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Appendix B: Information Supporting Discussion of the Development of the 
Recommended Water Quality Management Strategy 
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With more than $1 billion in funding from the federal government pouring in to the watershed to improve 
the Lake Tahoe environment, a premium had been placed on developing a suite of state-of-the-science 
analysis to quantify loads and pollutant sources, assess management activities, and identify and develop 
innovative management solutions. To facilitate this process, the Lahontan Water Quality Control Board 
and the Nevada Department of Environmental Protection identified and assembled regional experts into 
four Source Category Groups (SCGs) to investigate potential Pollutant Control Opportunities for each 
major source of pollutants entering Lake Tahoe.  They were (1) Urban Uplands and Groundwater, (2) 
Forest Uplands, (3) Atmospheric Deposition, and (4) Stream Channel Erosion SCGs.   
 
Each SCG identified three or four physical settings that represented typical features governing the 
selection and implementation of specific PCOs, and influencing pollutant fate and transport to the lake.  
An example of an Urban Upland setting is a concentrated-impervious-steep subbasin, whereas an 
Atmospheric Deposition setting is a concentric perimeter of uniform distance to the Lake.  Each SCG also 
defined two or three tiers representing different combinations of PCOs, and estimated annualized load 
reductions from applying each tier to each setting. Table A1 below describes the settings and tiers for 
each SCG, as established for the IWQMS project. 
 
Table A1.  Description of IWQMS Settings and Tiers by Source Category Group 

Atmospheric Deposition 

Settings Four spatially based settings, measured by concentric rings of distance from the 
lake 

Tiers 
Four tiers per setting were applied, based on two different treatment levels from 
two different groups of pollutant sources.  The first group was vehicle emisions, 
and the second group included transportation infrastructure or structural controls 

Forest Uplands 

Settings 
Three source based settings, including (A) unpaved roads, (B) highly erodible 
forest and recreational areas, (C) burned, plus harvested, plus relatively 
undisturbed forest areas 

Tiers Three tiers per setting with increasing degree of treatment: low, medium, and high 
Stream Channel 

Settings Three treatable segments along the top three most sediment-productive streams 
in the Basin: (1) Blackwood Ck, (2) Upper Truckee, and (3) Ward Creek 

Tiers Three levels of treatment with varying intensities and stabilization activities 
Urban Upland 

Settings Four settings based on the different combinations of slope (moderate or steep) 
and impervious configuration (concentrated or dispersed). 

Tiers Two tiers of differing intensity and sophistication of treatment activities, plus a third 
"Pump and Treat" stormwater tier for concentrated impervious areas only 

 
For each tier of controls, associated capital, maintenance, and life-cycle costs were researched, compiled, 
and normalized for cross-comparison.  Cost constraints were not imposed on any tier during the selection 
of PCOs at this stage in the process.  A database of cost and Level of Adoption (LOA) was derived by 
scaling between the existing baseline loading budget (0 percent LOA) and the maximum load reduction 
estimated from applying each tier to all areas within applicable settings (100 percent LOA).  Different 
LOA combinations result in different marginal costs for pollutant load reductions. 
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Faced with such a large search domain of potential alternatives with multiple control objectives and 
potentially non-linear cost-benefit relationships, a meta-heuristic optimization technique was applied to 
evaluate the costs-benefits and selection trade-offs among basin-wide pollutant sources.  This technique 
was applied in a Microsoft Excel environment, and was called the Packaging and Assessment Tool 
(PAT).  Output from the various SCG models, methods, and techniques were compiled and applied within 
PAT to assess and prioritize a wide range of management options, and evaluate potential economic 
benefits from water quality trading.  This methodology was the platform upon which the recommended 
strategy was derived.  The following sections will highlight (1) problem formulation using PAT, (2) 
describe the underlying computational algorithm, and (3) conclude with a discussion of uncertainty 
associated with PAT predicted results. 
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Problem formulation using PAT follows a three step process, as illustrated in Figure A1 below. 
 

