The following Discharger is authorized to discharge in accordance with the conditions set forth in this Order:

<table>
<thead>
<tr>
<th>Discharger</th>
<th>California Department of Fish and Game</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Facility</td>
<td>Mount Whitney Fish Hatchery</td>
</tr>
<tr>
<td>Facility Address</td>
<td>1 Golden Trout Circle, Independence, CA 93526</td>
</tr>
</tbody>
</table>

Inyo County

The Discharger is authorized to discharge from the following discharge points as set forth below:

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Effluent Description</th>
<th>Discharge Point Latitude*</th>
<th>Discharge Point Longitude*</th>
<th>Receiving Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Fish Hatchery Wastewater</td>
<td>36º, 49’, 58” N</td>
<td>118º, 14’, 38” W</td>
<td>Oak Creek</td>
</tr>
<tr>
<td>002</td>
<td>Influent Overflow</td>
<td>36º, 49’, 58” N</td>
<td>118º, 14’, 48” W</td>
<td>Oak Creek</td>
</tr>
</tbody>
</table>

* (WGS84/NAD83)

This Order was adopted by the Regional Water Board on: June 14, 2006
This Order shall become effective on: June 15, 2006
This Order shall expire on: June 14, 2011

The U.S. Environmental Protection Agency (USEPA) and the Regional Water Board have classified this discharge as a minor discharge.

The Discharger shall file a Report of Waste Discharge in accordance with Title 23, California Code of Regulations, not later than 180 days in advance of the Order expiration date as application for issuance of new waste discharge requirements.

IT IS HEREBY ORDERED, that Order No. 6-99-57 is rescinded upon the effective date of this Order except for enforcement purposes, and, in order to meet the provisions contained in Division 7 of the California Water Code (CWC) and regulations adopted thereunder, and the provisions of the federal Clean Water Act (CWA), and regulations and guidelines adopted thereunder, the Discharger shall comply with the requirements in this Order. This Order shall become the NPDES Permit, pursuant to Section 402 of the Federal Clean Water Act and amendments thereto, and shall take effect on June 15, 2006, provided the USEPA Regional Administrator has no objections.

I, Harold J. Singer, Executive Officer, do hereby certify the following is a full, true, and correct copy of an Order adopted by the California Regional Water Quality Control Board, Lahontan Region, on June 15, 2006.

“Original Signed By”
Harold J. Singer, Executive Officer
TABLE OF CONTENTS

I. Facility Information .. 3
II. Findings ... 4
III. Discharge Prohibitions .. 7
IV. Effluent Limitations and Discharge Specifications ... 9
 A. Effluent Limitations – Discharge Points 001 and 002 ... 9
 B. Land Discharge Specifications – Not Applicable ... 10
 C. Reclamation Specifications – Not Applicable ... 10
V. Receiving Water Limitations .. 10
 A. Surface Water Limitations .. 10
 B. Groundwater Limitations – Not Applicable ... 13
VI. Provisions ... 13
 A. Standard Provisions ... 13
 B. Monitoring and Reporting Program Requirements .. 13
 C. Special Provisions .. 13
 1. Reopener Provisions .. 13
 2. Special Studies, Technical Reports and Additional Monitoring Requirements 14
 4. Compliance Schedules – Not Applicable ... 17
 5. Construction, Operation and Maintenance Specifications ... 17
 7. Other Special Provisions – Not Applicable .. 18
VII. Compliance Determination .. 18
 A. Limitation Bases .. 18
 1. Average Monthly Effluent Limitation (AMEL) .. 18
 2. Maximum Daily Effluent Limitation (MDEL) ... 18
 3. Instantaneous Minimum Effluent Limitation ... 19
 4. Instantaneous Maximum Effluent Limitation ... 19
 B. Priority Pollutants .. 19
Attachment A – Definitions, Acronyms & Abbreviations ... A-1
Attachment B – Topographic Map ... B-1
Attachment C – Flow Schematic .. C-1
Attachment E – Monitoring and Reporting Program (MRP) .. E-1
Attachment F – Fact Sheet ... F-1
Attachment G – Basin Plan Water Quality Objective Tables ... G-1
Attachment H – Reasonable Potential Analysis Summary .. H-1
Attachment I – Projected Aquaculture Drug and Chemical Use ... I-1
Attachment J – Drug and Chemical Usage Report Table ... J-1
Attachment K – Self-Monitoring Report (SMR) Forms ... K-1
I. FACILITY INFORMATION

The following Discharger is authorized to discharge in accordance with the conditions set forth in this Order:

<table>
<thead>
<tr>
<th>Discharger</th>
<th>California Department of Fish and Game</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Facility</td>
<td>Mount Whitney Fish Hatchery</td>
</tr>
<tr>
<td>Facility Address</td>
<td>1 Golden Trout Circle</td>
</tr>
<tr>
<td></td>
<td>Independence, CA 93526</td>
</tr>
<tr>
<td>Facility Contact, Title, and Phone</td>
<td>Marvin D. Waters, Fish Hatchery Manager I, (760) 878-2272</td>
</tr>
<tr>
<td>Mailing Address</td>
<td>SAME</td>
</tr>
<tr>
<td>Type of Facility</td>
<td>Concentrated Aquatic Animal Production/ Fish Hatchery</td>
</tr>
<tr>
<td>Facility Design Flow</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>
II. FINDINGS

The California Regional Water Quality Control Board, Lahontan Region (hereinafter Regional Water Board), finds:

A. Background. The California Department of Fish and Game (hereinafter Discharger) are currently discharging under Order No. 6-99-57 and National Pollutant Discharge Elimination System (NPDES) Permit No. CA0102784. The Discharger submitted a Report of Waste Discharge, dated November 1, 2004, and applied for a NPDES permit renewal to discharge up to 4.6 million gallons per day of treated wastewater from Mt. Whitney Fish Hatchery, hereinafter Facility. The application was deemed complete on December 1, 2004.

B. Facility Description. The Discharger owns and operates a fish hatchery. The treatment system consists of supply water treatment facilities and flow-through effluent settling ponds. Wastewater is discharged from Discharge Point 001 and influent overflow is discharged from Point 002. (see table on cover page) to Oak Creek, a water of the United States within the Owens watershed. Attachment B provides a topographic map of the area around the facility. Attachment C provides a wastewater flow schematic and diagram of the facility.

C. Legal Authorities. This Order is issued pursuant to section 402 of the Federal Clean Water Act (CWA), 33 United States Code (USC) 1342, and implementing regulations adopted by the U.S. Environmental Protection Agency (USEPA) and Chapter 5.5, Division 7 of the California Water Code (CWC). Special NPDES Requirements for concentrated aquatic animal production facilities are regulated by Code of Federal Regulations (CFR) at 40 CFR §122.24. This order shall serve as a NPDES permit for point source discharges from this facility to surface waters. This Order also serves as Waste Discharge Requirements (WDRs) pursuant to Article 4, Chapter 4 of the CWC for discharges that are not subject to regulation under CWA section 402.

D. Background and Rationale for Requirements. The Regional Water Board developed the requirements in this Order based on information submitted as part of the application, through monitoring and reporting programs, and through special studies. Attachments A through H, which contain background information and rationale for Order requirements, are hereby incorporated into this Order and, thus, constitute part of the Findings for this Order.

E. California Environmental Quality Act (CEQA). This action to adopt an NPDES permit is exempt from the provisions of the California Environmental Quality Act (Public Resources Code Section 21100, et seq.) in accordance with Section 13389 of the CWC.

F. Technology-based Effluent Limitations. The Code of Federal Regulations (CFR) at 40 CFR §122.44(a) requires that permits include applicable technology-based limitations and standards. This Order includes technology-based effluent limitations based on Best Professional Judgment (BPJ) in accordance with 40 CFR §125.3. A detailed discussion of the technology-based effluent limitations development is included in the Fact Sheet (Attachment F).

G. Water Quality-based Effluent Limitations. Section 122.44(d) of 40 CFR requires that permits include water quality-based effluent limitations (WQBELs) to attain and maintain applicable numeric and narrative water quality criteria to protect the beneficial uses of the receiving water.
Where numeric water quality objectives have not been established, 40 CFR §122.44(d) specifies that WQBELs may be established using USEPA criteria guidance under CWA section 304(a), proposed State criteria or a State policy interpreting narrative criteria supplemented with other relevant information, or an indicator parameter.

H. Water Quality Control Plans. The Regional Water Board adopted a Water Quality Control Plan for the Lahontan Region (hereinafter Basin Plan) that designates beneficial uses, establishes water quality objectives, and contains implementation programs and policies to achieve those objectives for all waters addressed through the plan. In addition, State Water Resources Control Board (State Water Board) Resolution No. 88-63 requires that, with certain exceptions, the Regional Water Board assign the municipal and domestic supply use to water bodies that do not have beneficial uses listed in the Basin Plan. Beneficial uses applicable to Oak Creek and the Owens Valley Ground Water Basin are as follows:

<table>
<thead>
<tr>
<th>Discharge Points</th>
<th>Receiving Water Name</th>
<th>Beneficial Use(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 and 002</td>
<td>Oak Creek</td>
<td>Existing: Municipal and domestic water supply (MUN); agricultural supply (AGR); industrial service supply (IND); ground water recharge (GWR); contact (REC-1) and non-contact (REC-2) water recreation; commercial and sport fishing (COMM); aquaculture (AQUA); warm freshwater habitat (WARM); cold freshwater habitat (COLD); wildlife habitat (WILD); preservation of rare, threatened or endangered species (RARE); and spawning, reproduction and development (SPWN).</td>
</tr>
<tr>
<td>--</td>
<td>Owens Valley Ground Water Basin</td>
<td>Existing: Municipal and domestic water supply (MUN); agricultural supply (AGR); industrial service supply (IND); freshwater replenishment (FRSH); and wildlife habitat (WILD).</td>
</tr>
</tbody>
</table>

The State Water Board adopted a Water Quality Control Plan for Control of Temperature in the Coastal and Interstate Water and Enclosed Bays and Estuaries of California (Thermal Plan) on May 18, 1972, and amended this plan on September 18, 1975. This plan contains temperature objectives for inland surface waters.

Requirements of this Order specifically implement the applicable Water Quality Control Plans.

I. National Toxics Rule (NTR) and California Toxics Rule (CTR). USEPA adopted the NTR on December 22, 1992, which was amended on May 4, 1995 and November 9, 1999, and the CTR on May 18, 2000, which was amended on February 13, 2001. These rules include water quality criteria for priority pollutants and are applicable to this discharge.

J. State Implementation Policy. On March 2, 2000, State Water Board adopted the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (State Implementation Policy or SIP). The SIP became effective on April 28, 2000, with respect to the priority pollutant criteria promulgated for California by the USEPA through the NTR and to the priority pollutant objectives established by the Regional Water Boards in their basin plans, with the exception of the provision on alternate test procedures for individual discharges that have been approved by USEPA Regional Administrator. The alternate test
procedures provision was effective on May 22, 2000. The SIP became effective on May 18, 2000. The SIP includes procedures for determining the need for and calculating WQBELs and requires dischargers to submit data sufficient to do so.

K. **Compliance Schedules and Interim Requirements.** Section 2.1 of the SIP provides that, based on a discharger’s request and demonstration that it is infeasible for an existing discharger to achieve immediate compliance with an effluent limitation derived from a CTR criterion, compliance schedules may be allowed in an NPDES permit. Unless an exception has been granted under Section 5.3 of the SIP, a compliance schedule may not exceed 5 years from the date that the permit is issued or reissued, nor may it extend beyond 10 years from the effective date of the SIP (or May 18, 2010) to establish and comply with CTR criterion-based effluent limitations. Where a compliance schedule for a final effluent limitation exceeds 1 year, the Order must include interim numeric limitations for that constituent or parameter. Where allowed by the Basin Plan, compliance schedules and interim effluent limitations or discharge specifications may also be granted to allow time to implement a new or revised water quality objective. This Order does not include compliance schedules and interim effluent limitations.

L. **Antidegradation Policy.** Section 131.12 of 40 CFR requires that State water quality standards include an antidegradation policy consistent with the federal policy. The State Water Board established California’s antidegradation policy in State Water Board Resolution 68-16, which incorporates the requirements of the federal antidegradation policy. Resolution 68-16 requires that existing quality of waters be maintained unless degradation is justified based on specific findings. As discussed in detail in the Fact Sheet (Attachment F) the permitted discharge is consistent with the antidegradation provision of 40 CFR §131.12 and State Water Board Resolution 68-16.

M. **Anti-Backsliding Requirements.** Sections 402(o)(2) and 303(d)(4) of the CWA and federal regulations at 40 CFR § 122.44(l) prohibit backsliding in NPDES permits. These anti-backsliding provisions require effluent limitations in a reissued permit to be as stringent as those in the previous permit, with some exceptions where limitations may be relaxed. All effluent limitations in this Order are at least as stringent as the effluent limitations in the previous Order.

N. **Monitoring and Reporting.** Section 122.48 of 40 CFR requires that all NPDES permits specify requirements for recording and reporting monitoring results. Sections 13267 and 13383 of the CWC authorize the Regional Water Boards to require technical and monitoring reports. The Monitoring and Reporting Program establishes monitoring and reporting requirements to implement federal and State requirements. This Monitoring and Reporting Program is provided in Attachment E.

O. **Standard and Special Provisions.** Standard Provisions, which in accordance with 40 CFR §§122.41and 122.42, apply to all NPDES discharges and must be included in every NPDES permit, are provided in Attachment D. The Regional Water Board has also included in this Order special provisions applicable to the Discharger. A rationale for the special provisions contained in this Order is provided in the attached Fact Sheet (Attachment F).

P. **Notification of Interested Parties.** The Regional Water Board has notified the Discharger and interested agencies and persons of its intent to prescribe Waste Discharge Requirements for the
discharge and has provided them with an opportunity to submit their written comments and recommendations. Details of notification are provided in the Fact Sheet (Attachment F) of this Order.

Q. **Consideration of Public Comment.** The Regional Water Board, in a public meeting, heard and considered all comments pertaining to the discharge. Details of the Public Hearing are provided in the Fact Sheet (Attachment F) of this Order.

III. DISCHARGE PROHIBITIONS

A. Discharge Prohibitions – Discharge Points 001 and 002

1. The discharge of waste\(^a\) which causes violation of any narrative water quality objective contained in the Basin Plan is prohibited.

2. The discharge of waste which causes violation of any numeric water quality objective contained in the Basin Plan is prohibited.

3. Where any numeric or narrative water quality objective contained in the Basin Plan is already being violated, the discharge of waste which causes further degradation or pollution is prohibited.

4. The discharge of untreated sewage, garbage, or other solid wastes, or industrial wastes into surface waters of the Region is prohibited.

5. The discharge of hatchery wastewater except to the authorized discharge point (Discharge Point 001) is prohibited.

6. There shall be no discharge, bypass, or diversion of hatchery wastewater from the transport or treatment facilities to surface waters other than that authorized by this Order.

7. The discharge shall not cause a pollution as defined in Section 13050 of the California Water Code, or a threatened pollution.

8. Neither the treatment nor the discharge shall cause a nuisance as defined in Section 13050 of the California Water Code.

9. The discharge shall not cause a violation of any applicable water quality standards for receiving water adopted by the Regional Water Board or the State Water Resources Control Board (SWRCB).

 a. The discharge of any therapeutic or pharmaceutical aquaculture drug or chemical resulting in toxicity in receiving waters is prohibited.

\(^a\) "Waste" is defined to include any waste or deleterious material including, but not limited to, waste earthen materials (such as soil, silt, sand, clay, rock, or other organic or mineral material) and any other waste as defined in the California Water Code § 13050(d).
b. The discharge of any pesticides resulting in detectable concentrations in receiving waters is prohibited.

10. The use of any aquaculture drug or chemical not authorized for discharge in Section VI.C.2.a of this Order, which may be potentially discharged to waters of the United States or of the State, is prohibited. Modifications to the authorized discharge of aquaculture drugs and chemicals at the Facility may be allowed by the Regional Water Board as specified in Section VI.C.2.a of this Order.

B. Discharge Prohibitions – Discharge Point 002

1. The addition of any chemicals or aquaculture drugs to wastewaters discharged through Discharge Point 002 is prohibited. Modifications to the authorized discharge of aquaculture drugs and chemicals at the Facility may be allowed by the Regional Water Board as specified in Section VI.C.2.a of this Order.

2. Discharges to Point 002 other than intake overflow are prohibited.

3. Wastewater or any other water from animal holding enclosures shall not be discharged to Point 002.

4. Deviations from schematic in Attachment C are not permitted.
IV. EFFLUENT LIMITATIONS AND DISCHARGE SPECIFICATIONS

A. Effluent Limitations – Discharge Points 001 and 002

1. Final Effluent Limitations – Discharge Point 001

a. The discharge of fish hatchery wastewater shall maintain compliance with the following effluent limitations at Discharge Point 001, with compliance measured at Monitoring Location M-001 as described in the attached Monitoring and Reporting Program (Attachment E):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitations</th>
<th></th>
<th></th>
<th>Instantaneous Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Monthly</td>
<td>Maximum Daily</td>
<td>Instantaneous Minimum</td>
<td></td>
</tr>
<tr>
<td>Conventional Pollutants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>--</td>
<td>--</td>
<td>6.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>mg/L</td>
<td>6.0</td>
<td>--</td>
<td>--</td>
<td>15.0</td>
</tr>
<tr>
<td>Priority Pollutants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, total recoverable</td>
<td>µg/L</td>
<td>1.96</td>
<td>3.93</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Non-Conventional Pollutants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>mg/L</td>
<td>0.65</td>
<td>1.3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>mg/L</td>
<td>--</td>
<td>1.3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Settleable Solids</td>
<td>ml/L</td>
<td>0.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

mgd = million gallons per day
mg/L = milligrams per liter
µg/L = micrograms per liter
ml/L = milliliters per liter

\[a \text{ Limit is 6.0 mg/L net over levels in influent} \]
2. Final Effluent Limitations – Discharge Point 002 – Not Applicable

3. Interim Effluent Limitations – Not Applicable

B. Land Discharge Specifications – Not Applicable

C. Reclamation Specifications – Not Applicable

V. RECEIVING WATER LIMITATIONS

A. Surface Water Limitations

1. This discharge shall not cause a violation of any applicable WQOs as set forth in the Basin Plan for receiving waters adopted by the Regional Board or the State Water Resources Control Board as required by the Federal Water Pollution Control Act and regulations adopted thereunder. If more stringent applicable water quality standards are promulgated or approved pursuant to Section 303 of the Federal Water Pollution Control Act or amendments thereto, the Regional Board will revise and modify this Order in accordance with such more stringent standards.

2. The following receiving water limitations are based on water quality objectives contained in the Basin Plan which apply to all surface waters (including wetlands) within the Lahontan Region and are a required part of this Order. The discharge of fish hatchery wastewater shall not cause an exceedance of any of the following:

 a. Ammonia: Ammonia concentrations shall not exceed the values listed for the corresponding conditions in Tables 3-1 and 3-3 contained in Attachment G of this Order. For temperature and pH values not explicitly in these tables, the most conservative value neighboring the actual value may be used or criteria can be calculated from numerical formulas available on page 3-4 of the Basin Plan.

 b. Bacteria, Coliform: Waters shall not contain concentrations of coliform organisms attributable to anthropogenic sources, including human and livestock wastes. The fecal coliform concentration during any 30-day period shall not exceed a log mean of 20/100 ml, nor shall more than 10 percent of all samples collected during any 30-day period exceed 40/100 ml.

 c. Biostimulatory Substances: Waters shall not contain biostimulatory substances in concentrations that promote aquatic growths to the extent that such growths cause nuisance or adversely affect the water for beneficial uses.

 d. Chemical Constituents: Waters shall not contain concentrations of chemical constituents in excess of the maximum contaminant level (MCL) or secondary maximum contaminant level (SMCL) based upon drinking water standards specified in the provisions of Title 22 of the California Code of Regulations. Waters shall not contain concentrations of
chemical constituents in amounts that adversely affect the water for beneficial uses (i.e., agricultural purposes).

e. Chlorine, Total Residual: For the protection of aquatic life, total chlorine residual shall not exceed either a median value of 0.002 mg/L or a maximum value of 0.003 mg/L. Median values shall be based on daily measurements taken within any six-month period.

f. Color: Waters shall be free of coloration that causes nuisance or adversely affects the water for beneficial uses.

g. Dissolved Oxygen: The dissolved oxygen concentration, as percent saturation, shall not be depressed by more than 10 percent, nor shall the minimum dissolved oxygen concentration be less than 80 percent of saturation. The minimum dissolved oxygen concentration shall not be less than that specified for “COLD with SPWN” beneficial use class in Table 3-6 in Attachment G of this Order.

h. Floating Materials: Waters shall not contain floating material, including solids, liquids, foams, and scum, in concentrations that cause nuisance or adversely affect the water for beneficial uses. The concentrations of floating material shall not be altered to the extent that such alterations are discernable at the 10 percent significance level.

i. Nondegradation of Aquatic Communities and Populations: All wetlands shall be free from substances attributable to wastewater or other discharges that produce adverse physiological responses in humans, animals, or plants; or which lead to the presence of undesirable or nuisance aquatic life. All wetlands shall be free from activities that would substantially impair the biological community as it naturally occurs due to physical, chemical and hydrological processes.

j. Oil and Grease: Waters shall not contain oils, greases, waxes or other materials in concentrations that result in a visible film or coating on the surface of the water or on objects in the water, that cause nuisance, or that otherwise adversely affect the water for beneficial uses. The concentration of oils, greases, or other film or coat generating substances shall not be altered.

k. Pesticides: For the purposes of this Order, pesticides are defined to include insecticides, herbicides, rodenticides, fungicides, piscicides and all other economic poisons. An economic poison is any substance intended to prevent, repel, destroy, or mitigate the damage from insects, rodents, predatory animals, bacteria, fungi or weeds capable of infesting or harming vegetation, humans, or animals (CA Agriculture Code § 12753). Pesticide concentrations, individually or collectively, shall not exceed the lowest detectable levels, using the most recent detection procedures available. There shall not be an increase in pesticide concentrations found in bottom sediments. There shall be no detectable increase in bioaccumulation of pesticides in aquatic life.

l. pH: Changes in normal ambient pH levels shall not exceed 0.5 pH units, nor shall the effluent contribute to the ambient pH exceeding the range between 6.5 and 8.5, whichever is more restrictive.
m. Radioactivity: Radionuclides shall not be present in concentrations which are deleterious to human, plant, animal, or aquatic life nor which result in the accumulation of radionuclides in the food web to an extent which presents a hazard to human, plant, animal, or aquatic life. Waters shall not contain concentrations of radionuclides in excess of the limits specified in Title 22 of the California Code of Regulations.

n. Sediment: The suspended sediment load and suspended sediment discharge rate of surface waters shall not be altered in such a manner as to cause nuisance or adversely affect the water for beneficial uses.

o. Settleable Materials: Waters shall not contain substances in concentrations that result in deposition of material that causes nuisance or that adversely affects the water for beneficial uses. The concentration of settleable materials shall not be raised by more that 0.1 milliliter per liter.

p. Suspended Materials: Waters shall not contain suspended materials in concentrations that cause nuisance or that adversely affects the water for beneficial uses.

q. Taste and Odor: Waters shall not contain taste or odor-producing substances in concentrations that impart undesirable tastes or odors to fish or other edible products of aquatic origin, that cause nuisance, or that adversely affect the water for beneficial uses. The taste and odor of waters shall not be altered.

r. Temperature: The natural receiving water temperature shall not be altered.

s. Toxicity: Waters shall be maintained free of toxic substances in concentrations that are toxic to, or that produce detrimental physiological responses in human, plant, animal, or aquatic life. The survival of aquatic life in surface waters subjected to a waste discharge, or other controllable water quality factors, shall not be less than that for the same water body in areas unaffected by the waste discharge, or when necessary, for other control water that is consistent with the requirements for “experimental water” as defined in Standard Methods for the Examination of Water and Wastewater (American Public Health Association, et al. 1992).

t. Turbidity: Waters shall be free of changes in turbidity that cause nuisance or adversely affect the water for beneficial uses. Increases in turbidity shall not exceed natural levels by more than 10 percent.

3. To protect the beneficial use of municipal and domestic supply (MUN) of the receiving water, the discharge of fish hatchery wastewater shall not cause an exceedance of the following (with compliance measured at Monitoring Location R-001D as described in the attached Monitoring and Reporting Program (Attachment E)):

a. The formaldehyde concentration in the receiving water shall not exceed 0.1 mg/L.
B. Groundwater Limitations – Not Applicable

VI. PROVISIONS

A. Standard Provisions

The California Water Code provides that any person who violates a waste discharge requirement (same as permit condition), or a provision of the California Water Code, is subject to civil penalties of up to $1,000 per day or $10,000 per day of violation, or when the violation involves the discharge of pollutants, is subject to civil penalties of up to $10 per gallon per day or $20 per gallon per day of violation; or some combination thereof, depending on the violation, or upon the combination of violations.

Violations of any of the provisions of the NPDES program, or of any of the provisions of this permit, may subject the violator to any of the penalties described herein, or any combination thereof, at the discretion of the prosecuting authority; except that only one kind of penalty may be applied for each kind of violation.

B. Monitoring and Reporting Program Requirements

The discharger shall comply with the Monitoring and Reporting Program, and future revisions thereto, in Attachment E of this Order.

C. Special Provisions

1. Reopener Provisions

a. If more stringent applicable water quality standards are promulgated or approved pursuant to Section 303 of the Federal Water Pollution Control Act or amendments thereto, the Regional Water Board will revise and modify this Order in accordance with such more stringent standards.

b. If toxicity testing, or information specified below in Section VI.C.2 of this Order, or the drug and chemical use reporting required in the Monitoring and Reporting Program (Attachment E) indicates that any drug or chemical is, or may be, discharged at a level that will cause, have the reasonable potential to cause, or contribute to an in-stream excursion above any chemical-specific water quality criteria or objective, narrative water quality objective for chemical constituents from the Basin Plan, or narrative water quality objective for toxicity from the Basin Plan, this Order may be reopened to establish effluent limitations.
c. Toxicity testing requirements, as specified in Section VI.C.2. of this Order, are based on exposure times of 48 or 96 hours. If the Discharger provides sufficient justification that shorter exposure times are a closer approximation of actual exposure times, then this Order may be reopened to account for shorter exposure times.

d. If effluent monitoring data from Discharge Point 002 indicates that the discharge will cause, have the reasonable potential to cause, or contribute to an in-stream excursion above the water quality criteria or objective, this Order may be reopened to establish effluent limitations.

