Item 9 Mojave Basin SNMP

Mike Plaziak, PG

Supervising Engineering Geologist South Lahontan Basin Division Lahontan Water Board

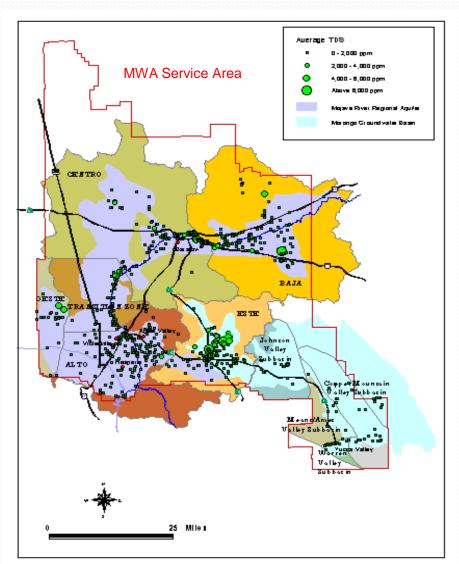
Agenda

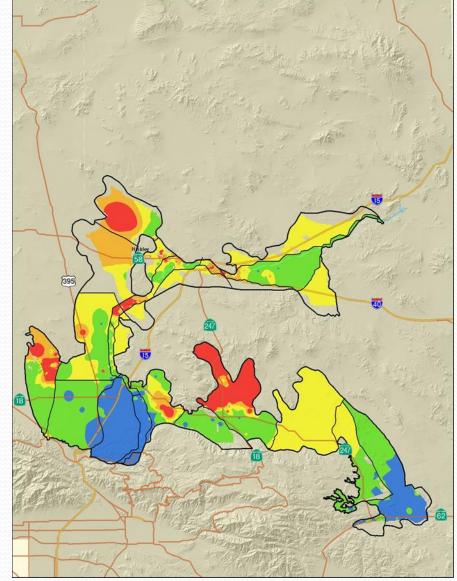
Part I – Lance Eckhart – Mojave Water Agency

Mojave Basin Salt Nutrient Management

Part II – Mike Plaziak – Lahontan Water Board

Compliance with SB Recycled Water Policy

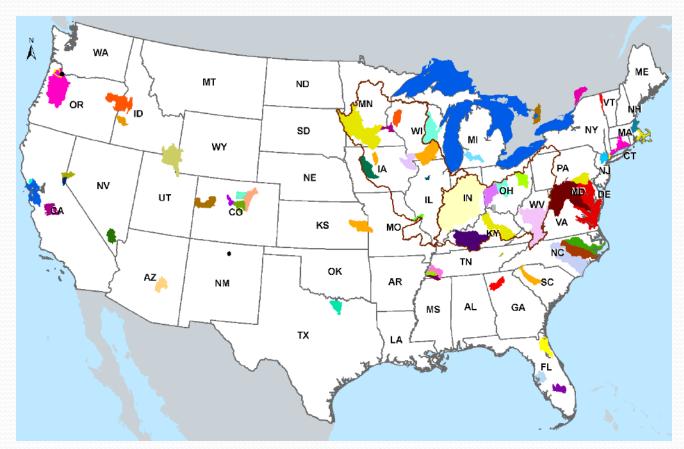

- Regulatory Application of the SNMP to the Mojave Basin
- ✓ Water Quality Trading


Fellowship of the Mojave

Compliance with SB Recycled Water Policy

- Basin-wide groundwater monitoring program
- Understanding of various sources of salts and nutrients into the sub-basins
- Assimilative capacity estimates
- Identification of sensitive sub-basins
- No proposed change to Water Quality Objectives

Application of SNMP to the Mojave Basin



Source: Mojave Water Agency

Water Quality Trading

- Where one party, facing relatively large pollutant reduction costs, compensates another party to achieve less costly pollutant reduction with the same or greater water quality benefit
- Federal Guidance: US EPA Water Quality Trading Policy 2003
- Primarily salts and nutrients
- Surface water focus
- TMDLs as a guide

Watershed Scale Water Quality Trading Programs

Source: Environmental Trading Network http://www.envtn.org/

Fellowship of the Mojave

- Stakeholders include MWA, VVWRA, Mojave RCD, PG&E and the Lahontan Water Board
- Consideration of WQT to address nutrient loading in the Upper Mojave Groundwater Basin
- Basin study funded in part by VVWRA and US Bureau of Reclamation
 - 1. Projections of water supply and demand including an assessment of risks related to climate changes
 - 2. Analysis of how existing water and power infrastructure and operations will perform given population increases, climate change and other impacts
 - 3. Development of adaptation and mitigation strategies to meet future water demands
 - 4. Analysis of alternatives with respect to cost, environmental impact, risk, stakeholder response and other attributes

Questions?

