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Abstract While sensitivity analysis and calibration are common practice in integrated hydrologic
modeling, little work has been done to understand how the design of the sensitivity analysis and
calibration affects the simulation outcome in these often highly nonlinear models. This is especially true
for irrigated agricultural basins with a strong connection between land use, groundwater, and surface
water. Using a range rather than a single set of initial parameter values, multiple sensitivity analyses,
calibrations, and linearity tests were performed using UCODE_2014 on the Scott Valley Integrated
Hydrologic Model. Calibration results show that parameters related to crop demand and applied irrigation
water are most sensitive. Influence statistics show that low streamflow observations provide the most
information during model calibration, indicating preference should be given to these observations during
model development, sensitivity analysis, and calibration. Importantly, due to the nonlinearity of the
integrated model, significant differences are found in results when initial parameter values are sampled
from within their respective expected ranges. Estimates for some parameters varied up to an order of
magnitude between calibrations, while all produced similar final objective function values, groundwater
elevations, and stream flow. Confidence intervals for individual sensitivity analyses and calibration runs
only spanned a fraction of the ensemble estimated parameter range across multiple runs. Our work
suggests that a calibration design with multiple sensitivity analyses and calibrations of integrated
hydrologic models, each using one of several widely varying sets of initial values, provides a frugal
approach to identify parameters across the global parameter space.

1. Introduction
Groundwater and surface water resources are increasingly being stressed due to changes in population, land
use, management practices, and climate (Van Roosmalen et al., 2009; Hanson et al., 2012; Taylor et al., 2012;
Kløve et al., 2014; Dettinger et al., 2015). In order to gain insight and understanding of system behavior and
complex feedbacks inherent between groundwater, the landscape, and surface water, numerical models that
approximate physical flow processes are typically used. Although interactions between groundwater and
surface water and between groundwater and the irrigated landscape have been known since the inception of
numerical modeling, these systems have traditionally been handled separately with little to no connection
between them. This was primarily due to computational limitations and different response times and spatial
scales between surface and subsurface routed water (Prudic, 1989; Brunner et al., 2010; Unland et al., 2013;
Singh, 2014).

A variety of models have been developed in the last two decades that simulate the flux of water between
the surface and subsurface to varying degrees. These include (1) analytical or spreadsheet models (S. S.
Papadopulos and Associates, Inc, 2000; Manghi et al., 2012; Foglia, McNally, & Harter, 2013; Lane et al.,
2015), (2) iteratively coupled models like the Integrated Water Flow Model (IWFM; California Department
of Water Resources, 2016a, 2016b), MODFLOW (Harbaugh, 2005) with the stream package (STR; Prudic,
1989), streamflow routing (SFR) package (Prudic et al., 2004), and/or farm process package (FMP2; Schmid
et al., 2000; Schmid & Hanson, 2005), MODFLOW One-Water Hydrologic Model (MF-OWHM; Hanson,
Boyce, et al., 2014), and GSFLOW (Markstrom et al., 2008), and (3) fully coupled models such as ParFlow
(Ashby & Falgout, 1996; Kollet & Maxwell, 2006) and Hydrogeosphere (Therrien & Sudicky, 1996; Brunner
& Simmons, 2012). Iteratively coupled models solve multiple systems of equations (e.g., saturated flow,
unsaturated flow, and surface flow) at each time step and iteratively pass fluxes between these systems until
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convergence is achieved. Fully coupled models assemble the entire system into a single system of equations.
This is computationally much more expensive and generally requires a greater degree of parameterization
than simpler iteratively coupled models. Superiority of full coupling over iterative coupling is largely appli-
cation dependent, since full coupling may lead to numerical difficulties resulting from the different nature
of the equations used to describe flow (Furman, 2008). Effective water management requires an accurate but
also efficient method to represent the hydrologic system with sufficient detail, including appropriate cou-
pling of subsystems, to answer specific questions, yet simple enough to reflect data availability, economic
cost, and serve stakeholder needs (La Vigna et al., 2016).

In areas with Mediterranean climate (wet winters and dry summers) and dominated by irrigated agriculture,
the connection between groundwater and surface water is highly pronounced due to significant alteration
and seasonality of the water resources availability and use in the landscape. Application of surface water
for irrigation generally increases groundwater recharge in the spring and early summer (Roark & Healy,
1998; McMahon et al., 2003). Groundwater pumping for irrigation and urban water use can result in stream-
flow depletion (Chen & Yin, 2001; Barlow & Leake, 2012) and adversely impact groundwater-dependent
ecosystems by decreasing flows and increasing temperatures in critical fish habitat (Stark et al., 1994).

Rates of groundwater extraction and recharge in irrigated agricultural areas often lack historic data and are
not commonly measured even though they are significant portions of a basin's water budget (Ruud et al.,
2004; Yin et al., 2011). Where metering data are not available, groundwater pumping is usually estimated
as the difference between crop water demands and applied surface water and precipitation (Ramireddygari
et al., 2000; Pokhrel et al., 2015; California Department of Water Resources, 2016a). Groundwater recharge
is estimated by closure of the water balance and may include consideration of vadose zone flux constraints
(Ruud et al., 2004; De Silva & Rushton, 2007). These estimates are sometimes made a priori and used as
boundary conditions for numerical groundwater-surface-water models. Some integrated hydrologic mod-
els allow for a dynamic calculation of groundwater pumping for irrigation and recharge, as they include an
iterative coupling between a crop water demand model and a hydrologic model within a time step. This is
available in software such as MODFLOW with FMP2, MF-OWHM, and IWFM. Coupling the crop water,
vadose zone, groundwater, and streamflow models allows shallow groundwater to influence crop water
demands, which can ultimately affect groundwater pumping, recharge, and evapotranspiration (ET) rates in
the model. Irrigated agriculture accounts for about 45% of consumptive water use in the United States and
about 78% in western states like California (Dieter et al., 2018). Despite this large proportion of consump-
tive water use and due to lack of regulatory pressures, there are few studies focusing on sensitivity analysis
and calibration of integrated groundwater-surface-water models in agricultural areas when compared, for
example, to the large body of literature on groundwater contaminant models (Miller & Pinder, 2004; Jousma
et al., 2012; Singh, 2014) developed primarily for regularly compliance. Regional integrated models of Cal-
ifornia's Central Valley have been developed by James M. Montomery Consulting Engineers (1990), Faunt
et al. (2009), and Brush and Dogrul (2013). Basin-scale models are available for the Pajaro Valley near Santa
Cruz, CA (Hanson, Schmid, et al., 2014), and Butte Basin near Chico, CA (CDM, 2008), among others.

As for groundwater models developed at contaminant sites, sensitivity analysis and calibration are an essen-
tial part of integrated hydrologic model development (Hill & Tiedeman, 2007). However, unlike many
contaminant site groundwater flow (and transport) models, integrated hydrologic models include numer-
ous nonlinear cross dependencies between model subsystems (e.g., stream-aquifer flux is a function of the
head difference, but heads in the stream and aquifer are also a function of stream-aquifer flux). When mul-
tiple sources of nonlinearity are present in a model, their effects are compounded (Cooley, 2004). Also,
in significant departure from the site modeling practice, basin models typically use both, larger horizon-
tal cell dimensions (on the order of 103 m) and coarser time steps (days and months). Perhaps because of
the longer-standing, dominant groundwater modeling practice for contaminant sites, integrated hydrologic
model development has mostly utilized the same calibration tools (Huntington & Niswonger, 2012; Hanson,
Schmid, et al., 2014).

When applied to nonlinear models, however, these tools may be problematic, leading to nonglobal min-
ima in parameter estimation and to ill-defined uncertainty predictions (Hill & Tiedeman, 2007). Clark and
Kavetski (2010) and Kavetski and Clark (2010) have shown that hydrologic model nonlinearities make sen-
sitivity analyses and calibration more difficult. New statistical tools in sensitivity analysis and calibration
to address some of these difficulties have been developed and demonstrated (e.g., Foglia et al., 2009;
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Figure 1. Map of Scott Valley showing model domain, major hydrologic
features, irrigation wells, and monitoring wells used in the model. Aquifer
properties were distributed among nine zones and streambed properties
were distributed to tailings reaches (SFR1), nontailings Scott River (SFR2),
and tributaries (SFR3). USGS = U.S. Geological Survey; SFR = streamflow
routing.

Rakovec et al., 2014). The work shows the need to not only select from
alternative parameters but also evaluate alternative model structures,
including alternative structures for designing sensitivity analysis and cal-
ibration (Clark et al., 2008; Mendoza et al., 2015; Borgonovo et al., 2017).
Using frugal methods to overcome potential computational inefficiencies
in such a complex model development process has been shown to be a
necessary and potentially successful alternative for integrated hydrologic
models (Hill et al., 2016).

This paper contributes to the small but increasing collection of integrated
hydrologic models developed to support management of irrigated agri-
cultural groundwater basins with groundwater-dependent ecosystems in
interconnected streams (e.g., Faunt et al., 2009; Brush & Dogrul, 2013;
Hanson, Schmid, et al., 2014; Phillips et al., 2015; Hanson et al., 2018).
Specifically, this paper investigates two related questions: What is the rel-
ative importance of and uncertainty about a diversity of parameters across
the physical submodels in these systems? And how does the design of
the sensitivity analysis and calibration affect the assessment of parameter
importance and uncertainty?

The Scott Valley Integrated Hydrologic Model (SVIHM) con-
sists of a soil water budget model (SWBM) weakly coupled to a
groundwater-surface-water model. UCODE_2014, a universal inverse
modeling software suite, was used to perform sensitivity analyses and
calibrate the model, yielding information about parameter importance
and uncertainty. In a frugal approach to test the sensitivity analysis and
calibration design, we focus on examining the influence of the initial
parameter values. Varying initial parameter values across a physically
realistic range would potentially provide a conceptually simple and
computationally efficient alternative for evaluating highly nonlinear
integrated hydrologic models as a best practice approach when using
such models to inform water management and policy decisions.

2. Study Area
The Scott Valley (Figure 1) in Northern California was chosen as a type
case for an agricultural groundwater basin with Mediterranean climate
and a groundwater-dependent ecosystem. Part of the larger Klamath
Basin watershed that straddles the California-Oregon border, the Scott

River watershed drains 2,100 km2 and provides key spawning habitat for native anadromous fish species,
including Oncorhynchus tschawytscha (Chinook salmon) and the threatened Oncorhynchus kisutch (coho
salmon) (NCRWQCB, 2005). A large portion of the Scott River has been mapped as medium to high ranking
on a groundwater-dependent ecosystem index by Howard and Merrifield (2010), indicating a high degree of
connectivity between groundwater and surface water.

The montane valley, at over 800 m above mean sea level, is approximately 200 km2 and formed during the
Pleistocene by extension along a steep normal fault that dips to the east and strikes to the northwest (Mack,
1958). The surrounding uplands are part of the Klamath Mountains province, a sequence of accreted terranes
and granitic intrusions associated with subduction of the Farallon plate beneath the North American plate
(Irwin, 1990). Valley floor aquifer sediments are highly heterogeneous fluvial and alluvial deposits composed
of gravels, sands, silts, and clays. Thickness reaches a maximum of more than 120 m (390 ft) in the central
portion of the valley between Etna and Greenview and thins toward the valley margins. However, below
76 m (250 ft) the aquifer is not productive (Foglia, McNally, Hall, et al., 2013). Groundwater levels show
interannual variation depending on the water year type but do not indicate long-term overdraft in the basin
(University of California at Davis, 2016).

Climate in the area is Mediterranean with cold, wet winters and warm, dry summers. Mean annual pre-
cipitation on the valley floor is about 500 mm and accumulates predominantly during the winter and early
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spring months (October–May). The mountains surrounding the valley receive higher precipitation rates
due to their elevation. Mean temperature for January and July are 0 ◦C (32 ◦F) and 21 ◦C (70 ◦F), respec-
tively. Mean annual runoff from Scott Valley, measured at the U.S. Geological Survey (USGS) stream gage
(11519500) located in the Scott River Canyon just below the valley, is 543 × 106 m3 (U.S. Geological Survey,
2015). Winter and spring flows (December–May) average about 28.3 m3/s (1,000 ft3/s) but have peaked at
1,120 m3/s (39,500 ft3/s). Mean summer streamflow is about 0.85 m3/s (30 ft3/s) but commonly drops below
0.57 m3/s (20 ft3/s) in the late summer and early fall. Maintaining sufficient instream flow during this critical
low flow period is a key policy driver for water management in Scott Valley.

Land use in the valley is predominantly agricultural. There is a nearly even split between alfalfa hay/grain
and pasture, which together account for 136 km2 (68%) of land use (California Department of Water
Resources, 2000). Both surface water and groundwater are used as sources of irrigation water. Reliance on
groundwater increased following the 1976–1977 drought with the widespread introduction of pressurized
wheel line sprinkler systems and eventually center pivots to replace flood irrigation, although all three irri-
gation methods are still used in the valley (Van Kirk & Naman, 2008). The growing season typically lasts
from mid-April to mid-September but varies depending on the year. The southern, narrow upstream por-
tion of the valley has been heavily modified by dredging operations that left behind tailings 6 m (20 ft) high,
forming a zone of highly permeable open-framework gravels. The main stream channel was straightened in
many parts of the valley by the Army Corps of Engineers in the early 1930s for flood control purposes (U.S.
Department of War, 1938), which has resulted in channel incision at some locations.

The Scott River flows from south to north through the valley, fed by 10 major tributaries (Figure 1). Two
large irrigation diversions, Farmer's Ditch and the Scott Valley Irrigation District (SVID) Ditch, have their
point of diversion located near river km 87 and 74, respectively. These two ditches are primarily active from
April to July and run along the east side of the valley. In the north central area of the valley is a drainage
slough (“eastside slough”) that collects agricultural tailwater for discharge back into the Scott River. Several
other minor irrigation ditches exist on most tributaries in the valley.

3. Methods
3.1. SVIHM Overview
The SVIHM simulates hydrologic conditions in the Scott Valley from 1 October 1990 to 30 September 2011 by
integrating three different models representing four subsystems: the upper watershed, and the alluvial basin
landscape water, groundwater, and surface water. A statistical model is used to estimate tributary inflows at
the valley margins when upper watershed flow data are unavailable (“streamflow regression model”; Foglia,
McNally, Hall, et al., 2013). A land use/crop-soil water budget model (“soil water budget model”) simulates
agricultural practices in the valley to estimate hydrologic fluxes at the individual field scale using a tipping
bucket approach (Foglia, McNally, Hall, et al., 2013), including determination of recharge and agricultural
pumping rates. A finite difference groundwater-surface-water model simulates spatial and temporal ground-
water and surface water conditions in the valley overlying the alluvial basin (“MODFLOW model”). The
SVIHM is weakly coupled in that fluxes are passed from the SWBM to the MODFLOW model, but there are
no direct feedbacks from the MODFLOW model to the SWBM.

Workflow for SVIHM involves running the streamflow regression model to generate average monthly
streamflows at the valley margins. This is a preprocessing step as we assume no feedback from the valley to
the upper watershed, and therefore, estimated values do not change unless the regression is modified. In a
typical SVIHM run the SWBM is called which writes the necessary MODFLOW input files for streamflow,
recharge, pumping, and ET. The MODFLOW model is then called, which calculates groundwater heads and
streamflow in the valley. Flow into tile drains (see section 3.4) is extracted from the MODFLOW output, and
the SWBM and MODFLOW model are run once more to route flows from tile drains to the surface water
system. A summary of input data, key parameters, and model outputs is available in the supporting informa-
tion. The SWBM takes about 10 min to run, and the MODFLOW model takes less than 2 hr using a desktop
computer with Intel® Core™ i7-4770 @3.4-GHz processors with 16 GB of RAM for a total run time of typ-
ically less than 4 hr. Tighter integration of the landscape, groundwater, and stream subsystems is available
in some software (e.g., IWFM or OWHM) but was not considered necessary for this study and avoided due
to run time concerns.
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3.2. Streamflow Regression Model
Upper watershed stream inflow data are available for limited and differing time periods for most tributaries
as either daily mean flow values or monthly volumes (see the supporting information for date ranges and
data available for each tributary). The streamflow regression model is used to fill in data gaps for tribu-
tary inflows to the valley, which are used as model boundary conditions. Data from all tributary gages are
regressed against the USGS gaging station, where continuous daily streamflow data are available. When
tributary flow data are available, measured values are used as model inputs. When tributary inflow data are
unavailable, monthly streamflow is estimated using the regression model. Two of the tributaries, Johnson
Creek and Crystal Creek, do not have any streamflow observations and therefore could not be included in
the regression. Inflows for these two tributaries are calculated by scaling the estimated values for nearby
Patterson Creek using the ratio of the subwatershed areas (Foglia, McNally, Hall, et al., 2013).