2. Special Studies, Technical Reports and Additional Monitoring Requirements

a. New Aquaculture Drug or Chemical Use.
Attachment I of this Order lists all aquaculture drugs and chemicals that may potentially be used at the Facility, as well as expected application methods and dosages. This Order authorizes the discharge through Discharge Point 001 of the following aquaculture drugs and chemicals to Oak Creek in accordance with the effluent limitations and other conditions herein:

- Acetic acid
- Amoxicillin trihydrate
- Carbon dioxide
- Chloramine-T
- Copper sulfate pentahydrate
- Erythromycin
- Florfenicol (Nuflor®)
- Formalin (37% formaldehyde solution)
- Hydrogen peroxide
- Isoeugenol (Aqui-S®)
- MS-222 / tricaine methanesulfonate (Finquel®, Tricaine-S®)
- Oxytetracycline HCl (Terramycin®)
- Penicillin G potassium
- Potassium permanganate (Cairox™)
- PVP Iodine
- Sodium bicarbonate
- Sodium chloride (salt)
- Sulfadimethoxine-ormetoprim (Romet-30®)

The Discharger shall submit to the Regional Water Board in writing the following information prior to the use of any new aquaculture drug or chemical not listed above that may enter the wastewater discharge:

1. The common name(s) and active ingredient(s) of the drug or chemical proposed for use and discharge.

This Order prohibits Chloramine-T treatments in more than 2 raceways per day.
2. The purpose for the proposed use of the drug or chemical (i.e. list the specific disease for treatment and specific species for treatment).
3. The amount proposed for use or disposal, and the resulting calculated estimate of concentration in the discharge. Calculations used to derive estimated concentrations must also be submitted.
4. The location, duration and frequency of the proposed use or disposal.
5. Material Safety Data Sheets and available toxicity information.
6. Any related Investigational New Animal Drug (INAD), New Animal Drug Application (NADA) information, extra-label use requirements and/or veterinarian prescriptions.

Prior to discharging a new aquaculture drug or chemical, the Discharger also shall conduct and/or submit the results of acute toxicity testing on any new chemical or drug in accordance with EPA-821-R-02-012, *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition, October 2002*, using *C. dubia*, to determine the NOAEL, and LOAEL. Where exposure of aquatic life to the aquaculture drug or chemical may be long-term or continuous, the Discharger also shall conduct and/or submit the results of chronic toxicity testing in accordance with EPA/21-R-02-013, *Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition, October 2002*, using *C. dubia*, to determine the NOEC or IC$_{25}$.

b. Aquaculture Drug and Chemical Toxicity Studies.

Within 12 months of adoption of this Order, for the aquaculture drugs and chemicals listed below, the Discharger shall either (1) submit to the Regional Water Board sufficient NOAEL, LOAEL, NOEC and IC$_{25}$ values from existing toxicity studies suitable to determine reasonable potential or (2) conduct and submit the results of short term toxicity studies in accordance with methods specified in EPA-821-R-02-012, *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition, October 2002*, using *C. dubia*, to determine the NOAEL and LOAEL at reflective concentrations and potential exposure times that are applicable to this facility. Where exposure of aquatic life to the aquaculture drug or chemical may be long-term or continuous, the Discharger also shall conduct and/or submit the results of chronic toxicity testing in accordance with EPA/21-R-02-013, *Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition, October 2002*, using *C. dubia*, to determine the NOEC or IC$_{25}$.

- Chloramine-T
- Hydrogen peroxide
- Isoeugenol (Aquí-S®)
- MS-222 / tricaine methanesulfonate (Finquel®, Tricaine-S®)
- Oxytetracycline HCl (Terramycin®)
- Penicillin G potassium
- Potassium permanganate (Cairox™)
- PVP Iodine

Limitations and Discharge Requirements 15
The Regional Water Board will review this information and this permit may be reopened to establish effluent limits based on additional use and toxicity information.

c. **Reporting of Unanticipated Discharges.**

(1) The Discharger shall provide to the Regional Water Board an oral report within 24 hours of discovery, the failure of, or damage to, the structure of an aquatic animal containment system resulting in an unanticipated material discharge of pollutants to waters of the United States or State. The Discharger must describe the cause of the failure or damage in the containment system and identifying materials that have been released to the environment as a result of this failure.

The Discharger must provide a written report within 7 days of discovery of the failure or damage documenting the cause, the estimated time elapsed until the failure or damage was repaired, an estimate of the material released as a result of the failure or damage, and steps being taken to prevent a reoccurrence.

(2) In the event a spill of drugs, pesticides or feed occurs that results in a discharge to waters of the United States or State, the Discharger must provide an oral report of the spill to the Regional Water Board within 24 hours of its occurrence and a written report within 7 days. The report shall include the identity and quantity of the material spilled.

3. **Best Management Practices and Pollution Prevention**

 a. **Best Management Practices Plan.**

 Within 12 months of adoption of this Order, the Discharger shall certify in writing to the Regional Water Board that it has developed a Best Management Practices (BMP) plan. The Discharger shall develop and implement the BMP plan to prevent or minimize the generation and discharge of wastes and pollutants to the waters of the United States and waters of the State. The Discharger shall develop and implement a BMP plan consistent with the following objectives:

 1. **Solids Management**

 a. Conduct fish feeding in aquaculture ponds in a manner that limits feed input to the minimum amount reasonably necessary to achieve production goals and sustain targeted rates of aquatic animal growth and minimizes the discharge of unconsumed food and waste products to surface waters.

 b. Clean aquaculture ponds using procedures and at frequencies that minimize the disturbance and subsequent discharge of accumulated solids during routine activities such as inventorizing, grading, and harvesting.

 c. Report the final disposition of all other solids and liquids, including aquaculture drugs and chemicals, not discharged to surface waters in the effluent.
d. Collect, store, and dispose of fish mortalities and other solids in an environmentally safe manner and in manner so as to minimize discharge to waters of the United States or waters of the State.

2. Operations and Maintenance
 a. Maintain in-system production and wastewater treatment technologies to prevent the overflow of any floating matter or bypassing of treatment technologies.
 b. Inspect the production system and the wastewater treatment system on a routine basis in order to identify and promptly repair any damage.
 c. Ensure storage and containment of drugs, chemicals, fuel, waste oil, or other materials to prevent spillage or release into the aquatic animal production Facility, waters of the United States, or waters of the State.
 d. Implement procedures for properly containing, cleaning, and disposing of any spilled material.
 e. Prevent fish from being released within the U.S. Food and Drug Administration (FDA) required withdrawal time of any drug or chemical with which they have been treated.

3. Record keeping
 a. Maintain records for aquatic animal rearing units documenting the feed amounts and estimates of the numbers and weight of aquatic animals in order to calculate representative feed conversion ratios.
 b. Keep records documenting the frequency of cleaning, inspections, maintenance and repairs.

4. Training
 a. Adequately train all relevant facility personnel in spill prevention and how to respond in the event of a spill in order to ensure the proper clean-up and disposal of spilled material.
 b. Train staff on the proper operation and cleaning of production and wastewater treatment systems, including training in feeding procedures and proper use of equipment.
 c. The Discharger shall ensure that its operations staff are familiar with the BMP Plan and have been adequately trained in the specific procedures it requires.

4. Compliance Schedules – Not Applicable

5. Construction, Operation and Maintenance Specifications
 a. Collected screenings, sludges, and other solids, including fish carcasses, shall be disposed of in a manner approved by the Executive Officer and consistent with Consolidated Regulations for Treatment, Storage, Processing, or Disposal of Solid Waste, as set forth in Title 27, CCR, Division 2, Subdivision 1, Section 20005, et seq.
b. All aquaculture drugs and chemicals not discharged to receiving waters in accordance with the provisions of this Order shall be disposed of in an environmentally safe manner, according to label guidelines, Material Safety Data Sheet guidelines and the Discharger’s BMP Plan (see Section VI.C.3 of this Order). Any other form of disposal requires approval from the Executive Officer.

c. All facilities used for transport, and treatment of hatchery wastewater shall be adequately protected against either structural damage or signification reduction in efficiency resulting from a storm or flood having a recurrence interval of once in 100 years.

d. The vertical distance between the water surface elevation and the lowest point of a pond dike or the invert of an overflow structure shall not be less than 1.5 feet (0.46 M).

e. Chloramine-T shall not be used in more than two raceways per day.

6. Special Provisions for Municipal Facilities (POTWs Only) – Not Applicable

7. Other Special Provisions – Not Applicable

VII. COMPLIANCE DETERMINATION

Compliance with the effluent limitations contained in Section IV of this Order will be determined as specified below:

A. Limitation Bases

1. **Average Monthly Effluent Limitation (AMEL).**
 If the average of daily discharges over a calendar month exceeds the AMEL for a given parameter, an alleged violation will be flagged and the discharger will be considered out of compliance for each day of that month for that parameter (e.g., resulting in 31 days of non-compliance in a 31-day month). The average of daily discharges over the calendar month that exceeds the AMEL for a parameter will be considered out of compliance for that month only. If only a single sample is taken during the calendar month and the analytical result for that sample exceeds the AMEL, the discharger will be considered out of compliance for that calendar month. For any one calendar month during which no sample (daily discharge) is taken, no compliance determination can be made for that calendar month.

2. **Maximum Daily Effluent Limitation (MDEL).**
 If a daily discharge exceeds the MDEL for a given parameter, an alleged violation will be flagged and the discharger will be considered out of compliance for that parameter for that 1 day only within the reporting period. For any 1 day during which no sample is taken, no compliance determination can be made for that day.
3. **Instantaneous Minimum Effluent Limitation.**
 If the analytical result of a single grab sample is lower than the instantaneous minimum effluent limitation for a parameter, a violation will be flagged and the discharger will be considered out of compliance for that parameter for that single sample. Non-compliance for each sample will be considered separately (e.g., the results of two grab samples taken within a calendar day that both are lower than the instantaneous minimum effluent limitation would result in two instances of non-compliance with the instantaneous minimum effluent limitation).

4. **Instantaneous Maximum Effluent Limitation.**
 If the analytical result of a single grab sample is higher than the instantaneous maximum effluent limitation for a parameter, a violation will be flagged and the discharger will be considered out of compliance for that parameter for that single sample. Non-compliance for each sample will be considered separately (e.g., the results of two grab samples taken within a calendar day that both exceed the instantaneous maximum effluent limitation would result in two instances of non-compliance with the instantaneous maximum effluent limitation).

B. Priority Pollutants

The Regional Water Board may consider priority pollutants in intake water on a pollutant-by-pollutant and discharge-by-discharge basis when establishing and enforcing water quality-based effluent limitations, provided that the discharger has demonstrated to the satisfaction of the Regional Water Board that the conditions outlined in section 1.4.4 of SIP are met.
ATTACHMENT A – DEFINITIONS, ACRONYMS & ABBREVIATIONS

DEFINITIONS

Average Monthly Effluent Limitation (AMEL): the highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month divided by the number of daily discharges measured during that month.

Daily Discharge: Daily Discharge is defined as either: (1) the total mass of the constituent discharged over the calendar day (12:00 am through 11:59 pm) or any 24-hour period that reasonably represents a calendar day for purposes of sampling (as specified in the permit), for a constituent with limitations expressed in units of mass or; (2) the unweighted arithmetic mean measurement of the constituent over the day for a constituent with limitations expressed in other units of measurement (e.g., concentration).

The daily discharge may be determined by the analytical results of a composite sample taken over the course of one day (a calendar day or other 24-hour period defined as a day) or by the arithmetic mean of analytical results from one or more grab samples taken over the course of the day.

For composite sampling, if 1 day is defined as a 24-hour period other than a calendar day, the analytical result for the 24-hour period will be considered as the result for the calendar day in which the 24-hour period ends.

Inhibition Concentration (IC25): A point estimate of the toxicant concentration that would cause a 25 percent reduction in a nonlethal biological measurement of the test organisms (e.g., reproduction, growth).

Instantaneous Maximum Effluent Limitation: the highest allowable value for any single grab sample or aliquot (i.e., each grab sample or aliquot is independently compared to the instantaneous maximum limitation).

Instantaneous Minimum Effluent Limitation: the lowest allowable value for any single grab sample or aliquot (i.e., each grab sample or aliquot is independently compared to the instantaneous minimum limitation).

Lowest Observed Adverse Effect Level (LOAEL): The lowest level of a stressor that causes statistically and biologically significant differences in test samples as compared to other samples subjected to no stressor. The term is used in this Order when referring to acute toxicity testing.

Maximum Daily Effluent Limitation (MDEL): the highest allowable daily discharge of a pollutant.

No Observed Adverse Effect Level (NOAEL): an exposure level at which there are no statistically or biologically significant increases in the frequency or severity of adverse effects between the exposed population and its appropriate control; some effects may be produced at this level, but they are not considered as adverse. This term is used in this Order when referring to acute toxicity testing.
No Observed Effect Concentration (NOEC): The highest measured concentration of an effluent or a toxicant that causes no statistically significant observed effect on exposed organisms compared with control organisms. The term is used in this Order when referring to chronic toxicity testing.

Maximum Daily Effluent Limitation (MDEL): The highest allowable daily discharge of a pollutant.
ACRONYMS & ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEL</td>
<td>Average Monthly Effluent Limitation</td>
</tr>
<tr>
<td>B</td>
<td>Background Concentration</td>
</tr>
<tr>
<td>BAT</td>
<td>Best Available Technology Economically Achievable</td>
</tr>
<tr>
<td>BCT</td>
<td>Best Conventional Pollutant Control Technology</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>BPJ</td>
<td>Best Professional Judgment</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>BPT</td>
<td>Best practicable treatment control technology</td>
</tr>
<tr>
<td>C</td>
<td>Water Quality Objective</td>
</tr>
<tr>
<td>CAAP</td>
<td>Concentrated Aquatic Animal Production</td>
</tr>
<tr>
<td>CCC</td>
<td>Criterion Continuous Concentration</td>
</tr>
<tr>
<td>CCR</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>CMC</td>
<td>Criterion Maximum Concentration</td>
</tr>
<tr>
<td>CTR</td>
<td>California Toxics Rule</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>CVM</td>
<td>Center for Veterinary Medicine</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>CWC</td>
<td>California Water Code</td>
</tr>
<tr>
<td>DFG</td>
<td>Department of Fish and Game</td>
</tr>
<tr>
<td>DHS</td>
<td>State of California Department of Health Services</td>
</tr>
<tr>
<td>DMR</td>
<td>Discharge Monitoring Report</td>
</tr>
<tr>
<td>ECA</td>
<td>Effluent Concentration Allowance</td>
</tr>
<tr>
<td>ELAP</td>
<td>California Department of Health Services Environmental Laboratory Accreditation Program</td>
</tr>
<tr>
<td>ELG</td>
<td>Effluent Limitations, Guidelines and Standards</td>
</tr>
<tr>
<td>FDA</td>
<td>United States Food and Drug Administration</td>
</tr>
<tr>
<td>GPD</td>
<td>Gallons Per Day</td>
</tr>
<tr>
<td>IC<sub>25</sub></td>
<td>Inhibition Concentration (25%)</td>
</tr>
<tr>
<td>INAD</td>
<td>Investigational New Animal Drug</td>
</tr>
<tr>
<td>IRIS</td>
<td>Integrated Risk Information System</td>
</tr>
<tr>
<td>LA</td>
<td>Load Allocations</td>
</tr>
<tr>
<td>LC<sub>50</sub></td>
<td>Lethal Concentration (50%)</td>
</tr>
<tr>
<td>LOAEL</td>
<td>Lowest Observed Adverse Effect Level</td>
</tr>
<tr>
<td>LOEC</td>
<td>Lowest Observed Effect Concentration</td>
</tr>
<tr>
<td>LRP</td>
<td>Low Regulatory Priority</td>
</tr>
<tr>
<td>LTA</td>
<td>Long-Term Average</td>
</tr>
<tr>
<td>MCL</td>
<td>Maximum Contaminant Level</td>
</tr>
<tr>
<td>MDEL</td>
<td>Maximum Daily Effluent Limitation</td>
</tr>
<tr>
<td>MDL</td>
<td>Method Detection Limit</td>
</tr>
<tr>
<td>MEC</td>
<td>Maximum Observed Effluent Concentration</td>
</tr>
<tr>
<td>MGD</td>
<td>Million Gallons Per Day</td>
</tr>
<tr>
<td>mg/L</td>
<td>Milligrams Per Liter</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>ML</td>
<td>Minimum Level</td>
</tr>
<tr>
<td>MRP</td>
<td>Monitoring and Reporting Program</td>
</tr>
<tr>
<td>NADA</td>
<td>New Animal Drug Application</td>
</tr>
<tr>
<td>ND</td>
<td>Not Detected</td>
</tr>
<tr>
<td>NOAEL</td>
<td>No Observed Adverse Effect Level</td>
</tr>
<tr>
<td>NOEC</td>
<td>No Observable Effect Concentration</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NSPS</td>
<td>New Source Performance Standards</td>
</tr>
<tr>
<td>NTR</td>
<td>National Toxics Rule</td>
</tr>
<tr>
<td>POTW</td>
<td>Publicly-Owned Treatment Works</td>
</tr>
<tr>
<td>PPM</td>
<td>Parts Per Million</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QA/QC</td>
<td>Quality Assurance/Quality Control</td>
</tr>
<tr>
<td>RPA</td>
<td>Reasonable Potential Analysis</td>
</tr>
<tr>
<td>RWQCB</td>
<td>Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Policy (Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California)</td>
</tr>
<tr>
<td>SMCL</td>
<td>Secondary Maximum Contaminant Level</td>
</tr>
<tr>
<td>SMR</td>
<td>Self Monitoring Report</td>
</tr>
<tr>
<td>SWRCB</td>
<td>State Water Resources Control Board</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>TKN</td>
<td>Total Kjeldahl Nitrogen</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Load</td>
</tr>
<tr>
<td>TSD</td>
<td>Technical Support Document</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solid</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>WDR</td>
<td>Waste Discharge Requirements</td>
</tr>
<tr>
<td>WET</td>
<td>Whole Effluent Toxicity</td>
</tr>
<tr>
<td>WLA</td>
<td>Waste Load Allocations</td>
</tr>
<tr>
<td>WQBEL</td>
<td>Water Quality-Based Effluent Limitation</td>
</tr>
<tr>
<td>WQO</td>
<td>Water Quality Objectives</td>
</tr>
</tbody>
</table>

μg/L Micrograms Per Liter
μmhos/cm Micromhos Per Centimeter
ATTACHMENT B – TOPOGRAPHIC MAP

Mt. Whitney Fish Hatchery
1 Golden Trout Circle
Independence, CA 93526
Inyo County

Latitude: 36° 49’ 55” N
Longitude: 118° 14’ 41” W
Section 2, T13S, R34E, MDB&M
USGS Independence 7.5 Minute Quadrangle
ATTACHMENT C – FLOW SCHEMATIC

Concrete Basin (grisley)

Settling Pond

Discharge Point 002

Oak Creek

Supply Water from South Fork Oak Creek (intermittent)

Settling Pond South

Settling Pond North

Raceways

Hatchery

Pond #1

Settling Ponds

Discharge Point 001

Residences

Shop

Garage

Ice Room

Residences

Attachment C – Wastewater Flow Schematic

C-1
Flow Diagram

Influent from South Fork Oak Creek
- **Rock filter**
- **Fish Holding Pond**: 100’ x 230’ x 6’
 - Small amount of flow, not measured, estimated at 10-20 gal/min
- **Hatchery building/egg incubator**: 40’ x 125’
 - A small amount of water goes through hatchery. Occasionally some water from Hatchery flows to the raceways (a few times a year).

Influent from Oak Creek
- **Concrete basin (grisley) used to settle out sand**
- **2 intake settling ponds for settling sand & debris from influent**
 - In the winter both ponds are used. During the rest of the year, only one pond is used. (130’ x 133’ x 10’ each)
 - When both ponds are full, overflow is discharged to Oak Creek (Discharge Point 002).

7 effluent settling ponds total
- **2 large ponds in a series**: (75’ x 120’ x 8’ and 73’ x 148’ x 8’)
- **2 small ponds in 1st series**: (25’ x 55’ x 6’ and 20’ x 75’ x 6’)
- **3 small ponds in 2nd series**: (20’ x 55’ x 6’, 20’ x 45’ x 4’, and 18’ x 30’ x 2’).
 - Only 1 series of small ponds is in use at a time.
 - Water flows from 1st large pond to 2nd large pond, to 1 set of smaller ponds.
 - Combined effluent goes past the weir and into Oak Creek.
 - Discharge is 3.0 mgd (long term average) as reported in permit application.

Oak Creek
- (Discharge Point 001)

Oak Creek
- (Discharge Point 002)
ATTACHMENT D – FEDERAL STANDARD PROVISIONS

I. STANDARD PROVISIONS – PERMIT COMPLIANCE

A. Duty to Comply

1. The Discharger must comply with all of the conditions of this Order. Any noncompliance constitutes a violation of the Clean Water Act (CWA) and the California Water Code (CWC) and is grounds for enforcement action, for permit termination, revocation and reissuance, or denial of a permit renewal application \([40 \text{ CFR} \text{ §}122.41(a)\text{]}.\)

2. The Discharger shall comply with effluent standards or prohibitions established under Section 307(a) of the Clean Water Act for toxic pollutants and with standards for sewage sludge use or disposal established under Section 405(d) of the CWA within the time provided in the regulations that establish these standards or prohibitions, even if this Order has not been modified to incorporate the requirement \([40 \text{ CFR} \text{ §}122.41(a)(1)\text{]}.\)

B. Need to Halt or Reduce Activity Not a Defense

It shall not be a defense for a Discharger in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this Order \([40 \text{ CFR} \text{ §}122.41(c)\text{]}.\)

C. Duty to Mitigate

The Discharger shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal in violation of this Order that has a reasonable likelihood of adversely affecting human health or the environment \([40 \text{ CFR} \text{ §}122.41(d)\text{]}.\)

D. Proper Operation and Maintenance

The Discharger shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the Discharger to achieve compliance with the conditions of this Order. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of backup or auxiliary facilities or similar systems that are installed by a Discharger only when necessary to achieve compliance with the conditions of this Order \([40 \text{ CFR} \text{ §}122.41(e)\text{]}.\)

E. Property Rights

1. This Order does not convey any property rights of any sort or any exclusive privileges \([40 \text{ CFR} \text{ §}122.41(g)\text{]}.\)
2. The issuance of this Order does not authorize any injury to persons or property or invasion of other private rights, or any infringement of State or local law or regulations [40 CFR §122.5(c)].

F. Inspection and Entry

The Discharger shall allow the Regional Water Quality Control Board (RWQCB), State Water Resources Control Board (SWRCB), United States Environmental Protection Agency (USEPA), and/or their authorized representatives (including an authorized contractor acting as their representative), upon the presentation of credentials and other documents, as may be required by law, to [40 CFR §122.41(i)] [CWC 13383(c)]:

1. Enter upon the Discharger's premises where a regulated facility or activity is located or conducted, or where records are kept under the conditions of this Order [40 CFR §122.41(i)(1)];

2. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this Order [40 CFR §122.41(i)(2)];

3. Inspect and photograph, at reasonable times, any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this Order [40 CFR §122.41(i)(3)];

4. Sample or monitor, at reasonable times, for the purposes of assuring Order compliance or as otherwise authorized by the CWA or the CWC, any substances or parameters at any location [40 CFR §122.41(i)(4)].

G. Bypass

1. Definitions

 a. “Bypass” means the intentional diversion of waste streams from any portion of a treatment facility [40 CFR §122.41(m)(1)(i)].

 b. “Severe property damage” means substantial physical damage to property, damage to the treatment facilities, which causes them to become inoperable, or substantial and permanent loss of natural resources that can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production [40 CFR §122.41(m)(1)(ii)].

2. Bypass not exceeding limitations – The Discharger may allow any bypass to occur which does not cause exceedances of effluent limitations, but only if it is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions listed in Standard Provisions – Permit Compliance I.G.3 and I.G.5 below [40 CFR §122.41(m)(2)].

3. Prohibition of bypass – Bypass is prohibited, and the Regional Water Board may take enforcement action against a Discharger for bypass, unless [40 CFR §122.41(m)(4)(i)]:

D-2
a. Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage [40 CFR §122.41(m)(4)(A)];

b. There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass that occurred during normal periods of equipment downtime or preventive maintenance [40 CFR §122.41(m)(4)(B)]; and

c. The Discharger submitted notice to the Regional Water Board as required under Standard Provision – Permit Compliance I.G.5 below [40 CFR §122.41(m)(4)(C)].

4. The Regional Water Board may approve an anticipated bypass, after considering its adverse effects, if the Regional Water Board determines that it will meet the three conditions listed in Standard Provisions – Permit Compliance I.G.3 above [40 CFR §122.41(m)(4)(ii)].

5. Notice

a. Anticipated bypass. If the Discharger knows in advance of the need for a bypass, it shall submit a notice, if possible at least 10 days before the date of the bypass [40 CFR §122.41(m)(3)(i)].

H. Upset

Upset means an exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation [40 CFR §122.41(n)(1)].

1. Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology based permit effluent limitations if the requirements of paragraph H.2 of this section are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review [40 CFR §122.41(n)(2)].

