

California R jional Water Quality Ontrol Board

Los Angeles Region

Linda S. Adams Agency Secretary Recipient of the 2001 Environmental Leadership Award from Keep California Beautiful

320 W. 4th Street, Suite 200, Los Angeles, California 90013 Phone (213) 576-6600 FAX (213) 576-6640 - Internet Address: http://www.waterboards.ca.gov/losangeles Arnold Schwarzenegger Governor

June 14, 2007

Mr. Chuck Miller USA Petroleum Corporation 905 Ranch Conejo Boulevard Newbury Park, CA 91320

GENERAL WASTE DISCHARGE REQUIREMENTS FOR GROUNDWATER CLEANUP AT PETROLEUM HYDROCARBON FUEL, VOLATILE ORGANIC COMPOUND AND/OR HEXAVALENT CHROMIUM IMPACTED SITES – USA STATION 256, 1640 MOORPARK ROAD, THOUSAND OAKS (ORDER NO. R4-2007-0019, SERIES NO. 016; CI NO. 9237)

Dear Mr. Miller:

We have completed our review of your application for coverage under General Waste Discharge Requirements to inject treated groundwater at the site referenced above in Thousand Oaks, California, for groundwater cleanup and remediation.

Several phases of site assessment and characterization have been conducted at the site since October 1995. The corrective actions have consisted of numerous soil borings, two soil vapor extraction wells and sixteen groundwater monitoring wells on-site and off-site, a high-vacuum soil vapor extraction pilot test, and an on-going quarterly groundwater monitoring program. The analytical data from groundwater monitoring event conducted in second quarter of 2006 indicated groundwater beneath the site was impacted by TPHg (up to 81,000 μ g/L), BTEX (up to 30,800 μ g/L), MTBE (up to 22,000 μ g/L), and TBA (up to 4,400). Shallow groundwater beneath the site and surrounding properties flows to the west and southwest under semiconfining conditions with a hydraulic gradient ranging from approximately 0.003 to 0.013 ft/ft.

To remediate the soil and groundwater contaminations, you have proposed to conduct groundwater pump-and-treat operation combined with high vacuum soil vapor extraction. A fixed base electric/catalytic thermal oxidizer equipped with a 250 SCFM Hi-Vac liquid ring pump is proposed for conducting SVE operations on-site. Groundwater pumping will be conducted using dedicated down-hole submersible pumps in each active extraction well. It is anticipated that extracted groundwater will be treated on-site with activated carbon, then discharged directly, through two up-gradient wells IW-1-W and IW-2-W, back to where it is pumped out for treatment.

A letter dated September 14, 2006 from Ventura County Division of Environmental Health approved Corrective Action Plan dated June 26, 2006, and its Addendum for conducting the groundwater pump-and-treat operation combined with high vacuum soil vapor extraction to remediate hydrocarbon-impacted soil and groundwater beneath the subject site.

California Environmental Protection Agency

Our mission is to preserve and enhance the quality of California's water resources for the benefit of present and future generations.

Mr. Chuck Miller

Regional Board staff has determined that the proposed discharge meets the conditions specified in Order No. R4-2007-0019, "*Revised General Waste Discharge Requirements for Groundwater Remediation At Petroleum Hydrocarbon Fuel, Volatile Organic Compound and/or Hexavalent Chromium Impacted Sites (General WDRs*)," adopted by the State Water Resources Control Board on March 1, 2007.

2 -

Enclosed are your Waste Discharge Requirements, consisting of General WDRs Board Order No. 2007-0019 and Monitoring and Reporting Program No. CI-9265 and Standard Provisions.

The Monitoring and Reporting Program requires you to implement the monitoring program on the effective date of this enrollment under Regional Board Order No. R4-2007-0019. All monitoring reports shall be sent to the Regional Board, <u>ATTN: Information Technology Unit.</u>

When submitting monitoring or technical reports to the Regional Board per these requirements, please include a reference to Compliance File No. CI-9265, which will assure that the reports are directed to the appropriate file and staff. Do not combine other reports with your monitoring reports. Submit each type of report as a separate document.

