APPENDIX A

POLICY FOR WATER QUALITY CONTROL FOR RECYCLED WATER

STATE WATER RESOURCES CONTROL BOARD RESOLUTION NO. 2009-0011

ADOPTION OF A POLICY FOR WATER QUALITY CONTROL FOR RECYCLED WATER

WHEREAS:

- 1. The Strategic Plan Update 2008-2012 for the Water Boards includes a priority to increase sustainable local water supplies available for meeting existing and future beneficial uses by 1,725,000 acre-feet per year, in excess of 2002 levels, by 2015, and ensure adequate water flows for fish and wildlife habitat. This Recycled Water Policy (Policy) is intended to support the Strategic Plan priority to Promote Sustainable Local Water Supplies. Increasing the acceptance and promoting the use of recycled water is a means towards achieving sustainable local water supplies and can result in reduction in greenhouse gases, a significant driver of climate change. The Policy is also intended to encourage beneficial use of, rather than solely disposal of, recycled water.
- 2. California Water Code section 13140 authorizes the State Water Resources Control Board (State Water Board) to adopt state policy for water quality control.
- 3. On March 20, 2007, the State Water Board conducted a public workshop on recycled water.
- 4. On September 28, 2007, staff circulated a draft Recycled Water Policy and a draft staff report/certified regulatory program environmental analysis/California Environmental Quality Act (CEQA) checklist for public comment.
- 5. On October 2, 2007, the State Water Board conducted a public workshop on the draft Recycled Water Policy.
- 6. On February 15, 2008, the State Water Board circulated an updated version of the draft Policy and the draft staff report/certified regulatory program environmental analysis/CEQA checklist.
- On November 21, 2008, the State Water Board circulated another updated version of the draft Policy and the draft staff report/certified regulatory program environmental analysis/ CEQA checklist.
- 8. Staff has responded to significant verbal and written comments received from the public and made revisions to the draft Policy in response to the comments.
- 9. On January 6, 2009, the State Water Board conducted a public hearing on the draft Policy. In response, staff has revised the draft Policy, which is available at <u>http://www.waterboards.ca.gov/water_issues/programs/water_recycling_policy/docs/draft_recycled_water_policy_011609.pdf</u>. Staff has also revised the draft staff report, which is available at <u>http://www.swrcb.ca.gov/water_issues/programs/water_recycling_policy/docs/020309_drafts_taffreport_checklist_01162009.pdf</u>.
- 10. The Policy includes findings, including findings related to compliance with State Water Board <u>Resolution No. 68-16</u>, that are hereby incorporated by reference.

- 11. The State Water Board received a <u>letter from statewide water and wastewater entities</u> dated December 19, 2008, strongly urging their member agencies to commit funding and in-kind resources to facilitate development of salt/nutrient management plans within the five-year timeframe established by the State Water Board in the Policy.
- 12. The Resources Agency has approved the State Water Board's and the Regional Water Quality Control Boards' water quality control planning process as a "certified regulatory program" that adequately satisfies the CEQA requirements for preparing environmental documents. State Water Board staff has prepared a "substitute environmental document" for this project that contains the required environmental documentation under the State Water Board's CEQA regulations. (California Code of Regulations, title 23, section 3777.) The substitute environmental documents include the "Draft Staff Report and Certified Regulatory Program Environmental Analysis Recycled Water Policy," which includes an environmental checklist, the comments and responses to comments, the Policy itself, and this resolution. The project is the adoption of a Recycled Water Policy.
- 13. In preparing the substitute environmental documents, the State Water Board has considered the requirements of Public Resources Code section 21159 and California Code of Regulations, title 14, section 15187, and intends these documents to serve as a Tier 1 environmental review. The State Water Board has considered the reasonably foreseeable consequences of adoption of the draft Policy; however, potential site-specific recycled water project impacts may need to be considered in any subsequent environmental analysis performed by lead agencies, pursuant to Public Resources Code section 21159.1.
- 14. Consistent with CEQA, the substitute environmental documents do not engage in speculation or conjecture but, rather, analyze the reasonably foreseeable environmental impacts related to methods of compliance with the draft Policy, reasonably foreseeable mitigation measures to reduce those impacts, and reasonably feasible alternative means of compliance that would avoid or reduce the identified impacts.
- 15. The draft Policy incorporates mitigation that reduces to a level that is insignificant any adverse effects on the environment. From a program-level perspective, incorporation of the mitigation measures described in the substitute environmental document will foreseeably reduce impacts to less than significant levels.
- A policy for water quality control does not become effective until adopted by the State Water Board and until the regulatory provisions are approved by the Office of Administrative Law (OAL).
- 17. If, during the OAL approval process, OAL determines that minor, non-substantive modifications to the language of the Policy are needed for clarity or consistency, the Executive Director or designee may make such changes consistent with the State Water Board's intent in adopting this Policy, and shall inform the State Water Board of any such changes.

THEREFORE BE IT RESOLVED THAT:

The State Water Board:

- Approves and adopts the <u>CEQA substitute environmental documentation, which includes</u> <u>the staff report/certified regulatory program environmental analysis/CEQA checklist</u>, and the response to comments, which was prepared in accordance with the requirements of the State Water Board's certified regulatory CEQA process (as set forth in California Code of Regulations, title 23, section 3775, et seq.), Public Resources Code section 21159, and California Code of Regulations, title 14, section 15187, and directs the Executive Director or designee to sign the environmental checklist.
- 2. After considering the entire record, including oral testimony at the public hearing, adopts the <u>Recycled Water Policy</u>.
- 3. Authorizes the Executive Director or designee to submit the Recycled Water Policy to OAL for review and approval.
- 4. If, during the OAL approval process, OAL determines that minor, non-substantive modifications to the language of the Policy are needed for clarity or consistency, directs the Executive Director or designee to make such changes and inform the State Water Board of any such changes.

CERTIFICATION

The undersigned, Clerk to the Board, does hereby certify that the foregoing is a full, true, and correct copy of a resolution duly and regularly adopted at a meeting of the State Water Resources Control Board held on February 3, 2009.

AYE: Chair Tam M. Doduc Charles R. Hoppin Frances Spivy-Weber

NAY: None

ABSENT: Arthur G. Baggett, Jr.

ABSTAIN: None

rine Joursend

Jeanine Townsend Clerk to the Board

STATE WATER RESOURCES CONTROL BOARD

RESOLUTION NO. 68-16

STATEMENT OF POLICY WITH RESPECT TO MAINTAINING HIGH QUALITY OF WATERS IN CALIFORNIA

WHEREAS the California Legislature has declared that it is the policy of the State that the granting of permits and licenses for unappropriated water and the disposal of wastes into the waters of the State shall be so regulated as to achieve highest water quality consistent with maximum benefit to the people of the State and shall be controlled so as to promote the peace, health, safety and welfare of the people of the State; and

WHEREAS water quality control policies have been and are being adopted for waters of the State; and

WHEREAS the quality of some waters of the State is higher than that established by the adopted policies and it is the intent and purpose of this Board that such higher quality shall be maintained to the maximum extent possible consistent with the declaration of the Legislature;

NOW, THEREFORE, BE IT RESOLVED:

- 1. Whenever the existing quality of water is better than the quality established in policies as of the date on which such policies become effective, such existing high quality will be maintained until it has been demonstrated to the State that any change will be consistent with maximum benefit to the people of the State, will not unreasonably affect present and anticipated beneficial use of such water and will not result in water quality less than that prescribed in the policies.
- 2. Any activity which produces or may produce a waste or increased volume or concentration of waste and which discharges or proposes to discharge to existing high quality waters will be required to meet waste discharge requirements which will result in the best practicable treatment or control of the discharge necessary to assure that (a) a pollution or nuisance will not occur and (b) the highest water quality consistent with maximum benefit to the people of the State will be maintained.
- 3. In implementing this policy, the Secretary of the Interior will be kept advised and will be provided with such information as he will need to discharge his responsibilities under the Federal Water Pollution Control Act.

BE IT FURTHER RESOLVED that a copy of this resolution be forwarded to the Secretary of the Interior as part of California's water quality control policy submission.

CERTIFICATION

The undersigned, Executive Officer of the State Water Resources Control Board, does hereby certify that the foregoing is a full, true, and correct copy of a resolution duly and regularly adopted at a meeting of the State Water Resources Control Board held on October 24, 1968.

Dated: October 28, 1968

Kerry W. Mulligan

Executive Officer State Water Resources Control Board

1. Preamble

California is facing an unprecedented water crisis.

The collapse of the Bay-Delta ecosystem, climate change, and continuing population growth have combined with a severe drought on the Colorado River and failing levees in the Delta to create a new reality that challenges California's ability to provide the clean water needed for a healthy environment, a healthy population and a healthy economy, both now and in the future.

These challenges also present an unparalleled opportunity for California to move aggressively towards a sustainable water future. The State Water Resources Control Board (State Water Board) declares that we will achieve our mission to "preserve, enhance and restore the quality of California's water resources to the benefit of present and future generations." To achieve that mission, we support and encourage every region in California to develop a salt/nutrient management plan by 2014 that is sustainable on a long-term basis and that provides California with clean, abundant water. These plans shall be consistent with the Department of Water Resources' Bulletin 160, as appropriate, and shall be locally developed, locally controlled and recognize the variability of California's water supplies and the diversity of its waterways. We strongly encourage local and regional water agencies to move toward clean, abundant, local water for California by emphasizing appropriate water recycling, water conservation, and maintenance of supply infrastructure and the use of stormwater (including dry-weather urban runoff) in these plans; these sources of supply are drought-proof, reliable, and minimize our carbon footprint and can be sustained over the long-term.

We declare our independence from relying on the vagaries of annual precipitation and move towards sustainable management of surface waters and groundwater, together with enhanced water conservation, water reuse and the use of stormwater. To this end, we adopt the following goals for California:

- Increase the use of recycled water over 2002 levels by at least one million acrefeet per year (afy) by 2020 and by at least two million afy by 2030.
- Increase the use of stormwater over use in 2007 by at least 500,000 afy by 2020 and by at least one million afy by 2030.
- Increase the amount of water conserved in urban and industrial uses by comparison to 2007 by at least 20 percent by 2020.
- Included in these goals is the substitution of as much recycled water for potable water as possible by 2030.

The purpose of this Policy is to increase the use of recycled water from municipal wastewater sources that meets the definition in Water Code section 13050(n), in a manner that implements state and federal water quality laws. The State Water Board expects to

develop additional policies to encourage the use of stormwater, encourage water conservation, encourage the conjunctive use of surface and groundwater, and improve the use of local water supplies.

When used in compliance with this Policy, Title 22 and all applicable state and federal water quality laws, the State Water Board finds that recycled water is safe for approved uses, and strongly supports recycled water as a safe alternative to potable water for such approved uses.

2. Purpose of the Policy

- a. The purpose of this Policy is to provide direction to the Regional Water Quality Control Boards (Regional Water Boards), proponents of recycled water projects, and the public regarding the appropriate criteria to be used by the State Water Board and the Regional Water Boards in issuing permits for recycled water projects.
- b. It is the intent of the State Water Board that all elements of this Policy are to be interpreted in a manner that fully implements state and federal water quality laws and regulations in order to enhance the environment and put the waters of the state to the fullest use of which they are capable.
- c. This Policy describes permitting criteria that are intended to streamline the permitting of the vast majority of recycled water projects. The intent of this streamlined permit process is to expedite the implementation of recycled water projects in a manner that implements state and federal water quality laws while allowing the Regional Water Boards to focus their limited resources on projects that require substantial regulatory review due to unique site-specific conditions.
- d. By prescribing permitting criteria that apply to the vast majority of recycled water projects, it is the State Water Board's intent to maximize consistency in the permitting of recycled water projects in California while also reserving to the Regional Water Boards sufficient authority and flexibility to address site-specific conditions.
- e. The State Water Board will establish additional policies that are intended to assist the State of California in meeting the goals established in the preamble to this Policy for water conservation and the use of stormwater.
- f. For purposes of this Policy, the term "permit" means an order adopted by a Regional Water Board or the State Water Board prescribing requirements for a recycled water project, including but not limited to water recycling requirements, master reclamation permits, and waste discharge requirements.

3. Benefits of Recycled Water

The State Water Board finds that the use of recycled water in accordance with this Policy, that is, which supports the sustainable use of groundwater and/or surface water, which is

sufficiently treated so as not to adversely impact public health or the environment and which ideally substitutes for use of potable water, is presumed to have a beneficial impact. Other public agencies are encouraged to use this presumption in evaluating the impacts of recycled water projects on the environment as required by the California Environmental Quality Act (CEQA).

4. *Mandate for the Use of Recycled Water*

- a. The State Water Board and Regional Water Boards will exercise the authority granted to them by the Legislature to the fullest extent possible to encourage the use of recycled water, consistent with state and federal water quality laws.
 - (1) The State Water Board hereby establishes a mandate to increase the use of recycled water in California by 200,000 afy by 2020 and by an additional 300,000 afy by 2030. These mandates shall be achieved through the cooperation and collaboration of the State Water Board, the Regional Water Boards, the environmental community, water purveyors and the operators of publicly owned treatment works. The State Water Board will evaluate progress toward these mandates biennially and review and revise as necessary the implementation provisions of this Policy in 2012 and 2016.
 - (2) Agencies producing recycled water that is available for reuse and not being put to beneficial use shall make that recycled water available to water purveyors for reuse on reasonable terms and conditions. Such terms and conditions may include payment by the water purveyor of a fair and reasonable share of the cost of the recycled water supply and facilities.
 - (3) The State Water Board hereby declares that, pursuant to Water Code sections 13550 *et seq.*, it is a waste and unreasonable use of water for water agencies not to use recycled water when recycled water of adequate quality is available and is not being put to beneficial use, subject to the conditions established in sections 13550 *et seq.* The State Water Board shall exercise its authority pursuant to Water Code section 275 to the fullest extent possible to enforce the mandates of this subparagraph.
- b. These mandates are contingent on the availability of sufficient capital funding for the construction of recycled water projects from private, local, state, and federal sources and assume that the Regional Water Boards will effectively implement regulatory streamlining in accordance with this Policy.
- c. The water industry and the environmental community have agreed jointly to advocate for \$1 billion in state and federal funds over the next five years to fund projects needed to meet the goals and mandates for the use of recycled water established in this Policy.

d. The State Water Board requests the California Department of Public Health (CDPH), the California Public Utilities Commission (CPUC), and the California Department of Water Resources (CDWR) to use their respective authorities to the fullest extent practicable to assist the State Water Board and the Regional Water Boards in increasing the use of recycled water in California.

5. Roles of the State Water Board, Regional Water Boards, CDPH and CDWR

The State Water Board recognizes that it shares jurisdiction over the use of recycled water with the Regional Water Boards and with CDPH. In addition, the State Water Board recognizes that CDWR and the CPUC have important roles to play in encouraging the use of recycled water. The State Water Board believes that it is important to clarify the respective roles of each of these agencies in connection with recycled water projects, as follows:

- a. The State Water Board establishes general policies governing the permitting of recycled water projects consistent with its role of protecting water quality and sustaining water supplies. The State Water Board exercises general oversight over recycled water projects, including review of Regional Water Board permitting practices, and shall lead the effort to meet the recycled water use goals set forth in the Preamble to this Policy. The State Water Board is also charged by statute with developing a general permit for irrigation uses of recycled water.
- b. The CDPH is charged with protection of public health and drinking water supplies and with the development of uniform water recycling criteria appropriate to particular uses of water. Regional Water Boards shall appropriately rely on the expertise of CDPH for the establishment of permit conditions needed to protect human health.
- c. The Regional Water Boards are charged with protection of surface and groundwater resources and with the issuance of permits that implement CDPH recommendations, this Policy, and applicable law and will, pursuant to paragraph 4 of this Policy, use their authority to the fullest extent possible to encourage the use of recycled water.
- d. CDWR is charged with reviewing and, every five years, updating the California Water Plan, including evaluating the quantity of recycled water presently being used and planning for the potential for future uses of recycled water. In undertaking these tasks, CDWR may appropriately rely on urban water management plans and may share the data from those plans with the State Water Board and the Regional Water Boards. CDWR also shares with the State Water Board the authority to allocate and distribute bond funding, which can provide incentives for the use of recycled water.
- e. The CPUC is charged with approving rates and terms of service for the use of recycled water by investor-owned utilities.

6. Salt/Nutrient Management Plans

a. Introduction.

- (1) Some groundwater basins in the state contain salts and nutrients that exceed or threaten to exceed water quality objectives established in the applicable Water Quality Control Plans (Basin Plans), and not all Basin Plans include adequate implementation procedures for achieving or ensuring compliance with the water quality objectives for salt or nutrients. These conditions can be caused by natural soils/conditions, discharges of waste, irrigation using surface water, groundwater or recycled water and water supply augmentation using surface or recycled water. Regulation of recycled water alone will not address these conditions.
- (2) It is the intent of this Policy that salts and nutrients from all sources be managed on a basin-wide or watershed-wide basis in a manner that ensures attainment of water quality objectives and protection of beneficial uses. The State Water Board finds that the appropriate way to address salt and nutrient issues is through the development of regional or subregional salt and nutrient management plans rather than through imposing requirements solely on individual recycled water projects.

b. Adoption of Salt/ Nutrient Management Plans.

- (1) The State Water Board recognizes that, pursuant to the letter dated December 19, 2008 and attached to the Resolution adopting this Policy, the local water and wastewater entities, together with local salt/nutrient contributing stakeholders, will fund locally driven and controlled, collaborative processes open to all stakeholders that will prepare salt and nutrient management plans for each basin/sub-basin in California, including compliance with CEQA and participation by Regional Water Board staff.
 - (a) It is the intent of this Policy for every groundwater basin/sub-basin in California to have a consistent salt/nutrient management plan. The degree of specificity within these plans and the length of these plans will be dependent on a variety of site-specific factors, including but not limited to size and complexity of a basin, source water quality, stormwater recharge, hydrogeology, and aquifer water quality. It is also the intent of the State Water Board that because stormwater is typically lower in nutrients and salts and can augment local water supplies, inclusion of a significant stormwater use and recharge component within the salt/nutrient management plans is critical to the long-term sustainable use of water in California. Inclusion of stormwater recharge is consistent with State Water Board Resolution No. 2005-06, which establishes sustainability as a core value for State Water Board programs and

also assists in implementing Resolution No. 2008-30, which requires sustainable water resources management and is consistent with Objective 3.2 of the State Water Board Strategic Plan Update dated September 2, 2008.

- (b) Salt and nutrient plans shall be tailored to address the water quality concerns in each basin/sub-basin and may include constituents other than salt and nutrients that impact water quality in the basin/sub-basin. Such plans shall address and implement provisions, as appropriate, for all sources of salt and/or nutrients to groundwater basins, including recycled water irrigation projects and groundwater recharge reuse projects.
- (c) Such plans may be developed or funded pursuant to the provisions of Water Code sections 10750 *et seq.* or other appropriate authority.
- (d) Salt and nutrient plans shall be completed and proposed to the Regional Water Board within five years from the date of this Policy unless a Regional Water Board finds that the stakeholders are making substantial progress towards completion of a plan. In no case shall the period for the completion of a plan exceed seven years.
- (e) The requirements of this paragraph shall not apply to areas that have already completed a Regional Water Board approved salt and nutrient plan for a basin, sub-basin, or other regional planning area that is functionally equivalent to paragraph 6(b)3.
- (f) The plans may, depending upon the local situation, address constituents other than salt and nutrients that adversely affect groundwater quality.
- (2) Within one year of the receipt of a proposed salt and nutrient management plan, the Regional Water Boards shall consider for adoption revised implementation plans, consistent with Water Code section 13242, for those groundwater basins within their regions where water quality objectives for salts or nutrients are being, or are threatening to be, exceeded. The implementation plans shall be based on the salt and nutrient plans required by this Policy.
- (3) Each salt and nutrient management plan shall include the following components:
 - (a) A basin/sub-basin wide monitoring plan that includes an appropriate network of monitoring locations. The scale of the basin/sub-basin monitoring plan is dependent upon the site-specific conditions and shall be adequate to provide a reasonable,

cost-effective means of determining whether the concentrations of salt, nutrients, and other constituents of concern as identified in the salt and nutrient plans are consistent with applicable water quality objectives. Salts, nutrients, and the constituents identified in paragraph 6(b)(1)(f) shall be monitored. The frequency of monitoring shall be determined in the salt/nutrient management plan and approved by the Regional Water Board pursuant to paragraph 6(b)(2).

- (i) The monitoring plan must be designed to determine water quality in the basin. The plan must focus on basin water quality near water supply wells and areas proximate to large water recycling projects, particularly groundwater recharge projects. Also, monitoring locations shall, where appropriate, target groundwater and surface waters where groundwater has connectivity with adjacent surface waters.
- (ii) The preferred approach to monitoring plan development is to collect samples from existing wells if feasible as long as the existing wells are located appropriately to determine water quality throughout the most critical areas of the basin.
- (iii) The monitoring plan shall identify those stakeholders responsible for conducting, compiling, and reporting the monitoring data. The data shall be reported to the Regional Water Board at least every three years.
- (b) A provision for annual monitoring of Emerging Constituents/ Constituents of Emerging Concern (e.g., endocrine disrupters, personal care products or pharmaceuticals) (CECs) consistent with recommendations by CDPH and consistent with any actions by the State Water Board taken pursuant to paragraph 10(b) of this Policy.
- (c) Water recycling and stormwater recharge/use goals and objectives.
- (d) Salt and nutrient source identification, basin/sub-basin assimilative capacity and loading estimates, together with fate and transport of salts and nutrients.
- (e) Implementation measures to manage salt and nutrient loading in the basin on a sustainable basis.
- (f) An antidegradation analysis demonstrating that the projects included within the plan will, collectively, satisfy the requirements of Resolution No. 68-16.

(4) Nothing in this Policy shall prevent stakeholders from developing a plan that is more protective of water quality than applicable standards in the Basin Plan. No Regional Water Board, however, shall seek to modify Basin Plan objectives without full compliance with the process for such modification as established by existing law.

7. Landscape Irrigation Projects

- a. *Control of incidental runoff.* Incidental runoff is defined as unintended small amounts (volume) of runoff from recycled water use areas, such as unintended, minimal over-spray from sprinklers that escapes the recycled water use area. Water leaving a recycled water use area is not considered incidental if it is part of the facility design, if it is due to excessive application, if it is due to intentional overflow or application, or if it is due to negligence. Incidental runoff may be regulated by waste discharge requirements or, where necessary, waste discharge requirements that serve as a National Pollutant Discharge Elimination System (NPDES) permit, including municipal separate storm water system permits, but regardless of the regulatory instrument, the project shall include, but is not limited to, the following practices:
 - (1) Implementation of an operations and management plan that may apply to multiple sites and provides for detection of leaks, (for example, from broken sprinkler heads), and correction either within 72 hours of learning of the runoff, or prior to the release of 1,000 gallons, whichever occurs first,
 - (2) Proper design and aim of sprinkler heads,
 - (3) Refraining from application during precipitation events, and
 - Management of any ponds containing recycled water such that no discharge occurs unless the discharge is a result of a 25-year, 24-hour storm event or greater, and there is notification of the appropriate Regional Water Board Executive Officer of the discharge.
- b. Streamlined Permitting
 - (1) The Regional Water Boards shall, absent unusual circumstances (i.e., unique, site-specific conditions such as where recycled water is proposed to be used for irrigation over high transmissivity soils over a shallow (5' or less) high quality groundwater aquifer), permit recycled water projects that meet the criteria set forth in this Policy, consistent with the provisions of this paragraph.
 - (2) If the Regional Water Board determines that unusual circumstances apply, the Regional Water Board shall make a finding of unusual circumstances based on substantial evidence in the record, after public notice and hearing.

- (3) Projects meeting the criteria set forth below and eligible for enrollment under requirements established in a general order shall be enrolled by the State or Regional Water Board within 60 days from the date on which an application is deemed complete by the State or Regional Water Board. For projects that are not enrolled in a general order, the Regional Water Board shall consider permit adoption within 120 days from the date on which the application is deemed complete by the Regional Water Board.
- (4) Landscape irrigation projects that qualify for streamlined permitting shall not be required to include a project specific receiving water and groundwater monitoring component unless such project specific monitoring is required under the adopted salt/nutrient management plan. During the interim while the salt management plan is under development, a landscape irrigation project proponent can either perform project specific monitoring, or actively participate in the development and implementation of a salt/nutrient management plan, including basin/sub-basin monitoring. Permits or requirements for landscape irrigation projects shall include, in addition to any other appropriate recycled water monitoring requirements, recycled water monitoring for CECs on an annual basis and priority pollutants on a twice annual basis. Except as requested by CDPH, State and Regional Water Board monitoring requirements for CECs shall not take effect until 18 months after the effective date of this Policy. In addition, any permits shall include a permit reopener to allow incorporation of appropriate monitoring requirements for CECs after State Water Board action under paragraph 10(b)(2).
- (5) It is the intent of the State Water Board that the general permit for landscape irrigation projects be consistent with the terms of this Policy.
- c. *Criteria for streamlined permitting*. Irrigation projects using recycled water that meet the following criteria are eligible for streamlined permitting, and, if otherwise in compliance with applicable laws, shall be approved absent unusual circumstances:
 - Compliance with the requirements for recycled water established in Title 22 of the California Code of Regulations, including the requirements for treatment and use area restrictions, together with any other recommendations by CDPH pursuant to Water Code section 13523.
 - (2) Application in amounts and at rates as needed for the landscape (i.e., at agronomic rates and not when the soil is saturated). Each irrigation project shall be subject to an operations and management plan, that may apply to multiple sites, provided to the Regional Water Board that specifies the agronomic rate(s) and describes a set of reasonably practicable measures to ensure compliance with this requirement, which may include the development of water budgets for use areas, site

supervisor training, periodic inspections, tiered rate structures, the use of smart controllers, or other appropriate measures.

- (3) Compliance with any applicable salt and nutrient management plan.
- (4) Appropriate use of fertilizers that takes into account the nutrient levels in the recycled water. Recycled water producers shall monitor and communicate to the users the nutrient levels in their recycled water.

8. Recycled Water Groundwater Recharge Projects

- a. The State Water Board acknowledges that all recycled water groundwater recharge projects must be reviewed and permitted on a site-specific basis, and so such projects will require project-by-project review.
- b. Approved groundwater recharge projects will meet the following criteria:
 - (1) Compliance with regulations adopted by CDPH for groundwater recharge projects or, in the interim until such regulations are approved, CDPH's recommendations pursuant to Water Code section 13523 for the project (e.g., level of treatment, retention time, setback distance, source control, monitoring program, etc.).
 - (2) Implementation of a monitoring program for constituents of concern and a monitoring program for CECs that is consistent with any actions by the State Water Board taken pursuant to paragraph 10(b) of this Policy and that takes into account site-specific conditions. Groundwater recharge projects shall include monitoring of recycled water for CECs on an annual basis and priority pollutants on a twice annual basis.
- c. Nothing in this paragraph shall be construed to limit the authority of a Regional Water Board to protect designated beneficial uses, *provided* that any proposed limitations for the protection of public health may only be imposed following regular consultation by the Regional Water Board with CDPH, consistent with State Water Board Orders WQ 2005-0007 and 2006-0001.
- d. Nothing in this Policy shall be construed to prevent a Regional Water Board from imposing additional requirements for a proposed recharge project that has a substantial adverse effect on the fate and transport of a contaminant plume or changes the geochemistry of an aquifer thereby causing the dissolution of constituents, such as arsenic, from the geologic formation into groundwater.
- e. Projects that utilize surface spreading to recharge groundwater with recycled water treated by reverse osmosis shall be permitted by a Regional Water Board within one year of receipt of recommendations from CDPH. Furthermore, the Regional Water Board shall give a high priority to review and approval of such projects.

9. Antidegradation

- a. The State Water Board adopted Resolution No. 68-16 as a policy statement to implement the Legislature's intent that waters of the state shall be regulated to achieve the highest water quality consistent with the maximum benefit to the people of the state.
- b. Activities involving the disposal of waste that could impact high quality waters are required to implement best practicable treatment or control of the discharge necessary to ensure that pollution or nuisance will not occur, and the highest water quality consistent with the maximum benefit to the people of the state will be maintained.
- c. Groundwater recharge with recycled water for later extraction and use in accordance with this Policy and state and federal water quality law is to the benefit of the people of the state of California. Nonetheless, the State Water Board finds that groundwater recharge projects using recycled water have the potential to lower water quality within a basin. The proponent of a groundwater recharge project must demonstrate compliance with Resolution No. 68-16. Until such time as a salt/nutrient management plan is in effect, such compliance may be demonstrated as follows:
 - (1)A project that utilizes less than 10 percent of the available assimilative capacity in a basin/sub-basin (or multiple projects utilizing less than 20 percent of the available assimilative capacity in a basin/sub-basin) need only conduct an antidegradation analysis verifying the use of the assimilative capacity. For those basins/sub-basins where the Regional Water Boards have not determined the baseline assimilative capacity, the baseline assimilative capacity shall be calculated by the initial project proponent, with review and approval by the Regional Water Board, until such time as the salt/nutrient plan is approved by the Regional Water Board and is in effect. For compliance with this subparagraph, the available assimilative capacity shall be calculated by comparing the mineral water quality objective with the average concentration of the basin/sub-basin, either over the most recent five years of data available or using a data set approved by the Regional Water Board Executive Officer. In determining whether the available assimilative capacity will be exceeded by the project or projects, the Regional Water Board shall calculate the impacts of the project or projects over at least a ten year time frame.

- (2) In the event a project or multiple projects utilize more than the fraction of the assimilative capacity designated in subparagraph (1), then a Regional Water Board-deemed acceptable antidegradation analysis shall be performed to comply with Resolution No. 68-16. The project proponent shall provide sufficient information for the Regional Water Board to make this determination. An example of an approved method is the method used by the State Water Board in connection with Resolution No. 2004-0060 and the Regional Water Board in connection with Resolution No. R8-2004-0001. An integrated approach (using surface water, groundwater, recycled water, stormwater, pollution prevention, water conservation, etc.) to the implementation of Resolution No. 68-16 is encouraged.
- d. Landscape irrigation with recycled water in accordance with this Policy is to the benefit of the people of the State of California. Nonetheless, the State Water Board finds that the use of water for irrigation may, regardless of its source, collectively affect groundwater quality over time. The State Water Board intends to address these impacts in part through the development of salt/nutrient management plans described in paragraph 6.
 - (1) A project that meets the criteria for a streamlined irrigation permit and is within a basin where a salt/nutrient management plan satisfying the provisions of paragraph 6(b) is in place may be approved without further antidegradation analysis, provided that the project is consistent with that plan.
 - (2) A project that meets the criteria for a streamlined irrigation permit and is within a basin where a salt/nutrient management plan satisfying the provisions of paragraph 6(b) is being prepared may be approved by the Regional Water Board by demonstrating through a salt/nutrient mass balance or similar analysis that the project uses less than 10 percent of the available assimilative capacity as estimated by the project proponent in a basin/sub-basin (or multiple projects using less than 20 percent of the available assimilative capacity as estimated by the project proponent in a groundwater basin).

10. Emerging Constituents/Chemicals of Emerging Concern

- a. General Provisions
 - (1) Regulatory requirements for recycled water shall be based on the best available peer-reviewed science. In addition, all uses of recycled water must meet conditions set by CDPH.
 - (2) Knowledge of risks will change over time and recycled water projects must meet legally applicable criteria. However, when standards change, projects should be allowed time to comply through a compliance schedule.

- (3) The state of knowledge regarding CECs is incomplete. There needs to be additional research and development of analytical methods and surrogates to determine potential environmental and public health impacts. Agencies should minimize the likelihood of CECs impacting human health and the environment by means of source control and/or pollution prevention programs.
- (4) Regulating most CECs will require significant work to develop test methods and more specific determinations as to how and at what level CECs impact public health or our environment.
- b. *Research Program.* The State Water Board, in consultation with CDPH and within 90 days of the adoption of this Policy, shall convene a "blue-ribbon" advisory panel to guide future actions relating to constituents of emerging concern.
 - (1) The panel shall be actively managed by the State Water Board and shall be composed of at least the following: one human health toxicologist, one environmental toxicologist, one epidemiologist, one biochemist, one civil engineer familiar with the design and construction of recycled water treatment facilities, and one chemist familiar with the design and operation of advanced laboratory methods for the detection of emerging constituents. Each of these panelists shall have extensive experience as a principal investigator in their respective areas of expertise.
 - (2) The panel shall review the scientific literature and, within one year from its appointment, shall submit a report to the State Water Board and CDPH describing the current state of scientific knowledge regarding the risks of emerging constituents to public health and the environment. Within six months of receipt of the panel's report the State Water Board, in coordination with CDPH, shall hold a public hearing to consider recommendations from staff and shall endorse the recommendations, as appropriate, after making any necessary modifications. The panel or a similarly constituted panel shall update this report every five years.
 - (3) Each report shall recommend actions that the State of California should take to improve our understanding of emerging constituents and, as may be appropriate, to protect public health and the environment.
 - (4) The panel report shall answer the following questions: What are the appropriate constituents to be monitored in recycled water, including analytical methods and method detection limits? What is the known toxicological information for the above constituents? Would the above lists change based on level of treatment and use? If so, how? What are possible indicators that represent a suite of CECs? What levels of CECs should trigger enhanced monitoring of CECs in recycled water, groundwater and/or surface waters?

c. *Permit Provisions.* Permits for recycled water projects shall be consistent both with any CDPH recommendations to protect public health and with any actions by the State Water Board taken pursuant to paragraph 10(b)(2).

11. Incentives for the Use of Recycled Water

a. *Funding*

The State Water Board will request CDWR to provide funding (\$20M) for the development of salt and nutrient management plans during the next three years (i.e., before FY 2010/2011). The State Water Board will also request CDWR to provide priority funding for projects that have major recycling components; particularly those that decrease demand on potable water supplies. The State Water Board will also request priority funding for stormwater recharge projects that augment local water supplies. The State Water Board shall promote the use of the State Revolving Fund (SRF) for water purveyor, stormwater agencies, and water recyclers to use for water reuse and stormwater use and recharge projects.

b. *Stormwater*

The State Water Board strongly encourages all water purveyors to provide financial incentives for water recycling and stormwater recharge and reuse projects. The State Water Board also encourages the Regional Water Boards to require less stringent monitoring and regulatory requirements for stormwater treatment and use projects than for projects involving untreated stormwater discharges.

c. TMDLs

Water recycling reduces mass loadings from municipal wastewater sources to impaired waters. As such, waste load allocations shall be assigned as appropriate by the Regional Water Boards in a manner that provides an incentive for greater water recycling.

Recycled Water Policy

1. *Preamble*

California is facing an unprecedented water crisis.

The collapse of the Bay-Delta ecosystem, climate change, and continuing population growth have combined with a severe drought on the Colorado River and failing levees in the Delta to create a new reality that challenges California's ability to provide the clean water needed for a healthy environment, a healthy population and a healthy economy, both now and in the future.

These challenges also present an unparalleled opportunity for California to move aggressively towards a sustainable water future. The State Water Resources Control Board (State Water Board) declares that we will achieve our mission to "preserve, enhance and restore the quality of California's water resources to the benefit of present and future generations." To achieve that mission, we support and encourage every region in California to develop a salt/nutrient management plan by 2014 that is sustainable on a long-term basis and that provides California with clean, abundant water. These plans shall be consistent with the Department of Water Resources' Bulletin 160, as appropriate, and shall be locally developed, locally controlled and recognize the variability of California's water supplies and the diversity of its waterways. We strongly encourage local and regional water agencies to move toward clean, abundant, local water for California by emphasizing appropriate water recycling, water conservation, and maintenance of supply infrastructure and the use of stormwater (including dry-weather urban runoff) in these plans; these sources of supply are drought-proof, reliable, and minimize our carbon footprint and can be sustained over the long-term.

We declare our independence from relying on the vagaries of annual precipitation and move towards sustainable management of surface waters and groundwater, together with enhanced water conservation, water reuse and the use of stormwater. To this end, we adopt the following goals for California:

- Increase the use of recycled water over 2002 levels by at least one million acrefeet per year (afy) by 2020 and by at least two million afy by 2030.
- Increase the use of stormwater over use in 2007 by at least 500,000 afy by 2020 and by at least one million afy by 2030.
- Increase the amount of water conserved in urban and industrial uses by comparison to 2007 by at least 20 percent by 2020.
- Included in these goals is the substitution of as much recycled water for potable water as possible by 2030.

The purpose of this Policy is to increase the use of recycled water from municipal wastewater sources that meets the definition in Water Code section 13050(n), in a manner that implements state and federal water quality laws. The State Water Board expects to

develop additional policies to encourage the use of stormwater, encourage water conservation, encourage the conjunctive use of surface and groundwater, and improve the use of local water supplies.

When used in compliance with this Policy, Title 22 and all applicable state and federal water quality laws, the State Water Board finds that recycled water is safe for approved uses, and strongly supports recycled water as a safe alternative to potable water for such approved uses.

2. *Purpose of the Policy*

- a. The purpose of this Policy is to provide direction to the Regional Water Quality Control Boards (Regional Water Boards), proponents of recycled water projects, and the public regarding the appropriate criteria to be used by the State Water Board and the Regional Water Boards in issuing permits for recycled water projects.
- b. It is the intent of the State Water Board that all elements of this Policy are to be interpreted in a manner that fully implements state and federal water quality laws and regulations in order to enhance the environment and put the waters of the state to the fullest use of which they are capable.
- c. This Policy describes permitting criteria that are intended to streamline the permitting of the vast majority of recycled water projects. The intent of this streamlined permit process is to expedite the implementation of recycled water projects in a manner that implements state and federal water quality laws while allowing the Regional Water Boards to focus their limited resources on projects that require substantial regulatory review due to unique site-specific conditions.
- d. By prescribing permitting criteria that apply to the vast majority of recycled water projects, it is the State Water Board's intent to maximize consistency in the permitting of recycled water projects in California while also reserving to the Regional Water Boards sufficient authority and flexibility to address site-specific conditions.
- e. The State Water Board will establish additional policies that are intended to assist the State of California in meeting the goals established in the preamble to this Policy for water conservation and the use of stormwater.
- f. For purposes of this Policy, the term "permit" means an order adopted by a Regional Water Board or the State Water Board prescribing requirements for a recycled water project, including but not limited to water recycling requirements, master reclamation permits, and waste discharge requirements.

3. Benefits of Recycled Water

The State Water Board finds that the use of recycled water in accordance with this Policy, that is, which supports the sustainable use of groundwater and/or surface water, which is

sufficiently treated so as not to adversely impact public health or the environment and which ideally substitutes for use of potable water, is presumed to have a beneficial impact. Other public agencies are encouraged to use this presumption in evaluating the impacts of recycled water projects on the environment as required by the California Environmental Quality Act (CEQA).