2. Conditions necessary for a demonstration of upset. A Discharger who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs or other relevant evidence that [40 CFR §122.41(n)(3)]:

Attachment D – Standard Provisions D-3
a. An upset occurred and that the Discharger can identify the cause(s) of the upset \[40 \text{ CFR} \ §122.41(n)(3)(i)\];

b. The permitted facility was, at the time, being properly operated \[40 \text{ CFR} \ §122.41(n)(3)(i)\];

c. The Discharger submitted notice of the upset as required in Standard Provisions – Reporting V.E.2.b \[40 \text{ CFR} \ §122.41(n)(3)(iii)\]; and

d. The Discharger complied with any remedial measures required under Standard Provisions – Permit Compliance I.C above \[40 \text{ CFR} \ §122.41(n)(3)(iv)\].

3. Burden of proof. In any enforcement proceeding, the Discharger seeking to establish the occurrence of an upset has the burden of proof \[40 \text{ CFR} \ §122.41(n)(4)\].

II. STANDARD PROVISIONS – PERMIT ACTION

A. General

This Order may be modified, revoked and reissued, or terminated for cause. The filing of a request by the Discharger for modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any Order condition \[40 \text{ CFR} \ §122.41(f)\].

B. Duty to Reapply

If the Discharger wishes to continue an activity regulated by this Order after the expiration date of this Order, the Discharger must apply for and obtain a new permit \[40 \text{ CFR} \ §122.41(b)\].

C. Transfers

This Order is not transferable to any person except after notice to the Regional Water Board. The Regional Water Board may require modification or revocation and reissuance of the Order to change the name of the Discharger and incorporate such other requirements as may be necessary under the CWA and the CWC \[40 \text{ CFR} \ §122.41(l)(3)] [40 \text{ CFR} \ §122.61\].
III. STANDARD PROVISIONS – MONITORING

A. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity [40 CFR §122.41(j)(1)].

B. Monitoring results must be conducted according to test procedures under 40 CFR Part 136 or, in the case of sludge use or disposal, approved under 40 CFR Part 136 unless otherwise specified in 40 CFR Part 503 unless other test procedures have been specified in this Order [40 CFR §122.41(j)(4)] [40 CFR §122.44(i)(1)(iv)].

IV. STANDARD PROVISIONS – RECORDS

A. Except for records of monitoring information required by this Order related to the Discharger's sewage sludge use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), the Discharger shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this Order, and records of all data used to complete the application for this Order, for a period of at least three (3) years from the date of the sample, measurement, report or application. This period may be extended by request of the Regional Water Board Executive Officer at any time [40 CFR §122.41(j)(2)].

B. Records of monitoring information shall include:

1. The date, exact place, and time of sampling or measurements [40 CFR §122.41(j)(3)(i)];
2. The individual(s) who performed the sampling or measurements [40 CFR §122.41(j)(3)(ii)];
3. The date(s) analyses were performed [40 CFR §122.41(j)(3)(iii)];
4. The individual(s) who performed the analyses [40 CFR §122.41(j)(3)(iv)];
5. The analytical techniques or methods used [40 CFR §122.41(j)(3)(v)]; and
6. The results of such analyses [40 CFR §122.41(j)(3)(vi)].

C. Claims of confidentiality for the following information will be denied [40 CFR §122.7(b)]:

1. The name and address of any permit applicant or Discharger [40 CFR §122.7(b)(1)]; and
2. Permit applications and attachments, permits and effluent data [40 CFR §122.7(b)(2)].
V. STANDARD PROVISIONS – REPORTING

A. Duty to Provide Information

The Discharger shall furnish to the Regional Water Board, SWRCB, or USEPA within a reasonable time, any information which the Regional Water Board, SWRCB, or USEPA may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this Order or to determine compliance with this Order. Upon request, the Discharger shall also furnish to the Regional Water Board, SWRCB, or USEPA copies of records required to be kept by this Order [40 CFR §122.41(h)] [CWC 13267].

B. Signatory and Certification Requirements

1. All applications, reports, or information submitted to the Regional Water Board, SWRCB, and/or USEPA shall be signed and certified in accordance with paragraph (2.) and (3.) of this provision [40 CFR §122.41(k)].

2. All permit applications shall be signed as follows:

 a. For a corporation: By a responsible corporate officer. For the purpose of this section, a responsible corporate officer means: (i) A president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision-making functions for the corporation, or (ii) the manager of one or more manufacturing, production, or operating facilities, provided, the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures [40 CFR §122.22(a)(1)];

 b. For a partnership or sole proprietorship: by a general partner or the proprietor, respectively [40 CFR §122.22(a)(2)]; or

 c. For a municipality, State, federal, or other public agency: by either a principal executive officer or ranking elected official. For purposes of this provision, a principal executive officer of a federal agency includes: (i) the chief executive officer of the agency, or (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of USEPA) [40 CFR §122.22(a)(3)].

3. All reports required by this Order and other information requested by the Regional Water Board, SWRCB, or USEPA shall be signed by a person described in paragraph (b) of this
provision, or by a duly authorized representative of that person. A person is a duly authorized representative only if:

a. The authorization is made in writing by a person described in paragraph (2.) of this provision [40 CFR §122.22(b)(1)];

b. The authorization specified either an individual or a position having responsibility for the overall operation of the regulated facility or activity such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company (a duly authorized representative may thus be either a named individual or any individual occupying a named position) [40 CFR §122.22(b)(2)]; and

c. The written authorization is submitted to the Regional Water Board, SWRCB, or USEPA [40 CFR §122.22(b)(3)].

4. If an authorization under paragraph (3.) of this provision is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of paragraph (3.) of this provision must be submitted to the Regional Water Board, SWRCB or USEPA prior to or together with any reports, information, or applications, to be signed by an authorized representative [40 CFR §122.22(c)].

5. Any person signing a document under paragraph (2.) or (3.) of this provision shall make the following certification:

“I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations” [40 CFR §122.22(d)].

C. Monitoring Reports

1. Monitoring results shall be reported at the intervals specified in the Monitoring and Reporting Program in this Order [40 CFR §122.41(l)(4)].

2. Monitoring results must be reported on a Discharge Monitoring Report (DMR) form or forms provided or specified by the Regional Water Board or SWRCB for reporting results of monitoring of sludge use or disposal practices [40 CFR §122.41(l)(4)(i)].

3. If the Discharger monitors any pollutant more frequently than required by this Order using test procedures approved under 40 CFR Part 136 or, in the case of sludge use or disposal, approved under 40 CFR Part 136 unless otherwise specified in 40 CFR Part 503, or as
specified in this Order, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR or sludge reporting form specified by the Regional Water Board [40 CFR §122.41(l)(4)(ii)].

4. Calculations for all limitations, which require averaging of measurements, shall utilize an arithmetic mean unless otherwise specified in this Order [40 CFR §122.41(l)(4)(iii)].

D. Compliance Schedules

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this Order, shall be submitted no later than 14 days following each schedule date [40 CFR §122.41(l)(5)].

E. Twenty-Four Hour Reporting

1. The Discharger shall report any noncompliance that may endanger health or the environment. Any information shall be provided orally within 24 hours from the time the Discharger becomes aware of the circumstances. A written submission shall also be provided within five (5) days of the time the Discharger becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance [40 CFR §122.41(l)(6)(i)].

2. The following shall be included as information that must be reported within 24 hours under this paragraph [40 CFR §122.41(l)(6)(ii)]:

 a. Any unanticipated bypass that exceeds any effluent limitation in this Order [40 CFR §122.41(l)(6)(ii)(A)].

 b. Any upset that exceeds any effluent limitation in this Order [40 CFR §122.41(l)(6)(ii)(B)].

 c. Violation of a maximum daily discharge limitation for any of the pollutants listed in this Order to be reported within 24 hours [40 CFR §122.41(l)(6)(ii)(C)].

3. The Regional Water Board may waive the above-required written report under this provision on a case-by-case basis if an oral report has been received within 24 hours [40 CFR §122.41(l)(6)(iii)].

F. Planned Changes

The Discharger shall give notice to the Regional Water Board as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required under this provision only when [40 CFR §122.41(l)(1)]:

1. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR §122.29(b) [40 CFR §122.41(l)(1)(i)]; or

2. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in this Order nor to notification requirements under 40 CFR Part 122.42(a)(1) (see Additional Provisions—Notification Levels VII.A.1) [40 CFR §122.41(l)(1)(ii)].

3. The alteration or addition results in a significant change in the Discharger's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan [40 CFR §122.41(l)(1)(iii)].

G. Anticipated Noncompliance

The Discharger shall give advance notice to the Regional Water Board or SWRCB of any planned changes in the permitted facility or activity that may result in noncompliance with General Order requirements [40 CFR §122.41(l)(2)].

H. Other Noncompliance

The Discharger shall report all instances of noncompliance not reported under Standard Provisions – Reporting E.3, E.4, and E.5 at the time monitoring reports are submitted. The reports shall contain the information listed in Standard Provision – Reporting V.E [40 CFR §122.41(l)(7)].

I. Other Information

When the Discharger becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Regional Water Board, SWRCB, or USEPA, the Discharger shall promptly submit such facts or information [40 CFR §122.41(l)(8)].

VI. STANDARD PROVISIONS – ENFORCEMENT

A. The CWA provides that any person who violates section 301, 302, 306, 307, 308, 318 or 405 of the Act, or any permit condition or limitation implementing any such sections in a permit issued under section 402, or any requirement imposed in a pretreatment program approved under sections 402(a)(3) or 402(b)(8) of the Act, is subject to a civil penalty not to exceed $25,000 per day for each violation. The CWA provides that any person who negligently violates sections 301, 302, 306, 307, 308, 318, or 405 of the Act, or any condition or limitation implementing any of such sections in a permit issued under section 402 of the Act, or any requirement imposed in a pretreatment program approved under section 402(a)(3) or 402(b)(8) of the Act, is subject to criminal penalties of $2,500 to $25,000 per day of violation, or imprisonment of not more than
one (1) year, or both. In the case of a second or subsequent conviction for a negligent violation, a person shall be subject to criminal penalties of not more than $50,000 per day of violation, or by imprisonment of not more than two (2) years, or both. Any person who knowingly violates such sections, or such conditions or limitations is subject to criminal penalties of $5,000 to $50,000 per day of violation, or imprisonment for not more than three (3) years, or both. In the case of a second or subsequent conviction for a knowing violation, a person shall be subject to criminal penalties of not more than $100,000 per day of violation, or imprisonment of not more than six (6) years, or both. Any person who knowingly violates section 301, 302, 303, 306, 307, 308, 318 or 405 of the Act, or any permit condition or limitation implementing any of such sections in a permit issued under section 402 of the Act, and who knows at that time that he thereby places another person in imminent danger of death or serious bodily injury, shall, upon conviction, be subject to a fine of not more than $250,000 or imprisonment of not more than 15 years, or both. In the case of a second or subsequent conviction for a knowing endangerment violation, a person shall be subject to a fine of not more than $500,000 or by imprisonment of not more than 30 years, or both. An organization, as defined in section 309(c)(3)(B)(iii) of the Clean Water Act, shall, upon conviction of violating the imminent danger provision, be subject to a fine of not more than $1,000,000 and can be fined up to $2,000,000 for second or subsequent convictions.

B. Any person may be assessed an administrative penalty by the Regional Water Board for violating section 301, 302, 306, 307, 308, 318 or 405 of this Act, or any permit condition or limitation implementing any of such sections in a permit issued under section 402 of this Act. Administrative penalties for Class I violations are not to exceed $10,000 per violation, with the maximum amount of any Class I penalty assessed not to exceed $25,000. Penalties for Class II violations are not to exceed $10,000 per day for each day during which the violation continues, with the maximum amount of any Class II penalty not to exceed $125,000.

C. The CWA provides that any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than $10,000, or by imprisonment for not more than 2 years, or both. If a conviction of a person is for a violation committed after a first conviction of such person under this paragraph, punishment is a fine of not more than $20,000 per day of violation, or by imprisonment of not more than 4 years, or both.

D. The CWA provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this Order, including monitoring reports or reports of compliance or noncompliance shall, upon conviction, be punished by a fine of not more than $10,000 per violation, or by imprisonment for not more than six months per violation, or both.
VII. ADDITIONAL PROVISIONS – NOTIFICATION LEVELS

A. Non-Municipal Facilities

Existing manufacturing, commercial, mining, and silvicultural dischargers shall notify the Regional Water Board as soon as they know or have reason to believe [40 CFR §122.42(a)]:

1. That any activity has occurred or will occur that would result in the discharge, on a routine or frequent basis, of any toxic pollutant that is not limited in this Order, if that discharge will exceed the highest of the following "notification levels" [40 CFR §122.42(a)(1)]:
 a. 100 micrograms per liter (µg/L) [40 CFR §122.42(a)(1)(i)];
 b. 200 µg/L for acrolein and acrylonitrile; 500 µg/L for 2,4-dinitrophenol and 2-methyl-4,6-dinitrophenol; and 1 milligram per liter (mg/L) for antimony [40 CFR §122.42(a)(1)(ii)];
 c. Five (5) times the maximum concentration value reported for that pollutant in the Report of Waste Discharge [40 CFR §122.42(a)(1)(iii)]; or
 d. The level established by the Regional Water Board in accordance with 40 CFR §122.44(f) [40 CFR §122.42(a)(1)(iv)].

2. That any activity has occurred or will occur that would result in the discharge, on a non-routine or infrequent basis, of any toxic pollutant that is not limited in this Order, if that discharge will exceed the highest of the following “notification levels” [40 CFR §122.42(a)(2)]:
 a. 500 micrograms per liter (µg/L) [40 CFR §122.42(a)(2)(i)];
 b. 1 milligram per liter (mg/L) for antimony [40 CFR §122.42(a)(2)(ii)];
 c. Ten (10) times the maximum concentration value reported for that pollutant in the Report of Waste Discharge [40 CFR §122.42(a)(2)(iii)]; or
 d. The level established by the Regional Water Board in accordance with 40 CFR §122.44(f) [40 CFR §122.42(a)(2)(iv)].

B. Publicly-Owned Treatment Works (POTWs)

All POTWs shall provide adequate notice to the Regional Water Board of the following [40 CFR §122.42(b)]:

1. Any new introduction of pollutants into the POTW from an indirect discharger that would be subject to Sections 301 or 306 of the CWA if it were directly discharging those pollutants [40 CFR §122.42(b)(1)]; and
2. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of adoption of the Order [40 CFR §122.42(b)(2)].

Adequate notice shall include information on the quality and quantity of effluent introduced into the POTW as well as any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW [40 CFR §122.42(b)(3)].
Attachment E – Monitoring and Reporting Program – Table of Contents

Attachment E – Monitoring and Reporting Program (MRP) ... E-2
I. General Monitoring Provisions ... E-2
II. Monitoring Locations ... E-3
III. Influent Monitoring Requirements – Not Applicable ... E-3
IV. Effluent Monitoring Requirements ... E-3
 A. Monitoring Location M-001 .. E-3
 B. Monitoring Location M-002 .. E-5
V. Whole Effluent Toxicity Testing Requirements – Not Applicable .. E-5
VI. Land Discharge Monitoring Requirements – Not Applicable ... E-5
VII. Reclamation Monitoring Requirements – Not Applicable .. E-5
VIII. Receiving Water Monitoring Requirements – Surface Water and Groundwater E-5
 A. Monitoring Locations R-001U and R-001D .. E-5
 B. Monitoring Location R-001D (Sediment) .. E-6
IX. Other Monitoring Requirements – Not Applicable ... E-7
X. Reporting Requirements ... E-7
 A. General Monitoring and Reporting Requirements ... E-7
 B. Self Monitoring Reports (SMRs) .. E-7
 C. Discharge Monitoring Reports (DMRs) – Not Applicable .. E-8
 D. Other Reports ... E-8
ATTACHMENT E – MONITORING AND REPORTING PROGRAM (MRP)

The Code of Federal Regulations (CFR) at 40 CFR §122.48 requires that all NPDES permits specify monitoring and reporting requirements. CWC sections 13267 and 13383 also authorize the Regional Water Quality Control Board (RWQCB) to require technical and monitoring reports. This MRP establishes monitoring and reporting requirements which implement the federal and California regulations.

I. GENERAL MONITORING PROVISIONS

A. Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge. All samples shall be taken at the monitoring locations specified below and, unless otherwise specified, before the monitored flow joins or is diluted by any other waste stream, body of water, or substance. Monitoring locations shall not be changed without notification to and the approval of this Regional Water Board.

B. Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to ensure the accuracy and reliability of measurements of the volume of monitored discharges. The devices shall be installed, calibrated and maintained to ensure that the accuracy of the measurements is consistent with the accepted capability of that type of device. Devices selected shall be capable of measuring flows with a maximum deviation of less than ±10 percent from true discharge rates throughout the range of expected discharge volumes.

C. All analyses shall be performed in a laboratory certified to perform such analyses by the California Department of Health Services.

D. All monitoring instruments and devices used by the discharger to fulfill the prescribed monitoring program shall be properly maintained and calibrated as necessary to ensure their continued accuracy. All flow measurement devices shall be calibrated at least once per year to ensure continued accuracy of the devices.

D. Monitoring results, including noncompliance, shall be reported at intervals and in a manner specified in this Monitoring and Reporting Program.
II. MONITORING LOCATIONS

The Discharger shall establish the following monitoring locations to demonstrate compliance with the effluent limitations, discharge specifications, and other requirements in this Order:

<table>
<thead>
<tr>
<th>Discharge Point Name</th>
<th>Monitoring Location Name</th>
<th>Monitoring Location Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>M-001</td>
<td>Effluent outfall from settling ponds, discharge to Oak Creek.</td>
</tr>
<tr>
<td>002</td>
<td>M-002</td>
<td>Influent overflow outfall, discharge to Oak Creek.</td>
</tr>
<tr>
<td>--</td>
<td>R-001U</td>
<td>In Oak Creek, 25 feet upstream of Discharge Point 002.</td>
</tr>
<tr>
<td>--</td>
<td>R-001D</td>
<td>In Oak Creek, 50 feet downstream of Discharge Point 001.</td>
</tr>
</tbody>
</table>

III. INFLUENT MONITORING REQUIREMENTS – NOT APPLICABLE

IV. EFFLUENT MONITORING REQUIREMENTS

A. Monitoring Location M-001

1. The Discharger shall monitor wastewater discharged from the facility via Discharge Point 001 at Monitoring Location M-001 as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Test Methoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow (Average for month)</td>
<td>mgd</td>
<td>Measured</td>
<td>1 / month</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Conventional Pollutants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>Grab</td>
<td>1 / month b</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>mg/L</td>
<td>Grab Pair c</td>
<td>2 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
</tbody>
</table>

a Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136. Where no methods are specified for a given pollutant, pollutants shall be analyzed by method proposed by the Discharger and approved by the Executive Officer.

b Minimum sampling frequency is once per month. In addition, when the chemical acetic acid or sodium bicarbonate is added to waters of the facility, a sample of the effluent shall be collected at a time when the concentration of the parameter in the effluent is expected to be at a maximum.

c Two grab samples (a grab pair) shall be collected on the same day, not less than two hours, nor greater than four hours apart from each other. This grab pair will fulfill the minimum sampling frequency of 2 samples per quarter. The samples are to be collected during a periodic cleaning operation or during some other operational mode which increases the discharges of total suspended solids. Such operations taking place during sampling shall be noted in monitoring reports.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>lbs/day</td>
<td>Calculated</td>
<td>1 / quarter</td>
<td>--</td>
</tr>
<tr>
<td>Non-Conventional Pollutants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settleable Solids</td>
<td>ml/L</td>
<td>Grab Pair</td>
<td>2 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Electrical Conductivity @ 25 Deg. C</td>
<td>µmhos/cm</td>
<td>Grab</td>
<td>1 / month</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Nitrate, Total (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Orthophosphate, Dissolved (as P)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Temperature</td>
<td>ºF</td>
<td>Grab</td>
<td>1 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Aquaculture Drug and Chemical Usage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / discharge event</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Oxytetracycline HCl</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / discharge event</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Potassium Permanganate (KMnO₄)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / discharge event</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>PVP Iodine</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / discharge event</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Chloramine-T</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / discharge event</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / discharge event</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / discharge event</td>
<td>40 CFR Part 136 Methods</td>
</tr>
</tbody>
</table>

d The daily discharge rate (in lbs/day) is obtained from the following calculation for any calendar day:

\[
\text{Daily Discharge Rate} = \frac{8.34}{N} \sum_{i=1}^{N} Q_iC_i
\]

in which “n” is the number of samples analyzed in any calendar day, and Q_i and C_i are the flow rate (mgd) and the constituent concentration (mg/L), respectively, which are associated with each of the “n” grab samples which may be taken in any calendar day. For a composited sample, C_i is the concentration measured in the composited sample, and Q_i is the average flow rate occurring during the period over which samples are composited.

e Minimum sampling frequency is once per month. In addition, when the sodium chloride or sodium bicarbonate is added to waters of the facility, a sample of the effluent shall be collected at a time when the concentration of the parameter in the effluent is expected to be at a maximum.

f Effluent monitoring is not required for aquaculture drugs or chemicals authorized for use (as listed in Attachment I), which are added to food or injected into fish.

g When chemicals containing copper (copper sulfate or chelated copper compounds) are added to waters of the facility, a sample of the effluent shall be collected at a time when the concentration of the parameter in the effluent is expected to be at a maximum.

h When there is more than one discharge event in a quarter, the Discharger is not required to sample for more than one of the events.

i When this chemical is added to waters of the facility, a sample of the effluent shall be collected at a time when the concentration of the parameter in the effluent is expected to be at a maximum.
CALIFORNIA DEPARTMENT OF FISH AND GAME
MT. WHITNEY FISH HATCHERY
ORDER NO. R6V-2006-0029
NPDES NO. CA0102784
WDID NO. 6B140800004

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoeugenol (Aqui-S®)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / discharge event</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Penicillin G Potassium</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / discharge event</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Tricaine methanesulfonate (MS-222 with trade names of Finquel® or Tricaine-S®)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / discharge event</td>
<td>40 CFR Part 136 Methods</td>
</tr>
</tbody>
</table>

mgd = million gallons per day

B. Monitoring Location M-002

1. The Discharger shall monitor wastewater discharged from the facility via Discharge Point 002 at Monitoring Location M-002 as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow (Average for month)</td>
<td>mgd</td>
<td>Measured</td>
<td>1 / month</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>Grab</td>
<td>1 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
</tbody>
</table>

V. WHOLE EFFLUENT TOXICITY TESTING REQUIREMENTS – NOT APPLICABLE

VI. LAND DISCHARGE MONITORING REQUIREMENTS – NOT APPLICABLE

VII. RECLAMATION MONITORING REQUIREMENTS – NOT APPLICABLE

VIII. RECEIVING WATER MONITORING REQUIREMENTS – SURFACE WATER AND GROUNDWATER

A. Monitoring Locations R-001U and R-001D

1. The Discharger shall monitor Oak Creek at Monitoring Locations R-001U and R-001D as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Test Method</th>
</tr>
</thead>
</table>

1 Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136. Where no methods are specified for a given pollutant, pollutants shall be analyzed by method proposed by the Discharger and approved by the Executive Officer.
CALIFORNIA DEPARTMENT OF FISH AND GAME
MT. WHITNEY FISH HATCHERY
ORDER NO. R6V-2006-0029
NPDES NO. CA0102784
WDID NO. 6B140800004

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / discharge event</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>Grab</td>
<td>1 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Electrical Conductivity @ 25 Deg. C</td>
<td>µmhos/cm</td>
<td>Grab</td>
<td>1 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>mg/L</td>
<td>Grab</td>
<td>1 / discharge event</td>
<td>40 CFR Part 136 Methods</td>
</tr>
<tr>
<td>Temperature</td>
<td>ºF</td>
<td>Grab</td>
<td>1 / quarter</td>
<td>40 CFR Part 136 Methods</td>
</tr>
</tbody>
</table>

2. In conducting the receiving water sampling, a log shall be kept and a summary of the following reported, of the visual condition of Oak Creek. Attention shall be given to the presence or absence of:

 a. floating or suspended matter;
 b. discoloration;
 c. visible films, sheens, or coatings;
 d. bottom deposits;
 e. potential nuisance conditions;
 f. aquatic life;
 g. algae, fungi, slimes, or other aquatic vegetation; and
 h. sample odor.

B. Monitoring Location R-001D (Sediment)

1. The Discharger shall monitor Oak Creek sediment at Monitoring Location R-001D as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
<th>Required Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper, Total Recoverable</td>
<td>mg/kg</td>
<td>Grab</td>
<td>1 / year</td>
<td>40 CFR Part 136 Methods</td>
</tr>
</tbody>
</table>

k Monitoring for this pollutant only required if chemicals containing copper (copper sulfate or chelated copper compounds) are added to waters of the facility. When there is more than one discharge event in a year, the Discharger is not required to sample for more than one of the events. A sample of the receiving water shall be collected at a time when the concentration of the parameter in the receiving water is expected to be at a maximum.

l Monitoring for this pollutant only required at Monitoring Location R-001D and only if formaldehyde is added to waters of the facility. When there is more than one discharge event in a year, the Discharger is not required to sample for more than one of the events. A sample of the receiving water shall be collected at a time when the concentration of the parameter in the receiving water is expected to be at a maximum.

m Surface grab samples containing the upper 2 centimeters of sediment shall be taken from an Ekman grab (or another method approved by the executive officer).

n Pollutants shall be analyzed using the analytical methods described in 40 CFR Part 136. Where no methods are specified for a given pollutant, pollutants shall be analyzed by method proposed by the Discharger and approved by the Executive Officer.
IX. OTHER MONITORING REQUIREMENTS – NOT APPLICABLE

X. REPORTING REQUIREMENTS

A. General Monitoring and Reporting Requirements

1. The Discharger shall comply with all Standard Provisions (Attachment D) related to monitoring, reporting, and recordkeeping.

B. Self Monitoring Reports (SMRs)

1. At any time during the term of this permit, the State or Regional Water Board may notify the Discharger to electronically submit self-monitoring reports. Until such notification is given, the Discharger shall submit self-monitoring reports in accordance with the requirements described below.