3.3. SWBM
The purpose of the SWBM is to estimate the unknown rates of groundwater pumping and recharge using
a mass balance approach that incorporates local agricultural management practices (Foglia, McNally, Hall,
et al., 2013). Fluxes of water in the shallow vadose zone are simulated on a daily basis using a tipping
bucket style approach for 2041 fields identified from the California Department of Water Resources land use
survey (California Department of Water Resources, 2000). Field areas vary from 5.2E3 to 6.6E6 m2 (1.3 to
1,600 acres), with a median area of 6.9E4 m2 (17 acres). The daily water budget for each field is calculated
according to

!k = max
(
0, !k−1 + Pk + AWk − ETk − Rk

)
(1)

AWk =
⎧
⎪
⎨
⎪⎩

max
(

0, ETk−Pk
AE

)
when AE < 100%

max
(

0, ETk−Pk
1+SMDF

)
when AE = 100%

(2)

SMDF =
∑ soil moisture depletion∑ AW

(during irrigation season) (3)

Rk = max(0, !k−1 + Pk + AWk − ETk − !max) (4)

ETk = ET0,k ∗ Kc (5)

Pk =
{

0 when Pk ≤ 0.2 ∗ ET0

Pk when Pk > 0.2 ∗ ET0
(6)

where ! is available soil moisture, !max is the soil field capacity, P is effective precipitation, AW is applied
water, ET is actual evapotranspiration, ET0 is the reference evapotranspiration, Kc is the crop coefficient, R
is recharge, AE is application (irrigation) efficiency, SMDF is the soil moisture depletion factor, and the sub-
script k denotes the day. The SWBM takes into account land use, irrigation method, water source, and soil
storage properties for each field. Irrigation demand (equation (2)) for each field is driven by daily reference
ET (ET0) in excess of daily effective precipitation (Pk), land use crop coefficient (Kc), and soil moisture deple-
tion factor (SMDF) specific to the land use and irrigation type. The SMDF allows for actual ET to exceed
applied water to account for deficit irrigation, for contributions from deep soil moisture below the depth of
the simulated soil zone (Foglia, McNally, Hall, et al., 2013), or for other generic sources of water (Dogrul et al.,
2018). For fields with access to groundwater, pumping is assigned to the nearest well. Groundwater is
assumed to be available at all times as there have been no reports of wells going dry in the valley, even dur-
ing the 2012–2015 drought. Runoff from fields is considered to be negligible. Soil moisture in excess of field
capacity at the end of each day is assumed to recharge groundwater. Daily values of pumping and recharge
are converted to monthly average rates to match the stress period of the MODFLOW model.

3.4. Groundwater-Surface-Water Model
Groundwater fluxes, heads, groundwater-surface-water exchange, and streamflow are simulated with MOD-
FLOW and the SFR package using monthly stress periods and daily time steps. The domain consists of 440
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rows, 210 columns, and two layers with 100-m (328 ft) lateral resolution ranging from 0 to 61 m (0–200
ft) thick. A combination of remotely sensed elevation data using a digital elevation model and light detec-
tion and ranging (LiDAR) with horizontal resolutions of 10 and 1 m, respectively, is averaged within each
model cell to determine ground surface elevation. LiDAR data from the valley has a 2" relative accuracy
of 4 cm (Watershed Sciences, 2010) and covers more than 90% of the model domain. Bedrock surrounding
and outcropping within the valley is assumed to be impermeable relative to the valley sediments. Hydraulic
conductivity and storage properties for the valley aquifer are spatially distributed between nine hydroge-
ologic zones (Figure 1), similar to those proposed by Mack (1958). The model simulates unconfined flow
with variable storage and transmissivity using the Newton formulation of MODFLOW (MODFLOW-NWT;
Niswonger et al., 2011) to allow for rewetting of cells that go dry during the simulation, especially along the
valley margin. Newton solver variables are set to default values corresponding to the “COMPLEX” option
defined in the user manual, as “SIMPLE” and “MODERATE” result in shorter run times but unsatisfactory
numerical errors.

Groundwater pumping is simulated at 164 agricultural wells (Figure 1) located in the second layer using
the well (WEL) package (Harbaugh, 2005). The wells and their locations were identified through well logs,
stakeholder feedback, aerial photography, and field surveys when possible. Due to the low population den-
sity of the valley, domestic pumping is not included in the model as it is a small portion of total groundwater
extractions (Mack, 1958). The default value of 0.05 for PHIRAMP in the WEL package is used for reduc-
ing pumping rates in cells when there was not enough water to satisfy the applied pumping rate. The weak
coupling between the SWBM and MODFLOW can result in a mass balance error between the two submod-
els, as the SWBM is not aware of pumping reductions that happen within MODFLOW. Pumping reductions
range from 0% to 7.6% on a monthly basis, with a mean of 3.7%, so it is not considered to be a significant
limitation of SVIHM at this time.

Seepage from the SVID and Farmers Company ditches (Figure 1) have been determined using field seep-
age experiments. They are represented using injection wells with rates of 1.8 × 10−2 m3/s per km (1.0 ft3/s
per mile) and 8.8 × 10−3 m3/s per km (0.5 ft3/s per mile), respectively (Echols, 1991; S. S. Papadopulos and
Associates, Inc, 2012). Water is diverted from the stream using “ghost” SFR segments at the respective points
of diversion at the same rate it is injected via the WEL package in order to conserve mass. Ditches in the
valley are generally active from April to July and primarily used for stock watering and limited irrigation
(S. Sommarstrom, personal communication, June 21st, 2017). As most of the flow is needed to generate suf-
ficient head for water to reach the end of the ditches (P. Harris, personal communication, June 21st, 2017),
diversions from the Scott River into ditches are greater than the ditch seepage rate supplied to the WEL
package to account for evaporation losses and stockwater use. These consumptive losses are assumed to
be 5.7E−2 m3/s for each ditch, or 12.5% and 25% of the Farmers Company ditch and SVID ditch diversion
rates, respectively. Mountain front recharge (MFR), used here to describe the diffuse portion of recharge to
adjacent basins from surrounding mountains (Wilson & Guan, 2013), was simulated only along the western
model boundary using injection wells placed in the first layer. Rates and spatial distribution of MFR seg-
ments were estimated by S. S. Papadopulos and Associates, Inc. (2012) using a water balance approach. No
MFR occurs along the eastern valley boundary as these mountain ranges are lower and in the rain shadow
of the western ranges of the watershed.

The SFR package was used to simulate the surface water system (Figure 1) and its interactions with ground-
water. Bed elevations for each SFR node were extracted from the elevation data sets using the nearest thalweg
data point to the stream node. Inflows for each tributary and the main stem of the Scott River are specified
at the model boundaries for each stress period using the streamflow regression model described above. Sur-
face water used by SWBM is subtracted from the inflow estimated by the streamflow regression model at the
model boundary, as most diversions from tributaries occur near or upstream of the model boundary. The
stream channel is assumed to be rectangular with flow calculated using Mannings equation. Stream prop-
erties (e.g., bed conductivity and roughness) were assigned using one of three groups: (1) tailings reaches,
(2) nontailings Scott River, and (3) tributaries (Figure 1).

Drains were placed at the land surface within the Discharge Zone shown in Figure 1. This area is known to
have a water table very near or at the land surface (Mack, 1958), resulting in lateral fluxes of water between
fields that SWBM does not account for. Water intercepted by these drains is routed into a nearby stream seg-
ment, approximating overland flow. In the Discharge Zone, crop water demands are met primarily through
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subsurface irrigation (direct uptake from groundwater). A tight integration of landscape/crop-soil water
and groundwater subsystems would be most suitable in this zone. Here, a work-around was applied: Fields
with subirrigation were not irrigated in SWBM, resulting in “dry” soils and underestimation of crop ET. To
compensate, the MODFLOW ET package was employed instead to simulate ET from these fields, using an
extinction depth of 0.5 m. The applied ET rate for these fields is equal to the average potential ET rate for the
specific stress period and crop, scaled by the fraction of time per month when the field was “dry” (and there-
fore ET was not occurring) in SWBM. For example, a field within the Discharge Zone that had 0 m/day of ET
in SWBM simulation for 5 days in July because available soil moisture dropped to 0 m3 would be simulated
in MODFLOW with an applied ET rate equal to the average potential ET rate for that month multiplied by
0.16 (5 of 31 days). This ensures that ET is neither double counted between SWBM and MODFLOW, nor
significantly underestimated, given the water table depth.

3.5. Sensitivity Analysis and Calibration
Sensitivity analysis and calibration of SVIHM was performed using the universal inverse modeling software
suite UCODE_2014 (Poeter & Hill, 1998; Poeter et al., 2014), which compares observed and simulated values
to create an objective function given by

# =
ND∑
i=1

(
$i − $′i

)
w1∕2

i (7)

where # is the objective function value, yi is the observed value, $′i is the simulated value, wi is the observa-
tion weight, and ND is the number of observations. Given the nonlinear structure of SVIHM, global methods
for sensitivity analysis and calibration would provide the most rigorous approach. However, this is imprac-
tical due to the large number of model runs required and the long (≫1 hr) single-run CPU time for SVIHM.
Gradient-based perturbation methods are more efficient, but computed parameter sensitivities can vary as
a function of the starting values (Hill & Tiedeman, 2007). As an alternative design for the sensitivity anal-
ysis and to account for model nonlinearity, multiple forward difference sensitivity analyses using different
starting parameter combinations (referred to as parameter sets 1–5) were performed. This is similar to the
distributed evaluation of local sensitivity analysis methodology proposed by Rakovec et al. (2014) and the
use of multiple sensitivity indices (e.g., variance based and local sensitivity) by Borgonovo et al. (2017),
although less rigorous to preserve computational efficiency. Starting values for the different sensitivity runs
(Table 1) were selected either from a previous model calibration using the river package (RIV; Harbaugh,
2005; Foglia et al., 2018) or from within an expected range based on professional judgment. Parameters were
log-transformed and increased by 1% from their starting values for all sensitivity analyses.

Measured groundwater elevations at 55 wells (Figure 1) accounted for 2,197 observations (47% of total). The
majority of these were collected monthly beginning in 2006 as part of the voluntary Scott Valley Community
Groundwater Monitoring Program. Weights for groundwater head observations were set to the inverse of
the measurement error variance (Hill & Tiedeman, 2007) given by

wi =
1
"2

i
(8)

where "2
i is the measurement error variance and assumed to be 1.0 m2 for all head observations. This

accounts for measurement errors in both well reference point elevation and depth to water.

Streamflow data at four gage locations (Figure 1) were also included as calibration targets in the objective
function and separated into three categories: (1) below 2.44 × 105 m3/s (100 ft3/s; 68% flow exceedance
probability), (2) between 2.44 × 105 and 2.44 × 106 m3/s (100–1,000 cfs), and (3) greater than 2.44 × 106 m3/s
(1,000 cfs; 22% flow exceedance probability). These reflect low, medium, and high streamflow rates for the
Scott River, respectively. A total of 2485 streamflow observations, consisting of 1,385 at the USGS Fort Jones
gage, 500 at the Lower Shackleford Creek gage, 300 at the Above Serpa Lane (AS) gage, and 300 at the Below
Young's Dam (BY) gage, was randomly selected from data available during the model simulation period so
the total number of streamflow observations was similar to the number of groundwater head observations.
Streamflow observation weights were determined using the equation

wi =
1(

$i ∗ CVi
)2 , (9)
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Table 1
Parameters Adjusted During Sensitivity Analysis With Initial Starting Values

Initial value
Parameter Description Parameter Set 1 Parameter Set 2 Parameter Set 3 Parameter Set 4 Parameter Set 5
Kx1 100 20 60 200 250
Kx2 11 60 2 100 100
Kx3 100 80 100 50 100
Kx4 Hydraulic 20 2 50 10 30
Kx5 conductivity 10 1 80 10 25
Kx6 (m/day) 30 200 70 10 50
Kx7 1,000 500 50 1,000 500
Kx8 30 90 5 10 10
Kx9 60 2 100 10 20
Kvar1 100 10 50 20 71
Kvar2 100 10 50 50 73
Kvar3 100 10 50 100 92
Kvar4 Vertical 100 10 50 80 95
Kvar5 anisotropy 100 10 50 40 10
Kvar6 (—) 100 10 50 30 77
Kvar7 1 1 1 10 55
Kvar8 100 10 50 60 94
Kvar9 100 10 50 50 46
Sy1 0.1 0.15 0.05 0.1 0.12
Sy2 0.15 0.05 0.12 0.07 0.08
Sy3 0.15 0.2 0.1 0.1 0.11
Sy4 Specific 0.1 0.12 0.11 0.1 0.1
Sy5 yield 0.15 0.15 0.1 0.1 0.13
Sy6 (—) 0.15 0.08 0.1 0.1 0.09
Sy7 0.3 0.25 0.15 0.3 0.25
Sy8 0.15 0.11 0.06 0.1 0.05
Sy9 0.15 0.12 0.15 0.1 0.07
Ss1 1.00E−05 5.00E−04 2.00E−04 6.40E−05 1.50E−05
Ss2 1.00E−05 5.00E−04 2.00E−04 5.90E−05 9.00E−05
Ss3 1.00E−05 5.00E−04 2.00E−04 2.70E−05 2.60E−04
Ss4 Specific 1.00E−05 5.00E−04 2.00E−04 8.30E−05 3.10E−04
Ss5 Storage 1.00E−05 5.00E−04 2.00E−04 1.30E−05 8.00E−05
Ss6 (1/m) 1.00E−05 5.00E−04 2.00E−04 2.00E−05 2.00E−05
Ss7 1.00E−05 5.00E−04 2.00E−04 6.50E−05 7.00E−05
Ss8 1.00E−05 5.00E−04 2.00E−04 2.90E−04 3.00E−04
Ss9 1.00E−05 5.00E−04 2.00E−04 8.00E−04 1.00E−05
Wel5 2.34E+02 2.34E+03 1.17E+04 2.34E+03 8.19E+02
Wel6 6.30E+03 1.05E+04 5.25E+02 1.05E+04 2.10E+03
Wel7 Mountain front 1.20E+04 8.60E+02 2.58E+04 1.72E+03 5.16E+03
Wel8 recharge 2.24E+04 8.94E+03 2.98E+03 1.12E+04 2.98E+04
Wel9 (m3/day) 2.00E+03 2.00E+04 4.00E+04 6.00E+03 4.00E+03
Wel10 3.86E+03 1.93E+04 3.86E+02 9.65E+02 2.90E+03
Wel11 2.43E+03 2.70E+02 2.70E+01 1.89E+03 3.24E+03
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Table 1 (continued)

Initial value
Parameter Description Parameter Set 1 Parameter Set 2 Parameter Set 3 Parameter Set 4 Parameter Set 5
Wel20 Ditch seepage 1.45E+04 2.42E+04 6.44E+03 1.61E+04 2.42E+04
Wel21 (m3∕day) 7.02E+04 4.68E+04 1.17E+04 2.34E+04 7.02E+04
BedK1 Streambed 10 0.1 10 10 10
BedK2 conductivity 10 0.1 10 5 10
BedK3 (m/day) 10 0.1 10 15 10
Rough1 Streambed 0.035 0.03 0.04 0.035 0.035
Rough2 Roughness 0.035 0.03 0.04 0.035 0.035
Rough3 (d/m1/3) 0.035 0.03 0.04 0.035 0.035
RD_Mult 1 0.9 1.1 1 1.2
SMDF_Flood SWBM 0.7 0.75 0.55 0.7 0.55
SMDF_WL_LU25 parameters 1.05 1.09 1.01 1.09 1.1
SMDF_CP_LU25 (—) 1.1 1.15 1.01 1.15 1.1
SMDF_WL_LU2 0.85 0.81 0.99 0.81 0.95
SMDF_CP_LU2 0.95 0.91 0.91 0.95 0.99
Kc_alfalfa_mult 1 1.04 0.96 1 1.05
Kc_grain_mult 1 0.96 1 1.05 0.98
Kc_pasture_mult 1 1 0.96 1.04 0.95
Kc_noirr 0.6 0.7 0.79 0.65 0.65
Note. Sensitivity analysis was performed using a 1% forward difference perturbation. Note that the reported soil moisture depletion factor (SMDF) is the sum of
the application efficiency (AE) and SMDF but is reported as a single value for convenience.

where CVi is the coefficient of variation. The low, medium, and high streamflow categories were assigned
coefficients of variation equal to 10%, 20%, and 40%, respectively. Low flows at the non-USGS gages were
the only exception as they included observations at or very near 0, and weights approach infinity when
observation values approach 0 using the coefficient of variation weighting method. The median weight of
the USGS low flow observations, equal to 1 × 10−8 d2/m2, was assigned to the low flow category for the
non-USGS gages to prevent weights from becoming too large and dominating the objective function.