4. *Mandate for the Use of Recycled Water*

- a. The State Water Board and Regional Water Boards will exercise the authority granted to them by the Legislature to the fullest extent possible to encourage the use of recycled water, consistent with state and federal water quality laws.
 - (1) The State Water Board hereby establishes a mandate to increase the use of recycled water in California by 200,000 afy by 2020 and by an additional 300,000 afy by 2030. These mandates shall be achieved through the cooperation and collaboration of the State Water Board, the Regional Water Boards, the environmental community, water purveyors and the operators of publicly owned treatment works. The State Water Board will evaluate progress toward these mandates biennially and review and revise as necessary the implementation provisions of this Policy in 2012 and 2016.
 - (2) Agencies producing recycled water that is available for reuse and not being put to beneficial use shall make that recycled water available to water purveyors for reuse on reasonable terms and conditions. Such terms and conditions may include payment by the water purveyor of a fair and reasonable share of the cost of the recycled water supply and facilities.
 - (3) The State Water Board hereby declares that, pursuant to Water Code sections 13550 *et seq.*, it is a waste and unreasonable use of water for water agencies not to use recycled water when recycled water of adequate quality is available and is not being put to beneficial use, subject to the conditions established in sections 13550 *et seq.* The State Water Board shall exercise its authority pursuant to Water Code section 275 to the fullest extent possible to enforce the mandates of this subparagraph.
- b. These mandates are contingent on the availability of sufficient capital funding for the construction of recycled water projects from private, local, state, and federal sources and assume that the Regional Water Boards will effectively implement regulatory streamlining in accordance with this Policy.
- c. The water industry and the environmental community have agreed jointly to advocate for \$1 billion in state and federal funds over the next five years to fund projects needed to meet the goals and mandates for the use of recycled water established in this Policy.

d. The State Water Board requests the California Department of Public Health (CDPH), the California Public Utilities Commission (CPUC), and the California Department of Water Resources (CDWR) to use their respective authorities to the fullest extent practicable to assist the State Water Board and the Regional Water Boards in increasing the use of recycled water in California.

5. Roles of the State Water Board, Regional Water Boards, CDPH and CDWR

The State Water Board recognizes that it shares jurisdiction over the use of recycled water with the Regional Water Boards and with CDPH. In addition, the State Water Board recognizes that CDWR and the CPUC have important roles to play in encouraging the use of recycled water. The State Water Board believes that it is important to clarify the respective roles of each of these agencies in connection with recycled water projects, as follows:

- a. The State Water Board establishes general policies governing the permitting of recycled water projects consistent with its role of protecting water quality and sustaining water supplies. The State Water Board exercises general oversight over recycled water projects, including review of Regional Water Board permitting practices, and shall lead the effort to meet the recycled water use goals set forth in the Preamble to this Policy. The State Water Board is also charged by statute with developing a general permit for irrigation uses of recycled water.
- b. The CDPH is charged with protection of public health and drinking water supplies and with the development of uniform water recycling criteria appropriate to particular uses of water. Regional Water Boards shall appropriately rely on the expertise of CDPH for the establishment of permit conditions needed to protect human health.
- c. The Regional Water Boards are charged with protection of surface and groundwater resources and with the issuance of permits that implement CDPH recommendations, this Policy, and applicable law and will, pursuant to paragraph 4 of this Policy, use their authority to the fullest extent possible to encourage the use of recycled water.
- d. CDWR is charged with reviewing and, every five years, updating the California Water Plan, including evaluating the quantity of recycled water presently being used and planning for the potential for future uses of recycled water. In undertaking these tasks, CDWR may appropriately rely on urban water management plans and may share the data from those plans with the State Water Board and the Regional Water Boards. CDWR also shares with the State Water Board the authority to allocate and distribute bond funding, which can provide incentives for the use of recycled water.
- e. The CPUC is charged with approving rates and terms of service for the use of recycled water by investor-owned utilities.

6. Salt/Nutrient Management Plans

a. Introduction.

- (1) Some groundwater basins in the state contain salts and nutrients that exceed or threaten to exceed water quality objectives established in the applicable Water Quality Control Plans (Basin Plans), and not all Basin Plans include adequate implementation procedures for achieving or ensuring compliance with the water quality objectives for salt or nutrients. These conditions can be caused by natural soils/conditions, discharges of waste, irrigation using surface water, groundwater or recycled water and water supply augmentation using surface or recycled water. Regulation of recycled water alone will not address these conditions.
- (2) It is the intent of this Policy that salts and nutrients from all sources be managed on a basin-wide or watershed-wide basis in a manner that ensures attainment of water quality objectives and protection of beneficial uses. The State Water Board finds that the appropriate way to address salt and nutrient issues is through the development of regional or subregional salt and nutrient management plans rather than through imposing requirements solely on individual recycled water projects.
- b. Adoption of Salt/ Nutrient Management Plans.
 - (1) The State Water Board recognizes that, pursuant to the letter dated December 19, 2008 and attached to the Resolution adopting this Policy, the local water and wastewater entities, together with local salt/nutrient contributing stakeholders, will fund locally driven and controlled, collaborative processes open to all stakeholders that will prepare salt and nutrient management plans for each basin/sub-basin in California, including compliance with CEQA and participation by Regional Water Board staff.
 - (a) It is the intent of this Policy for every groundwater basin/sub-basin in California to have a consistent salt/nutrient management plan. The degree of specificity within these plans and the length of these plans will be dependent on a variety of site-specific factors, including but not limited to size and complexity of a basin, source water quality, stormwater recharge, hydrogeology, and aquifer water quality. It is also the intent of the State Water Board that because stormwater is typically lower in nutrients and salts and can augment local water supplies, inclusion of a significant stormwater use and recharge component within the salt/nutrient management plans is critical to the long-term sustainable use of water in California. Inclusion of stormwater recharge is consistent with State Water Board Resolution No. 2005-06, which establishes sustainability as a core value for State Water Board programs and

also assists in implementing Resolution No. 2008-30, which requires sustainable water resources management and is consistent with Objective 3.2 of the State Water Board Strategic Plan Update dated September 2, 2008.

- (b) Salt and nutrient plans shall be tailored to address the water quality concerns in each basin/sub-basin and may include constituents other than salt and nutrients that impact water quality in the basin/sub-basin. Such plans shall address and implement provisions, as appropriate, for all sources of salt and/or nutrients to groundwater basins, including recycled water irrigation projects and groundwater recharge reuse projects.
- (c) Such plans may be developed or funded pursuant to the provisions of Water Code sections 10750 *et seq.* or other appropriate authority.
- (d) Salt and nutrient plans shall be completed and proposed to the Regional Water Board within five years from the date of this Policy unless a Regional Water Board finds that the stakeholders are making substantial progress towards completion of a plan. In no case shall the period for the completion of a plan exceed seven years.
- (e) The requirements of this paragraph shall not apply to areas that have already completed a Regional Water Board approved salt and nutrient plan for a basin, sub-basin, or other regional planning area that is functionally equivalent to paragraph 6(b)3.
- (f) The plans may, depending upon the local situation, address constituents other than salt and nutrients that adversely affect groundwater quality.
- (2) Within one year of the receipt of a proposed salt and nutrient management plan, the Regional Water Boards shall consider for adoption revised implementation plans, consistent with Water Code section 13242, for those groundwater basins within their regions where water quality objectives for salts or nutrients are being, or are threatening to be, exceeded. The implementation plans shall be based on the salt and nutrient plans required by this Policy.
- (3) Each salt and nutrient management plan shall include the following components:
 - (a) A basin/sub-basin wide monitoring plan that includes an appropriate network of monitoring locations. The scale of the basin/sub-basin monitoring plan is dependent upon the site-specific conditions and shall be adequate to provide a reasonable,

cost-effective means of determining whether the concentrations of salt, nutrients, and other constituents of concern as identified in the salt and nutrient plans are consistent with applicable water quality objectives. Salts, nutrients, and the constituents identified in paragraph 6(b)(1)(f) shall be monitored. The frequency of monitoring shall be determined in the salt/nutrient management plan and approved by the Regional Water Board pursuant to paragraph 6(b)(2).

- (i) The monitoring plan must be designed to determine water quality in the basin. The plan must focus on basin water quality near water supply wells and areas proximate to large water recycling projects, particularly groundwater recharge projects. Also, monitoring locations shall, where appropriate, target groundwater and surface waters where groundwater has connectivity with adjacent surface waters.
- (ii) The preferred approach to monitoring plan development is to collect samples from existing wells if feasible as long as the existing wells are located appropriately to determine water quality throughout the most critical areas of the basin.
- (iii) The monitoring plan shall identify those stakeholders responsible for conducting, compiling, and reporting the monitoring data. The data shall be reported to the Regional Water Board at least every three years.
- (b) A provision for annual monitoring of Constituents of Emerging Concern (e.g., endocrine disrupters, personal care products or pharmaceuticals) (CECs) consistent with recommendations by CDPH and consistent with any actions by the State Water Board taken pursuant to paragraph 10(b) of this Policy.
- (c) Water recycling and stormwater recharge/use goals and objectives.
- (d) Salt and nutrient source identification, basin/sub-basin assimilative capacity and loading estimates, together with fate and transport of salts and nutrients.
- (e) Implementation measures to manage salt and nutrient loading in the basin on a sustainable basis.
- (f) An antidegradation analysis demonstrating that the projects included within the plan will, collectively, satisfy the requirements of Resolution No. 68-16.

(4) Nothing in this Policy shall prevent stakeholders from developing a plan that is more protective of water quality than applicable standards in the Basin Plan. No Regional Water Board, however, shall seek to modify Basin Plan objectives without full compliance with the process for such modification as established by existing law.

7. Landscape Irrigation Projects¹

- a. *Control of incidental runoff.* Incidental runoff is defined as unintended small amounts (volume) of runoff from recycled water use areas, such as unintended, minimal over-spray from sprinklers that escapes the recycled water use area. Water leaving a recycled water use area is not considered incidental if it is part of the facility design, if it is due to excessive application, if it is due to intentional overflow or application, or if it is due to negligence. Incidental runoff may be regulated by waste discharge requirements or, where necessary, waste discharge requirements that serve as a National Pollutant Discharge Elimination System (NPDES) permit, including municipal separate storm water system permits, but regardless of the regulatory instrument, the project shall include, but is not limited to, the following practices:
 - (1) Implementation of an operations and management plan that may apply to multiple sites and provides for detection of leaks, (for example, from broken sprinkler heads), and correction either within 72 hours of learning of the runoff, or prior to the release of 1,000 gallons, whichever occurs first,
 - (2) Proper design and aim of sprinkler heads,
 - (3) Refraining from application during precipitation events, and
 - Management of any ponds containing recycled water such that no discharge occurs unless the discharge is a result of a 25-year, 24-hour storm event or greater, and there is notification of the appropriate Regional Water Board Executive Officer of the discharge.

v. Cemeteries;

¹ Specified uses of recycled water considered "landscape irrigation" projects include any of the following: i. Parks, greenbelts, and playgrounds;

ii. School yards;

iii. Athletic fields;

iv. Golf courses;

vi. Residential landscaping, common areas;

vii. Commercial landscaping, except eating areas;

viii. Industrial landscaping, except eating areas; and

ix. Freeway, highway, and street landscaping.

- b. Streamlined Permitting
 - (1) The Regional Water Boards shall, absent unusual circumstances (i.e., unique, site-specific conditions such as where recycled water is proposed to be used for irrigation over high transmissivity soils over a shallow (5' or less) high quality groundwater aquifer), permit recycled water projects that meet the criteria set forth in this Policy, consistent with the provisions of this paragraph.
 - (2) If the Regional Water Board determines that unusual circumstances apply, the Regional Water Board shall make a finding of unusual circumstances based on substantial evidence in the record, after public notice and hearing.
 - (3) Projects meeting the criteria set forth below and eligible for enrollment under requirements established in a general order shall be enrolled by the State or Regional Water Board within 60 days from the date on which an application is deemed complete by the State or Regional Water Board. For projects that are not enrolled in a general order, the Regional Water Board shall consider permit adoption within 120 days from the date on which the application is deemed complete by the Regional Water Board.
 - (4) Landscape irrigation projects that qualify for streamlined permitting shall not be required to include a project specific receiving water and groundwater monitoring component unless such project specific monitoring is required under the adopted salt/nutrient management plan. During the interim while the salt management plan is under development, a landscape irrigation project proponent can either perform project specific monitoring, or actively participate in the development and implementation of a salt/nutrient management plan, including basin/sub-basin monitoring. Permits or requirements for landscape irrigation projects shall include, in addition to any other appropriate recycled water monitoring requirements, recycled water monitoring for surrogates as specified in Attachment A of this Policy. For landscape irrigation projects, priority pollutants shall be monitored once per year, except for landscape irrigation projects with design production flows of one million gallons per day or less, which shall be monitored for priority pollutants once every five years.
 - (5) It is the intent of the State Water Board that the general permit for landscape irrigation projects be consistent with the terms of this Policy.
- c. *Criteria for streamlined permitting*. Irrigation projects using recycled water that meet the following criteria are eligible for streamlined permitting, and, if otherwise in compliance with applicable laws, shall be approved absent unusual circumstances:

- Compliance with the requirements for recycled water established in Title 22 of the California Code of Regulations, including the requirements for treatment and use area restrictions, together with any other recommendations by CDPH pursuant to Water Code section 13523.
- (2) Application in amounts and at rates as needed for the landscape (i.e., at agronomic rates and not when the soil is saturated). Each irrigation project shall be subject to an operations and management plan, that may apply to multiple sites, provided to the Regional Water Board that specifies the agronomic rate(s) and describes a set of reasonably practicable measures to ensure compliance with this requirement, which may include the development of water budgets for use areas, site supervisor training, periodic inspections, tiered rate structures, the use of smart controllers, or other appropriate measures.
- (3) Compliance with any applicable salt and nutrient management plan.
- (4) Appropriate use of fertilizers that takes into account the nutrient levels in the recycled water. Recycled water producers shall monitor and communicate to the users the nutrient levels in their recycled water.

8. Recycled Water Groundwater Recharge Projects

- a. The State Water Board acknowledges that all recycled water groundwater recharge projects must be reviewed and permitted on a site-specific basis, and so such projects will require project-by-project review.
- b. Approved groundwater recharge projects will meet the following criteria:
 - (1) Compliance with regulations adopted by CDPH for groundwater recharge projects or, in the interim until such regulations are approved, CDPH's recommendations pursuant to Water Code section 13523 for the project (e.g., level of treatment, retention time, setback distance, source control, monitoring program, etc.).
 - (2) Implementation of a monitoring program for CECs that is consistent with Attachment A and any recommendations from CDPH. Groundwater recharge projects shall include monitoring of recycled water for priority pollutants twice per year.
- c. Nothing in this paragraph shall be construed to limit the authority of a Regional Water Board to protect designated beneficial uses, *provided* that any proposed limitations for the protection of public health may only be imposed following regular consultation by the Regional Water Board with CDPH, consistent with State Water Board Orders WQ 2005-0007 and 2006-0001.
- d. Nothing in this Policy shall be construed to prevent a Regional Water Board from imposing additional requirements for a proposed recharge project that has a

substantial adverse effect on the fate and transport of a contaminant plume or changes the geochemistry of an aquifer thereby causing the dissolution of constituents, such as arsenic, from the geologic formation into groundwater.

e. Projects that utilize surface spreading to recharge groundwater with recycled water treated by reverse osmosis shall be permitted by a Regional Water Board within one year of receipt of recommendations from CDPH. Furthermore, the Regional Water Board shall give a high priority to review and approval of such projects.

9. Antidegradation

- a. The State Water Board adopted Resolution No. 68-16 as a policy statement to implement the Legislature's intent that waters of the state shall be regulated to achieve the highest water quality consistent with the maximum benefit to the people of the state.
- b. Activities involving the disposal of waste that could impact high quality waters are required to implement best practicable treatment or control of the discharge necessary to ensure that pollution or nuisance will not occur, and the highest water quality consistent with the maximum benefit to the people of the state will be maintained.
- c. Groundwater recharge with recycled water for later extraction and use in accordance with this Policy and state and federal water quality law is to the benefit of the people of the state of California. Nonetheless, the State Water Board finds that groundwater recharge projects using recycled water have the potential to lower water quality within a basin. The proponent of a groundwater recharge project must demonstrate compliance with Resolution No. 68-16. Until such time as a salt/nutrient management plan is in effect, such compliance may be demonstrated as follows:
 - A project that utilizes less than 10 percent of the available assimilative (1)capacity in a basin/sub-basin (or multiple projects utilizing less than 20 percent of the available assimilative capacity in a basin/sub-basin) need only conduct an antidegradation analysis verifying the use of the assimilative capacity. For those basins/sub-basins where the Regional Water Boards have not determined the baseline assimilative capacity, the baseline assimilative capacity shall be calculated by the initial project proponent, with review and approval by the Regional Water Board, until such time as the salt/nutrient plan is approved by the Regional Water Board and is in effect. For compliance with this subparagraph, the available assimilative capacity shall be calculated by comparing the mineral water quality objective with the average concentration of the basin/sub-basin, either over the most recent five years of data available or using a data set approved by the Regional Water Board Executive Officer. In determining whether the available assimilative capacity will be exceeded by the project or projects, the Regional Water Board shall

calculate the impacts of the project or projects over at least a ten year time frame.

- (2) In the event a project or multiple projects utilize more than the fraction of the assimilative capacity designated in subparagraph (1), then a Regional Water Board-deemed acceptable antidegradation analysis shall be performed to comply with Resolution No. 68-16. The project proponent shall provide sufficient information for the Regional Water Board to make this determination. An example of an approved method is the method used by the State Water Board in connection with Resolution No. 2004-0060 and the Regional Water Board in connection with Resolution No. R8-2004-0001. An integrated approach (using surface water, groundwater, recycled water, stormwater, pollution prevention, water conservation, etc.) to the implementation of Resolution No. 68-16 is encouraged.
- d. Landscape irrigation with recycled water in accordance with this Policy is to the benefit of the people of the State of California. Nonetheless, the State Water Board finds that the use of water for irrigation may, regardless of its source, collectively affect groundwater quality over time. The State Water Board intends to address these impacts in part through the development of salt/nutrient management plans described in paragraph 6.
 - (1) A project that meets the criteria for a streamlined irrigation permit and is within a basin where a salt/nutrient management plan satisfying the provisions of paragraph 6(b) is in place may be approved without further antidegradation analysis, provided that the project is consistent with that plan.
 - (2) A project that meets the criteria for a streamlined irrigation permit and is within a basin where a salt/nutrient management plan satisfying the provisions of paragraph 6(b) is being prepared may be approved by the Regional Water Board by demonstrating through a salt/nutrient mass balance or similar analysis that the project uses less than 10 percent of the available assimilative capacity as estimated by the project proponent in a basin/sub-basin (or multiple projects using less than 20 percent of the available assimilative capacity as estimated by the project proponent in a basin/sub-basin).

10. Constituents of Emerging Concern

- a. General Provisions
 - (1) Regulatory requirements for recycled water shall be based on the best available peer-reviewed science. In addition, all uses of recycled water must meet conditions set by CDPH.

- (2) Knowledge of risks will change over time and recycled water projects must meet legally applicable criteria. However, when standards change, projects should be allowed time to comply through a compliance schedule.
- (3) The state of knowledge regarding CECs is incomplete. There needs to be additional research and development of analytical methods and surrogates to determine potential environmental and public health impacts. Agencies should minimize the likelihood of CECs impacting human health and the environment by means of source control and/or pollution prevention programs.
- (4) Regulating most CECs will require significant work to develop test methods and more specific determinations as to how and at what level CECs impact public health or our environment.
- b. Research Program
 - (1) The State Water Board, in consultation with CDPH, convened a "blueribbon" advisory panel to guide future actions relating to CECs.
 - (a) The panel was actively managed by the State Water Board and was composed of the following: one human health toxicologist, one environmental toxicologist, one epidemiologist, one biochemist, one civil engineer familiar with the design and construction of recycled water treatment facilities, and one chemist familiar with the design and operation of advanced laboratory methods for the detection of emerging constituents. Each of these panelists had extensive experience as a principal investigator in their respective areas of expertise.
 - (b) The panel reviewed the scientific literature and submitted a report to the State Water Board and CDPH that described the current state of scientific knowledge regarding the risks of CECs to public health and the environment. In December 2010, the State Water Board, in coordination with CDPH, held a public hearing to hear a presentation on the report and to receive comments from stakeholders.
 - (c) The State Water Board considered the panel report and the comments received and adopted an amendment to the Policy establishing monitoring requirements for CECs in recycled water. These monitoring requirements are prescribed in Attachment A.
 - (2) The panel or a similarly constituted panel shall update the report every five years The next update is due in June 2015.
 - (a) Each updated report shall recommend actions that the State of California should take to improve our understanding of CECs and,

as may be appropriate, to protect public health and the environment.

- (b) The updated reports shall answer the following questions: What are the appropriate constituents to be monitored in recycled water, including analytical methods and method detection limits? What is the known toxicological information for the above constituents? Would the above lists change based on level of treatment and use? If so, how? What are possible indicators that represent a suite of CECs? What levels of CEC's should trigger enhanced monitoring of CEC's in recycled water, groundwater and/surface waters?
- (c) Within six months from receipt of an updated report, the State Water Board shall hold a hearing to consider recommendations from staff and shall endorse the recommendations, as appropriate, after making any necessary modifications.
- c. Permit Provisions

Permits for recycled water projects shall be consistent with any CDPH recommendations to protect public health and the monitoring requirements prescribed in Attachment A.

- 11. Incentives for the Use of Recycled Water
 - a. Funding

The State Water Board will request CDWR to provide priority funding for projects that have major recycling components; particularly those that decrease demand on potable water supplies. The State Water Board will also request priority funding for stormwater recharge projects that augment local water supplies. The State Water Board shall promote the use of the State Revolving Fund (SRF) for water purveyor, stormwater agencies, and water recyclers to use for water reuse and stormwater use and recharge projects.

b. Stormwater

The State Water Board strongly encourages all water purveyors to provide financial incentives for water recycling and stormwater recharge and reuse projects. The State Water Board also encourages the Regional Water Boards to require less stringent monitoring and regulatory requirements for stormwater treatment and use projects than for projects involving untreated stormwater discharges.

c. TMDLs

Water recycling reduces mass loadings from municipal wastewater sources to impaired waters. As such, waste load allocations shall be assigned as appropriate by the Regional Water Boards in a manner that provides an incentive for greater water recycling.

DRAFT

September 12, 2012

ATTACHMENT A

REQUIREMENTS FOR MONITORING CONSTITUENTS OF EMERGING CONCERN FOR RECYCLED WATER

The purpose of this attachment to the Recycled Water Policy (Policy) is to provide direction to the Regional Water Quality Control Boards (Regional Water Boards) on monitoring requirements for constituents of emerging concern¹ (CECs) in recycled municipal wastewater, herein referred to as "recycled water". The monitoring requirements and criteria for evaluating monitoring results in the Policy are based on recommendations from a Science Advisory Panel². The monitoring requirements pertain to the production and use of recycled water for groundwater recharge reuse³ by surface and subsurface application methods, and for landscape irrigation. The monitoring requirements apply to recycled water supplied by municipal wastewater treatment facilities, and groundwater recharge reuse facilities.

Groundwater recharge by surface application is the controlled application of water to a spreading area for infiltration resulting in the recharge of a groundwater basin. Subsurface application is the controlled application of water to a groundwater basin or aquifer by a means other than surface application, such as direct injection through a well.

The California Department of Public Health (CDPH) shall be consulted for any additional monitoring requirements for recycled water use found necessary by CDPH to protect human health.

¹ For this Policy, CECs are defined to be chemicals in personal care products, pharmaceuticals including antibiotics, antimicrobials; industrial, agricultural, and household chemicals; hormones; food additives; transformation products, inorganic constituents; and nanomaterials.

² The Science Advisory Panel was convened in accordance with provision 10.b. of the Policy. The panel's recommendations were presented in the report; <u>Monitoring Strategies for Chemicals of Emerging</u> <u>Concern (CECs) in Recycled Water – Recommendations of a Science Advisory Panel</u>, dated June 25, 2010.

³ As used in this attachment, use of recycled water for groundwater recharge reuse has the same meaning as indirect potable reuse for groundwater recharge as defined in section 116275 of the Health and Safety Code (Water Code section 13561(c)), where it is defined as the planned use of recycled water for replenishment of a groundwater basin or an aquifer that has been designated as a source of water supply for a public water system.

1. CECS AND SURROGATES

Within this Policy, CECs of toxicological relevance to human health are referred to as "health-based CECs."⁴ CECs determined not to have human health relevance, but useful for monitoring treatment process efficacy, are referred to as "performance indicator CECs." An indicator CEC is an individual CEC used for evaluating a family of CECs with similar physicochemical or biodegradable characteristics. The removal of an indicator CEC through a treatment process provides an indicator of removal of CECs with similar properties. The health-based CECs also serve as indicator CECs.

A surrogate is a measurable physical or chemical property, such as chlorine residual or electrical conductivity, that can be used to measure the efficiency of trace organic compounds removal by treatment process and/or provide an indication of a treatment process failure. In regards to surrogates, a reverse osmosis (RO) treatment process, for example, is expected to substantially reduce the electrical conductivity of the recycled water being treated; this reduction in the level of the surrogate also provides an indication that inorganic and organic compounds, including CECs, are being removed.

Recycled water monitoring programs used for groundwater recharge reuse shall include monitoring for: (1) human health-based CECs; (2) performance indicator CECs; and (3) surrogates. The purpose of monitoring performance indicator CECs and surrogates is to assess the removal efficiency of unit processes to remove CECs. Treatment processes designed to provide a barrier to CECs include, but are not limited to, advanced oxidation processes (AOPs), biologically active carbon, nanofiltration, and RO. In addition, soil aquifer treatment⁵ is a natural treatment process that provides a level of removal of CECs. AOPs are treatment processes involving the use of hydrogen peroxide and ozone, commonly combined with ultraviolet light irradiation.

This Policy provides CEC monitoring requirements for recycled water which undergoes additional treatment by soil aquifer treatment or RO/AOPs. CEC monitoring requirements for groundwater recharge reuse projects implementing treatment processes that provide control of CECs by processes other than soil aquifer treatment or RO/AOPs shall be established on a case-by-case basis by the Regional Water Boards in consultation with CDPH.

Monitoring of health-based CECs or performance indicator CECs is not required for recycled water used for landscape irrigation due to the low risk for ingestion of the

⁴ Determined through a screening process conducted by the CEC Science Advisory Panel; <u>Monitoring</u> <u>Strategies for Chemicals of Emerging Concern (CECs) in Recycled Water – Recommendations of a</u> <u>Science Advisory Panel</u>, dated June 25, 2010.

⁵ For evaluating removal of CECs, the treatment zone for soil aquifer treatment is from the surface of the application area through the unsaturated zone to groundwater, including groundwater within a 30-day travel time distance through the aquifer downgradient of the surface application area.

water.⁶ Monitoring programs for recycled water used for landscape irrigation, however, shall include monitoring for applicable surrogates, as presented in section 1.2, to evaluate the efficacy of filtration and disinfection systems.

1.1. CECs for Monitoring Programs

This Policy provides requirements for monitoring CECs in recycled water used for groundwater recharge reuse. The Regional Water Boards shall not issue requirements for monitoring of additional CECs, beyond the requirements provided in this Policy except when:

- recommended by CDPH;
- requested by the project proponent; or
- required by an adopted regional salt and nutrient management plan.

Table 1 provides the health-based CECs and performance indicator CECs to be monitored for recycled water uses along with their respective reporting limits. All CECs listed for a recycled water application shall be monitored during an initial assessment monitoring phase, as described in Section 3.1. Based on monitoring results and findings, the list of performance indicator CECs required for monitoring may be refined for subsequent monitoring phases. The health-based CECs listed in Table 1 shall be monitored during the entirety of the initial assessment and baseline monitoring phases (Sections 3.1 and 3.2). Based on the results of the baseline monitoring may be revised. The method for evaluation of monitoring results for health-based CECs is provided in Section 4.2.

Quality Assurance and Quality Control measures shall be used for both collection of samples and laboratory analysis work. The project proponent shall develop a quality assurance project plan that includes the appropriate number of field blanks, laboratory blanks, replicate samples, and matrix spikes.

⁶ "For monitoring programs to assess CEC threats for urban irrigation reuse, none of the chemicals for which measurement methods and exposure data are available exceeded the threshold for monitoring priority. This is largely attributable to higher Monitoring Trigger Levels (MTLs), because of reduced water ingestion in a landscape irrigation setting compared to drinking water." MTLs are health-based screening level values for CECs for a particular water reuse scenario. MTLs were established in, <u>Monitoring</u> <u>Strategies for Chemicals of Emerging Concern (CECs) in Recycled Water – Recommendations of a</u> <u>Science Advisory Panel</u>, dated June 25, 2010.

Table 1 – CECs to be Monitored

<u>Constituent</u>	<u>Constituent</u> <u>Group</u>	<u>Relevance/Indicator</u> <u>Type</u>	<u>Reporting</u> Limit (µg/L)
GROUNDWATER RECH			
17β-estradiol	Steroid	Health	0.001
	hormones		
Caffeine	Stimulant	Health & Performance	0.05
N-Nitrosodimethylamine	Disinfection	Health	0.002
(NDMA)	byproduct		
Triclosan	Antimicrobial	Health	0.05
Gemfibrozil	Pharmaceutical	Performance	0.01
lopromide	Pharmaceutical	Performance	0.05
N,N-Diethyl-meta-	Personal care	Performance	0.05
toluamide (DEET)	product		
Sucralose	Food additive	Performance	0.1
GROUNDWATER RECH	ARGE REUSE - S	UBSURFACE APPLICAT	TION
17β-estradiol	Steroid	Health	0.001
	hormones		
Caffeine	Stimulant	Health & Performance	0.05
NDMA	Disinfection	Health & Performance	0.002
	byproduct		
Triclosan	Antimicrobial	Health	0.05
DEET	Personal care	Performance	0.01
	product		
Sucralose	Food additive	Performance	0.1
LANDSCAPE IRRIGATIC	N		
None			

µg/L – Micrograms per liter

Analytical methods for laboratory analysis of CECs shall be selected to achieve the reporting limits presented in Table 1 and shall be peer reviewed and published.

1.2. Surrogates for Monitoring Programs

Selection of appropriate surrogates shall be based on the types of treatment processes used, the recycled water use, and the measurable occurrence of surrogates in the treatment process. Table 2 presents a list of surrogates to be considered for monitoring treatment of recycled water used for groundwater recharge reuse and landscape irrigation.

Table 2: Surrogates

GROUNDWATER RECHARGE REUSE - SURFACE
APPLICATION
Ammonia
Total Organic Carbon (TOC)
Nitrate
Ultraviolet (UV) Light Absorption
GROUNDWATER RECHARGE REUSE - SUBSURFACE
APPLICATION
Electrical Conductivity
TOC
LANDSCAPE IRRIGATION
Chlorine Residual
Total Coliform
Turbidity

The project proponent shall propose surrogates to monitor on a case-by-case basis appropriate for the treatment process or processes. For example, chlorine residual is not an appropriate surrogate for projects that do not use chlorine-based compounds for disinfection. The Regional Water Board shall review and approve the selected surrogates in consultation with CDPH.

Where applicable, surrogates may be measured using on-line or hand-held instruments provided that instrument calibration procedures are implemented in accordance with the manufacturer's specifications and that calibration is documented.

2. MONITORING LOCATIONS

Monitoring locations for CECs and surrogates will depend on the unit treatment processes utilized and the recycled water use. Monitoring for CECs and surrogates shall be conducted before and after an individual treatment process or a combination of processes that provide removal of CECs; unit processes are presented in Section 1. Additionally, surface application recharge reuse projects relying on the process of soil aquifer treatment shall monitor for CECs in groundwater at a location prior to the point of extraction for drinking water supply. Monitoring locations for health-based and performance indicator CECs and surrogates are detailed below.

2.1. Health-Based CEC Monitoring Locations

2.1.1. Groundwater Recharge Reuse - Surface Application

For groundwater recharge reuse projects implementing surface application of recycled water, health-based CECs shall be monitored at these locations:

- (1) Following tertiary treatment⁷ prior to application to the surface spreading area; and
- (2) At monitoring well locations designated in consultation with CDPH within the distance groundwater travels from the application site in thirty days.

Monitoring locations for health-based CECs for the phases of monitoring are presented in Tables 3 through 5.

2.1.2. Groundwater Recharge Reuse - Subsurface Application

For groundwater recharge reuse projects implementing subsurface application of recycled water, monitoring of health-based CECs shall be conducted at a location following RO/AOPs treatment prior to discharge into an aquifer.

2.1.3. Landscape Irrigation

Monitoring of health-based CECs is not required for municipal recycled water used for landscape irrigation.

2.2. Performance Indicator CEC and Surrogate Monitoring Locations

To allow evaluation of individual unit processes or a combination of unit processes that provide removal of CECs, performance indicator CECs and surrogates shall be monitored at the locations described below and presented in Tables 3 through 5.

2.2.1. Groundwater Recharge Reuse - Surface Application

For surface application practices, performance indicator CECs shall be monitored in recycled water and groundwater at these locations:

- (1) Following tertiary treatment prior to application to the surface spreading area; and
- (2) At monitoring well locations designated in consultation with CDPH within the distance groundwater travels from application site in thirty days.

Surrogates shall be monitored in recycled water and groundwater at these locations:

⁷ Standards for disinfected tertiary recycled water presented in California Code of Regulations Title 22, section 60301.230 and 60301.320.

- (1) Following tertiary treatment prior to application to the surface application area; and
- (2) At monitoring well locations designated in consultation with CDPH within the distance groundwater travels from application site in thirty days.

Monitoring locations for performance indicator CECs and surrogates for the phases of monitoring are presented in Tables 3 through 5.

2.2.2. Groundwater Recharge Reuse - Subsurface Application

For subsurface application, performance indicator CECs and surrogates shall be monitored in recycled water at these locations:

- (1) Prior to treatment by RO/AOPs; and
- (2) Following treatment by RO/AOPs prior to release to the aquifer.

2.2.3. Landscape Irrigation

For landscape irrigation, surrogates shall be monitored in municipal recycled water following treatment prior to distribution.

3. PHASED MONITORING REQUIREMENTS

The Regional Water Board shall phase the monitoring requirements for CECs and surrogates for groundwater recharge reuse projects. The purpose of phased monitoring is to allow monitoring requirements for health-based CECs, performance indicator CECs and surrogates to be refined based on the monitoring results and findings of the previous phase. An initial assessment monitoring phase, followed by a baseline monitoring phase, shall be conducted to determine the project-specific monitoring requirements for standard operations. The initial assessment and baseline monitoring phases shall be conducted after CDPH approval for groundwater recharge reuse project operation.

3.1. Initial Assessment Monitoring Phase

The purposes of the initial assessment phase are to: (1) identify the occurrence of health-based CECs, performance indicator CECs, and surrogates in recycled water and groundwater; (2) determine the treatment effectiveness of unit processes⁹; (3) define the project-specific performance indicator CECs and surrogates to monitor during the baseline phase; and (4) specify the expected removal percentages for indicator CECs and surrogates. The monitoring requirements for the initial assessment monitoring phase shall apply to the start-up of new facilities, piloting of new unit processes at existing facilities, and existing facilities where CECs and surrogates have not been

⁹ Unit processes that remove CECs.

assessed equivalent¹⁰ to the requirements of this Policy. The initial assessment monitoring phase shall be conducted for a period of one year.

During the initial assessment monitoring phase for the applicable recycled water application method, each of the health-based CECs and performance indicator CECs listed in Table 1, and the appropriate surrogates listed in Table 2, shall be monitored. Surrogates shall be selected to monitor individual unit processes or combinations of unit processes that remove CECs. Performance indicator CEC and surrogate monitoring results that demonstrate measurable removal for a given unit process shall be candidates for use in the monitoring programs for the baseline and standard operation phases. Monitoring requirements for the initial assessment phase are summarized in Table 3.

For existing groundwater recharge reuse projects, historic monitoring data may be used to assess the occurrence and removal of CECs and surrogates. Existing projects demonstrating prior assessment of CECs and surrogates equivalent to the initial assessment phase requirements of this Policy may skip the initial monitoring phase and initiate the baseline monitoring phase requirements in Section 3.2.

Monitoring results shall be evaluated following each sampling event to allow timely implementation of any response actions. If evaluation of monitoring results indicates a concern (i.e., the effectiveness of the treatment processes to achieve the expected degree of removal of CECs or the increased occurrence and/or concentrations of CECs) more frequent monitoring shall be required to further evaluate the effectiveness of the treatment process. Additional actions also may be warranted, which may include but not be limited to resampling to confirm a result, additional monitoring, implementation of a source identification program, toxicological studies, engineering removal studies, and/or modification of facility operations. If additional monitoring is required, the Regional Water Board shall consult with CDPH and revise the Monitoring and Reporting Program as appropriate. Evaluation of monitoring results are presented in Section 4.

Following completion of the initial assessment monitoring phase, monitoring requirements shall be re-evaluated and subsequent requirements for the baseline monitoring phase shall be determined on a project specific basis.

3.2. Baseline Monitoring Phase

Based on the findings of the initial assessment monitoring phase, project-specific performance indicator CECs and surrogates shall be selected for monitoring during the baseline monitoring phase. The purpose of the baseline monitoring phase is to assess and refine which health-based CECs, performance indicator CECs and surrogates are

¹⁰ To be considered equivalent, data from prior assessment need not replicate the exact frequency and duration of the initial assessment phase requirements specified in Table 3, if the overall robustness and size of the data are sufficient to adequately characterize the surrogates and treatment performance under consideration.

appropriate to monitor removal of CECs and treatment system operational performance for the standard operation of a facility. Performance indicator CECs detected during the initial assessment phase shall be selected for monitoring during the baseline monitoring phase. Surrogates that exhibited reduction through a unit process and/or provide an indication of operational performance shall be selected for monitoring during the baseline monitoring phase. Those surrogates not reduced through a unit process are not good indicators of the unit's intended performance. For example, a filtration unit will not effectively lower electrical conductivity. Therefore, electrical conductivity is not a good surrogate for a filtration unit. The baseline monitoring phase shall be conducted for a period of three years following the initial assessment monitoring phase. Monitoring requirements for the baseline phase are summarized in Table 4.

For existing groundwater recharge reuse projects, historic monitoring data may be used to assess removal of health-based CECs, performance indicator CECs and surrogates. Existing projects that can demonstrate prior assessment of CECs and surrogates equivalent to the initial assessment phase and baseline phase requirements of this Policy may be eligible for standard operation monitoring requirements (Section 3.3).

Monitoring results shall be evaluated following each sampling event to allow timely implementation of any response actions. If evaluation of monitoring results indicates a concern (i.e., the effectiveness of the treatment processes to achieve the expected degree of removal of CECs or the increased occurrence and/or concentrations of CECs) more frequent monitoring shall be required to further evaluate the effectiveness of the treatment process. Additional actions may also be warranted, which may include, but not be limited to, resampling to confirm a result; additional monitoring; implementation of a source identification program; toxicological studies; engineering removal studies; and/or modification of facility operation. If additional monitoring is required, the Regional Water Board shall consult with CDPH and revise the Monitoring and Reporting Program as appropriate. Evaluation of monitoring results are presented in Section 4.

Following the baseline operation monitoring phase, monitoring requirements shall be reevaluated and subsequent requirements for the standard operation of a project shall be determined on a project-specific basis.