 
 
Figure A1.  PAT user interface showing the three steps associated with problem formulation  
 
 
 Step 1 – Formulation Problem Objectives 
 
The first step is to formulate the problem objectives.  An optimization problem can be formulated to 
either (1) minimize costs to achieve a set of fixed pollutant targets, or (2) maximize potential reduction of 
pollutants, given a fixed cost.  Since three pollutants (fine sediment, nitrogen, and phosphorus) were all 
thought to be potentially subjected to management controls, the technique was designed to accommodate 
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multiple pollutant control objectives.  For example, the problem could be framed such that an optimum 
solution must simultaneously meet prescribed fine sediment, nitrogen, and phosphorus targets.  Figure A1 
shows simultaneous control targets for Particles, TN, and TP (32 percent, 5 percent, and 10 percent, 
respectively) for the minimize cost for a fixed target option.  If the maximize benefit for a fixed cost 
option is selected, the interpretation of the control targets shifts from percent reduction to control priority 
(a rank from 0, meaning not controlled, to 10 meaning maximum control at any cost).  The other user 
entries under step 1 include the stop tolerance (which was always set to zero for PAT operation), and the 
number of best solutions to display.  Stop tolerance will be further explained with the description of the 
underlying algorithm. 
 
 Step 2 – Define Problem Constraints 
 
The second step in the process is where problem constraints are introduced into the formulation.  Each 
SCG-Setting-Tier combination represents a controllable entry.  Constraints can be placed on each of these 
entries by adjusting either the minimum or maximum LOA, or both.  The number of entries in Figure A1 
has been condensed for illustrative purposes.  In the Figure A1 example, Atmospheric-Setting 1-VE Tiers 
2 and 3 have are not considered in the formulation because the maximum LOA is set to zero.  The 
Atmospheric Transportation Infrastructure or Structural (TIOS) tiers have a maximum LOA of 80 
percent, while the Urban and groundwater tiers are not unconstrained (0 percent-100 percent).  These 
constraints are for illustrative purposes only.  Rationale and assumptions for some of the actual problem 
formulations are listed in the Assumptions and Rationale section. 
 
 Step 3 – Rank Feasible Alternatives by Cost 
 
Once problem formulation is completed, pressing the “Rank Feasible Alternatives” button launches the 
optimization process.  A progress bar is displayed while the optimizer iterates through the search domain 
to find a set of optimum solutions.  Once the search process is completed, the results are summarized in a 
series of tables in subsequent tabs, as described below: 
 
BestLoad – In addition to the baseline pollutant load budget, this table presents the pollutant load budgets 
associated with each of the best solutions in by SCG and setting.  Cost information (20-year capital, 
annual operations and maintenance, and 20-year total) are also summarized and presented with the load 
budget 
 
BestLOA – Each solution has LOA selections for all SCG-setting-tier combinations.  This table presents 
the selected LOA levels for each of the best solutions 
 
BestTiers – This report presents the load reductions associated with each SCG and tier combination.  The 
results are aggregated for all settings within the SCG and rolled up by tier.  In addition to the cost and 
pollutant reduction information, a weighted aggregate LOA is shown for each SCG and tier combination 
for each solution, to highlight which tier strategies were preferred during optimization. 
 
SettingsTiers – This report includes the most detailed breakdown of the optimization results.  It presents 
the selected LOA for each SCG-setting-tier combination, the associated load reductions, associated cost 
information, and a SCG rollup summary. 
  
Handout – Similar to the SettingTiers report, the Handout presents the load reductions as a percentage 
relative to the original untreated pollutant load budget.  Another computed data point included in this 
report is a cost effectiveness estimate computed as an annual total cost per percent particles removed.  
Cost effectiveness is a normalized quantity for comparing performance between SCG-setting-tier 
controls. 
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Scatter search is meta-heuristic search technique that has been explored and used in optimizing complex 
systems (Glover et al. 2000).  Scatter search has some commonalties with traditional Genetic Algorithms 
(GAs); however, there are also a number of quite distinct features.  Both scatter search and GAs are 
population-based approaches which search for best solutions by combining existing elements.  An 
individual in the population is one combination of decision variables (LOA) that all fall within the defined 
constraints.  A population is a group of individuals.  The objective of both GA and scatter search is to 
search among the characteristics (LOA) of individuals in the population to find which ones result in the 
highest quality.  Quality is measured as a computed byproduct of cost and percent reduction.  If the 
objective of the problem is to maximize pollutant reduction and minimize cost, populations and 
individuals in the population which best achieve this objective are considered of better quality.   
 