Physical hydrologic properties or fluxes were represented by 61 parameters (Table 1) contained within
SWBM and MODFLOW portions of SVIHM. These include seasonal crop coefficient multipliers (e.g.,
Kc_Alfalfa_Mult) and aquifer parameters for each zone such as hydraulic conductivity (e.g., Kx1) and stor-
age (e.g., Sy1 and Ss1). Specific cuttings of alfalfa were not represented using a variable crop coefficient as
cutting times vary across the valley due to distributed ownership, management practices, and climate condi-
tions. Instead, crop coefficients for alfalfa and pasture were set to seasonal averages of 0.9 during the growing
season and zero otherwise. A variable Kc was used for grain due to growers having similar management
practices and ranged from 0 to 1.15 with an average of 0.62 over the 4-month growing period. Effective root
zone depth was assumed to be 2.44 m (8 ft) for alfalfa and 1.22 m (4 ft) for grain and pasture (Weaver, 1926),
adjusted by the use of a single root zone depth multiplier (RD_Mult). Each of the five simulated combina-
tions of land use (alfalfa/grain, A/G; pasture, P) and irrigation (flood; wheel line sprinkler, WL; center pivot
sprinkler, CP) was assigned specific AE and SMDF values (Table 1). Channel roughness and bed conduc-
tivity (Figure 1) parameters were distributed among the three stream segment classifications (see section
3.4). Seepage fluxes from MFR and ditches were also included as parameters. Recharge and groundwater
pumping were not explicitly included as calibration parameters because they are accounted for with SWBM
parameters. SWBM parameterization also affects surface water inflows to the simulated stream network via
simulated surface water diversions from streams at the model boundary. In contrast, daily total precipita-
tion across the valley was considered to have relatively small measurement error and was not considered in
the sensitivity analysis.
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Figure 2. Annual water budgets for SWBM (top) and MODFLOW (bottom)
portions of Scott Valley Integrated Hydrologic Model. Values are water year
totals, with colors along the bottom of the lower plot indicating dry (red)
and wet (blue) years. Positive and negative storage values correspond with
decreases and increases in storage, respectively. ET = evapotranspiration;
SW = surface water; GW = groundwater; SWBM = soil water budget
model; MFR = mountain front recharge.

Composite scaled sensitivity (CSS), a measure of the importance of obser-
vations as a whole to a single parameter, is calculated for each parameter
from the sensitivity analyses according to
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where CSSj is the composite scaled sensitivity of the jth parameter and
b is the vector of parameters. These values were normalized in order to
compare between sensitivity analyses using

CSS&,s,norm =
CSS&,s

max
[
CSSs

] (11)

where CSSj,s is the composite scaled sensitivity of the jth parameter for
set s (1–5 in the study) and CSSs is the array of CSS values for parame-
ter j. Calibration parameters were selected by ranking the CSS values for
each parameter set and identifying parameters that consistently showed
the greatest sensitivity across all five sensitivity analyses. Multiple cali-
brations (Runs 1–5) were then performed, again with different starting
values for adjustable parameters to test for model uniqueness. Values
of fixed parameters (i.e., those excluded from the calibration process)
were selected from the first sensitivity analysis parameter set (Table 1).
Adjustable parameters were modified by UCODE_2014 in an attempt to
minimize the objective function and therefore provide the best match
between observed and simulated values. Convergence was met when
either parameter values did not vary by more than 1% (TolPar = 0.01), or
the objective function did not change by more than 1% for three consec-
utive iterations (TolSOSC = 0.01). Nonlinearity of SVIHM was evaluated
using the modified Beale's measure (Cooley & Naff, 1990) calculated
by the program MODEL_LINEARITY, available in the UCODE_2014
distribution (https://igwmc.mines.edu/ucode/).

The influence that observations exerted during the calibration process were evaluated using the DFBETAS
and Cook's D statistics. The DFBETAS statistic provides information about the influence of an observation
on each calibration parameter, with more influential observations having greater absolute values. Cook's D
measures how influential an observation is on the entire parameter set by calculating how much regres-
sion estimates would change if the observation was omitted. Like DFBETAS, greater values indicate greater
influence. Both statistics have critical values for defining when observations are considered influential. For
DFBETAS and Cook's D this is equal to 4/(ND + NPR) and 2/(ND + NPR)1/2, respectively, where ND is
the number of observations and NPR is the number of prior information equations (Yager, 1998; Hill &
Tiedeman, 2007). Prior information equations were not used in this version of SVIHM.

3.6. Streamflow Matching
Comparison of simulated streamflow to observed values at gages was done both graphically and using a
modified version of the Nash-Sutcliffe model efficiency coefficient (NSE; Nash & Sutcliffe, 1970)

NSE = 1 −
∑n

i=1
(
log

[
$i − log $′i

])2

∑n
i=1

(
log

[
$i − log $i

])2 , (12)

where n is the number of streamflow observations for the gage. A NSE of 1.0 indicates the model perfectly
matches observations, while a value of 0.0 means the model is no more accurate than predicting the mean
value. Streamflow data were log-transformed because they span nearly 4 orders of magnitude in the Scott
Valley and large variance can produce high NSE values even if model fit is relatively poor (Jain & Sudheer,
2008). Therefore, NSE values presented in this paper are conservative.
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Figure 3. Monthly water budgets for SWBM (left column) and MODFLOW (right column) portions of SVIHM for dry
(top row), average (middle row), and wet (bottom row) years. Positive and negative storage values correspond with
decreases and increases in storage, respectively. Colors along the bottom of the plot indicate dry/critical (red)
and wet (blue) water year types according to the Sacramento Valley water year hydrologic classification.
ET = evapotranspiration; GW = groundwater; SW = surface water; SWBM = soil water budget model;
MFR = mountain front recharge.

3.7. Qualitative Model Validation
To validate the usefulness of SVIHM for informing water management decisions related to the critical late
summer period when stream connectivity is most compromised, a model validation was performed to test
SVIHM's capability to predict late summer dry reaches. Data obtained from the U.S. Department of Agricul-
ture's National Agriculture Imagery Program (NAIP) in combination with direct observations by landowners
and resource professionals were used to map dry/disconnected stream reaches in the Scott Valley. Imagery
and direct observations from August 2005 and 2014, representing average and dry water year conditions in
the Scott Valley, respectively, were digitized using ArcGIS. Water year 2014 was used as a proxy for water
year 2001 in the model since NAIP data only extend back to 2003 and SVIHM terminates in 2011. Both
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Figure 4. Monthly fluxes of selected basin water budget components for dry (2001), average (2010), and wet (2006)
years. Negative values for net stream-aquifer flux correspond with groundwater discharge to surface water. Relative
aquifer storage is the cumulative change in groundwater storage from initial conditions. Gray shaded area
indicates growing season. GW = groundwater; SW = surface water.
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Figure 5. Spatiotemporal heat map of fluxes between groundwater and
surface water for the Scott River with geographic locations noted. Fluxes are
highly spatially variable, despite relatively homogeneous parameterization
of the stream. White areas indicate dry reaches. Colors along the bottom of
the plot indicate dry/critical (red) and wet (blue) water year types according
to the Sacramento Valley water year hydrologic classification. The absolute
value is the magnitude of the flux, while the sign indicates flux direction:
Red and blue indicate losing and gaining reaches, respectively.

years show similarities in timing and magnitudes of streamflow. Reaches
were assigned one of four categories: dry/disconnected, flowing, ques-
tionable, and no data. These mapped sections were compared with
streamflow values produced by SVIHM at the end of the corresponding
month. Modeled stream reaches with flows less than 2.8 × 10−2 m3/s
(1 ft3/s) were considered dry/disconnected, whereas all other reaches
were considered flowing.

NAIP imagery is taken during the growing season but generally before
field observations were collected, typically at the seasonally lowest
streamflow in late August or September. Where only NAIP imagery is
available, the data may therefore be biased toward wetter conditions than
would have been observed later in the year. However, it was considered
to be a useful data set for qualitative model validation.

4. Results
4.1. Water Budget and Groundwater-Surface-Water Interactions
In order to provide context for the sensitivity analysis and calibration
results, we first present model results from one of the calibrated param-
eter sets. Run 4 was chosen because it had the lowest objective function
value. Annual water budgets were computed separately for the soil land-
scape (SWBM) and groundwater (MODFLOW) systems (Figure 2). Land-
scape inflows consist of precipitation and irrigation, while outflows are to
ET and groundwater recharge. Groundwater inflows include landscape
recharge and stream recharge. Groundwater outflows include pump-
ing, drains, discharge to streams, and ET within the discharge zone and
along the riparian corridor. Precipitation varies considerably from year
to year, ranging from 22.5 cm (8.9 inches) to 98.1 cm (38.6 inches).
Applied irrigation from groundwater and surface water in the valley also
varies interannually from 31.7 cm (12.5 inches) to 50.4 cm (19.8 inches).
Groundwater pumping accounts for about 50% of irrigation water in wet
years but nearly 75% in dry years. Evapotranspiration has small inter-
annual variability and is the largest flux out of the soil zone due to the
dominant presence of agriculture in the valley. Given that interannual soil
moisture storage changes are small (0.2% to 15% relative to field capacity),
interannual fluctuations in recharge therefore follow those of precipita-
tion, with which it is highly correlated (R2 = 0.89). Monthly and annual
water budgets are available in the supporting information.

At the basin scale, landscape recharge is the largest inflow to the aquifer
on an annual basis. In the current version of the model, canal seepage and
MFR are constant and constitute the second largest inflow to the aquifer.
Dry years show reductions in groundwater storage. At the valley scale,

groundwater is a net contributor to streamflow in all but the driest years. In those years, streams are net
contributors to the groundwater budget but only after significant depletion of groundwater storage in the
preceding year (Figure 2). Groundwater pumping and discharge to the stream are the two largest annual
outflows from the aquifer and show large variations, with 50% more groundwater pumping in dry years than
wet years. Drains in the Discharge Zone account for approximately 4% of the annual aquifer outflow during
dry years and nearly 15% during wet years. A small volume of water is removed from the aquifer directly via
ET due to shallow water table conditions in the Discharge Zone (Figure 1, see section 3.4). Annual change
in aquifer storage is highly variable and largely dependent on water year type.

Monthly water budgets for dry (2001), average (2010), and wet (2006) water type years (State Water Resources
Control Board, 1999; Deas, 2006) demonstrate significant intra-annual, seasonal variations that drive the
system (Figure 3). Generally, recharge is high and both, soil and groundwater storage increase during the
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Figure 6. Normalized composite scaled sensitivities (CSS) for each parameter set (top) and the 14 most sensitive
parameters in Scott Valley Integrated Hydrologic Model (bottom). Parameters with a value less than 5% for all
sensitivity runs have been excluded for plotting purposes in the top graph. Colors represent either the parameter set
(top) or the contribution of different observation groups to parameter sensitivity (bottom). Low streamflow
observations, particularly those at the U.S. Geological Survey gage, are the most sensitive to changes in model
parameter values.

winter months. Storage decrease, groundwater pumping, surface water irrigation, and high ET dominate
from spring to early fall, leading to the lowest aquifer storage each year by late summer, although some
recharge may again occur during the irrigation season (Figure 4).

While the general patterns persist, timing and magnitude of some fluxes contribute to significant differences
in seasonal patterns between water year types. In a dry year, winter precipitation is lacking, soil moisture is
not refilled, and pumping starts at the beginning of the growing season in March, whereas it is delayed until
May during an average and wet year. Groundwater pumping is similar between most year types during the
summer months, but dry years cause significant spring abstractions of groundwater, while summer recharge
from irrigation return water is lower (Figures 3 and 4). In a wet year, cloud cover and precipitation days
during the growing season can significantly reduce ET (Figure 3). Seasonal aquifer storage trends are very
similar between a wet and a dry water year types, with similar reduction in storage between March and
September. But with a dry winter, aquifer storage is significantly more depleted in March when compared
to a wet year. In an average year, winter storage increases are not as large as in a wet year, while summer
depletion is not as significant as in a dry year. Hence, an average year type tends to see the least groundwater
storage change between March and October (Figure 4).
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Table 2
Initial and Final Values for Five Calibration Runs

Adjustable parameter values
Calibration Run 1 Calibration Run 2 Calibration Run 3 Calibration Run 4 Calibration Run 5 Calibration

Parameter Initial Final Initial Final Initial Final Initial Final Initial Final Bounds

Kx1 100 40 20 26 60 74 200 194 250 46 10−7–103

Kx2 11 4 60 4 2 6 100 7 100 9 10−7–103

Kx3 100 56 80 116 100 9 50 10 100 7 10−7–103

Kx4 20 24 2 25 50 24 10 16 30 23 10−7–103

Sy1 0.1 0.09 0.15 0.08 0.05 0.13 0.1 0.13 0.12 0.09 0.01–0.35
Sy3 0.15 0.03 0.2 0.06 0.1 0.04 0.1 0.05 0.11 0.04 0.01–0.35
RD_Mult 1 2 0.9 1.7 1.1 1.9 1 1.4 1.2 1.2 0.5–2
SMDF_Flood 0.7 0.67 0.75 0.74 0.55 0.8 0.7 0.72 0.55 0.68 0.5–0.8
SMDF_A/G_WL 1.05 1.02 1.09 1.04 1.01 1.05 1.14 1 1.03 1.17 1–1.2
SMDF_A/G_CP 1.1 1.11 1.15 1.01 1.01 1 1.15 1.16 1.1 1.13 1–1.2
SMDF_P_WL 0.85 1 0.81 0.8 0.99 0.99 0.9 0.85 0.95 1 0.8–1
SMDF_P_CP 0.95 0.9 0.91 0.85 0.91 0.91 0.95 0.87 0.99 1 0.8–1
Kc_Alfalfa_Mult 1 0.97 1.04 1.05 0.96 1.05 1 1.05 1.05 1.01 0.95–1.05
Kc_Pasture_Mult 1 1.05 1 1.01 0.96 0.98 1.04 1.05 0.95 1.02 0.95–1.05
Objective function value 9.33E+04 9.57E+04 9.08E+04 8.90E+04 9.66E+04
Note. The only differences between the five runs was the starting value of the adjustable parameters. Note that the reported soil moisture depletion factor (SMDF)
is the sum of the application efficiency and SMDF but is reported as a single value for convenience.

Simulated stream-aquifer fluxes are highly variable along the stream profile (Figure 5). Exchange fluxes
between groundwater and the stream vary from tens to thousands of cubic meters per day. Gaining stream
reaches alter with losing stream reaches at a rate of typically 200 to about 1,000 m.

The lower 10 km of the Scott River (river km 37–47) is mostly gaining reaches interspersed with small seg-
ments of losing reaches. The same general pattern is observed for the 17 km (river km 67–84) of the Scott
River below the Tailings section. In contrast, the 20-km-long midsection of the river, from just downstream
of the confluence with Etna Creek to the confluence with Oro Fino Creek (river km 47–67), and much the
Tailings section in the uppermost 10 km of the Scott River (river km 84–94) are dominated by losing reaches.

In contrast to the high variability of groundwater-surface water fluxes along the stream profile, local fluxes
remain relatively constant over the 21-year simulation period. Some seasonal variations are observed in the
simulation, involving either a slight upstream or downstream translocation of a gaining/losing reach tran-
sition (Figure 5). Transitions are often consistent between seasons, year after year, regardless of water year
type. Some reaches show seasonal expansion/contraction patterns or reaches, with a longer area recharging
the aquifer during the winter and spring months and longer sections of groundwater discharging to the
stream in the summer and fall. Reaches consistently showing either gains or losses during the entire
simulation period each accounted for about 25% of the length of the Scott River (Figures 5 and 10).