Recycled Water Use	Constituent	Frequency	Monitoring Point
	Health-Based CECs	Quarterly	- Following tertiary treatment
	and Performance		prior to application to
	Indicator CECs: All listed in Table 1		surface spreading area.
	All listed in Table 1		At monitoring well locations
			- At monitoring well locations designated in consultation
			with CDPH. ¹
		1 st 3 months:	- Following tertiary treatment
		To be determined	prior to application to the
		on a project-	surface spreading area.
		specific basis. ²	
		1	- At monitoring well
			locations designated in
			consultation with CDPH. ¹
		3-12 months:	- Following tertiary treatment
		To be determined	prior to application to the
		on a project-	surface spreading area.
		specific basis. ²	
			- At monitoring well locations
			designated in consultation with CDPH. ¹
	Health-Based CECs:	Quarterly	Following treatment by
	All listed in Table 1		RO/AOPs prior to release to
	Performance Indicator	Quarterly	aquifer. - Prior to RO treatment.
	CECs:	Quarterry	- Fhor to ite atment.
	All listed in Table 1		- Following RO/AOPs prior
			to release to aquifer.
	Surrogates:	To be determined	- Prior to RO treatment.
	To be selected on a	on a project-	
	project-specific basis.	specific basis.	- Following RO/AOPs prior
			to release to aquifer.
Landscape Irrigation	Health-Based CECs		
	and Performance		
	Indicator CECs:	Not applicable	Natappliaabla
	Not applicable	Not applicable	Not applicable
	Surrogates: To be selected on a	To be determined	Following tertiary treatment
	project-specific basis.	on a project-	prior to distribution.
	project-specific basis.	specific basis.	

Table 3: Initial Assessment Phase Monitoring Requirements

1 - Groundwater within a 30-day travel time distance through the aquifer downgradient of the surface application area.

2 – The monitoring frequency shall be determined by the Regional Water Boards in consultation with CDPH. The intent is to have increased monitoring frequency during the first three months and then decrease the frequency after three months.

Recycled Water Use	Constituent	Frequency	Monitoring Point
	Health-Based CECs: All listed in Table 1. Performance Indicator CECs: Selected based on the findings of the initial assessment phase.	Semi-Annually	 Following tertiary treatment prior to application to the surface spreading area; and At monitoring well locations designated in consultation with CDPH.¹
	Surrogates: Selected based on the findings of the initial assessment phase.	Based on findings of the initial assessment phase.	 Following tertiary treatment prior to application to the surface spreading area; and At monitoring well locations designated in consultation with CDPH.¹
Groundwater Recharge Reuse – Subsurface	Health-Based CECs: All listed in Table 1.	Semi-Annually	Following treatment by RO/AOPs prior to release to the aquifer.
Application	Performance Indicator <u>CECs:</u> Selected based on the findings of the initial assessment phase.	Semi-Annually	 Prior to RO treatment. Following treatment by RO/AOPs prior to release to the aquifer.
	Surrogates: Selected based on the findings of the initial assessment phase.	Based on findings of the initial assessment phase.	 Prior to RO treatment. Following treatment by RO/AOPs prior to release to the aquifer.
Landscape Irrigation	Health-Based CECs and Performance Indicator CECs: Not applicable	Not applicable	Not applicable
	Surrogates: To be selected on a project-specific basis.	To be determined on a project- specific basis.	Following tertiary treatment prior to distribution.

Table 4: Baseline Phase Monitoring Requirements

 |
 |
 specific basis.
 |

 1 - Groundwater within a 30-day travel time distance through the aquifer downgradient of the surface application area.

3.3. Standard Operation Monitoring

Based on the findings of the baseline monitoring phase, monitoring requirements for health-based CECs, performance indicator CECs and surrogates may be refined to establish project-specific requirements for monitoring the standard operating conditions of a groundwater recharge reuse project. Monitoring requirements for the standard operation phase are summarized in Table 5. The list of health-based CECs required for monitoring may be revised if monitoring results meet the conditions of the minimum threshold level presented in Table 7. Performance indicator CECs and surrogates detected during the baseline phase and that exhibited reduction by a unit process and/or provided an indication of operational performance shall be selected for monitoring of standard operations.

Monitoring locations for the standard operation phase shall be the same as the locations used for the baseline monitoring phase.

Monitoring for health-based CECs and performance indicator CECs shall be conducted on a semi-annual basis, unless the project demonstrates consistency in treatment efficacy in removal of CECs, treatment operational performance, and appropriate recycled water quality. These projects may be monitored for CECs on an annual basis. Monitoring frequencies for CECs and surrogates for standard operation monitoring are presented in Table 5.

Monitoring results shall be evaluated following each sampling event to allow timely implementation of any response actions. Evaluation of monitoring results and determination of appropriate response actions based on monitoring results are presented in Section 4.

Recycled Water Use	Constituent	Frequency	Monitoring Point
Groundwater Recharge Reuse -Surface Application	Health-Based CECs and Performance Indicator CECs: Selected based on the findings of the baseline phase.	Semi-Annually or Annually	 Following tertiary treatment prior to application to the surface spreading area; and At monitoring well locations designated in consultation with CDPH.
	Surrogates: Selected based on the findings of the baseline phase.	Based on findings of the baseline assessment phase.	- Following tertiary treatment prior to application to the surface spreading area; and - At monitoring well locations designated in consultation with CDPH. ¹
Groundwater Recharge Reuse -Subsurface Application	Health-Based CECs: Selected based on the findings of the baseline phase	Semi-Annually or Annually	-Following RO/AOPs treatment prior to release to the aquifer.
	Performance Indicator <u>CECs:</u> Selected based on the findings of the baseline phase.	Semi-Annually or Annually	 Prior to RO treatment. Following RO/AOPs prior to release to the aquifer.
	Surrogates: To be selected on a project–specific basis.	Based on findings of the baseline assessment phase.	 Prior to RO treatment. Following RO/AOPs prior to release to the aquifer.
Landscape Irrigation	Health-Based CECs and Performance Indicator CECs: Not applicable	Not applicable	Not applicable
	Surrogates: To be selected on a project–specific basis.	Based on findings of the baseline assessment phase.	Following tertiary treatment prior to distribution.

Table 5: Standard Operation Monitoring Requirements

1 - Groundwater within a 30-day travel time distance through the aquifer downgradient of the surface application area.

4. EVALUATION OF CEC AND SURROGATE MONITORING RESULTS

This section presents the approaches for evaluating treatment process performance and health-based CEC monitoring results. Monitoring results for performance indicator CECs and surrogates shall be used to evaluate the operational performance of a treatment process and the effectiveness of a treatment process in removing CECs. For evaluation of health-based CEC monitoring results, a multi-tiered approach of thresholds and corresponding response actions is presented in Section 4.2. The evaluation of monitoring results shall be included in monitoring reports submitted to the Regional Water Board and CDPH.

4.1 Evaluation of Performance Indicator CEC and Surrogate Results

The effectiveness of a treatment process to remove CECs shall be evaluated by determining the removal percentages for performance indicator CECs and surrogates. The removal percentage is the difference in the concentration of a compound in recycled water prior to and after a treatment process (e.g., soil aquifer treatment or RO/AOPS), divided by the concentration prior to the treatment process and multiplied by 100.

Removal Percentage = $([X_{in} - X_{out}]/X_{in})$ (100)

 X_{in} - Concentration in recycled water prior to a treatment process X_{out} - Concentration in recycled water after a treatment process

During the initial assessment, the recycled water project proponent shall monitor performance to determine removal percentages for performance indicator CECs and surrogates. The removal percentages shall be confirmed during the baseline monitoring phase. One example of removal percentages from Drews et. al. (2008) for each application scenario and their associated processes (i.e. soil aquifer treatment or RO/AOPs) is presented in Table 6. The established removal percentages for each project shall be used to evaluate treatment efficacy and operational performance.

4.1.1. Groundwater Recharge Reuse – Surface Application

For groundwater recharge reuse by surface application, the removal percentage shall be determined by comparing the quality of the recycled water applied to a surface spreading area to the quality of groundwater at monitoring wells. The distance between the application site and the monitoring wells shall be no more than the distance the groundwater travels in thirty days from the application site. The location of the monitoring wells shall be designated in consultation with CDPH. The removal percentage shall account for any effects from the presence of dilution water, such as potable water applied to the application site, storm water applied to the application site, or native groundwater.

4.1.2. Groundwater Recharge Reuse – Subsurface Application

For groundwater recharge reuse using subsurface application, the removal percentage shall be determined by comparing recycled water quality before treatment by RO/AOPs and after treatment prior to application to the aquifer.

4.1.3. Landscape Irrigation

For landscape irrigation projects, determination of removal percentages is not required for surrogates.

Constituent/	Relevance/Indicator	Monitoring	Removal
Parameter	Type/Surrogate	Trigger Level	Percentages (%) ²
<u>r arameter</u>	<u>- yporodinogato</u>	(micrograms/liter) ¹	<u>r ereentagee (707</u>
GROUNDWATER R	ECHARGE REUSE - SI)N ³
17β-estradiol	Health	0.0009	4
Caffeine	Health &	0.35	>90
Callonio	Performance	0.00	
NDMA	Health	0.01	
Triclosan	Health	0.35	
Gemfibrozil	Performance		>90
lopromide	Performance		>90
DEET	Performance		>90
Sucralose	Performance		<25 ⁵
Ammonia	Surrogate		>90
TOC	Surrogate		>30
Nitrate	Surrogate		>30
UV Absorption	Surrogate		>30
GROUNDWATER RI	ECHARGE REUSE - SU	JBSURFACE APPLIC	ATION ⁶
17β-estradiol	Health	0.0009	
Caffeine	Health &	0.35	>90
	Performance		
NDMA	Health &	0.01	25-50, >80 ⁷
	Performance		
Triclosan	Health	0.35	
DEET	Performance		>90
Sucralose	Performance		>90
Electrical	Surrogate		>90
Conductivity			
ТОС	Surrogate		>90
LANDSCAPE IRRIG			
Chlorine Residual	Surrogate		
Total Coliform	Surrogate		
Turbidity	Surrogate		

Table 6: Monitoring Trigger Levels and Removal Percentages

1 - Monitoring trigger levels for groundwater recharge reuse and landscape irrigation applications were established in <u>Monitoring Strategies for Chemicals of Emerging Concern (CECs) in Recycled Water –</u> <u>Recommendations of a Science Advisory Panel</u>, dated June 25, 2010.

2 –The removal percentages presented in this table are from work by Drewes et.al. (2008) and provide an example of performance for that specific research. Project specific removal percentages will be

developed for each groundwater recharge reuse project during the initial and baseline monitoring phases. 3 - Treatment process: Soil aquifer treatment. The stated removal percentages are examples and need to be finalized during the initial and baseline monitoring phases for a given site.

4 – Not applicable

5 - Sucralose degrades poorly during soil aquifer treatment. It is included here mainly as a tracer.

6 - Treatment process: Reverse osmosis and advanced oxidation process.

7- For treatment using reverse osmosis, removal percentage is between 25 and 50 percent. For treatment using reverse osmosis and advanced oxidation processes, removal percentage is greater than 80 percent.

`4.2. Evaluation of Health-Based CEC Results

The project proponent shall evaluate health-relevant CEC monitoring results. To determine the appropriate response actions, the project proponent shall compare measured environmental concentrations (MECs) to their respective monitoring trigger levels¹² (MTLs) listed in Table 6 to determine MEC/MTL ratios. The project proponent shall compare the calculated MEC/MTL ratios to the thresholds presented in Table 7 and shall implement the response actions corresponding to the threshold.

For surface application, the results shall be evaluated for groundwater collected from the monitoring wells. For subsurface application projects, results shall be evaluated for the recycled water released to the aquifer.

MC/MTL Threshold	Response Action
If greater than 75 percent of the MEC/MTL ratio	A) Consider requesting removal of the CEC from
results for a CEC are less than or equal to 0.1	the monitoring program.
during the baseline monitoring phase and/or	
subsequent monitoring -	
If MEC/MTL ratio is greater than 0.1 and less	B) Continue to monitor.
than or equal to 1 -	
If MEC/MTL ratio is greater than 1 and less than or equal to 10 -	C) Check the data.
	Continue to monitor.
If MEC/MLT ratio is greater than 10 and less	D) Resample immediately and analyze to
than or equal to 100 -	confirm CEC result.
	Continue to monitor.
If MEC/MLT ratio is greater than 100 -	E) Resample immediately and analyze to confirm
	result.
	Continue to monitor.
	Contact the Regional Water Board and CDPH to
	discuss additional actions.
	(Additional actions may include, but are not
	limited to, additional monitoring, toxicological
	studies, engineering removal studies, modification of facility operation, implementation
	of a source identification program, and
	monitoring at additional locations.)
	monitoring at auditional locations.

Table 7: MEC/MTL Thresholds and Response Actions

¹² Monitoring Trigger Level (MTL): Health-based screening level value for a CEC for a particular water reuse scenario. MTLs were established in, <u>Monitoring Strategies for Chemicals of Emerging Concern</u> (CECs) in Recycled Water – Recommendations of a Science Advisory Panel, dated June 25, 2010.

APPENDIX B

REGIONAL BOARD ASSISTANCE IN GUIDING SALT AND NUTRIENT MANAGEMENT PLAN DEVELOPMENT IN THE LOS ANGELES REGION

Regional Water Board Assistance in Guiding Salt and Nutrient Management Plan Development in the Los Angeles Region

Further clarification and information to assist development of Salt and Nutrient Management Plans set forth in the State Water Board's Recycled Water Policy

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD, LOS ANGELES REGION

JUNE 28, 2012

TABLE OF CONTENTS

1. INTRODUCTION	1
2. GROUNDWATER BASINS IN THE LOS ANGELES REGION	3
3. REGIONAL GROUNDWATER QUALITY OBJECTIVES	9
GROUND WATER QUALITY OBJECTIVES	9
GROUNDWATER BASIN WATER QUALITY	15
4. CLARIFICATION OF SNMP REQUIREMENTS	20
STAKEHOLDER COLLABORATION	20
SPECIFIC SNMP REQUIREMENTS	23
A. Basin/sub-basin wide monitoring plan	27
B. Monitoring of Constituents of Emerging Concern	30
C. Salt and Nutrient Analysis	33
D. Water recycling and stormwater recharge/use goals and objectives	33
D. Implementation Measures	35
E. Anti-degradation Requirements	36
E. Discharges covered by the Recycled Water Policy	40
5. CEQA REQUIREMENTS	41
RESPONSIBLE AGENCIES	41
REQUIRED ENVIRONMENTAL ANALYSIS	41
ROLES OF STAKEHOLDER GROUPS AND REGIONAL WATER BOARD STAFF IN TH	
TIMELINE FOR THE CEQA PROCESS IN RELATION TO SNMP DEVELOPMENT	45
6. BOARD ADOPTION OF SNMPS	46
7. REFERENCES	48

1. INTRODUCTION

The State Water Resources Control Board (State Water Board) adopted the Recycled Water Policy (State Water Board Resolution No. 2009-0011) on February 3, 2009. The purpose of the Recycled Water Policy (hereinafter, Policy) is to protect groundwater resources and increase the beneficial use of recycled water from municipal wastewater sources in a manner consistent with state and federal water quality laws and regulations. The Policy provides direction to the Regional Water Quality Control Boards (Regional Water Boards), proponents of recycled water projects, and the public regarding the appropriate criteria to be used by the State Water Board and the Regional Water Boards in issuing permits for recycled water projects.

The Policy recognizes the potential for increased salt and nutrient loading to groundwater basins as a result of increased recycled water use, and therefore, requires the development of regional or sub-regional salt and nutrient management plans. In requiring such plans, the Policy acknowledges that recycled water may not be the sole cause of high concentrations of salts and nutrients in groundwater basins, and therefore regulation of recycled water alone will not address such conditions. The intent of this requirement is for salts and nutrients from all sources to be managed on a basin-wide or watershed-wide basis in a manner that ensures the attainment of water quality objectives and protection of beneficial use.

The Recycled Water Policy states:

- a) Every basin/sub-basin shall have a consistent salt and nutrient management plan (hereinafter, SNMP);
- b) SNMPs shall be tailored to address the water quality concerns in each basin;
- c) Shall be developed or funded pursuant to the provisions of Water Code sections 10750 *et seq.* or other appropriate authority;
- d) SNMPs shall be completed and proposed to the Regional Water Board within five years from the adoption date of the Policy;
- e) SNMPs are not required in areas where a Regional Water Board has approved a functionally equivalent salt and nutrient plan; and
- f) SNMPs may address constituents other than salt and nutrients that adversely affect groundwater quality.

Within one year of the receipt of a proposed SNMP, the Regional Water Board is expected to consider for adoption revised implementation plans, consistent with Water Code section 13242, for those groundwater basins within their regions where water quality objectives for salts or nutrients are being, or are threatening to be, exceeded. The implementation plans are to be based on the salt and nutrient plans required by the Policy.

The Policy spells out the required elements of an SNMP. In addition, State Water Board staff provided additional detail on the contents of a SNMP by developing "Suggested Elements" as a means of indicating the nature and extent of information to be provided in the plans. State Water Board staff also provided templates for Regional Water Board adoption of the implementation aspects of the SNMPs into each region's Water Quality Control Plan (hereinafter, Basin Plan).

The Policy is clear that the SNMP process should be stakeholder-led and conducted in a collaborative manner among interested parties. The Regional Water Board's role is that

of an overseer and facilitator of the SNMP development process – providing regulatory guidance as necessary and technical and regulatory oversight of the process to ensure that the final product is compliant with the specific requirements of the Policy and state and federal water quality laws. Board staff has been attending stakeholder meetings for various groundwater basin/sub-basin groups to provide support and information as necessary.

The purpose of this document is to provide information and guidance to assist on certain aspects of the SNMP development identified by stakeholder groups. Recognizing that each basin has its own unique set of conditions and constraints, this document does not seek to dictate the methods by which stakeholders should manage salt and nutrient loads to their basins. It does, however, provide clarification of the regulatory requirements of SNMPs along with other considerations. By providing such information, the Regional Water Board will promote adherence with SNMP requirements for groundwater basins in the Los Angeles Region. This document is not a policy or regulation of the Regional Water Board and has no regulatory affect; it is intended to assist in the development of SNMPs.

2. GROUNDWATER BASINS IN THE LOS ANGELES REGION

The Los Angeles subregion overlies 24 groundwater basins and encompasses most of Ventura and Los Angeles counties (Figure 2-1). Within this subregion, the Ventura River Valley, Santa Clara River Valley, and Coastal Plain of Los Angeles basins are divided into sub-basins. The basins in the Los Angeles subregion underlie 1.01 million acres (1,580 square miles) or about 40 percent of the total surface area of the subregion (DWR, 2003). Groundwater is found in unconfined alluvial aquifers in most of the inland basins of the Los Angeles subregions. In some larger basins, such as those underlying the coastal plain, groundwater occurs in multiple aquifers separated by aquitards that create confined groundwater conditions (DWR, 2003). Coastal basins in this hydrologic region are prone to intrusion of seawater. Seawater intrusion barriers are maintained along the coastal plain. In Los Angeles County, imported and recycled water is injected to maintain a seawater intrusion barrier (DWR, 2003).

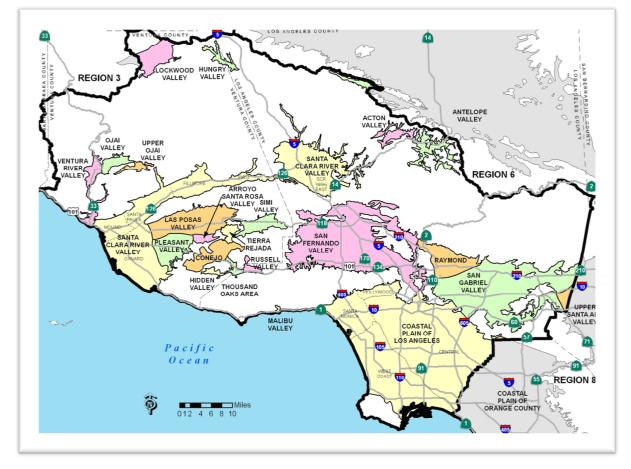


FIGURE 2-1: GROUNDWATER BASINS IN THE LOS ANGELES REGION

For purposes of regulation by the Regional Water Board pursuant to its authority under the California Water Code, the groundwater basins in the Los Angeles Region are identified in the Basin Plan. Basin descriptions in the Basin Plan were updated in 2011 based on the Department of Water Resources (DWR) 2003 revision of Bulletin 118 (Figure 2-1). The basins include the Central and West Coast Basins, which underlie the Los Angeles Coastal Plain; the San Fernando and San Gabriel Basins, which lie between the Santa Monica Mountains and the San Gabriel and Santa Susanna Range; and the Santa Clara and Ventura Basins, which lie between Oak Ridge and the Transverse Ranges.

General characteristics of the major basins/sub-basins are summarized in Table 2-1.

MAJOR GROUNDWATER	STORAGE	BASIN RECHARGE ¹
BASIN(S) AND SUB-BASINS	CAPACITY (AC-FT)	
COASTAL PLAINS OF LOS		
ANGELES		
Santa Monica	~1,100,000	Natural/Recycled
Hollywood	200,000	Natural
West Coast Basin	~6,500,000	Natural/Recycled/Imported
Central	13,800,000	Natural/Recycled/Imported
SAN GABRIEL	10,740,000	Natural
RAYMOND	450,000	Natural
SAN FERNANDO	3,670,000	Natural/ Recycled
SANTA CLARA RIVER VALLEY		
Oxnard	7,140,000	Natural/ Recycled/ Septics
Mound	n.a	
Santa Paula	800,000	Recycled/Septics
Fillmore	1,100,000	Recycled/Septics
Piru	1,979,000	Recycled/Septics
Santa Clara River Valley East	n.a.	Natural/Recycled/Septics
PLEASANT VALLEY	1,886,000	Natural/Recycled/Septics
LAS POSAS VALLEY	345,000	Natural/Irrigation
ARROYO SANTA ROSA	103,600	Natural/Irrigation/Septics
UPPER/LOWER OJAI	~84,000	Natural/Septics
VENTURA RIVER VALLEY	10,000	
SIMI VALLEY	180,000	Natural/IRecycled/Septics
TIERRA REJADA	80,000	
THOUSAND OAKS	130,000	
CONEJO VALLEY	7,106	
RUSSELL VALLEY	10,570	
HIDDEN VALLEY	n.a.	
MALIBU VALLEY	n.a.	Natural/Irrigation/Septics

TABLE 2-1: GENERAL CHARACTERISTICS OF THE LOS ANGELES REGION GROUNDWATER BASINS

n.a: not available

The Central and West Coast Basins, San Gabriel and Raymond Basins, and the Piru, Fillmore, Mound and Oxnard Forebay sub-basins beneath the Santa Clara River Valley have large storage capacities with significant existing or proposed municipal groundwater use in both urbanized and agricultural areas. The water levels are stable or declining and imported and/or recycled water is used to replenish and help manage

¹ Managed and natural stormwater recharge takes place in most of these basins.

groundwater supplies. The hydrogeology and groundwater of the basins have been extensively studied and documented, and groundwater quality and transport have been studied using computer models. Potential groundwater management alternatives for these basins have also been extensively studied. The San Gabriel Basin has no confining layers, but the Regional Water Board and USEPA's management of twelve plumes of Volatile Organic Compounds (VOCs) and five plumes of nitrates, where groundwater exceeds the Maximum Contaminant Level (MCL), has limited the impact to adjudicated drinking water resources. Basin water quality has also benefited from management practices and implementation of groundwater remediation conducted by the Watermaster in conjunction with local water purveyors.

The San Fernando Basin and Santa Clara River also have large storage capacities, but have declining water levels, significantly less municipal groundwater use, and no existing conjunctive use. The groundwater quality is variable, but remains locally usable as a source of irrigation or municipal supply. Wastewater and recycling agencies within these basins experience periodic noncompliance with groundwater quality objectives. In general, the basins have been studied less extensively than the Central and West Coast, San Gabriel and Raymond and Lower Santa Clara River Valley basins, although the potential yields from these basins are equally large. In the San Fernando Basin, impacts from a VOC plume and four nitrate plumes along with the irregular presence of confining layers have impacted the use of the basin for drinking water uses. In the upgradient portion of Santa Clara River Valley, contamination of the groundwater and its exfiltrates by salts, nutrients and bacteria as a result of increasing urbanization has impacted the use of groundwater as a source of domestic supply.

Nine groundwater basins in rural areas² are the sole source of local drinking water supply. They have smaller storage capacities (less than 10,000 acre-feet) in unconsolidated sediment. Wastewater, recycling agencies and facilities with onsite wastewater treatment systems (hereinafter, OWTS) may experience periodic noncompliance with Basin Plan groundwater quality objectives in these basins. Fewer studies and resources exist to characterize basin hydrogeology, groundwater quality, and groundwater transport. The California Department of Public Health, the State Water Board's Division of Water Rights, and USEPA's drinking water protection programs identify problems with water quality upon delivery, and efforts to isolate pollutants from the underlying potable supply are implemented through waste discharge requirements from the Regional Water Board.

The Oxnard Plain, Ventura River, Sylmar, Pomona, and Thousand Oaks/Pleasant Valley/Fox Canyon basins are moderately sized agricultural and urbanized groundwater basins with higher salinity levels. Wastewater and recycled water can usually comply with Basin Plan groundwater quality objectives, but the quality is improved by potable water conjunctive use. The coastal areas of the Region are underlain by porous sediments or fractured bedrock, both of which may have been intruded by saltwater during historic municipal, agricultural and industrial use of the aquifers. Fresh or recycled water injection is used to limit seawater intrusion in the Central, West Coast and Oxnard Plain basins. The tidally influenced and impacted areas may be heavily studied or unevaluated, but wastewater and recycled water permits generally require compliance with Basin Plan objectives for salt. Public water supplies are not currently developed within these areas.

² Ojai Valley, Acton, Sierra Pelona Valley, Lake Elizabeth, Santa Rosa Valley, Hidden Valley, Santa Susana Knolls, Lockwood Valley, and Hungry Valley.

Beneficial uses of the groundwater basins in the region include Municipal and Domestic Supply (MUN), Agricultural Supply (AGR), Industrial Services Supply (IND), Industrial Process Supply (PROC), and Aquaculture (AQUA). The designated beneficial uses for these basins are shown in Table 2-2.

DWR ²	-2. DENEFICIAL USES OF GROUND WATERS IN TI					
Basin	BASIN	MUN	IND	PROC	AGR	AQUA
No.						
	PITAS POINT AREA ³	Е	Е	Р	Е	
4-1	UPPER OJAI VALLEY	E	E	E	Ē	
4-2	OJAI VALLEY	Е	Е	Е	Е	
4-3	VENTURA RIVER VALLEY					
4-3.01	Upper Ventura	Е	Е	Е	Е	
4-3.02	Lower Ventura	Р	Е	Р	Е	
4-4	SANTA CLARA RIVER VALLEY ⁴					
4-4.02	Oxnard					
4-4.02	Oxnard Forebay	Е	Е	Е	Е	
4-4.02	Confined aquifers	Е	Е	Е	Е	
4-4.02	Unconfined and perched aquifers	Е	Р		Е	
4-4.03	Mound					
4-4.03	Confined aquifers	Е	Е	Е	Е	
4-4.03	Unconfined and perched aquifers	Е	Р		Е	
4-4.04	Santa Paula					
4-4.04	East of Peck Road	Е	Е	Е	Е	
4-4.04	West of Peck Road	Е	Е	Е	Е	
4-4.05	Fillmore					
4-4.05	Pole Creek Fan area	Е	Е	Е	Е	
4-4.05	South side of Santa Clara River	Е	Е	Е	Е	
4-4.05	Remaining Fillmore area	Е	Е	Е	Е	Е
4-4.05	Topa Tapa (upper Sespe) area	Р	Е	Р	Е	
4-4.06	Piru					
4-4.06	Upper area (upper Lake Piru)	Р	Е	Е	Е	
4-4.06	Lower area east of Piru Creek	E	Е	Е	Е	
4-4.06	Lower area west of Piru Creek	E	Е	Е	Е	
4-4.07	Santa Clara River Valley East					
4-4.07	Mint Canyon	Е	Е	Е	Е	
4-4.07	South Fork	E	Е	Е	Е	
4-4.07	Placerita Canyon	E	Е	Е	Е	
4-4.07	Bouquet and San Francisquito	E	E	Е	Е	
	Canyons					
4-4.07	Castaic Valley	E	Е	Е	Е	
4-4.07	Saugus Aquifer	E				
4-5	ACTON VALLEY ⁴					
4-5	Acton Valley	E	E	Е	E	
4-5	Sierra Pelona Valley (Agua Dulce)	E	E		E	
4-5	Upper Mint Canyon	E	E	Е	E	
4-5	Upper Bouquet Canyon	E	Р	Р	E	

TABLE 2-2: BENEFICIAL USES OF GROUND WATERS IN THE LOS ANGELES REGION.¹

DWR ² Basin No.	BASIN	MUN	IND	PROC	AGR	AQUA
<u>4-5</u>	Green Valley	E	Р	Р	Е	
4-5	Lake Elizabeth- Lake Hughes area	E	P	P	E	
4-6	PLEASANT VALLEY ⁵		1	1	Ы	
4-6	Confined Aquifers	E	Е	Е	Е	
4-6	Unconfined and perched aquifers	P	E	E	E	
4-7	ARROYO SANTA ROSA VALLEY ⁵	E	E	E	E	
4-8	LAS POSAS VALLEY ⁵	E	E	E	E	
4-9	SIMI VALLEY					
12	Simi Valley Basin					
	Confined aquifers	E	Е	E	Е	
	Unconfined aquifers	E	E	E	E	
	Gillibrand Basin	E	E	P	E	
4-10	CONEJO	E	E	E	E	
4-10	COASTAL PLAIN OF LOS ANGELES		L		L	
4-11.01	Santa Monica	Е	E	E	Е	
4-11.02	Hollywood	Е	E	E	Е	
4-11.03	West Coast					
	Underlying Ports of Los Angeles & Long Beach		E	E	E	
4-11.03	Underlying El Segundo, Seaward of Barrier		Е	E	E	
4-11.03	Remainder of Basin	E	E	E	Е	
4-11.04	Central	Е	Е	E	Е	
4-12	SAN FERNANDO VALLEY	E ⁶	Е	E	Е	
4-13	SAN GABRIEL VALLEY ⁷	Е	Е	E	Е	
4-15	TIERRA REJADA	Е	Р	Р	Е	
4-16	HIDDEN VALLEY	Е	Р		Е	
4-17	LOCKWOOD VALLEY	E	E		Е	
4-18	HUNGRY VALLEY	E	Р	E	Е	
4-19	THOUSAND OAKS AREA ⁸	E	E	E	Е	
4-19	Triunfo Canyon area	Р	Р		Е	
4-19	Lindero Canyon area	Р	Р		Е	
4-19	Las Virgenes Canyon area	Р	Р	1	Е	
4-20	RUSSELL VALLEY	Е	Р	1	Е	
4-21	CONEJO-TIERRA REJADA VOLCANIC ⁹	E			E	
4-22	MALIBU VALLEY ¹⁰	1	1			
4-22	Camarillo area	Е	Р		Е	
4-22	Point Dume area	E	P		E	
4-22	Malibu Valley	P	P		E	
4-22	Topanga Canyon area	P	P	1	E	
4-23	RAYMOND	E	E	E	E	
. 20	SAN PEDRO CHANNEL ISLANDS ¹¹					
	Anacapa Island	Р	Р			
	San Nicolas Island	E	P			

DWR ² Basin No.	BASIN	MUN	IND	PROC	AGR	AQUA
	Santa Catalina Island	Е	Р		Е	
	San Clemente Island	Р	Р			
	Santa Barbara Island	Р	Р			

E: Existing beneficial use

P: Potential beneficial use

1: Beneficial uses for ground waters outside of the major basins listed on this table have not been specifically listed. However, ground waters outside of the major basins are, in many cases, significant sources of water. Furthermore, ground waters outside of the major basins are either potential or existing source of water for downgradient basins, and as such, beneficial uses in the downgradient basins shall apply to these areas.

2: Basins are numbered according to DWR Bulletin No. 118-Update 2003 (DWR, 2003).

3: Ground waters in the Pitas Point area (between the lower Ventura River and Rincon Point) are not considered to comprise a major basin and, accordingly, have not been designated a basin number by the DWR or outlined on Fig. 2-1.
4: Santa Clara River Valley Basin was formerly Ventura Central Basin and Acton Valley Basin was formerly Upper Santa Clara Basin (DWR, 1980).

5: Pleasant Valley, Arroyo Santa Rosa Valley, and Las Posas Valley Basins were formerly sub-basins of Ventura Central (DWR, 1980).

6: Nitrite pollution in the groundwater of the Sunland-Tujunga area currently precludes direct MUN use. Since the groundwater in this area can be treated or blended (or both), it retains the MUN designation.

7: Raymond Basin was formerly a sub-basin of San Gabriel Valley and Monk Hill sub-basin is now part of San Fernando Valley Basin (DWR, 2003). The Main San Gabriel Basin was formerly separated into Eastern and Western areas. Since these areas had the same beneficial uses as Puente Basin all three areas have been combined into San Gabriel Valley. Any groundwater upgradient of these areas is subject to downgradient beneficial uses and objectives, as explained in Footnote 1.

8: These areas were formerly part of the Russell Valley Basin (DWR, 1980).

9: Groundwater in the Conejo-Tierra Rejada Volcanic Área occurs primarilý in fractured volcanic rocks in the western Santa Monica Mountains and Conejo Mountain areas. These areas have not been delineated on Fig. 2-1.

10: With the exception of groundwater in Malibu Valley (DWR Basin No. 4-22) ground waters along the southern slopes of the Santa Monica Mountains are not considered to comprise a major basin and accordingly have not been designated a basin number by DWR.

11: DWR has not designated basins for ground waters on the San Pedro Channel Islands.

3. REGIONAL GROUNDWATER QUALITY OBJECTIVES

As set forth in the Policy, *SNMPs shall be tailored to address water quality concerns in each basin and may include constituents other than salt and nutrients that adversely impact basin/sub-basin water quality.*

GROUND WATER QUALITY OBJECTIVES

Water quality objectives for ground waters in the Los Angeles Region are contained in the Basin Plan for the Coastal Watersheds of Los Angeles and Ventura Counties (Basin Plan). The same water quality objectives for Nitrogen, Chemical Constituents and Radioactivity, Bacteria, and Taste and Odor, apply to all ground waters in the region (Table 3-1).

PARAMETER	WATER QUALITY OBJECTIVE
Nitrogen	
NO3-N + NO2-N	10 mg/L
NO3	45 mg/L
NO3-N	10 mg/L
NO2-N	1 mg/L
Chemical Constituents and Radioactivity	For ground waters designated for use as domestic or municipal supply, Maximum Contaminant Levels (MCLs) contained in Title 22 of the California Code of Regulations apply.
	In addition, ground waters shall not contain concentrations of chemical constituents in amounts that adversely affect any designated beneficial use.
Bacteria	In ground waters used for domestic or municipal supply (MUN), the concentration of coliform organisms over any seven day period shall be less than 1.1/100 mL.
Taste and Odor	Ground waters shall not contain taste or odor-producing substances in concentrations that cause nuisance or adversely affect beneficial uses.

The Basin Plan also contains site-specific objectives for mineral water quality for individual basins/sub-basins (Table 3-2).

