STATE OF CALIFORNIA CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION 320 West 4th Street, Suite 200, Los Angeles, California 90013

FACT SHEET WASTE DISCHARGE REQUIREMENTS FOR MR. AUTO CENTER

NPDES NO. CAG994004 CI-8870

FACILITY ADDRESS

FACILITY MAILING ADDRESS

1924 E. Compton Boulevard Compton, California

1924 E. Compton Boulevard Compton, CA 90221

PROJECT DESCRIPTION:

Mr. Auto Center (Discharger) is proposing to implement a full-scale groundwater treatment to remediate the contaminated soil and groundwater beneath its facility located at 1924 E. Compton Boulevard in the City of Compton (See Figure 1 for the location of the site). The Discharger proposes to discharge the treated groundwater to the nearby stormwater drain.

VOLUME AND DESCRIPTION OF DISCHARGE:

Approximately 3,000 gallons per day of groundwater will be generated from the project site. The groundwater will be treated and then discharged to Outfall No. 1 (Latitude: 33° 53' 20", Longitude: 118° 11' 13"). The discharge flows into the Los Angeles River, a water of the United States.

APPLICABLE EFFLUENT LIMITATIONS

Based on the information provided in the NPDES Application Supplemental Requirements, the following constituents listed in the Table below have been determined to show reasonable potential to exist in the discharge. The groundwater discharge flows into the Los Angeles River between Figueroa Street and Los Angeles River Estuary, which is designated as MUN (Potential) beneficial use. Therefore, discharge limitations under "Other Waters" column apply to the discharge.

This Table lists the specific constituents and effluent limitations applicable to your discharge.

Constituents	Units	Discharge Limitations	
		Daily Maximum	Monthly Average
Total Suspended Solids	mg/L	150	50
Turbidity	NTU	150	50
BOD ₅ 20°C	mg/L	30	20
Oil and Grease	mg/L	15	10
Settleable Solids	ml/L	0.3	0.1
Sulfides	mg/L	1.0	N/A
Phenols	mg/L	1.0	N/A
Residual Chlorine	mg/L	0.1	N/A
Methylene Blue Active Substances (MBAS)	mg/L	0.5	N/A
TDS	mg/L	1500	
Sulfate	mg/L	350	
Chloride	mg/L	190	
Nitrogen*	mg/L	8	
Benzene	μg/L	1.0	
Toluene	μg/L	150	
Ethylbenzene	μg/L	700	
Xylenes	μg/L	1750	
Total petroleum hydrocarbons	μg/L	100	
Arsenic	μg/L	50	

^{*} Nitrate-nitrogen plus nitrite-nitrogen (NO₃-N + NO₂-N)

FREQUENCY OF DISCHARGE:

The groundwater discharge is continuous and will last until the completion of the groundwater cleanup project.

REUSE OF WATER:

A portion of the groundwater will be used for dust control. Offsite disposal of the groundwater discharge is not feasible due to high cost of disposal. The property and the immediate vicinity have no landscaped areas that require irrigation using the groundwater discharge. Since there are no other feasible reuse options, the groundwater generated from the cleanup project will be discharged to the storm drain.