4.2. Sensitivity Analysis
CSS showed considerable variation across the parameter sets (Figure 6). The alfalfa crop coefficient multi-
plier (Kc_Alfalfa_Mult) was the most sensitive, having the highest value for each parameter set tested. The
soil moisture depletion factor for wheel line irrigation of alfalfa and grain (SMDF_A/G_WL) and the pasture
crop coefficient (Kc_Pasture_Mult) also showed a large degree of sensitivity for all runs. Aside from these
three parameters, ordering of CSS values between sets was highly variable. Twenty-two parameters did not
show sensitivity within 5% of Kc_Alfalfa_Mult (normalized CSS < 0.05) for any of the runs. A few parame-
ters (e.g., Kx5, Kx9, and Kc_Native) showed relatively high sensitivity for a single run but were insensitive
for other combinations of parameters.

Low streamflow at the USGS gage was the most sensitive observation group to changes in parameter values
(Figure 6), followed by low flow observations at the other gages and then by groundwater heads. Medium
and high streamflow observation groups did not show large sensitivities to parameter perturbations. Using
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Figure 7. (a) Observed and simulated values of streamflow at the U.S. Geological Survey FJ gage using optimized
values from all five calibration runs. (b–e) Observed and simulated streamflow exceedance probabilities at the four
gaging stations in the valley. (f and g) Observed and simulated groundwater heads and head residuals for the five
calibrations. Low, medium, and high flow categories are below the dashed line, between the dashed and dotted line,
and above the dotted line, respectively. FJ = Fort Jones; AS = Above Serpa Lane; BY = Below Young's Dam;
LS = Lower Shackleford Creek.

the same weight for all three stream flow categories (CV = 10%) does not affect the much larger sensitivity
of the low streamflow observation group when compared to the medium or high streamflow observation
groups (not shown).

Parameter correlation coefficients exceeding 0.95, the general threshold at which parameters become
nonuniquely estimable (Hill & Tiedeman, 2007), were only observed in two of the parameter sets. A nega-
tive correlation was found between specific storage and specific yield for hydraulic property Zones 6 and 8
in Parameter Set 2, which is expected given their relation to storativity. In Parameter Set 4 there was a strong
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Figure 8. Optimized parameter values for the five calibration runs. Error bars show 95% linear confidence intervals
calculated by UCODE_2014. SWBM = soil water budget model.

negative correlation between Wel5 and Wel7, two parameters that control MFR along the eastern boundary
of the southern portion of the valley. While correlated, the parameters themselves were found to have low
CSS values indicating that they were not suitable for calibration. None of the parameters selected for the
calibration were correlated, suggesting that unique calibration estimates may be obtained.

4.3. Calibration
Based on information obtained from the sensitivity analyses, 14 parameters (Table 2) were selected for
calibration. Streamflow and groundwater heads simulated by all five calibrated models show very good
agreement with observed values (Figure 7). Both interannual and intra-annual streamflow variations are
captured at all gage locations, with log-transformed NSEs ranging from 0.61 to 0.91 at all gages for the five
calibration runs. Streamflow values are consistently underpredicted at the USGS gage during the winter
and spring months when high flow events typically have a time scale much shorter than the monthly stress
period. Low flows simulated at gages other than the USGS gage tend to be overestimated during the summer
and fall (Figure 7). Simulated groundwater heads show a very strong correlation (R2 ≥ 0.98) with observed
values, having root-mean-square errors between 2.28 and 2.78 m. Residuals less than or equal to 1, 2, and 3
m accounted for approximately 50%, 70%, and 80% of head observations, respectively.

All five of the calibration runs converged because the objective function did not change more than 1% for
three consecutive iterations (TolSOSC convergence). Final objective function values varied between about
1% and 8% difference of each other (Table 2). Although the objective function reached a similar value for
all runs, estimates of several parameters varied significantly between calibrations (Figure 8). The largest
variations were observed in Kx1, Kx3, and Sy1, which ranged over an order of magnitude for hydraulic
conductivity and varied up to 50% for specific yield. Parameters contained within SWBM showed simi-
lar variations across runs but with much less variability due to tighter imposed constraints. None of the
parameters were calibrated to unreasonable values, with only a few limited by upper or lower calibration
bounds.

Linear 95% confidence intervals estimated by UCODE_2014 are relatively narrow for the MODFLOW
parameters when compared to the range of estimated values across all five calibration runs. For example, the
largest confidence interval for Kx1 was observed in Calibration Run 4 and spanned 38 m/day. This is only
22% of the range in estimated values across all five calibration runs. Conversely, individual linear confidence
intervals for SWBM parameters compared to the range in ensemble estimated parameter values are much
greater, ranging from 52% to 386%. These linear confidence intervals may not reflect the true parameter
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Figure 9. Influence statistics DFBETAS (top row) and Cook's D (bottom row) for streamflow observations at the U.S.
Geological Survey gage. Lines show observed (gray) and simulated (red and blue) streamflow values that have been
log-transformed and scaled to fit the DFBETAS and Cook's D axes to provide timing context. DFBETAS values are only
differentiated by calibration run and not by parameter for plotting purposes. The most influential observations
generally occur during or immediately following the lowest streamflow period of the year.

confidence intervals, as the modified Beale's measure ranged from 1.6 to 2.9 times the upper critical value
and indicates a highly nonlinear model.

Values of DFBETAS and Cook's D (Figure 9) show that timing of the most influential observations occurs
during or immediately following the lowest period of streamflow during the year. Although the seasonal
timing of influential observations between the two statistics is similar, the most influential observations
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Figure 10. Observed and simulated stream status from Calibration Run 4 at all locations for the month of August in an
average and dry water year. Simulated streamflow status shows strong agreement with observed values, indicating the
model provides a good representation of streamflow spatially in addition to temporally at the streamflow calibration
points (Figure 8).

for the two are located in different years highlighted by the shaded regions in Figure 9. The percentage
of observations exceeding critical values ranged from about 15% to 18% for DFBETAS and 6% to 7% for
Cook's D. Streamflows accounted for about 64–79% of the observations exceeding critical values, which were
predominantly (>90%) low streamflow observations.

4.4. Model Validation
Qualitative streamflow observations of dry and flowing reaches for August in an average (2010) and dry
(2001) year were matched by simulated conditions along 81% and 87% of the total stream length, respectively
(Figure 10). This binary, spatially continuous information was not included during the calibration process
and provides an independent check of model performance. Nearly the entire length of the main stem Scott
River and most of the tributaries are accurately predicted for flowing and dry conditions. Some reaches,
such as French Creek and portions of the tailings section, Patterson Creek, Big Slough, and Shackleford
Creek, appear to have flows that are underpredicted by the model for both water year types (Figure 10). The
qualitative, binary validation information suggests SVIHM not only is an excellent prediction tool for flow
hydrographs at few existing stream gages but also performs well in predicting the spatial distribution of dry
stream sections, the most critical low streamflow predictor for water managers.

5. Discussion
The water budget produced by the model shows the highly dynamic nature of the Scott Valley both season-
ally and interannually. This is especially true for groundwater pumping and net groundwater-surface-water
fluxes. While we typically associate wet years with less groundwater pumping in agricultural areas (Faunt
et al., 2009), this is not always the case. Annual volume of precipitation is important from an overall water
budget perspective, but precipitation amounts during the early spring, when the rainy season may overlap
with the growing season, influence groundwater pumping rates. For example, 2006 had approximately 50%
more total precipitation but also 12% more pumping compared with 2010 (Figure 4). This is because more
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precipitation in 2010 fell during the growing season and helped satisfy crop ET demand, thereby reducing
the amount of irrigation. Similar instances of this occurrence have been shown in Ruud et al. (2004) and
Faunt et al. (2009).

Net fluxes between groundwater and surface water in the first half of the growing season appear to be largely
controlled by precipitation and timing of runoff entering the valley from the upper watershed, while the
second half is controlled by aquifer storage and groundwater pumping. Seasonal decrease in relative aquifer
storage (i.e., cumulative change of groundwater storage relative to the first stress period) over the grow-
ing season (March–October) are similar in wet and dry years (Figure 4) due to the Mediterranean climate.
In wet years, large gains in storage during the winter contribute to groundwater pumping and increased
baseflow during the late summer. In dry years, initial groundwater storage is less and then reduced fur-
ther by groundwater pumping. In the example average water year type shown, summer pumping affects
groundwater storage but recovery begins already in late summer due to early arrival of storms in October
(Figure 4). Similar patterns of storage change are observed in other Mediterranean, irrigated groundwater
basins (Fleckenstein et al., 2004; CDM, 2008; Brush & Dogrul, 2013).

For highly nonlinear models like SVIHM, sensitivity analysis results show that CSS values and therefore the
ranking of parameters by CSS vary as a function of the parameter starting value (Figure 6, top). Since selec-
tion of calibration parameters is done by CSS ranking, choice of calibration parameters varies, sometimes
drastically, between sensitivity analyses. Simultaneously considering the CSS rankings from multiple sen-
sitivity analyses provides additional information that overcomes the dependency of the (local) sensitivity
analysis on the starting values. The very different parameter ranking that appeared in only one of the five
sensitivity analyses (Parameter Set 2, Figure 6, top) was considered an outlier. In their more rigorous sensitiv-
ity analysis using distributed evaluation of local sensitivity analysis, Rakovec et al. (2014) found that model
parameters (including those identified to be most sensitive generally) were insensitive for about 20% of the
tested combinations. Here we see the reverse, with parameters that are insensitive in other runs showing
greater sensitivity.

The seemingly anomalous sensitivity results for Parameter Set 2 are likely a consequence of overestimation
of groundwater heads for one well in Zone 9 and two wells in Zone 5. Although the initial hydraulic conduc-
tivity for these zones in Parameter Set 2 is still relatively high at 1–2 m/day (Table 1), they are the lowest of
the ensemble. The final calibration values indicate highly conductive aquifer sediments in these zones. The
reason for increased sensitivity of some parameters in set three (e.g., Kx3, Kx4, Sy3, and Sy4) is not clear,
as there does not appear to be a strong relationship between observations in zones three and four and their
initial parameter values.

The most sensitive parameters in SVIHM are crop coefficients for alfalfa and pasture, which control water
demand (ET), and the SMDF for alfalfa/grain fields, which affects how much irrigation water is applied
and therefore recharge rates for that land use type. At first this appears to be counterintuitive since these
parameters are contained in SWBM and subsequently filtered through the MODFLOW model. However,
local differences between recharge and pumping (net extraction values) in SVIHM are highly dependent
on these parameters. Head distributions resulting from groundwater pumping cannot fully explain this,
as head observations generally contribute less than 20% to the CSS values. Instead, a likely driver for this
sensitivity to net extraction is streamflow depletion due to groundwater pumping as low flows are propor-
tionally most affected and those observations show the greatest contribution to CSS values. This suggests
that groundwater-surface-water models in agricultural areas that fix typically unmeasured pumping rates or
adjust them uniformly instead of estimating them based on spatially distributed crop demands and irriga-
tion efficiencies (or SMDF if deficit irrigating) are missing important parameters that significantly influence
calibration results. Uncertainty estimates of predicted outcomes obtained from models that do not include
the most sensitive model parameters are not likely to span the true range of possible outcomes.

Seasonal average crop coefficient values for alfalfa estimated during model calibration range from 0.88 to
0.95, similar to previously published values of 0.94 for the Scott Valley (Hanson et al., 2011). The SMDF
factors for alfalfa also agree with preliminary results from recent research in the Scott Valley that show
alfalfa is deficit irrigated in large part due to cutting schedules (S. Orloff, personal communication, July 14th
2017) and irrigation events do not provide enough water to fully satisfy demand. Instead, storage within the
effective root zone is continuously depleted as the growing season progresses. This shuts off groundwater
recharge under those fields during the growing season. It is not clear whether such deficit irrigation in alfalfa

TOLLEY ET AL. 1 2 / 8



Water Resources Research 10.1029/2018WR024209

is common elsewhere. When present, not accounting for deep soil moisture depletion during the growing
season would overestimate recharge from alfalfa fields (Luthin & Bianchi, 1954; Orloff & Hanson, 2000;
Sanden et al., 2003).

Results from the various calibration runs indicate the model is generally converging to two locations in
parameter space. Runs 1, 2, and 5 show lower values for Kx1 and Sy1 compared to those of Runs 3 and
4 (Figure 8). A heuristic explanation for this may be found by considering that the calibration is trying to
match low streamflow values during the late summer: If storage near the Scott River (Zone 1) is low, then
the hydraulic conductivity must be low as well to keep heads in the aquifer high enough in the late summer
to provide a positive gradient to the stream. If heads in the aquifer drop too low streamflow is underesti-
mated. Likewise, if storage near the river increases then the discharge per unit gradient between the aquifer
and the stream increases. To compensate, near-stream hydraulic conductivity must increase to reduce the
gradient between the aquifer and the stream; otherwise, low streamflow will be overestimated. This correla-
tion between storage and hydraulic conductivity was not observed during the sensitivity analyses, possibly
due to the lack of higher-order observations used to define the objective function. This may provide some
insight for integrated groundwater-surface-water models in areas where knowledge of aquifer properties is
limited and/or higher-order observations are not readily available.

Seasonality of fluxes between groundwater and surface water is driven by high winter and spring flows that
recharge the aquifer, which in turn sustain baseflow during the summer and fall. The model produces a large
amount of spatial heterogeneity in fluxes between groundwater and surface water for the Scott River, despite
reaches having nearly homogenous hydraulic and cross-sectional (conductance) parameterization. Instead,
the large spatial heterogeneity is due to undulations in the longitudinal streambed profile: Streambed eleva-
tions in the model were assigned using observed thalweg elevations obtained from high-resolution LiDAR
and digital elevation model data and are the only stream parameters that have significant spatial variation.
Even in a predominantly flat agricultural area like the Scott Valley, the profile of streambed elevations is not
uniformly sloping. At the 100-m resolution of the model grid, significant nonuniformity in streambed eleva-
tions reflects typical variations in stream geomorphology. This leads to highly variable groundwater-surface
water interactions, such as those seen in models that take into account geologic heterogeneity (Fleckenstein
et al., 2006) or streambed geomorphic factors at multiple scales (Cardenas, 2009; Stonedahl et al., 2012).
Assigned streambed elevations therefore exert a large control on interactions between groundwater and
surface water in numerical models.

Influential observations were consistently representing periods of low streamflow. The low sensitivity of
the model to medium and high streamflow observations stems from their origin: Medium and high stream-
flows are largely controlled by specified inflow to the SFR package and not by aquifer properties. During
high streamflow, upper watershed streamflow input determines streamflow out of the Scott Valley at the
downgradient boundary. It is orders of magnitude larger than baseflow and therefore provides little to no
information about aquifer properties. During periods when baseflow dominates (summer and fall), stream-
flow provides significant information about aquifer flow and storage properties since flow in the stream
predominantly reflects groundwater contributions. By extension, low flows also provide information about
SWBM parameters that affect groundwater contributions during this time (e.g., crop coefficient and SMDF).

The ensemble calibration results show nonunique parameter estimations when calibration runs start at dif-
ferent locations in the parameter space. This occurred even though the inverse problem is well posed for
SVIHM as the number of observations far exceed the number of parameters and no significant correla-
tions were found between calibration parameters. Simulated streamflow and groundwater heads are similar
across calibration runs despite some parameter values varying up to an order of magnitude.

Uncertainty estimates from an individual calibration run are lacking as they do not span the entire param-
eter space over which similar heads and streamflow are produced. Linear confidence intervals are often the
only feasible measure of parameter uncertainty for models with significantly long run times as nonlinear
analysis methods such as Markov chain Monte Carlo require far too many runs to be of practical use. The
minimum number of model runs for a combined sensitivity analysis and calibration in this study was 202,
which took a total of 5.8 days to complete when parallelized using five processors. A Markov chain Monte
Carlo analysis, assuming (conservatively) a minimum of 1 × 104 nonparallelizable model runs that take 2
hr each, would require 2.3 years. Our results suggest that integrated hydrologic models need to be rigor-
ously evaluated as much as feasibly possible for nonlinear behavior and sensitivity relationships to more
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accurately capture sensitivities and resulting uncertainties in parameter estimation and predicted values.
This is particularly important in basin-scale simulation models that will ultimately be used to inform deci-
sion makers and establish uncertainty ranges as part of project risk analyses and sustainability compliance.
The results presented here do not provide a conclusive, rigorous evaluation of sensitivity, such as those pro-
vided in other methods (Rakovec et al., 2014; Borgonovo et al., 2017), due to long model runs times. Instead,
running a limited number of sensitivity analyses and calibrations using a wide range of starting values pro-
vides a frugal heuristic method to capture some key uncertainties associated with nonlinearity inherent in
basin-scale integrated groundwater-surface-water models.