Mojave Salt and Nutrient Management Plan June 10, 2015 Lahontan RWQCB Meeting

Lance Eckhart, PG, CHG

Director of Basin Management and Resource Planning

SNMP Goals and Objectives

- Develop a collaborative program that captures the current body of knowledge
- Manage S/N sources on a basin-subbasin scale to meet water quality objectives (WQOs) and protect beneficial uses
- Characterize existing and future basin-wide groundwater quality
- Estimate basin-wide assimilative capacity used by recycled water projects
- Leverage findings/tools to guide other S/N-related management and regulatory policies

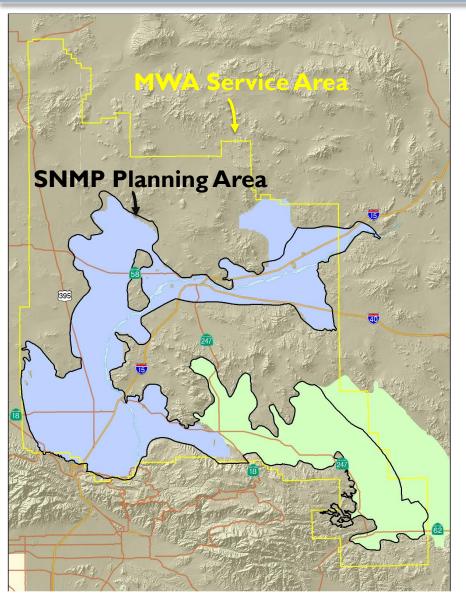
SNMP Goals and Objectives

Questions addressed by SNMP:

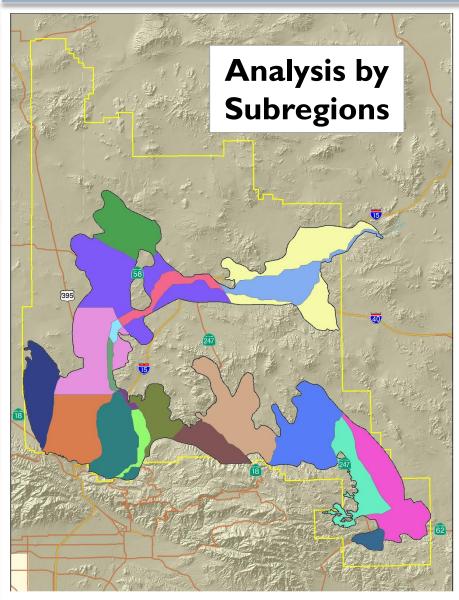
Groundwater Quality

- What is the existing groundwater quality relative to BPOs?
- Are S/N groundwater concentrations increasing, decreasing, or flat?
- Is the monitoring network adequate for comparing S/N concentrations against WQOs on a basin/subbasin-wide scale?

S/N Loading and Impacts


- What are the major contributing S/N loading sources (sources, flows, concentrations)?
- What is the effect of individual loading factors on groundwater quality? Water projects? Population growth? SWP water recharge? Septics?

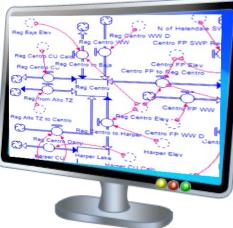
Mojave SNMP Planning Area


- MWA Service Area
 (5,000 mi²)
- Overlaps two RWQCBs
 - Lahontan
 - Colorado River

Mojave SNMP Planning Area

- Two major basins
 - Mojave River Basin
 - Morongo Basin
- SNMP Planning Area
 - Includes key basin areas within MWA service area
 - Based on scientificallyestablished basin boundaries
 - Contributing watershed areas are accounted for in estimates of recharge from storm runoff