We are sending a copy of Order No. R4-2007-0019 only to the applicant. A copy of the Order will be furnished to anyone who requests it, or on line at: http://www.waterboards.ca.gov/losangeles/html/permits/gen_orders/R4-2007-0019/R4-2007-0019.pdf

If you have any questions, please contact Mr. Rod Nelson at (213) 576-6119.

Sincerely,

CC:

Bacharousky, AEd

Deborah J. Smith Interim Executive Officer

Enclosures: 1. Board Order No. R4-2007-0019

2. Monitoring and Reporting Program No. CI-9265

Mr. David Salter, Ventura County Division of Environmental Health Mr. William Henry, Waterstone Environmental, Inc.

California Environmental Protection Agency

 $\tilde{\mathbf{C}}$ Recycled Paper Our mission is to preserve and enhance the quality of California's water resources for the benefit of present and future generations.

STATE OF CALIFORNIA CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION MONITORING AND REPORTING PROGRAM NO. CI-9265 FOR USA STATION 256 1640 MOORPARK ROAD, THOUSAND OAKS (TREATED GROUNDWATER RE-INJECTION) (ORDER NO. R4-2007-0019, SERIES NO. 016)

REPORTING REQUIREMENTS

USA Petroleum Corporation (hereinafter Discharger) shall implement this monitoring program on the effective date of Regional Board Order No. R4-2007-0019. The first monitoring report under this program, for July - September 2007, shall be received at the Regional Board by October 15, 2007. Subsequent monitoring reports shall be received at the Regional Board by October 15, 2007. Subsequent following schedule:

Monitoring	Period	

Report Due

January – March April – June July – September October – December April 15 July 15 October 15 January 15

В.

C.

Á.

If there is no discharge or injection during any reporting period, the report shall so state. Monitoring reports must be addressed to the Regional Board, Attention: Information Technology Unit.

- By March 1st of each year, the Discharger shall submit an annual summary report to the Regional Board. The report shall contain both tabular and graphical summaries of the monitoring data obtained during the previous calendar year. In addition, the Discharger shall explain the compliance record and the corrective actions taken, or planned, which may be needed to bring the discharge into full compliance with the waste discharge requirements (WDRs).
- D.

Laboratory analyses – all chemical, bacteriological, and toxicity analyses shall be conducted at a laboratory certified for such analyses by the California Department of Health Services Environmental Laboratory Accreditation Program (ELAP). A

June 14, 2007

USA Petroleum Corporation Monitoring & Reporting Program No. CI-9265

copy of the laboratory certification shall be provided each time a new and/or renewal certification is obtained from ELAP.

E.

F.

H.

١.

J.

The method limits (MLs) employed for effluent analyses shall be lower than the permit limits established for a given parameter, unless the Discharger can demonstrate that a particular ML is not attainable and obtains approval for a higher ML from the Regional Board Executive Officer (Executive Officer). The Discharger shall submit a list of the analytical methods employed for each test and the associated laboratory quality assurance/quality control (QA/QC) procedures upon request by the Regional Board.

Groundwater samples must be analyzed within allowable holding time limits as specified in 40 CFR Part 136. All QA/QC samples must be run on the same dates when samples were actually analyzed. The Discharger shall make available for inspection and/or submit the QA/QC documentation upon request by Regional Board staff.

G. Each monitoring report must affirm in writing that "All analyses were conducted at a laboratory certified for such analyses by the California Department of Health Services, and in accordance with current United States Environmental Protection Agency (USEPA) guideline procedures or as specified in this Monitoring Program." Proper chain of custody procedures must be followed and a copy of the completed chain of custody form shall be submitted with the report.

Each monitoring report shall contain a separate section titled "Summary of Non-Compliance" which discusses the compliance record and the corrective actions taken or planned that may be needed to bring the discharge into full compliance with WDRs. This section shall be located at the front of the report and shall clearly list all non-compliance with WDRs, as well as all excursions of effluent limitations.

The Discharger shall maintain all sampling and analytical results: date, exact place, and time of sampling; dates analyses were performed; analyst's name; analytical techniques used; and results of all analyses. Such records shall be retained for a minimum of three years. This period of retention shall be extended during the course of any unresolved litigation regarding this discharge, or when requested by the Regional Board.