2011 Basin Plan Name	Bulletin 118-03 update number	1994 Basin Plan Name	Bulletin 118- 80 number	TDS	Sulfate	Chloride	Boron
Upper Ojai Valley	4-1	Ojai Valley	4-1				
Upper Ojai Valley	4-1	Upper Ojai Valley	4-1				
Upper Ojai Valley	4-1	West of Sulfur Mountain Road	4-1	1000	300	200	1.0
Upper Ojai Valley	4-1	Central Area	4-1	700	50	100	1.0
Upper Ojai Valley	4-1	Sisar Area	4-1	700	250	100	0.5
Ojai Valley	4-2	Lower Ojai Valley	4-2				0.5
Ojai Valley	4-2	West of San Antonio-Senior Canyon	4-2	1000	300	200	0.5
Ojai Valley	4-2	East of San Antonio-Senior Canyon	4-2	700	200	50	
Ventura River Valley	4-3	Ventura River Valley	4-3				
Upper Ventura River	4-3.01	Upper Ventura	4-3	800	300	100	0.5
Upper Ventura River	4-3.01	San Antonio Creek Area	4-3	1000	300	100	1.0
Lower Ventura River	4-3.02	Lower Ventura	4-3	1500	500	30	1.5
Santa Clara River Valley	4-4	Ventura Central	4-4				
Piru	4-4.06	Santa Clara-Piru Creek Area	4-4				
Piru	4-4.06	Upper Area (above Lake Piru)	4-4	1100	400	200	2.0
Piru	4-4.06	Lower Area East of Piru Creek	4-4	2500	1200	200	1.5
Piru	4-4.06	Lower Area West of Piru Creek	4-4	1200	600	100	1.5
Fillmore	4-4.05	Santa Clara-Sespe Creek Area	4-4				
Fillmore	4-4.05	Topa Topa (upper Sespe) Area	4-4	900	350	30	2.0
Fillmore	4-4.05	Fillmore Area	4-4				
Fillmore	4-4.05	Pole Creek Fan Area	4-4	2000	800	100	1.0
Fillmore	4-4.05	South Side of Santa Clara River	4-4	1500	800	100	1.1
Fillmore	4-4.05	Remaining Fillmore Area	4-4	1000	400	50	0.7
Santa Paula	4-4.04	Santa Clara-Santa Paula Area	4-4				
Santa Paula	4-4.04	East of Peck Road	4-4	1200	600	100	1.0
Santa Paula	4-4.04	West of Peck Road	4-4	2000	800	110	1.0

TABLE 3-2: WATER QUALITY OBJECTIVES FOR SELECTED CONSTITUENTS IN REGIONAL GROUND WATERS

2011 Basin Plan Name	Bulletin 118-03 update number	1994 Basin Plan Name	Bulletin 118- 80 number	TDS	Sulfate	Chloride	Boron
Oxnard	4-4.02	Oxnard Plain	4-4				
Mound	4-4.03	Oxnard Plain	4-4				
Oxnard	4-4.02	Oxnard Forebay	4-4	1200	600	150	1.0
Oxnard	4-4.02	Confined Aquifers	4-4	1200	600	150	1.0
Oxnard	4-4.02	Unconfined & Perched Aquifers	4-4	3000	1000	500	
Pleasant Valley	4-6	Pleasant Valley	4-6				
Pleasant Valley	4-6	Confined Aquifers	4-6	700	300	150	1.0
Pleasant Valley	4-6	Unconfined & Perched Aquifers	4-6				
Arroyo Santa Rosa Valley	4-7	Arroyo Santa Rosa	4-7	900	300	150	1.0
Las Posas Valley	4-8	Las Posas Valley	4-8				
Las Posas Valley	4-8	South Las Posas Area	4-8				
Las Posas Valley	4-8	NW of Grimes Cyn Rd. & LA Ave. & Somis Rd.	4-8	700	300	100	0.5
Las Posas Valley	4-8	E of Grimes Cyn Rd & Hitch Blvd.	4-8	2500	1200	400	3.0
Las Posas Valley	4-8	S of LA Ave Between Somis Rd & Hitch Blvd.	4-8	1500	700	250	1.0
Las Posas Valley	4-8	Grimes Canyon Rd. & Broadway Area	4-8	250	30	30	0.2
Las Posas Valley	4-8	North Las Posas Area	4-8	500	250	150	1.0
Acton Valley	4-5	Upper Santa Clara	4-5				
Acton Valley	4-5	Acton Valley	4-5	550	150	100	1.0
Acton Valley	4-5	Sierra Pelona Valley (Agua Dulce)	4-5	600	100	100	0.5
Acton Valley	4-5	Upper Mint Canyon	4-5	700	150	100	0.5
Acton Valley	4-5	Upper Bouquet Canyon	4-5	400	50	30	0.5
Acton Valley	4-5	Green Valley	4-5	400	50	25	
Acton Valley	4-5	Lake Elizabeth-Lake Hughes Area	4-5	500	100	50	0.5
Santa Clara River Valley East	4-4.07	Eastern Santa Clara	4-4.07				
Santa Clara River Valley	4-4.07	Santa Clara-Mint Canyon	4-4.07	800	150	150	1.0

2011 Basin Plan Name	Bulletin 118-03 update number	1994 Basin Plan Name	Bulletin 118- 80 number	TDS	Sulfate	Chloride	Boron
East	-						
Santa Clara River Valley East	4-4.07	South Fork	4-4.07	700	200	100	0.5
Santa Clara River Valley East	4-4.07	Placentia Canyon	4-4.07	700	150	100	0.5
Santa Clara River Valley East	4-4.07	Santa Clara-Bouquet & San Fransisquito Canyons	4-4.07	700	250	100	1.0
Santa Clara River Valley East	4-4.07	Castaic Valley	4-4.07	1000	350	150	1.0
Santa Clara River Valley East	4-4.07	Saugus Aquifer	4-4.07				
Simi Valley	4-9	Simi Valley	4-9				
Simi Valley	4-9	Simi Valley Basin	4-9				
Simi Valley	4-10	Confined Aquifers	4-9	1200	600	150	1.0
Simi Valley	4-11	Unconfined & Perched Aquifers	4-9				
Simi Valley	4-12	Gillibrand Basin	4-9	900	350	50	1.0
Conejo Valley	4-10	Conejo Valley	4-10	800	250	150	1.0
Coastal Plain of Los Angeles	4-11	Los Angeles Coastal Plain	4-11				
Central	4-11.04	Central Basin	4-11	700	250	150	1.0
West Coast	4-11.03	West Coast Basin	4-11	800	250	250	1.5
Hollywood	4-11.02	Hollywood Basin	4-11	750	100	100	1.0
Santa Monica	4-11.01	Santa Monica Basin	4-11	1000	250	200	0.5
San Fernando Valley	4-12	San Fernando Valley	4-12				
San Fernando Valley	4-12	Sylmar Basin	4-12	600	150	100	0.5
San Fernando Valley	4-12	Verdugo Basin	4-12	600	150	100	0.5
San Fernando Valley	4-12	San Fernando Basin	4-12				
San Fernando Valley	4-12	West of Highway 405	4-12	800	300	100	1.5
San Fernando Valley	4-12	East of Highway 405 (overall)	4-12	700	300	100	1.5
San Fernando Valley	4-12	Sunland-Tujunga Area	4-12	400	50	50	0.5
San Fernando Valley	4-12	Foothill Area	4-12	400	100	50	1.0
San Fernando Valley	4-12	Area Encompassing RT- Tujunga -Erwin-N. Hollywood- Whithall-LA/Verdugo-Crystal	4-12	600	250	100	1.5

2011 Basin Plan Name	Bulletin 118-03 update number	1994 Basin Plan Name	Bulletin 118- 80 number	TDS	Sulfate	Chloride	Boron
	-	Springs-Headworks-					
		Glendale/Burbank Well Fields					
		Narrows Area (below confluence					
San Fernando Valley	4-12	of Verdugo Wash with the LA	4-12	900	300	150	1.5
		River					
San Fernando Valley	4-12	Eagle Rock Basin	4-12	800	150	100	0.5
San Gabriel							
Valley/Raymond/San	4-13	San Gabriel Valley	4-13				
Fernando Valley							
Raymond	4-23	Raymond Basin	4-13				
San Fernando Valley	4-12	Monk Hill Sub-Basin	4-13	450	100	100	0.5
Raymond	4-23	Santa Anita Area	4-13	450	100	100	0.5
Raymond	4-23	Pasadena Area	4-13	450	100	100	0.5
San Gabriel Valley	4-13	Main San Gabriel Basin	4-13				
San Gabriel Valley	4-13	Western Area	4-13	450	100	100	0.5
San Gabriel Valley	4-13	Eastern Area	4-13	600	100	100	0.5
San Gabriel Valley	4-13	Puente Basin	4-13	1000	300	150	1.0
Upper Santa Ana							
Valley/San Gabriel	8-2.01	Upper Santa Ana Valley	4-14				
Valley							
San Gabriel Valley	4-13	Live Oak Area	8-2	450	150	100	0.5
San Gabriel Valley	4-13	Claremont Heights Area	8-2	450	100	50	
San Gabriel Valley	4-13	Pomona Area	8-2	300	100	50	0.5
Upper Santa Ana Valley/	8-2.01/4-13	Chino Area	8-2	450	20	15	
San Gabriel Valley		Chillo Alea					
San Gabriel Valley	4-13	Spadra Area	8-2	550	200	120	1.0
Tierra Rejada	4-15	Tierra Rejada	4-15	700	250	100	0.5
Hidden Valley	4-16	Hidden Valley	4-16	1000	250	250	1.0
Lockwood Valley	4-17	Lockwood Valley	4-17	1000	300	20	2.0
Hungry Valley	4-18	Hungry Valley & Peace Valley	4-18	500	150	50	1.0
Conejo Valley	4-10	Thousand Oaks Area	4-19	1400	700	150	1.0
Russell Valley	4-20	Russell Valley	4-20				
Russell Valley	4-20	Russell Valley	4-20	1500	500	250	1.0
Thousand Oaks Area	4-19	Triunfo Canyon Área	4-20	2000	500	500	2.0

2011 Basin Plan Name	Bulletin 118-03 update number	1994 Basin Plan Name	Bulletin 118- 80 number	TDS	Sulfate	Chloride	Boron
Thousand Oaks Area	4-20	Lindero Canyon Area	4-20	2000	500	500	2.0
Thousand Oaks Area	4-21	Las Virgenes Canyon Area	4-20	2000	500	500	2.0
Deleted	Deleted	Conejo-Tierra Rejada Volcanic Area	4-21				
Malibu Valley	4-22	Santa Monica Mountains- Southern Slopes	4-22				
Malibu Valley	4-22	Camarillo Area	4-22	1000	250	250	1.0
Malibu Valley	4-22	Point Dume Area	4-22	1000	250	250	1.0
Malibu Valley	4-22	Malibu Valley	4-22	2000	500	500	2.0
Malibu Valley	4-22	Topanga Canyon Area	4-22	2000	500	500	2.0
San Pedro Channel Islands		San Pedro Channel Islands					
Anacapa Island	No DWR#	Anacapa Island	No DWR#				
San Nicholas Island	No DWR#	San Nicholas Island	No DWR#	1100	150	350	
Santa Catalina Island	No DWR#	Santa Catalina Island	No DWR#	1000	100	250	1.0
San Clemente Island	No DWR#	San Clemente Island	No DWR#				
Santa Barbara	No DWR#	Santa Barbara Island	No DWR#				

GROUNDWATER BASIN WATER QUALITY

The following section presents information on general water quality conditions as provided by the Department of Water Resources in their Bulletin 118- 2003 update. This information is meant to provide a general overview of the conditions within the basins. It is anticipated that more current information will be provided in the Salt and Nutrient Management Plans developed for each basin.

According to DWR's Bulletin 118-2003, nitrate content is elevated in some parts of the subregion. Volatile organic compounds (VOCs) have caused groundwater impairments in some of the industrialized portions of the region. The San Gabriel Valley and San Fernando Valley groundwater basins both have multiple sites of contamination from VOCs. The main constituents in the contamination plumes are trichloroethylene (TCE) and tetrachloroethylene (PCE). Some of the locations have been declared federal Superfund sites. Contamination plumes containing high concentrations of TCE and PCE also occur in the Bunker Hill Sub-basin of the Upper Santa Ana Valley Groundwater Basin. Some of these plumes are also designated as Superfund sites. Also, perchlorate has been identified as a significant pollutant in some areas of the Los Angeles Region.

Basin-specific information on water quality in the region's major basins/sub-basins is provided in Table 3-3. This information is summarized from DWR's Bulletin 118-2003 and includes monitoring results from public supply wells sampled under the DHS Title 22 program from 1994 through 2000. Per this bulletin, the information is intended as an indicator of the types of activities that cause contamination in a given basin. It represents the water quality at the sample location. It does not indicate the water quality delivered to the consumer. More detailed drinking water quality information can be obtained from the local water purveyor and its annual Consumer Confidence Report.

Basin/sub-basin	Status	TDS	Constituent Group ³	Number of wells sampled ⁴	Number of wells with a concentration above an MCL ⁵
Central Basin		Range:	Inorganic – Primary	316	15
		200-2500 mg/l	Radiological	315	1
		Average: 453 mg/l	Nitrates	315	2
		(293 public wells)	Pesticides	322	0
			VOCs and SVOCs	344	43
			Inorganics- Secondary	316	113
West Coast Basin	Injection wells create a groundwater		Inorganic – Primary	45	0
	ridge, which inhibits the inland flow of		Radiological	45	1
	saltwater into the sub-basin to protect		Nitrates	46	0
	and maintain groundwater elevations.		Pesticides	46	0
			VOCs and SVOCs	44	0
			Inorganics- Secondary	45	30
San Fernando Valley	Groundwater contamination from VOCs		Inorganic – Primary	129	6
Basin	and hexavalent chromium (CrVI)		Radiological	122	13
	continues to be a serious problem for		Nitrates	129	44
	water supply in the eastern portion of		Pesticides	134	3
	the San Fernando Valley		VOCs and SVOCs	134	90
	_		Inorganics- Secondary	129	17
San Gabriel ⁶	Four areas of the San Gabriel Valley		Inorganic – Primary	287	3
	Basin are Superfund sites.		Radiological	278	4
	Trichloroethylene, Perchloroethylene,		Nitrates	300	73
	and Carbon Tetrachloride contaminate		Pesticides	292	1
	the Whittier Narrows, Puente basin,		VOCs and SVOCs	301	85
	Baldwin Park and El Monte areas.		Inorganics- Secondary	287	20

TABLE 3-3: WATER QUALITY IN MAJOR BASINS/SUB-BASINS IN THE LOS ANGELES REGION

³ A description of each member in the constituent groups and a generalized discussion of the relevance of these groups are included in *California's Groundwater– Bulletin 118* by DWR (2003).

⁴ Represents distinct number of wells sampled as required under DHS Title 22 program from 1994 through 2000.

⁵ Each well reported with a concentration above an MCL was confirmed with a second detection above an MCL. This information is intended as an indicator of the types of activities that cause contamination in a given basin. It represents the water quality at the sample location. It does not indicate the water quality delivered to the consumer. More detailed drinking water quality information can be obtained from the local water purveyor and its annual Consumer Confidence Report.

⁶ There are six operable units (O.U.) within the Main San Gabriel Basin: the Baldwin Park O.U., the Puente Valley O.U., the Whittier Narrows O.U., the South El Monte O.U., and the Area 3 (Alhambra) O.U.

Basin/sub-basin	Status	TDS	Constituent Group ³	Number of wells sampled ⁴	Number of wells with a concentration above an MCL ⁵
Raymond	Fluoride content occasionally exceeds recommended levels of 1.6 mg/L, near the San Gabriel Mountain front. Volatile organic compounds are detected in wells near Arroyo Seco and radiation is occasionally detected near the San Gabriel Mountains.	Range: 38-780 mg/l Average: 346 mg/l (70 public wells)	Inorganic – Primary Radiological Nitrates Pesticides VOCs and SVOCs Inorganics- Secondary	66 55 78 57 60 66	9 8 23 0 19 9
Santa Monica		Range: 729-1,156 mg/L Average: 916 mg/L (7 public wells)	Inorganic – Primary Radiological Nitrates Pesticides VOCs and SVOCs Inorganics- Secondary	13 12 13 12 12 12 13	0 1 0 9 8
Hollywood	Public water supply from imported surface water, groundwater quality information scarce.	Single sample 526 mg/L (Truran, 2001).			
Oxnard	Nitrate concentrations can exceed the state Maximum Contaminant Level (MCL) of 45 mg/L. Intrusion of seawater has occurred near Pt. Mugu and Port Hueneme. Elevated levels of DDT and PCB are found near Pt. Mugu.	Range: 160-1,800 mg/L Average: 1,102 mg/L (69 public supply wells)	Inorganic – Primary Radiological Nitrates Pesticides VOCs and SVOCs Inorganics- Secondary	73 69 80 63 68 73	6 8 14 1 2 49
Piru	Agricultural return flows may lead to high nitrate concentrations particularly during dry periods. Urban stormwater runoff within the Santa Clara River Watershed tends to concentrate salts and other contaminants. The most prominent natural contaminants in the sub-basin are boron and sulfate.		Inorganic – Primary Radiological Nitrates Pesticides VOCs and SVOCs Inorganics- Secondary	3 3 3 3 3 3 3	0 0 0 0 1

Basin/sub-basin	Status	TDS	Constituent Group ³	Number of wells sampled ⁴	Number of wells with a concentration above an MCL ⁵
Fillmore	Agricultural return flows may lead to high nitrate concentrations particularly during dry periods. Urban stormwater runoff within the Santa Clara River Watershed tends to concentrate salts and other contaminants. Other contaminants in the sub-basin are		Inorganic – Primary Radiological Nitrates Pesticides VOCs and SVOCs Inorganics- Secondary	13 10 14 10 10 13	0 1 1 0 1 3
Santa Paula	boron, sulfate, and nitrates. Nitrate concentrations can fluctuate significantly.	Range: 470-1,800 mg/L Average: 1,198 mg/L (13 public wells)	Inorganic – Primary Radiological Nitrates Pesticides VOCs and SVOCs Inorganics- Secondary	16 12 16 9 9 16	3 1 2 0 0 15
Mound		Range: 1,498-1,908 mg/L Average: 1,644 mg/L (4 public wells)	Inorganic – Primary Radiological Nitrates Pesticides VOCs and SVOCs Inorganics- Secondary	2 2 2 2 2 2 2 2 2	1 0 0 0 0 2
Las Posas		Range: 338-1,700 mg/L Average: 742 mg/L (23 public wells)	Inorganic – Primary Radiological Nitrates Pesticides VOCs and SVOCs Inorganics- Secondary	22 22 24 22 22 22 22 22	1 2 0 1 0 16
Santa Rosa			Inorganic – Primary Radiological Nitrates Pesticides VOCs and SVOCs Inorganics- Secondary	1 1 1 1 1 1	0 0 0 0 1

Basin/sub-basin	Status	TDS	Constituent Group ³	Number of wells sampled ⁴	Number of wells with a concentration above an MCL ⁵
Pleasant Valley		Range:	Inorganic – Primary	10	0
		597-1,420 mg/L	Radiological	10	1
		Average: 922 mg/L	Nitrates	10	0
		(10 public wells)	Pesticides	10	0
			VOCs and SVOCs	10	0
			Inorganics- Secondary	10	10
Lower Santa Clara	Drinking water standards are met at		Inorganic – Primary	257	9
	public supply wells without the use of		Radiological	234	1
	treatment methods. Areas with		Nitrates	268	10
	somewhat elevated mineral levels have		Pesticides	253	3
	been observed in the northern basin.		VOCs and SVOCs	252	4
	Some wells with elevated nitrate concentration have been identified in the southern portion of the basin.		Inorganics- Secondary	257	29
Upper Santa Clara	Nitrate content has exceeded 45 mg/L	Range:	Inorganic – Primary	67	4
	in some parts of the sub-basin with a	300-1,662 mg/L	Radiological	56	2
	well in the central part of the sub-basin	Average: 695 mg/L	Nitrates	74	2
	reaching 68 mg/L. Trichloroethylene	(59 public wells)	Pesticides	66	4
	and ammonium perchlorate have been		VOCs and SVOCs	66	0
	detected in four wells in the eastern part of the sub-basin.		Inorganics- Secondary	67	7

4. CLARIFICATION OF SNMP REQUIREMENTS

The Policy states that SNMPs are to be developed for every groundwater basin in California. This will allow water purveyors and basin management agencies to take advantage of a streamlined permit process for recycled water projects that is intended to expedite the implementation of recycled water projects. The required elements of a SNMP, as specified by the Policy include:

- a) Development of a basin-wide monitoring plan;
- b) Annual monitoring of Constituents of Emerging Concern;
- c) Consideration of Water Recycling/Stormwater Recharge/Use;
- d) Source identification/Source loading and assimilative capacity estimates;
- e) Implementation measures; and
- f) Anti-degradation analyses.

Development of SNMPs will lead to a more comprehensive approach to basin water quality management. SNMP proponents will have the opportunity to collectively determine the implementation strategies necessary to comply with water quality objectives established to restore and maintain the beneficial use of the ground waters.

SNMPs are required for each groundwater basin in the state. However, there is flexibility in the level of detail required in each plan depending on the size, complexity and level of activity within the basin. That notwithstanding, an initial assessment of water quality (past and present) and use (including future use) is necessary in order to determine the level of specificity warranted in each basin. The following sections discuss the required SNMP elements in greater detail, providing clarification where communications with stakeholders have indicated it to be necessary.

STAKEHOLDER COLLABORATION

As stated in the Policy:

"...local water and wastewater entities, together with local salt/nutrient contributing stakeholders, will fund locally driven and controlled, collaborative processes open to all stakeholders that will prepare salt and nutrient management plans for each basin/subbasin in California, including compliance with CEQA and participation by Regional Water Board staff."

Stakeholder collaboration may be within or between basins. While the Policy requires that every basin/sub-basin in the state have a SNMP, this does not preclude stakeholders working across basin boundaries to accommodate existing and future stakeholder structures and basin management efforts. Also, some differences exist between DWR Bulletin-118 basin/sub-basin definitions and court-adjudicated basins, which may influence formation of stakeholder groups.

Key stakeholders include local agencies involved in groundwater management, owners and operators of recharge facilities, water purveyors, water districts, water masters, and salt and nutrient contributing dischargers. These agencies have access to basin-specific data and information that is essential to the development of successful SNMPs. Private well owners may also have essential water quality information. Nongovernmental entities may have information about ecosystems associated with groundwater exfiltration. Other parties from regulatory agencies, environmental groups, industry, and interested persons may also provide important support. No single entity is wholly responsible for SNMP development. While a lead agency is necessary to coordinate the development effort, the point of a collaborative process is to take advantage of the collective expertise, resources and information of the participating entities. Therefore, participation to varying degrees by all stakeholders is encouraged. Table 4-1 lists the agencies already engaged in, and others that should consider being involved in salt and nutrient management for each groundwater basin or sub-basin group. This is not an exhaustive list.

Basin/sub-basin	Participating and Potential Stakeholders
Central and West Coast Basins	Water Replenishment District (WRD) of Southern California City of Los Angeles Department of Water & Power County Sanitation Districts of Los Angeles County Metropolitan Water District of Southern California West Basin Municipal Water District Central Basin Municipal Water District Los Angeles County Department of Public Works California Department of Public Health
San Fernando Basin	Upper Los Angeles River Area Water Master Los Angeles Department of Water and Power City of Glendale City of Burbank City of San Fernando City of La Crescenta Metropolitan Water District US Environmental Protection Agency California Department of Public Health
San Gabriel/	San Gabriel Basin Water Master City of Alhambra* City of Arcadia* City of Pasadena* Crescenta Valley Water District* Metropolitan Water District County Sanitation Districts of Los Angeles County
Raymond Basin	Raymond Basin Management Board City of Alhambra* City of Pasadena* Metropolitan Water District County Sanitation Districts of Los Angeles County
Three Valleys (Six Basins)	Three Valleys Municipal Water District*
Lower Santa Clara Pleasant Valley, Las Posas, Oxnard	Fox Canyon United Water Conservation District Metropolitan Water District City of Oxnard
Lower Santa Clara	Ventura County Watershed Protection District City of Fillmore County of Ventura City of Santa Paula United Water Conservation District
Eastern Santa Clara	Castaic Lake Water Agency

TABLE 4-1: PARTICIPATING AND POTENTIAL STAKEHOLDERS FOR EACH BASIN/SUB-BASIN GROUP AS OF FEBRUARY 2012

Basin/sub-basin	Participating and Potential Stakeholders
Saugus Aquifer, Santa Clara Castaic Valley, South Fork, Placerita Canyon, Santa Clara-Bouquet and San Francisquito Canyons, Santa Clara-Mint Canyon, Acton/Sierra Pelona/Upper Mint Canyon Basins	Los Angeles County Sanitation Districts City of Santa Clara
Tierra Rejada/Gillibrand/Simi/Thousand Oaks/Conejo/Hidden Valley/Russell Valley Basins	Calleguas Municipal Water District Calleguas Creek Watershed Management Plan
Hollywood and Santa Monica Basins	City of Beverly Hills* City of Santa Monica*
Pleasant Valley, Las Posas, Oxnard and Tierra Rejada/Gillibrand/Simi/Thousand Oaks/Conejo/Hidden Valley/Russell Valley Basins	Calleguas Creek Watershed Management Plan, Fox Canyon, City of Oxnard, United Water Conservation District.
Ventura/Ojai	County of Ventura
Malibu Valley	City of Malibu* La Paz Treatment Facility

*Potentia Stakeholders

Ideally, participation in the SNMP development process should not be limited to those agencies directly involved with basin management or salt and nutrient contributors. Other parties from regulatory agencies, environmental groups, industry, and interested persons may be included and/or kept informed; and their input solicited for each major task. Groundwater basin adjudication may impact the roles of stakeholders not identified as parties in the applicable judgments.

The Regional Water Board's role in preparing SNMPs is to:

- a) Facilitate interaction and information sharing within and among groundwater basin stakeholder groups,
- b) Provide regulatory guidance on the SNMP requirements of the Policy,
- c) Provide technical and regulatory oversight of the SNMP process to maintain consistency in scope and content of these plans and ensure compliance with the Policy's requirements, and
- d) Adopt, as appropriate, the implementation measures included in SNMPs into the Water Quality Control Plan for the Los Angeles Region.

The Regional Water Board conducted its first stakeholder workshop in November 2010 to introduce the SNMP requirement to stakeholders and initiate the development process. Since then stakeholder groups have been formed for the major groundwater basins and Regional Water Board staff have been made available to each group to provide basin-specific technical guidance and oversight of individual plans. A second stakeholder workshop was held in November 2011 to provide further clarification on certain regulatory aspects of the SNMP development process that were identified as issues of concern by stakeholders.

SPECIFIC SNMP REQUIREMENTS

It is the intent of the Policy "... that salts and nutrients from all sources be managed on a basin-wide or watershed-wide basis in a manner that ensures attainment of water quality objectives and protection of beneficial uses."

The Policy also specifies that each salt and nutrient management plan shall include:

- A basin/sub-basin wide monitoring plan that includes an appropriate network of monitoring locations to determine whether concentrations of salt, nutrients, and other constituents of concern are consistent with applicable water quality objectives.
- b) A provision for annual monitoring of Emerging Constituents/Constituents of Emerging Concern
- c) Water recycling and stormwater recharge/use goals and objectives.
- d) Salt and nutrient source identification, basin/sub-basin assimilative capacity and loading estimates, together with fate and transport of salts and nutrients.
- e) Implementation measures to manage salt and nutrient loading in the basin on a sustainable basis.
- f) An antidegradation analysis demonstrating that the projects included within the plan will, collectively, satisfy the requirements of the Antidegradation Policy (Resolution No. 68-16).

SNMP "SUGGESTED ELEMENTS"

In 2010, at the direction of the Executive Director, State Water Board staff provided a draft list of suggested elements for SNMPs that would assure that the requirements of the Policy were met (Appendix I). These elements are not considered additions to the requirements; rather they are meant to provide specifics as to how the requirements can be met, and indicate the appropriate level of detail necessary in a SNMP. They are purely recommendations and stakeholders have the option of arriving at the Policy's SNMP requirements via alternative means. This is illustrated in Table 4-2 where the suggested elements provided by State Water Board staff are lined up with the SNMP requirements as enumerated in the Policy.

RECYCLED WATER POLICY SECTION	RECYCLED WATER POLICY REQUIREMENT	SNMP SUGGESTED ELEMENTS
6b(1)	local water and wastewater entities, together with local salt/nutrient contributing stakeholders, will fund locally driven and controlled, collaborative processes open to all stakeholders that will prepare salt and nutrient management plans for each basin/sub-basin in California, including compliance with CEQA	CEQA ANALYSIS
6b(1)(a)	It is the intent of this Policy for every groundwater basin/sub-	GROUNDWATER BASIN CHARACTERISTICS GROUNDWATER BASIN OVERVIEW

TABLE 4-2: SNMP SUGGESTED ELEMENTS AND CORRESPONDING REQUIREMENTS FROM THE RECYCLED WATER POLICY

RECYCLED WATER POLICY SECTION	RECYCLED WATER POLICY REQUIREMENT	SNMP SUGGESTED ELEMENTS
		 Physiographic Description Groundwater Basin and/or Sub-Basin Boundaries Watershed Boundaries Geology Hydrogeology/Hydrology Aquifers Recharge Areas Hydrologic Areas Tributary to the Groundwater Basin Climate Land Cover and Land Use Water Sources GROUNDWATER INVENTORY Groundwater Levels Historical, Existing, Regional Changes Groundwater Storage Historical, Existing, Spatial and Temporal Changes, Safe Yield Groundwater Mixing and Movement Subsurface Inflow/Outflow Horizontal and Vertical Movement and Mixing BASIN EVALUATION WATER BALANCE Conceptual Model Basin Inflow/Outflow Groundwater, Surface Water, Imported Water, Water Transfers, Recycled Water Irrigation, Waste Water Discharges, Agricultural Runoff, Stormwater Runoff (Urban, Agriculture, Open Space), Precipitation Infiltration, Evaporation, Evapotranspiration, Recharge, Surface Water and Groundwater Connectivity PROJECTED WATER QUALITY BASIN WATER QUALITY
		 Background, Historical, Existing Water Quality Objectives Surface Water Quality Delivered Water Quality Imported Water Quality Recycled Water Quality
6b(3)(a)	A basin/sub-basin wide monitoring plan that includes an appropriate network of monitoring locations.	BASIN MANAGEMENT PLAN ELEMENTS BASIN MONITORING PROGRAMS Identify Responsible Stakeholder(s) Implementing the Monitoring Monitoring Program Goals

RECYCLED WATER POLICY SECTION	RECYCLED WATER POLICY REQUIREMENT	SNMP SUGGESTED ELEMENTS
6b(3)(a)(i)	The plan must focus on basin water quality near water supply wells and areas proximate to large water recycling projects, particularly groundwater recharge projects. Also, monitoring locations shall, where appropriate, target groundwater and surface waters where groundwater has connectivity with adjacent surface waters.	 Sampling Locations Water Quality Parameters Sampling Frequency Quality Assurance/Quality Control Database Management Data Analysis and Reporting Groundwater Level Monitoring Basin Water Quality Monitoring Groundwater Quality Monitoring Areas of Surface Water and Groundwater Connectivity Areas of Large Recycled Water Projects Recycled Water Recharge
6b(3)(a)(iii)	The monitoring plan shall identify those stakeholders responsible for conducting, compiling, and reporting the monitoring data.	Areas Surface Water Quality Monitoring Stormwater Monitoring Wastewater Discharge Monitoring Recycled Water Quality Monitoring Salt and Nutrient Source Loading Monitoring Other Constituents of Concern Water Balance Monitoring Climatological Monitoring Surface Water Flow Monitoring Groundwater Production Monitoring
6b(3)(b)	A provision for annual monitoring of Emerging Constituents/ Constituents of Emerging Concern (e.g., endocrine disrupters, personal care products or pharmaceuticals) (CECs) consistent with recommendations by CDPH and consistent with any actions by the State Water Board taken pursuant to paragraph 10(b) of this Policy.	 BASIN EVALUATION CONSTITUENTS OF EMERGING CONCERNS (CECs) Constituents CEC Source Identification
6b(3)(c)	Water recycling and stormwater recharge/use goals and objectives.	 BASIN MANAGEMENT PLAN ELEMENTS GROUNDWATER MANAGEMENT GOALS Recycled Water and Stormwater Use/Recharge Goals and Objectives
6b(3)(d)	Salt and nutrient source identification, basin/sub-basin assimilative capacity and loading estimates, together with fate and transport of salts and nutrients.	 BASIN EVALUATION SALT AND NUTRIENT BALANCE Conceptual Model Salt and Nutrient Source Identification Salt and Nutrient Loading Estimates Historical, Existing, Projected Import/Export Basin/Sub-Basin Assimilative Capacity for Salt and Nutrients Fate and Transport of Salt and Nutrients BASIN MANAGEMENT PLAN ELEMENTS

RECYCLED WATER POLICY SECTION	RECYCLED WATER POLICY REQUIREMENT	SNMP SUGGESTED ELEMENTS
	manage salt and nutrient loading in the basin on a sustainable basis.	GROUNDWATER MANAGEMENT GOALS Groundwater Management Goals
		SALT AND NUTRIENT LOAD ALLOCATIONS
6b(3)(f)	An antidegradation analysis demonstrating that the projects included within the plan will, collectively, satisfy the requirements of Resolution No. 68-16.	SALT AND NUTRIENT MANAGEMENT STRATEGIES Load Reduction Goals Future Land Development and Use Salt/Nutrient Management Options Salt/Nutrient Management Strategies and Modeling Management Strategy Model Results Feasibility Cost PLAN IMPLEMENTATION SALT AND NUTRIENT MANAGEMENT PROGRAM Organizational Structure Stakeholder Responsibilities Implementation Measures to Manage Salt and Nutrient Loading Salt/Nutrient Management Water Supply Quality Regulations of Salt/Nutrients Load Allocations Salt and Nutrient Source Control CEC Source Control Site Specific Requirements Groundwater Resource Protection Additional Studies PERIODIC REVIEW OF SALT/NUTRIENT MANAGEMENT PLAN Adaptive Management Plan Performance Valuation COST ANALYSIS CWC § 13141, "prior to implementation of any agricultural water quality control program, an estimate of the total cost of such a program, together with an identification of potential sources of funding, shall be indicated in any regional water quality control plan." IMPLEMENTATION SCHEDULE ANTIDEGRADATION ANALYSIS
No specific reference	While the background information listed in State	BACKGROUND Purpose

RECYCLED WATER POLICY SECTION	RECYCLED WATER POLICY REQUIREMENT	SNMP SUGGESTED ELEMENTS
	Water Board's "Suggested Elements" is not specifically identified by the Recycled Water Policy, it would provide the necessary information in support of the conceptual basis for the plan.	 Protection of Beneficial Use Sustainability of Water Resources Problem Statement Salt/Nutrient Management Objectives Regulatory Framework Groundwater Beneficial Uses Stakeholder Roles and Responsibilities Process to Develop Salt/Nutrient Management Plan

The Policy recognizes that:

The degree of specificity within these plans and the length of these plans will be dependent on a variety of site-specific factors, including but not limited to size and complexity of a basin, source water quality, stormwater recharge, hydrogeology, and aquifer water quality.

In response to this, State Water Board staff has suggested three classes of basins in the context of SNMP development to assist in determining the extent of information required for each class: Major, Saline/Coastal, and No Threat basins. They are defined as follows:

- a) Major: Large in size, complex land use, heavily used, water quality threatened;
- b) Saline/Coastal: Basins with naturally saline groundwater not currently used as a source of water; and
- c) Low threat: Basins with minimal or no known or current threat to water quality.

The State Water Board staff have also provided draft Basin Plan Amendment templates to indicate the amount of information necessary for each classification. The templates for each basin class are provided in Appendix I. Groundwater basins in the Los Angeles Region do not necessarily fit neatly into these classes; the scope of information for a SNMP will also be influenced by basin-specific attributes, conditions and water quality concerns. However, stakeholders are encouraged to use the templates as a guide.

Regardless of how a basin may be categorized, the Policy states that the SNMP must include "implementation measures to manage salt and nutrient loading in the basin on a sustainable basis."

Where applicable, implementation strategies may be developed to address issues such as pollution prevention, water quality restoration, basin recharge with storm water and recycled water and groundwater-surface water interaction.

A. BASIN/SUB-BASIN WIDE MONITORING PLAN

As set forth in the Policy Part 6(b)(3)(a), each SNMP shall include "a basin/sub-basin wide monitoring plan that includes an appropriate network of monitoring locations. The scale of the basin/sub-basin monitoring plan is dependent upon the site-specific conditions and shall be adequate to provide a reasonable, cost-effective means of determining whether the concentrations of salt, nutrients, and other constituents of concern as identified in the salt and nutrient plans are consistent with applicable water

quality objectives. Salts, nutrients, and the constituents identified in paragraph 6(b)(1)(f) shall be monitored. The frequency of monitoring shall be determined in the salt/nutrient management plan and approved by the Regional Water Board pursuant to paragraph 6(b)(2).

(i) The monitoring plan must be designed to determine water quality in the basin. The plan must focus on basin water quality near water supply wells and areas proximate to large water recycling projects, particularly groundwater recharge projects. Also, monitoring locations shall, where appropriate, target groundwater and surface waters where groundwater has connectivity with adjacent surface waters.

(ii) The preferred approach to monitoring plan development is to collect samples from existing wells if feasible as long as the existing wells are located appropriately to determine water quality throughout the most critical areas of the basin.

(iii) The monitoring plan shall identify those stakeholders responsible for conducting, compiling, and reporting the monitoring data. The data shall be reported to the Regional Water Board at least every three years.

The objective of this requirement is to develop a basin wide monitoring plan that would allow for a comprehensive assessment of basin water quality in relation to beneficial uses supported by the basin and applicable water quality objectives. Several localized and project-specific monitoring programs exist throughout the basins in the region. These include monitoring of ground and surface waters by various agencies to comply with regulatory requirements, as well as voluntary monitoring efforts by these agencies and environmental groups. In keeping with the Policy's preferred approach, it is recommended that all parties engaged in water quality monitoring and data collection within each groundwater basin be identified as a starting point in developing a basinwide monitoring plan. Compilation and review of existing programs and groundwater quality reports will reduce the potential for redundancy, and also assist in identifying data gaps that need to be addressed.

Regulatory agencies are involved in statewide monitoring of groundwater quality for the purpose of assessing and protecting groundwater basins. These agencies include the State Water Board, the California Department of Public Health, Department of Water Resources, Department of Toxic Substances Control, Department of Pesticide Regulation, and the U.S. Geological Survey. State Water Board's online groundwater information system, GeoTracker GAMA provides access to groundwater quality monitoring data from these agencies as well as other Regional Boards and the Lawrence Livermore National Laboratory. This information is available on the Groundwater Ambient Monitoring and Assessment (GAMA) program website at: http://www.waterboards.ca.gov/water issues/programs/gama/geotracker gama.shtml. Results from these monitoring efforts may be used in conjunction with those generated by water purveyors, managers and private entities in determining the scope of the monitoring plan.

The monitoring plan should clearly define the areal extent of the basin or sub-basin to be monitored. The region's major basin boundaries were most recently updated by the Department of Water Resources in its 2003 update of Bulletin 118 (DWR, 2003). While this update omitted some of the sub-basins that were identified in the previous version,

the Regional Water Board's Basin Plan still retains these basins/sub-basin as ground waters to be protected under the California Water Code.

In developing sampling locations within a given basin, stakeholders are encouraged to consider:

- a) Location of existing monitoring locations;
- b) Location of existing and potential contributing sources, including areas with significant groundwater-surface water interaction; and
- c) Existing and proposed recycled water projects/facilities and groundwater recharge areas.

Stakeholders are also encouraged to use the 2003 U.S. Geological Survey report titled "Framework for a Ground Water Quality and Assessment Program for California" as a resource when developing the monitoring plan. This document is available at: <u>http://www.waterboards.ca.gov/water_issues/programs/gama/docs/usgs_rpt_72903_wri</u> 034166.pdf

The parameters to be monitored should be reflective of the water quality conditions and applicable water quality objectives within a given basin or sub-basin. Per the Policy, salts, nutrients, and CECs will be monitored in all basins. It is recommended that a draft monitoring plan be submitted to the Regional Water Board for review prior to finalizing the SNMP of which it would be a component. As with other groundwater monitoring programs in the region, data generated from SNMP monitoring programs should be submitted to the State Water Board's online groundwater information system – GeoTracker.

The Policy also states that Salt and Nutrient Management Plans may include constituents other than salt and nutrients which may impact water quality in the basin/sub-basin. However, inclusion of additional parameters is at the discretion of stakeholders involved in the SNMP development process. Stakeholders are encouraged to consider existing groundwater quality information and their knowledge of localized conditions, in determining which other parameters of concern should be monitored. Table 4-3 lists some of the known parameters of concern in the major basins and subbasins in the Los Angeles Region.

Groundwater Basin		Primary Parameters of Concern*
West Coast Central		Seawater Intrusion
San Gabriel Raymond		VOCs, SVOCs
San F	ernando	VOCs, Cr ^{vi}
ValueOxnardWanMoundVanSanta PaulaVanFillmorePiruFiruEast Santa Clara		Nitrate, Salts, TDS, DDT, PCBs
Pleasant Valley		Nitrates, TDS, Salts

TABLE 4-3: PARAMETERS OF CONCERN IN THE LOS ANGELES REGION'S MAJOR BASINS

Groundwater Basin		Primary Parameters of Concern*
Ojai Ventura River		Nitrates
Ventura river Value Conejo Valley Russell Valley Hidden Valley Simi Valley Tierra Rejada Thousand Oaks		Nitrates, TDS, Salts
Malibu Valley		Seawater Intrusion

*This is not a complete list of parameters of concern.

B. MONITORING OF CONSTITUENTS OF EMERGING CONCERN

Constituents of emerging concerns (CECs) include several types of chemicals that may be classified as (i) persistent organic pollutants (ii) pharmaceuticals and personal care products, (iii) veterinary medicines, (iv) endocrine disruptors, and others. Such constituents present water quality concerns due to their large number and variety, their prevalence in the environment, and their potential for harmful effects on aquatic life. Much less is known about their potential effects on humans. Increasing recycled water use has the potential to increase the occurrence of CECs in ground water basins through indirect potable reuse or groundwater recharge reuse (i.e., augmentation of drinking water aquifers using recycled water), as well as urban landscape irrigation. Staff are coordinating with EPA, the Southern California Coastal Water Research Project, and others in studying this issue.