2. The Discharger shall submit quarterly Self Monitoring Reports including the results of all required monitoring and monitoring conducted in addition to the minimum required monitoring and using USEPA approved test methods or other test methods specified in this Order. Quarterly reports shall be due on May 1, August 1, November 1, and February 1 following each calendar quarter.

3. Monitoring periods and reporting for all required monitoring shall be completed according to the following schedule:

<table>
<thead>
<tr>
<th>Sampling Frequency</th>
<th>Monitoring Period Starts On…</th>
<th>Monitoring Period</th>
<th>SMR Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 / discharge event</td>
<td><Permit effective date></td>
<td>Calendar day (Midnight through 11:59 PM)</td>
<td>May 1 (for monitoring in Jan, Feb, or March) August 1 (for monitoring in April, May, or June) November 1 (for monitoring in July, August, or Sept) February 1 (for monitoring in Oct, Nov, or Dec)</td>
</tr>
<tr>
<td>1 / month</td>
<td><First day of calendar month following permit effective date or on permit effective date if that date is first day of the month></td>
<td>1st day of calendar month through last day of calendar month</td>
<td>May 1 (for monitoring in Jan, Feb, or March) August 1 (for monitoring in April, May, or June) November 1 (for monitoring in July, August, or Sept) February 1 (for monitoring in Oct, Nov, or Dec)</td>
</tr>
<tr>
<td>1 / quarter, and 2 / quarter</td>
<td><Closest of January 1, April 1, July 1, or October 1 following (or on) permit effective date></td>
<td>January 1 through March 31 April 1 through June 30 July 1 through September 30 October 1 through December 31</td>
<td>May 1 August 1 November 1 February 1</td>
</tr>
</tbody>
</table>

° Manganese shall be monitored twice during the permit term (in the 1st and 4th years).

Attachment E – MRP
4. The Discharger shall report with each sample result the applicable Minimum Level (ML) and the current Method Detection Limit (MDL), as determined by the procedure in 40 CFR Part 136.

5. The Discharger shall arrange all reported data in a tabular format. The data shall be summarized to clearly illustrate whether the facility is operating in compliance with interim and/or final effluent limitations. Example SMR reporting tables are contained in Attachment K of this Order, which the Discharger may use to submit monitoring data.

6. The Discharger shall attach a cover letter to the SMR. The information contained in the cover letter shall clearly identify violations of the WDRs; discuss corrective actions taken or planned; and the proposed time schedule for corrective actions. Identified violations must include a description of the requirement that was violated and a description of the violation.

7. SMRs must be submitted to the Regional Water Board, signed and certified as required by the standard provisions (Attachment D), to the address listed below:

 California Regional Water Quality Control Board
 Lahontan Region
 14440 Civic Drive, Suite 200
 Victorville, CA 92392

C. Discharge Monitoring Reports (DMRs) – Not Applicable

D. Other Reports

1. Quarterly Drug and Chemical Use Report. The information listed below shall be submitted for all aquaculture drugs or chemicals used at the Facility. This information shall be reported at quarterly intervals and submitted with the quarterly self monitoring reports using the drug and chemical usage report table found in Attachment J of this Order. At such time as the Discharger is required to begin submitting self-monitoring reports electronically, it shall continue to submit paper copies of the quarterly drug and chemical use reports to the Regional Water Board.

 a. The name(s) and active ingredient(s) of the drug or chemical.
 b. The date(s) of application.
 c. The purpose(s) for the application.
 d. The method of application (e.g., immersion bath, administered in feed), duration of treatment, whether the treatment was static or flush (for drugs or chemicals applied directly to water), amount in gallons or pounds used, treatment concentration(s), and the flow in cubic feet per second (cfs) in the treatment units.
 e. The total flow through the facility in cubic feet per second (cfs) to Oak Creek after mixing with the treated water.
 f. For drugs and chemicals applied directly to water (i.e., immersion bath, flush treatment) and for which effluent monitoring is not otherwise required, the estimated concentration in the effluent at the point of discharge to Oak Creek.
 g. The method of disposal for drugs or chemicals used but not discharged in the effluent.
Attachment F – Fact Sheet – Table of Contents

Attachment F – Fact Sheet ...F-3
I. Permit Information ...F-3
II. Facility Description ..F-4
 A. Description of Wastewater and Biosolids Treatment or Controls ...F-4
 B. Discharge Points and Receiving Waters ...F-5
 C. Summary of Existing Requirements and Self-Monitoring Report (SMR) DataF-5
 D. Compliance Summary ...F-6
 E. Planned Changes – Not Applicable ...F-6
III. Applicable Plans, Policies, and Regulations ...F-6
 A. Legal Authorities ..F-6
 B. California Environmental Quality Act (CEQA) ..F-7
 C. State and Federal Regulations, Policies, and Plans ...F-7
 D. Impaired Water Bodies on CWA 303(d) List ..F-8
 E. Other Plans, Policies and Regulations ..F-8
IV. Rationale For Effluent Limitations and Discharge Specifications ...F-11
 A. Discharge Prohibitions ...F-12
 B. Technology-Based Effluent Limitations ...F-12
 1. Scope and Authority ..F-12
 2. Applicable Technology-Based Effluent Limitations ...F-14
 C. Water Quality-Based Effluent Limitations (WQBELs) ...F-18
 1. Scope and Authority ..F-18
 2. Applicable Beneficial Uses and Water Quality Criteria and ObjectivesF-18
 3. Determining the Need for WQBELs ..F-18
 4. WQBEL Calculations ...F-33
 5. Whole Effluent Toxicity (WET) ...F-40
 D. Final Effluent Limitations ...F-41
 E. Interim Effluent Limitations – Not Applicable ...F-44
 F. Land Discharge Specifications – Not Applicable ...F-44
 G. Reclamation Specifications – Not Applicable ...F-44
V. Rationale for Receiving Water Limitations ...F-44
 A. Surface Water ...F-44
 B. Groundwater – Not Applicable ...F-44
VI. Rationale for Monitoring and Reporting Requirements ..F-44
 A. Influent Monitoring ...F-45
 B. Effluent Monitoring ..F-45
 C. Whole Effluent Toxicity Testing Requirements – Not Applicable ...F-46
 D. Receiving Water Monitoring ..F-47
 1. Surface Water ..F-47
 2. Groundwater – Not Applicable ...F-47
 E. Other Monitoring Requirements – Not Applicable ..F-47
VII. Rationale for Provisions ...F-47
 A. Standard Provisions ..F-47
 B. Special Provisions ...F-47
 1. Reopener Provisions ...F-47
 2. Special Studies and Additional Monitoring Requirements ..F-48
4. Compliance Schedules – Not Applicable .. F-49
5. Construction, Operation, and Maintenance Specifications ... F-49
6. Special Provisions for Municipal Facilities (POTWs Only) – Not Applicable F-49
7. Other Special Provisions – Not Applicable .. F-49

VIII. Public Participation .. F-49
A. Notification of Interested Parties .. F-49
B. Written Comments ... F-50
C. Public Hearing .. F-50
D. Waste Discharge Requirements Petitions ... F-50
E. Information and Copying ... F-51
F. Register of Interested Persons ... F-51
G. Additional Information ... F-51
ATTACHMENT F – FACT SHEET

As described in Section II of this Order, this Fact Sheet includes the legal requirements and technical rationale that serve as the basis for the requirements of this Order.

I. PERMIT INFORMATION

The following table summarizes administrative information related to the facility.

<table>
<thead>
<tr>
<th>WDID</th>
<th>6B140800004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharger</td>
<td>California Department of Fish and Game</td>
</tr>
<tr>
<td>Name of Facility</td>
<td>Mt. Whitney Fish Hatchery</td>
</tr>
<tr>
<td>Facility Address</td>
<td>1 Golden Trout Circle</td>
</tr>
<tr>
<td></td>
<td>Independence, CA 93526</td>
</tr>
<tr>
<td>Facility Contact, Title and Phone</td>
<td>Marvin D. Waters, Hatchery Manager, (760) 878-2272</td>
</tr>
<tr>
<td>Authorized Person to Sign and Submit Reports</td>
<td>Marvin D. Waters, Hatchery Manager, (760) 878-2272</td>
</tr>
<tr>
<td>Mailing Address</td>
<td>1 Golden Trout Circle</td>
</tr>
<tr>
<td></td>
<td>Independence, CA 93526</td>
</tr>
<tr>
<td>Billing Address</td>
<td>SAME</td>
</tr>
<tr>
<td>Type of Facility</td>
<td>Concentrated Aquatic Animal Production/ Fish Hatchery (SIC 0921)</td>
</tr>
<tr>
<td>Major or Minor Facility</td>
<td>Minor</td>
</tr>
<tr>
<td>Threat to Water Quality</td>
<td></td>
</tr>
<tr>
<td>Complexity</td>
<td></td>
</tr>
<tr>
<td>Pretreatment Program</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Reclamation Requirements</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Facility Permitted Flow</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Facility Design Flow</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Watershed</td>
<td>Lower Owens Hydrologic Area</td>
</tr>
<tr>
<td>Receiving Water</td>
<td>Oak Creek</td>
</tr>
<tr>
<td>Receiving Water Type</td>
<td></td>
</tr>
</tbody>
</table>

A. The California Department of Fish and Game is the owner and operator of Mt. Whitney Fish Hatchery (hereinafter Facility) a trout fish hatchery.

B. The Facility discharges wastewater to Oak Creek, a water of the United States and is currently regulated by Order 6-99-57 which was adopted on November 17, 1999 and expired on November 17, 2004. The terms of the existing Order continued in effect after the permit expiration date.

C. The Discharger filed a report of waste discharge and submitted an application for renewal of its Waste Discharge Requirements (WDRs) and National Pollutant Discharge Elimination System (NPDES) permit on October 31, 2004.
II. FACILITY DESCRIPTION

The Facility is located approximately two miles northwest of the Community of Independence, Inyo County, within Section 2, T13S, R34E, MDB&M, as shown in Attachment B.

According to the Discharger’s permit application, the Facility produces rainbow and brown trout. Only broodstock for egg production are reared at the Facility due to the discovery of whirling disease at the Facility in 1984. The Facility reported an annual production average of 38,000 pounds and approximately 3,000 pounds of food used during the month of maximum feeding (October).

The Facility consists of supply water treatment facilities (a grisley (concrete basin), a rock filter, and two supply water settling ponds each 130 feet wide x 133 feet long x 10 feet deep), a fish egg incubation building, three 300-foot long concrete flow-through raceways (each 300-foot long raceway consists of three 100-foot long x 10-foot wide x 2.5-foot (30 inches) deep raceway ponds in series, for a total of nine raceway ponds at the Facility), a fish holding pond (Pond #1, 90 feet wide x 150 feet long x 5 feet deep), flow-through wastewater settling ponds, and miscellaneous operation and maintenance structures. Currently only two raceways are being used at the Facility, with one empty and not in service.

Supply water for the Facility comes mainly from Oak Creek (which is also referred to as North Fork Oak Creek by Facility personnel) at a flow rate of 3 to 4 cubic feet per second (cfs), which is used for the raceways. The Facility also draws supply water from South Fork Oak Creek for use at the egg incubation building and at Pond #1.

Current discharges from the Facility include unused food and fish excrement. The Discharger presently uses sodium chloride (salt) in the raceways in flush treatments as a fish-cleansing agent to control the spread of fish disease, MS-222 that is used in small tubs to anesthetize fish, and PVP iodine in buckets to disinfect fish eggs. Wastewater containing MS-222 or PVP iodine is evaporated on asphalt and is not discharged to surface water or ground water.

In addition to the above aquaculture chemicals, the Discharger and the California Department of Fish and Game (DFG) Fish Health Laboratory requested to include in the Order a list of aquaculture drugs and chemicals (see Attachment I) that may be used at all DFG hatcheries in the Region. These aquaculture drugs and chemicals, prescribed by the DFG Fish Health Laboratory, are to be used on an “as needed” basis to treat various fish disease and parasitic outbreaks.

A. Description of Wastewater and Biosolids Treatment or Controls

Wastewater from the raceways, incubation building, and fish holding pond (Pond #1) is discharged to a set of two large settling ponds operated in series (75-foot wide x 120-foot long x 8-foot deep, and 73-foot wide x 148-foot long x 8-foot deep), which then flow to one of two sets of smaller settling ponds operated in series: (1) two small ponds (25-foot wide x 55-foot long x 6-foot deep, and 20-foot wide x 75-foot long x 6-foot deep), or (2) three small ponds (20-foot wide x 55-foot long x 6-foot deep, 20-foot wide x 45-foot long x 4-foot deep, and 18-foot wide x 30-foot long x 2-foot deep). Only one series of small ponds is used at the Facility at any given time.
A schematic and a water flow diagram of the Facility are shown in Attachment C.

B. Discharge Points and Receiving Waters

Discharges from the facility occur through Discharge Point 001 (Latitude 36° 49’ 58” North, Longitude 118° 14’ 38” West) and Discharge Point 002 (Latitude 36° 49’ 58” North, Longitude 118° 14’ 41” West). Discharge Point 001 is where effluent from the settling ponds (containing wastewater from the raceways, incubation building, and fish holding pond) discharges into Oak Creek.

Discharge Point 002 is where influent overflow is discharged into Oak Creek. Supply water for the Discharger’s flow-through process may at times exceed the necessary volume to maintain the ponds and raceways. In these cases, the excess water is discharged via Discharge Point 002 to Oak Creek prior to the water entering any processes where fish are raised.

Oak Creek is located within the Lower Owens Hydrologic Area (Hydrologic Unit No. 603.30), and the ground waters of the Owens Valley Ground Water Basin (DWR No. 6-12).

C. Summary of Existing Requirements and Self-Monitoring Report (SMR) Data

This section provides a summary of existing effluent requirements and SMR data from the Facility.

Discharge Point 001

Effluent limitations contained in the previous Order for discharges from the effluent settling ponds (Discharge Point 001) to Oak Creek (Monitoring Location M-001) and representative monitoring data from the term of the previous Order are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitation</th>
<th>Monitoring Data (From February 2000 to June 2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Quarterly Average</td>
<td>Instantaneous Maximum</td>
</tr>
<tr>
<td>Settleable Solids a</td>
<td>ml/L</td>
<td>0.1</td>
<td>--</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS) a</td>
<td>mg/L</td>
<td>5.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Conductivity</td>
<td>µmhos/cm</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nitrate Nitrogen (as N) a</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nitrogen, Total (as N) a</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Dissolved Orthophosphate (as P) a</td>
<td>mg/L</td>
<td>--</td>
<td>0.0127</td>
</tr>
<tr>
<td>Parameter</td>
<td>Units</td>
<td>Effluent Limitation</td>
<td>Monitoring Data (From February 2000 to June 2004)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarterly Average</td>
<td>Instantaneous Maximum</td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>not less than 6.0 nor greater than 9.0</td>
<td>--</td>
</tr>
<tr>
<td>Temperature, Deg. Fahrenheit</td>
<td>°F</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

a Grab pair sampling required by previous Order for this parameter.

Discharge Point 002

The previous Order did not contain monitoring requirements for Discharge Point 002.

D. Compliance Summary

From the second quarter of 2002 to the second quarter of 2004, quarterly effluent monitoring data for total nitrogen were not reported. The Discharger did not submit any data on the average daily flow rate of each month for Discharge Point 001, as required by the previous Order.

All available effluent monitoring data were compiled and evaluated to review compliance with the effluent limitations outlined above. The available effluent data indicate that the Discharger exceeded the total suspended solids (TSS) limitation on May 21, 2001. The effluent TSS was reported as a grab pair with values of 11.3 mg/L and 2.4 mg/L (averaging 6.85 mg/L), exceeding the quarterly average limitation of 5.0 mg/L. A review of available effluent data shows that the Discharger has complied with all other existing effluent limitations.

E. Planned Changes – Not Applicable

III. APPLICABLE PLANS, POLICIES, AND REGULATIONS

The requirements contained in the proposed Order are based on the requirements and authorities described in this section.

A. Legal Authorities

This Order is issued pursuant to section 402 of the Federal Clean Water Act (CWA) and implementing regulations adopted by the U.S. Environmental Protection Agency (USEPA) and Chapter 5.5, Division 7 of the California Water Code (CWC). It shall serve as a NPDES permit for point source discharges from this facility to surface waters. This Order also serves as Waste Discharge Requirements (WDRs) pursuant to Article 4, Chapter 4 of the CWC for discharges that are not subject to regulation under CWA section 402.
B. California Environmental Quality Act (CEQA)

This action to adopt an NPDES permit is exempt from the provisions of the California Environmental Quality Act (Public Resources Code Section 21100, et seq.) in accordance with Section 13389 of the CWC.

C. State and Federal Regulations, Policies, and Plans

1. Water Quality Control Plans. The Regional Water Board adopted a Water Quality Control Plan for the Lahontan Region (hereinafter Basin Plan) that designates beneficial uses, establishes water quality objectives, and contains implementation programs and policies to achieve those objectives for all waters addressed through the plan. In addition, State Water Resources Control Board (State Water Board) Resolution No. 88-63 requires that, with certain exceptions, the Regional Water Board assign the municipal and domestic supply use to water bodies that do not have beneficial uses listed in the Basin Plan. Beneficial uses applicable to Oak Creek and the Owens Valley Ground Water Basin are as follows:

<table>
<thead>
<tr>
<th>Discharge Points</th>
<th>Receiving Water Name</th>
<th>Beneficial Use(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 and 002</td>
<td>Oak Creek</td>
<td>Existing: Municipal and domestic water supply (MUN); agricultural supply (AGR); industrial service supply (IND); ground water recharge (GWR); contact (REC-1) and non-contact (REC-2) water recreation; commercial and sport fishing (COMM); aquaculture (AQUA); warm freshwater habitat (WARM); cold freshwater habitat (COLD); wildlife habitat (WILD); preservation of rare, threatened or endangered species (RARE); and spawning, reproduction and development (SPWN).</td>
</tr>
<tr>
<td>--</td>
<td>Owens Valley Ground Water Basin</td>
<td>Existing: Municipal supply (MUN); agricultural supply (AGR); industrial service supply (IND); freshwater replenishment (FRSH); and wildlife habitat (WILD).</td>
</tr>
</tbody>
</table>

2. Thermal Plan. The State Water Board adopted a Water Quality Control Plan for Control of Temperature in the Coastal and Interstate Water and Enclosed Bays and Estuaries of California (Thermal Plan) on May 18, 1972, and amended this plan on September 18, 1975. This plan contains temperature objectives for inland surface waters.

3. National Toxics Rule (NTR) and California Toxics Rule (CTR). USEPA adopted the NTR on December 22, 1992, which was amended on May 4, 1995 and November 9, 1999, and the CTR on May 18, 2000, which was amended on February 13, 2001. These rules include water quality criteria for priority pollutants and are applicable to this discharge.

4. State Implementation Policy. On March 2, 2000, State Water Board adopted the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (State Implementation Policy or SIP). The SIP became effective on April 28, 2000, with respect to the priority pollutant criteria promulgated for California by the USEPA through the NTR and to the priority pollutant objectives established by the
Regional Water Boards in their basin plans, with the exception of the provision on alternate test procedures for individual discharges that have been approved by USEPA Regional Administrator. The alternate test procedures provision was effective on May 22, 2000. The SIP became effective on May 18, 2000. The SIP includes procedures for determining the need for and calculating water quality-based effluent limitations (WQBELs), and requires Dischargers to submit data sufficient to do so.

5. **Antidegradation Policy.** Section 131.12 of 40 CFR requires that State water quality standards include an antidegradation policy consistent with the federal policy. The State Water Board established California’s antidegradation policy in State Water Board Resolution 68-16, which incorporates the requirements of the federal antidegradation policy. Resolution 68-16 requires that existing water quality is maintained unless degradation is justified based on specific findings. As discussed in detail in this Fact Sheet, the permitted discharge is consistent with the antidegradation provision of 40 CFR §131.12 and State Water Board Resolution 68-16.

6. **Anti-Backsliding Requirements.** Sections 402(o)(2) and 303(d)(4) of the CWA and 40 CFR §122.44(l) prohibit backsliding in NPDES permits. These anti-backsliding provisions require that effluent limitations in a reissued permit must be as stringent as those in the previous permit, with some exceptions in which limitations may be relaxed. All effluent limitations in the Order are at least as stringent as the effluent limitations in the previous Order.

7. **Monitoring and Reporting Requirements.** Section 122.48 of 40 CFR requires that all NPDES permits specify requirements for recording and reporting monitoring results. Sections 13267 and 13383 of the CWC authorize the Regional Water Boards to require technical and monitoring reports. The Monitoring and Reporting Program (MRP) establishes monitoring and reporting requirements to implement federal and State requirements. This MRP is provided in Attachment E.

D. Impaired Water Bodies on CWA 303(d) List

Oak Creek is not an impaired waterbody on the CWA 303(d) list for 2002.

E. Other Plans, Polices and Regulations

Regulation of Aquaculture Drugs and Chemicals

Concentrated aquatic animal production (CAAP) facilities produce fish and other aquatic animals in greater numbers than natural stream conditions would allow; therefore, system management is important to ensure that fish do not become overly stressed, making them more susceptible to disease outbreaks. The periodic use of various aquaculture drugs and chemicals is needed to ensure the health and productivity of cultured aquatic stocks and to maintain production efficiency.

CAAP facilities may legally obtain and use aquaculture drugs in one of several ways. Some aquaculture drugs and chemicals used at CAAP facilities in the Region are approved by the U.S. Food and Drug Administration (FDA) for certain aquaculture uses on certain aquatic species.
Others have an exemption from this approval process when used under certain specified conditions. Still others are not approved for use in aquaculture, but are considered to be of “low regulatory priority” by FDA (hereafter “LRP drug”). FDA is unlikely to take regulatory action related to the use of a LRP drug if an appropriate grade of the chemical or drug is used, good management practices are followed, and local environmental requirements are met (including NPDES permit requirements). Finally, some drugs and chemicals may be used for purposes, or in a manner not listed on their label (i.e., “extra-label” use) under the direction of licensed veterinarians for the treatment of specific fish diseases diagnosed by fish pathologists. It is assumed that veterinarian-prescribed aquaculture drugs are used only for short periods of duration during acute disease outbreaks. Each of these methods of obtaining and using aquaculture drugs is discussed in further detail below.

It is the responsibility of those using, prescribing, or recommending the use of these products to know which aquaculture drugs and chemicals may be used in CAAP facilities in the Region under all applicable federal, State, and local regulations and which aquaculture drugs and chemicals may be discharged to waters of the United States and waters of the State in accordance with this permit. A summary of regulatory authorities related to aquaculture drugs and chemicals is outlined below.

Summary of Regulatory Authorities

FDA is responsible for ensuring the safety, wholesomeness, and proper labeling of food products; ensuring the safety and effectiveness of both human and animal drugs; and ensuring compliance with existing laws governing these drugs. The Federal Food, Drug, and Cosmetic Act (FFDCA), the basic food and drug law of the United States, includes provisions for regulating the manufacture, distribution, and the use of, among other things, new animal drugs and animal feed. FDA’s enforcement activities include correction and prevention of violations, removing illegal products or goods from the market, and punishing offenders. Part of this enforcement includes testing domestic and imported aquacultural products for drug and pesticide residues.

FDA’s Center for Veterinary Medicine (CVM) regulates the manufacture, distribution, and use of animal drugs. CVM is responsible for ensuring that drugs used in food-producing animals are safe and effective and that food products derived from treated animals are free from potentially harmful residues. CVM approves the use of new animal drugs based on data provided by a sponsor (usually a drug company). To be approved by CVM, an animal drug must be effective for the claim on the label and safe when used as directed for (1) treated animals; (2) persons administering the treatment; (3) the environment, including non-target organisms; and (4) consumers. CVM establishes tolerances and animal withdrawal periods as needed for all drugs approved for use in food-producing animals. CVM has the authority to grant investigational new animal drug (INAD) exemptions so that data can be generated to support the approval of a new animal drug.

There are several options for CAAP facilities to legally obtain and use aquaculture drugs. Aquaculture drugs and chemicals can be divided into four categories as outlined below: approved drugs, investigational drugs, unapproved drugs of low regulatory priority, and extra-label use drugs.
FDA approved new animal drugs

Approved new animal drugs have been screened by the FDA to determine whether they cause significant adverse public health or environmental impacts when used in accordance with label instructions. Each aquaculture drug in this category is approved by FDA for use on specific fish species, for specific disease conditions, for specific dosages, and with specific withdrawal times. Product withdrawal times must be observed to ensure that any product used on aquatic animals at a CAAP facility does not exceed legal tolerance levels in the animal tissue. Observance of the proper withdrawal time helps ensure that products reaching consumers are safe and wholesome.

FDA-approved new animal drugs that are added to aquaculture feed must be specifically approved for use in aquaculture feed. Drugs approved by FDA for use in feed must be found safe and effective. Approved new animal drugs may be mixed in feed for uses and at levels that are specified in FDA medicated-feed regulations only. It is unlawful to add drugs to feed unless the drugs are approved for feed use. For example, producers may not top-dress feed with a water-soluble, over-the-counter antibiotic product. Some medicated feeds, such as Romet-30®, may be manufactured only after the FDA has approved a medicated-feed application (FDA Form 1900) submitted by the feed manufacturer.

FDA Investigational New Animal Drugs (INAD)

Aquaculture drugs in this category can only be used under an investigational new animal drug or “INAD” exemption. INAD exemptions are granted by FDA CVM to permit the purchase, shipment and use of an unapproved new animal drug for investigational purposes. INAD exemptions are granted by FDA CVM with the expectation that meaningful data will be generated to support the approval of a new animal drug by FDA in the future. Numerous FDA requirements must be met for the establishment and maintenance of aquaculture INADs.

There are two types of INADs: standard and compassionate. Aquaculture INADs, most of which are compassionate, consist of two types: routine and emergency. A compassionate INAD exemption is used in cases in which the aquatic animal’s health is of primary concern. In certain situations, producers can use unapproved drugs for clinical investigations (under a compassionate INAD exemption) subject to FDA approval. In these cases, CAAP facilities are used to conduct closely monitored clinical field trials. FDA reviews test protocols, authorizes specific conditions of use, and closely monitors any drug use under an INAD exemption. An application to renew an INAD exemption is required each year. Data recording and reporting are required under the INAD exemption in order to support the approval of a new animal drug or an extension of approval for new uses of the drug.