Mojave SNMP Planning Area

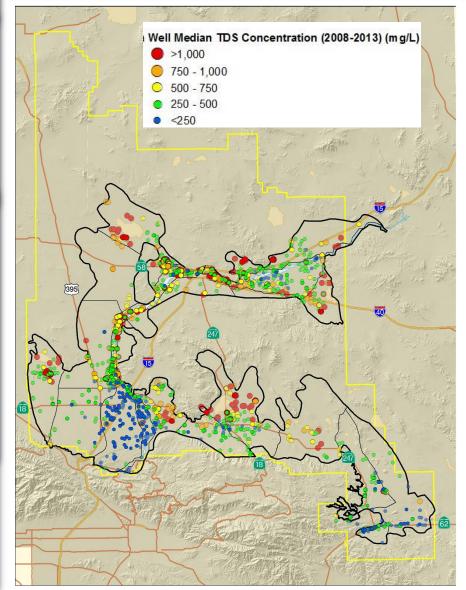


- Planning Area divided into 20 subregions for analysis
- Boundaries based on
 - Hydrogeology
 - Groundwater Quality
- Mojave River Basin: Aligned with MBA Management Subareas - floodplain and regional aquifers
- Morongo Basin: Aligned with USGS subbasin boundaries (includes Pioneertown)

Mojave SNMP Approach

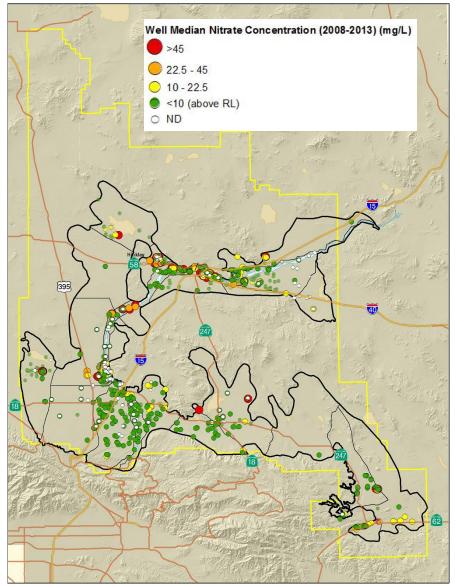
Leveraging Foundational Technical Work

- 2001 USGS Mojave River Basin MODFLOW Model
- 2003 Alto Transition Zone Basin Conceptual Model
- 2004 MWA IRWMP STELLA model (flows) Warren, Copper Mountain-Joshua Tree MODFLOW Models
- 2005 Este Subarea Hydrogeologic Report
- 2007 STELLA model refinement (TDS transport module added) Ames, Means, Johnson Valley Basin Conceptual Models
 2008 – R-Cubed Project (Alto Subarea) Hydrogeologic Evaluation
 2009 – Oeste Subarea Hydrogeologic Report
 2010 – MWA UWMP update water demand forecast model (2010-2035)
 2011 – Ames Valley MODFLOW Model
- 2014 Baja and Centro Subareas Basin Conceptual Model MBA Watermaster consumptive use/return flow estimate refinement (ongoing)

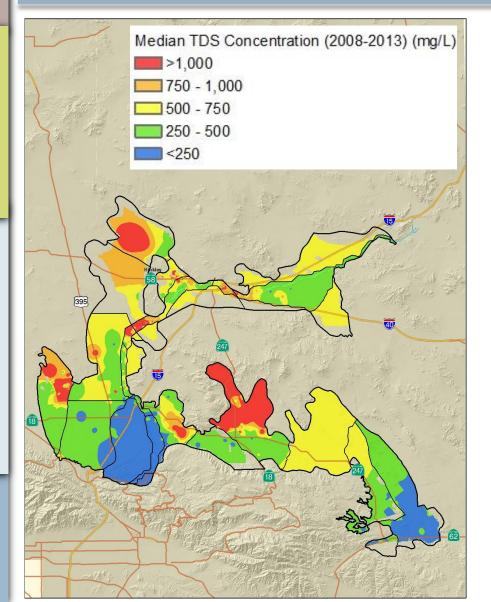

SNMP S/N Mixing Model:

Written in STELLA software package:

<u>Structural Thinking Experimental Learning</u> <u>Laboratory with Animation</u>


- Used to track inflows and outflows of S/Ns for
 20 subregions over a 70-year future predictive period
- Limitations: instantaneous mixing; average over large areas; no absolute concentrations computed at a given location (basin level analysis)
- Advantages: fast simulations over large areas, scalable, compatible with relative analysis at planning level; good <u>screening tool</u> for decision making

 Use well medians based on last 5 years of data

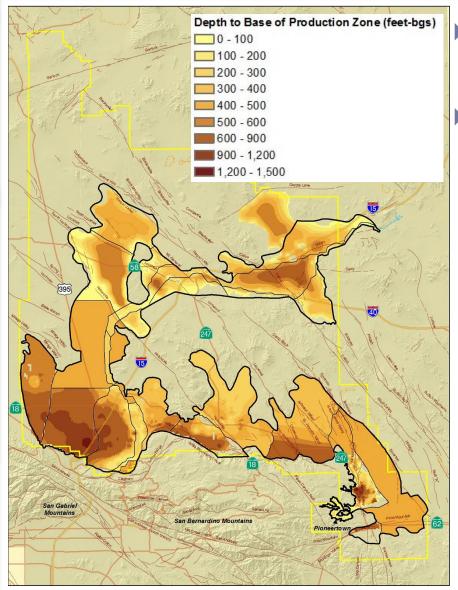

TDS

Note: pre-2008 data also shown on map

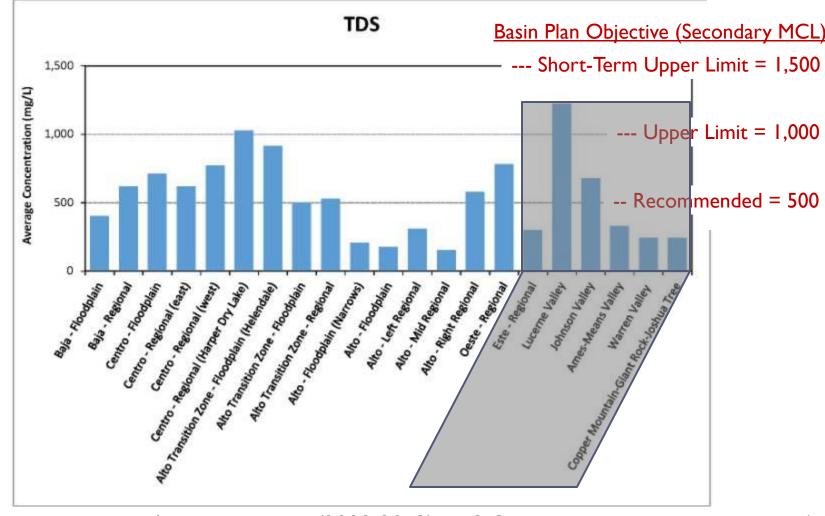
 Use well medians based on last 5 years of data

► Nitrate-NO₃

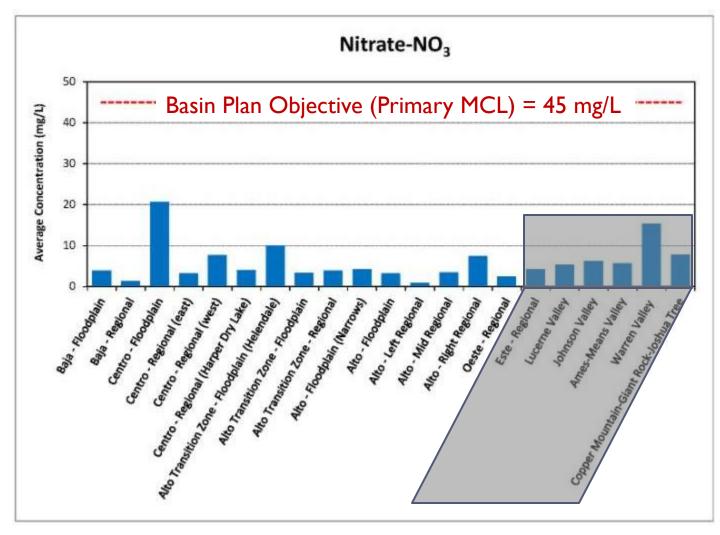
- Use well medians based on last 5 years of data
 - Used older vintage data as necessary
- De-cluster the data