6. Conclusions
Agricultural demands and groundwater-surface water conditions for the Scott Valley were simulated
over 21 years by weakly coupling a streamflow regression model, a soil-water budget model, and a
groundwater-surface-water model. The soil-water budget model operates at the field scale, providing
high spatial resolution of groundwater recharge and pumping across the model domain. Coupling the
groundwater-surface-water model with the soil-water budget model provided a simple, efficient, and trans-
parent method of estimating groundwater pumping and recharge, two of the biggest forcings for agricultural
groundwater basins. Multiple sensitivity analyses show that the most sensitive model parameters are those
that control pumping and recharge, which are typically unmeasured and therefore often only available by
employing estimation methods. Our work suggests it is important to embed the pumping and recharge esti-
mation model into the sensitivity and calibration process for a a posteriori estimation rather than using
values estimated a priori. This provides a quantitative measure of parameter importance across submodels
and a more realistic representation of spatially distributed groundwater pumping and recharge across the
agricultural landscape. Streamflow observations, particularly during the driest times of the year, provide the
most information about model parameters. We did not include higher-order observations (e.g., drawdowns
and streamflow differences) in this analysis, but their contributions and if/how they alter the parameter
rankings should be explored in future work.

Performing multiple (local) sensitivity analyses and calibrations of this nonlinear integrated model was
essential to develop a more comprehensive, quantitative understanding of model parameter importance and
uncertainty. As complexity, and likely nonlinearity, of hydrologic models increases, sensitivity analyses and
model calibrations must explore more of the parameter space by using multiple sets of initial parameters to
gain a better understanding of which model parameters are sensitive overall as opposed to sensitive within a
particular area of the parameter space. Calibration of the Scott Valley Integrated Hydrologic Model generally
converges to two different areas in parameter space, with both producing results that show good agreement
with observations. The use of multiple parallel calibrations revealed greater uncertainty in some model
parameters that a single calibration could not detect. Optimized parameter values indicate that groundwa-
ter recharge from alfalfa fields is negligible during the growing season due to deficit irrigation. Linear 95%
confidence intervals of parameter values calculated within each calibration run are generally very different
than the range in estimated parameter values obtained across the five calibrations. Further research into
parameter and prediction uncertainty of these weakly coupled, highly nonlinear models may utilize more
rigorous nonlinear methods to more precisely define parameter uncertainty.

The Scott Valley Integrated Hydrologic Model shows that a weakly coupled, computationally efficient model
can be successfully employed in lieu of an iteratively or fully coupled integrated model to simulate highly
dynamic groundwater-surface-water interactions in an agricultural watershed. Computational efficiency
and the ability to adjust model structure is an important consideration when developing models to meet
the needs of various water managers and stakeholders. The model needs to be complex enough to capture
salient hydrologic processes yet usable, modifiable, and capable of having its results communicated to and
understood by a broad audience. California is an example of where models like this are likely to see expanded
use, as integrated groundwater basin modeling and stakeholder outreach is an important component of the
Sustainable Groundwater Management Act regulation that is currently being implemented.

Notation
! Available soil water
!max Field capacity
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P Precipitation
ET Evapotranspiration
ET0 Reference evapotranspiration
AW Applied water
R Recharge
AE Application efficiency (irrigation efficiency)
SMDF Soil moisture depletion factor
Kc Crop coefficient
k Subscript denoting the day
# Objective function value
yi Observed value
yi′ Simulated value
wi Observation weight
i Observation number
ND Total number of observations
"2

i Observation error variance
CVi Coefficient of variation for streamflow observation
$i Mean of observations
n Number of observed-simulated data pairs
bj jth parameter
b vector containing initial parameter values
CSSj ,s Composite scaled sensitivity of the jth parameter for parameter set s
CSSs Array of CSS values for parameter j
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RELATIVE EFFECTS OF CLIMATE AND WATER USE ON
BASE-FLOW TRENDS IN THE LOWER KLAMATH BASIN1

Robert W. Van Kirk and Seth W. Naman2

ABSTRACT: Since the 1940s, snow water equivalent (SWE) has decreased throughout the Pacific Northwest,
while water use has increased. Climate has been proposed as the primary cause of base-flow decline in the Scott
River, an important coho salmon rearing tributary in the Klamath Basin. We took a comparative-basin approach
to estimating the relative contributions of climatic and non-climatic factors to this decline. We used permutation
tests to compare discharge in 5 streams and 16 snow courses between ‘‘historic’’ (1942-1976) and ‘‘modern’’
(1977-2005) time periods, defined by cool and warm phases, respectively, of the Pacific Decadal Oscillation. April
1 SWE decreased significantly at most snow courses lower than 1,800 m in elevation and increased slightly at
higher elevations. Correspondingly, base flow decreased significantly in the two streams with the lowest lati-
tude-adjusted elevation and increased slightly in two higher-elevation streams. Base-flow decline in the Scott
River, the only study stream heavily utilized for irrigation, was larger than that in all other streams and larger
than predicted by elevation. Based on comparison with a neighboring stream draining wilderness, we estimate
that 39% of the observed 10 Mm3 decline in July 1-October 22 discharge in the Scott River is explained by regio-
nal-scale climatic factors. The remainder of the decline is attributable to local factors, which include an increase
in irrigation withdrawal from 48 to 103 Mm3 ⁄ year since the 1950s.

(KEY TERMS: surface water hydrology; climate variability ⁄ change; rivers ⁄ streams; Klamath River; salmon;
permutation tests.)

Van Kirk, Robert W. and Seth W. Naman, 2008. Relative Effects of Climate and Water Use on Base-Flow
Trends in the Lower Klamath Basin. Journal of the American Water Resources Association (JAWRA) 44(4):1035-
1052. DOI: 10.1111/j.1752-1688.2008.00212.x

INTRODUCTION

Snowmelt is an important contributor to discharge
in nearly all major rivers of the western United
States (U.S.). Analyses of hydrometeorological data
from this region show that climate warming has
decreased the percentage of precipitation falling as
snow and accelerated snowpack melt, resulting in

earlier peak runoff and lower base flows (Hamlet
et al., 2005; Mote et al., 2005; Regonda et al., 2005;
Stewart et al., 2005; Mote, 2006). These trends may
have begun nearly a century ago but are well docu-
mented to have occurred over the past 60 years
(Hamlet et al., 2005; Mote, 2006). Climate patterns in
the Pacific Northwest over this time period have been
affected both by long-term, systematic warming and
by decadal-scale oscillations (Hamlet et al., 2005;

1Paper No. JAWRA-07-0074-P of the Journal of the American Water Resources Association (JAWRA). Received June 12, 2007; accepted
December 12, 2007. ª 2008 American Water Resources Association. Discussions are open until February 1, 2009.
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83209; and Research Assistant, Department of Fisheries Biology, Humboldt State University, Arcata, California 95521 (E-Mail ⁄ Van Kirk:
rob.vankirk@gmail.com).
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Regonda et al., 2005; Stewart et al., 2005). In particu-
lar, the Pacific Decadal Oscillation (PDO) cycled
through a cool phase (increased snowpack and
streamflow) from the mid-1940s to 1976 and through
a warm phase (decreased snowpack and streamflow)
from 1977 through at least the late 1990s (Minobe,
1997; Mote, 2006). Regardless of the degree to which
climatic trends since the 1940s reflect short-term vs.
long-term processes, base flow in Pacific Northwest
rain-snow systems is strongly dependent on timing
and amount of snowmelt, which is reflected by April
1 snow water equivalent (SWE) (Gleick and Chalecki,
1999; Leung and Wigmosta, 1999; McCabe and
Wolock, 1999). Trends in April 1 SWE appear to be
driven primarily by temperature, which, along the
Pacific Coast, is a function of elevation and latitude
(Knowles and Cayan, 2004; Mote, 2006), and second-
arily by precipitation (Hamlet et al., 2005; Mote
et al., 2005; Stewart et al., 2005).

Concurrent with the observed declines in April 1
SWE over the past 60 years, water use in the Pacific
Northwest has increased substantially. Total water
withdrawal in California, Idaho, Oregon, and
Washington increased 82% between 1950 and 2000,
with irrigation accounting for nearly half of this
increase (MacKichan, 1951; Hutson et al., 2004).
Accordingly, declines in streamflow over the past half
century could be caused by a combination of continen-
tal-scale climatic factors and watershed-scale
increases in water use rather than by climatic factors
alone. Although climate models diverge with respect

to future trends in precipitation over this region,
there is widespread agreement that the trend toward
lower SWE and earlier snowmelt will continue (Leu-
ng and Wimosta, 1999; McCabe and Wolock, 1999;
Miller et al., 2003a; Snyder et al., 2004; Barnett
et al., 2005; Zhu et al., 2005; Vicuna et al., 2007).
Thus, availability of water resources under future cli-
mate scenarios is expected to be most limited during
the late summer (Gleick and Chalecki, 1999; Miles
et al., 2000). Development and implementation of
appropriate water management strategies to deal
with these shortages will require distinction between
the component of late-summer flow decrease attribut-
able to large-scale climatic factors and that attribut-
able to local-scale changes in water use. Management
actions implemented at the watershed or basin scale
have the potential to reverse declines in streamflow
that have been caused by increased water use but
will not reverse those caused by continental-scale cli-
matic factors.

The lower Klamath Basin in northern California
(Figure 1) provides an important example of the need
to distinguish the effects of climate on observed
declines in base flow from those of water use. The
Klamath River and its tributaries support popula-
tions of anadromous fish species with economic, eco-
logical, and cultural importance. Of these, coho
salmon (Oncorhynchus kisutch, Southern Oregon ⁄
Northern California Coasts Evolutionarily Significant
Unit) are listed as threatened under the U.S. Endan-
gered Species Act (Good et al., 2005). In addition,

FIGURE 1. Map of Lower Klamath Basin, California, Showing Study Watersheds, Stream Gages, and Snow
Courses Used in This Study. Snow course and stream gage numbers correspond to those listed in Tables 1 and 2.
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steelhead trout (Oncorhynchus mykiss) and Chinook
salmon (Oncorhynchus tshawytscha) in the lower
Klamath Basin are of special concern or are at risk of
extinction (Nehlsen et al., 1991). Habitat degradation,
over-exploitation, and reductions in water quality
and quantity have been implicated in declines of
these species (Nehlsen et al., 1991; Brown et al.,
1994; Good et al., 2005). In particular, low late-sum-
mer and early fall streamflow in several tributaries is
a major factor limiting survival of juvenile coho sal-
mon (NRC, 2003; CDFG, 2004). Increasing late-sum-
mer tributary flow is a major objective of coho salmon
recovery efforts, particularly in the Scott River (Fig-
ure 1), the most important coho salmon spawning
and rearing stream in the basin (Brown et al., 1994;
NRC, 2003; CDFG, 2004). If reduction in Scott River
base-flow has been caused primarily by climatic fac-
tors, as has been proposed by Drake et al. (2000),
then flow objectives for coho salmon recovery may not
be attainable through local management, and the
success of other recovery objectives (e.g., habitat res-
toration) may be limited by continued low base flows.
On the other hand, if reduction in base flow is due in
substantial part to changes in amount, timing and
source of water withdrawal, then at least that partic-
ular component of flow reduction caused by water-use
factors could be mitigated through local management
actions.

Research Approach and Objectives

The goal of this study is to distinguish the relative
effects of regional-scale climatic factors from those of
local-scale factors on trends in late-summer and early
fall flows in lower Klamath tributaries, with particu-
lar emphasis on the Scott River. We aim to provide
water and fisheries managers with information they
need to develop realistic and attainable base-flow
objectives for fisheries recovery. Ideally, such a study
would analyze water-use data, including location and
timing of withdrawals, source of water withdrawn
(ground vs. surface), and rate of consumptive use.
Furthermore, in agricultural settings, it is desirable
to analyze the type of crops irrigated, method of irri-
gation application, amount of return flow, and path-
ways (ground vs. surface) by which return flow enters
stream channels. Unfortunately, almost no data of
these types are available for the watersheds of the
lower Klamath Basin, including that of the Scott
River, where a large amount of irrigated agriculture
occurs. Thus, as an expeditious, first-order attempt to
distinguish between effects of climate vs. water use
on base flow declines, we use statistical analysis of
existing SWE and streamflow data from across the
basin. Results of this study can then be used to

prioritize future data collection and modeling efforts
focused more specifically on mechanisms that could
explain the observed statistical trends and on the
predicted effects of possible management strategies.

We begin with the operating hypothesis that
declines in base flow that have been observed in the
Scott River are caused primarily by climate trends,
as expected based on the large body of climate litera-
ture cited above and on the results of Drake et al.
(2000), the only published study we could find that
has addressed this problem. According to this
hypothesis, trends in base flow observed in the Scott
River should be consistent with those observed in
other streams in the lower Klamath Basin, across
which climate is relatively uniform. Further, we
expect to observe differences in base-flow trends
among these streams because of variation in
elevation and latitude, which directly influence SWE.
Secondary differences in streamflow trends among
streams in the basin can then be attributed to local,
watershed-scale factors such as land and water use.
Although applied here to a specific basin, our
methodology has applicability to any river system in
which there are at least a few gaged streams
unregulated by storage reservoirs. We use
permutation tests for our statistical hypothesis tests,
but this is not a methodological study intended to
compare the results and applicability of these types
of tests to those of other types of statistical tests.
However, because permutation tests are not widely
applied in water resources research, we provide suffi-
cient detail in statistical methods so that they can be
adopted by researchers in other basins.

The objectives of this paper are to (1) quantify
basin-scale trends in streamflow and SWE in the
lower Klamath Basin, (2) analyze the dependence of
base flow and SWE trends on elevation and latitude,
(3) compare relative change in base flow among
different streams in the basin using a paired-basin
approach, and (4) use paired-basin correlation
analysis to estimate the component of decline in Scott
River base-flow that is attributable to regional-scale
climatic factors. The difference between this
component and the total decline in base flow is
attributable to local-scale factors, which we discuss.
We also compare our results with those of Drake
et al. (2000) and discuss implications for fisheries
management.

STUDY AREA

We define the lower Klamath Basin as the
drainage of Klamath River downstream of the
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Oregon-California state line (Figure 1). This coincides
approximately with the location of Irongate Dam,
which blocks upstream migration of anadromous fish,
as well as the point at which the river exits the low-
relief, volcanic geology of the Cascade Mountains and
enters the high-relief, geologically complex Klamath
Mountain and Coast Range provinces. This point is
also roughly at the transition between the ocean-
influenced climate to the west and the arid, inter-
mountain climate to the east.

Elevations in the study area range from sea level
to 2,500 m. Annual precipitation ranges from 50 cm
in the eastern valleys to over 200 cm at higher eleva-
tions. Nearly all precipitation falls from October
through April. Precipitation occurs almost exclusively
as rain at elevations below 500 m and almost exclu-
sively as snow above 2,000 m. Snowpack generally
accumulates throughout the mid-winter to late-winter
at elevations exceeding 1,500 m. High relief and
impermeable bedrock geology contribute to rapid run-
off of both rainfall and snowmelt from upland areas,
and ground-water storage is generally limited to rela-
tively small alluvial aquifers immediately adjacent to
major streams. Correspondingly, stream hydrographs
in the study area are of the rain ⁄ snow type (Poff,
1996), characterized by rapidly increasing discharge
at the onset of the rainy season, a broad peak lasting
most of the winter and spring, and recession begin-
ning in June, once maximum snowmelt has occurred

(Figure 2). Base flow, which is generally 1.5 orders of
magnitude lower than peak flow, occurs during late
summer and early fall. Variability in this pattern
across catchments is driven by the relative contribu-
tion of rain and snowmelt to runoff, which, in turn, is
determined primarily by elevation and latitude, and
to a lesser degree by distance from the coast and local
topographic features.

To focus on changes in streamflow related to
climate change, we limited our analysis to streams
that have a continuous record of discharge dating
back at least 40 years from the present and are
unaffected by storage reservoirs. Only five streams
in the lower Klamath Basin met these criteria: the
Scott, Salmon, Trinity (upstream of reservoirs), and
South Fork Trinity rivers and Indian Creek
(Figure 1, Table 1).