GA approaches are predicated on the idea of choosing parents (individuals) randomly to produce 
offspring (other individuals with slightly different characteristics or LOAs), and further on introducing 
randomization to determine which characteristics (LOA) of the parents should be combined.  By contrast, 
the scatter search approach does not emphasize randomization because it is indifferent to choices among 
alternatives.  Instead, the approach incorporates strategic responses, both deterministic and probabilistic, 
that take into account the evaluation history.  Scatter search focuses on generating relevant outcomes 
without losing the ability to produce diverse solutions (Laguna and Marti, 2002).  In other words, it 
initially searches across a wide spectrum of populations with the objective function in mind, and uses the 
evaluation history to hone in on elements in the population which exhibit the highest quality.  The scatter 
process helps to reduce the likelihood of finding a local best solution that is not the true best solution.  
Because of this feature of scatter search, it can find the near-optimal solution in a more efficient way, and 
serve as a better optimization engine for the type of goal-seeking required for the underlying PAT dataset.  
The scatter search procedural adaptations that were applied in PAT were developed by Zhen (2002), and 
have been tested and applied for solving a variety of optimization formulations (Zhen and Yu, 2002, 
2004; Riverson et al., 2004; Lai et al., 2006, Lai et al., 2008).  The implementation of scatter search 
processes generally follows the four step approach outlined below: 
 
 
 1. Generate a starting set of diverse points (individuals in a population)  
 
This is accomplished by initially dividing the range of each decision variable (LOA range) into four sub-
ranges of equal size.  Then, a solution is constructed in two steps. First, a sub-range is randomly selected, 
and second, a value is randomly chosen from within the selected sub-range. The starting set of solution 
points also includes all variables at their lower bound (minimum LOA), all variables at their upper bound 
(maximum LOA), all variables at their midpoints, and any other solution points or constraints imposed by 
the user.  This represents the widest possible search domain, and sets the stage for further refinement of 
the search. 
 
 2. Choosing a subset of diverse points (individuals) as a reference set (population) 
 
A reference set (reference population) is group of individuals with diverse characteristics (LOA).  An 
individual’s characteristics all fall within the user-specified set of constraints; however, the algorithm tries 
to make the characteristics as diverse as possible.  With each successive iteration, a new population is 
created and compared against the reference set.  For PAT, the number of individuals in the population is 
computed as 4 times the number of decision variables (LOA) ranges.  So for the initial configuration, the 
number of LOA ranges was 43, representing all the different combinations of SCG, settings, and tiers; 
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therefore, the number of individuals in the unconstrained reference set was 43 times 4 or 172.  The higher 
the number, the more diverse the search domain, the greater the likelihood of finding a near optimum 
solution; however, the sacrifice is an increase in computational intensity.  The PAT underlying database 
was designed to significantly minimize computation time because (1) LOA increases in 10 percent 
intervals, and (2) all associated pollutant reductions were pre-computed as rating curve elements in the 
underlying database; therefore, a set of 172 reference set individual solutions was not computationally 
prohibitive. 
 
A designed objective of the search approach is to seek individuals within a reference set with diverse 
characteristics.  This is done to reduce the likelihood that the solution technique blindly converges upon a 
local best solution and ignores other potentially better solutions.  Population “diversity” is measured by 
the Euclidean distance of individuals within the reference set.  Euclidean distance is the straight line 
distance between two points.  With respect to the PAT dataset, two points exist in a multi-dimensional 
space with as many dimensions as there are decision variables (LOA), which would be in 43-dimensional 
space.  An example of Euclidean distance in a two-dimensional plane with point 1 at (x1, y1) and point 2 
at (x2, y2), it is computed as: 
 

2
21

2
21 )()( yyxx −+−  

 
 
 3.  Generating new points to update the reference set 
 
While searching for the optimum solution, Scatter Search uses a linear combination method to construct 
new solution points (individuals) from the reference solution points.  This combination is based on the 
three types of formulations, in which x′  and x ′′  are reference solution points, and x1 through x3 are the 
newly generated solution points: 
 

dxx −′=1  

dxx −′′=2  

dxx +′=3  
 

Where 
2

xx
rd

′−′′
=  and r is a random number in the range (0, 1). 