If the Discharger performs analyses on any groundwater samples more frequently than required by this Order using approved analytical methods, the results of those analyses shall be included in the report.

K. In reporting the monitoring data, the Discharger shall arrange the data in tabular form so that the date, the constituents, and the concentrations are readily discernible. The data shall be summarized to demonstrate compliance with the

USA Petroleum Corporation

11.

Monitoring & Reporting Program No. CI-9265

requirements and, where applicable, shall include results of receiving water observations.

TREATED GROUNDWATER RE-INJECTION MONITORING REQUIREMENTS

The quarterly reports shall contain the following information regarding re-injection activities:

- Location map showing re-injection points used for the treated groundwater. Groundwater monitoring wells shall not be used as re-injection points to avoid reduction of groundwater monitoring network, data bias. Up to two injection points, IW-1-W and IW-2-W, are proposed that can be referenced in the attached Figures 2 and 3 which also indicate the groundwater flow direction and benzene plume.
- 2. Written and tabular summary defining the quantity treated groundwater injected per month to the groundwater and a summary describing the days on which the injection system was in operation.

CONSTITUENT	UNITS	TYPE OF SAMPLE	MINIMUM FREQUENCY OF ANALYSIS
Treated groundwater	gallons/day		Quarterly

III. TREATED GROUNDWATER MONITORING PROGRAM

The Discharger shall conduct treated groundwater monitoring at the site. Treated groundwater samples shall be collected on a quarterly before re-injected into the aquifer beneath the subject site in accordance with the following discharge monitoring program:

CONSTITUENT	UNITS	TYPE OF SAMPLE	MINIMUM FREQUENCY OF ANALYSIS
Total petroleum hydrocarbons as gasoline (TPHg) and as diesel (TPHd)	µg/L	Grab	 Baseline/Quarterly¹
Benzene, Toluene, Ehylbenzene, Xylenes (BTEX)	µg/L	Grab	Baseline/Quarterly ¹

T-3

USA Petroleum Corporation Monitoring & Reporting Program No. CI-9265

Methyl tertiary butyl ether	µg/L	Grab	Baseline/Quarterly ¹
(MTBE), Tertiary butyl alcohol	· ·		
(TBA), Tertiary amyl methyl			
ether (TAME), Di-isopropyl ether			
(DIPE), ether (ETBE)			
Ethanol	µg/L	Grab	Baseline/Quarterly ¹
Formaldehyde	• • •		
Acetone			
Total dissolved solids	mg/L	Grab	Baseline/Quarterly ¹
Boron		-	
Chloride			
Sulfate		,	
Oxidation-reduction potential	milivolts		Baseline/Quarterly ¹
Dissolved Oxygen	µg/L	Grab	Baseline/Quarterly ¹
Dissolved ferrous iron	µg/L	Grab	Baseline/Quarterly ¹
Priority Pollutants ²	μg/L	Grab	Baseline/Quarterly ¹
PH	pH units	Grab	Baseline/Quarterly ¹
Temperature	°F/°C	Grab	Baseline/Quarterly ¹

Baseline analysis should be conducted prior to the start of treated groundwater reinjection; and Quarterly thereafter

The Discharger is required to monitor any priority pollutants identified in Attachement I only when they are detected in the baseline test.

IV. MONITORING FREQUENCIES

Monitoring frequencies may be adjusted to a less frequent basis or parameters dropped by the Executive Officer if the Discharger makes a request and the Executive Officer determines that the request is adequately supported by statistical trends of monitoring data submitted.