TDS

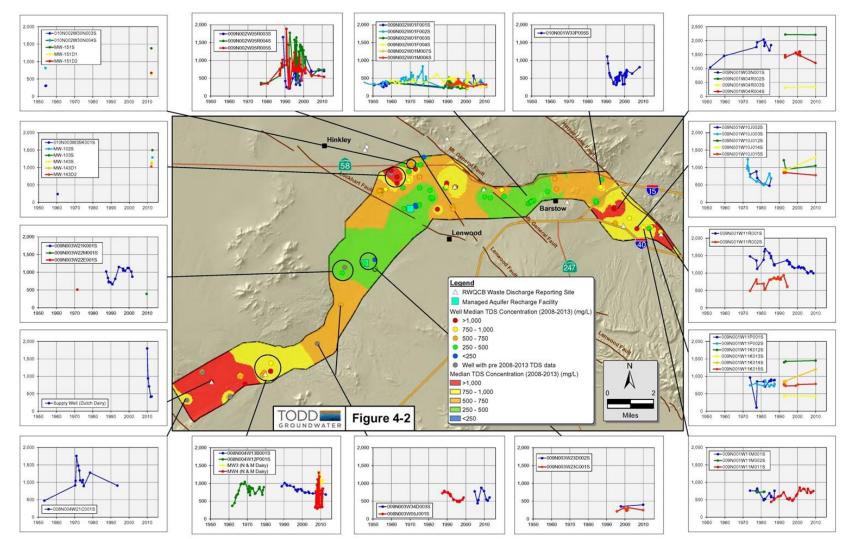
Contour/interpolate data

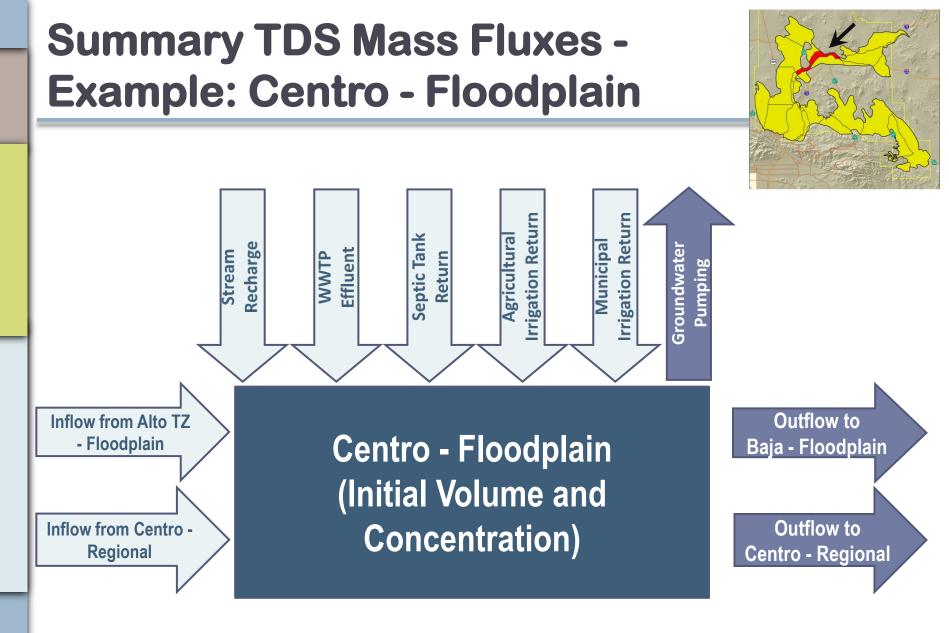


- Use well medians based on last 5 years of data
 - Used older vintage data as necessary
- De-cluster the data
- Contour/interpolate data


Nitrate-NO₃

- Calculate average TDS/nitrate concentration by subregion
- Use groundwater volume in operational storage
 - Depth to base of production zone


Average Existing (2008-2013) TDS Concentration


Average Existing (2008-2013) Nitrate-NO₃ Concentration

Ambient Groundwater Quality Characterization/Trend Analysis

Example: Centro - Floodplain Time-Concentration Plot Map (TDS)