All five of the study watersheds are sparsely
populated, although population is increasing in
some locales, particularly in the South Fork Trinity
watershed. Uplands are mountainous areas man-
aged by the U.S. Forest Service. Substantial timber
harvest has occurred in all five watersheds,
although it has been more limited in the Salmon
and Trinity watersheds because of large amounts of
federally designated wilderness. Rugged terrain and
a preponderance of federal land limit most human
activities to narrow river corridors in the Indian,
Salmon, and Trinity watersheds. Additionally,

FIGURE 2. Mean Historic-Period and Modern-Period Hydrographs for the Five Study Streams. All streams display
a rain-snow hydrologic regime with base flow period during late summer. Discharge is shown on a logarithmic

scale to facilitate visual comparison of modern and historic periods at low discharge values. However, statistical
comparison of annual and late-summer discharge between periods was performed on untransformed data.
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topography prevents substantial agricultural
development. The South Fork Trinity watershed
supports some agriculture, primarily fruit and
vegetable farms, vineyards, and cattle grazing
operations. Because agricultural development in the
South Fork Trinity watershed is relatively small in
scale, few if any data on irrigation withdrawals are
available.

Only the Scott watershed contains large areas of
private, non-mountainous land that support large-
scale agriculture; about 120 km2 of pasture, grain,
and alfalfa are irrigated in the Scott watershed. A
typical western-U.S. system of water rights based
on the doctrine of prior appropriation governs
withdrawal and delivery of surface water for
irrigation in the Scott Valley (California Superior
Court, 1950, 1958, 1980). Under this type of water
rights system, surface water diverted from streams
is delivered to water users in order of decreed
water right priority date (date on which the claim
to put the water to beneficial use was first made;
these are typically dates in the mid to late 19th
Century in California). Early in the irrigation
season, when streamflows are high, all users
receive their full allocation of water. As streamflow
declines throughout the irrigation season, those
users with junior (i.e., more recent) priority dates
must cease diversion to leave the available water to
users with more senior rights. By the end of a
typical irrigation season, only users with the most
senior rights continue to divert surface water. The
California Department of Water Resources (CDWR)
collects some data on irrigation use in the Scott
Valley. However, CDWR does not provide
watermaster service to account for distribution of
decreed surface rights in all areas of the Scott
watershed, and withdrawal and distribution of
ground water is unregulated.

METHODS

Streamflow and SWE data were available in our
study area from the mid-1940s to the present. Given
our working hypothesis regarding climate effects and
the natural division of this time period into two dis-
tinct phases of the PDO (cool from mid-1940s to 1976,
warm from 1977 on), we used a two-step comparison
approach to analysis of temporal trends (Helsel and
Hirsch, 1992). Because streamflow data for the Scott
River were first collected in water year 1942, we
defined the ‘‘historic’’ period as 1942-1976 and the
‘‘modern’’ period as 1977-2005. We then analyzed dif-
ferences in SWE and streamflow between these two
time periods. We used permutation tests (Ramsey
and Schafer, 2002; Good, 2005; see Appendix A) to
perform all statistical hypothesis tests. We performed
these tests at the a = 0.05 significance level.

All of the hypothesis tests involved comparing val-
ues of a particular SWE or discharge variable between
the historic and modern periods. Although use of per-
mutation tests does not require the data to meet any
distributional assumptions, it does require indepen-
dence of observations (Good, 2005). Thus, we first cor-
rected the data for dependence caused by first-order
serial autocorrelation using the correction as

xt ¼ ut � rut�1; ð1Þ

where xt is the corrected value of the variable for
year t, ut is the uncorrected value for year t, and r is
first-order serial autocorrelation coefficient (i.e., the
Pearson correlation coefficient between ut and ut ) 1

(Neter et al., 1989; Ramsey and Schafer, 2002). We
then calculated the test statistic as

TABLE 1. Study Basin Descriptions and Flow Statistics.

Scott
River

Indian
Creek

Salmon
River

South Fork
Trinity River

Trinity
River

USGS stream gage 11519500 11521500 1522500 11528700 11523200
Drainage area (km2) 1,691 311 1,945 1,979 386
Mean basin elevation (m) 1,688 1,220 1,386 1,378 1,734
Latitude of basin centroid (�N) 41.479 41.904 41.293 40.468 41.228
Earliest year analyzed 1942 1958 1942 1966 1958
Mean annual historic-period discharge (Mm3) 605.7 403.1 1,744 1,420 385
Mean annual modern-period discharge (Mm3) 514 345.3 1,517 1,175 361.1
p-value: historic and modern annual discharges equal 0.127 0.116 0.113 0.163 0.294
Mean late summer historic-period discharge (Mm3) 10.96 9.193 37.04 14.77 7.273
Mean late summer modern-period discharge (Mm3) 6.541 8.274 37.47 12.08 8.024
p-value: historic and modern late summer
discharges equal

<0.001 0.055 0.629 0.049 0.799

Notes: Flow data are from the USGS National Water Information System, http://www.waterdata.usgs.gov/nwis, accessed December 2006.
Historic period ends in 1976; modern period is 1977 through 2005; p-values are reported for the one-sided alternative hypothesis that
modern-period discharge is less than historic-period discharge.
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T ¼ �x1 � �x2
SE

; ð2Þ

where �x1 is the mean of the corrected daily discharge
values over Group 1, �x2 is the mean over Group 2,
and

SE ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2
;

r
ð3Þ

where s is the pooled standard deviation, n1 is the
number of years in Group 1 and n2 is the number of
years in Group 2. Groups 1 and 2 refer to the
complementary subsets into which the data are
divided according to a given permutation (see
Appendix A). To calculate the value of the test
statistic obtained from the data as they occurred in
the observed permutation, Group 1 is taken to be the
collection of data observed over the modern period of
years, and Group 2 is that observed over the historic
period, that is,

Tobserved ¼
�xmodern � �xhistoric

SE
ð4Þ

Although (Equation 4) is the test statistic of the stan-
dard two-sample t-test, we use it instead in permuta-
tion tests and as the response variable in regressions.
Thus, we refer to it as a generic ‘‘ T ’’-statistic.

As we wanted to focus our analysis on the period
of days during the base flow period over which
declines in discharge in the Scott River have been
most apparent, we defined the ‘‘late summer’’ period
of base flow based on analysis of the Scott River data
at the daily scale instead of defining this period based
on visual examination of hydrographs or on a conve-
nient calendar designation (e.g., August and Septem-
ber). We first log10-transformed daily discharge for
each individual day between June 1 and November
30. The transformation was performed not to meet
the assumptions of the hypothesis test but rather to
prevent rare but extreme daily flow events from
exerting excessive influence over group mean. We
then compared the mean of the transformed dis-
charge between historic and modern periods of years
with a permutation test on the T-statistic (see Appen-
dix A). We performed these tests with a two-sided
alternative. This analysis showed that the mean of
log10-transformed daily discharge (equivalently, the
geometric mean) differed significantly between the
historic and modern periods on every day of the per-
iod August 2 through October 5. We thus defined
‘‘late summer’’ to be this period of consecutive days.

Streamflow and SWE Trends

We tested for differences in total late-summer dis-
charge between historic and modern periods at all
five stream gages. For streams on which gaging
began after 1942, we defined the historic period to
begin with the first year in the period of record
(Table 1). Because of the smoothing inherent in aver-
aging daily discharge over the 65-day late-summer
period, we did not transform the raw discharge data.
These tests were performed with the one-sided alter-
native that late-summer discharge during the modern
period was less than that during the historic period,
in accordance with what would be expected based on
climate change. We also performed this analysis on
annual water-year discharge at each stream gage and
on April 1 SWE at all 16 snow courses in the study
area for which at least 40 years of data were avail-
able (Figure 1, Table 2). For these tests, we also used
a one-sided alternative, for consistency with the late-
summer for analysis.

Dependence of Base Flow and SWE Trends on
Elevation and Latitude

To quantify dependence of change in SWE and
streamflow on elevation, we performed permutation
regression analysis (see Appendix A) of the observed
T-statistic (Equation 4) as a function of elevation. In
this case, Tobserved serves as a dimensionless measure
of change in SWE or streamflow between historic and
modern periods and thus allows direct comparison of
the regression line for streamflow to that for SWE.
To incorporate the effect of latitude, we used Mote’s
(2006) estimate that winter isotherms along the Paci-
fic Coast of North America increase southward at a
rate of 137 m in elevation per degree of latitude. We
referenced latitude to that of Indian Creek, the fur-
thest north of the study watersheds, and defined lati-
tude-adjusted elevation of a given snow course or
study watershed to be

Eadjusted ¼ E� 137ðLIndian � LÞ; ð5Þ

where E is the actual elevation of the snow course or
watershed (mean over the watershed), Eadjusted is the
adjusted elevation, LIndian is the watershed-centroid
latitude of the Indian Creek watershed, and L is the
latitude of the snow course or watershed centroid.
Centroids and mean elevations of the drainage basins
were computed in a Geographic Information System
from Digital Elevation Models. For the SWE analysis,
we regressed dimensionless change in April 1 SWE
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against latitude-adjusted snow course elevation. We
performed an analogous regression for change in late-
summer discharge against latitude-adjusted mean
watershed elevation for the five study streams.

Comparison of Relative Base-Flow Decline Among
Study Streams

To compare base-flow trends among the five
study streams, we used a before after control-
impact-pairs analysis (Stewart-Oaten et al., 1986).
For each of the 10 (5C2 ¼ 5!

2!3! ¼ 10) unique pair-
wise combinations (a,b) of the five study streams
and for each year in the intersection of the periods-
of-record of the two streams, we computed the ratio
Qa

Qb
, where Qa is the total late-summer discharge in

stream a for the given year and Qb is the total
late-summer discharge in stream b. To prevent
small values in the denominator from producing
extremely large values of the ratio, we chose
stream b to be the stream in each pair with the
larger mean late-summer discharge during the
modern period. We then compared the mean of
these annual ratios Qa

Qb
between modern and historic

periods using the permutation method. We used
two-sided alternatives because the purpose of the
paired-basin tests was to assess differences in
streamflow response among the study streams, and
if factors other than climate change affected this
response, we would not know a priori which stream

in a given pair should have the lower relative
streamflow during the modern period.

Component of Scott River Base-Flow Decline
Attributable to Climate

We estimated the component of base-flow decrease
in the Scott River due to climate by comparing daily
flow in the Scott River with that of a reference
stream. Based on geographic proximity and lack of
substantial changes in anthropogenic effects on water
resources over the past half-century, either the Sal-
mon or Trinity could serve as the reference stream
for this estimate. Although the Trinity watershed is
closer in elevation to that of the Scott, we chose the
Salmon as the reference watershed because it is
much closer in size to that of the Scott (Table 1) and
because the hydrograph of the Salmon River is more
similar to that of the Scott than to any of the other
study streams (Figures 2 and 3). Furthermore,
because the latitude-adjusted elevation of the Salmon
River watershed is lower than that of the Scott River,
comparison with the Salmon River provides an over-
estimate of the effect of climate and hence an under-
estimate of the effect of local-scale factors on Scott
River base-flow. We used the line of organic correla-
tion (Helsel and Hirsch, 1992) to determine the linear
relationship between daily Scott River discharge and
daily Salmon River discharge. Because the relation-
ship was used for prediction and not for hypothesis

TABLE 2. Snow Course Descriptions and April 1 Snow Water Equivalent (SWE) Statistics.

Course
Number Elevation (m) Latitude (�N)

Earliest
Year of
Record

Mean
Historic-Period

April 1 SWE (cm)

Mean
Modern-Period

April 1 SWE (cm)

p-Value:
Historic and

Modern April 1
SWE Equal

17 1,554 41.077 1946 40.3 30.2 0.021
14 1,646 41.150 1947 84.7 90.2 0.666
285 1,676 41.397 1951 104.2 68.2 0.001
15 1,722 41.197 1947 66.2 52.0 0.022
298 1,737 41.233 1956 49.4 44.5 0.224
3 1,783 41.382 1942 37.0 30.0 0.059
4 1,798 41.400 1951 95.0 52.1 <0.001
16 1,838 41.093 1942 55.5 51.5 0.261
13 1,875 41.200 1949 91.1 91.1 0.482
311 1,890 41.225 1949 71.1 72.5 0.568
12 1,951 41.008 1947 127.8 126.7 0.434
11 1,981 40.967 1947 95.2 101.2 0.704
5 2,012 41.217 1946 80.8 81.4 0.524
1 2,042 41.367 1942 95.3 88.4 0.218
10 2,042 41.023 1946 111.7 112.7 0.542
9 2,195 41.318 1946 84.2 86.9 0.634

Notes: Table is sorted by elevation for ease of interpretation. Data are from the California Department of Water Resources snow course data-
base, http://www.cdec.water.ca.gov/misc/SnowCourses.html, accessed May 2007. Historic period is earliest year of record through 1976; mod-
ern period is 1977 through 2005; p-values are reported for the one-sided alternative hypothesis that modern-period SWE is less than
historic-period SWE.
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testing, we did not correct daily values for serial
autocorrelation. In this analysis we used all daily
flow values from July 1 through October 22 during
each of the calendar years in the historic period. This
period of days was chosen because it was the time
period over which the relationship between Scott and
Salmon river hydrographs differed most between the
historic and modern periods (Figure 3). We applied
the organic linear relationship to modern-period Sal-
mon River daily discharge values to estimate what
discharge would have been in the Scott River during
the modern period if response of flows in the Scott
River to regional climate change had been the same
as that of flows in the Salmon River. Because the line
had a negative intercept, predicted discharge on a
small percentage of days was slightly negative, and
discharge on these days was set to zero. The differ-
ence between this estimated modern-period discharge
and the observed modern-period discharge was our
estimate of the component of Scott River summer dis-
charge decrease due factors other than climate. For
comparison, we also determined the line of organic
correlation relating Scott and Salmon river discharge
over the modern period.

RESULTS

Streamflow and SWE Trends

Mean daily hydrographs showed relatively small
differences between historic and modern periods, with
the exception of substantially lower modern-period
discharge during late summer and early fall in the
Scott River (Figure 2). Mean annual discharge in all
five study streams was lower during the modern per-
iod, but none of the differences were significant
(Table 1). The Scott River showed by far the greatest

decrease in late summer discharge between the two
time periods (40.3% decrease, p < 0.001), followed by
the South Fork Trinity (18.2% decrease, p = 0.049)
and Indian Creek (10.0% decrease, p = 0.055). Late-
summer discharge increased slightly in the Salmon
(1.2% increase, p = 0.629) and Trinity (10.3%
increase, p = 0.799) rivers between historic and mod-
ern periods.

Mean April 1 SWE was lower in the modern period
at all seven snow courses below 1,800 m, and these
differences were significant at four of these courses
and marginally significant at a fifth (Table 2). Mean
April 1 SWE was higher in the modern period at five
of the nine courses with elevations above 1,800 m,
but none of these differences were significant.

Dependence of Base Flow and SWE Trends on
Elevation and Latitude

Change in April 1 SWE between historic and mod-
ern periods showed a significant, positive dependence
on latitude-adjusted snow-course elevation (Figure 4).
There was no significant dependence of change in late
summer streamflow on latitude-adjusted drainage-
basin elevation among the five study watersheds, but
this dependence was significant when the Scott River
was removed from the analysis (Figure 4). The slopes
of the SWE and the significant (i.e., Scott River not
included) flow regression lines were similar
(0.00427 ⁄ m for change in SWE, and 0.00539 ⁄ m for
change in late summer flow). Under the null hypothe-
sis that the SWE and significant flow regressions are
independent of each other, permutation analysis
showed that the probability of obtaining a linear rela-
tionship between change in SWE and elevation as sig-
nificant as that observed and a relative difference
between the slope of the two lines this small is
p = 0.00203 (see Appendix A). This provides strong
evidence that the similarity in slopes of these two

FIGURE 3. Period-of-Record Mean Dimensionless Hydrographs for the Salmon and Scott Rivers, Historic and
Modern Periods. Dimensionless discharge is daily discharge divided by mean period-of-record discharge. Note

that the hydrographs were nearly identical during the historic period but that during the modern period,
Scott River discharge was much lower than Salmon River discharge from early July through late October.

VAN KIRK AND NAMAN

JAWRA 1042 JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION



regression lines cannot be caused by chance alone, that
is, that the dependence of change in streamflow on
elevation is linked with that of change in SWE, as
expected based on the underlying hydrologic processes.

Comparison of Relative Base-Flow Decline Among
Study Streams

Late-summer flow in the Scott River declined
between historic and modern periods relative to all
four of the other study streams, and all of the differ-
ences in discharge ratio involving the Scott River were
significant (Table 3). Decline in base flow in the Scott
River was greatest relative to the Trinity River, fol-
lowed by that relative to the Salmon River, Indian
Creek, and the South Fork Trinity River, respectively.
Late-summer flow in the South Fork Trinity declined

relative to all study streams except the Scott, and
these differences were all significant. Late-summer
flow in Indian Creek declined relative to the Trinity
and Salmon rivers, but only the decline relative to the
Trinity was significant. As mentioned above, late-sum-
mer discharge in the Salmon and Trinity rivers
increased slightly between the historic and modern
periods, and the paired-basin test showed that the
increase observed in the Trinity River was signifi-
cantly greater relative to that in the Salmon River.

