~Volume of water 
needed for a 3rd 
cutting of alfalfa



Motivation

• Unforeseen consequences of move to more efficient irrigation:
• Increased consumptive use in the valley (+ 50% for alfalfa)
• Decreased groundwater recharge
• Increased extractions from the aquifer

 Greater depletion of streamflow

• Can we change management strategies in the basin to 
improve fish habitat while maintaining agricultural 
production in the valley?

4



Study Area • Scott Valley
• Watershed: 2,100 km2 (800 mi2)
• Valley: 200 km2 (77 mi2 = 50k ac)
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Hydrology

• Scott River flows from 
south to north

• 12 major tributary 
streams

• 2 major diversion 
ditches
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Components of SVIHM
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Upper Watershed 
Model 

Soil-Water Budget
 Model

Groundwater-Surface-Water 
Model

Streamflow entering 
Scott Valley

(Regression model)

Recharge and pumping 
within the valley

(Tipping bucket model)

Detailed groundwater levels and 
streamflow within the valley

(MODFLOW model)

Updates 
Coming Soon!



Components of SVIHM
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Upper Watershed – Regression Model
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑥𝑥𝑖𝑖,𝑡𝑡 =
log10 𝑥𝑥𝑖𝑖,𝑡𝑡 − 𝑀𝑀 log10 𝒙𝒙𝑖𝑖  

𝑆𝑆𝑆𝑆 log10 𝒙𝒙𝑖𝑖

Foglia et al. (2013)



Upper Watershed – Regression Model
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Components of SVIHM
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Soil Water Budget Model

• Calculates daily water fluxes at 
field-scale (2,119 fields)
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Soil Water Budget Model

• Calculates daily water fluxes at 
field-scale (2,119 fields)

• Input data (text files)

• Estimates pumping in 167 
irrigation wells
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Landuse
Soil properties
Irrigation type
Water source
Potential ET

Crop Coefficient (Kc)
Rooting depth
Precipitation
Streamflow



Soil Water Budget Model

• Calculated daily for each field
• ET
• Irrigation (from streams and wells)
• Soil water content
• Groundwater recharge

• Groundwater recharge and 
irrigation are summed to monthly 
values for MODFLOW model
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Components of SVIHM
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MODFLOW Model

• Aquifer properties:
• Hydraulic conductivity (vertical/horizontal)
• Specific yield (storage coefficient)
• Largely based on zones defined by  Mack (1958)
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MODFLOW Model

• Streamflow routing package (SFR) 
used to simulate Scott River and 
tributaries

17



MODFLOW Model

• Streamflow routing package (SFR) 
used to simulate Scott River and 
tributaries

• Discharge Zone (shallow groundwater)

• Oct 1, 1990 – Sept 30, 2018 simulation 
period (28 years)

• Daily timesteps, monthly stress periods
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SVIHM Summary

• SVIHM structure:
1. Streamflow regression model 
2. Soil water budget model  
3. MODFLOW Model

• Recharge estimated at the field scale (step 2)

• Groundwater heads, streamflow, and stream-aquifer exchange 
are solved together (step 3)
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Estimated streamflows 
Field-by-field water demand  

Groundwater-surface water model



Outline

1. SVIHM basics
2. Guide to reading and interpreting SVIHM results (key graphs)
3. Model scenarios 

• Using SVIHM to ask “What If” questions with model scenarios
• Using SVIHM to calculate stream depletion 
• Catalog of other scenarios

4. Upcoming SVIHM updates and new data sources
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What do SVIHM results look like?

• Data everywhere
• ~20,000 aquifer cells (100-meter grid)
• 1,837 stream reaches
• 336 months in 28-year model period

• Groundwater heads 
• each model cell, in each month

• Stream flows 
• each stream reach, avg. in each month
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SVIHM results in space and time

• Groundwater heads
• Contour map
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SVIHM results in space and time

• Groundwater heads
• Contour map
• Well hydrograph
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SVIHM results in space and time

• Groundwater heads
• Contour map
• Well hydrograph

• Stream flows
• Stream connectivity map
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SVIHM results in space and time

• Groundwater heads
• Contour map
• Well hydrograph

• Stream flows
• Stream connectivity map
• River hydrograph
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Key graphs from GSP

1. Water budget

2. Fort Jones flow

3. Scenario comparisons: Summaries of FJ flow differences
a.  Percentile Plots
b.  Reconnection Dates
c.  Flow differences by water year type
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Key graph 1. SVIHM water budget

• Q: What is a water budget?