 
The number of solution points created from the linear combination of two reference solution points 
depends on the quality of the solutions being combined. 
 
In the course of searching for a global optimum, the reference set is continuously updated.  The solutions 
having better quality, while preserving or refining the diversity of the reference set, are chosen as 
replacements for old points in the reference set.  A diversification step is performed to repopulate the 
reference set.  To preserve quality, a small set of the best solutions (or elite set) from the current reference 
set is used to seed the new reference set.  The diversification method is used to repopulate the reference 
set with solutions that are diverse relative to the elite set.  If higher quality elements are found among the 
new diverse set, they become part of the elite set in successive reference sets.  This step continues until no 
solutions or higher quality are available, or until a user specified stopping criteria is achieved. 
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 4.  Stop the search if the stopping criteria are met 
 
The stopping criteria can be defined, as the maximum number of iteration runs, or the minimum 
improvement between updates of the reference set, or both.  If both criteria are specified, then the search 
will be stopped when either of the criteria is met.  In the case of PAT, the minimum improvement was set 
at zero, so that iterations would stop when absolutely no better solution could be found.  After multiple 
sensitivity runs using the PAT dataset, the maximum number of iterations was empirically computed as: 
 

42 ×= nMaxRuns  
 

Where n = the number of decision variables. 
 
For the initial PAT configuration, the maximum number of runs was 118,336.  While this number seems 
like a large number, the number of possible solutions for an unconstrained simulation is several orders of 
magnitude higher.  Given 43 decision variables, if all setting-tier and LOA constraints removed, and each 
decision variable has the option to vary between 0 percent and 100 percent (at 10 percent LOA intervals), 
there would be 11 possible solutions for each of the 43 variables.  The unconstrained number of possible 
solutions is 11 raised to the 43rd power, or roughly 
602,400,691,612,422,000,000,000,000,000,000,000,000,000,000 combinations.  The number drops a few 
orders of magnitude as various combinational constraints are introduced.  Nonetheless, it punctuates the 
potential efficiencies to be gained with the application of meta-heuristic solution techniques like scatter 
search. 
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There were a few key assumptions that have been made regarding the nature and usage of the underlying 
database derived from the SCG work products.  These assumptions are listed below in bullet form, with 
associated narrative explanations. 
 

• The SCG products for each setting and tier combination represent maximum application of the 
associated controls.  These controls were quantity based, such that depending on the SCG and 
setting, controls are expressed in terms of amount of area treated, number of objects controled, or 
length of segment treated.  For this reason, it was both possible and appropriate to scale the LOA 
for these controls according to the applicable quantity.  For each SCG, LOA was scaled linearly 
from 0 percent (baseline condition with no controls) to 100 percent (maximum application) for a 
given Tier and setting combination.  Pollutant reduction was linearly scaled between baseline 
loads to reduced loads associated with each setting and tier combination.  Associated 
management costs were scaled from zero cost for the baseline to 100 percent of the cost for full 
application to a given setting and tier combination. 

 
• The setting is the smallest unit for management, for which there is a fixed manageable quantity.  

For example, given a specific Urban Upland setting, the fixed manageable quantity is area.  
Therefore, a 50 percent application level of Tier 1 means that the suite of controls associated with 
Tier 1 are applied to 50 percent of the total available area.  If during the solution search routine, 
additional controls are found to be required for that specific setting in order to meet the defined 
objectives, it can be achieved by either (1) increasing the LOA for that particular Tier, (2) 
applying a different LOA of another Tier (i.e. Tier 2) which has a higher treatment potential, or 
applying combinations of LOA for more than one Tier (i.e. 50 percent Tier 1, and 20 percent Tier 
2, for a total of 70 percent of the total area being treated). 
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• The maximum LOA for any given setting was assumed to be 80 percent.  For practical reasons, it 

was thought unlikely that any given combination of tiers could be applied so as to treat 100 
percent of a given setting.  There will always be urban areas which cannot be treated due to 
restricted access or impracticability, remote forest settings which are naturally erodible and/or are 
not accessible by conventional means, private property air pollutant sources or vehicle emissions 
that cannot be managed for various reasons, or stream segments which cannot be easily stabilized 
and restored. 