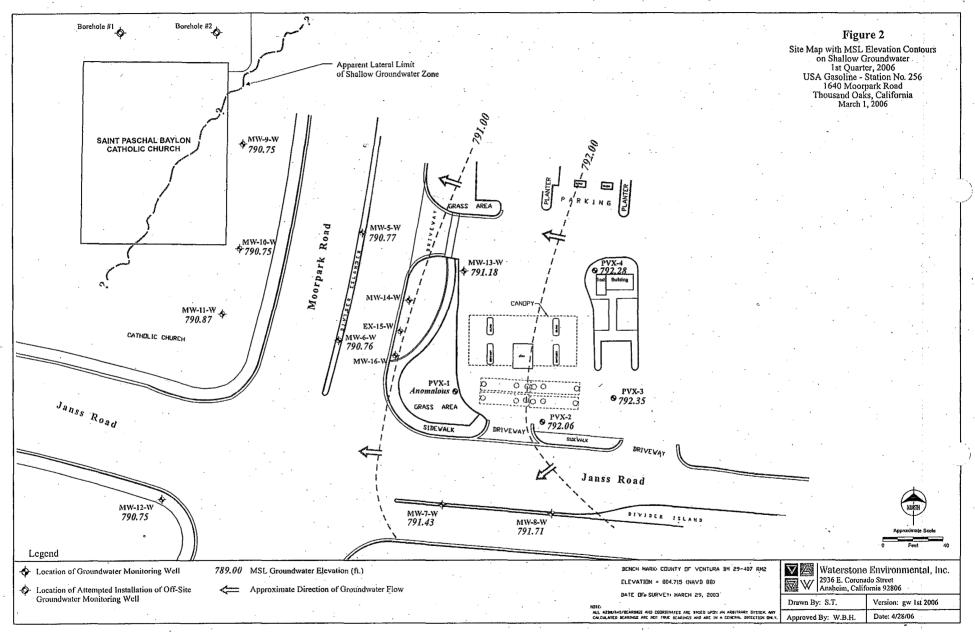
V. <u>CERTIFICATION STATEMENT</u>

Each report shall contain the following declaration:

"I certify under penalty of law that this document, including all attachments and supplemental information, was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. USA Petroleum Corporation Monitoring & Reporting Program No. CI-9265

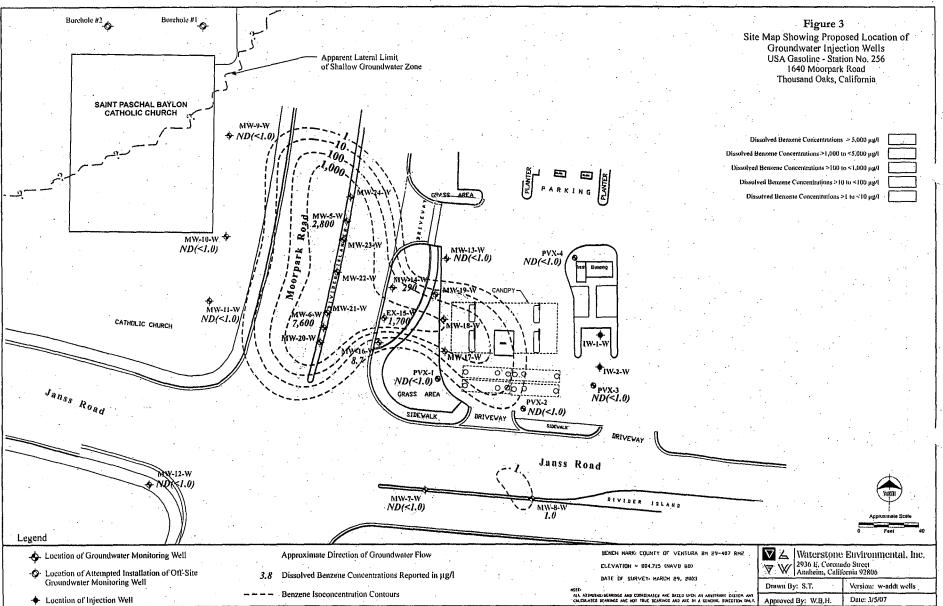
> Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment.

Executed on the	day of	at	
	· · · · · · · · · · · · · · · · · · ·		(Signature)
	·		(Title)"


VI. PUBLIC DOCUMENTS

These records and reports are public documents and shall be made available for inspection during normal business hours at the office of the California Regional Water Quality Control Board, Los Angeles Region.

Sachnauski, AEO Ordered by Deborah J. Smith


Interim Executive Officer

Date: June 14, 2007

.