FDA Unapproved new animal drugs of low regulatory priority (LRP drugs)

LRP drugs do not require a new animal drug application (NADA) or INAD exemptions from FDA. Further regulatory action is unlikely to be taken by FDA on LRP drugs as long as an appropriate grade of the drug or chemical is used, good management practices are followed, and local environmental requirements are met (such as NPDES permit requirements contained in this
FDA is unlikely to object at present to the use of these LRP drugs if the following conditions are met:

1. The aquaculture drugs are used for the prescribed indications, including species and life stages where specified.
2. The aquaculture drugs are used at the prescribed dosages (as listed above).
3. The aquaculture drugs are used according to good management practices.
4. The product is of an appropriate grade for use in food animals.
5. An adverse effect on the environment is unlikely.

FDA’s enforcement position on the use of these substances should be considered neither an approval nor an affirmation of their safety and effectiveness. Based on information available in the future, FDA may take a different position on their use. In addition, FDA notes that classification of substances as new animal drugs of LRP does not exempt CAAP facilities from complying with all other federal, state and local environmental requirements, including compliance with this Permit.

Extra-label use of an approved new animal drug

Extra-label drug use is the actual or intended use of an approved new animal drug in a manner that is not in accordance with the approved label directions. This includes, but is not limited to, use on species or for indications not listed on the label. Only a licensed veterinarian may prescribe extra-label drugs under FDA CVM’s extra-label drug use policy. CVM’s extra-label use drug policy (CVM Compliance Policy Guide 7125.06) states that licensed veterinarians may consider extra-label drug use in treating food-producing animals if the health of the animals is immediately threatened and if further suffering or death would result from failure to treat the affected animals. CVM’s extra-label drug use policy does not allow the use of drugs to prevent diseases (prophylactic use), improve growth rates, or enhance reproduction or fertility. Spawning hormones cannot be used under the extra-label policy. In addition, the veterinarian assumes the responsibility for drug safety and efficacy and for potential residues in the aquatic animals.

IV. RATIONALE FOR EFFLUENT LIMITATIONS AND DISCHARGE SPECIFICATIONS

The CWA requires point source discharges to control the amount of conventional, non-conventional, and toxic pollutants that are discharged into the waters of the United States. The control of pollutants discharged is established through effluent limitations; and other requirements in NPDES permits. There are two principal bases for effluent limitations: 40 CFR §122.44(a) requires that permits include applicable technology-based limitations and standards; and 40 CFR §122.44(d) requires that permits include water quality-based effluent limitations to attain and maintain applicable numeric and narrative water quality criteria to protect the beneficial uses of the receiving water. Where numeric water quality objectives have not been established. Three options exist to protect water quality: 1) 40 CFR §122.44(d) specifies that WQBELs may be established using USEPA criteria guidance under CWA section 304(a); 2) proposed State criteria or a State policy interpreting narrative criteria supplemented with other relevant information may be used; or 3) an indicator parameter may be established.
A. Discharge Prohibitions

Discharge prohibitions included in this Order are based upon waste discharge prohibitions contained in the Basin Plan that apply to the entire Lahontan Region, and discharge prohibitions as specified from the California Water Code.

B. Technology-Based Effluent Limitations

1. Scope and Authority

The CWA requires that technology-based effluent limitations be established based on several levels of controls:

- Best practicable treatment control technology currently available (BPT) is based on the average of the best performance by plants within an industrial category or subcategory. BPT standards apply to toxic, conventional, and nonconventional pollutants.

- Best available technology economically achievable (BAT) represents the best existing performance of treatment technologies that are economically achievable within an industrial point source category. BAT standards apply to toxic and nonconventional pollutants.

- Best conventional pollutant control technology (BCT) is a standard for the control from existing industrial point sources of conventional pollutants including BOD, TSS, fecal coliform, pH, and oil and grease. The BCT standard is established after considering a two-part “cost reasonableness” test.

- New source performance standards (NSPS) that represent the best available demonstrated control technology standards. The intent of NSPS guidelines is to set limitations that represent the best and most efficient production processes and wastewater treatment technology for new sources.

The CWA requires EPA to develop effluent limitations, guidelines and standards (ELGs) representing application of BPT, BCT, BAT, and NSPS. Section 402(a)(1) of the CWA and 40 CFR §125.3 of the NPDES regulations authorize the use of best professional judgment (BPJ) to derive technology-based effluent limitations on a case-by-case basis where ELGs are not available for certain industrial categories and/or pollutants of concern. Where BPJ is used, the permit writer must consider specific factors outlined in 40 CFR §125.3.

A cold-water concentrated aquatic animal production (CAAP) facility is defined in Title 40 of the Code of Federal Regulations (40 CFR §122.24) as a fish hatchery, fish farm, or other facility that contains, grows, or holds cold-water fish species or other cold water aquatic animals including, but not limited to, the Salmonidae family of fish (e.g. trout and salmon) in ponds, raceways, or other similar structures. In addition, the facility must discharge at least 30 calendar days per year, produce at least 20,000 pounds (9,090 kilograms) harvest weight of aquatic animals per year, and feed at least 5,000 pounds (2,272 kilograms) of food during the calendar month of maximum feeding. A facility that does not meet the above criteria
may also be designated a cold-water CAAP facility upon a determination that the facility is a significant contributor of pollution to waters of the United States [40 CFR §122.24(c)]. The Facility meets the thresholds for discharge and production, but not the threshold for feed that would categorize it as a CAAP through the NPDES discharge, production and feed criteria. However, the Regional Water Board has designated the Facility as a CAAP under 40 CFR §122.24(c) in the past and continues to do so in this Order based on discharges of total suspended solids, and potential discharges of aquaculture drugs and chemicals. Cold-water, flow-through CAAP facilities are designed to allow the continuous flow of fresh water through tanks and raceways used to produce aquatic animals (typically cold-water fish species). Flows from CAAP facilities ultimately are discharged to waters of the United States and of the State. 40 CFR §122.24 specifies that CAAP facilities are point sources subject to the National Pollutant Discharge Elimination System (NPDES) program. The Discharger’s facility will continue to be designated a cold-water, flow-through CAAP.

The operation of CAAP facilities may introduce a variety of pollutants into receiving waters. USEPA identifies three classes of pollutants: (1) conventional pollutants (i.e., total suspended solids (TSS), oil and grease (O&G), biochemical oxygen demand (BOD), fecal coliforms, and pH); (2) toxic pollutants (e.g., metals such as copper, lead, nickel, and zinc and other toxic pollutants; and (3) non-conventional pollutants (e.g., ammonia-N, Formalin, and phosphorus). Some of the most significant pollutants discharged from CAAP facilities are solids from uneaten feed and fish feces that settle to the bottom of the raceways. Both of these types of solids are primarily composed of organic matter including BOD, organic nitrogen, and organic phosphorus.

Fish raised in CAAP facilities may become vulnerable to disease and parasite infestations. Various aquaculture drugs and chemicals are used periodically at CAAP facilities to ensure the health and productivity of the confined fish population, as well as to maintain production efficiency. Aquaculture drugs and chemicals are used to clean raceways and to treat fish for parasites, fungal growths and bacterial infections. Aquaculture drugs and chemicals are sometimes used to anesthetize fish prior to spawning or “tagging” processes. As a result of these operations and practices, drugs and chemicals may be present in discharges to waters of the United States or waters of the State.

On August 23, 2004 USEPA published Effluent Limitation Guidelines and New Source Performance Standards for the Concentrated Aquatic Animal Production Point Source Category (hereafter “ELG”). These ELGs became effective on September 22, 2004. The ELG regulation establishes national technology-based effluent discharge requirements for flow-through and recirculating systems and for net pens based on BPT, BCT, BAT and NSPS. In its proposed rule, published on September 12, 2002, USEPA proposed to establish numeric limitations for a single constituent – total suspended solids (TSS) – while controlling the discharge of other constituents through narrative requirements. In the final rule, however, USEPA determined that, for a nationally applicable regulation, it would be more appropriate to promulgate qualitative TSS limitations in the form of solids control best management practices (BMP) requirements. Furthermore, the final ELG does not include numeric effluent limitations for non-conventional and toxic constituents, such as aquaculture drugs and chemicals, but also relies on narrative limitations to address these constituents. The final ELG applies to CAAP facilities that produce, hold or contain 100,000 pounds or more of...
aquatic animals per year (any 12 month period). The Discharger’s facility is therefore not subject to the ELG requirements based on the ELG production threshold. However, the Regional Water Board is establishing BMP requirements equivalent to those for the ELG. BMP requirements are being established in this Order as authorized in 40 CFR §122.44(k), and are required due to the Facility’s demonstrated potential to exceed established TSS limitations, and due to the potential discharges of aquaculture drugs and chemicals. The BMP requirements established in this Order are also consistent with the BMPs required of other similar CAAP operations in the Region.

2. Applicable Technology-Based Effluent Limitations

Discharge Point 001

Technology-based requirements in this Order are based on case-by-case numeric limitations developed using best professional judgment (BPJ) and carried over from the previous Order. Order No. 6-99-53 contained effluent limitations for TSS of 5.0 mg/L and 15.0 mg/L as a quarterly average and instantaneous maximum, respectively, based on BPJ. In addition, the previous Order contained effluent limitations for settleable solids of 0.1 ml/L as a quarterly average based on BPJ. These limitations were established as a means of controlling the discharge of solids from algae, silt, fish feces and uneaten feed and were based on a modification of effluent limitations established for similar facilities in Idaho in a permit issued by USEPA Region 10.

The Board also determined that clarification of the earlier limit for TSS is needed. When establishing the limit in previous permits, the Board stated that the hatchery discharge shall not contain concentrations of TSS greater than the effluent limit. Additionally, background water quality is described as generally of excellent quality and background concentrations of TSS were not considered to be significantly above detection limits. This assumption may not always be correct, and the board is clarifying in this permit that the limit was intended to be 5 mg/L above background (quarterly average), and is measured as net over levels in the influent. Clarifying that the effluent limit is 5 mg/L (quarterly average) net over levels in the influent is not considered to be backsliding because it is simply a clarification of what was intended under previous facility permits.

In this Order, the Regional Water Board is replacing the quarterly average limitations for these parameters with limitations expressed as average monthly effluent limitations. Monthly averages are a more common averaging period for limitations and an averaging period consistent with federal NPDES regulatory requirements at 40 CFR §122.45(d). The Regional Water Board modified statistical procedures from USEPA’s 1991 Technical Support Document for Water Quality-based Toxics Control (TSD) used to establish the relationship between an average monthly effluent limitation and a maximum daily effluent limitation. These modified statistical procedures establish the relationship between the existing quarterly average effluent limitation and an equivalent average monthly effluent limitation. The ratio between these two limitations may be expressed as:
\[
\frac{\text{monthly limitation}}{\text{quarterly limitation}} = \frac{\exp \left[z_m \sigma_{nm} - 0.5 \sigma_{nm}^2 \right]}{\exp \left[z_q \sigma_{nq} - 0.5 \sigma_{nq}^2 \right]}
\]

where:

\[
\sigma_{nm}^2 = \ln \left(\frac{\text{CV}_n^2}{\text{nm}} + 1 \right)
\]
\[
\sigma_{nq}^2 = \ln \left(\frac{\text{CV}_q^2}{\text{nq}} + 1 \right)
\]

\(\text{nm} = \) number of samples for monthly average
\(\text{nq} = \) number of samples for quarterly average
\(\text{CV} = \) the coefficient of variation of the effluent (default \(\text{CV} = 0.6\))
\(z = \) statistic
\(z_m = z_q = z_{95} = 1.645\) (95th percentile occurrence probability for both monthly and quarterly limitations)

In order to determine this ratio, the Regional Water Board assumed the following:

- \(\text{CV} = 0.6\)
 based on USEPA’s recommended default assumptions

- \(\text{nm} = 4\) for the average monthly effluent limitation
 based on default assumptions of TSD statistical approach regardless of actual monitoring frequency

- \(\text{nq} = 12\) for a quarterly average effluent limitation
 assuming \(n = 4\) for each of three months in a calendar quarter

- \(z\) percentile probability = 95th percentile for both monthly and quarterly limitations
 monthly probability basis based on TSD recommendation
 quarterly probability basis assumed to be the same as the monthly probability basis

Based on these assumptions and using the equation above, the ratio between the average monthly effluent limitation and the quarterly average effluent limitation is:

\[
\frac{\text{monthly limitation}}{\text{quarterly limitation}} = 1.19
\]

Therefore, in this Order, the quarterly average effluent limitations for TSS and settleable solids are as follows:

TSS

Average monthly effluent limitation = 5.0 mg/L (quarterly limitation) \(\times 1.19 = 6.0\) mg/L over

Settleable Solids

Average monthly effluent limitation = 0.1 ml/L (quarterly limitation) \(\times 1.19 = 0.1\) ml/L
The Regional Water Board has determined that a change from the previous quarterly average effluent limitations to average monthly effluent limitations to be appropriate and reasonable. The Facility’s performance during the term of the previous Order demonstrates that it is capable of meeting these average monthly effluent limitations, particularly when it develops and implements the Best Management Practices (BMP) plan as required in Section VII.B.3 of this Order. Conversion of the quarterly average effluent limitation for TSS of 5.0 mg/L to an average monthly effluent limitation of 6.0 mg/L does not constitute backsliding because these limitations are statistically equivalent.

The previous Order contained effluent limitations for pH, requiring the discharge to have a pH of not less than 6.0 pH units nor greater than 9.0 pH units. Removal of these numeric limitations for pH would constitute backsliding under CWA Section 402(o). The Regional Water Board has determined that the numeric effluent limitation for pH continues to be applicable to the Facility and that backsliding is not appropriate, therefore, the pH limitations from the previous Order are being carried over to this Order.

Discharge Point 002

The previous Order did not contain monitoring requirements for Discharge Point 002. As described earlier in this Fact Sheet, Discharge Point 002 is where influent overflow and wastewater from supply water treatment system cleaning operations is discharged into Oak Creek. The overflow water and cleaning wastewater are treated by separate settling ponds before discharge. Overflow water is discharged frequently, while cleaning wastewater is discharged approximately three to four times a year.

This Order will not establish new effluent limitations based on BPJ for Discharge Point 002 since there are no effluent data, and because most of the water discharged is unused treated supply water, with no aquaculture drugs or chemicals added to the discharge. However, monitoring requirements are being established in this Order to assess the quality of the discharge, and this Order may be reopened to establish effluent limitations. In addition, this Order prohibits the discharge of any aquaculture drugs or chemicals through Discharge Point 002. Modifications to the authorized discharge of aquaculture drugs and chemicals at the Facility may be allowed by the Regional Water Board as specified in Section VI.C.2.a of this Order.
Summary of Technology-based Effluent Limitations

Discharge Point 001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Monthly</td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>--</td>
</tr>
<tr>
<td>Settleable Solids</td>
<td>ml/L</td>
<td>0.1</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)*</td>
<td>mg/L</td>
<td>6.0</td>
</tr>
</tbody>
</table>

*Limit is 6.0 mg/L net over levels in influent

Discharge Point 002

Not applicable. No technology-based effluent limitations for Discharge Point 002.

Limit is 6.0 mg/L net over levels in influent
C. Water Quality-Based Effluent Limitations (WQBELs)

1. Scope and Authority

As specified in 40 CFR §122.44(d)(1)(i), permits are required to include WQBELs for pollutants (including toxicity) that are or may be discharged at levels that cause, have reasonable potential to cause, or contribute to an excursion above any State water quality standard. The process for determining reasonable potential and calculating WQBELs when necessary is intended to protect the designated uses of the receiving water, as specified in the Basin Plan, and achieve applicable water quality objectives and criteria that are contained in other State plans and policies, or water quality criteria contained in the CTR and NTR.

2. Applicable Beneficial Uses and Water Quality Criteria and Objectives

As described in this Fact Sheet, existing beneficial uses of Oak Creek include municipal and domestic water supply (MUN), agricultural supply (AGR), industrial service supply (IND), contact (REC-1) and non-contact (REC-2) water recreation, commercial and sport fishing (COMM), cold freshwater habitat (COLD), wildlife habitat (WILD), preservation of rare, threatened or endangered species (RARE), and spawning, reproduction, and development of fish and wildlife (SPWN).

The Basin Plan contains numeric Water Quality Objectives (WQOs) for Oak Creek, however, these numeric WQOs apply to the section of Oak Creek above the hatchery. WQOs that apply to all surface waters (including wetlands) within the Lahontan Region are described in Pages 3-3 through 3-7 of the Basin Plan. The WQOs applicable to Oak Creek have been incorporated in to the Order as Receiving Water Limitations V.A.1 through V.A.19.

3. Determining the Need for WQBELs

DISCHARGE POINT 001

CTR Constituents

In accordance with Section 1.3 of the SIP, the Regional Water Board conducted a reasonable potential analysis (RPA) for each priority pollutant with an applicable criterion or objective to determine if a WQBEL is required in this Order. The Regional Water Board analyzed effluent and receiving water data to determine if a pollutant in a discharge has the reasonable potential to cause or contribute to an excursion above a state water quality standard. For all parameters that have the reasonable potential to cause or contribute to an excursion above a water quality standard, numeric WQBELs are required. The RPA considers criteria from the CTR, NTR, and water quality objectives specified in the Basin Plan. To conduct the RPA, the Regional Water Board identified the maximum observed effluent concentration (MEC) and maximum background concentration (B) in the receiving water for each constituent, based on data provided by the Discharger.
Section 1.3 of the SIP provides the procedures for determining reasonable potential to exceed applicable water quality criteria and objectives. The SIP specifies three triggers to complete a RPA:

1) **Trigger 1** – If the MEC is greater than or equal to the CTR water quality criteria or applicable objective (C), a limit is needed.

2) **Trigger 2** – If background water quality (B) > C and pollutant is detected in effluent, a limit is needed.

3) **Trigger 3** – If other related information such as CWA 303(d) listing for a pollutant, discharge type, compliance history, etc. indicates that a WQBEL is required.

Sufficient effluent and ambient data are needed to conduct a complete RPA. If data are not sufficient, the Discharger is required to gather the appropriate data for the Regional Water Board to conduct the RPA. Upon review of the data, and if the Regional Water Board determines that WQBELs are needed to protect the beneficial uses, the permit will be reopened for appropriate modification.

The RPA was performed for the priority pollutants for which effluent data were available. The effluent was sampled on December 14, 2000 by the Regional Water Board during a facility inspection, and analyzed for metals (including the priority pollutant metals). In addition, the Discharger collected Facility influent ("headbox" of raceways, consisting of influent water from Oak Creek) and effluent samples on May 26, 2004 for priority pollutant analysis. The Discharger also performed an additional effluent sampling for dioxins on September 16, 2004. These data were used in the RPA and are summarized in Attachment H for Discharge Point 001. The RPA for the priority pollutants did not demonstrate reasonable potential to exceed applicable water quality criteria based on these two sampling events. However, as discussed below, the Regional Water Board has determined using Trigger 3 as described above, that a WQBEL for copper is needed at Discharge Point 001.

Copper

A potential source of copper discharge (copper is identified as a priority pollutant in the NTR and CTR) at fish hatcheries is from the use of copper sulfate and chelated copper compounds, which are used to control algae and other vegetation that is susceptible to the toxic effects of copper uptake, as well as to control the growth of external parasites and bacteria on fish. Although copper sulfate is not currently used at the Facility, the Discharger included copper sulfate in a list of aquaculture drugs and chemicals that may be used on an "as needed" basis to treat various fish disease and parasitic outbreaks (see Attachment I). The effluent sampling for metals on December 14, 2000 and for priority pollutants conducted on May 26, 2004 did not coincide with copper sulfate usage at the Facility, nor are there any effluent copper data available to assess the impact of copper sulfate use at the Facility. Therefore, effluent copper concentrations were estimated based on prescribed treatment rates and Facility flow information supplied by the Discharger.
The following information and calculations were used to determine the estimated effluent copper concentration at Discharge Point 001, calculations assume the flow from the raceways mixes completely with the volume of water in the settling basin and is discharged with no further concentration, breakdown, or dilution of copper sulfate.

Copper sulfate usage:

According to the Discharger, copper sulfate pentahydrate (CuSO₄+5H₂O) is used at a rate of up to 0.5 pounds per cubic feed per second (cfs) of raceway flow.

Flow and volume estimates:

The hatchery has 3 rearing raceways, with two currently in use. Total influent flow from Oak Creek (referred to as North Fork Oak Creek by Facility staff) used for the raceways is estimated between 3 and 4 cfs. Using 3.5 cfs as the average total raceway flow, each of the two raceways in operation have a flow of 1.75 cfs.

The dimensions of each raceway are 300 feet long x 10 feet wide x 2.5 feet (30 inches) deep. Based on these dimensions, the volume of each raceway is 7,500 cubic feet. With a flow of 1.75 cfs, the estimated hydraulic retention time is approximately 1.2 hours (7,500 cubic feet / 1.75 cfs = 4,286 seconds = 1.2 hours).

The dilution volume of water from one rearing raceway after 1.2 hours is 56,553 gallons (1 cfs = 26,930 gallons per hour).

The hatchery has one fish holding pond (Pond #1) with a water flow rate estimated at 10 to 20 gallons per minute, which discharges into the settling ponds. The dilution volume of water from Pond #1 after 1.2 hours is 1,080 gallons, using an average flow of 15 gallons per minute.

As described earlier, the Facility has a set of two large settling ponds operated in series (75-foot wide x 120-foot long x 8-foot deep, and 73-foot wide x 148-foot long x 8-foot deep), which then flow to one of two sets of smaller settling ponds operated in series: (1) two small ponds (25-foot wide x 55-foot long x 6-foot deep, and 20-foot wide x 75-foot long x 6-foot deep), or (2) three small ponds (20-foot wide x 55-foot long x 6-foot deep, 20-foot wide x 45-foot long x 4-foot deep, and 18-foot wide x 30-foot long x 2-foot deep). Only one series of small ponds is used at the Facility at any given time.

The total estimated dilution volume of water from the two large settling ponds based on their dimensions is 1,185,154 gallons (72,000 cubic feet + 86,432 cubic feet = 158,432 cubic feet, 1 cubic foot = 7.4805 gallons).

The total estimated dilution volume of water from set one of the smaller settling ponds based on their dimensions is 129,039 gallons (8,250 cubic feet + 9,000 cubic feet = 17,250 cubic feet, 1 cubic foot = 7.4805 gallons).
The total estimated dilution volume of water from set two of the smaller settling ponds based on their dimensions is 84,380 gallons (6,600 cubic feet + 3,600 cubic feet + 1,080 cubic feet = 11,280 cubic feet, 1 cubic foot = 7.4805 gallons).

Since these calculations are used to determine any reasonable potential for the discharge to exceed applicable water quality criteria from copper sulfate usage, the lesser dilution volume from the second set of smaller settling ponds was used in order to estimate the highest potential effluent copper concentrations.

The total dilution volume from the 2 rearing raceways and Pond #1 during 1.2 hours of flow, plus the volume of the settling ponds, is 1,383,720 gallons.

Estimate of copper sulfate and copper concentrations at Discharge Point 001:

Estimated final effluent concentration of copper sulfate pentahydrate (CuSO₄+5H₂O)(in ppm) = Total pounds CuSO₄ applied / (1,383,720 gallons water x 8.34 pounds/gallon) x 1,000,000

Molecular weight of copper sulfate pentahydrate (CuSO₄+5H₂O) = 249.68
Molecular weight copper = 63.546
Conversion factor for copper sulfate pentahydrate to copper = 0.254509773

Estimated Potential Concentrations of Copper – Discharge Point 001.

<table>
<thead>
<tr>
<th>Number of Rearing Raceways Treated with Copper Sulfate</th>
<th>Total Pounds of Copper Sulfate Pentahydrate Applied</th>
<th>Estimated Final Effluent Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Copper Sulfate Pentahydrate (ppm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper (ppm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper (ppb)</td>
</tr>
<tr>
<td>1</td>
<td>0.875</td>
<td>0.0758217</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0192974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.30</td>
</tr>
<tr>
<td>2</td>
<td>1.75</td>
<td>0.1516435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0385948</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.59</td>
</tr>
</tbody>
</table>

The CTR includes the Ambient Water Quality Criteria for the Protection of Aquatic Life for copper. The Criterion Maximum Concentration (CMC), a 1-hour average, and Criterion Continuous Concentration (CCC), a 4-day average, are hardness dependent. The criteria are expressed in terms of the dissolved fraction of the metal in the water column and are calculated from the total recoverable values by applying a conversion factor. The conversion factor in the CTR is 0.96 for both acute (CMC) and chronic (CCC) criteria. The lowest hardness concentration of the influent and effluent reported by the Discharger was 26 mg/L. With a hardness of 26 mg/L, chronic and acute criteria for dissolved copper are 2.83 and 3.77 µg/L (2.95 and 3.93 µg/L total recoverable), respectively. California Department of Fish and Game (DFG) Fish Health Laboratory does not recommend using copper sulfate in water with a total hardness less than 50 mg/L.

Based on the estimated effluent copper concentrations ranging from 19.30 to 38.59 µg/L, the Regional Water Board finds that there is reasonable potential for copper to be present in...
the discharge at levels exceeding CTR water quality criteria for the protection of aquatic life, and accordingly, is establishing the WQBELs for copper as described in Section IV.C.4 of this Fact Sheet.

Non-CTR Constituents

Formaldehyde as Formalin

A 37 percent formaldehyde solution (formalin) is periodically used at hatcheries as a fungicide treatment on fish eggs and fish in the raceways. Although the Discharger does not currently use formalin, it may be used in emergencies. Formalin (also known by the trade names Formalin-F®, Paracide-F®, PARASITE-S®) is approved through FDA’s New Animal Drug Application (NADA) program for use in controlling external protozoa and monogenetic trematodes on fish, and for controlling fungi of the family Saprolegniacae in food-producing aquatic species (including trout and salmon). For control of other fungi, formalin may be used under an Investigational New Animal Drug (INAD) exemption. Formalin can be used as a “drip” treatment to control fungus on fish eggs, or as a “flush” treatment in raceways.