 
• There were certain assumptions associated with LOA constraints for the various packages.  These 

include definition of the base package as well as selected minimum/maximum LOA constraints 
for some of the exploratory packages.  These were introduced to limit the selection of some of the 
more sophisticated, but untested technologies.  For example, lets assume that Tier 1 of a given 
SCG and setting is composed of common conventional practices, while Tier 2 includes some 
sophisticated and innovative practices.  A scenario that focuses on traditional control technologies 
may restrict the selection of Tier 2 practices, in favor of Tier 1; whereas a scenario that focuses 
on innovative practices might constrain the selection of Tier 1, and allow more selection of Tier 2 
practices.  Assumptions associated with scenarios are described in detail in Chapter 3: 
Development of the Recommended Strategy. 
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All calculations and estimates include uncertainty because of the current limits of scientific 
understanding.  There is uncertainty associated with (1) the data developed in the underlying database, as 
well as uncertainty associated with (2) the optimization searching processs. 
 
 Underlying Database Uncertainty 
 
Since the SCG products all represent the ultimate pollutant delivery to Lake Tahoe associated with the 
SCG settings and tiers, the predicted confidence of an individual solution can be computed as a weighted 
average of the confidence associated with the components.  A uniform confidence rating convention was 
developed to help quantify uncertainty associated with the diverse set of SCG products.  Each of the 
SCGs noted uncertainties throughout their analyses and assigned an overall confidence rating to each set 
of results provided.  The assigned confidence values were rated on a one to five scale according to a 
system designed for the SCG’s use.  The rating was based on the SCGs own answers to 16 questions 
about the data sources used, the calculation results and modeling parameters.  
 
SCGs used the following guidance: 
 
A rating of “1” generally indicates: 

• Data sources were from a dissimilar area, were unreviewed and not supported by other research 
• Calculation results were not similar to other investigations, used mostly professional judgment, 

had high calculation error, and required unlikely assumptions 
• Models were not widely accepted, were poorly calibrated, or were not validated 

 
A rating of “3” generally indicates: 

• Data sources were from a similar, cold climate; were reviewed as agency drafts; or were partially 
supported by other research 
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• Calculation results were somewhat similar to other investigations, used some professional 
judgment; had intermediate calculation error or required reasonable assumptions 

• Models had been used before, were reasonably calibrated but might not have been well validated 
 

A rating of “5” generally indicates: 
• Data sources were from Tahoe, published, and supported by other research 
• Calculation results were similar to independent investigations, used little professional judgment, 

had low calculation error, and were based on conservative assumptions 
• Models were widely accepted, well calibrated, and validated on non-calibration data 

 
Overall, ratings of 1 and 2 were used when future values were considered likely to change significantly, 
and the SCG was not comfortable using them for significant management decisions. Ratings of 3, 4, and 5 
were used when future values are not expected to change significantly, and the information is considered 
appropriate for management decisions.  Further detail about confidence ratings for each of the individual 
SCG components is provided in the Lake Tahoe TMDL PRO Report (Lahontan and NDEP 2007b). 
 
 
 Optimization Uncertainty 
 
Meta-heuristic optimization approaches are based on random number search techniques.  Uncertainty 
increases with the prevalence of local minimums to which the solution technique might become trapped, 
and miss potentially better solutions within its search vicinity.  Specialized approaches like scatter search 
include considerations for diversity during the searching process, which minimizes the likelihood of 
falling into a less than optimal local minimum.  If the resolution around other potential solutions within 
the general vicinity of the near-optimum solution is amplified, one can better illustrate and quantify the 
nature of uncertainty associated with the PAT optimization technique.  In optimization space, all points 
which are said to be optimal will fall along a region called the Pareto optimal frontier.  
 
