State of California CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION 320 West 4th Street, Suite 200, Los Angeles REVISED FACT SHEET WASTE DISCHARGE REQUIREMENTS FOR

PADRE ASSOCIATES, INC.
(City of Oxnard, Redwood Trunk Sewer, Headworks, & Septic Conversion Project)
NPDES NO. CAG994004
CI-8627

FACILITATION LOCATION

J Street and Pleasant Valley Road; Oxnard, CA 93033

FACILITY MAILING ADDRESS

6001 S. Perkins Road Oxnard, CA 93033

PROJECT DESCRIPTION

On December 15, 2004, NPDES General Permit No CAG994004, Order No. R4-2003-0111 and Monitoring & Reporting Program (MRP) No. CI-8627 was revised to add the Headworks Project. The City of Oxnard (The City) has retained Padre Associates for the construction project. The City submitted a letter and attachments on October 4, 2005, requesting the Regional Board to include the upcoming Septic Conversion Project under coverage by the general permit. The subject project will extend the sewerage infrastructure to areas of the City currently under septic system. The filtered groundwater from the subject project will be analyzed prior to discharge from two Outfalls, #4 and #5, into the County Flood Control Channel. This Regional Board has no objection to including the Septic Conversion Project under the general permit.

VOLUME AND DESCRIPTION OF DISCHARGE

In addition to discharge from existing projects, up to 50,000 gallons per day of groundwater generated from the Septic Conversion Project area will be discharged to the County Flood Control Channel at the following locations listed below. Discharge from Outfall #1 and Outfall #2 flows to the storm drain, thence to Channel Islands Harbor. Discharge from Outfalls #3, #4, and #5 flow to the County Flood Control Channel which then flows to a coastal stream tributary to the Pacific Ocean. Discharge from the Wastewater Treatment Plant equalization basin is also flows to coastal streams tributary to the Pacific Ocean, a water of the United States.

October 12, 2005

<u>Outfall</u>	<u>Latitude</u>	<u>Longitude</u>	Receiving Waterbody
#1	34°10'33"	118°23'49"	Channel Islands Harbor
#2	34°10'52"	119°13'16"	Channel Islands Harbor
#3	34°08'16"	119°11'09"	Pacific Ocean
#4	39°09'17"	119°10'38"	Pacific Ocean
#4	39°09'58"	119°10'37"	Pacific Ocean

The site location map and the schematic of waste flow diagram are shown as Figures 1 and 2, respectively.

APPLICABLE EFFLUENT LIMITATIONS

Based on the information provided in the NPDES Application Supplemental Requirements, the following constituents in the Table below have been determined to show reasonable potential to exist in the discharge. The groundwater discharge from the project flows into Channel Islands Habor and/or to the coastal streams of the Pacific Ocean. Therefore, the discharge limitations under the "Other Water" column apply to the discharge. Since the discharge ultimately flows to saltwater waterbodies, the effluent limitation for copper and lead have been selected according to Section E.1.c. of the Order.

This Table lists the specific constituents and effluent limitations applicable to the discharge.

		Discharge Limitations		
Constituents	Units	Daily Maximum	Monthly Average	
Total Suspended Solids	mg/L	150	50	
Turbidity	NTU	150	50	
BOD ₅ 20°C	mg/L	30	20	
Oil and Grease	mg/L	15	10	
Settleable Solids	ml/L	0.3	0.1	
Sulfides	mg/L	1.0		
Phenols	mg/L	1.0		
Residual Chlorine	mg/L	0.1		
Methylene Blue Active Substances (MBAS)	mg/L	0.5		
Volatile organic Compounds				
Total Petroleum Hydrocarbons	μg/L	100		
Benzene	μg/L	1.0		
Ethylbenzene	μg/L	700		
Toluene	μg/L	150		
Xylenes	μg/L	1750		
Methyl tertiary butyl ether (MTBE)	μg/L	5.0		

		Discharge Limitations		
Constituents	Units	Daily Maximum	Monthly Average	
Tertiary butyl alcohol	μg/L	12		
Metals				
Copper	μg/L	5.8	2.9	
Lead	na/F	14	7.0	

FREQUENCY OF DISCHARGE

The project will be commence in October 2005. The dewatering phase of the Septic Conversion Project is anticipated to last approximately two to three months.

REUSE OF WATER

Some of the groundwater will be used for dust control and soil compaction at the site. There are no other feasible reuse options for the discharge. Therefore, the groundwater will be discharged to the Channel.