16

S/N Inflows S/N Outflows

Future Simulations

S Future Scenarios:

- Scenario 1 2012 Base Case
- Scenario 2 Growth with <u>no</u> recycled water projects
- Scenario 3 Growth with recycled water projects

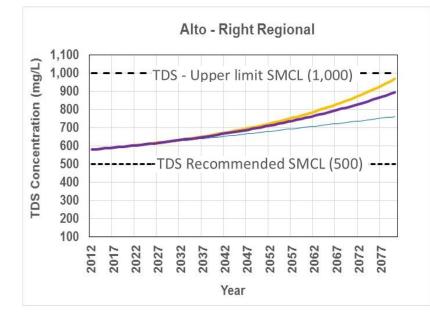
	I	Mojave River Ba	sin	Morongo Basin			
		Scenario 2	Scenario 3		Scenario 2	Scenario 3	
		(Growth with	(Growth with		(Growth with	(Growth with	
		No Recycled	Recycled		No Recycled	Recycled	
Model	Scenario 1	Water	Water	Scenario 1	Water	Water	
Component	(Baseline)	Projects)	Projects)	(Baseline)	Projects)	Projects)	
Hydrologic Conditions	Variable (1931 to 1999 repeated) ^(a)			Fixed (Average)			
Stream Recharge	Variable (cale	ulated by SNMP	miving model) ^(b)				
Subsurface Flows	variable (calc	ulated by SMMP	mxing model)		Fixed (Average)		
Groundwater Production		Annual Projection ^(c)			Annual Projection ^(b)		
Return Flows	2012		and model)	2012	(MWA demand model)		
Imported SWP water	[MWA dem		and model)				
	Existing Facilities		Existing and			Existing and	
Wastewater Treatment			Planned	Existing	g Facilities	Planned	
			Facilities			Facilities	

Future Simulations

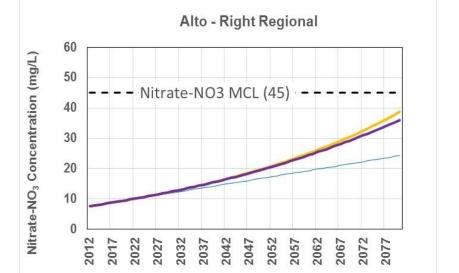
3 Future Scenarios:

- Scenario 1 2012 Base Case
- Scenario 2 Growth with <u>no</u> recycled water projects
- Scenario 3 Growth with recycled water projects

Agency	Simulated Planned Future Recycled Water Projects	Subregion(s) directly affected	Recycled Water Use	
VVWRA	SWRP (Apple Valley)	Alto - Right Regional Alto Transition Zone - Floodplain	Landscape Irrigation	
	SWRP (Hesperia)	Alto - Mid Regional Alto Transition Zone - Floodplain	Landscape Irrigation	
City of Victorville	IWWTP - Excess Recycled Water Recharge at VVWRA Pond 14	Alto Transition Zone - Floodplain	Excess Recycled Water Pond Discharge	
Helendale CSD	Recycled Water Reclamation Plant	Alto Transition Zone - Floodplain (Helendale)	Landscape Irrigation	
HDWD	Regional WWTP	Warren Valley	Pond Recharge	


Recycled Water Projects Simulated in Scenario 3

Victor Valley Wastewater Reclamation Agency (VVWRA) Helendale Community Services District (Helendale CSD) Hi-Desert Water District (HDWD) Subregional Water Reclamation Plant (SWRP) Industrial Wastewater Treatment Plant (IWWTP) Regional Wastewater Treatment Plant (Regional WWTP)


Example – Recycled Water Project in a Septic Tank-Sensitive Area

Recycled Water Project Impact in a SepticTank Sensitive Area

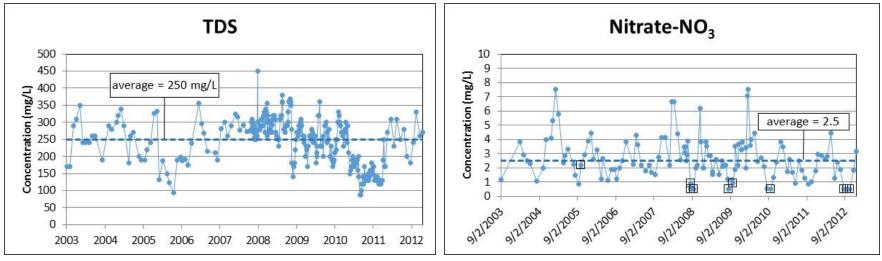
Alto – Right Regional (i.e. Apple Valley Regional Aquifer)