 \mathcal{O}

.

. * • Date: 3/5/07

ATTACHMENT I – PRIORITY POLLUTANTS

CTR	Parameter	CAS	Suggested
Number		Number	Analytical Methods
<u>1 ·</u>	Antimony	7440360	EPA 6020/200.8
2	Arsenic	7440382	EPA 1632
3	Beryllium	7440417	EPA 6020/200.8
4	Cadmium	7440439	EPA 1638/200.8
5a	Chromium (III)	16065831	EPA 6020/200.8
5a -	Chromium (VI)	18540299	EPA 7199/1636
6	Copper	7440508	EPA 6020/200.8
7	Lead	7439921	EPA 1638
8	Mercury	7439976	EPA 1669/1631
9	Nickel	7440020	EPA 6020/200.8
10	Selenium	7782492	EPA 6020/200.8
11	Silver	7440224	EPA 6020/200.8
12	Thallium	7440280	EPA 6020/200.8
13	Zinc	7440666	EPA 6020/200.8
14	Cyanide	57125	EPA 9012A
1.5	Asbestos	1332214	EPA/600/R-
15			93/116(PCM)
16	2,3,7,8-TCDD	1746016	EPA 8290 (HRGC)
16			MS
17	Acrolein	107028	EPA 8260B
18	Acrylonitrile	107131	EPA 8260B
19	Benzene	71432	EPA 8260B
20	Bromoform	75252	EPA 8260B
21	Carbon Tetrachloride	56235	EPA 8260B
22	Chlorobenzene	108907	EPA 8260B
23	Chlorodibromomethane	124481	EPA 8260B
24	Chloroethane	75003	EPA 8260B
25	2-Chloroethylvinyl Ether	110758	EPA 8260B
26	Chloroform	67663	EPA 8260B
27	Dichlorobromomethane	75274	EPA 8260B
28	1,1-Dichloroethane	75343	EPA 8260B
29	1,2-Dichloroethane	107062	EPA 8260B
30	1,1-Dichloroethylene	75354	EPA 8260B
31	1,2-Dichloropropane	78875	EPA 8260B
32	1,3-Dichloropropylene	542756	EPA 8260B
33	Ethylbenzene	100414	EPA 8260B
34	Methyl Bromide	74839	EPA 8260B
35	Methyl Chloride	74873	EPA 8260B
36	Methylene Chloride	75092	EPA 8260B
37	1,1,2,2-Tetrachloroethane	79345	EPA 8260B
38	Tetrachloroethylene	127184	EPA 8260B
39	Toluene	108883	EPA 8260B
40	1,2-Trans-Dichloroethylene	156605	EPA 8260B
40	1,1,1-Trichloroethane	71556	EPA 8260B
	1 1,1,1-1110III0I00IIIalle	11330	