Component of Scott River Base-Flow Decline
Attributable to Climate

Scott River daily discharge from July 1 to October
22 was much lower relative to Salmon River
discharge during the modern period than during the

FIGURE 4. Change in April 1 Snow Water Equivalent (SWE; left) and Late-Summer Flow (right) Between the Historic and Modern Periods
as a Function of Latitude-Adjusted Elevation. Decrease in both parameters is measured by the dimensionless T-statistic (Equation 4).
Snow course Numbers 4 and 285 are identified in the left panel. Change in April 1 SWE showed a significant dependence on eleva-
tion (y = 0.00427x ) 8.39, p = 0.028). Change in late-summer flow showed no significant dependence on elevation with all data included
(y = 0.00141x ) 2.39, p = 0.700) but showed significant dependence on elevation when the Scott River was removed from the analysis
(y = 0.00539x ) 7.80, p = 0.042).

TABLE 3. Paired-Basin Tests of the Null Hypothesis That the Ratio of Late Summer
(August 2 through October 5) Discharge Is Equal Between Modern and Historic Periods.

Pair

Mean Ratio
of Late-Summer

Discharge (historic)

Mean Ratio of
Late-Summer

Discharge (modern)

Stream With
Lower Relative
Late Summer
Discharge in

Modern Period

p-Value: Historic
and Modern
Ratios Equal

Scott ⁄ Trinity 1.65 0.602 Scott <0.001
Scott ⁄ Salmon 0.136 0.063 Scott 0.001
Scott ⁄ Indian 0.961 0.589 Scott 0.003
Scott ⁄ South Fork Trinity 0.599 0.400 Scott 0.010
Trinity ⁄ South Fork Trinity 0.397 0.590 South Fork Trinity 0.007
South Fork Trinity ⁄ Salmon 0.334 0.272 South Fork Trinity 0.035
Indian ⁄ South Fork Trinity 0.590 0.747 South Fork Trinity 0.018
Trinity ⁄ Indian 0.803 0.973 Indian 0.001
Indian ⁄ Salmon 0.237 0.223 Indian 0.174
Trinity ⁄ Salmon 0.172 0.193 Salmon 0.045

Notes: Mean ratios of late-summer discharge are shown here; means of late summer discharge for each basin are given in Table 1; p-values
are reported for the two-sided alternative hypothesis.
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historic period (Figures 3 and 5). Furthermore,
whereas the magnitudes of daily discharge in the Sal-
mon River showed little difference between the his-
toric and modern periods, daily discharge in the Scott
River showed a large decrease in mean (from 3.23 to
2.15 m3 ⁄ s). During the historic period, discharge in
the Scott River was less than 1 m3 ⁄ s on 4.3% of all
days from July 1 through October 22, whereas during
the modern period, flows were less than 1 m3 ⁄ s on
46.2% of these days. Applying the historic-period
organic linear relationship to modern-period Salmon
River daily discharge produced an estimate of Scott
River daily flow under the influence of regional-scale
climate trends alone (Figure 6). The estimated mean
hydrograph differed very little from the observed his-

toric-period hydrograph from July 1 through early
August, but estimated modern-period discharge was
lower over most of August, September, and October.
Observed July 1 through October 22 discharge in the
Scott River averaged 31.8 Mm3 ⁄ year over the historic
period and 21.3 Mm3 ⁄ year over the modern period.
Our estimate of July 1 through October 22 discharge
under the influence of regional-scale climate trends
alone averaged 27.8 Mm3 ⁄ year over the modern per-
iod. Thus, the component of decrease in Scott River
discharge caused by factors other than regional-scale
climate is estimated at 6.5 Mm3 ⁄ year, 61% of the
observed decrease.

DISCUSSION

Streamflow and SWE Trends and Dependence on
Elevation and Latitude

Base flow and April 1 SWE in the lower Klamath
Basin follow general trends toward lower April 1
SWE and lower base flows observed throughout the
Pacific Northwest over the past 60 years (Hamlet
et al., 2005; Mote et al., 2005; Regonda et al., 2005;
Stewart et al., 2005; Mote, 2006). Models indicate
that global warming may increase precipitation over
the Pacific Northwest (Leung and Wigmosta, 1999;
McCabe and Wolock, 1999; Salathé, 2006) so that at
the highest elevations, April 1 SWE may actually
increase because of increased winter-time precipita-
tion, despite the trend toward higher temperatures.
In the lower Klamath Basin, SWE has decreased sig-
nificantly at lower-elevation snow courses but has

Figure 5. Scatterplots and Lines of Organic Correlation Relating Scott River Daily Discharge (y) and Salmon River Daily Discharge (x) for
July 1 Through October 22, Historic and Modern Periods. Lines of organic correlation are y = 0.422x ) 1.17 for the historic period and
y = 0.398x ) 1.62 for the modern period. Discharge is plotted on logarithmic scales to show detail at low discharge values; however, the lines
of organic correlation and all analyses were performed on the untransformed data. Note that daily discharge in the Scott River never fell
below 0.566 m3 ⁄ s during the historic period but fell below this value on 28.6% of all days between July 1 and October 22 during the modern
period.

FIGURE 6. Mean July Through October Hydrographs for the
Scott River, Showing Observed Historic-Period and Modern-Period
Discharge and Estimated Modern-Period Discharge Based on
Correlation With the Salmon River (climate-based estimate).
Estimated modern-period flows show little deviation from historic-
period flows during July and early August but are lower than
historic-period flows from mid-August through late October.
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increased slightly at several higher-elevation courses
(Table 2). Thus, our results are consistent with regio-
nal-scale analyses and reflect trends in both tempera-
ture and precipitation. The patterns of base-flow
change between the historic and modern periods in
the South Fork Trinity, Indian, Salmon and Trinity
watersheds are exactly as predicted by SWE-eleva-
tion-latitude relationships. The within-basin analysis
(Table 1), the paired-basin analysis (Table 3), and the
regression analysis (Figure 4) all showed that when
compared with that of the historic period, late-sum-
mer discharge in the modern period in each stream,
both independently and relative to the other streams,
followed the order predicted by latitude-corrected ele-
vation and by the SWE patterns. Base flow decreased
in the two watersheds with the lowest latitude-
adjusted elevation (South Fork Trinity River and
Indian Creek), and the decrease was greatest in the
South Fork Trinity, which has the lowest latitude-
adjusted elevation of any of the study streams. Base
flow increased in the Trinity and Salmon rivers, and
the increase was greatest in the Trinity River, which
has the highest latitude-adjusted elevation of any of
the study streams. The increases in late-summer flow
observed in the Salmon and Trinity watersheds have
occurred despite moderate decreases in total annual
flow in these streams, suggesting effects from finer-
scale patterns in temperature and precipitation that
we did not analyze.

Base-Flow Decline in the Scott River Relative to the
Other Streams

Base-flow trends in the Scott River clearly do not
follow those of the other four streams. The latitude-
corrected elevation of the Scott River watershed is
only 31.5 m less than that of the Trinity River
watershed (Figure 4), but base flows in the Scott
River showed by far a greater decrease between his-
toric and modern periods than those in any of the
other four watersheds. The paired-basin analyses
(Table 3), regression relationships (Figure 4), and
Salmon River comparison (Figures 3 and 5) provide
strong evidence that base flow in the Scott River has
responded to regional-scale climate in a much differ-
ent way than the other four streams and ⁄ or that fac-
tors other than climate have contributed to changes
observed in Scott River base-flow since the late
1970s.

Certainly, some of the trends in Scott River base-
flow are caused by the same climatic factors that
have affected the other study streams. Decreases in
mean annual discharge between historic and modern
periods were 6.2% in the Trinity River, 13.0% in the
Salmon River, 14.3% in Indian Creek, 15.1% in the

Scott River, and 17.0% in the South Fork Trinity
River (Table 1). The p-values for the significance of
these declines were remarkably similar for all but the
Trinity River (Table 1). Furthermore, the paired-
basin analysis showed no significant trends in total
annual discharge among the study streams. Differ-
ences in response of the Scott River relative to the
other streams appear to be limited only to base flow
trends because at the annual scale, response of the
Scott River to climatic differences between the two
time periods was indistinguishable from those of the
other study streams.

Factors Affecting Scott River Base-Flow

Geographic factors may be partially responsible for
the large apparent difference in base-flow response
between the Scott River and the other study streams.
Although not the furthest east of the study basins,
the Scott watershed does lie partially within a precip-
itation shadow formed by the large region of high-
elevation terrain to the west of the watershed,
contributing to a drier, more continental climate than
that of the other four study watersheds. The Scott
watershed has by far the smallest basin yield
(discharge per unit watershed area, Table 1), an
indication of both lower precipitation and higher
evapotranspiration, the latter of which includes a
large amount of irrigation not present in the other
watersheds. The elevation dependence exhibited by
base-flow change in the other streams predicts an
increase in base flow in the Scott River between his-
toric and modern periods (Figure 4). However, the
comparison with the Salmon River predicts a
decrease, albeit one only about 40% as large as that
observed. The two snow courses with the largest
decreases in April 1 SWE were Courses 4 and 285,
located on the western side of the Scott watershed
(Table 2, Figures 1 and 4). Although these are two of
the lower-elevation snow courses in the study area,
their decline is disproportionate with their elevation
(Figure 4). The large decreases in April 1 SWE at
these courses could be caused by local geography
(e.g., the precipitation shadow), but a snow survey
technician who has conducted measurements at these
courses noted that forest vegetation has encroached
on the courses, reducing accumulation of snowpack
on the courses themselves (Power, 2001; J. Power,
personal communication). Furthermore, none of the
other courses in the Scott basin (Numbers 5, 298, and
311) show patterns inconsistent with the rest of the
courses, and SWE has increased slightly at Courses 5
and 311 (Table 2).

Additional data provide evidence that part of the
observed decrease in Scott River base-flow since the
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1970s is likely caused by an increase in withdrawal
of water for irrigation in the Scott Valley. Although
data on water use in the Scott Valley are sparse and
difficult to obtain, those that we were able to acquire
show that irrigation withdrawals in the Scott Valley
increased by 115% between 1953 and the period over
which modern data are available (1988-2001;
Figure 7). We were unable to locate data from the
1960s and 1970s to determine when the majority of
the increase occurred, but across the western U.S. as
a whole, the largest increase in irrigation withdrawal
between 1950 and 2000 occurred in the 1970s
(Hutson et al., 2004). This increase in irrigation
withdrawal accompanied an 89% increase in irrigated
land area (Figure 7). In 1953, 77 cm of irrigation was
applied over the growing season, and Mack (1958)
reported that application rates in the 1940s averaged
about 76 cm per year. Average application rate over
the period 1988-2001 was 88 cm per year, a 15%
increase over historic values. The limited data avail-
able show no change in crop types since the 1950s;
irrigation has been applied primarily to alfalfa, grain,
and pasture through both the historic and modern
periods. Climatic factors could have influenced the
increase in irrigation application rate; a warmer cli-
mate could result in a longer growing season and in
higher evapotranspiration rates. However, the 15%
increase in application rate is small compared the
observed increases of 89% in irrigated land area and

115% in irrigation withdrawal between the historic
and modern periods.

A second important trend in irrigation practices in
the Scott Valley is that most irrigation in the Scott
Valley is currently applied with sprinklers, and con-
veyance occurs in a pipe network. Recharge of ground
water resulting from former flood irrigation practices
has been largely eliminated, as has been observed in
other locations around the western U.S. (Johnson
et al., 1999; Venn et al., 2004). Mack (1958) estimated
that during water year 1953, recharge to the alluvial
aquifers in the Scott Valley was provided by precipi-
tation (about 25 Mm3), tributary inflow (unspecified
amount), and irrigation seepage (about 21 Mm3).
Thus, in 1953, of the 48 Mm3 withdrawn for irriga-
tion, only about 27 Mm3 (56%) was used consump-
tively. This efficiency is typical of flood irrigation
systems with ditch conveyance (Battikhi and
Abu-Hammad, 1994; Venn et al., 2004). Conversion
from flood to sprinkler irrigation has been reported to
increase efficiencies to about 70% (Venn et al., 2004),
implying that while withdrawal of irrigation water in
the Scott Valley has increased 115% since the 1950s,
consumptive use may have increased by as much as
167%. Venn et al. (2004) reported that after conver-
sion from flood to sprinkler irrigation in an alluvial
valley in Wyoming, streamflow decreased signifi-
cantly in the late summer and early fall because of
decreased recharge of ground water, and this same
mechanism could be acting in the Scott Valley as
well.

A third important change is that ground water
replaced surface water as the dominant source of irri-
gation water between 1990 and 2000 (Figure 7),
reflecting trends observed across the western U.S.
(Hutson et al., 2004). Even if recharge from precipita-
tion and tributary inflow have remained unchanged
since the 1950s, change in irrigation conveyance and
application methods and increased pumping of
ground water in the Scott Valley could have resulted
in decline of aquifer water levels. These alluvial aqui-
fers discharge to the Scott River and its tributaries
(Mack, 1958), and thus decline in aquifer levels could
result in lowered base flows in the Scott River. In the
upper Snake River basin of Idaho, where ground
water-surface water interactions in an irrigation sys-
tem have been extensively studied, conversion from
flood to sprinkler irrigation and increase in pumping
of ground water have resulted in significant declines
discharge from the aquifer into the Snake River
(Johnson et al., 1999; Miller et al., 2003b). Because of
lag times inherent in ground water responses, with-
drawal of ground water in the middle of the irrigation
season can affect stream base-flow into the late sum-
mer and early fall. Furthermore, ground water pro-
vides a source of irrigation water late in the season

FIGURE 7. Annual Irrigation Withdrawal (top) and Irrigated Land
Area (bottom) in the Scott River Basin From 1953 to 2001. Note
that ground water made up less than 3% of total withdrawals in
1953 and more than 80% in 2001. Total annual withdrawal
increased from 48 Mm3 in 1953 to an average of 103 Mm3 over the
period 1988-2001, in close proportion to increase in irrigated area
(62 Mm3 in 1953, average of 117 Mm2 over 1988-2001). Data for
1953 are from Mack (1958). All other data were provided by the
California Department of Water Resources upon request.
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when streamflow is low and availability of surface
water is limited. Thus, transition from an irrigation
system based primarily on diversion of surface water
from streams to one with a large capacity to pump
ground water allows more water to be used late in
the irrigation season. Finally, because ground-water
pumping in the Scott Valley is unregulated, actual
withdrawal amounts could differ from those reported
on an annual basis by CDWR, and there is a general
lack of data that is sufficient in spatial and temporal
extent to perform the mechanistic modeling of inter-
actions between ground and surface water that would
be necessary to quantify the effect that changes in
irrigation practices have had on streamflow in the
Scott River.

Comparison With Drake et al. (2000)

Our estimate that 39% of the decrease in Scott
River base-flow is due to climatic factors is contrary
to that of Drake et al. (2000), who concluded that
78% of the decrease is due to decline in April 1 SWE.
The disparity in these conclusions is easily explained
by analysis methods. First, Drake et al. (2000) ana-
lyzed hydrologic data from the Scott River watershed
alone, whereas our study employed a comparative
approach using other watersheds in the basin. Sec-
ondly, they did not use any variables related to water
use, which clearly show substantial changes over the
same time period during which base flows have
decreased (Figure 7). Finally, Drake et al. (2000)
based their conclusion on decrease in April 1 SWE at
Snow Courses 4 and 285 and a single term represent-
ing this SWE decrease in a multiple regression equa-
tion explaining September discharge in the Scott
River. Their regression equation was

Q ¼ ð2:5 þ 1:18 � annualprecip: þ 8:6

� Augustprecip: � 6:7 � Julyprecip: þ 0:48

� Course 285 SWE þ 0:25

� Course 5 SWEÞ2; ð5Þ

where Q is September discharge, annual and monthly
precipitation are as recorded on the Scott Valley floor,
and April 1 values were used for the SWE terms.
Because SWE at Snow Courses 4 and 285 were
highly correlated, Snow Course 285 was chosen to
represent these courses in the regression equation.
Snow Course 5 was used to represent SWE at
Courses 5 and 298, two highly correlated courses at
which April SWE exhibited little temporal trend. The
regression analysis did not include SWE at the other

snow course in the Scott River watershed (Course
311) nor at courses near the Scott River drainage
basin divide in adjacent watersheds (Courses 1 and
13; Figure 1). April 1 SWE at these courses showed
no significant decrease between historic and modern
periods (Table 2). The estimate that 78% of the
decline in Scott River base-flow is due to climate was
based on the r2-value of 0.78 for the regression Equa-
tion (5).