Recycled Water Policy CEC Monitoring Requirements:

As stated in the Policy, "[e]ach Salt and Nutrient Management Plan shall include a provision for annual monitoring of Emerging Constituents/Constituents of Emerging Concern (CECs) consistent with recommendations by CDPH and consistent with any actions by the State Water Board taken pursuant to paragraph 10(b) of this Policy."

Paragraph 10(b) of the Policy directs the State Water Board, in consultation with the California Department of Public Health (CDPH), to convene a "blue-ribbon" advisory panel to guide future actions relating to constituents of emerging concern.

The advisory panel (Panel) completed its report (Panel Report) on CECs in June 2010. State Water Board staff developed a staff report (SWRCB, 2010) based on recommendations from the Panel and those provided by the CDPH. In December 2010, the State Water Board held a public hearing regarding proposed CEC monitoring requirements presented in the staff report.

The Panel Report employed a risk-based screening process to identify CECs of toxicological relevance to monitor for potable and non-potable recycled water use scenarios (i.e., groundwater recharge reuse and landscape irrigation). The screening approach focused the universe of CECs based on their potential for health effects and their occurrence in recycled water in California. The Panel Report recommends monitoring of selected performance indicator CECs to evaluate the performance of treatment processes to remove CECs; and recommends monitoring of surrogate parameters, such as turbidity, dissolved organic carbon, and conductivity, to verify that treatment units are working as designed.

Health-based CECs selected for monitoring include caffeine, 17-beta-estradiol (17β-estradiol), n-nitrosodimethylamine (NDMA), and triclosan.

The Panel also selected a set of performance-based indicator CECs. Each selected performance-based indicator CEC represents a group or a family of CECs. The removal of the performance-based indicator CEC through a treatment process provides an indication of the removal of the other CECs in the group, provide they have similar properties. The six compounds selected to serve as performance-based indicator CECs are caffeine, gemfibrozil, n,n-diethyl-meta-toluamide (DEET), iopromide, NDMA, and sucralose. Caffeine and NDMA serve as both health and performance-based indicator CECs.

Upon reviewing the oral and written comments received on the publicly noticed staff report, the State Water Board drafted an amendment to the Policy prescribing monitoring requirements for CECs in recycled water used for groundwater recharge reuse and landscape irrigation. The draft Policy amendment ("Requirements for Monitoring Emerging Constituents/Constituents of Emerging Concern for Recycled Water") was released for public comment on May 9, 2012. The proposed amendment and accompanying attachment can be found on the State Water Board's website at: http://www.waterboards.ca.gov/water issues/programs/water recycling policy/draft am endment to policy.shtml

Other Considerations

The California Department of Public Health has released a draft of their Groundwater Replenishment Reuse Regulations, which are used to regulate recycled water for replenishment projects. Upon adoption of the final regulation, where the CEC monitoring requirements differ from those specified by the State Water Board in the amendment to the Policy, monitoring for the additional constituents specified by California Department of Public Health regulations should be included where groundwater recharge using recycled water is a consideration.

Section 60320.120(c) of the draft regulations requires annual monitoring of indicator CECs specified by CDPH and the Regional Water Board by proponents of groundwater replenishment and reuse projects (GRRPs). Stakeholders may take this into consideration in developing CEC monitoring programs for each basin/sub-basin where such projects exist or are planned.

Regional Board Considerations

The Los Angeles Regional Board has taken early actions to begin to address CECs. The Board currently includes CEC Special Study Requirements in NPDES permits for Publicly Owned Treatment Works (POTWs), during permit renewal. In addition, the development of a CEC monitoring strategy for the region was identified as a priority project during the project-selection phase of the 2011-13 triennial review. The Regional Board has also directed resources toward establishing some baseline information on CEC occurrence, and fate and transport in inland surface waters throughout the region. The information gathered from on-going monitoring and other applicable studies will inform future monitoring strategies. Where site specific CEC monitoring is required for existing or proposed projects within a groundwater basin or sub-basin, SNMP proponents are encouraged to consider including them as part of the CEC monitoring strategies developed for the basin or sub-basin

C. SALT AND NUTRIENT ANALYSIS

As stated in the Policy, "[e]ach SNMPs shall include salt and nutrient source identification, basin/sub-basin assimilative capacity and loading estimates, together with fate and transport of salts and nutrients..." in order to "... address and implement provisions, as appropriate, for all sources of salt and/or nutrients to groundwater basins, including recycled water irrigation projects and groundwater recharge reuse projects."

Identification of existing and planned future sources of salts and nutrients is an essential part of a SNMP. This allows for a more accurate assessment of the pollutant loads to the basin and analysis of the final impact on basin water quality as determined through fate and transport analysis. A comprehensive consideration of sources will lead to a robust assessment and a more effective implementation strategy for basin management. Table 4-5 provides examples of source considerations in conducting this analysis.

Source Considerations	Examples
Land uses	Agricultural and landscape irrigation
Groundwater recharge	Recycled water, Municipal water supply, Stormwater
Point source discharges to groundwater	Municipal and Industrial facilities, Other permitted facilities (e.g. landfills)
Non-point source discharges	Agricultural and nursery facilities, on-site wastewater treatment system discharges
Specific point sources	Injection wells*, percolation basins*
Surface water-groundwater interaction	Percolation from stream flow, stormwater runoff infiltration
Sub-surface inflow	Seawater intrusion, upstream inflow
Discrete discharges	Chemical spills, leaking tanks, improper disposal

TABLE 4-6: LIKELY SOURCES OF SALTS, NUTRIENTS, AND OTHER POLLUTANTS OF CONCERN IN GROUNDWATER BASINS

*associated with oil production

In order to estimate pollutant loads to these basins, it will be necessary to quantify the mass loadings of all identifiable sources to each basin/sub-basin, and evaluate their fate and transport Stakeholders have the flexibility to apply any scientifically defensible methodology to make these determinations.

D. WATER RECYCLING AND STORMWATER RECHARGE/USE GOALS AND OBJECTIVES

Recycled Water Use

As stated in the Policy, *"[e]ach SNMP shall include water recycling and stormwater recharge goals and objectives."* With the intent of moving towards sustainable management of surface waters and groundwater, the Policy adopts the goals of increasing the use of recycled water in California over 2002 levels by at least one million acre-feet per year (afy) by 2020 and by at least two million afy by 2030.

There are a significant number of recycled water facilities in the Los Angeles Region. The State Water Board conducted a 2009 survey of recycled water use throughout the state to determine the amount of recycled water used and the beneficial uses to which recycled water was put. Only publicly-owned wastewater and water recycling agencies were included in the survey. Due to the low response rate from agencies solicited (18%), data from a similar 2001 survey were included in the overall results. Table 4-6 shows survey results for responding agencies in the Los Angeles Region. More details on the survey are available on the State Water Board's website at

http://www.waterboards.ca.gov/water issues/programs/grants loans/water recycling/mu nirec.shtml.

Agency	Total Reuse (AFY)	Beneficial Use
Burbank Water and Power	2090	Golf Course and Landscape Irrigation, Industrial
City of Burbank	879	Landscape Irrigation, Geothermal/Energy Production
City of Los Angeles Bureau of Sanitation	40,787	Recreational Impoundment, Natural systems restoration, Wetlands, Wildlife Habitat
City of Los Angeles Department of Water and Power	32,113	Golf Course & Landscape Irrigation, Industrial, Seawater Intrusion Barrier, Recreational Impoundment, Natural systems restoration, Wetlands, Wildlife Habitat
City of Los Angeles Department of Public Works	3,683	Landscape Irrigation, Geothermal/Energy Production
Camarillo Sanitation District/City of Camarillo	1,293	Agriculture Irrigation
Camrosa Water District	779	Agriculture Irrigation
City of Fillmore	110	Landscape Irrigation
County Sanitation Districts of Los Angeles County	80,000	Unspecified (likely groundwater recharge)
Las Virgenes Municipal Water District	5,174	Landscape Irrigation
Los Angeles County Department of Public Works	148	Landscape Irrigation
Long Beach Water Department	6,380	Golf Course & Landscape Irrigation, Commercial, Seawater Barrier
Ventura County Waterworks District 1	428	Golf Course Irrigation
Ventura County Waterworks District 1	63	Commercial
West Basin Municipal Water District	26,032	Landscape Irrigation, Industrial, Seawater Intrusion Barrier

TABLE 4-7: SURVEY RESULTS OF RECYCLED WATER USE BY POTWS AND WATER RECYCLING AGENCIES IN THE LOS ANGELES REGION

While the majority of facilities surveyed used their recycled water for irrigation, a significant portion of the recycled water is used for groundwater recharge. In the Central and West Coast Groundwater Basins, recycled water is used extensively by the Water Replenishment District of Southern California for groundwater recharge and to maintain seawater intrusion barriers. An innovative form of recycling is practiced by the City of Santa Monica using its Santa Monica Urban Runoff Recycling Facility, which collects and treats 90% of the City's urban runoff in the dry season for use in landscape irrigation.

Substituting potable water with recycled water is another means of increasing recycled water use and reducing dependence on imported water supplies. This may be achieved by developing an indirect potable use program similar to the one initiated by the Orange County Water District.

SNMPs should include goals and objectives for water recycling. As part of developing these goals, it may be helpful to examine master plans for water recycling that have been developed by recycled water producers, distributors, and municipalities, as well as Urban Water Management Plans.

Stormwater Use

Another goal of the Policy, with the intent of increasing sustainable local water supplies, is to increase the use of stormwater over the levels in 2007 by at least 500,000 afy by 2020 and by at least one million afy by 2030. The Policy recognizes that stormwater is typically lower in nutrients and salts and can augment local water supplies, and therefore deems the inclusion of a significant stormwater use and recharge component within the salt/nutrient management plans to be critical to the long-term sustainable use of water in California. In support of this, the State Water Board expects to develop additional policies to encourage the use of stormwater, encourage water conservation, encourage the conjunctive use of surface and groundwater, and improve the use of local water supplies.

The Regional Water Board also recognizes stormwater as a valuable resource and contains a requirement in its Municipal Separate Stormwater Systems (MS4) permits that new developments and significant redevelopments retain stormwater onsite using low impact development (LID) best management practices (BMPs), with an allowance for regional and other alternative compliance approaches. MS4 permits require that land development projects be designed to infiltrate, harvest and use, evapotranspire, or biotreat a specified volume of stormwater onsite using LID BMPs, if technically feasible. The intent of this requirement is twofold – first, to achieve improvements in water quality by preventing pollutants conveyed by stormwater from being discharged to receiving waters and, second, to increase the use of stormwater for groundwater recharge.

Since new developments and redevelopments will not necessarily occur in areas where infiltration or recharge is feasible, it is important that stormwater use be considered on a regional scale to maximize the potential for stormwater infiltration and use. Basin stakeholders are encouraged to consider such an approach in developing their implementation strategies for increasing stormwater use.

E. IMPLEMENTATION **MEASURES**

As stated in the Policy, "[e]ach SNMP shall include implementation measures to manage salt and nutrient loading in the basin on a sustainable basis."

Implementation strategies should integrate water quantity and quality, groundwater and surface water, and recharge area protection in order to maintain a sustainable long-term supply for multiple beneficial uses. These strategies will be dictated to a large degree by basin-specific characteristics and conditions. Depending on conditions within each basin/sub-basin, strategies may generally be geared towards:

- a) Pollution prevention to maintain and protect ground water quality at levels consistent with Basin Plan objectives and the State's anti-degradation policy;
- b) Source load reductions to groundwater basins;
- c) Treatment and management of areas of impaired water quality;
- d) Increasing groundwater recharge by storm water; and
- e) Increasing recycled water use.

Based on water quality conditions within a basin and the results of the source loading and fate and transport analysis, salts and nutrients from identifiable non-point and point sources should be managed in a manner that will support attainment of applicable water quality objectives. Measurable parameters should be identified for evaluation of the effectiveness of the strategies, and an implementation schedule and monitoring program should be developed to track progress toward basin management goals. Implementation measures may also include, as appropriate, strategies for local water supply development including increasing the use of recycled water, and plans for stormwater retention for use or recharge.

The consideration of implementation alternatives should take into account the interest of all parties currently involved in basin use and management in order to resolve any potential competing or conflicting interests prior to finalizing the basin management approach. To the greatest extent feasible, input from all stakeholders and interested parties should be solicited as part of the development process.

The Regional Water Board recognizes that a number of agencies have developed basin management plans for specific basins; while others have developed specific management measures for salt and/or nutrient impairments. Existing basin or sub-basin management plans and salt and nutrient management strategies should be assessed to determine their applicability towards the SNMP requirements of the Policy. For the purpose of SNMP development, these efforts may be supplemented as necessary to provide missing elements or address inconsistencies and demonstrate compliance with SNMP requirements. In instances where water quality from a sub-basin or basin may impact or be impacted by that of adjacent basins, all stakeholders concerned are encouraged to collaborate in developing salt and nutrient management strategies.

F. ANTI-DEGRADATION REQUIREMENTS

As stated in the Policy, "[e]ach Salt and Nutrient Management Plan shall include an antidegradation analysis demonstrating that the projects included within the plan will, collectively, satisfy the requirements of Resolution No. 68-16."

Resolution No. 68-16 is the State Water Board's "Statement of Policy with respect to Maintaining High Quality of Waters in California" also known as the State Antidegradation Policy. It requires that:

Whenever the existing quality of water is better than the quality established in policies as of the date on which such policies become effective, such existing high quality will be maintained until it has been demonstrated to the State that any change will be consistent with maximum benefit to the people of the State, will not unreasonably affect present and anticipated beneficial use of such water and will not result in water quality less than that prescribed in the policies.

Any activity which produces or may produce a waste or increased volume or concentration of waste and which discharges or proposes to discharge to existing high quality waters will be required to meet waste discharge requirements which will result in the best practicable treatment or control of the discharge necessary to assure that (a) a pollution or nuisance will not occur and (b) the highest water quality consistent with maximum benefit to the people of the State will be maintained.

The intent of Resolution 68-16 is to preserve the State's high quality waters. Any activity that results in the discharge of waste must be subject to treatment or controls that assure that the discharge will not cause the receiving water to exceed water quality objectives set forth in the applicable Basin Plan or cause pollution or nuisance. In addition, the discharge should be controlled to achieve the highest water quality feasible. In other words, water quality should be the best it can be, but at least not exceed water quality objectives or impact beneficial uses. The water quality objectives are set forth in the Regional Water Board Basin Plans, the State Water Board's Sources of Drinking Water Policy, and the California Ocean Plan. The baseline water quality to maintain refers to the highest existing quality since Resolution No. 68-16 was adopted in 1968, although if a lowering of water quality was formally approved in the past, this could adjust the baseline.

In some instances, degradation of existing water quality may be allowed so long as such degradation is consistent with the maximum benefit to the people of the state. Modification of existing water quality through the development of site specific objectives should only be considered when all other salt and nutrient management alternatives have been exhausted; and even so should be part of a larger salt and nutrient load reduction strategy. Such changes to water quality objectives may only occur where the existing water quality is better than that required to support the most sensitive beneficial use(s) of the basin (i.e. where there is assimilative capacity). Basin-wide management strategies should always be developed in a manner that would be protective of the most sensitive beneficial uses within a basin.

Where project(s) within SNMPs have the potential to degrade the water quality within a basin, stakeholders are required to conduct an anti-degradation analysis. The rigor of the analysis required depends on the nature and extent of the potential degradation. The guidelines and requirements for such analysis are provided below and parallel, to a large extent, those provided in the Policy for basins where plans are yet to be completed. This analysis will be part of the supporting documentation for the Basin Plan amendment incorporating the implementation plan(s) consistent with implementation measures identified in the SNMP. Implementation projects must be demonstrated to be consistent with Resolution 68-16 as supported by the anti-degradation analysis conducted as part of SNMP development.

The Policy recognizes that groundwater recharge and landscape irrigation projects are to the benefit of the people of the state, despite having the potential to lower water quality within the basin. As such, the Policy provides a threshold below which less rigorous analysis will be conducted for the anti-degradation analysis – during the period before SNMPs have been developed.

The Regional Water Board will apply the same considerations, on a basin-wide scale, once SNMPs are in place.

- (1) Generally, a basin-wide implementation strategy that utilizes less than 20 percent of the available assimilative capacity in a basin/sub-basin need only conduct an anti-degradation analysis verifying the use of the assimilative capacity. For those basins /sub-basins where the Regional Water Boards have not determined the baseline assimilative capacity, the baseline assimilative capacity shall be calculated by the initial project proponent, with review and approval by the Regional Water Board. The available assimilative capacity shall be calculated by comparing the water quality objectives with the average concentration of the basin/sub-basin⁷, either over the most recent five years of data available or using a data set approved by the Regional Water Board Executive Officer. Though the Policy expresses assimilative capacity in units of concentration, the Regional Water Board recognizes that, depending on the complexity of the basin, it may be more appropriate to calculate and express assimilative capacity as a load. Historical groundwater guality data will be reviewed in order to inform decisions about assimilative capacity and conclusions drawn about anti-degradation requirements. In determining whether the available assimilative capacity will be exceeded by the basin-wide implementation strategy, the Regional Water Board will consider the impacts of the strategy over at least a ten-year time frame, based on an analysis of these impacts provided by the project proponent(s), and other relevant data and information.
- (2) In the event a basin wide implementation strategy utilizes more than 20 percent of the available assimilative capacity in a basin/sub-basin), a more rigorous antidegradation analysis shall be performed to comply with Resolution No. 68-16. Proponents of the strategy shall provide sufficient information for the Regional Water Board to make this determination.

In addition to verification of the assimilative capacity to be used, the analysis should show:

- a) That the strategy is necessary to accommodate important economic or social development;
- b) Any reduction in water quality will be consistent with maximum benefit to people of the State;
- c) Reduction in water quality will not unreasonably affect actual or potential beneficial uses; and
- d) Water quality will not fall below water quality objectives set to protect beneficial uses as prescribed in the Basin Plan.

The severity and extent of water quality reduction will be considered when evaluating the benefits required to compensate for the degradation. The magnitude of the proposed strategy and potential reduction in water quality will also determine the scope of impact assessment. The Regional Water Board will ensure that a systematic impact assessment is conducted.

Factors that should be considered when determining whether a strategy is necessary to accommodate social or economic development and is consistent with maximum benefit to the people of the State, include:

1. Past, present, and probable beneficial uses of the water.

⁷ More than one average concentration may be necessary for a given basin/sub-basin to fully evaluate variability between sub-areas or sub-basins.

2. Economic and social costs, tangible and intangible, of the proposed strategy compared to benefits. The economic impacts to be considered may include the cost of alternative actions in lieu of the proposed strategy, as well as the cost of any mitigation necessary to address degradation resulting from the proposed strategy. The long-term and short-term socioeconomic impacts of maintaining existing water quality must be considered. Examples of social and economic parameters that could be affected are employment, housing, community services, income, tax revenues, and land value. To accurately assess the impact of the proposed strategy, the projected baseline socioeconomic profile of the affected community without the strategy should be compared to the projected profile with the strategy.

3. The environmental aspects of the proposed discharge must be evaluated. The proposed discharge, while actually causing a reduction in water quality in a given water body, may be simultaneously causing an increase in water quality in a more environmentally sensitive body of water from which the discharge in question is being diverted.

4. The implementation of feasible alternative control measures, which might reduce, eliminate, or compensate for negative impacts of the proposed action.

Participation from the public and appropriate government agencies should be solicited in the "maximum benefit" determination to ensure that the environmental, social, and economic impacts of the strategy are accurately assessed.

The Regional Water Board will ultimately make the decision as to whether or not it is to the maximum benefit of the people of the State to use more than 20% of the assimilative capacity of a basin or sub-basin as part of a SNMP's implementation strategy. Consideration will be given to providing buffers for varying environmental conditions such as droughts, as well as the needs of future generations.

Where no assimilative capacity exists for salts and/or nutrients within a basin/sub-basin, stakeholders may explore and implement strategies for creating such assimilative capacity. As previously mentioned, modifying water quality objectives should only be considered where all other alternatives have been exhausted and then only as part of a larger comprehensive salt and nutrient reduction strategy. Any modifications to water quality objectives shall be done in a manner that protects the most sensitive beneficial uses in a basin/ sub-basin.

The Policy includes an example of an approved method for conducting an antidegradation analysis based on a numeric groundwater model. It was used by the State Water Board in connection with Resolution No. 2004-0060 and the Regional Water Board in connection with Resolution No. R8-2004-0001. However, stakeholders have the flexibility to use other methods that have been deemed acceptable by the Regional Board. SNMP proponents should vet any such other methods with Regional Board staff prior to embarking on an analysis using the method. The Policy also encourages an integrated approach (using surface water, groundwater, recycled water, stormwater, pollution prevention, water conservation, etc.) to the implementation of Resolution No. 68-16.

An anti-degradation analysis will not be required where it has been demonstrated that implementation strategies are not expected to result in water quality degradation in a groundwater basin.

E. DISCHARGES COVERED BY THE RECYCLED WATER POLICY

The Policy is specifically geared towards increasing the use of recycled water from municipal wastewater sources permitted through Wastewater Recycling Requirements (WRRs). Land discharges of wastewater are addressed through separate Waste Discharge Requirements (WDRs), however, this does not preclude them from the SNMP development process. Such discharges (existing and proposed) should be accounted for in determining source loading estimates, determination of assimilative capacity, and in basin management planning. In the same vein, recycled water projects already in progress should be considered during the same phases of SNMP development.

5. CEQA REQUIREMENTS

The Policy requires that salt and nutrient management plans developed for basin/subbasins comply with the applicable California Environmental Quality Act (CEQA) requirements. The following outlines the CEQA requirements for the Regional Board adoption of SNMP implementation strategies into the Water Quality Control Plan for the Los Angeles Region (Basin Plan). SNMP proponents may be required to comply with other CEQA requirements related to specific implementation strategies for salt and nutrient management contained in their plans. SNMP proponents are to conduct the environmental analysis required for Regional Board adoption.

The CEQA requires state and local agencies determine the potential significant environmental impacts of proposed projects and identify measures to avoid or mitigate these impacts where feasible. The CEQA Guidelines, which provide the protocol by which state and local agencies comply with CEQA requirements, are detailed in California Code of Regulations, Title 14 § 15000 et seq.

The basic purposes of CEQA are to: 1) inform decision makers and public about the potential significant environmental effects of a proposed project, 2) identify ways that environmental damage may be mitigated, 3) prevent significant, avoidable damage to the environment by requiring changes in projects, through the selection of alternative projects or the use of mitigation measures when feasible, and 4) disclose to the public why an agency approved a project if significant effects are involved (Cal. Code Regs., tit. 14, § 15002(a)).

LEAD AND RESPONSIBLE AGENCIES UNDER CEQA

As set forth in the Policy, stakeholders will fund SNMP development including any necessary analysis and documentation to comply with CEQA. Stakeholders will develop implementation strategies, which may include projects requiring environmental analysis. Public agencies that carry out or implement projects associated with the SNMPs are considered the lead agencies under CEQA for these individual projects. However, in addition, the implementation measures identified in a SNMP may be adopted as amendments to the Basin Plan by the Regional Water Board, and CEQA analysis is a required part of the adoption process in accordance with the State Water Board's certified regulatory program. As such, for the purpose of Water Board adoption of a Basin Plan amendment, the Regional Water Board will be the lead agency for purposes of CEQA. Therefore, it will be necessary for stakeholders and Regional Water Board staff to work in collaboration.

REQUIRED ENVIRONMENTAL ANALYSIS

The California Secretary for Natural Resources has certified the State and Regional Water Boards' basin planning process as exempt from certain requirements of CEQA, including preparation of an initial study, negative declaration, and environmental impact report (California Code of Regulations, Title 14, Section 15251(g)).

The basin planning process is certified by the Secretary for Natural Resources as a regulatory program exempt from the requirements to prepare an Environmental Impact Report, Negative Declaration, and Initial Study (Title 14, California Code of Regulations (CCR), Section 15241(g)). However, a certified program is subject to other provisions in CEQA (Pub. Resources Code, Section 21000 et seq.), such as the requirement to avoid significant adverse effects to the environment where feasible. The Regional Board is required to comply with State Water Board regulations set forth in California Code of Regulations, Title 23, sections 3775 et. seq, and Public Resources Code section 21159.

Requirements of California Code of Regulations, Title 23, Section 3777(a)

The "certified regulatory program" of the Regional Water Board is also subject to the substantive requirements of California Code of Regulations, Title 23, Section 3777(a), which requires a written report that includes a description of the proposed activity, an analysis of reasonable alternatives, and an identification of mitigation measures to minimize any significant adverse environmental impacts. Section 3777(a) also requires the Regional Water Board to complete an environmental checklist as part of its substitute environmental documents.

Any water quality control plan, state policy for water quality control, and any other components of California's water quality management plan as defined in Code of Federal Regulations, title 40, sections 130.2(k) and 130.6, proposed for board approval or adoption must include or be accompanied by Substitute Environmental Documentation (SED) and supported by substantial evidence in the administrative record. The Draft SED may be comprised of a single document or a compilation of documents. The Draft SED must be circulated prior to board action approving or adopting a project, as specified in sections 3778 and 3779. The Draft SED shall consist of:

- a) A written report prepared for the board, containing an environmental analysis of the project;
- b) A completed Environmental Checklist (a sample of which is contained in Appendix II). The sample Environmental Checklist may be modified as appropriate to meet the particular circumstances of a project. The issues identified in the Environmental Checklist must be evaluated in the checklist or elsewhere in the SED; and
- c) Other documentation as the board may include.

The Draft SED shall include, at a minimum, the following information:

- a) A brief description of the proposed project;
- b) An identification of any significant or potentially significant adverse environmental impacts of the proposed project;
- c) An analysis of reasonable alternatives to the project and mitigation measures to avoid or reduce any significant or potentially significant adverse environmental impacts; and
- d) An environmental analysis of the reasonably foreseeable methods of compliance. The environmental analysis shall include, at a minimum, all of the following:
 - i. An identification of the reasonably foreseeable methods of compliance with the project;

- ii. An analysis of any reasonably foreseeable significant adverse environmental impacts associated with those methods of compliance;
- iii. An analysis of reasonably foreseeable alternative methods of compliance that would have less significant adverse environmental impacts; and
- iv. An analysis of reasonably foreseeable mitigation measures that would minimize any unavoidable significant adverse environmental impacts of the reasonably foreseeable methods of compliance.

In the preparation of the environmental analysis described in d) above, the board may utilize numerical ranges or averages where specific data are not available; however, the board shall not be required to engage in speculation or conjecture. The environmental analysis shall take into account a reasonable range of environmental, economic, and technical factors, population and geographic areas, and specific sites, but the board shall not be required to conduct a site-specific project level analysis of the methods of compliance, which CEQA may otherwise require of those agencies who are responsible for complying with the plan or policy when they determine the manner in which they will comply.

As to each environmental impact, the SED shall contain findings as described in State CEQA Guidelines section 15091, and if applicable, a statement described in section 15093.

If the board determines that no fair argument exists that the project could result in any reasonably foreseeable significant adverse environmental impacts, the SED shall include a finding to that effect in lieu of the analysis of project alternatives and mitigation measures.

If the board determines that no fair argument exists that the reasonably foreseeable methods of compliance with the project could result in any reasonably foreseeable significant adverse environmental impacts, the SED shall include a finding to that effect in lieu of the analysis of alternative methods of compliance and associated mitigation measures.

Requirements of Public Resources Code section 21159

Public Resources Code section 21159 has the same minimum requirements for the environmental analysis which the Regional Water Board is also required to fulfill along with the same considerations. Section 21159(c) requires that the environmental analysis take into account a reasonable range of:

- a) Environmental, economic, and technical factors,
- b) Population and geographic areas, and
- c) Specific sites.

A "reasonable range" does not require an examination of every site, but a reasonably representative sample of them. The statute specifically states that the section shall not require the agency to conduct a "project-level analysis" (Public Resources Code § 21159(d)). Rather, a project-level analysis must be performed by the local agencies that will implement the strategies and projects identified in the SNMP (Public Resources Code §21159.2). Notably, the Regional Water Board is prohibited from specifying the manner of compliance with its regulations (Cal. Water Code §13360), and accordingly,

the actual environmental impacts will necessarily depend upon the compliance strategy selected by the local agencies and other permittees.

State Water Board Finding

As set forth in the Policy, the State Water Board finds that the use of recycled water which supports the sustainable use of groundwater and/or surface water that is sufficiently treated so as not to adversely impact public health or the environment and which ideally substitutes for use of potable water is presumed to have a beneficial impact. Other public agencies are encouraged to use this presumption in evaluating the impacts of recycled water projects on the environment as required by the CEQA.

Public Participation Requirements for the CEQA Process

Pursuant to California Public Resources Code section 21083.9, a CEQA Scoping Meeting will be held to receive comments on the appropriate scope and content of substitute environmental documents supporting amendments to the Basin Plan to incorporate salt and nutrient management plans for groundwater basins in the Los Angeles Region. The purpose of this meeting is to scope the proposed projects and/or strategies for groundwater basin management and to determine, with input from interested agencies and persons, if those means would result in significant adverse impacts to the environment. Information garnered from this process will be considered during development of the draft SED and, where applicable, may be incorporated into the final document.

ROLES OF STAKEHOLDER GROUPS AND REGIONAL WATER BOARD STAFF IN THE CEQA PROCESS

Both Regional Water Board staff and stakeholder groups will be significantly involved in the environmental analysis for the SNMPs. Table 5-1 lists the different aspects of the CEQA process and identifies the roles of each party.

Таѕк	REGIONAL WATER BOARD	STAKEHOLDERS
LEAD AGENCY	Lead	
CEQA SCOPING MEETING	Co-Lead	Co-Lead
ENVIRONMENTAL ANALYSIS	Oversight	Lead
SED DEVELOPMENT	Oversight	Lead
DOCUMENT REVIEW	Lead	
RESPONSE TO COMMENTS	Lead - Regulatory	Lead - Technical
REVISIONS	Oversight/Review	Lead
PUBLIC HEARING	Lead	
PROJECT LEVEL EIR		Lead

TABLE 5-1: ROLES OF STAKEHOLDERS AND REGIONAL WATER BOARD STAFF IN THE CEQA PROCESS FOR BASIN PLAN AMENDMENTS

The CEQA scoping meeting will be held jointly by Regional Water Board staff and stakeholder groups, while the environmental analysis will be conducted primarily by the groundwater basin stakeholder groups with oversight and review by Regional Water Board staff. Following the release of the draft environmental document for public review, it is anticipated that there will be comments on its technical and regulatory aspects. The Regional Water Board will take the lead in responding to the regulatory comments, while stakeholders will be the lead for responding to technical comments. Any revisions

necessary in response to public comments will be the purview of the stakeholder groups with oversight by Regional Water Board staff. Preparation of the environmental documentation for consideration and adoption by the Regional Water Board will be the responsibility of Regional Water Board and staff. Finally, once the SNMPs have been adopted and specific projects are to be implemented, basin stakeholders will be responsible for the development of project-specific environmental analysis and other related CEQA requirements.

TIMELINE FOR THE CEQA PROCESS IN RELATION TO SNMP DEVELOPMENT

The SED will be considered by the Regional Water Board as part of the adoption of the implementation provisions contained in the SNMPs. Approval of the SED is separate from approval of a specific project alternative or a component of an alternative. Approval of the SED refers to the process of: (1) addressing comments, (2) confirming that the Regional Water Board considered the information in the SED, and (3) affirming that the SED reflects independent judgment and analysis by the Regional Water Board - CEQA Guidelines Section 10590 and 15090 (Title 14 of CCR).

Stakeholders are encouraged to begin the CEQA process once potential basin management strategies have been identified during SNMP development. The CEQA scoping meeting should be held early enough in the process for consideration of public comments during the development of the substitute environmental document. Ideally the SED should be completed at the same time as the SNMP for timely consideration and adoption by the Regional Water Board.

6. BOARD ADOPTION OF SNMPS

As stated in the Policy: Salt and nutrient plans shall be completed and proposed to the Regional Water Board within five years from the date of this Policy unless a Regional Water Board finds that the stakeholders are making substantial progress towards completion of a plan. In no case shall the period for the completion of a plan exceed seven years.

Stakeholders are encouraged to complete and submit SNMPs for each basin by May 2014 as specified in the Policy. However, the Policy allows for an extension where significant progress has been made but this deadline cannot be met. For this purpose, the Regional Water Board will consider "significant progress" as follows: (i) upon completion of a collaborative stakeholder developed basin wide monitoring plan that meets the requirements set forth in the Policy, (ii) completion of the salt/nutrient source identification, loading and linkage analysis, and (iii) commencement of the development of implementation strategies for basin management. Stakeholders will also be required to make a showing that completion by the May 2014 deadline is infeasible. SNMPs that have not achieved significant progress may warrant greater Regional Board involvement or Regional Board developed plans, and will be addressed on a case-by-case basis.

Within one year of the receipt of a proposed salt and nutrient management plan, the Regional Water Boards shall consider for adoption revised implementation plans, consistent with Water Code section 13242, for those groundwater basins within their regions where water quality objectives for salts or nutrients are being, or are threatening to be, exceeded. The implementation plans shall be based on the salt and nutrient plans required by this Policy.

The Regional Water Board expects to adopt the implementation provisions of each SNMP within one year of submission by basin/sub-basin stakeholders. State Water Board staff have provided templates for these Basin Plan amendments (see Appendix I) as a guide to the scope of information to be provided in the amendment language. Table 6-1 provides a tentative schedule of stakeholder tasks and submissions.

Tasks	Date
CEQA Scoping Meeting	June 2013
Initial Draft SNMP & CEQA submittal	November 2013
Final Draft SNMP & CEQA submittal	May 2014
Regional Water Board Consideration and Adoption	May 2015 and beyond

TABLE 6-1: TENTATIVE SCHEDULE OF STAKEHOLDER SUBMISSIONS

Regional and State Water Board Resources

Regional Water Board staff expects to continue working collaboratively with groundwater basin stakeholders during the SNMP development process, as well as through the Board adoption process. In addition to staff assigned for this purpose, the following resources are available to stakeholders to facilitate the process.