Effluent formaldehyde data are not available to assess the impact of formalin use at the Facility. Therefore, the following information and calculations were used to determine the estimated effluent formaldehyde concentration from flush treatments at Discharge Point 001. The calculations assume the flow from the raceways mixes completely with the volume of water in the settling basin and is discharged with no further concentration, breakdown, or dilution of formaldehyde.

Formalin usage (37% formaldehyde solution):

According to the Discharger, formalin used in flush treatments is applied at either low or high dosage treatment. Low dose treatment is applied for 8 hours at 25 ppm of formalin (9.25 ppm formaldehyde), while high dose treatment is applied for 1 hour at 167 to 250 ppm of formalin (61.79 to 92.5 ppm formaldehyde).

Flow and volume estimates:

Flow and volume calculations are similar as for those used for estimating effluent copper concentrations, with the total dilution volume of a 1-hour treatment at 1,364,689 gallons, or 5,165,910 liters (1 gallon = 3.7854118 liters).

The total dilution volume for an 8-hour treatment was calculated as the sum of the following (1 cfs = 26,930 gallons per hour):

- 2 rearing raceways = 1.75 cfs x 26,930 gal/hour x 8 hours x 2 raceways = 754,040 gallons
- Pond #1 = 15 gallons/minute x 60 minutes/hour x 8 hours = 7,200 gallons
- Settling ponds = 1,269,534 gallons.

Total dilution volume for an 8-hour treatment = 2,030,774 gallons = 7,687,316 liters.
Estimate of formaldehyde concentrations at Discharge Point 001:

Total mass of formaldehyde applied in milligrams = (# rearing raceways treated) x (treatment time in hours) x (rearing raceway flow in cfs) x (26,930 gallons/hour) x (3.7854118 liters/gallon) x (formaldehyde concentration in mg/L)

Estimated final effluent concentration of formaldehyde (in mg/L) =
Total mass of formaldehyde applied in milligrams / total dilution volume in liters

<table>
<thead>
<tr>
<th>Treatment Type</th>
<th>Number of Rearing Raceways Treated with Formalin</th>
<th>Formaldehyde Concentration (mg/L)</th>
<th>Treatment Time in Hours</th>
<th>Total Mass of Formaldehyde Applied (mg)</th>
<th>Total Dilution Volume in Liters</th>
<th>Estimated Final Effluent Formaldehyde Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Dose</td>
<td>1</td>
<td>9.25</td>
<td>8</td>
<td>13,201,378</td>
<td>7,687,316</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.25</td>
<td>8</td>
<td>26,402,755</td>
<td>7,687,316</td>
<td>3.43</td>
</tr>
<tr>
<td>High Dose</td>
<td>1</td>
<td>92.5</td>
<td>1</td>
<td>16,501,722</td>
<td>5,165,910</td>
<td>3.19</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>92.5</td>
<td>1</td>
<td>33,003,444</td>
<td>5,165,910</td>
<td>6.39</td>
</tr>
</tbody>
</table>

While there are no recommended criteria for formaldehyde for protection of aquatic life, the Basin Plan contains a narrative water quality objective for toxicity that states in part that “[a]ll waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life” (narrative toxicity objective). Aquatic habitat is a beneficial use of Oak Creek. The California Department of Fish and Game (DFG) Pesticide Investigation Unit conducted biotoxicity studies to determine the aquatic toxicity of formalin using *Pimephales promelas* and *Ceriodaphnia dubia* in accordance with the analytical methods specified in EPA600/4-91-002, Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. These “short-term chronic tests” measure effects such as reduced growth of the organism, reduced reproduction rates, or lethality. Results were reported as a No Observed Effect Concentration (NOEC) and a Lowest Observed Effect Concentration (LOEC). The DFG Pesticide Investigation Unit also conducted acute toxicity tests using *Ceriodaphnia dubia* in accordance with methods specified in EPA600/4-90/027, Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Acute toxicity test results typically are reported as the No Observed Adverse Effect Level (NOAEL), Lowest Observed Adverse Effect Level (LOAEL), and LC50.

Results of chronic toxicity tests submitted by the DFG Pesticide Investigation Unit indicated *C. dubia* was the most sensitive species with a 7-day No Observable Effect Concentration (NOEC) value of 1.3 mg/L formaldehyde for survival and reproduction.
Acute toxicity tests with *C. dubia* showed a 96-hour NOAEL of 1.3 mg/L. A summary of the data submitted follows:

<table>
<thead>
<tr>
<th>Species</th>
<th>7-day LC50 (mg/L)</th>
<th>LOEC (mg/L)</th>
<th>NOEC (mg/L)</th>
<th>LOAEL (mg/L)</th>
<th>NOAEL (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceriodaphnia dubia</td>
<td>2.4</td>
<td>5.8<sup>a</sup></td>
<td>1.3<sup>a</sup></td>
<td>5.8</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3<sup>b</sup></td>
<td><1.3<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pimephales promelas</td>
<td>23.3</td>
<td>9.09</td>
<td>2.28</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Selenastrum capricornutum</td>
<td><5.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

^a Survival
^b Reproduction

Short-term tests were conducted with *C. dubia*, exposing the organisms for 2-hour and 8-hour periods, removing them from the chemical, and continuing the observation period for 7 days in clean water. The results were as follows:

<table>
<thead>
<tr>
<th>Species</th>
<th>7-day LC<sub>50</sub> (mg/L)</th>
<th>LOAEL (mg/L)</th>
<th>NOAEL (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. dubia—2-hour exposure</td>
<td>73.65</td>
<td>46.3</td>
<td>20.7</td>
</tr>
<tr>
<td>C. dubia—8-hour exposure</td>
<td>13.99</td>
<td>15.3</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Results of both acute and chronic aquatic life toxicity testing conducted by the DFG Pesticide Investigation Unit were considered along with the Basin Plan narrative toxicity objective when determining whether water quality-based effluent limitations for formalin as formaldehyde were necessary. Results of 7-day chronic toxicity tests indicated *Ceriodaphnia dubia* was the most sensitive species, with a 7-day NOEC value of 1.3 mg/l formaldehyde for survival and < 1.3 mg/l for reproduction (the Regional Water Board used an NOEC of 1.3 mg/L). Acute toxicity tests conducted using *Ceriodaphnia dubia* showed a 96-hour NOAEL of 1.3 mg/l formaldehyde. The additional acute toxicity tests with *Ceriodaphnia dubia* conducted using only an 8-hour exposure, resulted in a 96-hour NOAEL concentration of 6.7 mg/l formaldehyde. Based on the results of these toxicity tests, estimates of potential discharges of formaldehyde from the Facility (ranging from 1.72 to 6.39 mg/L), if formalin is used at this Facility in the future at the estimated dose rates, formaldehyde may be discharged at levels that cause, have the reasonable potential to cause, or contribute to an excursion of the narrative water quality objective for toxicity from the Basin Plan. Accordingly, this Order is establishing WQBELs for formaldehyde as described in the Section IV.C.4 of this Fact Sheet.
Hydrogen Peroxide

Hydrogen peroxide (35% H₂O₂) may be used in the future at the Facility. Hydrogen peroxide may be used as a raceway flush treatment at a concentration of 100 ppm or less, from 45 minutes to one hour. The FDA considers hydrogen peroxide to be an LRP drug when used to control fungi on fish at all life stages, including eggs. Hydrogen peroxide may also be used under an INAD exemption to control bacterial gill disease in various fish, fungal infections, external bacterial infections, and external parasites. Hydrogen peroxide is a strong oxidizer that breaks down into water and oxygen; however, it exhibits toxicity to aquatic life during the oxidation process. Results of a single acute toxicity test conducted by the DFG Pesticide Investigation Unit using *C. dubia* showed a 96-hour NOAEL of 1.3 mg/L.

Effluent hydrogen peroxide data are not available to assess the impact of hydrogen peroxide use at the Facility. Therefore, the following information and calculations were used to determine the estimated effluent hydrogen peroxide concentration from flush treatments at Discharge Point 001. The calculations assume the flow from the raceways mixes completely with the volume of water in the settling basin and is discharged with no further concentration, breakdown, or dilution of hydrogen peroxide.

Flow and volume estimates:

Flow and volume estimates remain the same as for those used for estimating effluent chloramine-T concentrations, with the total dilution volume from a 1-hour treatment at 1,364,689 gallons, or 5,165,910 liters (1 gallon = 3.7854118 liters).

Estimate of hydrogen peroxide concentrations at Discharge Point 001:

Total mass of hydrogen peroxide applied in milligrams = (# raceways treated) x (treatment time in hours) x (raceway flow in cfs) x (26,930 gallons/hour) x (3.7854118 liters/gallon) x (hydrogen peroxide concentration in mg/L)

Estimated final effluent concentration of hydrogen peroxide (in mg/L) =

<table>
<thead>
<tr>
<th>Number of Raceways Treated with H₂O₂</th>
<th>H₂O₂ Solution (35%) Treatment Conc. (mg/L)</th>
<th>H₂O₂ Treatment Conc. (mg/L)</th>
<th>Treatment Time in Hours</th>
<th>Total Mass of H₂O₂ Applied (mg)</th>
<th>Total Dilution Volume in Liters</th>
<th>Estimated Final Effluent H₂O₂ Conc. (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>35</td>
<td>1</td>
<td>6,243,895</td>
<td>5,165,910</td>
<td>1.21</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>35</td>
<td>1</td>
<td>12,487,790</td>
<td>5,165,910</td>
<td>2.42</td>
</tr>
</tbody>
</table>

As shown above, the estimated effluent hydrogen peroxide concentrations ranged from 1.21 to 2.42 mg/L, but actual concentrations are likely to be lower as the calculations assume no breakdown of hydrogen peroxide. However, as no other data are available, the estimated concentrations from flush treatments were used to determine reasonable
potential. Therefore, based on available toxicity testing data and estimates of potential discharges hydrogen peroxide from flush treatments, if hydrogen peroxide is used at this Facility in the future at the prescribed dose rates, hydrogen peroxide may be discharged at levels that cause, have the reasonable potential to cause, or contribute to an excursion of the narrative water quality objective for toxicity from the Basin Plan. Accordingly, this Order is establishing WQBELs for hydrogen peroxide as described in the Section IV.C.4 of this Fact Sheet.

In addition, toxicity testing data for hydrogen peroxide must be submitted within 12 months of adoption of this Order as specified in Section VI.C.2.b of this Order. The Regional Water Board will review this information, and other information as it becomes available and this Order may be reopened to revise effluent limitations based on additional use and toxicity information.

Chloramine-T

Chloramine-T (sodium p-toluenesulfonchloramide) is not currently used but may be used by the Discharger in the future as a possible replacement for formalin. The Discharger reports chloramine-T may be used as a flush or bath treatment at a concentration of 10 ppm for one hour. Chloramine-T is available for use in accordance with an INAD exemption by FDA. Chloramine-T breaks down into para-toluenesulfonamide (p-TSA) and, unlike other chlorine-based disinfectants, does not break down into chlorine or form harmful chlorinated compounds. The Discharger has not conducted biotoxicity tests using chloramine-T, however results of toxicity testing from other sources show a 96-hour LC50 for rainbow trout of 2.8 mg/L. The 48-hour NOEC for *Daphnia magna* was reported as 1.8 mg/L (Halamid. n.d. Halamid, Aquaculture http://www.halamid.com/aqua.htm). In addition, the United States Geological Survey (USGS) has indicated the acute toxicity of p-TSA to be much lower than the parent compound in aquatic organisms, including the water flea.

Effluent data for chloramine-T are not available to assess the impact of chloramine-T use at the Facility. Therefore, the following information and calculations were used to estimate the effluent chloramine-T concentrations from flush treatments at Discharge Point 001. The calculations assume the flow from the raceways mixes completely with the volume of water in the settling basin and is discharged with no further concentration, breakdown, or dilution of chloramine-T.

Flow and volume estimates:

Flow and volume calculations are similar as for those used for estimating effluent copper concentrations, with the total dilution volume of a 1-hour treatment at 1,364,689 gallons, or 5,165,910 liters (1 gallon = 3.7854118 liters).
Estimate of chloramine-T concentrations at Discharge Point 001:

Total mass of chloramine-T applied in milligrams = (# raceways treated) x (treatment time in hours) x (raceway flow in cfs) x (26,930 gallons/hour) x (3.7854118 liters/gallon) x (chloramine-T concentration in mg/L)

Estimated final effluent concentration of chloramine-T (in mg/L) =
Total mass of chloramine-T applied in milligrams / total dilution volume in liters

<table>
<thead>
<tr>
<th>Number of Rearing Raceways Treated with Chloramine-T</th>
<th>Chloramine-T Concentration in Treatment (mg/L)</th>
<th>Treatment Time in Hours</th>
<th>Total Mass of Chloramine-T Applied (mg)</th>
<th>Total Dilution Volume in Liters</th>
<th>Estimated Final Effluent Chloramine-T Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
<td>4,077,646</td>
<td>5,165,910</td>
<td>0.79</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1</td>
<td>8,155,291</td>
<td>5,165,910</td>
<td>1.58</td>
</tr>
</tbody>
</table>

As shown above, the estimated effluent chloramine-T concentrations ranged from 0.79 to 1.58 mg/L, but actual concentrations are likely to be lower as the calculations assume no breakdown of chloramine-T. Effluent concentrations could not be estimated from the disposal of bath treatment wastewaters as information regarding volumes and location of disposal (which affects dilution factors) was unavailable. However, as no other data are available, the estimated concentrations from flush treatments were used to determine reasonable potential. Therefore, based on available toxicity testing data and estimates of potential discharges of chloramine-T from flush treatments, if chloramine-T is used at this Facility in the future at the prescribed dose rates, chloramine-T will not be discharged at levels that cause, have the reasonable potential to cause, or contribute to an excursion of the narrative water quality objective for toxicity from the Basin Plan. However, monitoring and the use of chloramine-T must be reported as specified in the Monitoring and Reporting Program (Attachment E).

In addition, toxicity testing data for chloramine-T must be submitted within 12 months of adoption of this Order as specified in Section VI.C.2.b of this Order. The Regional Water Board will review this information, and other information as it becomes available and this Order may be reopened to revise effluent limitations based on additional use and toxicity information.

Potassium Permanganate

Potassium permanganate (also known by the trade name of Cairox™) is sometimes used at the Facility to control gill disease. Potassium permanganate has a low estimated lifetime in the environment, being readily converted by oxidizable materials to insoluble manganese dioxide (MnO₂). In non-reducing and non-acidic environments, MnO₂ is insoluble and has a very low bioaccumulative potential. Potassium permanganate may be used at the Facility as a flush treatment at a rate of 2 ounces per cfs of raceway flow, for a total of three
treatments spaced 10 to 15 minutes apart, or used in bath treatments of 2 ppm or less for one hour. Results of a single acute toxicity test conducted by the California Department of Fish and Game (DFG) Pesticide Investigation Unit using *C. dubia* showed a 96-hour NOAEL of 0.25 mg/L for potassium permanganate.

Effluent potassium permanganate data are not available to assess the impact of potassium permanganate use at the Facility. Therefore, the following information and calculations were used to determine the estimated effluent potassium permanganate concentration from flush treatments at Discharge Point 001. The calculations assume the flow from the raceways mixes completely with the volume of water in the settling basin and is discharged with no further concentration, breakdown, or dilution of potassium permanganate.

Flow and volume estimates:

Flow and volume estimates remain the same as for those used for estimating effluent copper concentrations, with the total dilution volume from 1.2 hours of flow at 1,383,720 gallons.

Estimate of potassium permanganate concentrations at Discharge Point 001:

1 ounce = 0.0625 pound

Estimated final effluent concentration of potassium permanganate (KMnO₄) (in ppm) =

\[\frac{[\text{(# raceways treated)} \times (3 \text{ treatments}) \times (2 \text{ ounces per cfs}) \times (\text{flow in cfs}) \times (0.0625 \text{ lbs/ounce})]}{[(\text{Total dilution in gallons}) \times (8.34 \text{ pounds/gallon})] \times 1,000,000} \]

<table>
<thead>
<tr>
<th>Number of Raceways Treated with Potassium Permanganate</th>
<th>Estimated Final Effluent Potassium Permanganate Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.057</td>
</tr>
<tr>
<td>2</td>
<td>0.114</td>
</tr>
</tbody>
</table>

As shown above, the estimated effluent potassium permanganate concentrations from flush treatments ranged from 0.057 to 0.114 mg/L. Actual concentrations are likely to be lower as the calculations assumed no breakdown of potassium permanganate. Effluent concentrations could not be estimated from the disposal of bath treatment wastewaters as information regarding volumes and location of disposal (which affects dilution factors) was unavailable. Effluent concentrations could not be estimated from the disposal of bath treatment wastewaters as information regarding volumes and location of disposal (which affects dilution factors) was unavailable. However, effluent potassium permanganate concentrations from the disposal of bath treatments wastewater are likely to be even lower than the concentrations estimated for flush treatments, due to the smaller quantities of wastewater and low concentrations used in bath treatments (2 ppm).
Based on the estimated effluent concentrations and the toxicity information available at this time, the discharge of potassium permanganate at the Facility will not cause, have a reasonable potential to cause, or contribute to an in-stream excursion of applicable water quality criteria or objectives. However, monitoring and use of potassium permanganate must be reported as specified in the Monitoring and Reporting Program (Attachment E). In addition, results of additional toxicity tests for potassium permanganate must be submitted within 12 months of adoption of this Order as specified in Section VI.C.2.b of this Order. The Regional Water Board will review this information, and other information as it becomes available and this Order may be reopened to establish effluent limitations based on additional use and toxicity information.

Sodium Chloride

Sodium chloride (salt) is used at the Facility raceways as a fish-cleansing agent to control the spread of fish disease and to reduce stress among the confined fish population. The U.S. Food and Drug Administration (FDA) considers sodium chloride an unapproved new animal drug of low regulatory priority (LRP drug) for use in aquaculture. Consequently, FDA is unlikely to take regulatory action if an appropriate grade is used, good management practices are followed, and local environmental requirements are met. There are no numeric water quality objectives for conductivity, TDS, or chloride in the NTR, CTR, or Basin Plan for Oak Creek below the hatchery (numeric water quality objectives for TDS and chloride exist for Oak Creek above the hatchery). The Basin Plan does contain a narrative objective for chemical constituents that states “Waters designated as AGR shall not contain concentrations of chemical constituents in amounts that adversely affect the water for beneficial uses (i.e., agricultural purposes).” *Water Quality for Agriculture, Food and Agriculture Organization of the United Nations—Irrigation and Drainage Paper No. 29, Rev. 1* (R.S. Ayers and D.W. Westcot, Rome, 1985), recommends that the conductivity level in waters used for agricultural irrigation not exceed 700 μmhos/cm (Agricultural Water Quality Goal) because it will reduce crop yield for sensitive plants. The Agricultural Water Quality Goal for TDS is 450 mg/L. USEPA’s recommended ambient water quality criteria for chloride for the protection of freshwater aquatic life are 230 mg/l as a one-hour average, and 860 mg/l as a four-day average. The Agricultural Water Quality Goal for chloride is 106 mg/L.

Because dissolved ions in water increase conductivity, the measures of TDS, chloride ion, and conductivity are related. Based on effluent and receiving water conductivity monitoring data (ranging from 26.1 to 127.1 μmhos/cm, and 24 to 117 μmhos/cm, respectively, both well below the conductivity Agricultural Water Quality Goal of 700 μmhos/cm), the discharge of sodium chloride from the Facility will not cause, have a reasonable potential to cause, or contribute to an in-stream excursion of applicable water quality criteria or objectives. Reporting of sodium chloride usage will be continued, and monitoring of electrical conductivity is required during sodium chloride use as specified in the Monitoring and Reporting Program (Attachment E).
Antibiotics: Amoxicillin, Erythromycin, Florfenicol, Oxytetracycline, Penicillin G Potassium, and Sulfadimethoxine-ormetoprim (Romet-30®)

Florfenicol, oxytetracycline, and Romet-30® (sulfadimethoxine-ormetoprim) are antibiotics that may potentially be used by the Discharger in feed formulations to control acute disease outbreaks. Erythromycin (injected or used in feed formulations) and amoxycillin (injected) also are antibiotics that may be used to control disease. These antibiotics must be used under conditions in the NADA approval (oxytetracycline and Romet-30®) or an INAD exemption or a veterinarian’s prescription for extra-label use. In the NPDES General Permit for Aquaculture Facilities in Idaho (Idaho General Permit), USEPA Region 10 distinguishes between antibiotics applied in feed formulations and antibiotics applied in immersion baths. The Idaho General Permit concludes that drugs or chemicals administered via feed, and ingested by fish, pose little threat to aquatic life or beneficial uses because a majority of the drug is utilized by the fish, though some literature suggests otherwise. As stated in the Idaho General Permit, “USEPA believes that disease control drugs and other chemicals provided for ingestion by fish do not pose a risk of harm or degradation to aquatic life or other beneficial uses.” Based on similar conclusions as those drawn by USEPA for the Idaho General Permit, the Regional Water Board has determined that oxytetracycline, Romet-30®, and florfenicol, (when used in feed formulations), erythromycin (when injected or used in feed formulations) and amoxycillin (when injected) are used in a manner that reduces the likelihood of direct discharge to waters of the United States or waters of the State, particularly when Dischargers implement BMPs, as required by this Order. Therefore, oxytetracycline, Romet-30®, and florfenicol, (when used in feed formulations), erythromycin (when injected or used in feed formulations) and amoxycillin (when injected) are not likely to be discharged from the Facility at levels that would cause, have the reasonable potential to cause, or contribute to an excursion of Basin Plan narrative water quality objectives for toxicity. Based on the conclusions stated above, this Order does not include water quality-based effluent limitations or effluent monitoring requirements for florfenicol, oxytetracycline, Romet-30®, erythromycin, or amoxicillin when used in feed formulations or injected directly into fish.

The hatchery may periodically use the antibiotics oxytetracycline and penicillin G potassium as therapeutic agents in bath treatments to control fish diseases. Penicillin G potassium is not approved under FDA’s NADA program and its’ extra-label use in aquaculture requires a veterinarian’s prescription. Results of acute toxicity tests conducted by the DFG Pesticide Investigation Unit using *C. dubia* showed a 96-hour NOAEL of 890 mg/L. Results of 7-day chronic toxicity testing using *Pimephales promelas* showed 7-day NOEC for survival of 350 mg/L. Oxytetracycline, also known by the brand name Terramycin®, is an antibiotic approved through FDA’s NADA program for use in controlling ulcer disease, furunculosis, bacterial hemorrhagic septicemia, and pseudomonas disease in Salmonids. Oxytetracycline is most commonly used as a feed additive. However, oxytetracycline may also be used as an extra-label use under a veterinarian’s prescription in an immersion bath of approximately six to eight hours in duration. Results of acute toxicity tests conducted by the DFG Pesticide Investigation Unit using *C. dubia* showed a 96-hour NOAEL of 40.4 mg/L. Results of chronic toxicity tests using *C. dubia* showed a 7-day NOEC for reproduction of 48 mg/L. However, there is no...
information regarding actual or estimated discharge concentrations of oxytetracycline and penicillin G potassium used in bath treatments to determine reasonable potential. Therefore, this Order does not include water quality-based effluent limitations for oxytetracycline or penicillin G potassium. However, use and monitoring of these substances must be reported as specified in the Monitoring and Reporting Program (Attachment E). In addition, toxicity testing data for oxytetracycline and penicillin G potassium must be submitted within 12 months of adoption of this Order as specified in Section VI.C.2.b of this Order.

The Regional Water Board will review this information, and other information as it becomes available and this Order may be reopened to establish effluent limitations based on additional use and toxicity information.

MS-222 and Isoeugenol (Aqui-S®)

In the future, the Discharger may use the anesthetics tricaine methanesulfonate, commonly known as MS-222 (with trade names of Finquel® or Tricaine-S®) and isoeugenol (Aqui-S®) in bath treatments. MS-222 has been approved by FDA for use as an anesthetic for Salmonidae. It is intended for the temporary immobilization of fish, amphibians and other aquatic, cold-blooded animals. It has been recognized as a valuable tool for the proper handling of these animals during manual spawning (fish stripping), weighing, measuring, marking, surgical operations, transport, photography, and research. MS-222 is a crystalline powder used as an immersion bath in an enclosed tub. Aqui-S® is a water dispersible liquid anaesthetic for fin fish, crustacea and shell fish and is used in the United States under an INAD exemption.

Since the Regional Water Board does not have specific toxicity information for MS-222 or Aqui-S®, or estimates of potential discharge concentrations of MS-222 and Aqui-S® at this Facility, this Order does not include water quality-based effluent limitations for these anesthetics. However, use and monitoring of MS-222 and Aqui-S® must be reported as specified in the Monitoring and Reporting Program (Attachment E). In addition, toxicity testing data for MS-222 and Aqui-S® must be submitted within 12 months of adoption of this Order as specified in Section VI.C.2.b of this Order.

The Regional Board will review this information, and other information as it becomes available and this Order may be reopened to establish effluent limitations based on additional use and toxicity information.

PVP Iodine

PVP Iodine (polyvinylpyrrolidone iodine), is an iodophor solution composed of 10% PVP iodine complex and 90% inert ingredients, is used at the Facility as a fish egg disinfectant and fungicide. FDA considers PVP iodine an LRP drug for use in aquaculture. Results of a single acute toxicity test with Ceriodaphnia dubia showed a 96-hour NOAEL of 0.86 mg/L.
Since the Regional Water Board does not have actual or estimated discharge concentrations of PVP iodine at this Facility to determine reasonable potential, this Order does not include water quality-based effluent limitations for this substance. However, use and monitoring of PVP iodine must be reported as specified in the Monitoring and Reporting Program (Attachment E). In addition, toxicity testing data for PVP iodine must be submitted within 12 months of adoption of this Order as specified in Section VI.C.2.b of this Order.