• A: Quantifies the flows in/out of 
a system

• Defined by a system boundary
• Over a certain time span

• Rule of thumb: which arrows cross 
the boundary?
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Key graph 1. SVIHM water budget
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Key graph 1. SVIHM water budget

• We calculate water budgets for 3 volumes:

1. Surface water (streams)
2. Soil zone
3. Aquifer Soil

Aquifer

Stream



Key graph 1. SVIHM water budget

• Surface water (streams) budget



Key graph 1. SVIHM water budget



Key graph 1. SVIHM water budget

• Soil zone budget
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Key graph 1. SVIHM water budget

• Soil zone budget
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Key graph 1. SVIHM water budget

• Aquifer budget
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Key graph 1. SVIHM water budget

• Aquifer budget
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Key graph 1. SVIHM water budget takeaways

• Surface water:
• Dominated by tributary flow in 

and FJ flow out
• Small of surface flow proportion 

seeps into aquifer as stream 
leakage

• Soil zone:
• Annual ET relatively consistent. 
• Irrigation and recharge vary 

with water year type

• Aquifer: 
• Inflows are mostly recharge 

from soil and Mountain Front 
Recharge (MFR)

• Main outflows: well pumping 
and discharge to streams

• Stream leakage: small part of 
surface water budget, large 
part of aquifer budget

• Change in storage fluctuations 
are relatively larger for aquifer 
than for soil zone



Key graphs from GSP

1. Water budget

2. Fort Jones flow

3. Scenario comparisons: Summaries of FJ flow differences
a.  Percentile Plots
b.  Reconnection Dates
c.  Flow differences by water year type
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Key graph 2. Fort Jones flow over time

• Features of Key Graph 2
• Why FJ gauge?
• Log-y axis exercise
• Questions you can ask with Key Graph 2

• How to use FJ flow to think about SVIHM scenarios
• Observed vs. Simulated (historical basecase) FJ flow
• Basecase vs Scenario FJ flow
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Importance of Fort Jones 
gauge

• Long record (80 years)
• Key location
• Used for management
• Can be used for model 

calibration

• Management impact 
often summarized as 
flow changes at Fort 
Jones gauge
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Key graph 2. Fort Jones flow – why a log-y axis?
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Key graph 2. Fort Jones flow – why a log-y axis?

41A log-scale axis shows more detail at low flows



Key graph 2. Fort Jones flow: ~80 years of flow 
observations, ~30 years of simulations in SVIHM
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Key graph 2. Fort Jones flow: ~30 years of flow 
observations to compare to SVIHM simulation
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GSP scenarios: 
1991-2018

Recent updates: 
1991-2023



Key graph 2. Fort Jones flow: comparing 
observations and SVIHM simulation

Key graph 2 (1 water year)

• Can see water year type

• Can compare model 
performance during:

a) Wet season onset
b) Spring flow recession
c) Dry season

44

a

c
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Key graph 2. Fort Jones flow

• However, the utility of Key Graph 2 breaks down when looking 
at >3 water years. 

• We need to summarize. (Key Graphs 3-5)
45



Key graph 2. Fort Jones flow
Sim. vs Obs. – model performance

• Match between Observed and 
Simulated is one measure of model 
performance (i.e. Nash-Sutcliffe Efficiencies)

Comparison between:
• Observed: what was measured
• Simulated Historical Basecase: 

SVIHM’s calibrated estimate of the 
observed flow
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Key graph 2. Fort Jones flow
Basecase vs. Scenario – management impact

• Assume basecase is a close estimate 
of history. Then, what if 
history/management was different?

Comparison between
• Simulated Historical Basecase:

SVIHM’s calibrated estimate of the 
observed flow

• Simulated Scenario: calibrated 
estimate of the flow if history were 
different 47



Key graph 2. Fort Jones flow:
Basecase vs. Scenario – management impact

Key graph 2 (1 water year)

• Can see water year type

• Can compare management 
impact during:

a) Wet season onset
b) Spring flow recession
c) Dry season

48
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Outline

1. SVIHM basics
2. Guide to reading and interpreting SVIHM results (key graphs)
3. Model scenarios 

• Using SVIHM to ask “What If” questions with model scenarios
• Using SVIHM to calculate stream depletion 
• Catalog of other scenarios

4. Upcoming SVIHM updates and new data sources
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What is a model scenario?

• If history was different, e.g. different 
inputs (weather, land cover, etc)

• … how would that change different 
intermediate calculations (ET, 
pumping)…

• … and how would that change 
watershed behavior (outputs: 
heads, flows)?
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How to interpret a model scenario

1. Motivating question
2. Simplifying assumptions

• Motivating question, e.g.:
• What flow changes would we see…
• If Scott Valley had a reservoir on French 

Creek? 

