STATE OF CALIFORNIA CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION 320 West 4th Street, Suite 200, Los Angeles, California 90013

REVISED FACT SHEET WASTE DISCHARGE REQUIREMENTS FOR DOLE FOOD COMPANY, INC. (WESTLAKE VILLAGE SPA & HOTEL)

NPDES NO. CAG994004 CI-8744

FACILITY ADDRESS

FACILITY MAILING ADDRESS

Westlake Village Spa & Hotel Two Dole Drive Westlake Village, California One Dole Drive Westlake Village, CA 91362

PROJECT DESCRIPTION:

Dole Food Company, Inc. (Dole) discharges wastewater from a construction dewatering project located at 5411 Lindero Canyon Road in Westlake Village. Dole is constructing a hotel and spa resort at the above-referenced site. Following completion of the project, the new address will be Two Dole Drive, Westlake Village. Based on the water quality data, the groundwater beneath the site is impacted with volatile organic compounds (VOC), heavy metals, 1,4-Dioxane, Freon 113, total dissolved solids, and sulfate. The extracted groundwater will be treated before discharge to a nearby storm drain.

Dole also proposes to: 1) combine the seepage groundwater from Lindero Headquarters Company (LHC) located at One Dole Drive with the construction dewatering groundwater at Two Dole Drive; and 2) allow blending of the treated groundwater with potable water to reduce the concentration of mineral constituents with limitations under the above-referenced permit.

The revised treatment system would include any combination of advanced oxidation, granular activated carbon beds, reverse osmosis, and ion exchange. Maximum discharge will be experienced at the site during the construction phase of the project. During the construction dewatering phase, the extracted groundwater will pass through an appropriate combination of treatment systems prior to blending with potable water at a 1:1 ratio, before being discharged to the storm drain. Discharge from the storm drain flows to Westlake Lake and then to Triunfo Creek where it primarily percolates the unlined creek bed and recharges the groundwater subbasin. This high flow rate of discharge with blending will occur for a short-term period and may last up to May 2005. Thereafter, the permanent dewatering system will discharge continuously at a flow rate of up to 28,800 gpd.

VOLUME AND DESCRIPTION OF DISCHARGE:

Up to 432,000 gallons per day of treated groundwater will be discharged during the construction dewatering activities. This high rate of discharge will be reduced to 28,800 gallons per day after May 2005. The treated groundwater will be discharged through an existing storm drain located at Lindero Canyon Road (Latitude 34° 09' 02", Longitude 118° 48' 18"), thence to Malibu Creek Watershed, a water of the United States. The site location map and process flow diagram are shown in Figures 1 and 2, respectively.

APPLICABLE EFFLUENT LIMITATIONS

Based on the information provided in the NPDES Application Supplemental Requirements, the following constituents listed in the Table below have been determined to show reasonable potential to exist in the discharge. The groundwater discharge flows into Malibu Creek Watershed; therefore, the discharge limitations applicable to freshwater waterbodies under the "Other Waters" apply to your discharge. In addition, the discharge limitations listed in Attachment B.5.a. are applicable to your discharge.

	Units	Discharge Limitations	
Constituents		Daily Maximum	Monthly Average
Total Dissolved Solids	mg/L	2000	
Sulfate	mg/L	500	
Chloride	mg/L	500	
Boron	mg/L	2	
Nitrogen ¹	mg/L	10	
Total Suspended Solids	mg/L	150	50
Turbidity	NTU	150	50
BOD ₅ 20°C	mg/L	30	20
Oil and Grease	mg/L	15	10
Settleable Solids	ml/L	0.3	0.1
Sulfides	mg/L	1.0	
Phenols	mg/L	1.0	
Residual Chlorine	mg/L	0.1	
Methylene Blue Active Substances (MBAS)	mg/L	0.5	
Volatile Organic Compounds			
1,1-dichloroethane	μg/L	5	
1,1-dichloroethylene	μg/L	6	3.2
Tetrachloroethylene	μg/L	5.0	
Trichloroethylene	μg/L	5.0	
Vinyl chloride	μg/L	0.5	

This Table lists the specific constituents and effluent limitations applicable to the discharge.

Nitrate-nitrogen plus nitrite nitrogen.

1

		Discharge Limitations	
Constituents	Units	Daily Maximum	Monthly Average
Miscellaneous			
Perchlorate	μg/L	4	
1,4-Dioxane	μg/L	3	
Total petroleum hydrocarbons	μg/L	100	
Metals			
Copper	μg/L	44.4	22.1
Nickel	μg/L	100	100
Selenium	μg/L	8	4

FREQUENCY OF DISCHARGE:

The groundwater dewatering will be intermittent during the construction and then permanent and continuous after the completion of the construction project for the life of the structure.

REUSE OF WATER:

Options for reuse of water such as irrigation, reinjection, reuse for potable source, or disposal to a wastewater treatment facility, were considered. However, due to the large volume of groundwater dewatering expected to be generated during the construction, and the prohibitive cost of pipelines and permits, the reuse of the groundwater is infeasible. The local sewering agency, Las Virgenes Municipal Water District, is not accepting this type of wastewater into its sewershed. Therefore, the wastewater will be discharged to the storm drain.