Regional Water Board SNMP website:

www.waterboards.ca.gov/losangeles/water issues/programs/salt and nutrient manage ment/index.shtml

SNMP E-mail list subscription: http://www.waterboards.ca.gov/resources/email_subscriptions/reg4_subscribe.shtml

Groundwater Ambient Monitoring and Assessment (GAMA) website: <u>www.waterboards.ca.gov/losangeles/water_issues/programs/sgama/geotracker_gama.h</u> <u>tml</u>

State Water Board website: http://www.swrcb.ca.gov/water_issues/programs/water_recycling_policy/index.shtml

7. REFERENCES

California Department of Water Resources. (October 2003) "*California's Groundwater*". Bulletin-118 – Update 2003.

http://www.water.ca.gov/pubs/groundwater/bulletin 118/california's groundwater bullet in 118 - update 2003 /bulletin118 entire.pdf

California Regional Water Quality Control Board – Los Angeles Region. (1994 with Chapter 2 update 2011). "Water Quality Control Plan for the Coastal Watersheds of Los Angeles and Ventura Counties",

http://www.waterboards.ca.gov/losangeles/water_issues/programs/basin_plan/wqs_list.s html

California Regional Water Quality Control Board – Los Angeles Region. (July 8, 2010). "Ventura County Municipal Separate Storm Sewer (MS4) Permit" Order No. R4-2010-0108.

http://www.waterboards.ca.gov/losangeles/water_issues/programs/stormwater/municipal/ventura_ms4/AdoptedVenturaCountyms4/Order.pdf

California Regional Water Quality Control Plan – Santa Ana Region. (January 22, 2004). *"Resolution Arnending the Water Quality Control Plan for the Santa Ana River Basin to Incorporate an Updated Total Dissolved Solids (TDS) and Nitrogen Management Plan for the Santa Ana Region Including Revised Groundwater Subbasin Boundaries, Revised TDS and Nitrate-Nitrogen Quality Objectives for Groundwater, Revised TDS and Nitrogen Wasteload Allocations, and Revised Reach Designations, TDS and Nitrogen Objectives and Beneficial Uses for Specific Surface Waters". Resolution No. R8-2008-0001. http://www.waterboards.ca.gov/santaana/board_decisions/adopted_orders/orders/2004/04_0
01.pdf*

State Water Resources Control Board. (February 3, 2009). "*Recycled Water Policy*". Resolution 2009-0011.

http://www.waterboards.ca.gov/water_issues/programs/water_recycling_policy/docs/recy_cledwaterpolicy_approved.pdf

State Water Resources Control Board. (2009) "2009 Municipal Wastewater Recycling Survey Results".

http://www.waterboards.ca.gov/water_issues/programs/grants_loans/water_recycling/mu nirec.shtml

State Water Resources Control Board. (November 8, 2010). "*Staff Report – Constituents of Emerging Concern (CEC) Monitoring for Recycled Water*". <u>http://www.waterboards.ca.gov/water_issues/programs/water_recycling_policy/docs/cec</u> 111610/staffreport.pdf

State Water Resources Control Board (October 28, 1968). "Statement of Policy with Respect to Maintaining High Quality of Waters in California". Resolution No. 68-016. http://www.waterboards.ca.gov/board_decisions/adopted_orders/resolutions/1968/rs68_016.pdf State Water Resources Control Board. GeoTracker GAMA Groundwater Information System Webpage.

http://www.waterboards.ca.gov/water_issues/programs/gama/geotracker_gama.shtml

U.S. Geological Survey. (2003) "Framework for a Ground-Water Quality Monitoring and Assessment Program for California" WRIR 03-4166.

http://www.waterboards.ca.gov/water_issues/programs/gama/docs/usgs_rpt_72903_wri 034166.pdf

APPENDIX C

PRECIPITATION ON THE VALLEY FLOOR, MOUNTAIN WATERSHED, AND LOW HILLS WATERSHED

APPENDIX C. PRECIPITATION ON THE VALLEY FLOOR	. MOUNTAIN WATERSHED	AND LOW HILLS WATERSHED

	PRECIPITATION C	IN THE VAL	LEY FLOOR,	MOUNTAIN	WATERSHE	D, AND LOV	V HILLS WA	TERSHED																			
column #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27 28
Water Year	Annual preci San Gabriel V		ecording st	ations, inche	25						San Gabriel N	Aquataina										C-	an Gabriel L				
(Oct-Sept)	95	108	167	387	610	742	1037	1041	1140		63	68	89	144	223	235	334	338	390	425	683		96	201	356	1114	1260 mean
(Oct Sept)					in/					- in/yr -	05						/vr			425		- in/yr -		201	in/yr		in/yr -
1920/21					,	<i>y</i> .				, ,.							/ .					, y.			17.87		17.87
1921/22																									23.29		23.29
1922/23																									12.48		12.48
1923/24																									10.21		10.21
1924/25					12.85					12.85															10.61		10.61
1925/26					22.42					22.42															18.61		18.61
1926/27					25.13					25.13		30.04										30.04		23.26	21.60		22.43
1927/28	14.47	12.92			13.59					13.66	16.37	15.28	14.90									15.52	14.66	16.64	15.03		15.44
1928/29	13.94	14.41	16.93		16.42					15.43	24.04	20.18	18.20	19.42								20.46	14.03	14.59	12.49		13.70
1929/30	15.16	13.90	16.69		15.79					15.39	21.85	18.19	19.33	19.44	22.26	20.89						20.33	13.49	13.43	13.80		13.57
1930/31	15.65	15.80	17.93		17.63					16.75	19.10	20.22	18.51	17.79	20.85	22.18			19.75			19.77	12.45	15.14	12.57		13.39
1931/32	22.56	19.22	24.23		22.37					22.10	28.13	31.28	26.59	27.69	28.63	27.74	25 70		30.59			28.66	20.88	18.74	19.55		19.72
1932/33	11.96	11.54 18.75	15.05		16.16					13.68	17.13	16.08	12.99	17.35	15.00	21.01	25.70	20 60	17.25			17.81	10.39	11.95	11.16		11.17
1933/34 1934/35	20.61 25.16	18.75 22.52	21.97 26.73	14.20	21.38 26.98					20.68 23.12	22.40 28.70	24.23 25.41	24.59 27.50	23.76 30.02	25.10 30.91	24.12 33.04	27.16 43.79	30.68 45.73	26.57 31.64			25.40 32.97	19.20 22.68	16.21 22.72	14.00 21.16		16.47 22.19
1934/35	15.69	13.16	17.80	14.20	20.98 15.73					15.28	28.70	23.41 19.91	27.50	20.79	21.57	23.79	43.79 24.07	43.73 28.72	23.29			22.61	14.55	13.88	11.69		13.37
1936/37	31.45	24.62	32.39	24.31	28.79					28.31	36.26	34.00	36.27	36.98	39.80	41.78	50.01	53.21	39.73			40.89	27.71	28.17	24.43		26.77
1937/38	28.28	25.09	32.92	24.95	31.39					28.53	36.97	39.83	36.76	39.22	40.44	42.47	55.34	58.89	40.62	44.33		43.49	27.34	26.09	24.54		25.99
1938/39	18.35	16.84	22.35	18.30	23.71					19.91	26.59	26.00	20.44	25.04	24.87	30.44	34.59	39.60	26.96	29.41	3.30	26.11	18.39	16.78	19.17		18.11
1939/40	16.11	13.78	14.98	14.43	17.05	14.38				15.12	21.22	20.46	18.65	19.49	21.45	22.09	23.02	27.84	21.19	20.11	19.74	21.39	14.58	14.01	12.98		13.86
1940/41	38.77	37.02	41.71	33.39	46.41	37.79				39.18	47.59	46.83	37.71	48.85	46.24	55.42	69.92	74.13	50.20	53.30	53.34	53.05	36.96	35.19	33.72		35.29
1941/42	12.61	13.23	14.75	11.50	15.13	14.51				13.62	18.24	18.32	14.62	16.88	16.16	19.06	20.57	21.84	17.50	17.59	16.48	17.93	12.31	13.73	12.45		12.83
1942/43	28.49	21.69	33.63	22.96	32.83	25.97				27.60	48.63	42.24	35.49	45.65	39.19	48.99	60.09	64.85	42.10	47.56	46.00	47.34	23.89	22.77	23.20		23.29
1943/44	21.42	20.38	24.19	20.47	25.55	22.05				22.34	28.60	29.76	25.00	27.30	29.78	34.55	45.73	42.50	29.49	33.23	29.69	32.33	18.78	19.96	10.14		16.29
1944/45	19.40	13.38	17.04	16.95	16.87	13.99				16.27	16.06	24.31	24.96	21.37	29.30	23.86	24.64	32.61	26.13	28.89		25.21	17.01	15.01	16.83		16.28
1945/46	16.05	13.07	15.81	14.61	16.50	13.91				14.99	20.21	21.58	19.37	20.13	23.70	22.38	34.93	33.25	26.81	28.88	20.73	24.72	14.98	15.22	15.31		15.17
1946/47 1947/48	15.07 10.53	14.91 9.88	20.31 10.92	14.56 10.16	20.94 10.50	18.77 9.90				17.43 10.32	24.17 12.24	25.84 13.33	20.69 11.63	25.28 12.60	25.73 14.60	30.02 13.52	35.54 16.43	40.99 18.73	26.19 12.91	29.31 13.88	26.89 12.16	28.24 13.82	14.30 10.31	15.71 10.30	12.81 8.61		14.27 9.74
1948/49	12.32	10.33	10.92	10.10	10.30	10.39				10.32	15.35	16.73	16.08	12.00	14.00	13.52	16.78	21.40	17.22	15.88	14.58	16.82	12.80	10.30	9.80		11.02
1949/50	14.00	13.46	16.12	12.14	15.66	13.88		13.60		14.12	19.07	20.25	17.93	19.75	20.81	21.31	21.46	25.72	19.58	20.61	17.05	20.32	14.08	13.14	11.57		12.93
1950/51	9.63	8.64	11.21	9.15	11.06	8.60	11.14	8.92		9.79	13.95	14.85	11.71	13.05	13.53	12.69	11.76	14.19	13.15	12.69	11.61	13.02	9.53	9.74	8.89		9.39
1951/52	29.01	27.38	35.06	28.15	36.75	32.63	34.76	28.35		31.51	40.00	41.74	34.41	38.29	41.87	44.17	54.99	57.17	42.46	49.19	37.47	43.80	27.45	32.26	26.93		28.88
1952/53	12.54	11.04	13.54	10.36	13.85	12.55	13.05	10.02		12.12	16.07	16.12	15.07	14.83	16.09	15.37	17.95	20.98	15.89	16.71	12.18	16.11	11.87	11.87	11.78		11.84
1953/54	17.50	13.97	17.34	15.63	16.47	14.55	16.57	12.95		15.62	20.52	19.75	21.30	19.62	23.39	21.75	27.67	28.28	22.62	25.60		23.05	16.45	16.94	16.10		16.50
1954/55	13.29	13.92	14.82		16.05	12.68	13.94	11.83		13.79	17.57	19.78	15.08	17.95	18.21	19.78	24.46	25.95	18.18	19.88		19.68	12.17	12.80	13.02		12.66
1955/56	16.44	17.63	19.12		18.66	17.74	18.64	16.32		17.79	21.26	22.61	19.43	21.48	22.40	22.07	22.96	27.99	24.43	24.32	18.40	22.49	15.84	17.82	14.53		16.06
1956/57	14.62	14.54	15.82		15.63	12.30	15.10	12.51		14.36	19.08	20.01	17.35	18.00	20.28	20.13	21.72	25.40	20.57	21.82	16.48	20.08	12.62	12.02	10.98	7.76	10.85
1957/58	34.25	27.73	33.67	29.56	30.88	27.65	31.09	26.69		30.19	34.66	36.28	39.88	35.05	44.62	37.53	55.29	57.23	39.93	45.95	33.10	41.77	31.92	28.52	28.91	24.82	28.54
1958/59	9.58	7.56	11.25 11.24	8.56 10.39	9.96	8.71	11.60 11.35	8.86 8 77		9.51 10.47	12.23 13.28	13.08 14.02	10.91 12.50	12.99	13.54 14.51	12.32 13.11	17.96 15.79	17.01 16.94	14.48 14.17	15.82 14.24	10.81	13.74 13.75	8.04	8.38 10.62	8.23 10.11	6.45 9.74	7.78 10.16
1959/60 1960/61	10.35 5.99	11.50 5.69	7.02	5.69	9.58 7.28	10.56 6.13	6.89	8.77 5.23	5.04	6.11	8.58	9.24	8.82	12.73 8.75	9.57	9.63	11.84	10.94	10.30	14.24 11.57	9.96 8.18	9.91	10.18 6.33	5.89	5.53	5.26	5.75
1961/62	20.80	24.31	26.44	19.52	24.24	22.47	25.89	22.64	22.45	23.20	27.61	9.24 31.58	23.23	30.37	26.89	9.05 29.56	46.62	45.90	31.51	33.73	21.44	31.68	19.52	23.74	5.55 17.57	19.84	20.17
1962/63	12.53	11.49	12.87	11.71	11.69	11.28	13.31	10.98	11.07	11.88	16.40	17.38	16.12	16.52	18.47	17.41	19.06	22.71	16.64	17.37	15.50	17.60	11.50	12.77	13.03	9.41	11.68
1963/64	10.20	8.87	13.95	8.86	10.51	10.36	12.94	10.30	9.65	10.63	15.59	15.64	13.70	16.13	15.02	15.10	18.01	20.15	14.47	15.73	12.16	15.61	9.22	10.11	8.81	7.77	8.98
1964/65	15.95	15.11	18.91	15.43	16.30	16.24	17.41	14.17	13.85	15.93	25.11	24.61	18.32	23.42	21.56	25.29	24.69	34.34	20.98	22.32	19.10	23.61	14.41	16.47	15.33	13.01	14.81
1965/66	18.14	19.67	25.71	18.12	24.18	22.04	24.90	19.80	21.17	21.53	32.37	31.59	23.60	32.86	27.66	38.46	48.11	56.30	31.43	39.56	36.04	36.18	16.59	18.50	15.50	18.95	17.39
1966/67	25.96	25.19	30.94	23.01	26.05	25.64	28.96	24.93	23.66	26.04	37.38	39.68	38.82	34.23	44.85	36.23	50.89	55.95	42.21	47.42	29.84	41.59	24.16	24.94	22.38	20.86	23.09
1967/68	14.93	14.48	13.77	13.42	16.07	13.26	13.43	13.74	14.59	14.19	16.63	19.44	15.95	16.25	17.80	17.95	23.75	26.30	16.37	19.04	19.90	19.03	14.71	14.05	13.66	11.63	13.51
1968/69	32.55	27.91	40.80	30.34	32.76	33.99	38.98	30.63	31.06	33.22	62.15	52.47	45.70	53.01	52.00	55.82	78.97	81.54	53.65	65.09	46.63	58.82	30.76	31.34	28.23	25.90	29.06
1969/70	11.38	10.77	14.54	10.72	11.42	12.22	13.99	12.96	12.03	12.23	19.21	20.15	13.52	17.20	16.48	17.42	23.98	21.37	18.12	20.35	15.63	18.49	11.51	11.04	11.57	9.38	10.88
1970/71	12.57	13.19	16.79	11.95	15.78	13.71	15.41	14.06	13.20	14.07	23.75	21.02	16.95	20.57	18.41	23.18	26.35	27.70	19.04	21.16	20.72	21.71	11.97	13.47	11.05	12.88	12.34
1971/72	9.29	8.55	8.60	8.84	8.76	8.85	8.10	7.95	7.81	8.53	11.98	10.86	10.40	10.40	12.48	11.31	16.27	13.25	10.60	13.15	10.67	11.94	9.04	8.90	8.11	6.82	8.22
1972/73 1973/74	21.77 16.08	21.24 16.69	27.68 18.91	19.30 15.17	25.80 18.70	24.52 17.11	26.20 17.56	22.00 15.58	20.86 15.77	23.26 16.84	34.72 25.62	30.97 24.08	25.22 19.09	30.47 23.05	29.35 22.44	34.06 28.23	44.86 28.34	38.95 37.01	31.94 23.00	36.24 25.33	25.94 22.50	32.97 25.34	20.97 15.05	21.10 16.04	20.86 14.78	20.32 13.63	20.81 14.88
1973/74	15.08	13.39	18.91	12.88	18.70	17.11	17.56	13.58	15.00	16.84	25.62	24.08 21.05	19.09 19.61	23.05 19.09	22.44 21.29	28.23	28.34 25.44	28.24	23.00	25.33 21.80	22.50 17.56	25.34	15.05 14.57	16.04	14.78 13.65	13.63	14.88
1975/76	12.04	13.39	16.00	12.88	13.49	13.20	15.19	11.13	12.26	14.73	19.98	20.20	15.86	20.23	19.95	25.96	26.90	31.53	17.77	20.33	19.37	21.70	14.57	13.10	13.05	10.48	11.39
1976/77	16.32	12.98	15.80	13.10	15.64	14.44	14.82	12.62	13.41	14.35	18.60	21.10	16.96	17.37	19.53	23.30	24.52	22.33	17.18	18.80	17.63	19.57	14.75	12.10	14.63	10.40	12.97
1977/78	41.53	35.01	45.74	37.70	41.59	39.61	40.17	37.93	38.72	39.78	55.71	55.39	51.42	54.00	56.15	59.12	83.69	79.34	56.89	62.60	47.66	60.18	39.06	40.00	35.65	32.01	36.68
•									1	- 1											1	1					i -1

APPENDIX C. PRECIPITATION ON THE VALLEY FLOOR, MOUNTAIN WATERSHED, AND LOW HILLS WATERSHED

APPENDIX C. Pr			2		- WATERSITE				0	10	11	12	13	14	15	10	17	18	10	20	21	22	23	24	25	26	27	20
column #	Annual preci	nitation at r	ocording sta	4 ations inch		0	/	0	9	10	11	12	15	14	15	10	17	10	19	20	21	22	23	24	25	20	27	20
Water Year	San Gabriel \		ecorumg sta	ations, men	103					S	an Gabriel N	Anuntains										Sa	n Gabriel Lo	w Hills				
(Oct-Sept)	95	108	167	387	610	742	1037	1041	1140 r		63	68	89	144	223	235	334	338	390	425	683 r		96	201	356	1114	1260 r	mean
1978/79	24.07	22.33	22.84	22.97	24.61	22.86	21.48	20.61	20.05	22.42	26.92	27.56	26.29	25.86	29.40	29.97	40.28	47.79	28.11	30.39	22.94	30.50	23.45	25.80	21.57	19.45	1200	22.57
1979/80	36.24	33.62	40.95	30.81	39.63	34.59	35.10	32.46	32.72	35.12	51.09	49.47	42.96	47.29	48.35	51.56	60.43	55.81	50.42	58.22	39.13	50.43	33.76	30.00	31.36	27.90		30.76
1980/81	10.33	9.44	11.72	10.86	11.67	11.65	10.44	9.54	9.83	10.61	14.72	13.98	12.05	13.61	13.96	15.48	18.85	26.89	15.16	16.38	13.95	15.91	9.74	9.30	9.42	9.05		9.38
1981/82	22.08	16.72	23.38	18.71	20.56	14.46	18.73	16.22	16.34	18.58	28.79	28.79	26.68	26.31	31.66	30.08	37.61	40.03	30.46	33.70	26.12	30.93	19.94	15.20	17.24	13.66		16.51
1982/83	36.29	36.14	47.33	35.30	48.73	42.73	39.90	38.75	38.02	40.35	58.61	55.56	47.32	53.91	55.30	65.46	72.77	95.32	49.21	58.46	53.56	60.50	37.80	36.30	32.86	34.09		35.26
1983/84	10.50	8.78	12.82	9.44	11.28	9.27	10.82	8.35	8.19	9.94	19.87	16.77	15.19	17.54	15.19	16.01	19.62	23.99	14.14	15.63	13.40	17.03	10.67	11.10	9.25	8.53		9.89
1984/85	14.88	13.70	16.34	14.70	15.72	11.39	16.22	14.30	12.16	14.38	21.54	19.87	18.62	18.20	20.93	18.64	27.71	34.47	16.63	23.71	16.97	21.57	14.42	17.10	13.73	12.65		14.48
1985/86	22.97	20.39	26.11	19.83	24.28	24.06	23.76	21.56	27.33	23.37	32.90	31.47	27.94	28.16	30.91	30.54	41.14	49.42	29.36	34.19	29.88	33.26	23.33	23.90	20.73	18.82	21.25	21.61
1986/87	10.26	6.86	10.55	8.64	10.09	8.17	8.69	7.96	7.30	8.72	12.69	11.84	11.04	12.16	11.68	12.24	14.10		9.72	11.46	9.31	11.62	9.57	9.30	9.22	6.12	7.69	8.38
1987/88	16.65	13.31	21.14	15.05	17.74	16.96	16.93	15.24	13.39	16.27	27.82	26.42	23.20	25.92	26.81	27.58	38.13	45.52	24.38	30.13	19.99	28.72	16.79	15.90	13.38	11.06	13.72	14.17
1988/89	13.75	10.22	13.68	11.66	12.61	12.07	10.77	10.44	10.19	11.71	19.85	20.31	18.67	18.01	22.82	18.63	24.15	30.89	20.02	20.55	17.14	21.00	14.00	12.40	11.78	8.59	6.69	10.69
1989/90	12.04	11.41	12.34	11.21	11.62	11.34	11.56	9.37	10.35	11.25	17.90	16.25	13.61	14.89	15.95	15.78	17.13	19.69	12.87	15.42	13.43	15.72	12.11	11.00	9.62	10.04	10.36	10.63
1990/91	17.00	13.57	19.85	14.76	18.69	15.34	18.11	16.90	12.75	16.33	24.52	22.49	21.63	22.61	23.43	25.50	26.88	35.79	20.28	21.99	21.46	24.23	18.31	16.40	13.97	13.11	15.93	15.54
1991/92	20.02	18.02	27.08	22.42	30.61	23.43	23.43	20.61	16.57	22.47	36.04	34.30	28.21	35.92	32.59	44.88	52.35	48.69	31.12	36.66	32.59	37.58	24.27	22.70	20.96	17.41	20.48	21.16
1992/93	39.66	34.55	43.41	32.33	38.68	34.18	40.63	36.63	32.22	36.92	53.58	54.18	52.02	52.79	53.56	66.55	77.02	64.78	54.00	64.58	49.31	58.40	40.08	36.30	35.18	31.88	37.57	36.20
1993/94	13.81	9.91	13.54	10.99	10.95	10.55	12.67	10.54	12.01	11.66	17.36	16.31	15.13	16.77	17.13	16.69	18.92	20.03	14.38	16.95	18.64	17.12	12.44	11.80	10.89	10.53	10.47	11.23
1994/95	28.26	28.25	36.60	28.41	36.51	28.88	33.71	32.07	28.03	31.19	50.88	47.70	39.31	47.10	45.78	45.44	58.57	61.80	45.20	50.16	43.38	48.67	29.41	32.70	27.29	26.88	27.58	28.77
1995/96	17.46	15.07	21.13	14.30	16.59	16.03	19.48	17.08	16.02	17.02	29.41	29.29	21.73	28.64	25.66	22.64	25.37	34.39	26.02	27.86	21.44	26.59	15.89	16.40	12.96	15.69	13.34	14.86
1996/97	18.05	16.34	21.81	17.71	17.52	15.08	19.39	18.31	15.27	17.72	30.18	27.19	24.37	26.24	27.47	22.73	28.78	33.28	26.09	30.40	21.70	27.13	18.47	18.62	18.41	17.86	27.00	18.34
1997/98	33.82	35.91	40.28	33.29	39.02	37.74	38.98	35.47		36.81	48.80	47.81	41.31	48.43	49.29	52.29	67.41	64.38	46.47	54.64	38.45	50.84	35.84	35.81	35.01	36.84	37.69	36.24
1998/99 1999/00	8.62 14.22	8.27 14.44	10.60 15.95	7.44 13.10	11.06 18.28	7.03 13.93	8.88 15.28	8.22 15.27		8.77 15.06	14.50 20.71	14.10 19.59	11.21 17.80	12.88 18.17	15.34 20.17	14.93 18.82	15.94 29.41	18.19 31.96	12.88 18.62	14.24 21.11	13.86 20.02	14.37 21.49	7.98 14.30	8.57 13.48	7.05 11.87	7.54 12.18	7.67 13.12	7.76 12.99
2000/01	14.22	14.44	13.95	15.10	18.28	15.95	15.28	15.27		15.00	20.71	23.13	17.80	20.07	20.17	20.29	30.51	32.37	18.02	23.11	20.02	23.15	14.30	15.48 15.91	14.58	12.18	14.55	12.99
2000/01	5.96	6.22	7.37	6.52	7.82	6.47	7.30	7.16		6.85	9.81	11.72	10.33	9.63	10.60	7.88	9.80	13.26	9.63	10.93	9.78	10.31	6.60	6.01	5.48	4.65	5.54	5.66
2002/03	20.65	17.11	22.44	18.19	19.36	19.36	18.84	19.94		19.49	28.94	35.57	26.56	25.45	30.22	24.48	34.92	39.42	26.92	26.05	22.86	29.22	19.99	20.20	19.44	17.60	19.36	19.32
2003/04	14.26	11.25	16.84	10.58	13.56	11.46	12.03	12.88		12.86	16.71	20.08	14.12	16.86	15.94	16.79	22.57	12.47	15.55	18.07	13.88	16.64	12.77	12.24	12.99	11.38	12.78	12.43
2004/05	42.65	27.82	57.78	38.66	56.47	11.10	47.02	47.51		45.42	63.29	78.31	54.90	60.67	61.36	71.92	90.23	63.76	61.30	72.36	63.41	67.41	44.12	40.27	39.55	32.70	37.93	38.91
2005/06	15.64	12.42	22.71	13.33	17.56	16.24	17.68	17.26		16.61	28.53	34.33	22.90	24.85	27.98	26.64	30.23	17.86	23.31	28.18	21.95	26.07	16.25	13.94	13.61	13.28	13.90	14.20
2006/07	4.79	4.91	7.25	4.97	6.24	5.04	6.81	5.77		5.72	10.88	14.03	7.89	9.26	9.56	9.43	9.94	5.80	11.34	10.62	8.74	9.77	6.00	5.43	4.78	4.31	4.76	5.06
2007/08	17.30	14.64	21.17	14.29	20.77	13.07	15.28	21.06		17.20	28.06	20.35	23.97	26.93	24.45	29.10	36.98	24.17	26.92	31.81	25.40	27.10	16.17	12.63	13.45	14.67	12.85	13.95
2008/09	15.56	10.99	11.48	13.89	16.09	9.78	12.57	12.83		12.90	17.73	16.47	16.00		17.83	18.94	24.01	11.71	16.70	19.19	18.18	17.68	14.59	13.51	14.57	11.15	14.36	13.64
2009/10	20.76	16.78	21.66	18.74	25.11		16.29	19.20	22.47	20.13	30.56	24.81	25.37	28.81	27.05	31.95	45.83	38.71	28.06	33.42	6.22	29.16	20.04	16.53	18.27	17.03	17.96	17.97
2010/11	23.73	21.65	29.43	25.21	28.24			24.59	24.94	25.40	38.44	36.59	34.76	37.59	38.95	44.44	45.17	27.38	36.02	42.23		38.16	25.35	23.23	24.21	20.26	22.57	23.12
max	42.65	37.02	57.78	38.66	56.47	42.73	47.02	47.51	38.72	45.42	63.29	78.31	54.90	60.67	61.36	71.92	90.23	95.32	61.30	72.36	63.41	67.41	44.12	40.27	39.55	36.84	37.93	38.91
min	4.79	4.91	7.02	4.97	6.24	5.04	6.81	5.23	5.04	5.72	8.58	9.24	7.89	8.75	9.56	7.88	9.80	5.80	9.63	10.62	3.30	9.77	6.00	5.43	4.78	4.31	4.76	5.06
mean	18.50	16.63	21.28	17.03	20.36	17.30	19.19	17.43	17.63	18.57	26.25	26.25	22.89	25.23	26.25	27.67	34.37	36.07	25.87	28.97	22.98	27.28	17.84	17.67	16.34	15.29	16.80	16.84
2006-2011	16.43	13.79	18.20	15.42	19.29	9.30	12.74	16.69	23.71	16.27	25.13	22.45	21.60	25.65	23.57	26.77	32.39	21.55	23.81	27.45	14.64	24.37	16.43	14.27	15.06	13.48	14.50	14.75
2001-2011	18.13	14.38	21.81	16.44	21.12	11.63	17.09	18.82	23.71	18.26	27.30	29.23	23.68	26.67	26.39	28.16	34.97	25.45	25.58	29.29	21.16	27.15	18.19	16.40	16.64	14.70	16.20	16.43

Station Name

63 Santa Anita Dam - Debris Basin 68 Sawpit Dam 89 San Dimas Dam 95 San Dimas Fire Warden 96 Puddingstone Dam 108 El Monte Fire Station 144 Sierra Madre Dam 167 Arcadia Pumping Plant
201 Hacienda Heights Fire Station
223 Big Dalton Dam
235 Henninger Flats
334 Cogswell Dam
338 Mt. Wilson-Observatory
356 Cal Poly Pomona

387 Covina City Yard
390 Morris Dam
425 San Gabriel Dam
610 Pasadena City Hall
683 Sunset Ridge
742 San Gabriel Fire Station
1037 Arcadia Arboretum

1041 Santa Fe Dam 1114 Whittier Narrows Dam 1140 Rosemead Fire Station 1257 San Jose Creek Reclamation Plant 1260 Spadra Landfill APPENDIX D

STREAMFLOW AT GAGING STATIONS

			ING STATIO					-	-		40	$11 = cum/(1 + c_1 + c_1)$	12	
column #	1	2	3	4	5	6		7	8	9	10	11 = sum(1 to 10)	12 Runoff	1 OUTFLOW
WATER YEAR												INFLOW	Volume+	TOTAL
(OCT-SEP)	F81	F82	F318	F317	F193	F194	U8		F274	F304	F312	TOTAL	(complete)	F263
									af/	yr				
1949-50	3,092	1,690						51	306			5,140	n	-
1950-51	2,358	1,013						6,231	64			9,670	n	
1951-52	9,046	5,299						66,123	2,090	202		82,560	n	· · ·
1952-53 1953-54	3,234	1,464						50,019	287 1,064	292		55,300	n	13,853
1953-54	3,776 3,015	2,484 1,876						25,029 85	707	25,413 21,645		57,770 27,330		10,989 9,249
1955-56	5,526	2,882		1,831				177	2,268	49,625			n	
1956-57	4,444	2,295	2,402	1,341				9,011	981	51,473				
1957-58	9,271	5,607	7,444	3,331				174,130	4,691	8,494				82,189
1958-59	3,020	2,027	2,848	1,356				8,198	2,194	1,613	1,091	22,350	n	33,685
1959-60	2,723	1,819	2,416	1,225	465			0	2,260	1,303	3,428	15,640	n	36,102
1960-61	1,794	1,274	1,589	730	216	262		1,254	2,220	9,011		-		47,720
1961-62	6,245	4,117	6,881	3,390	5,906	11,991		73,599	7,201	4,798		133,660	133,660	103,060
1962-63	2,872	1,763	2,984	1,510	709	1,183		712	4,108	3,358		24,740		42,427
1963-64	2,874	1,875	3,044	1,614	651	1,195		160	2,747	2,856		21,910	21,910	45,715
1964-65 1965-66	4,611 7,749	2,027 4,656	3,759 8,992	2,266 3,425	986 8,725	1,504 9,240		7,738 162,883	3,178 6,312	11,629 7,934		47,810 235,210	47,810 235,210	77,273 55,318
1965-66 1966-67	8,824	4,050 5,228	8,992 8,676	3,425 4,578	8,725 11,566	9,240		167,905	10,148	15,062			235,210 274,260	62,811
1967-68	4,748	5,228	8,070 0	4,578	11,500	10,021		23,060	4,306	16,903		66,880	274,200 n	26,235
1968-69	12,300	0	0	0	0	C		541,686	32,805	49,491		689,260	n	
1969-70	3,712	0	0	0	2,333	4,831		37,925	0			72,970	n	79,090
1970-71	5,163	0	0	0	2,430	4,179		22,758	0			57,580	n	55,040
1971-72	3,045	0	0	0	319	1,454	Ļ	11,084	0	2,996	12,923	31,820	n	32,722
1972-73	9,115	0	0	0	4,272	12,147		94,974	0	,			n	64,032
1973-74	5,720				2,084	6,491		44,025		6,672		89,080	n	60,510
1974-75	4,012	3,222	4,798	2,240	826	1,996		19,045	37,828	5,114		125,360		38,993
1975-76	3,724	2,870	3,894	2,537	1,046	1,276		20,127	40,674	2,733		96,570	96,570	32,850
1976-77 1977-78	4,317 12,255	3,178 9,336	3,625 21,317	2,109 6,787	734 25,506	2,362 51,106		15,749 419,954	10,000 67,873	3,901 47,042		62,360 714,220	62,360 714,220	17,232 256,747
1978-79	7,587	5,596	7,043	3,215	8,954	11,801		99,303	71,566	12,577		258,610	258,610	37,380
1979-80	12,989	8,352	27,838	6,969	49,912	33,216		326,271	59,830	38,290			620,480	202,740
1980-81	3,648	3,030	3,836	1,930	969	16,728		27,355	15,728			139,830	139,830	23,991
1981-82	4,289	2,870	5,412	3,094	2,473	9,551		57,241	36,455	8,028	24,016	153,430	153,430	23,133
1982-83	12,887	9,055	29,498	7,722	55,042	35,492		313,935	37,675	32,724	46,357	580,390	580,390	119,620
1983-84	2,654	2,006	3,252	2,263	6,375	14,746		48,853	23,395	4,101		125,300	125,300	22,365
1984-85	3,481	2,524	4,177	3,362	2,090	1,859		32,906	38,498	5,823		121,420	121,420	22,485
1985-86	6,571	4,395	4,800	5,962	4,895	11,773		94,725	26,385	9,391			205,610	31,363
1986-87	2,483	2,449	1,461	2,437	435	824		44,029	46,837	3,940		132,170	132,170	22,187
1987-88 1988-89	4,994 3,501	3,089 2,080	3,035 2,117	3,884 2,626	1,123 705	2,394 1,156		54,899 66,750	31,099 36,786	5,363 1,623		135,020 158,490	135,020 158,490	23,583 51,219
1989-90	3,431	3,228	2,117	2,020	618	897		46,061	38,559	1,023			153,030	28,247
1990-91	5,300	3,489	3,944	3,568	1,608	12,630		79,117	14,046			195,490		24,865
1991-92	9,899	4,115	10,304	8,043	13,964	26,731		149,508	7,252	20,383		310,420		30,472
1992-93	14,165	5,726	21,579	12,560	25,854	30,694		474,307	27,367	49,855				273,250
1993-94	5,040	1,640	2,123	4,662	1,623	2,671		41,858	4,471	4,808	7,186	76,080	76,080	25,990
1994-95	10,054	6,777	14,501	8,032	13,920	21,159		158,264	14,160				340,500	105,920
1995-96	5,075	5,466	5,729	3,758	3,267	31,993		89,814	9,922				199,600	34,717
1996-97	6,269	2,786	4,619	4,542	4,109	16,348		65,345	21,890	9,360				52,270
1997-98	14,647	6,593	14,056	9,637	15,993	23,538		263,960	16,232	28,234				168,620
1998-99 1999-00	4,401	1,564	1,989	3,022	717	2,496	•	23,972	5,236	4,587	18,952 58,896			25,729 42,575
1999-00 2000-01	7,385	4,122	4,683	4,324	1,511 2,107	2,447	,	42,950 47,243	20,527 16,023		,	,		
2000-01	5,453	2,187	1,683	1,902	818	710		47,415	21,442			-		
2002-03	9,647	5,113	5,347	4,662	1,925	4,374		85,270	24,362	10,857		-		32,740
2003-04	7,532	2,809	3,582	3,276	1,261	2,116		64,257	21,141			-	,	24,880
2004-05	19,787	8,154	27,629	12,039	30,962	32,040		541,290	55,694	42,619				
2005-06	8,596	3,434	4,597	4,173	3,044	9,033		155,590	12,467	14,063	75,230	290,230		51,930
2006-07	5,770	1,102	1,248	1,446	644	1,015		20,350	16,154					
2007-08	7,539	3,718	5,014	5,455	11,220	8,026		78,250	7,128	11,076			171,320	36,632
2008-09	6,629	2,557	3,116	3,197	1,422	7,295		25,482	9,081	7,540				20,859
2009-10	9,263	3,898	6,355	4,725	3,352	3,890		129,207	15,461	13,746				26,524
2010-11	5,263	2,742	4,510	3,235	4,980	18,385	1	124,329	13,782	8,665			223,450	29,271
Maximum	19,787	9,336	29,498	12,560	55,042	51,106	-	541,686	71,566	51,473		852,940	852,940	274,240
Minimum Mean: All data	1,794 6,374	0 3,244	0 6,151	0 3,564	0 6,667	0 10,505		0 95,545	0 17,426			5,140 188,052	18,750 226,299	558 58,324
Last 5 years Av		2,803	4,048	3,564	4,324	7,722	-	95,545 75,524	17,426	13,783		188,052	171,474	30,595
		_,505	.,545	3,314	.,524	.,	1	,		10,100	,000	· · · · · · · · · · · · · · · · · · ·		50,55

APPENDIX E

WATER YEAR AVERAGE OF SUBSURFACE FLOW FROM MAIN SAN GABRIEL BASIN TO CENTRAL BASIN

column #	To Central Basin		2	3		Puente
NATER	RIVER	CDWR		JLATION		Basin
OCT-SEP)	WATERMASTER	FALL	SPRIN		mean	24511
	CALCULATION		51 101	-		
		acre-feet				
L933-34	32,700				32,700	
1934-35	33,500				33,500	
1935-36	33,500				33,500	
1936-37	31,100				31,100	
1937-38	25,600				25,600	
1938-39	25,000				25,000	
1939-40	23,900				23,900	
1940-41	23,300				23,300	
1941-42	21,800				21,800	
1942-43	21,900				21,900	
1943-44	23,700				23,700	
1944-45	23,500				23,500	
1945-46	23,100				23,100	
1946-47	22,400				22,400	
1947-48	25,700				25,700	
1948-49	30,300				30,300	
1949-50	34,000				34,000	
1950-51	32,800				32,800	
1951-52	32,100				32,100	
1952-53	32,800				32,800	
1953-54	33,200				33,200	
1954-55	33,600				33,600	
1955-56	31,400				31,400	
1956-57	30,000				30,000	
1957-58	30,900				30,900	
1958-59	28,200				28,200	
1959-60	25,500				25,500	
1960-61						
1961-62						
1962-63						
1963-64						
1964-65		2	22,300	16,400	19,350	
1965-66		1	13,300	16,700	15,000	
1966-67		1	L4,600	20,900	17,750	
1967-68		2	25,200	25,000	25,100	
1968-69		2	23,800	25,600	24,700	
1969-70		2	25,900	20,700	23,300	
1970-71		2	22,500	19,000	20,750	
1971-72		2	23,500	23,200	23,350	
1972-73		Э	35,000	29,600	32,300	692
1973-74		2	25,000	21,800	23,400	796
1974-75		2	25,000	28,200	26,600	710
1975-76		2	24,300	31,800	28,050	732
1976-77			35,600	39,600		
1977-78			30,900	23,200		
1978-79			24,200	23,500		
1979-80		-	23,000	24,500	23,750	930

APPENDIX E. WATER YEAR AVERAGE OF SUBSURFACE FLOW INTO AND OUT OF SAN GABRIEL BASIN

column #	1	L	2	3	4	5
	To Central Basin					Puente
WATER	RIVER	CDWR		CALCULATION		Basin
(OCT-SEP)	WATERMASTER	FALL		SPRING	mean	
	CALCULATION					
		acre-feet				
1980-81			33,200	30,700	31,950	820
1981-82			29,200	28,500	28,850	845
1982-83			33,200	25,300	29,250	850
1983-84			27,500	26,000	26,750	798
1984-85			28,500	32,100	30,300	820
1985-86			32,000	29,900	30,950	840
1986-87			34,300	31,900	33,100	850
1987-88			31,200	37,100	34,150	880
1988-89			35,000	30,000	32,500	890
1989-90			33,100	32,100	32,600	910
1990-91			25,200	20,300	22,750	905
1991-92			16,700	18,900	17,800	925
1992-93			22,900	25,000	23,950	890
1993-94			25,600	27,800	26,700	845
1994-95			24,000	23,000	23,500	860
1995-96			26,500	29,200	27,850	810
1996-97			33,700	27,100	30,400	820
1997-98			29,100	24,200	26,650	840
1998-99			23,900	28,500	26,200	750
1999-00			28,900	29,700	29,300	760
2000-01			28,300	23,500	25,900	860
2001-02			28,400	26,900	27,650	890
2002-03			27,500	19,300	23,400	940
2003-04			18,000	23,000	20,500	960
2004-05			30,100	18,100	24,100	960
2005-06			20,700	24,900	22,800	860
2006-07			28,900	23,300	26,100	950
2007-08			42,600	33,800	38,200	940
2008-09			28,500	26,100	27,300	960
2009-10			33,600	23,200	28,400	945
2010-11			31,400	15,000	23,200	985
Maximum	34,000		42,600	39,600	38,200	990
Minimum	21,800)	13,300	15,000	15,000	660
All data	28,350)	27,360	25,620	27,170	850
Last 5 years Av			33,000	24,280	28,640	960
Last 10 years A	Ave.		28,970	23,360	26,170	940

APPENDIX E. WATER YEAR AVERAGE OF SUBSURFACE FLOW INTO AND OUT OF SAN GABRIEL BASIN

APPENDIX F

WATER PRODUCTION IN THE SAN GABRIEL BASIN

APPENDIX F. WATER PRODUCTION IN THE SAN GABRIEL BASIN, AS REPORTED BY SOURCE.