TDS

Year

Nitrate

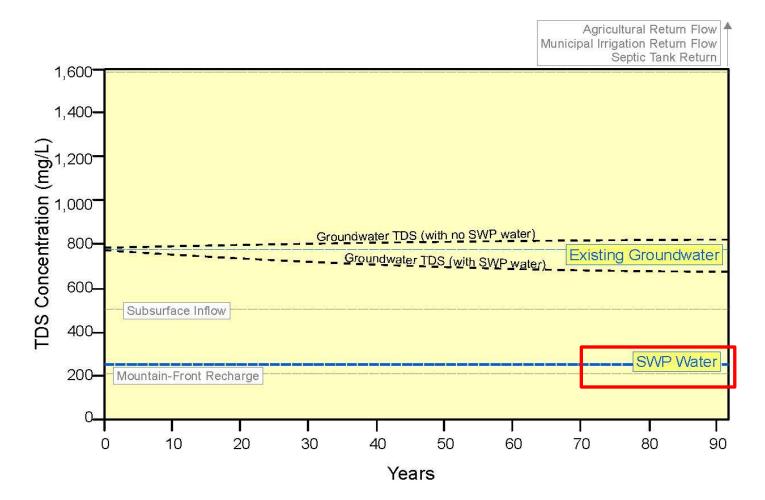
- -74 mg/L TDS
- -2.6 mg/L Nitrate-NO₃

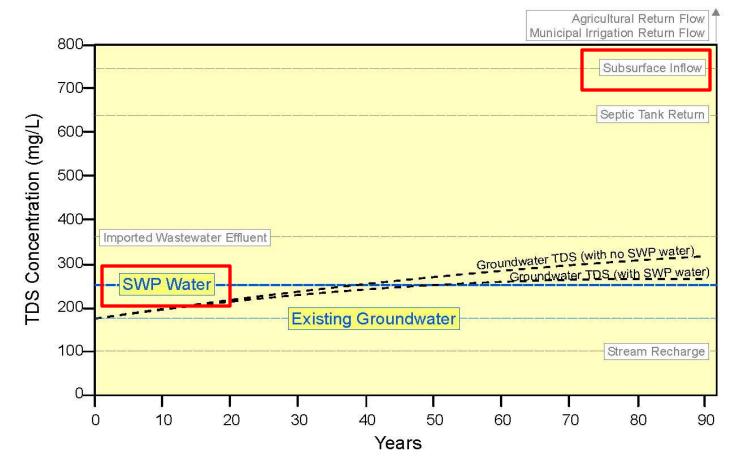

-Scenario 3 (Growth with Recycled Water)

Scenario 2 (Growth no Recycled Water)

— Scenario 1 (2012 Baseline)

Example – Benefit of SWP Water Recharge


- SWP water quality (average 2003 to 2013)
 - 250 mg/L TDS
 - 2.5 mg/L Nitrate-NO₃
- Average concentration applied to future years


 \Box = non-detect

- For TDS, SWP water is of higher quality than existing groundwater in 4 of 6 subregions receiving SWP water
- Benefit of SWP water recharge is evident but dependent on time

Oeste – Regional (i.e. Phelan and El Mirage)

Alto – Floodplain (i.e. Upper Mojave River)