Pareto optimality is a concept commonly applied in economics and engineering.  The underlying premise 
for PAT optimization involves the allocation of monetary resources to reduce pollutant loads such that the 
lowest cost alternative is achieved.  Additional constraints imposed upon the solution can bend the search 
space to ensure that the allocation of resources involves all stake holders involved.  During the search 
operation, reallocation of resources is done in such a way that marginally more benefit is achieved with 
each additional cost incurred.  Cost effectiveness is measured by benefit achieved per dollar allocated.  To 
remain Pareto optimal, the solution technique selects the more cost effective solutions first before 
considering others.  A solution is said to be Pareto optimal when no further improvements can be made. 
 
A second optimization formulation was tested against the Scatter Search formulation in PAT to help 
amplify the resolution of solutions in the general vicinity of the selected near-optimum solution.  The 
primary objective of this formulation is to identify the Pareto optimum frontier.  This formulation is a 
called the Non-dominant Sorting Genetic Algorithm (NSGA-II), developed by Deb et al. (2000).  While 
scatter search refines a scatter pattern around the targeted objectives by replacing members of a reference 
population, NSGA-II defines a population as individual solutions along a cost-benefit frontier and refines 
the entire population with better and better solutions until the final solution approaches the true Pareto 
frontier.  Figure A2 is a conceptual representation of the two search routines.  
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Figure A2.  Conceptual representation of the searching techniques for Scatter Search and the Non-
dominant Sorting Genetic Algorithm-II 
 
 
In both graphs, the Pareto Optimum frontier is represented as the solid cost-benefit arc.  It conceptually 
represents the true collection of optimum solutions for every cost ($) and benefit ( percent) combination.  
The concentric circles in the scatter search graph illustrate progressively better (narrower) reference 
populations, until the final set of best solutions are found clustered around the point along the Pareto 
frontier.  The dashed lines in the NSGA-II graph illustrate progressively improving cost-benefit 
relationships with each new generation of solutions, until the true Pareto frontier is approximated in the 
last generation.  The red dot on the NSGA-II graph shows how a near-optimum solution for a given 
objective target might be inferred from the Pareto frontier.  The distance between points along the trade-
off curve for both methods shows that scatter search clusters solutions around the defined objective on the 
Pareto frontier, while NSGA-II distributes the solutions along the entire trade-off frontier.  Increasing the 
resolution for NSGA-II means increasing the number of individuals in the population, which 
exponentially increases the number of generations required to approach the near optimum Pareto frontier. 
 
The scatter search predicted PAT results were compared against results generated by the NSGA-II using 
the same underlying database and constraints.  The NSGA-II population size was set to 1,376, which 
equals the number of decision variables (43) times 25 or 32.  The population size must be increased in 
increments of 2 times the number of decision variables in accordance with requirements associated with 
parent-offspring Genetic Algorithm formulations.  The resulting Pareto frontier is a high resolution 
rendering based on 1,376 individual solutions along the frontier.  Due to the increased complexity of the 
problem and the high-resolution population size, each NSGA-II simulation required roughly 20 minutes 
of runtime to complete the simulation to generate the Pareto optimum frontier. 
 
After the simulation, an empirical relationship derived from on sensitivity runs of the Lake Tahoe Clarity 
Model was used to translate the results from total fines reduction to resultant lake clarity (represented as 
Secchi Depth).  Secchi depth versus 20-year capital cost Pareto Frontiers are presented for some of the 
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exploratory scenarios in Figure A3.  These exploratory scenarios are described in greater detail in Chapter 
3: Development of the Recommended Strategy. 
 

 
Figure A3.  Pareto optimum frontiers for IWQMS exploratory scenarios. 
 
The solid color-coded dots represent the “best” PAT-predicted scatter search solutions plotted along the 
Pareto Frontier associated with the corresponding scenario.  In addition to the individual scenario Pareto 
frontiers, the unconstrained simulation frontier and a base-package-constrained simulation frontier were 
also generated for comparison.  These illustrate the impact of the LOA constraints on the predicted 
optimal solution at each cost interval.   
 