Based on mean values for the explanatory vari-
ables in the regression equation, the annual precipi-
tation term is six times greater in magnitude than
the August precipitation term and over 10 times
greater in magnitude than the July precipitation
term. Thus, July and August precipitation contribute
relatively little to September discharge. The annual
precipitation term is about 1.5 times greater than the
Snow Course 285 term and about three times greater
than the Snow Course 5 term. Mean annual precipi-
tation at the Ft. Jones weather station, located near
the Scott River gage, was 55.9 cm during the historic
period and 54.8 cm during the modern period. April 1
SWE at Course 5 averaged 80.8 cm during the his-
toric period and 81.4 cm during the modern period.
These two variables show almost no change between
historic and modern periods, and the sum of their
respective terms in the regression equation is over
twice as large as the Snow Course 285 term. There-
fore, the conclusion of Drake et al. (2000) is based on
a single term that accounts for less than one-third of
the total magnitude of the variable terms in the
regression equation.

Implications for Fisheries

Based on our estimate of the component of Scott
River base-flow decrease attributable to changes in
water use, returning irrigation to historic-period
patterns in the Scott River would, in theory, increase
July 1-October 22 discharge by an average of
0.65 m3 ⁄ s. This estimate includes continued irrigation
withdrawal at the pre-1970s rate of about 50 Mm3,
albeit with as much as 21 Mm3 of this returning to
the aquifer and streams via canal seepage. It also
accounts for decrease in streamflow caused by
regional-scale climate trends. Under current
conditions, streamflow in the Scott River can drop
below 0.283 m3 ⁄ s in the late summer and early fall of
dry years. At this discharge, some reaches of the
river become a series of stagnant and disconnected
pools that are inhospitable to many aquatic species.
An additional 0.65 m3 ⁄ s could create a viable corridor
for movement of aquatic species, decrease
fluctuations in water temperature (particularly daily
maxima), and maintain the functionality of cold
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water seeps and tributary mouths upon which
salmonids rely (Cederholm et al., 1988; Sandercock,
1991; Stanford and Ward, 1992). Bartholow (2005)
observed a warming trend of 0.5�C ⁄ decade in
Klamath River water temperatures over the same
period of years we have analyzed, suggesting that
provision of cold-water refugia for aquatic life will
become even more critical as climate warming
continues. Although it is not likely that irrigation
sources, withdrawal amounts, and application
methods in the Scott River watershed will revert
back to those of the 1960s, our results at least
provide evidence that observed declines in base flow
have not been caused by climate trends alone and
hence could be reversed to the benefit of salmon and
other aquatic life through changes in water
management. However, management of water
resources in the Scott Valley to meet the needs of
both agriculture and fish will require consistent and
accurate watermaster service for the entire valley,
quantification of ground-water withdrawals and their
effects on surface water, and water-use data that are
easily obtainable. A major research need in the Scott
Valley relevant to water management and aquatic
species conservation is a comprehensive study of
interactions between ground water and surface water
that includes mechanistic modeling of effects of
ground-water withdrawal on streamflow throughout
the valley.

CONCLUSIONS

We statistically analyzed streamflow in five lower
Klamath Basin streams that are unregulated by stor-
age reservoirs as well as April 1 SWE at all 16 snow
courses in the basin with long periods of record. We
compared streamflow and April 1 SWE between his-
toric (1942-1976) and modern (1977-2005) periods,
which were defined based on two distinct phases of
the PDO. The historic period was a cold phase, which
has been associated with high snowpack and high
streamflows throughout the Pacific Northwest, and
the modern period was a warm phase, which has
been associated with lower snowpacks and stream-
flows region-wide. April 1 SWE decreased signifi-
cantly between historic and modern periods at
low-elevation snow courses in the lower Klamath
Basin. No significant trends were apparent at higher
elevations. Correspondingly, base flow decreased
significantly in the two study streams with the lowest
latitude-adjusted elevation and increased slightly in
two of the higher-elevation study streams. With the
Scott River excluded from the analysis, the depen-

dence of base-flow change on adjusted elevation fol-
lows the same trend as that of SWE. Despite a
latitude-adjusted elevation only 1.8% lower than the
highest-elevation watershed in the study, the Scott
River has experienced a much larger reduction in
base flow than the other study streams. Geographic
differences may account for some of the discrepancy
in base flow trends between the Scott River and the
other four watersheds. However, irrigation with-
drawal in the Scott watershed has increased from
about 48 Mm3 per year to over 100 Mm3 since the
1950s, and the amount of ground water withdrawn
for irrigation has increased from about 1 Mm3 per
year to about 50 Mm3. We estimate that 39% of the
observed 10 Mm3 decline in July 1-October 22 dis-
charge in the Scott River has been caused by regio-
nal-scale climatic factors and that the remaining 61%
is attributable to local factors, which include
increases in irrigation withdrawal and consumptive
use. Even after accounting for climatic factors,
returning water use to pre-1970s patterns of with-
drawal sources and quantities, conveyance mecha-
nisms, and application methods in the Scott River
watershed could benefit salmon and other aquatic
biota by increasing July 1-October 22 streamflow by
an average of 0.65 m3 ⁄ s.

If our study watersheds are representative of oth-
ers in the lower Klamath Basin, climate-induced
decreases in late-summer streamflow in low-elevation
watersheds will, at best, complicate the recovery of
anadromous salmonids and may, at worst, hinder
their persistence. Sound water management and
recovery efforts such as habitat and watershed resto-
ration will be required to help offset the effects of cli-
mate warming on river ecology, particularly because
both decreased base flows and increased water tem-
peratures occur simultaneously during periods of
warm climate. Because streams at lower elevations
are more susceptible to decreases in base flow caused
by decreases in April 1 SWE, local-scale human-
induced changes associated with water and land use
could have a greater affect on streamflow and water
temperature in these streams than in higher-eleva-
tion streams experiencing the same continental-scale
warming. The South Fork Trinity River is of particu-
lar concern. It harbors one of the few remaining
stocks of wild spring Chinook salmon in the entire
Klamath Basin, and the latitude and elevation of the
drainage put it at particular risk of climate-induced
changes that adversely affect Chinook salmon and
other species. Furthermore, development and largely
unquantified water use on the South Fork Trinity
River and important fish bearing tributaries such as
Hayfork Creek exacerbate the problem. We recom-
mend additional gaging on streams that are suscepti-
ble to the effects of human use, such as Hayfork
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Creek, and on ‘‘control’’ streams that drain wilder-
ness areas, such as Wooley Creek in the Salmon
River watershed and the North Fork Trinity River, to
monitor future trends in water use and climate in the
lower Klamath Basin.

APPENDIX A: PERMUTATION TESTS

Standard statistical hypothesis tests are commonly
used to analyze time-series data collected at precipi-
tation and streamflow gages (e.g., Helsel and Hirsch,
1992; McCuen, 2003). Most of these tests, whether
parametric or non-parametric, are based on the
assumption that the data were obtained through ran-
dom sampling of infinite populations. However, this
assumption is generally not met by data sets collected
at precipitation and stream gages. First, these types
of data are not randomly selected. The locations of
stream and precipitation gages are almost never ran-
domly chosen, and the recording of data at regular
intervals such as days, months, or years does not con-
stitute random selection. Second, the data rarely con-
stitute a sample but rather comprise the entire
population. For example, if we analyze difference in
annual discharge between two time periods and have
discharge values for every year in both time periods,
then we have the entire population at hand. There is
no sampling, and hence no infinite population to
which inference can be drawn. Permutation tests,
often called randomization tests in experimental con-
texts, are appropriate statistical tests to use for anal-
ysis of these and other types of non-sampled data
(Ramsey and Schafer, 2002). We refer the reader to
the comprehensive texts by Edgington (1995) and
Good (2005) for a full treatment of theory and meth-
odology and here present only a brief treatment of
the two permutation tests used in this paper.

The basic concept behind permutation tests is best
illustrated by the example of testing for differences in
mean between two groups. Consider the comparison
of late-summer discharge in the Scott River between
the two time periods. Once the time-series data are
corrected for serial autocorrelation, the observations
constitute independent, annual values for each of the
64 years between 1942 and 2005, inclusive, and
hence satisfy the assumptions of permutation tests.
We then measure the magnitude of difference in the
mean for each of the two time periods 1942-1976 and
1997-2005, relative to variability, using the test sta-
tistic (Equation 4). This division of 64 years into the
historic and modern period is only one of the
64!

35!29! � 1:39� 1018 distinct ways in which this set of 64
annual values can be divided into two groups of size

35 and 29. Each of these distinct ways is called a per-
mutation, and each has associated with it a particu-
lar value of the test statistic (Equation 2). The
distribution of these test statistics is called the per-
mutation distribution. The p-value of the permutation
test is the probability that we could have selected a
permutation at random for which the value of the
test statistic was at least as extreme (using either
one or two tails, as appropriate to the alternative
hypothesis) as that of the observed grouping (i.e.,
division of the time period into 1942-1976 and 1977-
2005 time periods).

In practice, when the number of permutations is
on the order of 104 or less, one computes the test sta-
tistic for every possible permutation and obtains the
exact p-value of the test. This procedure is inherently
non-parametric and requires no assumptions about
the distribution of the original data or the number of
observations, even if one uses a test statistic such as
(Equation 2) that can be used in the context of a
parametric test. When the number of permutations is
large, there are two choices for conducting the test.
One is to randomly select a large number of permuta-
tions from among those possible and use this sample
to represent the entire set of permutations (see Sup-
plementary Material). The other is to use a standard
parametric test statistic (such as the T-statistic) from
an analogous sample-based hypothesis test. It has
been shown that for the permutation versions of most
of these basic tests, the permutation distribution
approaches the sampling distribution of the test sta-
tistic asymptotically as the number of permutations
becomes infinite, regardless of the distribution of the
original data (Edgington, 1995; Good, 2005). In our
example of 1.39 · 1018 permutations, the permutation
distribution of (Equation 2) is in fact a t-distribution
(Figure A1). Hence, we can calculate the p-value of
the test by comparison of the test statistic with the
standard t-distribution without having to generate
any permutations. In this case, the p-value of the per-
mutation test for difference in mean coincides with
that of the two-sample t-test but the interpretation is
different. In the permutation test, the p-value is the
probability of having obtained a difference in popula-
tion mean at least as extreme as that observed in a
randomly selected division of the data into two popu-
lations of sizes 35 and 29. In the two-sample t-test,
the p-value is the probability of having obtained a dif-
ference in sample mean at least extreme as that
observed based on random selection of a sample of
size 35 from one population and a sample of size
29 from a second, independent population, under the
null hypothesis that the population means are the
same. Thus, even though we might get the ‘‘right
answer’’ in terms of the p-value with naı̈ve use of a
two-sample t-test, our inference would be
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inappropriate because our data do not constitute
samples from infinite populations.

In the permutation version of linear regression,
the permutations consist of all possible ways of pair-
ing the observations of the dependent variable, y,
with those of the independent variable, x. There are
n! such permutations possible with a set of n ordered
pairs. We perform the permutation test on the stan-
dard regression test statistic given by the ratio of
regression mean square to error mean square. The
observed statistic is that obtained from the data
points as they were reported, and that value is com-
pared against the values obtained from all of the
other permutations. When the number of permuta-
tions is large, the permutation distribution of this
test statistic is an F1,n-2-distribution, identical to the
sampling distribution of this test statistic. The SWE
regressions used data pairs from 16 stations, so the
number of permutations is 16! � 2:09� 1013, and use
of the standard F-distribution is appropriate for com-
puting the p-value of the permutation test. However,
the number of permutations in the streamflow regres-
sions was very small, so the standard F-distribution
is not a good approximation to the permutation distri-
bution. In the regression with the Scott River
removed (n = 4), the value of the test statistic
obtained from the observed pairing of dependent and
independent variables was 7.58, the largest among
the 24 permutations. Thus, the p-value for this test is
1 ⁄ 24 = 0.0417 (Table A1). Regression analysis of
these same four data points based on random

sampling produces a p-value of 0.110 (Table A1). If
the four study streams had been randomly selected
from a large number of streams (on the order of 40
streams or more), then the probability is 0.110 of
having observed a linear relationship at least this
strong in a sample of four (x,y) pairs, under the null
hypothesis that there was no linear relationship
between x and y in the whole population. However,
because these four streams were not selected at ran-
dom (they were selected because they were streams
that happened to have long periods of flow records),
it is inappropriate to draw inferences to a large popu-
lation from this set of four. Using permutation test-
ing, the probability is 0.0417 of having observed a
linear relationship this strong by chance assignment
of the x and y values into (x,y) pairs, and we conclude
that among this population of four study streams,
there is a significant dependence of y on x.

To compare the slopes of the SWE and streamflow
regressions (Figure 4), we first computed slopes mi

for each of the possible 24 permutations of the

FIGURE A1. Permutation Distribution of the T-Statistic (Equation
1) for the Difference Between Historic-Period and Modern-Period
Late Summer Discharge in the Scott River (Table 1). The histo-
gram shows T-statistics from 10,000 randomly selected permuta-
tions (from among the 1.39 · 1018 possible), and the curve is the
Student’s t-distribution that would be used for the analogous t-test
based on random samples from populations with unequal vari-
ances. The t-distribution has 39 degrees of freedom, as calculated
using Satterthwaite’s approximation (Ramsey and Schafer, 2002).
In this case, the permutation and sampling distributions of the test
statistic are identical.

Table A1. Cumulative Distribution of the Test Statistic
MSR
MSE

for the Regression of Change in Streamflow vs. Adjusted
Basin Elevation With Scott River Removed (Figure 4).

Test Statistic
Value

Permutation
Probability

Sampling
Probability

7.5800 0.0417 0.1105
7.3102 0.0833 0.1139
2.6847 0.1250 0.2430
2.2445 0.1667 0.2728
2.1459 0.2083 0.2806
2.0749 0.2500 0.2864
1.9534 0.2917 0.2971
1.8136 0.3333 0.3104
1.2981 0.3750 0.3726
1.2497 0.4167 0.3799
1.0196 0.4583 0.4189
0.9162 0.5000 0.4395
0.9001 0.5417 0.4429
0.8407 0.5833 0.4560
0.5477 0.6250 0.5363
0.5388 0.6667 0.5393
0.4449 0.7083 0.5734
0.4289 0.7500 0.5798
0.3393 0.7917 0.6191
0.2621 0.8333 0.6596
0.2047 0.8750 0.6953
0.1894 0.9167 0.7059
0.0677 0.9583 0.8191
0.0622 1.0000 0.8263

Note: The test statistic values are those from each of the 24 possi-
ble permutations. The permutation probability is the probability of
observing a test statistic at least as large from the permutation
distribution, and the sampling probability is the probability of
observing a test statistic at least as large from the sampling distri-
bution, namely an F1,2-distribution. The F-distribution underesti-
mates probabilities for small values of the test statistic and
overestimates them for the larger values.
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streamflow data and slopes mj for each permutation
in a random sample of 1,000 permutations from
among the 16! possible for the SWE data (see Supple-
mentary Material). We then calculated the symmetric
relative difference between the slopes given by

mi �mj

�� ��
0:5 mij j þ mj

�� ��� � ð6Þ

for all possible combinations i, j as i ranged over the
24 streamflow permutations and j ranged over
the 1,000 randomly selected SWE permutations. The
observed relative difference was smaller than 92.61%
of these differences. However, we are interested in
differences in slopes not for all possible pairs of
regression lines but only for those that are statisti-
cally significant to begin with. If the dependence of
change in streamflow on adjusted elevation is inde-
pendent of that of SWE on adjusted elevation, then
the probability of randomly selecting a regression
pair with a difference in slopes as small as the
observed difference and randomly selecting a permu-
tation of the SWE data showing as strong a linear
relationship as that observed is the product of the
two individual probabilities. The probability of the
former event is 1 ) 0.9261 = 0.0739, and the probabil-
ity of the latter is 0.0275. Thus, the desired probabil-
ity is 0.00203. We conclude that it is extremely
unlikely to have observed regression relationships
this similar by chance alone if the dependence of
change in streamflow on elevation is independent of
that of change in SWE on elevation.
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