Existing Assimilative Capacity Calculation

	TDS				Nitrate-NO ₃	
	Average TDS	Assimilative Capacity ^(a)			Average Nitrate-NO3	Assimilative Capacity ^(a)
Subregion	Groundwater Concentration	BPO = 500 mg/L	BPO = 1,000 mg/L	BPO = 1,500 mg/L	Groundwater Concentration	BPO = 45 mg/L
MOJAVE RIVER BASIN						
Baja - Floodplain	401	99	599	1,099	3.9	41.1
Baja - Regional	617	-117	383	883	1.4	43.6
Centro - Floodplain	711	-211	289	789	20.7	24.3
Centro - Regional (east)	618	-118	382	882	3.2	41.8
Centro - Regional (west)	771	-271	229	729	7.7	37.3
Centro - Regional (Harper Dry Lake)	1,028	-528	-28	472	4.0	41.0
Alto Transition Zone - Floodplain (Helendale)	915	-415	85	585	10.0	35.0
Alto Transition Zone - Floodplain	500	0	500	1,000	3.4	41.6
Alto Transition Zone - Regional	529	-29	471	971	3.9	41.1
Alto - Floodplain (Narrows)	205	295	795	1,295	4.3	40.7
Alto - Floodplain	177	323	823	1,323	3.3	41.7
Alto - Left Regional	310	190	690	1,190	0.9	44.1
Alto - Mid Regional	153	347	847	1,347	3.5	41.5
Alto - Right Regional	579	-79	421	921	7.5	37.5
Oeste - Regional	781	-281	219	719	2.5	42.5
Este - Regional	299	201	701	1,201	4.3	40.7
MORONGO BASIN						
Lucerne Valley	1,224	-724	-224	276	5.4	39.6
Johnson Valley	678	-178	322	822	6.2	38.8
Ames-Means Valley	330	170	670	1,170	5.7	39.3
Warren Valley	243	257	757	1,257	15.4	29.6
Copper Mountain-Giant Rock-Joshua Tree	242	258	758	1,258	7.8	37.2

Future Assimilative Capacity Calculation

	TDS				Nitrate-NO ₃		
	Simulated Future (2081) Groundwater	Assimilative Capacity ^a			Simulated Future (2081) Groundwater	Assimilative Capacity ^a	
Subregion	TDS Concentration (mg/L)	BPO = 500 mg/L	BPO = 1,000 mg/L	BPO = 1,500 mg/L	Nitrate-NO ₃ Concentration (mg/L)	BPO = 45 mg/L	
MOJAVE RIVER BASIN							
Baja - Floodplain	429	71	571	1,071	7.9	37.1	
Baja - Regional	664	-164	336	836	5.2	39.8	
Centro - Floodplain	598	-98	402	902	35.5	9.5	
Centro - Regional	786	-286	214	714	11.8	33.2	
Centro - Regional (Harper Dry Lake)	1,018	-518	-18	482	4.7	40.3	
Alto Transition Zone - Floodplain (Helendale)	874	-374	126	626	21.0	24.0	
Alto Transition Zone - Floodplain	535	-35	465	965	36.6	8.4	
Alto Transition Zone - Regional	534	-34	466	966	6.6	38.4	
Alto - Floodplain (Narrows)	395	105	605	1,105	17.3	27.7	
Alto - Floodplain	262	238	738	1,238	10.7	34.3	
Alto - Left Regional	378	122	622	1,122	4.2	40.8	
Alto - Mid Regional	362	138	638	1,138	13.4	31.6	
Alto - Right Regional	896	-396	104	604	36.0	9.0	
Oeste - Regional	702	-202	298	798	6.7	38.3	
Este - Regional	318	182	682	1,182	11.1	33.9	
MORONGO BASIN							
Lucerne Valley	1,240	-740	-240	260	9.7	35.3	
Johnson Valley	686	-186	314	814	7.0	38.0	
Ames-Means Valley	343	157	657	1,157	6.5	38.5	
Warren Valley	359	141	641	1,141	22.5	22.5	
Copper Mountain-Giant Rock-Joshua Tree	248	252	752	1,252	8.4	36.6	

- Effect of recycled water projects do not result in significant assimilative capacity use in affected subregions
- The SNMP does not recommend any changes to BPOs
- Groundwater characterization and S/N modeling results provide the technical foundation to guide local planning and future Regional Board policy decisions

Groundwater Monitoring Plan

- Collaborative, multi-agency effort
- Active monitoring network is basin-wide, yet focused where S/N loading, pumping, and groundwater management occur
- Existing monitoring programs adequate for comparing concentrations of S/N loading to WQOs on subregional-scale
- Data publicly accessible; no additional reporting proposed
- MWA is committed to supporting the Regional Boards in the protection of beneficial uses and providing data to guide future policy decisions and address local issues as they arise

Questions/Discussion