51

Example Scenario



Model scenario interpretation

1. Motivating question
2. Simplifying assumptions

• Simplifying assumptions, e.g.:
• 9 TAF in-line reservoir
• No feasibility/construction constraints
• Reservoir outflow is added directly to a 

tributary’s inflow
• Assume set of reservoir operating rules

52

Example Scenario



Model scenario interpretation

• Motivating question, e.g.:
• What flow changes would we 

observe…
• If Scott Valley had a reservoir on 

French Creek? 
 Most flow differences occur in the 

at the end of the dry season (with 
these operating rules)
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French Creek Reservoir Scenario



Model scenario interpretation

• Trying to look at full model period:

• Can’t see differences. We need to summarize!  
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Model scenario summary: key questions

Questions
1. Did flow meet X flow regime? (How 

much of the time?)

2. Did the scenario improve the timing 
of fall flows (earlier river 
reconnection)?

3. Did the scenario improve flows in 
wet, average, and dry years?

Key graphs
• Percentile Plots

• Reconnection Dates

• Flow diff. by water 
year type
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Key graphs from GSP

1. Water budget

2. Fort Jones flow

3. Scenario comparisons: Summaries of FJ flow differences
a.  Percentile Plots
b.  Reconnection Dates
c.  Flow differences by water year type

56



Key graph 3. Percentile plots

• Did flow meet X flow regime? 
• How much of the time?
• Did the scenario make a difference?
• Did scenario flow meet X flow regime more or less than the basecase?
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Key graph 3. Percentile plots
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FJ Flow,
water year 1991



Key graph 3. Percentile plots
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Key graph 3. Percentile plots

• Does observed flow meet X 
flow regime?

• In Aug-Sep, median flow does 
not meet 2017 or 2022 flow 
regime

• Oct-Dec, median flow meets 
2022 regime, but 2017 regime 
is met only in 10%-25% of days
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Key graph 3. Percentile plots

• SVIHM underpredicts dry 
season flow (median flow of 
10 cfs to 20 cfs)

• Simulated fall flow increase is 
slightly steeper than observed

• Both observed and simulated 
(historical basecase) capture 
behavior re: two CDFW flow 
regimes
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Key graph 4. Reconnection date

• Did the scenario improve the timing of fall flows (earlier river 
reconnection)?
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Fall flows timing, 1991-2018
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Fall flows timing, 1991-2018
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Fall flows timing, 1991-2018
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Fall flows timing, 1991-2018 – management impact

• Did the scenario improve 
the timing of fall flows 
(earlier river reconnection)?

• Crops that consume less 
water (90% or 80% of 
bascase ET) can improve 
collective stream 
reconnection dates
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Fall flows timing, 1991-2018 – model performance

• SVIHM historical basecase is 
more pessimistic about fall 
flows timing

• In aggregate, in normal 
water years, reconnects 1-4 
weeks later than observed 
flows

7070



Outline

1. SVIHM basics
2. Guide to reading and interpreting SVIHM results (key graphs)
3. Model scenarios 

• Using SVIHM to ask “What If” questions with model scenarios
• Using SVIHM to calculate stream depletion 
• Catalog of other scenarios

4. Upcoming SVIHM updates and new data sources
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Stream depletion

• How much stream depletion has happened?
• Difficult to measure. Rephrase question:

• How would flow have been higher:
• If there were no agriculture in Scott Valley?
• If there were no agricultural pumping in Scott Valley?
• If there were no ag. pumping in the areas of Scott Valley under SGMA 

jurisdiction?
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Streamflow Depletion is quantified 
as:
• the difference in flow at the 

Fort Jones Gauge…
• over the model period of 1991-

2018…
• between the Basecase

(simulated historical) conditions 
and a no-pumping reference 
scenario.

73

Fort Jones USGS 
Flow Gauge

Quantifying the SMC



Quantifying the SMC
Total Streamflow Depletion* is 
quantified as:
• the difference in flow at the 

Fort Jones Gauge…
• over the model period of 1991-

2018…
• between the Basecase (estimated 

historical/current) conditions and 
the No Pumping** Reference 
case.
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Quantifying the SMC

Depletion Reversal is quantified for 
each scenario as the difference 
between the Basecase (simulated 
historical & current) conditions and 
the relevant scenario (for example, 
MAR+ILR).
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Average change in flow Historical and changed 
flow values

Total Depletion: no-pumping reference case maps
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Quantifying Depletion Reversal

77

Av
g 

m
on

th
ly

 d
ep

le
tio

n 
re

ve
rs

al
 (c

fs
)

Av
g 

m
on

th
ly

 d
ep

le
tio

n 
re

ve
rs

al
 (c

fs
)

Av
g 

m
on

th
ly

 d
ep

le
tio

n 
re

ve
rs

al
 (c

fs
)

To calculate relative 
depletion reversal, 

sum the darker areas 
for each year and 

divide by the sum of 
the lighter areas in 

the Sept-Nov window.