APPENDIX F. WATER	1	2	3	4 = (1) -(2) -(3)	5 = (1) - (2)	6
	WATER PRODU	JCTION IN MAIN SA	N GABRIEL BASI		5 (1) (1)	
			oduction by Sourc			
FISCAL YEAR			•			DEMARKO
(JULY-JUNE)	Total Production	USG-5 Diversion	Well Extraction			REMARKS
	(From Annual	(From Annual	(From Five-Year	Surface Water	San Gabriel	
	Reports)	Reports) (*1)	Plans)	(Calculated) (*2)	Production	
1973-74	235,438	0	221,089	14,349	235,438	
1974-75	223,131	0	207,648	15,483	223,131	
1975-76	242,246	2,239	226,016	13,992	240,008	
1976-77	212,886	2,655	196,034	14,197	210,231	
1977-78	198,388	2,982	181,237	14,169	195,406	
1978-79	218,456	3,486	198,534	16,436	214,970	
1979-80	226,111	3,191	207,493	15,427	222,920	
1980-81	233,970	3,131	213,549	17,290	230,840	
1981-82	222,396	2,854	203,540	16,003	219,543	
1982-83	212,206	2,256	192,389	17,560	209,949	
1983-84	238,655	1,907	218,028	18,721	236,748	
1984-85	244,682	2,396	224,500	17,786	242,286	
1985-86	248,802	2,601	229,077	17,124	246,201	
1986-87	256,147	2,484	235,370	18,293	253,663	
1987-88	251,855	3,751	233,165	14,939	248,104	
1988-89	256,667	3,727	233,250	19,691	252,940	
1989-90	253,977	1,716	238,896	13,365	252,261	
1990-91	234,807	2,734	221,270	10,802	232,073	
1991-92	223,691	2,214	201,750	19,727	221,477	
1992-93	239,353	3,214	214,544	21,596	236,139	
1993-94	246,831	3,224	220,786	22,820	243,606	
1994-95	246,657	3,178	226,251	17,229	243,479	
1995-96	272,100	3,150	250,011	18,940	268,951	
1996-97	282,786	3,305	256,789	22,693	279,481	
1997-98	257,432	3,393	235,986	18,054	254,039	
1998-99	268,505	3,353	242,937	22,215	265,152	
1999-00	282,195	3,508	261,676	17,011	278,687	
2000-01	274,204	3,285	250,889	20,031	270,919	
2001-02	267,133	3,439	247,876	15,818	263,694	
2002-03	240,509	3,018	241,682	4,687	237,491	(*3)
2003-04	255,908	3,058	258,384	7,196	252,850	(*4)
2004-05	250,264	2,998	234,978	12,289	247,266	
2005-06	262,755	2,816	246,691	13,249	259,940	
2006-07	287,294	2,963	270,383	13,948	284,330	
2007-08	261,194	3,027	250,239	7,928	258,167	
2008-09	253,612	3,065	236,716	13,832	250,547	
2009-2010	239,734	2,612	222,450	14,673	237,123	
2010-2011	229,367	2,428	213,396	13,543	226,939	
Maximum	287,290	3,750	270,380	22,820	284,330	
Minimum	198,390	0	181,240	4,690	195,410	
AVERAGE	246,110	2,770	228,040	15,870	243,340	
Last 5 years Ave.	254,240	2,820	238,640	12,780	251,420	
Last 10 years Ave.	254,780	2,940	242,280	11,720	251,830	

NOTES:

(*1) Exclusively for City of Alhambra (Watermaster considers as groundwater production; therefore, it is not included as imported water)

(*2) Surface Water = WM Total Production - USG-5 Diversion - Well Extraction (WM considers USG-5 Diversion as Groundwater Extraction)

(*3) Total Production did not include extraction from EPA's WNOU (8,878 acre-feet)

(*4) Total Production did not include extraction from EPA's WNOU (12,730 acre-feet)

APPENDIX G

IMPORTED WATER TO THE SAN GABRIEL BASIN

olumn #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
						IMPORTE	D WATER TO MAI	N SAN GABRIEL B	BASIN (ACRE-F	EET) (1)					
FISCAL YEAR (JULY-JUNE)	STATE	WATER PROJEC	CT FOR SPREADING	G (2)	USG-5 F	OR MUNICIPAL	USES			RAYMO	ND BASIN FOR	MUNICIPAL USES (8	3)		
	USGVMWD (3)	SGVMWD (4)	TVMWD (5)	SUBTOTAL	USGVMWD (6)	TVMWD (7)	SUBTOTAL	ALHAMBRA	ARCADIA	CAWC	EPWC	MONROVIA	SGCWD	SSWC	SUBTOT
1963-64	0			0		465	465	1,020	0	499	147	359	1,198	1,618	4,
1964-65	10,000			10,000		1,371	1,371	1,072	0	579	0	1,186	1,241	1,242	5,3
1965-66	15,000			15,000		1,245	1,245	842	0	1,070	0	1,205	1,000	1,686	5,
1966-67	20,000			20,000		803	803	1,139	0	874	0	1,044	1,121	1,444	5,
1967-68	30,000			30,000		252	252	292	1,794	381	195	953	1,113	1,470	6,3
1968-69	20,609			20,609	92	626	718	1,033	0	136	0	990	1,063	1,451	4,
1969-70	0			0	327	366	693	769	163	0	1	1,050	1,106	1,460	4,
1970-71	0			0	205	482	687	1,140	1,206	0	61	1,177	1,105	1,495	6,
1971-72	2,916			2,916	217	248	466	902	323	0	0	681	1,073	897	3,
1972-73	7,088			7,088	229	718	947	1,032	1,274	0	0	1,021	1,096	1,451	5,
1973-74	8,835			8,835	184	446	630	1,075	388	212	148	0	943	1,881	4,
1974-75	33,964	832		34,796	255	781	1,036	871	1,555	0	185	905	1,235	1,174	5,
1975-76	20,780	8,275		29,055	227	3,312	3,539	0	621	570	199	0	1,091	1,782	4,
1976-77	10,808	7,530		18,338	3,331	6,140	9,471	0	354	416	0	0	1,091	1,214	3,
1977-78	14,963	5,586		20,549	4,694	6,733	11,427	0	927	1,504	148	0	859	1,539	4,
1978-79	24,000	6,968		30,968	5,600	6,124	11,724	0	2,010	283	0	0	1,193	1,178	4,
1979-80	4,741	1,064		5,805	6,130	6,902	13,032	0	1,916	419	4	0	1,100	1,592	5,
1980-81	0	0		0	7,511	9,288	16,799	0	2,473	6	86	0	1,139	1,396	5,
1981-82	40,825	1,798		42,623	6,825	10,576	17,402	0	76	345	0	0	973	913	2,
1982-83	26,124	2,221		28,345	7,283	6,925	14,208	0	2,217	366	21	0	1,246	1,354	5,
1983-84	3,247	79		3,326	8,277	10,021	18,298	0	3,343	250	13	0	873	1,223	5,1
1984-85	0	66		66	10,025	11,651	21,676	0	2,100	459	44		1,809	1,607	6,
1985-86	50,405	5,457		55,862	10,220	10,652	20,872	0	2,380	0	0	0	1,164	1,399	4,
1986-87	43,345	12,598		55,943	10,432	12,143	22,575	0	2,029	348	112	0	1,363	1,442	5,
1987-88	34,162	9,827		43,989	13,319	15,218	28,537	0	497	376	133	0	893	1,385	3,2
1988-89	39,211	6,714		45,925	12,093	13,706	25,799	0	1,229	811	20	0	1,622	1,542	5,1
1989-90	32,740	14,764		47,504	13,969	17,509	31,478	0	981	290	8	0	1,004	1,266	3,5
1990-91	43,645	10,508		54,153	13,390	16,532	29,922	0	0	0	92	0	64	1,514	1,0
1991-92	34,324	8,903	25,077	68,304	10,622	7,984	18,606	0	0	0	0	0	4	1,294	1,2
1992-93	45,209	13,685	3,738	62,632	9,469	9,479	18,948	0	0	0	0	0	0	1,693	1,
1993-94	23,051	15,245	0	38,296	7,635	10,777	18,412	0	0	0	0	•	0	2,101	2,2
1994-95	6,177	10,438	-	22,354	7,397	12,120	19,517	0	0	0	0	-	0	1,351	1,
1995-96	15,553	13,095	3,832	32,480	6,817	10,114	16,931	0	0	0	0		0	1,553	1,5
1996-97	36,164	17,460	1,451	55,075	6,925	10,280	17,205	0	0	0	0		0	1,497	1,
1997-98	46,280	15,654	953	62,887	7,404	6,804	14,208	0	0	0	0	-	0	1,440	1,
1998-99	40,200	10,034	3,312	13,346	7,131	6,714	13,846	0	0	-	0		0	1,096	1,
1999-00	38,062	19,204	4,419	61,684	11,151	9,911	21,062	0	0	154	0	-	0	1,831	1,
2000-01	25,037	11,693	6,259	42,989	9,070	10,900	19,971	0	0	219	0	0	0	1,444	1,
2001-02	27,177	13,388	5,514	46,079	18,346	16,806	35,153	0	0	0	0	0	0	1,026	1,
2002-03	33,551	20,095		56,437	20,687	20,295	40,982	0	0	÷	49		0	470	1,
2002-03	47,769	18,632		68,322	27,675	23,084	50,758	0	0	-	49		0	553	
2003-04	5,744	12,462	-	21,721	12,895	17,587	30,482	0	0	0	1	0	0	787	
			357			-	23,125	0	0	_	2	0	0		1,4
2005-06 2006-07	64,970 4,159	13,711 17,476		79,038 24,780	10,981 14,290	12,144 11,614	25,904	0	0	-	26	P	0	1,494 1,110	1,
2007-08	5,724	2,003	0		16,958	13,216	30,174	0	0	0	54	0	0	1,065	1,
	5,724	6,607	0	7,727					0	0	65	0	0		
2008-09	16.070		1,428	6,607	8,533 6,557	13,150	21,683	0	0	0	68	0	0	1,079	1,
2009-10	16,076	15,204		32,708		9,773	16,329		-			÷	-	613	
2010-11	35,384	20,775	-	68,424	3,429	6,886	10,316	0	0	-	28		0	724	~
Aaximum	64,970	20,780		79,040	27,670	23,080	50,760	1,140	3,340	1,500	200		1,810	2,100	6,2
Ainimum	0	0		0	90	250	250	0	0	0	0		0	470	
VERAGE	21,830	10,000	4,290	31,320	8,340	8,560	16,030	230	620	220	40		640	1,330	3,3
ast 5 years Ave.	12,270	12,410		28,050		10,930	20,880	0	0	-	50		0		9
ast 10 years Ave.	24,060	14,040	3,090	41,180	14,040	14,460	28,490	0	0	0	30	0	0	890	9

NOTES:

(1) From Main San Gabriel Basin Watermaster's Annual Report 2010-2011

- (2) This is part of spreading reported by Los Angeles County Department of Public Works(3) Sum of columns 2,3,6, and 7 of Appendix D2
- (4) Column 8 of Appendix D3
- (5) Sum of columns 2,3,6, and 7 of Appendix D4
- (6) Sum of columns 4 and 5 of Appendix D2
- (7) Sum of columns 4 and 5 of Appendix D4
- (8) From Raymond Basin Management Board's Annual Reports

USGVMWD: Upper San Gabriel Valley Municipal Water District SGVMWD: San Gabriel Valley Municipal Water District TVMWD: Three Valleys Municipal Water District ALHAMBRA: City of Alhambra ARCADIA: City of Arcadia CAWC: California American Water Company MONROVIA: City of Monrovia SGCWD: San Gabriel County Water District

15	16	17
	Municipal	TOTAL
JBTOTAL	Total	
4,840	5,305	5,305
5,320	6,691	16,691
5,803	7,048	22,048
5,622	6,425	26,425
6,198	6,450	36,450
4,672	5,390	25,999
4,549	5,242	5,242
6,183	6,870	6,870
3,875	4,341	7,256
5,873	6,820	13,907
4,648	5,277	14,113
5,926	6,962	41,758
4,262	7,801	36,857
3,076	12,546	30,884
4,976	16,403	36,951
4,664	16,387	47,355
5,031	18,063	23,867
5,101	21,899	21,899
2,307	19,708	62,331
5,204	19,413	47,757
5,702 6,019	24,000	27,325
4,942	27,695 25,814	27,761 81,676
5,294	27,869	83,812
3,284	31,821	75,810
5,225	31,024	76,948
3,549	35,027	82,531
1,670	31,592	85,745
1,298	19,904	88,208
1,693	20,641	83,273
2,101	20,513	58,809
1,351	20,868	43,222
1,553	18,483	50,963
1,497	18,701	73,776
1,440	15,647	78,534
1,096	14,941	28,287
1,985	23,046	84,731
1,663	21,633	64,622
1,026	36,178	82,258
519	41,501	97,938
553	51,311	119,633
789	31,271	52,992
1,496	24,621	103,659
1,136	27,040	51,820
1,118 1,144	31,292 22,827	39,020 29,434
1,144 681	17,010	49,719
753	17,010	79,492
6,200	51,310	119,630
520	4,340	5,240
3,310	19,340	50,670
970	21,850	49,900
970	21,850	70,600
320	23,410	70,000

APPENDIX H

GROUNDWATER EXPORTED FROM THE SAN GABRIEL BASIN

2009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	column #	1	2	3	4	5
1965-66 12,692 10,980 8,834 32,506 1966-67 12,204 11,574 8,195 31,973 1967-68 14,827 12,679 8,778 36,224 1968-69 11,899 13,155 11,112 36,586 1970-71 12,687 1,315 14,038 8,177 36,217 1977-72 14,223 1,643 13,892 9,278 39,036 1972-73 12,236 2,004 12,126 8,610 34,976 1975-76 13,494 1,968 9,474 8,339 33,275 1975-76 13,864 1,984 9,530 9,710 35,088 1977-78 15,500 1,708 9,042 7,448 33,706 1978-79 13,864 1,193 9,655 6,669 31,881 1977-78 15,500 1,708 9,042 7,448 33,706 1978-80 13,988 231 8,898 7,621 30,738 1980-81	WATER YEAR	WATER EX	PORTED FROM	AIN SAN GABR	RIEL BASIN (ACF	RE-FEET) *
1966-67 12,204 11,574 8,195 31,973 1967-68 14,827 12,679 8,778 36,284 1968-69 11,889 13,155 11,112 36,156 1970-71 12,687 1,315 14,038 8,177 36,217 1971-72 14,223 1,643 13,892 9,278 39,036 1972-73 12,236 2,004 12,126 8,610 34,976 1973-74 13,484 1,968 9,474 8,339 33,275 1975-76 13,864 1,984 9,530 9,710 35,088 1976-77 15,125 1,560 9,196 7,507 33,388 1977-78 15,028 1,708 9,042 7,448 33,706 1978-79 13,864 1,193 9,655 6,669 31,681 1978-81 11,263 2,616 11,536 8,330 31,390 1980-81 11,263 2,666 9,337 6,605 2,574	(OCT-SEP)	CDWC	SGVWC	SWS	WHITTIER	TOTAL
1966-67 12,204 11,574 8,195 31,973 1967-68 14,827 12,679 8,778 36,284 1968-69 11,889 13,155 11,112 36,156 1970-71 12,687 1,315 14,038 8,177 36,217 1971-72 14,223 1,643 13,892 9,278 39,036 1972-73 12,236 2,004 12,126 8,610 34,976 1973-74 13,484 1,968 9,474 8,339 33,275 1975-76 13,864 1,984 9,530 9,710 35,088 1976-77 15,125 1,560 9,196 7,507 33,388 1977-78 15,028 1,708 9,042 7,448 33,706 1978-79 13,864 1,193 9,655 6,669 31,681 1978-81 11,263 2,616 11,536 8,330 31,390 1980-81 11,263 2,666 9,337 6,605 2,574	1965-66		·	10,980	8,834	32,506
1967-68 14.827 12.679 8.778 36.244 1968-69 11.889 13.155 11.112 36.156 1969-70 13.040 420 13.471 8.875 35.806 1970-71 12.687 1.315 14.038 8.177 36.217 1971-73 12.236 2.004 12.126 8.610 34.976 1973-74 13.484 1.992 11.712 8.611 35.806 1974-75 13.844 1.984 9.530 9.710 35.088 1975-76 13.864 1.984 9.530 9.710 35.088 1977-78 15.508 1.708 9.042 7.448 33.706 1979-80 13.988 2.21 8.808 7.621 30.738 1980-81 11.263 2.61 11.536 8.330 31.390 1982-82 9.766 2.66 9.337 6.605 2.597 1984-85 16.33 2.70 8.649 8.572 33.826 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1968-69 11.889 13.155 11.112 36.156 1969-70 13.040 420 13.471 8.875 35.866 1970-71 12.687 1,315 14.038 8.177 36.217 1971-72 14.223 1,643 13.892 9.278 39.036 1972-73 12.236 2.004 12.126 8.610 34.976 1973-74 13.845 1.992 11.712 8.611 35.800 1977-75 13.844 1.968 9.474 8.339 32.275 1975-76 13.864 1.913 9.655 6.969 31.681 1978-79 13.864 1.193 9.655 6.969 31.681 1978-80 13.988 2.21 1.556 8.303 31.390 1981-82 9.766 2.66 9.337 6.605 2.5974 1982-83 10.120 2.69 8.914 6.207 25.517 1982-84 14.193 2.75 9.496 8.572						
1969-70 13,040 420 13,471 8,875 35,866 1970-71 12,687 1,315 14,038 8,177 36,217 1971-72 14,223 1,643 13,892 9,278 39,036 1972-73 12,236 2,004 12,126 8,610 34,976 1973-74 13,485 1,992 11,712 8,611 35,800 1977-75 13,864 1,984 9,530 9,710 35,888 1976-77 15,125 1,560 9,196 7,507 33,388 1977-78 13,864 1,193 9,655 6,969 31,681 1979-80 13,988 231 8,898 7,621 30,738 1980-81 11,263 261 11,536 8,330 31,390 1981-82 9,766 266 9,337 6,605 25,974 1982-83 10,120 269 8,914 6,207 25,510 1983-84 14,193 276 8,598 3,5						
1970-71 12,867 1,315 14,038 8,177 36,217 1971-72 14,223 1,643 13,892 9,278 39,036 1972-73 12,236 2,004 12,126 8,610 34,976 1973-74 13,485 1,992 11,712 8,611 35,800 1975-76 13,864 1,984 9,530 9,710 35,088 1976-77 15,125 1,560 9,196 7,507 33,388 1976-78 13,864 1,193 9,655 6,969 31,681 1978-79 13,864 1,193 9,655 6,969 31,390 1981-82 9,766 266 9,337 6,605 25,574 1983-84 10,120 269 8,914 6,207 25,510 1983-84 14,193 278 9,496 8,272 33,282 1986-86 15,562 267 8,596 7,757 32,182 1984-85 16,335 270 8,649 8,5			420			
1971-72 14,223 1,643 13,892 9,278 39,036 1972-73 12,236 2,004 12,126 8,610 34,976 1973-74 13,485 1,992 11,712 8,611 35,800 1974-75 13,864 1,984 9,530 9,710 35,088 1976-77 15,125 1,560 9,196 7,507 33,388 1977-78 15,508 1,708 9,042 7,448 33,706 1978-79 13,864 1,193 9,655 6,969 31,681 1979-80 13,988 231 8,898 7,621 30,738 1980-81 11,263 261 11,536 8,330 31,390 1981-82 9,766 266 9,337 6,605 22,571 1984-85 16,355 270 8,649 8,572 33,826 1985-86 15,562 267 8,596 7,757 32,182 1986-87 14,078 32,11 0,590 8,5						
1972-73 12,236 2,004 12,126 8,611 34,976 1973-74 13,485 1,992 11,712 8,611 35,800 1974-75 13,484 1,968 9,474 8,339 33,275 1975-76 13,864 1,984 9,530 9,710 35,088 1977-78 15,508 1,708 9,042 7,448 33,706 1978-79 13,884 1,113 9,655 6,969 31,811 1978-80 13,888 231 8,898 7,621 30,738 1980-81 11,263 261 11,536 8,330 31,390 1981-82 9,766 266 9,337 6,605 25,574 1983-84 14,193 278 9,496 8,290 32,257 1984-85 16,335 270 8,649 8,572 33,826 1985-86 15,562 267 8,596 7,757 32,182 1986-87 14,078 321 10,590 8,589 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1973-74 13,485 1,992 11,712 8,611 35,800 1974-75 13,494 1,968 9,474 8,339 33,275 1975-76 13,864 1,984 9,530 9,710 35,088 1977-78 15,125 1,560 9,196 7,507 33,388 1978-79 13,864 1,133 9,655 6,969 31,681 1978-80 13,988 231 8,988 7,621 30,738 1980-81 11,263 261 11,536 8,330 31,390 1981-82 9,766 266 9,337 6,605 25,574 1982-83 10,120 269 8,914 6,207 25,510 1983-84 14,193 278 9,496 8,290 32,282 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419 30,612 1988-89 12,817 357 8,633 7,643	1972-73					
1974-75 13,494 1,968 9,474 8,339 33,275 1975-76 13,864 1,984 9,530 9,710 35,088 1976-77 15,125 1,560 9,196 7,507 33,388 1977-78 15,508 1,708 9,042 7,448 33,706 1978-79 13,864 1,193 9,655 6,969 31,681 1978-80 13,988 231 8,898 7,621 30,738 1980-81 11,263 261 11,536 8,330 31,390 1981-82 9,766 266 9,337 6,605 25,974 1982-83 10,120 269 8,914 6,207 25,510 1984-85 16,335 270 8,649 8,572 33,826 1985-86 15,562 267 8,596 7,577 32,182 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419						
1975-76 13.864 1.984 9.530 9.710 35.088 1976-77 15.125 1.560 9,196 7,507 33.388 1977-78 15.508 1.708 9,042 7,448 33.706 1978-79 13.864 1.193 9,655 6,969 31.681 1978-80 13.988 231 8,898 7,621 30,738 1980-81 11,263 261 11,536 8,330 31,390 1981-82 9,766 266 9,337 6,605 25,974 1982-83 10,120 269 8,914 6,207 25,510 1983-84 14,193 278 9,496 8,229 38,262 1986-86 15,562 267 8,596 7,757 32,182 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419 30,612 1988-89 12,817 357 8,833 7,643	1974-75					
1976-77 15,125 1,560 9,196 7,507 33,388 1977-78 15,508 1,708 9,042 7,448 33,706 1978-79 13,864 1,193 9,655 6,969 31,681 1979-80 13,988 231 8,898 7,621 30,738 1980-81 11,263 266 9,337 6,605 25,974 1982-83 10,120 269 8,914 6,207 25,510 1983-84 14,193 278 9,496 8,290 32,257 1984-85 16,335 270 8,649 8,577 33,886 1985-86 15,562 267 8,596 7,757 32,182 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419 30,612 1988-90 13,338 221 7,112 8,166 28,837 1989-91 14,184 181 7,840 6,961	1975-76					
1977-78 15,508 1,708 9,042 7,448 33,706 1978-79 13,864 1,193 9,655 6,969 31,881 1979-80 13,988 231 8,898 7,621 30,738 1980-81 11,263 261 11,536 8,330 31,390 1981-82 9,766 266 9,337 6,605 25,574 1982-83 10,120 269 8,914 6,207 25,510 1983-84 14,193 278 9,496 8,290 32,257 1984-85 16,535 267 8,596 7,757 32,826 1985-86 15,562 267 8,596 7,757 32,826 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419 30,612 1988-90 13,338 221 7,117 8,166 28,837 1990-91 14,184 181 7,840 6,961	1976-77					
1978-79 13,864 1,193 9,655 6,969 31,681 1979-80 13,988 231 8,888 7,621 30,738 1980-81 11,263 261 11,556 8,330 31,390 1981-82 9,766 266 9,337 6,605 25,974 1982-83 10,120 269 8,914 6,207 25,510 1988-84 14,193 278 9,496 8,290 32,257 1984-85 16,335 270 8,649 8,572 33,826 1985-86 15,562 267 8,596 7,757 32,182 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419 30,612 1988-89 12,817 357 8,833 7,643 29,660 1989-90 13,338 221 7,112 8,166 28,367 1990-91 14,154 181 7,785 6,807	1977-78					
1979-80 13,988 231 8,898 7,621 30,738 1980-81 11,263 261 11,536 8,330 31,390 1981-82 9,766 266 9,337 6,605 25,974 1982-83 10,120 269 8,914 6,207 25,510 1983-84 14,193 278 9,496 8,290 32,257 1984-85 16,335 270 8,649 8,572 33,826 1985-86 15,562 267 8,596 7,757 32,182 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419 30,612 1988-90 13,338 221 7,112 8,166 28,837 1990-91 14,184 181 7,840 6,961 29,166 1991-92 13,918 151 7,785 6,807 28,661 1992-93 16,527 184 11,763 7,666 <	1978-79					
1980-81 11,263 261 11,536 8,330 31,390 1981-82 9,766 266 9,337 6,605 25,974 1982-83 10,120 269 8,914 6,207 25,510 1983-84 14,193 278 9,496 8,290 32,257 1984-85 16,335 270 8,649 8,572 33,826 1985-86 15,562 267 8,596 7,757 32,182 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419 30,612 1988-90 13,338 221 7,112 8,166 28,837 1990-91 14,184 181 7,840 6,961 29,166 1991-92 13,918 151 7,785 6,807 28,661 1992-93 16,527 184 11,755 7,313 36,622 1995-96 19,034 266 12,175 8,090						
1981-82 9,766 266 9,337 6,605 25,974 1982-83 10,120 269 8,914 6,207 25,510 1983-84 14,193 278 9,496 8,290 32,257 1984-85 16,335 270 8,649 8,572 33,826 1985-86 15,562 267 8,596 7,757 32,182 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419 30,612 1988-89 12,817 357 8,833 7,643 29,650 1989-90 13,338 221 7,112 8,166 28,837 1990-91 14,184 181 7,840 6,961 29,166 1991-92 13,918 151 7,785 6,807 28,661 1992-93 16,527 184 11,763 7,666 36,140 1994-95 17,355 199 1,755 7,313 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
1982-83 10,120 269 8,914 6,207 25,510 1983-84 14,193 278 9,496 8,290 32,257 1984-85 16,335 270 8,649 8,572 33,826 1985-86 15,562 267 8,596 7,757 32,182 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419 30,612 1988-89 12,817 357 8,833 7,643 29,660 1989-90 13,338 221 7,112 8,166 28,837 1990-91 14,184 181 7,840 6,961 29,166 1991-92 13,918 151 7,785 6,807 28,661 1992-93 16,527 184 11,763 7,666 36,140 1994-95 17,355 199 11,755 7,313 36,622 1996-97 18,396 260 13,303 8,476	1981-82					
1983-84 14,193 278 9,496 8,290 32,257 1984-85 16,335 270 8,649 8,572 33,826 1985-86 15,562 267 8,596 7,757 32,182 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419 30,612 1988-89 12,817 357 8,833 7,643 29,650 1989-90 13,338 221 7,112 8,166 28,837 1990-91 14,184 181 7,840 6,961 29,166 1991-92 13,918 151 7,785 6,807 28,661 1992-93 16,527 184 11,763 7,666 36,140 1994-95 17,355 199 11,755 7,313 36,622 1995-96 19,034 266 12,175 8,090 39,555 1998-99 17,587 279 12,820 9,651	1982-83		269			
1984-85 16,335 270 8,649 8,572 33,826 1985-86 15,562 267 8,596 7,757 32,182 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419 30,612 1988-89 12,817 357 8,833 7,643 29,650 1989-90 13,338 221 7,112 8,166 28,837 1990-91 14,184 181 7,840 6,961 29,166 1991-92 13,918 151 7,785 6,807 28,661 1992-93 16,328 155 8,474 7,117 32,074 1993-94 16,527 184 11,755 7,313 36,622 1995-96 19,034 266 12,175 8,090 39,565 1996-97 18,396 260 13,303 8,476 40,435 1998-90 20,134 299 13,350 9,080	1983-84		278			
1985-86 15,562 267 8,596 7,757 32,182 1986-87 14,078 321 10,590 8,589 33,578 1987-88 13,411 488 8,294 8,419 30,612 1988-89 12,817 357 8,833 7,643 29,650 1989-90 13,338 221 7,112 8,166 28,837 1990-91 14,184 181 7,840 6,961 29,166 1991-92 13,918 151 7,755 6,807 28,661 1992-93 16,527 184 11,763 7,666 36,140 1993-94 16,527 184 11,753 7,666 36,140 1994-95 17,355 199 11,755 7,313 36,622 1995-96 19,034 266 12,175 8,090 39,565 1996-97 18,396 260 13,303 8,476 40,435 1997-98 16,225 272 12,869 8,335						
1986-8714,07832110,5908,58933,5781987-8813,4114888,2948,41930,6121988-8912,8173578,8337,64329,6501989-9013,3382217,1128,16628,8371990-9114,1841817,8406,96129,1661991-9213,9181517,7856,80728,6611992-9316,3281558,4747,11732,0741993-9416,52718411,7637,66636,1401994-9517,35519911,7557,31336,6221995-9619,03426612,1758,09039,5651996-9718,39626013,3038,47640,4351997-9816,22527212,8209,65138,9681998-9917,58727912,9698,33539,1701999-0020,13429913,3509,08042,8632000-0118,2401,49313,1038,16340,9992001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49038,4372005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6618,12743,9192007-08 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1987-88 13,411 488 8,294 8,419 30,612 1988-89 12,817 357 8,833 7,643 29,650 1989-90 13,338 221 7,112 8,166 28,837 1990-91 14,184 181 7,840 6,961 29,166 1991-92 13,918 151 7,785 6,807 28,661 1992-93 16,328 155 8,474 7,117 32,074 1993-94 16,527 184 11,763 7,666 36,140 1994-95 17,355 199 11,755 7,313 36,622 1995-96 19,034 266 12,175 8,090 39,565 1996-97 18,396 260 13,303 8,476 40,435 1997-98 16,225 272 12,820 9,651 38,968 1998-99 17,587 279 12,969 8,335 39,170 1999-00 20,134 299 13,350 9,080		14,078	321			
1988-89 12,817 357 8,833 7,643 29,650 1989-90 13,338 221 7,112 8,166 28,837 1990-91 14,184 181 7,840 6,961 29,166 1991-92 13,918 151 7,785 6,807 28,661 1992-93 16,328 155 8,474 7,117 32,074 1993-94 16,527 184 11,763 7,666 36,140 1994-95 17,355 199 11,755 7,313 36,622 1995-96 19,034 266 12,175 8,090 39,565 1997-98 16,225 272 12,869 8,335 39,170 1998-99 17,587 279 12,969 8,335 39,170 1998-00 20,134 299 13,350 9,080 42,863 2000-01 18,240 1,493 13,103 8,163 40,999 2001-02 21,636 1,739 13,356 7,431						
1989-90 13,338 221 7,112 8,166 28,837 1990-91 14,184 181 7,840 6,961 29,166 1991-92 13,918 151 7,785 6,807 28,661 1992-93 16,328 155 8,474 7,117 32,074 1993-94 16,527 184 11,755 7,313 36,622 1995-96 19,034 266 12,175 8,090 39,565 1996-97 18,396 260 13,303 8,476 40,435 1997-98 16,225 272 12,820 9,651 38,968 1998-99 17,587 279 12,969 8,335 39,170 1999-00 20,134 299 13,350 9,080 42,863 2000-01 18,240 1,493 13,103 8,163 40,999 2001-02 21,636 1,739 13,356 7,431 44,162 2002-03 21,474 1,454 11,381 7,283 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1990-9114,1841817,8406,96129,1661991-9213,9181517,7856,80728,6611992-9316,3281558,4747,11732,0741993-9416,52718411,7637,66636,1401994-9517,35519911,7557,31336,6221995-9619,03426612,1758,09039,5651996-9718,39626013,3038,47640,4351997-9816,22527212,8209,65138,9681998-9917,58727912,9698,33539,1701999-0020,13429913,3509,08042,8632000-0118,2401,49313,1038,16340,9992001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144 <t< td=""><td>1989-90</td><td></td><td>221</td><td></td><td></td><td></td></t<>	1989-90		221			
1991-9213,9181517,7856,80728,6611992-9316,3281558,4747,11732,0741993-9416,52718411,7637,66636,1401994-9517,35519911,7557,31336,6221995-9619,03426612,1758,09039,5651996-9718,39626013,3038,47640,4351997-9816,22527212,8209,65138,9681998-9917,58727912,9698,33539,1701999-0020,13429913,3509,08042,8632000-0118,2401,49313,1038,16340,9992001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49041,5442005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
1992-9316,3281558,4747,11732,0741993-9416,52718411,7637,66636,1401994-9517,35519911,7557,31336,6221995-9619,03426612,1758,09039,5651996-9718,39626013,3038,47640,4351997-9816,22527212,8209,65138,9681998-9917,58727912,9698,33539,1701999-0020,13429913,3509,08042,8632000-0118,2401,49313,1038,16340,9992001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49038,4372006-0719,9433,0227,9827,49038,4372007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1993-9416,52718411,7637,66636,1401994-9517,35519911,7557,31336,6221995-9619,03426612,1758,09039,5651996-9718,39626013,3038,47640,4351997-9816,22527212,8209,65138,9681998-9917,58727912,9698,33539,1701999-0020,13429913,3509,08042,8632000-0118,2401,49313,1038,16340,9992001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700						
1994-9517,35519911,7557,31336,6221995-9619,03426612,1758,09039,5651996-9718,39626013,3038,47640,4351997-9816,22527212,8209,65138,9681998-9917,58727912,9698,33539,1701999-0020,13429913,3509,08042,8632000-0118,2401,49313,1038,16340,9992001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,5						
1995-9619,03426612,1758,09039,5651996-9718,39626013,3038,47640,4351997-9816,22527212,8209,65138,9681998-9917,58727912,9698,33539,1701999-0020,13429913,3509,08042,8632000-0118,2401,49313,1038,16340,9992001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540			199			
1996-9718,39626013,3038,47640,4351997-9816,22527212,8209,65138,9681998-9917,58727912,9698,33539,1701999-0020,13429913,3509,08042,8632000-0118,2401,49313,1038,16340,9992001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	1995-96					
1997-9816,22527212,8209,65138,9681998-9917,58727912,9698,33539,1701999-0020,13429913,3509,08042,8632000-0118,2401,49313,1038,16340,9992001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	1996-97		260	13,303		
1998-9917,58727912,9698,33539,1701999-0020,13429913,3509,08042,8632000-0118,2401,49313,1038,16340,9992001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	1997-98		272	12,820	9,651	
1999-0020,13429913,3509,08042,8632000-0118,2401,49313,1038,16340,9992001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540		17,587				
2000-0118,2401,49313,1038,16340,9992001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540						
2001-0221,6361,73913,3567,43144,1622002-0321,4741,45411,3817,28341,5922003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	2000-01	18,240	1,493			40,999
2003-0420,57888012,2418,76942,4682004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	2001-02					
2004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	2002-03		1,454			
2004-0520,2041,75212,1387,49041,5842005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	2003-04		880			42,468
2005-0619,9433,0227,9827,49038,4372006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	2004-05					
2006-0719,4102,73113,6518,12743,9192007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540						
2007-0817,5443,97212,5426,79740,8552008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	2006-07					
2008-0918,3843,40413,6818,27743,7462009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	2007-08					
2009-1019,5752,38012,0366,04640,0372010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	2008-09					43,746
2010-1116,3643,06513,9105,80539,144Maximum21,6403,97014,04011,11044,160Minimum9,7701507,1105,81025,510AVERAGE15,5901,10011,1008,00035,700Last 5 years Ave.18,2603,11013,1607,01041,540	2009-10	19,575				40,037
Maximum 21,640 3,970 14,040 11,110 44,160 Minimum 9,770 150 7,110 5,810 25,510 AVERAGE 15,590 1,100 11,100 8,000 35,700 Last 5 years Ave. 18,260 3,110 13,160 7,010 41,540	2010-11					
Minimum 9,770 150 7,110 5,810 25,510 AVERAGE 15,590 1,100 11,100 8,000 35,700 Last 5 years Ave. 18,260 3,110 13,160 7,010 41,540						
AVERAGE 15,590 1,100 11,100 8,000 35,700 Last 5 years Ave. 18,260 3,110 13,160 7,010 41,540	Minimum	9,770	150	7,110		25,510
Last 5 years Ave. 18,260 3,110 13,160 7,010 41,540	AVERAGE	15,590	1,100	11,100	8,000	35,700
						41,590

APPENDIX H. GROUNDWATER EXPORTED FROM MAIN SAN GABRIEL BASIN

NOTES:

* From Annual Reports of the San Gabriel River Watermaster CDWC: California Domestic Water Company

SGVWC: San Gabriel Valley Water Company

SWS: Suburban Water Systems/Lamirada District

WHITTIER: City of Whittier

APPENDIX I

SURFACE WATER SPREADING AT THE SPREADING GROUNDS

				DING GROUI		1				r'									r.			r				
olumn #	1	2	2	3	4	5	6	7	8		9 10	11	12	13	14	15	16	17	18	19	20	21 2	2 23	24	25 26	
/ater	Arroyo Be	en	Big	Buena		Ea	ton Ea	aton				Live Morris	to F190	to SF 🛛 I	Peck S. Dimas		Sant	a Sa	anta Fe	Sf Dam to)		Sie	erra Fish	F261 to WN	
ear	Seco Lo	mond	Dalton	Vista	Citru	is SB	S	G	Forbes	Irwindale	Little Dalton	Oak F190	Dam	I	Road Canyon	S. G	abriel Canyon Anita	a SC	G Sa	inta Fe Res. F261	Santa	Fe Div. Sawpi	t Walnut M	adre Canyon	Dam	Tot
930-31	0	C) :	10	0	0	0	0	0		0 0	0			0	0	0	0	0				0 0			
931-32	0	C) 39	94	0	0	0	0	0		0 160	0			0	0	0	0	0				0 0			55
932-33	0	C)	0	0	0	0	0	0		0 0	0			0	0	0	0	0				0 0			
933-34	0	C) 10	00	0	0	0	0	0		0 0	0			0	0	0	0	0				0 0			10
934-35	0	C			0	0	0	0	0		0 0	0			0	0	0	0	0				0 0			13
935-36	0	C		0	0	0	0	0	0		0 0	0			0	0	0	0	0				0 0			
936-37	0	(0	0	0	0	0		0 275	0			0	0	0	0	0				0 0			1,14
937-38	0	(0	0	0	0	0		0 287	0			0	0	0	0	0				0 0			-,-
938-39	0	(19	0	0	0	0	0		0 12	0			0	0	0	0	0				0 0			(
939-40	0	c c	י ר	0	0	0	0	0	0		0 0	0			0	0	0	0	0				0 0			·
940-41	0	()) 1,5:	-	0	0	0	0	0		0 1,166	0			0	0	0	0	0				0 0			2,69
941-42	0	(0	0	0	0	0	0		0 1,100	0			0	0	0	0	0				0 0			2,03
							-	0				0			0	0	0		0				0 0			2.20
942-43	0	0	,		0	0	0	-	0		0 1,084	-			0	-	0	0	0				0 0			2,28
943-44	0	0			0	0	0	0	0		0 469	0			0	0	0	0	0				0 0			1,03
944-45	0	0		54	0	0	0	0	0		0 290	0			0	0	0	337	0				0 0			69
945-46	0	(-	17	0	0	0	0	0		0 73	0			U	0	0	0	0				U 0			12
946-47	0	0		74	0	0	0	0	0		0 89	0			0	0	0	141	0			8	³⁹ 0			49
947-48	0	C	-	0	0	0	0	1	0		0 0	0			0	0	0	0	0				0 0			
948-49	108	C		38	0	0	0	0	0		0 0	0			0	0	0	0	0				8 0			20
949-50	283	C) (56	0	0	0	61	0		0 28	0			0	0	0	0	0				0 0			44
950-51	19	C)	0	0	0	0	0	0		0 0	0			0	0	0	0	0			-	.9 0			4
951-52	986	C) 8	56	0	0	0	1,196	0		0 563	0			0	0	0	448	0			5:	.7 0			4,5
952-53	216	C)	3	0	0	0	0	0		0 9	0			0	0	0	58	0			1	6 0			34
953-54	455	C) 3	70	0	0	0	190	0		0 161	0			0	0	0	265	3,500				0 0			4,94
954-55	197	C)	0	10	0	0	0	0		0 0	0			0	0	0	145	0				0 0			3
955-56	301	C) 1	30 22	27	0	0	181	0		0 30	0			0	0	0	161	0			18	30 0			1,26
956-57	397	C)	L5 8:	17	0	260	0	0		0 11	0			0	0	0	2	0			1	8 0			1,54
957-58	2,088	C	2,3	30 2,73	30	0	1,236	861	0		0 658	0			0	0	0	1,576	12,752			97	78 0			25,26
958-59	352	1,431	1 14	1,08	37	0	441	130	0	24	2 22	0			0	0	0	185	181			19	9 0			4,42
959-60	0	1,055	5	0 1,23	34	0	501	0	0	93	4 0	0			986	0	0	810	59			3	8 0			5,62
960-61	0	732	2 2	27 70	00 1,	131	165	0	0	25	6 0	0			478	0	0	304	30			2	9 0			3,85
961-62	1,103	2,857	7 1,2	12 80	59 2,	194	902	1,021	0	1,81	7 394	38			8,876	50	0	664	11,818			54	7 292			34,65
962-63	249	2,428	3	77 2	73 1,	292	532	7	0	59	3 43	0			1,895	286	0	449	121			12	.6 367			8,74
963-64	317	1,008				906	869	24	5						1,841	62	0	327	120			13				7,62
964-65	744	1,435			45 1,		1,007	324	331						2,490	3	0	575	6,287			10				18,00
965-66	1,036	3,799			, 54 4,		783	2,000	0			89			13,018	2,413	0	1,641	23,502			1,30				62,29
966-67	1,828	6,444			92 1,			1,450							17,052	2,099	0	1,563	73,910			2,45				127,19
967-68	855	5,096		-		0	605	305	0			0			2,616	2,180	0	638	17,501			79				37,69
968-69	609	3,447						3,249	0			803			7,543	4,836	0	494	42,523			32				78,92
969-70	195	5,912	-	-	99	0	333	483	0						4,044	2,604	19,583	1,415	8,396			70				46,4
970-71	644	3,018				0	0	583	0						3,954	1,490	14,037	334	14,016			52				40,95
971-72	173	1,414			95	0	359	0	0						1,555	484	6,481	31	6,755			2:				18,84
972-73	1,214	5,109						1,689	0						6,460		12,727	738	49,400			1,39				87,0
973-74	1,214	3,936										88 0			5,895	1,318										65,6
								1,581	0							1,052	14,223	427	31,113			1,04				
974-75	664	1,286			34	0	527	337	686						985	786	15,225	59	22,036			80				45,8
975-76	344	1,267				0	716	295	16						2,023	333	9,905	36	17,408			58				35,6
976-77	374	1,535			36	0	666	218		-					3,409	289	7,141	0	11,919			48				28,3
977-78	3,475	3,304						3,686								4,183	9,960	724	86,647			2,2				150,1
78-79	2,189	6,211			13	0		1,103	587	2,23					9,227	4,031	9,717	832	55,912			1,38				99,0
79-80	1,727	4,963				0		1,694	646						14,113	3,817	9,083	782	52,329			2,34				103,2
80-81	519	4,230				0	731	285	297	61			10,093	5,711	4,860	1,565	7,009	63	288	1,695	0	9,265 60				49,
81-82	1,315	2,975						1,148	629				28,062	10,981		2,265	8,571	196	35,045	7,711		13,050 1,00				128,9
82-83	6,450	4,591			53			4,761				1,660	25,000	18,680	50,026	6,049	9,419	1,199	81,000	37,777	700	26,093 2,92				292,2
83-84	665	2,926	5 7	72 9 <u>9</u>	90	0	1,394	683	589	1,44	1 183	631	10,569	5,723	7,903	2,404	8,219	541	12,123	2,000	0	6,362 73	9 2,202			69,
84-85	924	1,062	2 3:	2 3	33	0	921	146	441	2,11	5 117	497	18,055	8,027	3,841	1,170	7,234	457	10,621	1,190	0	278 83	.1 794			59,4
85-86	2,260	3,630) 43	34 82	29	529	2,370	1,220	2,600	11,78	7 351	215	12,199	11,726	6,553	811	12,500	686	43,783	8,920	0	2,563 1,12	3 2,042			129,3
86-87	415	1,263	3 4	15 24	14	236	791	14	2,628	9,09	9 10	140	23,681	4,240	1,139	703	4,485	252	23,860	0	0	115 38				75,4
87-88	1,575	3,531					1,254	706					25,962	1,130	6,214	773	13,318	524	19,120	1,844	581	1,001 63				87,4
00-00										, -																