The Regional Board will review this information, and other information as it becomes available and this Order may be reopened to establish effluent limitations based on additional use and toxicity information.

Acetic Acid, Carbon Dioxide and Sodium Bicarbonate

The Discharger reports that acetic acid may be used at the Facility for the control of external parasites as flush and/or bath treatments. Carbon dioxide gas may be used in bath treatments to anesthetize fish prior to spawning. Sodium bicarbonate, or baking soda, may also be used as in bath treatments as a means of introducing carbon dioxide into the water to anesthetize fish. FDA considers these substances LRP drugs for use in aquaculture. Based upon available information regarding the use of these substances at CAAP facilities in the Region, the Regional Water Board does not believe that acetic acid, carbon dioxide gas, or sodium bicarbonate will be discharged at levels that cause, have the reasonable potential to cause, or contribute to an excursion of Basin Plan narrative water quality objectives for toxicity.

While the discharge of acetic acid, carbon dioxide, or sodium bicarbonate may affect the pH of the receiving water, current effluent and receiving water limitations for pH are adequate to ensure that any potential discharges of acetic acid, carbon dioxide, or sodium bicarbonate do not impact water quality (in addition, carbon dioxide gas added to water will quickly equilibrate with atmospheric carbon dioxide with aeration). However, the use of these substances must be reported, as well as effluent monitoring of pH during acetic acid or sodium bicarbonate use, and conductivity monitoring during sodium bicarbonate use are required as specified in the Monitoring and Reporting Program (Attachment E). In the future, if additional information becomes available regarding the use or toxicity of acetic acid, carbon dioxide gas, or sodium bicarbonate, the Regional Water Board will re-evaluate whether the discharge of any of these substances to receiving waters may cause, have the reasonable potential to cause, or contribute to an excursion of the Basin Plan objectives for toxicity and, if necessary, re-open this Order to include numeric effluent limits.

Analysis of Technology-based Effluent Limitations

In addition to numeric technology-based requirements based on BPJ, the Regional Water Board considered the need for more stringent water quality-based limitations for pH, TSS, and settleable solids for Discharge Point 001. The Regional Water Board determined that the numeric technology-based pH, TSS, and settleable solids limitations, along with the aquaculture ELG BMP requirements, are sufficient to attain and maintain WQOs for pH, suspended materials, and settleable materials.
DISCHARGE POINT 002

As described in Section IV.B.2 in this Fact Sheet, the previous Order did not contain monitoring requirements for Discharge Point 002. Therefore this Order will not establish water quality-based effluent limitations for Discharge Point 002 since there are no effluent data, and because most of the water discharged is unused treated supply water, with no aquaculture drugs or chemicals added to the discharge. However, monitoring requirements are being established in this Order to assess the quality of the discharge, and this Order may be reopened to establish effluent limitations.

4. WQBEL Calculations

Copper

Effluent limitations for metals must be expressed as a total recoverable concentration. Since a site-specific translator has not been developed for copper as described in the SIP Section 1.4.1, the USEPA conversion factor for copper of 0.960 was used for translating the dissolved copper criterion into a total recoverable effluent concentration allowance (ECA) with no dilution. The Regional Water Board established both an Average Monthly Effluent Limitation (AMEL) and Maximum Daily Effluent Limitation (MDEL) for copper based on procedures outlined in the SIP.

Once the need for effluent limitations for CTR priority pollutants has been established, the SIP requires the following steps to determine specific limitations. The tables in Attachment H summarize the development and calculation of all WQBELs for this Order using the process described below.

- A set of AMEL and MDEL values are calculated separately, one set for the protection of aquatic life and the other for the protection of human health. The AMEL and MDEL limits for aquatic life and human health are compared, and the most restrictive AMEL and the most restrictive MDEL are selected as the WQBEL.

Calculation of Aquatic Life AMEL and MDEL:

- For each water quality criterion/objective, an effluent concentration allowance (ECA) is calculated from the following equation to account for dilution, and background levels of each pollutant.

\[ECA = C + D (C – B) \]

where \(C \) is the converted/adjusted water quality criterion, \(D \) is the dilution credit, and \(B \) is the ambient background concentration.

The SIP permits an allowance for dilution only after characterization of the receiving water flow by the Discharger to determine a dilution ratio and/or whether or not a dilution credit is appropriate. In this Order, no credit is being allowed for dilution, and the ECA equals \(C \).
For aquatic life criteria:

\[
\begin{align*}
\text{ECA}_{\text{acute}} &= 3.93 \, \mu\text{g/L} \\
\text{ECA}_{\text{chronic}} &= 2.95 \, \mu\text{g/L}
\end{align*}
\]

- For each ECA based on an aquatic life criterion, the long-term average discharge condition (LTA) is determined by multiplying the ECA times a factor (a multiplier) to account for effluent variability. The LTA is a target of treatment performance.

- LTA multipliers are determined based on a coefficient of variation (CV) and on a specified probability of occurrence. The CV is a measure of the variability of a set of data; and in the analysis for this facility, because there were fewer than 10 data points, the CV was set equal to a default value of 0.6. The LTA multipliers are based on the following equations:

\[
\begin{align*}
\text{LTA}_{a} &= \text{ECA}_{a} \times \exp\left(0.5\sigma_{a}^{2} - z\sigma_{a}\right) \\
\text{LTA}_{c} &= \text{ECA}_{c} \times \exp\left(0.5\sigma_{c}^{2} - z\sigma_{c}\right)
\end{align*}
\]

where

\[
\begin{align*}
\sigma &= \text{standard deviation} \\
\text{CV} &= \text{coefficient of variation (where } \sigma^{2} = \ln (\text{CV}^{2} + 1)) \\
\text{z} &= z\text{-statistic for } 95^\text{th} \text{ percentile probability and } 99^\text{th} \text{ percentile probability} \\
\text{ECA}_{a} &= \text{acute effluent concentration allowance} \\
\text{ECA}_{c} &= \text{chronic effluent concentration allowance} \\
\text{LTA}_{a} &= \text{acute long-term average} \\
\text{LTA}_{c} &= \text{chronic long-term average}
\end{align*}
\]

From Table 1 of the SIP, the ECA multipliers for calculating LTAs at the 99th percentile occurrence probability for copper are 0.321 (acute multiplier) and 0.527 (chronic multiplier).

\[
\begin{align*}
\text{LTA}_{a} &= \text{ECA}_{a} \times \text{Multiplier}_{\text{acute}} = 3.93 \, \mu\text{g/L} \times 0.321 = 1.263 \, \mu\text{g/L} \\
\text{LTA}_{c} &= \text{ECA}_{c} \times \text{Multiplier}_{\text{chronic}} = 2.95 \, \mu\text{g/L} \times 0.527 = 1.556 \, \mu\text{g/L}
\end{align*}
\]

- Using the most limiting (the lowest) LTA, water quality based effluent limitations (WQBELs) are calculated. WQBELs include an average monthly effluent limitation (AMEL) and a maximum daily effluent limitation (MDEL). The equations used to calculate these limits are as follows:

\[
\begin{align*}
\text{LTA} &= \min(\text{LTA}_{a}, \text{LTA}_{c}) \\
\text{AMEL} &= \text{LTA} \times \exp\left(z\sigma_{a} - 0.5\sigma_{a}^{2}\right) \\
\text{MDEL} &= \text{LTA} \times \exp(z\sigma - 0.5\sigma^{2})
\end{align*}
\]
where

LTA_a = acute long-term average
LTA_c = chronic long-term average
LTA = Most stringent long-term average
\(\sigma \) = Standard deviation
CV = coefficient of variation (where \(\sigma^2 = \ln (CV^2 + 1) \)
\(CV = 0.6 \) where less than 10 data points are available
z = z-statistic for 95\(^{th}\) percentile probability (AMEL) and 99\(^{th}\) percentile probability (MDEL)
n = number of samples per month
AMEL = average monthly effluent limitation
MDEL = maximum daily effluent limitation

AMELs and MDELs are calculated by multiplying the most limiting LTA for each pollutant times a multiplier that accounts for averaging periods and exceedance frequencies of the effluent limitations, and for the AMEL, the effluent monitoring frequency. Here, the CV was set equal to the default value of 0.6 (CV = 0.6) and the sampling frequency was set equal to 4 (n = 4). A 99\(^{th}\) percentile occurrence probability was used to determine the MDEL multiplier and a 95\(^{th}\) percentile occurrence probability was used to determine the AMEL multiplier. From Table 2 of the SIP, the MDEL multiplier is 3.11, and the AMEL multiplier is 1.55.

\[
LTA = LTA_a = 1.263 \, \mu g/L
\]

AMEL_{aquatic life} = LTA \times AMEL_{multiplier} = 1.263 \times 1.55 = 1.96 \, \mu g/L

MDEL_{aquatic life} = LTA \times MDEL_{multiplier} = 1.263 \times 3.11 = 3.93 \, \mu g/L

Calculation of Human Health AMEL and MDEL:

- For the ECA based on human health, the AMEL is set equal to the ECA_{human health}

\[
AMEL_{human health} = ECA_{human health} = 1,300 \, \mu g/L
\]

- The MDEL for human health is calculated by multiplying the AMEL by the ratio of the Multiplier_{MDEL} to the Multiplier_{AMEL}. Table 2 of the SIP provides pre-calculated ratios to be used in this calculation based on the CV and the number of samples. As before, the CV was set equal to the default value of 0.6 (CV = 0.6) and the sampling frequency was set equal to 4 (n = 4). Using these values the MDEL multiplier is 3.11, and the AMEL multiplier is 1.55.

\[
MDEL_{human health} = AMEL_{human health} \times (Multiplier_{MDEL} / Multiplier_{AMEL})
\]

\[
MDEL_{human health} = 1,300 \, \mu g/L \times (3.11/1.55) = 2,608 \, \mu g/L
\]
Determination of Final WQBELs:

- The lower AMEL and MDEL based on aquatic life and human health is selected as the WQBEL.

<table>
<thead>
<tr>
<th>AMEL_{aquatic life}</th>
<th>MDEL_{aquatic life}</th>
<th>AMEL_{human health}</th>
<th>MDEL_{human health}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.96 µg/L</td>
<td>3.93 µg/L</td>
<td>1,300 µg/L</td>
<td>2,608 µg/L</td>
</tr>
</tbody>
</table>

The final AMEL of 1.96 µg/L and MDEL of 3.93 µg/L for copper are based on limitations protective of aquatic life.

Formaldehyde

Effluent concentrations of formaldehyde may persist because of potential application procedures (e.g., successive raceway treatments) and due to retention of effluent in the settling basin. Therefore, both an average monthly effluent limitation and a maximum daily effluent limitation were calculated based on the 96-hour NOAEL value and using the procedure in USEPA’s TSD for calculating water quality-based effluent limitations.

The Regional Water Board calculated the AMEL and MDEL for formaldehyde, using the calculations and methods described previously for deriving the effluent limitations for copper.

Assuming:
- No in-stream dilution allowance.
- Coefficient of Variation (CV) = 0.6 for the lognormal distribution of pollutant concentrations in effluent.

Effluent Concentration Allowance based on NOAEL (acute toxicity) with no dilution allowance

\[ECA_a = 1.3 \text{ mg/L} \]

Effluent Concentration Allowance based on NOEC (chronic toxicity) with no dilution allowance

\[ECA_c = 1.3 \text{ mg/L} \]

Long Term Average concentration based on acute ECA

\[LTA_a = 1.3 \text{ mg/L} \times 0.321 = 0.4173 \text{ mg/L} \]

(where 0.321 = acute ECA multiplier at 99% occurrence probability and 99% confidence)
Long Term Average concentration based on chronic ECA

\[LTA_c = 1.3 \text{ mg/l} \times 0.527 = 0.6851 \text{ mg/L} \]
(where 0.527 = chronic ECA multiplier at 99% occurrence probability and 99% confidence)

Most Limiting LTA concentration

\[LTA = 0.4173 \text{ mg/L} \]

Average Monthly Effluent Limitation

\[AMEL = LTA \times 1.55 \]
(where 1.55 = AMEL multiplier at 95% occurrence probability, 99% confidence, and \(n = 4 \))

\[AMEL = 0.4173 \text{ mg/l} \times 1.55 = 0.65 \text{ mg/L} \]

Maximum Daily Effluent Limitation

\[MDEL = LTA \times 3.11 \]
(where 3.11 = MDEL multiplier at 99% occurrence probability and 99% confidence)

\[MDEL = 0.4173 \text{ mg/l} \times 3.11 = 1.3 \text{ mg/L} \]

These effluent limitations have been established for protection of aquatic life against toxic effects from exposure to formaldehyde in the discharge.

Hydrogen Peroxide

As hydrogen peroxide is a strong oxidizer, effluent concentrations are unlikely to persist for long periods. Therefore, only a maximum daily effluent limitation was calculated based on the 96-hour NOAEL value for *C. dubia* and using the procedure in USEPA’s TSD for calculating water quality-based effluent limitations.

The Regional Water Board calculated the MDEL for hydrogen peroxide, using the calculations and methods described previously for deriving the effluent limitations for copper.

Assuming:
- No in-stream dilution allowance.
- Coefficient of Variation (CV) = 0.6 for the lognormal distribution of pollutant concentrations in effluent.
Effluent Concentration Allowance based on NOAEL (acute toxicity) with no dilution allowance

\[\text{ECA}_{\text{acute}} = 1.3 \, \text{mg/L} \]

No chronic toxicity data. Long Term Average concentration based on acute ECA

\[\text{LTA} = 1.3 \, \text{mg/L} \times 0.321 = 0.4173 \, \text{mg/L} \]

(where 0.321 = acute ECA multiplier at 99% occurrence probability and 99% confidence)

Maximum Daily Effluent Limitation

\[\text{MDEL} = \text{LTA} \times 3.11 \]

(where 3.11 = MDEL multiplier at 99% occurrence probability and 99% confidence)

\[\text{MDEL} = 0.08025 \, \text{mg/L} \times 3.11 = 1.3 \, \text{mg/L} \]

This effluent limitation has been established for protection of aquatic life against toxic effects from exposure to hydrogen peroxide in the discharge.
Summary of Water Quality-based Effluent Limitations

Discharge Point 001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Monthly</td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>µg/L</td>
<td>1.96</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>mg/L</td>
<td>0.65</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>mg/L</td>
<td>--</td>
</tr>
</tbody>
</table>

Discharge Point 002

Not applicable. No water quality-based effluent limitations for Discharge Point 002.
5. Whole Effluent Toxicity (WET)

The Basin Plan specifies a narrative objective for toxicity, requiring that “All waters shall be maintained free of toxic substances in concentrations that are toxic to, or that produce detrimental physiological responses in human, plant, animal, or aquatic life.” Compliance with this objective will be determined by use of indicator organisms, analyses of species diversity, population density, growth anomalies, bioassays of appropriate duration and/or other appropriate methods as specified by the Regional Water Board. The survival of aquatic life in surface waters subjected to a waste discharge, or other controllable water quality factors, shall not be less than that for the same water body in areas unaffected by the waste discharge, or when necessary, for other control water that is consistent with the requirements for “experimental water” as defined in Standard Methods for the Examination of Water and Wastewater (American Public Health Association, et al. 1992).

In addition to the Basin Plan requirements, Section 4 of the SIP states that a chronic toxicity effluent limitation is required in permits for all discharges that will cause, have the reasonable potential to cause, or contribute to chronic toxicity in receiving waters.

Numeric water quality criteria, or Basin Plan numeric objectives currently are not available for most of the aquaculture drugs and chemicals used by the Discharger or proposed for use at this facility. Therefore, the Regional Water Board used the narrative water quality objective for toxicity from the Basin Plan as a basis for determining “reasonable potential” for discharges of these drugs and chemicals. USEPA’s Technical Support Document Water Quality-based Toxics Control (TSD) specifies two toxicity measurement techniques that can be employed in effluent characterization; the first is Whole Effluent Toxicity (WET) testing, and the second is chemical-specific toxicity analyses. Whole effluent toxicity (WET) requirements protect the receiving water quality from the aggregate toxic effect of a mixture of pollutants in the effluent. WET tests measure the degree of response of exposed aquatic test organisms to an effluent. The WET approach allows for protection of the narrative “no toxics in toxic amounts” criterion while implementing numeric criteria for toxicity. There are two types of WET tests: acute and chronic. An acute toxicity test is conducted over a short time period and generally measures mortality. A chronic toxicity test is conducted over a longer period of time and may measure mortality, reproduction, growth, or other sub-lethal effects. WET testing is used most appropriately when the toxic constituents in an effluent are not completely known; whereas chemical-specific analysis is more appropriately used when an effluent contains only one, or very few, well-known constituents.

Due to the nature of operations and chemical treatments at this Facility, its effluent generally contains only one or two known chemicals at any given a time. Therefore, the Regional Water Board is using a chemical-specific approach to determine “reasonable potential” for discharges of aquaculture drugs and chemicals.
D. Final Effluent Limitations

Discharge Point 001

Section 402(o) of the Clean Water Act and 40 section CFR 122.44(I) require that, with some exceptions, effluent limitations or conditions in reissued Orders be at least as stringent as those in the existing Order. As described in Section IV.B.2 of this Fact Sheet, effluent limitations for pH, TSS and settleable solids are being carried over from Order No. 6-99-57, though in the case of TSS and settleable solids, the quarterly limitations are being revised to be expressed as average monthly effluent limitations. The limit for TSS was clarified to better communicate the intent in earlier permits that the TSS limit be net over influent. Removal of numeric limitations for pH, TSS and settleable solids would constitute backsliding under CWA Section 402(o). The Regional Water Board has determined that these numeric effluent limitations continue to be applicable to the Facility and that backsliding is not appropriate. New effluent limitations are established in this Order for copper, formaldehyde, and hydrogen peroxide.

Discharge Point 002

As discussed previously, this Order will not establish new BPJ-based or water quality-based effluent limitations for Discharge Point 002. However, monitoring requirements are being established in this Order to assess the quality of the discharge, and this Order may be reopened to establish effluent limitations for Discharge Point 002 if new information indicates that the discharge will cause, have the reasonable potential to cause, or contribute to an in stream excursion above the water quality criteria or objective for dissolved oxygen, pH or suspended materials.
Summary of Final Effluent Limitations
Discharge Point 001

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Effluent Limitations</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Monthly</td>
<td>Maximum Daily</td>
</tr>
<tr>
<td>Conventional Pollutants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)*</td>
<td>mg/L</td>
<td>6.0</td>
<td>--</td>
</tr>
<tr>
<td>Priority Pollutants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>µg/L</td>
<td>1.96</td>
<td>3.93</td>
</tr>
<tr>
<td>Non-Conventional Pollutants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>mg/L</td>
<td>0.65</td>
<td>1.3</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>mg/L</td>
<td>--</td>
<td>1.3</td>
</tr>
<tr>
<td>Settleable Solids</td>
<td>ml/L</td>
<td>0.1</td>
<td>--</td>
</tr>
</tbody>
</table>

Limit is 6.0 mg/L net over levels in influent
Summary of Final Effluent Limitations
Discharge Point 002

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Effluent Limitations</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Monthly</td>
<td>Maximum Daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not applicable. No effluent limitations for Discharge Point 002.
E. Interim Effluent Limitations – Not Applicable

F. Land Discharge Specifications – Not Applicable

G. Reclamation Specifications – Not Applicable

V. RATIONALE FOR RECEIVING WATER LIMITATIONS

A. Surface Water

The Basin Plan contains numeric and narrative water quality objectives applicable to all surface waters within the Lahontan Region. Water quality objectives include an objective to maintain the high quality waters pursuant to federal regulations (40 CFR § 131.12) and State Water Board Resolution No. 68-16. Receiving water limitations in this Order are included to ensure protection of beneficial uses of the receiving water. In instances where more than one water quality objective was applicable to the receiving water due to multiple beneficial uses (for example, both WARM and COLD beneficial uses are designated), the most stringent water quality objective is applied to the receiving water.

The narrative objective for chemical constituents in the Basin Plan states that “Waters shall not contain concentrations of chemicals that adversely affect the water beneficial uses.” The receiving water has the beneficial use of municipal and domestic supply (MUN). USEPA and the State of California Department of Health Services (DHS) does not have a Maximum Containment Level (MCL) for formaldehyde, however the DHS Drinking Water Action Level is listed as 0.1 mg/L. The USEPA Integrated Risk Information System (IRIS) lists a reference dose of 1.4 mg/L as a drinking water level. The National Academy of Sciences’ Suggested No-Adverse-Response Level (SNARL) for formaldehyde is 1.0 mg/L as a drinking water health advisory level. To protect the beneficial use of municipal and domestic supply (MUN) of the receiving water, a receiving water limitation based on the DHS Drinking Water Action Level of 0.1 mg/L has been established in this Order.

B. Groundwater – Not Applicable

VI. RATIONALE FOR MONITORING AND REPORTING REQUIREMENTS

Section 122.48 of 40 CFR requires all NPDES permits to specify recording and reporting of monitoring results. Sections 13267 and 13383 of the California Water Code authorize the Water Boards to require technical and monitoring reports. The Monitoring and Reporting Program, Attachment E of this Order, establishes monitoring and reporting requirements to implement federal and state requirements. The following provides the rationale for the monitoring and reporting requirements contained in the Monitoring and Reporting Program for this facility.
A. Influent Monitoring

The previous Order required routine facility supply water monitoring (influent monitoring) to determine the magnitude of settleable solids and TSS. As none of the effluent limitations in this Order are expressed as net limitations (where influent concentrations are subtracted from the effluent concentrations), influent monitoring requirements are being removed from this Order. However, in the event of any future violations of effluent limitations, the Regional Water Board may require influent sampling as part of any investigation to determine the cause of the violations.

B. Effluent Monitoring

Discharge Point 001

To demonstrate compliance with effluent limitations established in this Order and to assess the impact of the discharge on the beneficial uses of the receiving water, effluent monitoring for flow, conductivity, dissolved oxygen, nitrate, pH, dissolved orthophosphate, settleable solids, TSS, total nitrogen, and temperature, required in the previous Order, are being carried over to this Order. The requirement from the previous Order to collect all samples “during a periodic cleaning operation or during some other operational mode which increases the discharges of suspended matter,” is being carried over only for the monitoring of settleable solids and total suspended solids. This is because the monitoring of other parameters, such as the monitoring of aquaculture drugs and chemicals during their use, may not coincide with cleaning operations. In addition, the requirement to collect two grab samples (grab pairs collected not less than two hours, nor greater than four hours apart) for settleable solids and TSS are being carried over to this Order to better assess the range of solids concentrations during cleaning operations as well as to determine compliance with monthly average limitations. Other parameters previously requiring grab pair sampling will now be required to be sampled with only one grab sample in this Order, as historical data showed little variation in concentrations between the grab pair samples for these parameters. Therefore continued grab pair sampling was considered unnecessary for these parameters as the data did not provide any additional information.

As discussed in detail in Section IV.C.5 of this Fact Sheet, the Regional Water Board has determined that a chemical-specific approach to be the most appropriate measurement technique for effluent toxicity characterization at the Facility. Therefore, effluent monitoring of aquaculture chemicals is required in order to determine compliance with effluent limitations as well as determine whether discharges of aquaculture drugs and chemicals from the Facility may cause or contribute to an excursion of the Basin Plan narrative objectives for chemical constituents and toxicity. Monitoring for pH and electrical conductivity is required during the use of aquaculture chemicals that affect these parameters (pH during acetic acid and sodium bicarbonate use, and electrical conductivity during sodium bicarbonate and sodium chloride use).
The table below provides a reference of the parameters required to be monitored during the use of certain aquaculture drugs and chemicals.

<table>
<thead>
<tr>
<th>Aquaculture Chemical Applied</th>
<th>Parameter(s) to be Monitored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic Acid</td>
<td>pH</td>
</tr>
<tr>
<td>Aqui-S®</td>
<td>Isoeugenol</td>
</tr>
<tr>
<td>Chloramine-T</td>
<td>Chloramine-T</td>
</tr>
<tr>
<td>Copper Sulfate</td>
<td>Copper, Total Recoverable</td>
</tr>
<tr>
<td>Formalin</td>
<td>Formaldehyde</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>Hydrogen Peroxide</td>
</tr>
<tr>
<td>MS-222</td>
<td>MS-222</td>
</tr>
<tr>
<td>Oxytetracycline</td>
<td>Oxytetracycline</td>
</tr>
<tr>
<td>Penicillin G Potassium</td>
<td>Penicillin G Potassium</td>
</tr>
<tr>
<td>Potassium Permanganate</td>
<td>Potassium Permanganate</td>
</tr>
<tr>
<td>PVP Iodine</td>
<td>PVP Iodine</td>
</tr>
<tr>
<td>Sodium Bicarbonate</td>
<td>pH</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>Electrical Conductivity</td>
</tr>
</tbody>
</table>

Discharge Point 002

Effluent monitoring for flow, pH, dissolved oxygen, and TSS are being established in this Order to assess the impact of the discharge on the beneficial uses of the receiving water.

Priority Pollutant Monitoring

Section 1.3 of the SIP requires periodic monitoring for priority pollutants (at least once prior to the issuance and reissuance of a permit) for which criteria or objectives apply and for which no effluent limitations have been established. However, the Regional Water Board may choose to exempt low volume discharges, determined to have no significant adverse impact on water quality, from this monitoring requirement. As described in Section IV.C.3 of this Fact Sheet, the RPA of the priority pollutants did not demonstrate reasonable potential to exceed applicable water quality criteria. Based on this information, as well as priority pollutant monitoring data from other similar hatchery facilities, the Regional Water Board has determined that discharges from the Facility have no significant adverse impact on water quality for priority pollutants, except for copper when copper sulfate is used at the Facility. Therefore, priority pollutant monitoring will not be required in this Order, except for copper monitoring when copper sulfate is used at the Facility.