Total Depletion

Total DepletionTotal Depletion

Depletion Reversal

Depletion ReversalDepletion Reversal

Relative Depletion 
Reversal for MAR+ILR: 

19% 
of Total Depletion, 

Sept.-Nov. for          
1991-2018.

2014

20172010

Critical dry window, 
Sept. 1 – Nov. 30



Percentile plots – Stream 
depletion attribution scenarios

• If all agriculture, 1991-2018, had 
been replaced by native vegetation,

• Fall flows would nearly always meet 
the 2022 emergency drought 
regime,

• And would meet the 2017 CDFW 
regime on 41% of days.
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Percentile plots – Stream 
depletion attribution scenarios

• If pumping in SGMA wells had 
not occurred, 1991-2018,

• Fall flows would meet the 
emergency drought regime on 
80% of days,

• And would meet the CDFW 2017 
flow regime on 18% of days.
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Reconnection date – Stream depletion attribution 
scenarios

• Stream depletion accounts 
for ~a month of later river 
reconnection 
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Stream depletion summary

Can use SVIHM to estimate 
stream depletion due to: 

• Pumping in SGMA wells
• All water use (agricultural)

… by simulating unirrigated 
native vegetation in place of 
some irrigated ag.
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Stream depletion summary

• Need 2 scenarios to 
calculate stream depletion:

• Simulated historical basecase
• No-Pumping Reference 

Scenario 
• To calculate stream 

depletion reversal, need a 
3rd scenario

• Management ACtion
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Stream depletion summary

Stream depletion can be summarized 
in different ways:

• Differences over time (FJ flow 
hydrograph, one water year)

• Total flow summary (Percentile Plot)
• Flow timing (Reconnection Plots)

83



Outline

1. SVIHM basics
2. Guide to reading and interpreting SVIHM results (key graphs)
3. Model scenarios 

• Using SVIHM to ask “What If” questions with model scenarios
• Using SVIHM to calculate stream depletion 
• Catalog of other scenarios
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Catalog

• See Appendix 4A of Scott Valley GSP
• https://www.co.siskiyou.ca.us/naturalresources/page/scott-valley-final-

gsp

• Also Appendix to SVIHM-2018 report
• https://ucanr.edu/sites/groundwater/files/391947.pdf
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Outline
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1. SVIHM basics
2. Guide to reading and interpreting SVIHM results (key graphs)
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• Using SVIHM to ask “What If” questions with model scenarios
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Scott Valley
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Fort Jones Gauge

Incorporating new 
data sources to 
improve predictions 
across the valley



Precipitation Routing Modeling System (PRMS)
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DWR Airborne 
Electromagnetic 
(AEM) Survey
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DWR Airborne Electromagnetic (AEM) Survey

92

• Geophysical method measuring electromagnetic 
response of subsurface materials

• Response is related to subsurface materials, but also…
• Water content
• Salinity/Water quality

• After cleaning, data can be inverted to obtain 2D 
models of resistivity up to 300 m (1000 ft) deep
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But how do we use AEM 
survey results in a GW-
SW Model??



Following Knight et al. (2018)…
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Remote 
Sensed 
Water 
Presence

97
From Moortgat et al. (2022)



98From Tolley et al. (2019)



What can we get from this data?

• Embedded in the location & timing of stream disconnection is 
data about:

• How much water is in the river
• The groundwater level in the aquifer below
• Connection between the stream and aquifer

• Important model capability for running scenarios to see how 
management actions (like MAR) help keep the stream 
connected
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Remote Sensing Basics

100

• Satellites orbiting Earth sending 
photos that contain different parts 
of the electromagnetic spectrum

• High spatial resolution, frequent 
return data is available

• Sentinel-II
• Planet Data (commercial)

• Proposed method most useful for 
non-perennial streams From ESA 

Eduspace



Methods

101

From Moortgat et al. (2022)

• Normalized Difference Water Index (NDWI) 
(McFeeters, 1996)

• Modified NDWI (Xu, 2006)
• Augmented NDWI (Rad et al., 2021)
• Machine Learning Methods

• Random Forest
• Neural Networks

• Classification models can be 
trained/evaluated using weekly SV 
connectivity survey data 

• Predictive error can be estimated by reserving 
some training data
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August 17, 
2023

Big thanks to Bekzhon 
Bekzhonov!
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