Further investigation of the LOA characteristics for the solutions in and around the PAT predicted 
optimum solutions yields insight into the factors that influence the selected solution at different intervals.  
Consider the hypothetical unconstrained (0-80 percent) simulation.  Each of the 1,376 points along the 
Pareto optimal frontier includes characteristic information about the selected LOA for every setting and 
tier combination.  If the predicted cost at each percent reduction interval is broken down and summarized 
by SCG-and-Setting combination, it is possible to see the order in which the optimizer tends to select 
cost-effective solutions at each cost interval along the Pareto frontier.  Figure A4 is a graph of Pareto-
optimal cost distribution for SCG-and-settings combinations, normalized at each percent reduction 
interval along the frontier.  Likewise, if cost is broken down and summarized by SCG-and-Tier 
combination, it is possible to see the order in which the optimizer tends to select cost-effective solutions 
at each cost interval along the Pareto Frontier.  Figure A5 is a graph of Pareto-optimal cost distribution 
for SCG-and-tier combinations, normalized at each percent reduction interval along the frontier.    
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Figure A4.  Pareto-optimal cost distribution versus percent fines reduction by setting 
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Figure A5.  Pareto-optimal cost distribution versus percent fines reduction by tier 
 
At certain intervals, these graphs show a systematic pattern of “noise” in the cost distributions.  This 
occurs when the aggregated cost-effectiveness for different combinations of LOA among settings and 
tiers are comparable.  This pattern is especially prevalent among the urban SCG settings and tiers.  There 
are a number of factors which contribute to this noise in the results.  Climate variability around the 
watershed influences the effectiveness of stormwater controls.  Since setting and tier results are 
aggregated across multiple spatial locations, there are sometimes overlaps in aggregated reduction per 
dollar invested.  When searches target percent reduction criteria that are in relatively stable sections of the 
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Pareto frontier, scatter-search will tend to find the same solution consistently in consecutive runs.  
However, when scatter-search explores regions along the Pareto frontier where there is a lot of “noise” 
generated by the interplay of similar aggregated cost-effectiveness values among individual solutions, it 
increases the likelihood of finding a local best solution which may actually have slightly better solutions 
nearby.  Figure A6 is a conceptual representation of what a scatter search solution might look like while 
operating in a noisy region along the Pareto frontier.  The dips in the figure are deliberately exaggerated 
to highlight how a local minimum might be chosen as the solution in lieu of a slightly better one nearby. 
 
 

 
Figure A6.  Conceptual representation of scatter search in a noisy region along the Pareto frontier 
 
 
To validate the predictive performance of scatter search and NSGA-II, Lai et al. (2008) tested both of 
these search techniques against a known hypothetical linear solution, where no noise existed in the 
underlying dataset.  The objectives were twofold: (1) to evaluate Scatter Search ability to pick a known 
linear solution for a single BMP given multiple pollutant performance functions and multiple pollutant 
reduction objective criteria, and (2) to evaluate NSGA-II ability to generate a trade-off curve for a known 
linear solution for a single BMP.  Both the Scatter Search and NSGAII optimization techniques were able 
to solve a known linear solution with 100 percent accuracy.  In addition, the optimization techniques were 
both able to select an optimum solution given multiple control objectives for controlling sediment and 
nitrogen simultaneously.  The NSGA-II technique was also able to predict a known linear trade-off curve, 
as shown in Figure A7. 
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Figure A7.  Validation of NSGA-II against a known linear solution (Source: Lai et al., 2008) 
 
 
In conclusion, it is important to note that the results of meta-heuristic search techniques are usually 
referred to as near-optimal solutions.  Uncertainty of a scatter search solution heavily depends on the 
amount of “noise” in the region along the Pareto frontier which is being searched.  Just as the entire 
Pareto frontier shifts when LOA constraints are added to given problem formulation, the noise associated 
with the interplay of cost-effectiveness also varies as constraints are imposed upon the search 
formulation.  In the absence of noise, both scatter search and NSGA-II have been shown to consistently 
predict results with 100 percent accuracy.  The predictive efficiency for scatter search given the nature of 
the underlying database is probably on the order of 98 percent to 99.9 percent efficient in terms of 
accuracy.  However, further trade-off analysis of this manner is needed to better quantify uncertainty 
associated with specific scenario results. 
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