C. Whole Effluent Toxicity Testing Requirements – Not Applicable
D. Receiving Water Monitoring

1. Surface Water

To demonstrate compliance with receiving water limitations established in the Basin Plan and to assess the impact of the discharge to the beneficial uses of the receiving water, downstream receiving water monitoring required in the previous Order for conductivity, dissolved oxygen, pH, and temperature are being carried over to this Order. Monitoring requirements for copper and formaldehyde during their use at the facility are being established in this Order to assess impacts to the receiving water. An upstream monitoring location has been established to ensure any impacts to existing water quality can be properly assessed. In addition, visual monitoring requirements of Oak Creek from the previous Order are being carried over to this Order.

2. Sediment

Sediment sampling for aquaculture chemicals is being required to assess the impact of effluent released at Discharge Point 001 to the beneficial uses of the receiving water. Aquaculture chemicals that could potential be present in the sediment of the receiving water downstream of Discharge Point 001 are those chemicals applied in the fish rearing portion of the Facility (See Facility Description in this Fact Sheet). An aquaculture chemical (if present in the effluent) may have a tendency to precipitate or adsorb onto stream sediments. Some chemicals have the potential to be present in the effluent at Discharge Point 001 for only a few hours. Over time, however, there could be an accumulation of the chemical in the sediment. Sampling of the sediment is therefore being proposed.

2. Groundwater – Not Applicable

E. Other Monitoring Requirements – Not Applicable

VII. RATIONALE FOR PROVISIONS

A. Standard Provisions

Standard Provisions, which in accordance with 40 CFR §§122.41 and 122.42, apply to all NPDES discharges and must be included in every NPDES permit, are provided in Attachment D to the Order.

B. Special Provisions

1. Reopener Provisions

Conditions that necessitate a major modification of a permit are described in 40 CFR §122.62, which include the following:
(a) *When standards or regulations on which the permit was based have been changed by promulgation of amended standards or regulations or by judicial decision.* Therefore, if more stringent applicable water quality standards are promulgated or approved pursuant to Section 303 of the Federal Water Pollution Control Act or amendments thereto, the Regional Water Board will revise and modify this Order in accordance with such more stringent standards.

(b) *When new information, that was not available at the time of permit issuance, would have justified different permit conditions at the time of issuance.* The Discharger is required to report on usage of drugs and chemicals for which discharge is authorized by this Order. New information on usage or toxicity of drugs or chemicals used at the Facility may justify reopening and modifying this order.

(c) *When facility alterations or changes in operations justify new conditions that are different from the existing permit.* The discharge of a new drug or chemical that is found to have reasonable potential to cause, or contribute to an in-stream excursion above any chemical-specific water quality criteria, narrative water quality objective for chemical constituents from the Basin Plan, or narrative water quality objective for toxicity from the Basin Plan, would be considered a change in facility operations that requires reopening this Order to establish new effluent limitations.

2. **Special Studies and Additional Monitoring Requirements**

Prior to using any new chemical or aquaculture drug at the Facility, the Discharger is required to submit to the Regional Water Board reporting and toxicity testing of the new chemical or aquaculture drug as specified in Section VI.C.2 of this Order. These reporting and toxicity testing requirements are needed for the Regional Water Board to determine if the discharge of a new drug or chemical by the Facility has reasonable potential to cause, or contribute to an in-stream excursion above any chemical-specific water quality criteria, narrative water quality objective for chemical constituents from the Basin Plan, or narrative water quality objective for toxicity from the Basin Plan.

3. **Best Management Practices and Pollution Prevention**

As authorized in 40 CFR §122.44(k), BMP requirements are being established in this Order due to the Facility’s demonstrated potential to exceed TSS limitations and due to the potential discharges of aquaculture drugs and chemicals. The BMP requirements established in this Order are consistent with the BMPs required of other similar CAAP operations in the Region.

The Discharger is required to develop and implement the BMP plan to prevent or minimize the generation and discharge of wastes and pollutants to the waters of the United States and waters of the State. The Discharger shall develop and implement a BMP plan consistent with the following objectives:
1. Solids Management
2. Operations and Maintenance
3. Recordkeeping
4. Training

The Discharger shall ensure that its operations staff are familiar with the BMP Plan and have been adequately trained in the specific procedures it requires. The Discharger must make the BMP plan available to the Regional Water Board upon request, and submit certification that the BMP plan has been developed.

4. Compliance Schedules – Not Applicable

5. Construction, Operation, and Maintenance Specifications

Solid waste disposal provisions in this Order are based on the requirements of CCR Title 27 and prevention of unauthorized discharge of solid wastes into waters of the United States or waters of the State. Other construction, operation, and maintenance specifications are to prevent other unauthorized discharges to waters of the United States or waters of the State.

The reasonable potential analysis (RPA) for discharges of Chloramine-T from the Facility were based on a maximum treatment of two raceways per day, as specified by the Discharger. As a result, a provision in this Order is included which prohibits the treatment of more than two raceways (per day) with Chloramine-T.

6. Special Provisions for Municipal Facilities (POTWs Only) – Not Applicable

7. Other Special Provisions – Not Applicable

VIII. PUBLIC PARTICIPATION

The California Regional Water Quality Control Board, Lahontan Region (Regional Water Board) is considering the issuance of waste discharge requirements (WDRs) that will serve as a National Pollutant Discharge Elimination System (NPDES) permit for the Mt. Whitney Fish Hatchery. As a step in the WDR adoption process, the Regional Water Board staff has developed tentative WDRs. The Regional Water Board encourages public participation in the WDR adoption process.

A. Notification of Interested Parties

The Regional Water Board has notified the Discharger and interested agencies and persons of its intent to prescribe waste discharge requirements for the discharge and has provided them with an opportunity to submit their written comments and recommendations. Notification was provided through publication in local newspapers.
B. Written Comments

The staff determinations are tentative. Interested persons are invited to submit written comments concerning these tentative WDRs. Comments should be submitted either in person or by mail to the Executive Office at the Regional Water Board at the address above on the cover page of this Order.

To be fully responded to by staff and considered by the Regional Water Board, written comments should be received at the Regional Water Board offices by 5:00 p.m. on May 11, 2006.

C. Public Hearing

The Regional Water Board will hold a public hearing on the proposed WDRs during its regular Board meeting on the following date and time and at the following location:

Date: June 15, 2005
Time: 8:30 am
Location: The Village @ Mammoth Lakes
1111 Forest Trail
Mammoth Lakes, CA, 92546

Interested persons are invited to attend. At the public hearing, the Regional Water Board will hear testimony, if any, pertinent to the discharge, WDRs, and permit. Oral testimony will be heard; however, for accuracy of the record, important testimony should be in writing.

Please be aware that dates and venues may change. Our web address is http://www.waterboards.ca.gov/alahontan/ where you can access the current agenda for changes in dates and locations.

D. Waste Discharge Requirements Petitions

Any aggrieved person may petition the State Water Resources Control Board to review the decision of the Regional Water Board regarding the final WDRs. The petition must be submitted within 30 days of the Regional Water Board’s action to the following address:

State Water Resources Control Board
Office of Chief Counsel
P.O. Box 100, 1001 I Street
Sacramento, CA 95812-0100
E. Information and Copying

The Report of Waste Discharge (RWD), related documents, tentative effluent limitations and special provisions, comments received, and other information are on file and may be inspected at the address below at any time between 8:30 a.m. and 4:45 p.m., Monday through Friday. Copying of documents may be arranged through the Regional Water Board by calling (760) 241-6583.

California Regional Water Quality Control Board
Lahontan Region
14440 Civic Drive, Suite 200
Victorville, CA 92392

F. Register of Interested Persons

Any person interested in being placed on the mailing list for information regarding the WDRs and NPDES permit should contact the Regional Water Board, reference this facility, and provide a name, address, and phone number.

G. Additional Information

Requests for additional information or questions regarding this order should be directed to Mary Dellavalle at (760) 241-3523.
Table 3-1
ONE-HOUR AVERAGE CONCENTRATION FOR AMMONIA

Waters Designated as COLD, COLD with SPWN, COLD with MIGR (Salmonids or other sensitive coldwater species present)

<table>
<thead>
<tr>
<th>pH</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un-ionized Ammonia (mg/liter NH₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.50</td>
<td>0.0091</td>
<td>0.0129</td>
<td>0.0182</td>
<td>0.026</td>
<td>0.036</td>
<td>0.036</td>
<td>0.036</td>
</tr>
<tr>
<td>8.75</td>
<td>0.0149</td>
<td>0.021</td>
<td>0.030</td>
<td>0.042</td>
<td>0.059</td>
<td>0.059</td>
<td>0.059</td>
</tr>
<tr>
<td>7.00</td>
<td>0.023</td>
<td>0.033</td>
<td>0.046</td>
<td>0.066</td>
<td>0.093</td>
<td>0.093</td>
<td>0.093</td>
</tr>
<tr>
<td>7.25</td>
<td>0.034</td>
<td>0.048</td>
<td>0.068</td>
<td>0.096</td>
<td>0.135</td>
<td>0.135</td>
<td>0.135</td>
</tr>
<tr>
<td>7.50</td>
<td>0.045</td>
<td>0.064</td>
<td>0.091</td>
<td>0.128</td>
<td>0.181</td>
<td>0.181</td>
<td>0.181</td>
</tr>
<tr>
<td>7.75</td>
<td>0.056</td>
<td>0.080</td>
<td>0.113</td>
<td>0.159</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>8.00</td>
<td>0.066</td>
<td>0.092</td>
<td>0.130</td>
<td>0.184</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>8.25</td>
<td>0.065</td>
<td>0.092</td>
<td>0.130</td>
<td>0.184</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>8.50</td>
<td>0.065</td>
<td>0.092</td>
<td>0.130</td>
<td>0.184</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>8.75</td>
<td>0.065</td>
<td>0.092</td>
<td>0.130</td>
<td>0.184</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>9.00</td>
<td>0.066</td>
<td>0.092</td>
<td>0.130</td>
<td>0.184</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total Ammonia (mg/liter NH₃)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.50</td>
<td>35</td>
<td>33</td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>20</td>
<td>14.3</td>
</tr>
<tr>
<td>8.75</td>
<td>32</td>
<td>30</td>
<td>28</td>
<td>27</td>
<td>27</td>
<td>18.8</td>
<td>13.2</td>
</tr>
<tr>
<td>7.00</td>
<td>28</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>18.4</td>
<td>11.8</td>
</tr>
<tr>
<td>7.25</td>
<td>23</td>
<td>22</td>
<td>20</td>
<td>19.7</td>
<td>19.2</td>
<td>13.4</td>
<td>9.5</td>
</tr>
<tr>
<td>7.50</td>
<td>17.4</td>
<td>15.3</td>
<td>15.5</td>
<td>14.9</td>
<td>14.9</td>
<td>10.2</td>
<td>7.3</td>
</tr>
<tr>
<td>7.75</td>
<td>12.2</td>
<td>11.4</td>
<td>10.9</td>
<td>10.5</td>
<td>10.3</td>
<td>7.2</td>
<td>5.2</td>
</tr>
<tr>
<td>8.00</td>
<td>8.0</td>
<td>7.5</td>
<td>7.1</td>
<td>6.9</td>
<td>6.8</td>
<td>4.8</td>
<td>3.5</td>
</tr>
<tr>
<td>8.25</td>
<td>4.5</td>
<td>4.2</td>
<td>4.1</td>
<td>4.0</td>
<td>3.9</td>
<td>2.8</td>
<td>2.1</td>
</tr>
<tr>
<td>8.50</td>
<td>2.6</td>
<td>2.4</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>1.71</td>
<td>1.28</td>
</tr>
<tr>
<td>8.75</td>
<td>1.47</td>
<td>1.40</td>
<td>1.37</td>
<td>1.38</td>
<td>1.42</td>
<td>1.07</td>
<td>0.33</td>
</tr>
<tr>
<td>9.00</td>
<td>0.98</td>
<td>0.93</td>
<td>0.93</td>
<td>0.96</td>
<td>0.91</td>
<td>0.72</td>
<td>0.58</td>
</tr>
</tbody>
</table>

1. To convert these values to mg/liter N, multiply by 0.822.
Table 3-3
FOUR DAY AVERAGE CONCENTRATION FOR AMMONIA²
Waters Designated as COLD, COLD with SPWN, COLD with MIGR (Salmonids or other sensitive coldwater species present)

<table>
<thead>
<tr>
<th>Temperature, °C</th>
<th>pH</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Un-ionized Ammonia (mg/liter NH₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>6.50</td>
</tr>
<tr>
<td>6.75</td>
</tr>
<tr>
<td>7.00</td>
</tr>
<tr>
<td>7.25</td>
</tr>
<tr>
<td>7.50</td>
</tr>
<tr>
<td>7.75</td>
</tr>
<tr>
<td>8.00</td>
</tr>
<tr>
<td>9.25</td>
</tr>
<tr>
<td>8.50</td>
</tr>
<tr>
<td>8.75</td>
</tr>
<tr>
<td>9.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Ammonia (mg/liter NH₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>6.50</td>
</tr>
<tr>
<td>6.75</td>
</tr>
<tr>
<td>7.00</td>
</tr>
<tr>
<td>7.25</td>
</tr>
<tr>
<td>7.50</td>
</tr>
<tr>
<td>7.75</td>
</tr>
<tr>
<td>8.00</td>
</tr>
<tr>
<td>8.25</td>
</tr>
<tr>
<td>8.50</td>
</tr>
<tr>
<td>8.75</td>
</tr>
<tr>
<td>9.00</td>
</tr>
</tbody>
</table>

1. To convert these values to mg/liter N, multiply by 0.822.
Table 3.6
WATER QUALITY CRITERIA FOR
AMBIENT DISSOLVED OXYGEN CONCENTRATION1,2

<table>
<thead>
<tr>
<th>Beneficial Use Class</th>
<th>COLD & SPWN3</th>
<th>COLD</th>
<th>WARM & SPWN3</th>
<th>WARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Day Mean</td>
<td>NA4</td>
<td>6.5</td>
<td>NA</td>
<td>5.5</td>
</tr>
<tr>
<td>7 Day Mean</td>
<td>9.5 (6.5)</td>
<td>NA</td>
<td>6.0</td>
<td>NA</td>
</tr>
<tr>
<td>7 Day Mean Minimum</td>
<td>NA</td>
<td>5.0</td>
<td>NA</td>
<td>4.0</td>
</tr>
<tr>
<td>1 Day Minimum5,6</td>
<td>8.0 (5.0)</td>
<td>4.0</td>
<td>5.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

1. From: USEPA. 1986. Ambient water quality criteria for dissolved oxygen. Values are in mg/L.

2. These are water column concentrations recommended to achieve the required intergravel dissolved oxygen concentrations shown in parentheses. For species that have early life stages exposed directly to the water column (SPWN), the figures in parentheses apply.

3. Includes all embryonic and larval stages and all juvenile forms to 30-days following hatching (SPWN).

4. NA (Not Applicable).

5. For highly manipulatable discharges, further restrictions apply.

6. All minima should be considered as instantaneous concentrations to be achieved at all times.

Where natural conditions alone create dissolved oxygen concentrations less than 110 percent of the applicable criteria means or minima or both, the minimum acceptable concentration is 90 percent of the natural concentration. (page 35: USEPA. 1986. Ambient Water Quality Criteria for Dissolved Oxygen.)
<table>
<thead>
<tr>
<th>Drug or Chemical</th>
<th>Purpose of Application</th>
<th>Expected Method(s) of Application or Treatment</th>
</tr>
</thead>
</table>
| Acetic acid. | Control of external parasites. | (1) *Flush*: 1.5 to 2.2 gallons of glacial acetic acid added as a bolus to top of raceway. Gives a treatment of approximately 335 to 500 ppm acetic acid.
(2) *Bath*: used at a rate of 500 to 2,000 ppm for 1 to 10 minutes. |
| Amoxicillin trihydrate. | Control and prevention of external and systemic bacteria infections. | *Injected intraperitoneally*: into broodstock twice a week, prior to spawning, at a rate of 40 milligrams amoxicillin per kilogram of fish. |
| Chloramine-T. | Control of external gill bacteria. | (1) *Flush*: used at a concentration of 10 ppm for one hour. |
| | | (2) *Bath*: used at a concentration of 10 ppm for one hour. |
| Copper sulfate pentahydrate. | Control of external parasites and bacteria. | *Flush*: used at a rate of up to 0.5 pounds of copper sulfate pentahydrate per cfs of raceway flow. |
| Erythromycin. | Control and prevention of external and systemic bacteria infections. | (1) *Injected intraperitoneally*: at a rate of 40 milligrams erythromycin per kilogram of fish, at 30 day intervals.
(2) *Feed*: used in medicated feed or fish pills at a rate of 100 milligrams or less of erythromycin per kilogram of fish. |
| Florfenicol (Nuflor®). | Control and prevention of external and systemic bacteria infections. | *Feed*: mixed with vegetable oil and sprayed onto fish pills. Fish pills are fed to fish as feed at a rate of 15 milligrams of florfenicol per kilogram of fish per day, split into morning and afternoon feedings. |
| Formalin (37% formaldehyde solution). | Control of external parasites. | (1) *Flush*: Low dose - used at a concentration of 25 ppm of formalin for 8 hours. High dose - used at a concentration of 167 to 250 ppm formalin for one hour.
(2) *Bath*: used at a concentration of 2,000 ppm formalin, or less, for 15 minutes. |
| Hydrogen peroxide. | Control of external parasites. | *Flush*: used at a rate of 100 ppm, or less, for 45 minutes to 1 hour. |
| Isoeugenol (Aquí-S®) | Anesthetic. | *Bath*: (a) 5 to 10 ppm for sedation.
(b) 17 to 25 ppm for “handleable” fish in approximately 3 to 5 minutes and full anesthesia in approximately 10 minutes.
(c) 34 ppm for full anesthesia in approximately 5 minutes. |
| MS-222 / tricaine methanesulfonate (Finquel®, Tricaine-S®). | Anesthetic. | *Bath*: used at a rate of 50 to 250 mg/L, usually in a small volume of water. |
| Oxytetracycline HCl (Terramycin®). | Control and prevention of external and systemic bacteria infections. | (1) *Bath*: used in tanks for six to eight hours at a concentration of 100 ppm or less.
(2) *Feed*: fed at a rate of 3.75 grams of oxytetracycline per 100 pounds of fish per day. |
| Penicillin G potassium. | Control and prevention of external and systemic bacteria infections. | *Bath*: used in tanks for six to eight hours at a concentration of 150 IU/ml (500,000,000 IU/311.8 gm. Packet). |

* This Order prohibits Chloramine-T treatments in more than 2 raceways per day.
<table>
<thead>
<tr>
<th>Drug or Chemical</th>
<th>Purpose of Application</th>
<th>Expected Method(s) of Application or Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium permanganate (Cairox™).</td>
<td>Control of external parasites and bacteria.</td>
<td>(1) Flush: used at a rate of 2 ounces per cfs of raceway flow, poured in all at once, for a total of 3 treatments, spaced 10 to 15 minutes apart (2.32 ppm for a 45 minute treatment, 3.48 ppm for a 30 minute treatment). (2) Bath: used at a rate of 2 ppm, or less, for one hour.</td>
</tr>
<tr>
<td>PVP Iodine</td>
<td>Disinfect and control diseases on fish eggs.</td>
<td>Bath: used at a concentration of 100 mg/L for 10 to 30 minutes.</td>
</tr>
<tr>
<td>Sodium bicarbonate.</td>
<td>Anesthetic.</td>
<td>Bath: used at a rate of 142 to 642 mg/L, usually in a small volume of water.</td>
</tr>
<tr>
<td>Sodium chloride (salt).</td>
<td>Fish cleansing, disease control, and stress reduction.</td>
<td>Flush: used at a rate of 150 to 700 pounds of salt per cfs of raceway flow.</td>
</tr>
<tr>
<td>Sulfadimethoxine-ormetoprim (Romet-30®).</td>
<td>Control and prevention of external and systemic bacteria infections.</td>
<td>Feed: used at a rate of 50 milligrams of drug per kilogram of fish per day.</td>
</tr>
</tbody>
</table>
ATTACHMENT J – DRUG AND CHEMICAL USAGE REPORT TABLE
<table>
<thead>
<tr>
<th>Name of Drug or Chemical, and Active Ingredient</th>
<th>Date(s) of Application</th>
<th>Location and Purpose of Application</th>
<th>Method of Application or Treatment</th>
<th>Duration of Treatment</th>
<th>Static or Flush Treatment</th>
<th>Total Amount Applied</th>
<th>Flow in Treatment Unit (cfs)</th>
<th>Total Facility Flow (cfs)</th>
<th>Method of Disposal for Used Drug or Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLE: Terramycin, active ingredient oxytetracycline</td>
<td>4/15/05 to 4/25/05</td>
<td>Raceways A, B, C. Treatment for pseudomonas disease.</td>
<td>As additive through feed.</td>
<td>10 days</td>
<td>Not Applicable</td>
<td>5000 pounds of feed total @ 2.5 g/lb formulation (grams of oxytetracycline/ pound of feed) = 12,500 grams oxytetracycline</td>
<td>4 cfs</td>
<td>25 cfs</td>
<td>Minimal amount of uneaten feed discharged via Discharge Point 001.</td>
</tr>
<tr>
<td>EXAMPLE: Cairox, active ingredient Potassium permanganate</td>
<td>8/21/05</td>
<td>Raceways B, D. Treatment for bacterial gill disease.</td>
<td>Added directly to water in raceways.</td>
<td>1 hour</td>
<td>Flush</td>
<td>3 grams per raceway = 3 x 2 = 6 grams total</td>
<td>4 cfs</td>
<td>22 cfs</td>
<td>Discharged via Discharge Point 001.</td>
</tr>
<tr>
<td>EXAMPLE: Salt, active ingredient sodium chloride</td>
<td>9/1/05 to 9/4/05</td>
<td>Raceways A, B, C, D. Osmoregulatory aid for the relief of stress and prevention of shock</td>
<td>Added directly to water in raceways.</td>
<td>3 days</td>
<td>Flush</td>
<td>200 pounds per raceway per day = 200 x 4 x 3 = 2400 pounds total</td>
<td>5 cfs</td>
<td>28 cfs</td>
<td>Discharged via Discharge Point 001.</td>
</tr>
</tbody>
</table>
Quarterly Drug and Chemical Use Report

<table>
<thead>
<tr>
<th>Name of Drug or Chemical, and Active Ingredient</th>
<th>Date(s) of Application</th>
<th>Location and Purpose of Application</th>
<th>Method of Application or Treatment</th>
<th>Duration of Treatment</th>
<th>Static or Flush Treatment</th>
<th>Total Amount Applied</th>
<th>Flow in Treatment Unit (cfs)</th>
<th>Total Facility Flow (cfs)</th>
<th>Method of Disposal for Used Drug or Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
ATTACHMENT K – SELF-MONITORING REPORT (SMR) FORMS
Date ________________

California Regional Water Quality Control Board
Lahontan Region
14440 Civic Drive, Suite 200
Victorville, CA 92392

Facility Name: __

Address: __

__

Contact Person: __

Job Title: __

Phone: __

Email: __

WDR/NPDES Order Number: __

WDID Number: __

Type of Report (circle one): Monthly Quarterly Semi-Annual Annual Other

Month(s) (circle applicable month(s))*: JAN FEB MAR APR MAY JUN

JUL AUG SEP OCT NOV DEC

*annual Reports (circle the first month of the reporting period)

Year: ___

Violation(s)? (Please check one): ________NO _________YES*

*If YES is marked complete items A through G below
(Attach additional information as necessary)
a) Brief Description of Violation: __
__
__
__

b) Section(s) of WDRs/NPDES Permit Violated: ___
__
__
__

c) Reported Value(s) or Volume: ___
__
__
__

d) WDRs/NPDES Limit/Condition: ___
__
__
__

e) Date(s) and Duration of Violation(s): __
__
__
__

f) Explanation of Cause(s): __
__
__
__

g) Corrective Action(s)
(Specify actions taken and a schedule for actions to be taken)
__
__
__
__
<table>
<thead>
<tr>
<th>MONITORING LOCATION:</th>
<th>MONTH:</th>
<th>YEAR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAMETER:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLING FREQUENCY:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE TYPE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNITS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIMITS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONTHLY AVG.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAILY MAX.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE OF SAMPLE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONTHLY AVG.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAILY MAX.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONITORING LOCATION:</td>
<td>QUARTER AND/OR YEAR:</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>PARAMETER:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLING FREQUENCY:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE TYPE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNITS:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIMITS</th>
<th>MONTHLY AVG.</th>
<th>DAILY MAX.</th>
<th>MINIMUM</th>
<th>MAXIMUM</th>
</tr>
</thead>
</table>

Month and Date of Sampling

<table>
<thead>
<tr>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
</tr>
<tr>
<td>February</td>
</tr>
<tr>
<td>March</td>
</tr>
<tr>
<td>April</td>
</tr>
<tr>
<td>May</td>
</tr>
<tr>
<td>June</td>
</tr>
<tr>
<td>July</td>
</tr>
<tr>
<td>August</td>
</tr>
<tr>
<td>September</td>
</tr>
<tr>
<td>October</td>
</tr>
<tr>
<td>November</td>
</tr>
<tr>
<td>December</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MONTHLY AVG.</th>
<th>DAILY MAX.</th>
<th>MINIMUM</th>
<th>MAXIMUM</th>
</tr>
</thead>
</table>
RECEIVING WATER MONITORING: VISUAL CONDITIONS

<table>
<thead>
<tr>
<th>MONITORING LOCATION:</th>
<th>MONTH OR QUARTER:</th>
<th>YEAR:</th>
</tr>
</thead>
</table>

1. Is there the presence of floating or suspended matter present? Yes No
2. Is there discoloration present? Yes No
3. Is there visible film, sheen or coating present? Yes No
4. Is there bottom deposits? Yes No
5. Is there potential nuisance conditions present? Yes No
6. Is there aquatic life present? Yes No
7. Is there algae, fungi, slimes, or other aquatic vegetation present? Yes No
8. Is there sample odor? Yes No

Any additional comments.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision following a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my knowledge of the person(s) who manage the system, or those directly responsible for data gathering, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

If you have any questions or require additional information, please contact ____________________ at the number provided above.

Sincerely,

Signature: ______________________________________

Name: ______________________________________

Title: ______________________________________