G-1

CTR Number	Parameter	CAS Number	Suggested Analytical Methods
43	Trichloroethylene	79016	EPA 8260B
44	Vinyl Chloride	75014	EPA 8260B
45	2-Chlorophenol	95578	EPA 8270C
46	2,4-Dichlorophenol	120832	EPA 8270C
47	2,4-Dimethylphenol	105679	EPA 8270C
48	2-Methyl-4,6-Dinitrophenol	534521	EPA 8270C
49	2,4-Dinitrophenol	51285	EPA 8270C
50	2-Nitrophenol	88755	EPA 8270C
51	4-Nitrophenol	100027	EPA 8270C
52	3-Methyl-4-Chlorophenol	59507	EPA 8270C
53	Pentachlorophenol	87865	EPA 8270C
54	Phenol	108952	EPA 8270C
55	2,4,6-Trichlorophenol	88062	EPA 8270C
56	Acenaphthene	83329	EPA 8270C
57	Acenaphthylene	208968	EPA 8270C
58	Anthracene	120127	EPA 8270C
59	Benzidine	92875	EPA 8270C
60	Benzo(a)Anthracene	56553	EPA 8270C
61	Benzo(a)Pyrene	50328	EPA 8270C
62	Benzo(b)Fluoranthene	205992	EPA 8270C
63	Benzo(ghi)Perylene	191242	EPA 8270C
64	Benzo(k)Fluoranthene	207089	EPA 8270C
65	Bis(2-Chloroethoxy)Methane	111911	EPA 8270C
66	Bis(2-Chloroethyl)Ether	1111444	EPA 8270C
67	Bis(2-Chloroisopropyl)Ether	108601	EPA 8270C
68	Bis(2-Ethylhexyl)Phthalate	117817	EPA 8270C
<u> </u>	4-Bromophenyl Phenyl Ether	101553	EFA 8270C
70	Butylbenzyl Phthalate	85687	EPA 8270C
71	2-Chloronaphthalene	91587	EPA 8270C
72		7005723	EPA 8270C
72	4-Chlorophenyl Phenyl Ether		
.74	Chrysene Dibarra (a b) Anthropome	218019	EPA 8270C
74	Dibenzo(a,h)Anthracene	53703	EPA 8270C
	1,2-Dichlorobenzene	95501	EPA 8260B
<u>76</u> 77	1,3-Dichlorobenzene	541731	EPA 8260B
	1,4-Dichlorobenzene	106467	EPA 8260B
78	3,3'-Dichlorobenzidine	91941	EPA 8270C
79	Diethyl Phthalate	84662	EPA 8270C
80	Dimethyl Phthalate	131113	EPA 8270C
81	Di-n-Butyl Phthalate	84742	EPA 8270C
82	2,4-Dinitrotoluene	121142	EPA 8270C
83	2,6-Dinitrotoluene	606202	EPA 8270C
84	Di-n-Octyl Phthalate	117840	EPA 8270C
85	1,2-Diphenylhydrazine	122667	EPA 8270C
86	Fluoranthene	206440	EPA 8270C
87	Fluorene	86737	EPA 8270C
88	Hexachlorobenzene	118741	EPA 8260B
89	Hexachlorobutadiene	87863	EPA 8260B
90	Hexachlorocyclopentadiene	77474	EPA 8270C

G-2

CTR Number	Parameter	CAS Number	Suggested Analytical Methods
91	Hexachloroethane	67721	EPA 8260B
92	Indeno(1,2,3-cd)Pyrene	193395	EPA 8270C
93	Isophorone	78591	EPA 8270C
94	Naphthalene	91203	EPA 8260B
95	Nitrobenzene	98953	EPA 8270C
96	N-Nitrosodimethylamine	62759	EPA 8270C
97	N-Nitrosodi-n-Propylamine	621647	EPA 8270C
98	N-Nitrosodiphenylamine	86306	EPA 8270C
99.	Phenanthrene	85018	EPA 8270C
100	Pyrene	129000	EPA 8270C
101	1,2,4-Trichlorobenzene	120821	EPA 8260B
102	Aldrin	309002	EPA 8081A
103	alpha-BHC	319846	EPA 8081A
104	beta-BHC	319857	EPA 8081A
105	gamma-BHC	58899	EPA 8081A
106	delta-BHC	319868	EPA 8081A
107	Chlordane	57749	EPA 8081A
108	4,4'-DDT	50293	EPA 8081A
109	4,4'-DDE	72559	EPA 8081A
110	4,4'-DDD	72548	EPA 8081A
111	Dieldrin	60571	EPA 8081A
112	alpha-Endosulfan	959988	EPA 8081A
113	beta-Endosulfan	33213659	EPA 8081A
114	Endosulfan Sulfate	1031078	EPA 8081A
115	Endrin	72208	EPA 8081A
116	Endrin Aldehyde	7421934	EPA 8081A
117	Heptachlor	76448	EPA 8081A
118	Heptachlor Epoxide	1024573	EPA 8081A
119	PCB-1016	12674112	EPA 8082
120	PCB-1221	11104282	EPA 8082
121	PCB-1232	11141165	EPA 8082
122	PCB-1242	53469219	EPA 8082
123	PCB-1248	12672296	EPA 8082
124	PCB-1254	11097691	EPA 8082
125	PCB-1260	11096825	EPA 8082
126	Toxaphene	8001352	EPA 8081A