APPENDIX	I. WATER SPE	READING	AT SPREAD	DING GRO	UNDS	IN SAN (GABRIEL	BASIN (A	CRE-FEET)																			
column #	1	2	2	3	4	5	6	7	8	9	10	11	12	13	14	. 1	15	16	17	18	19	20	21	22	23	24	2	5 26	27
Water	Arroyo	Ben	Big	Buena		I	Eaton	Eaton			Li	ve	Morris to	F190 to SF	Peck	S. Dimas		Santa	Sa	anta Fe	Sf Da	am to			Sier	a	Fish	F261 to WN	
Year	Seco	Lomond	Dalton	Vista	C	itrus :	SB	SG	Forbes	Irwindale L	ittle Dalton O	ak	F190		Road	Canyon	S. Gabriel Can	iyon Anita	SC	G S	Santa Fe Res. F261	. S	anta Fe Div. 🤅	Sawpit N	Valnut Ma	lre	Canyon	Dam	Total
1989-90	164	423			517	135	903	47	_,	943	11	4	27,556	3,569	1,277			,250	5	13,600	0	224	0	367	1,330			39,237	102,290
1990-91	942	1,136			781	277	1,084	1,527	1,181	6,489	170	186	32,675	4,954	7,219			,192	404	14,419	0	15,490	6,207	462	1,223			48,098	155,420
1991-92	2,714	3,444			393	418	2,133	1,892	975	41,110	561	13	17,819	16,671	22,291	,		,626	660	49,480	0	48,369	11,753	1,217	1,672			58,894	297,900
1992-93	4,197	5,780		51	445	3,827	2,102	3,190	2,007	16,200	1,530	819	54,212	24,087	9,311			,919	919	73,526	0	50,577	3,020	2,767	3,063			23,688	294,870
1993-94	1,562	3,989	14	14	214	1,948	358	493	824	7,726	54	136	6,035	15,895	2,317	1,34	17	985	576	20,830	0	2,319	970	897	757			1,467	71,840
1994-95	5,678	2,875		74	250	6,477	1,445	3,459	1,357	9,165	1,766	437	44,219	20,052	10,759	5,55	55 13	,825	956	56,250		53,561	1,841	2,539	1,047				244,190
1995-96	2,152	4,889		72	146	1,897	972	1,197	1,291	5,687	5,546	283	31,952	9,835	11,138	2,42	26 17	,980	610	30,947		16,081	540	803	865	2,138	7,83		158,080
1996-97	3,241	2,064			172	696	1,271	946	1,502	14,367	1,365	257	26,691	8,424	9,112	,		,867	736	19,403	0	25,076	0	1,085	1,203	1,680	6,65		141,860
1997-98	2,008	1,853			378	3,923	1,489	4,281	1,175	10,911	1,226	62	43,884	19,197	15,978				1,103	66,233	0	39,426	0	1,735	1,622	2,866	5,78		247,720
1998-99		2,397		30	137	1,733	595	54	843	10,666	3,846	48	5,589	15,388	1,329	-	92 14	,166	242	0	0	10,909	0	909	948	1,560	6,13		78,860
1999-00		5,583		13	163	1,098	1,072	701	647	7,149	2,378	0	6,319	14,264	4,031		53 33	,040	220	10,775	0	32,872	0	396	1,415	742	4,31		127,950
2000-01		567		50	248	876	1,763	754	234	3,437	2,724	74	11,328	6,783	4,554			,617	366	26,496	0	28,311	0	473	2,682	1,200	5,74		122,300
2001-02		5,325		2	236	392	1,052	35	398	7,274	2,738	0	14,073	4,350	1,523			,733	17	11,133	0	32,012	0	550	1,375	198	3,17		116,660
2002-03		5,301		0	455	29	1,325	413	661	9,652	620	11	15,732	4,292	6,313			,577	291	31,388	0	3,988	0	584	2,287	1,106	2,23		120,310
2003-04		2,663		26	458	290	930	232	576	7,534	1,936	0	13,812	1,083	3,376	-		,794	114	39,132	0	9,555	0	258	2,145	548	3,42		114,030
2004-05		8,160	,			3,111	2,464	4,197	1,627	11,822	354	783	59,594	20,146	43,312		·	,	1,603	115,319	0	103,347	0	2,440	3,261	3,460	7,28		427,790
2005-06		3,921	,			2,454	2,700	1,244	663	6,907	358	618	39,170	15,234	4,446			,880	682	69,629	0	31,245	0	884	2,035	2,060	6,41		229,160
2006-07		523			125	1,119	1,142	0	55	1,277	207	0	6,618	1,382	3,037			,890	31	1,981	0	30,929	0	50	1,693	486	3,26		72,610
2007-08		2,175			152	722	676	1,218		1,272	220	193	26,165	5,875	4,261			,614	448	2,520	0	20,168	0	543	1,788	1,442	5,30		94,970
2008-09		388		43	28	625	1,050	297	60	375	394	164	10,290	1,406	3,493			,366	137	26	0	42,439	0	171	750	946	5,92		97,770
2009-10		1,558			0	921	1,077	1,031	524	15,264	1,205	463	32,578	21,895	7,498	,		,002	798	32,810	0	73,321	0	263	903	2,164	7,07		225,150
2010-11		3,058				3,840	1,628	2,462	894	14,385	2,534	233	55,085	52,592	16,578	,		,940	672	79,340	0	53,509	0	585	1,031	2,533	6,47		327,630
max	6,450	8,160	3,77	70 2,	730	6,480	3,480	4,760	2,630	41,110	5,550	1,660	59,590	52,590	50,030	,		,580 1	1,640	115,320	37,780	103,350	26,090	2,930	3,260	3,460	7,83	,	427,790
min	0	C)	0	0	0	0	0	0	0	0	0	5,590	1,080	C		0	0	0	0	0	0	0	0	0	200	2,24		0
mean	910	1,980		50	410	620	740	760	440	3,710	570	130	24,330	11,640	5,070			,920	390	19,340	2,150	23,420	2,690	600	830	1,570	5,44	,	74,020
last 5 yr		1,540		30	60	1,450	1,110	1,000	350	6,510	910	210	26,150	16,630	6,970			,160	420	23,340	0	44,070	0	320	1,230	1,510	5,61		163,630
last 10 yr		3,310) 72	20	320	1,350	1,400	1,110	570	7,580	1,060	250	27,310	12,830	9,380	1,27	70 26	,380	480	38,330	0	40,050	0	630	1,730	1,490	5,06	0	182,610

Station Name

63 Santa Anita Dam - Debris Basin 68 Sawpit Dam 89 San Dimas Dam 95 San Dimas Fire Warden 96 Puddingstone Dam 108 El Monte Fire Station 144 Sierra Madre Dam 167 Arcadia Pumping Plant 201 Hacienda Heights Fire Station 223 Big Dalton Dam 235 Henninger Flats 334 Cogswell Dam 338 Mt. Wilson-Observatory 356 Cal Poly Pomona 387 Covina City Yard 390 Morris Dam 425 San Gabriel Dam 610 Pasadena City Hall 683 Sunset Ridge 742 San Gabriel Fire Station 1037 Arcadia Arboretum 1041 Santa Fe Dam 1114 Whittier Narrows Dam 1140 Rosemead Fire Station 1257 San Jose Creek Reclamation Plant 1260 Spadra Landfill APPENDIX J

INCIDENTAL PERCOLATION OF WATER DISCHARGED INTO SAN JOSE CREEK

lumn #	1	2	3	INTO SAN JOSE CREE	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	2:	i l
-	•																	INCIDENTAL				
						INFLOW (ACR	E-FEET)						OL	JTFLOW (ACRE	-FEET)		RECHARGE	RECYCLED WATER PERCOLATION			D (D	San Jose
ATER YEAR	F81-Alhambra F	82-Rubio F	318-Eaton F3	317-Arcadia F193-Sa	antaAnita F1	94-Sawpit U8-	SanGabriel	F274-Dalton F	304-Walnut F3	12-SanJose San	Jose WRP	Total	F263-SanGabriel Sp	reading In	ported	Total	(ACRE-FEET)	(ACRE-FEET)	Ave (Inches)	Precip (acre-feet)	Perc/Prec %)	
40.50	3 000	1 600					50	210				F 140	4 1 2 0	- 440		4 5 70			20	640.440	0.1	-
49-50 50-51	3,090 2,360	1,690 1,010					50 6,230	310 60				5,140 9,670	4,130 560	440 40		4,570 600	570 9,070		20 10	640,440 422,630	0.1 2.1	
51-52	9,050	5,300					66,120	2,090				82,560	50,930	4,570		55,500	27,060		40	1,394,400	1.9	
52-53	3,230	1,460					50,020	290	290			55,300	13,850	340		14,200	41,100		10	525,150	7.8	
53-54 54-55	3,780 3,020	2,480 1,880					25,030 90	1,060 710	25,410 21,650			57,770 27,330	10,990 9,250	4,940 350		15,930 9,600	41,840 17,730		20 20	720,560 625,020	5.8 2.8	
55-56	5,530	2,880		1,830			180	2,270	49,630	4,070		66,380	23,900	1,260		25,160	41,220		20	738,360	5.0	
56-57	4,440	2,290	2,400	1,340			9,010	980	51,470	800		72,740	18,020	1,540		19,560	53,180		20	628,320	8.	
7-58 8 E0	9,270 3,020	5,610	7,440	3,330			174,130	4,690	8,490	14,060		227,030	82,190	25,260		107,450	119,580		40	1,344,260	8.9 -3.1	
8-59 9-60	2,720	2,030 1,820	2,850 2,420	1,360 1,220	470		8,200 0	2,190 2,260	1,610 1,300	1,090 3,430		22,350 15,640	33,690 36,100	4,420 5,620		38,100 41,720	-15,750 -26,080		10 10	430,960 446,450	-5.8	
50-61	1,790	1,270	1,590	730	220	260	1,250	2,220	9,010	400		18,750	47,720	3,850		51,570	-32,820		10	295,830	-11.3	
51-62	6,240	4,120	6,880	3,390	5,910	11,990	73,600	7,200	4,800	9,530		133,660	103,060	34,650		137,710	-4,050		30	992,250	-0.4	
62-63 63-64	2,870 2,870	1,760 1,870	2,980 3,040	1,510 1,610	710 650	1,180 1,200	710 160	4,110 2,750	3,360 2,860	5,540 4,900		24,740 21,910	42,430 45,720	8,740 7,620		51,170 53,340	-26,420 -31,420		10 10	538,100 478,030	-4.9 -6.0	
64-65	4,610	2,030	3,760	2,270	990	1,500	7,740	3,180	11,630	10,110		47,810	77,270	18,000	11,250	84,030	-36,220		20	713,220	-5.3	
65-66	7,750	4,660	8,990	3,420	8,720	9,240	162,880	6,310	7,930	15,300		235,210	55,320	62,290	16,250	101,360	133,850		30	1,050,650	12.1	
66-67 67-68	8,820 4,750	5,230 0	8,680 0	4,580 0	11,570 0	16,020 0	167,900 23,060	10,150 4,310	15,060 16,900	26,250 17,870		274,260 66,880	62,810 26,240	127,190 37,690	22,500 27,650	167,500 36,270	106,760 30,610		30 20	1,222,310 610,660	8. 5.(
68-69	4,750	0	0	0	0	0	23,060 541,690	4,310 32,810	49,490	52,980		689,260	28,240 274,240	78,920	15,460	337,710	351,550		20 50	1,661,740	21.2	
69-70	3,710	0	0	0	2,330	4,830	37,930	0	3,250	20,920		72,970	79,090	46,470	0	125,560	-52,590		20	552,970	-9.5	5
70-71	5,160 3,040	0	0	0	2,430 320	4,180	22,760	0 0	6,810	16,240		57,580	55,040	40,950	730	95,260	-37,690		20	644,550	-5.8	
71-72 72-73	9,110	0	0	0	4,270	1,450 12,150	11,080 94,970	0	3,000 6,910	12,920 27,580	24,070	31,820 179,060	32,720 64,030	18,840 87,000	3,960 7,520	47,600 143,510	-15,780 35,560		10 30	378,370 1,017,720	-4.2 3.5	
73-74	5,720	4,590	6,840	3,190	2,080	6,490	44,030	87,440	6,670	24,090	21,040	212,200	60,510	65,670	15,330	110,850	101,340		20	755,560	13.4	
74-75	4,010	3,220	4,800	2,240	830	2,000	19,050	37,830	5,110	46,280	19,190	144,560	38,990	45,800	33,360	51,430	93,120		20	664,190	14.0	
75-76 76-77	3,720 4,320	2,870 3,180	3,890 3,620	2,540 2,110	1,050 730	1,280 2,360	20,130 15,750	40,670 10,000	2,730 3,900	17,690 16,390	19,840 19,900	116,410 82,260	32,850 17,230	35,630 28,360	26,380 18,890	42,100 26,700	74,310 55,550	2,660	20 20	617,140 611,890	12.0 9.1	
77-78	12,250	9,340	21,320	6,790	25,510	51,110	419,950	67,870	47,040	53,040	29,000	743,220	256,750	150,180	23,150	383,770	359,450	2,000	50	1,821,010	19.	
78-79	7,590	5,600	7,040	3,220	8,950	11,800	99,300	71,570	12,580	30,970	23,260	281,870	37,380	99,030	24,680	111,730	170,140	0	30	968,750	17.6	
79-80 80-81	12,990	8,350 3,030	27,840 3,840	6,970	49,910 970	33,220	326,270	59,830	38,290	56,810	19,590	640,060	202,740	103,230	4,350 10,660	301,610	338,450	0	40 10	1,543,880	21.9 19.4	
81-82	3,650 4,290	2,870	5,840	1,930 3,090	2,470	16,730 9,550	27,350 57,240	15,730 36,450	3,380 8,030	63,230 24,020	16,660 17,520	156,480 170,940	23,990 23,130	49,690 128,900	39,050	63,020 112,980	93,460 57,970	0	20	481,840 909,700	19.4	
82-83	12,890	9,050	29,500	7,720	55,040	35,490	313,930	37,680	32,720	46,360	55,780	636,170	119,620	292,240	22,090	389,770	246,400	0	50	1,818,010	13.0	
83-84	2,650	2,010	3,250	2,260	6,370	14,750	48,850	23,390	4,100	17,660	42,110	167,410	22,370	69,040	2,510	88,890	78,520	19,750	10	483,300	16.2	
84-85 85-86	3,480 6,570	2,520 4,390	4,180 4,800	3,360 5,960	2,090 4,900	1,860 11,770	32,910 94,720	38,500 26,390	5,820 9,390	26,700 36,710	42,160 52,610	163,580 258,220	22,490 31,360	59,400 129,170	14,020 55,880	67,870 104,650	95,720 153,570	19,680 21,250	20 30	654,150 980,940	14.0 15.1	
86-87	2,480	2,450	1,460	2,440	430	820	44,030	46,840	3,940	27,270	46,460	178,630	22,190	75,460	52,950	44,700	133,930	24,270	10	356,740	37.	
87-88	4,990	3,090	3,040	3,880	1,120	2,390	54,900	31,100	5,360	25,140	43,420	178,430	23,580	87,460	44,470	66,570	111,860	19,840	20	799,110	14.0	
88-89 89-90	3,500 3,430	2,080 3,230	2,120 2,270	2,630 2,480	700 620	1,160 900	66,750 46,060	36,790 38,560	1,620 1,710	41,150 53,770	32,640 34,440	191,130 187,480	51,220 28,250	75,900 102,290	46,320 49,170	80,800 81,370	110,330 106,110	0 6,200	20 10	567,540 489,350	19.4 21.3	
90-91	5,300	3,490	3,940	3,570	1,610	12,630	79,120	14,050	23,370	48,410	25,360	220,850	24,870	155,420	57,690	122,600	98,250	500	20	724,760	13.0	
91-92	9,900	4,110	10,300	8,040	13,960	26,730	149,510	7,250	20,380	60,220	38,670	349,090	30,470	297,900	66,890	261,480	87,610	8,200	30	1,076,830	8.:	
92-93 93-94	14,170 5,040	5,730 1,640	21,580 2,120	12,560 4,660	25,850 1,620	30,690 2,670	474,310 41,860	27,370 4,470	49,860 4,810	90,380 7,190	47,720 41,220	800,210 117,300	273,250 25,990	294,870 71,840	56,550 34,310	511,570 63,520	288,640 53,780	0 15,230	50 10	1,711,320 518,760	16.9 10.4	
93-94 94-95	10,050	1,840 6,780	14,500	8,030	13,920	2,870	158,260	4,470 14,160	4,810	75,670	41,220 66,260	406,760	105,920	233,660	24,890	63,520 314,690	92,070	15,230	40	1,421,710	6.5	
95-96	5,080	5,470	5,730	3,760	3,270	31,990	89,810	9,920	12,330	32,250	48,510	248,110	34,720	143,870	38,130	140,460	107,650	13,790	20	758,690	14.2	
96-97	6,270	2,790	4,620	4,540	4,110	16,350	65,350	21,890	9,360	29,240	53,710	218,220	52,270	141,860	57,030	137,100	81,110	1,440	20	806,850	10.:	
97-98 98-99	14,650 4,400	6,590 1,560	14,060 1,990	9,640 3,020	15,990 720	23,540 2,500	263,960 23,970	16,230 5,240	28,230 4,590	51,170 18,950	60,450 56,770	504,500 123,700	168,620 25,730	247,720 78,860	50,500 25,430	365,840 79,160	138,670 44,540	0 31,040	40 10	1,573,710 401,680	8.8 11.1	
99-00	5,300	2,960	3,360	3,100	1,510	1,750	42,950	20,530	11,220	58,900	65,830	217,400	42,580	127,950	57,010	113,510	103,890	23,250	20	647,410	16.0	
00-01	7,390	4,120	4,680	4,320	2,110	2,450	47,240	16,020	8,760	60,450	59,540	217,090	49,410	122,300	43,760	127,950	89,140	10,130	20	694,260	12.8	
01-02 02-03	5,450 9,650	2,190 5,110	1,680 5,350	1,900 4,660	820 1,930	710 4,370	47,420 85,270	21,440 24,360	2,000 10,860	53,820 44,680	38,000 44,150	175,420 240,390	34,240 32,740	116,660 120,310	48,670 59,410	102,230 93,640	73,190 146,740	3,760 11,410	10 20	299,650 863,140	24.4 17.0	
)2-03)3-04	7,530	2,810	3,580	3,280	1,930	2,120	64,260	24,360 21,140	6,010	44,680 38,400	44,150 53,620	240,390 204,010	24,880	120,310	59,410 56,670	93,640 82,240	146,740	28,740	10	523,440	23.3	
04-05	19,790	8,150	27,630	12,040	30,960	32,040	541,290	55,690	42,620	82,730	62,790	915,730	221,570	427,790	36,050	613,310	302,420	0	50	1,940,870	15.0	6
05-06 06-07	8,600	3,430	4,600	4,170	3,040	9,030	155,590	12,470 16 150	14,060	75,230	57,380 46.070	347,610	51,930	229,160	65,470 20,520	215,610	132,000	5,450	20	759,310	17.4 23.5	
07-08	5,770 7,540	1,100 3,720	1,250 5,010	1,450 5,460	640 11,220	1,020 8,030	20,350 78,250	16,150 7,130	9,920 11,080	51,640 33,890	46,070 47,070	155,360 218,380	39,690 36,630	72,610 94,970	20,520 7,450	91,770 124,160	63,590 94,230	6,380 10,440	10 20	271,090 777,740	23.: 12.:	
08-09	6,630	2,560	3,120	3,200	1,420	7,300	25,480	9,080	7,540	26,430	44,340	137,090	20,860	97,770	13,130	105,490	31,590	23,480	20	558,470	5.	7 2
09-10	9,260	3,900	6,350	4,730	3,350	3,890	129,210	15,460	13,750	70,660	26,120	286,680	26,520	225,150	41,640	210,030	76,650	0	20	879,250	8.	
10-11 ax	5,260 19,790	2,740 9,340	4,510 29,500	3,230 12,560	4,980 55,040	18,380 51,110	124,330 541,690	13,780 87,440	8,660 51,470	37,560 90,380	44,870 66,260	268,310 915,730	58,060 274,240	327,630 427,790	79,490 79,490	277,410 613,310	0 359,450	0 31,040	30 50	1,061,680 1,940,870	0.0 40.0	
in	1,790	9,340 0	29,500	12,560	55,040 0	51,110	541,690	87,440 0	290	400	16,660	5,140	560	427,790	79,490 0	600	-52,590	0	50 10	271,090	-10.0	
ean	6,360	3,260	6,110	3,550	6,670	10,330	95,550	18,560	13,740	33,910	40,720	215,760	58,790	96,140	32,540	129,800	86,110	8,770	20	820,430	10.0	D
st 5 yr	6,890	2,800	4,050	3,610	4,320	7,720	75,520	12,320	10,190	44,040	41,690	213,160	36,350	163,630	32,450	161,770	53,210	8,060	20	709,650	10.0	D i

Incidental Percolation = (Discharge from SJWRP to San Jose Creek - Flow at F263) if (Discharge from SJWRP to San Jose Creek - Flow at F263 > 0) Incidental Percolation = 0 if (Discharge from SJWRP to San Jose Creek - Flow ar F263 < 0)

APPENDIX K

TOTAL DISSOLVED SOLIDS, NITRATE, CHLORIDE, AND SULFATE CONCENTRATIONS OF RECHARGE AND DISCHARGE WATERS

APPENDIX K, TOTAL DISSOLVED SOLIDS (TDS), NITRATE, C	CHLORIDE, AND SULFATE CONCENTRATIONS OF RECHARGE AND DISCHARGE WATERS

olumn #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	1
Nater Year	Groundwater	Extraction fr	om		Surface Wa	ater in San G	abriel River			ater at Whittie	r Narrows			ater at San				nported Water			Treated Impo	orted from W	eymouth PI	lant (4)
Oct-Sep)	San Gabriel B	asin (1)			at Azusa (2)			WRP (Direc	t Use) (3)		W	RP Discha	arged to Rive	er (3)		from State V	Vater Project	(3)					
	TDS Ni	rate Ch	nloride	Sulfate	TDS	Nitrate C	Chloride Sulf	ate	TDS	Nitrate Ch	loride Sulf	fate TE	DS N	Vitrate C	Chloride S	Sulfate	TDS N	Nitrate Ch	nloride	Sulfate	TDS N	litrate Cl	nloride Su	ulfate
	Mear	Concentrat	tion, mg/l		Me	ean Concentra	ation, mg/L		Me	an Concentrat	ion, mg/L		Mea	an Concentra	ation, mg/L		Mea	an Concentrat	tion, mg/L		Mea	n Concentra	tion, mg/L -	
1973-74	324	19.6	21	48	184	1.2	6	21	635	15.4	101	104	681	96.3	175	109	307	0.4	59	42	533	1.1	85	20
974-75	331	24.6	27	50	199	1.2	8	30	510	6.2	82	81	678	101.3	137	91	282	0.5	57	42	710	0.4	85	20
1975-76	353	34.7	29	50	196	1.5	9	19	539	4.9	94	98	645	60.8	145	88	214	0.9	51	37	441	0.6	85	20
1976-77	362	30.6	29	62	205	2.2	7	25	567	7.1	85	101	648	63.5	135	94	190	0.9	94	47	546	0.4	85	20
1977-78	357	22.0	25	53	180	2.4	6	21	510	11.3	90	124	656	69.8	161	97	303	1.4	41	43	610	0.2	85	20
1978-79	349	28.0	25	53		1.9	6	21	602	9.5	113	150	651	87.3	157	140	184	1.4	38	39	496	0.6	85	20
1979-80	337	26.6	25	45		1.5	8	14	489	6.8	80	90	635	88.7	153	159	242	1.4	17	22	502	1.2	85	20
1980-81	306	21.2	23	42		1.2	10	24	521	8.6	94	124	621	75.6	132	109	265	2.7	57	59	466	1.2	85	203
1981-82	354	29.7	29	56		1.3	8	19	467	5.0	150	75	578	79.2	117	77	217	3.2	40	45	490	1.6	85	20
1982-83	336	25.9	37	44	252	2.8	6	21	503	4.3	75	84	582	86.9	132	110	262	1.8	5	11	422	1.3	85	20
1983-84	308	20.9	21	39		6.0	6	21	529	12.2	70	142	565	91.8	146	111	167	1.4	27	35	608	0.9	85	20
1984-85	359	20.0	28	54	184	3.5	11	24	474	4.1	76	118	624	82.4	89	108	157	1.4	30	32	534	1.1	85	20
1985-86	381	30.0	20	52		1.8	6	24	506	5.0	76	134	595	75.6	110	150	174	2.3	80	37		1.1	85	20
1986-87	334	24.4	25	44	319	6.1	6	21	567	3.2	74	124	595 581	73.0	120	130	256	1.8	50	43	463	1.4	85	20
1987-88	340	24.4	23	44		3.1	6	21	485	9.5	89	86	604	74.3	89	128	321	2.3	98	43	403 504	0.9	67	19
1988-89	340	28.0 29.7	23	40 45		1.5	6	21	483 522	9.5 1.8	78	90	598	70.2	125	120	342	2.3	133	47 55	504 506	1.0	77	18
1989-90	325	23.9	23	45		0.9	0	26	714	1.0	89	114	619	84.2	129	122	342	2.5	96	46	500	1.0	83	17
1999-90	325	23.9 24.3	23 24	43 44	326	0.9 3.4	4	20	608	2.6	89	135	638	84.6	129	122	376	3.2	135	40 55	548	1.2	93	19
1991-92	320	24.3 23.5	24	44 45		3.4 1.3	3	15	589	2.0 5.0	110	164	647	77.0	132	190 147	367	2.7	86	83	620	1.0	93 88	24
	305						4	15					647 640						57					24
1992-93 1993-94		22.9	26	48		1.6	0		589	5.9	99 05	126		72.5	117	126	329 247	2.3	-	52	609	1.2	92	
1993-94 1994-95	373	26.1	28	53	178	1.0	7	22 12	509	10.3	95 05	110	645 657	61.7	132	125	247 277	1.8	53	35	624	1.2	91 06	25
	299	21.3	26	44		2.3	5		533	1.7	95	106	657	60.3	118	130		2.7	58	53	647	1.1	96	26
1995-96	354	22.2	29	58		2.2	2	18	519	1.8	95	79	647	71.1	110	102	210	2.3	44	37		1.0	91	24
1996-97	338	23.3	28	49		1.9	6	21	526	1.0	96	85	626	59.4	114	121	184	1.8	32	26	599	0.9	88	23
1997-98	289	24.5	27	46		2.0	6	21	587	24.8	91	83	599	64.4	107	104	181	2.1	54	27	557	0.8	80	21
1998-99	198	21.3	21	38		2.0	6	21	503	32.6	85	78	583	67.8	106	88	186	2.7	33	32		1.1	85	203
1999-00	320	21.5	24	47		2.5	5	25	551	27.7	94	95	581	64.3	103	78	226	2.9	43	37		1.1	85	203
2000-01	337	20.9	26	45		2.3	6	21	545	30.9	97	90	593	58.2	110	97	270	3.3	83	49		1.1	85	203
2001-02	358	21.5	33	56		2.2	5	24	552	69.8	95	98	626	57.1	113	101	286	3.1	74	44	533	1.1	85	203
2002-03	342	23.9	31	51		2.9	6	21	466	22.5	99	98	632	46.3	113	84	266	2.7	48	41	533	1.1	85	203
2003-04	366	21.5	29	50		2.8	6	21	550	29.3	98	91	612	32.7	106	87	243	3.8	46	41	533	1.1	85	203
2004-05	380	20.8	35	51	185	2.4	6	21	573	17.1	100	99	626	27.4	101	79	235	2.3	56	54	533	1.1	85	203
2005-06	373	20.3	32	54	-	2.0	6	21	531	28.4	113	93	609	24.9	105	79		2.8	37	34	533	1.1	85	203
2006-07	358	20.1	33	62		2.0	3	24	550	30.2	108	95	631	28.7	104	74	233	3.6	70	45	371	2.3	69	11
2007-08	353	24.6	32	49		2.4	6	21	540	28.8	110	98	649	28.5	112	81	276	2.4	68	48		2.1	91	16
2008-09	336	25.6	27	46		2.0	4	22	600	34.0	112	108	657	31.2	116	98	280	2.6	72	45	617	1.4	98	23
2009-10	385	24.8	36	70		2.2	4	22	582	32.7	94	128	618	28.7	108	85		2.6	59	42	562	1.3	91	20
2010-11	367	22.7	36	50		3.4	4	22		29.5	110	98	560	36.1	118	78		2.6	32	31	455	1.6	80	15
2011-12	306	19.0	24	44		2.3	4	22		15.3	116	93	622	64.3	107	75		2.2	80	37		1.6	70	12
Maximum	_	34.7	37	70		6.1	11	30		69.8	150	164	681	101.3	175	190		3.8	135	83		2.3	98	26
Minimum	n 200	19.0	21	38	160	0.9	2	12	466	1.0	70	75	560	24.9	89	74		0.4	5	11	371	0.2	67	11
AVERAGE	338	24.2	28	49	232	2.3	6	21	544	15.3	95	105	622	64.3	122	106	249	2.2	59	42	533	1.1	85	203
Last 5 years Ave	. 349	23.3	31	52	216	2.5	4	22	560	28.1	108	105	621	37.8	112	83	241	2.5	62	41	501	1.6	86	17
Last 10 years Ave	. 357	22.3	31	53	228	2.4	5	22	547	26.8	106	100	621	34.9	109	82	237	2.8	57	42	501	1.5	84	18

(1) From Main San Gabriel Basin Watermaster Database (Fiscal Year from July to June)

(2) From USGS to 1980-81 (Water Year), from Watermaster after 1980-81 (Fiscal Year) (Covina Irrigating Diversion and Upper San Gabriel Canyon Wells)

(3) From San Gabriel River Watermaster Database

(4) Metropolitan Water District of Southern California Annual Reports

(5) From Raymond Basin Management Control Board Database (average concentrations of wells owned by producers exporting water to Main San Gabriel Basin)

(6) From San Gabriel River Watermaster annual reports

(7) From San Gabriel Valley Water Company Well B7C

The longterm average was used for years when data was either not collected or not readily available.

25	5 20	5 2	7 28	29	30	31	32	33	34	4 35	36
Imported V	Vater from	Raymond	÷	Subsurface	Flow	•		Subsurface	e flow	•	•
Basin (5)				to Central I	Basin (6)			from Puent	te Basin (7)		
TDS	Nitrate	Chloride	Sulfate	TDS	Nitrate	Chloride	Sulfate	TDS	Nitrate	Chloride	Sulfate
M	ean Concei	ntration, mg	ı/L	Me	ean Concen	tration, mg/	L	M	ean Concer	ntration, mg/	L
330	28.7	20) 43	337	5.0	22	57	551	11.6	53	158
330	28.7	20) 43	290	4.9	24	71	551	11.6	53	158
330	28.7	20) 43	289	6.7	10	28	551	11.6	53	158
330	28.7	20) 43	249	6.7	48	30	551	11.6	53	158
330	28.7	20) 43	232	1.0	18	33	551	11.6	53	158
330	28.7	20) 43	236	0.9	19	33	551	11.6	53	158
330	28.7	20) 43	284	3.7	15	35	551	11.6	53	158
330	28.7	20) 43	258	3.5	17	38	551	11.6	53	158
330	28.7	20) 43	272			39		11.6	53	158
330) 28.7	20) 43	316	1.7	9	22		11.6	53	158
330) 28.7	20) 43	230			67				158
330											
330) 28.7			193	1.8						
330		-			5.3		47	586			
308	23.8	3 20) 43	350	6.8		64	516			153
315	24.4	20) 43	207	4.5	15	39	497	12.8	48	
272	22.7	20) 43	337	7.7		81				
327) 43	407	8.1		96	551			158
350) 43	496	11.3		117	551	28.4	53	158
275) 43	434	7.7	57	106	653			174
369				475	7.7		110	551	10.4	53	158
336							119				
273					6.7		91				
347							100				
354							85				
280					6.3		80				
342					6.8		95				
330							114				
326							160				160
340							160			_	
357							160				
310							120				
394							85				
360						57	88				
373							110				
351							90				
310							110				
310							110				
330					6.7		100		1		
394							160				
272							22				
330	1	1			6.7		83				
335							104				
343	26.7	20) 44	409	7.9	74	113	556.3	11.0	52	156

APPENDIX L

RECLAIMED WATER IN SAN GABRIEL BASIN

	RECYCLED WATER	R IN SAN GABRIEL BA	SIN									
column #	1	2	3	4	5 RECYCLED WATE	6 R IN MAIN SAN		8 (ACRE-FFFT) (1)	9	10	11	. 1
WATER	WHITTIER N	ARROWS WRP		POMO	NA WRP			. ,.,	IOSE CREEK WI	RP		
YEAR (OCT-SEP)	PRODUCTION	DIRECT USE (MAIN BASIN) (3)	PRODUCTION	DIRECT USE (MAIN BASIN)	RECHARGE	DISCHARGE TO OCEAN (2)	PRODUCTION	DIRECT USE (MAIN BASIN) (3)	RECHARGE (MAIN BASIN)	DISCHARGE TO SAN JOSE	DISCHARGE TO OCEAN	RECYCLED WATER DIRECT USE (MAIN BASIN)
									· · ·	CREEK		
1965-66	15,841											
1966-67	16,320											(
1967-68	18,402		6,862	0		486						(
1968-69	17,124		7,840	0 0		1,659 444						
1969-70 1970-71	17,254 19,558		10,140 8,500	0		444 196						
1971-72	17,560		8,889	0		218						
1972-73	13,678		9,246	0		562	32,400			24,073		
1973-74	13,437		9,178	0	1,912	233	29,000			21,042		(
1974-75	14,676		7,850	0		180	26,400			19,192		(
1975-76	12,404		7,986	0		164	28,900			19,838		
1976-77 1977-78	10,124 14,202		7,895 8,493	0 0		203 1,894	32,600 35,000			19,895 29,003		
1978-79	10,985		7,990	0		406	35,000			23,259		
1979-80	16,779		9,467	0		927	29,400			19,585		
1980-81	11,532		10,679	0		64	31,300			16,655		
1981-82	14,256		9,997	0	1,215	263	32,800			17,516		(
1982-83	15,535		10,785	0		1,625	60,000			55,783		(
1983-84	13,820		11,320	0		262	56,700			42,110		
1984-85	13,111		12,036	0		171	56,200			42,161		
1985-86 1986-87	14,138 15,750		11,300 10,764	0		590 173	64,100 66,500			52,612 46,459		
1987-88	14,625		9,648	0		28	68,100			43,419		
1988-89	14,251		10,286	0		169	68,770			32,638		
1989-90	15,066		9,921	0	734	15	68,000			34,444		
1990-91	13,916		10,410	0	1,715	67	64,000			25,364	33	. (
1991-92	13,445		11,929	0		253	70,000			38,674		(
1992-93	13,668		14,674	0		1,705	78,200			47,722		
1993-94 1994-95	11,729 12,238		13,161 12,732	0 0		153	85,000 92,500			41,220		
1994-95	10,286		13,577	0		1,133 287	90,000			66,260 48,505		
1996-97	10,144		13,798	0		357	92,000			53,712		
1997-98	11,517		12,494	0		235	95,000			60,449		(
1998-99	11,093		12,649	0	359	128	92,000			56,767	451	(
1999-00	9,213		13,089	0		183	97,000			65,825		
2000-01	8,315		12,509	0		233	99,000	1,268	0			
2001-02	8,963		11,585	0		162	93,000	1,463	0			
2002-03 2003-04	8,652 8,315		10,068 11,188	0		201 43	94,000 92,000	1,329 1,557	0			-
2003-04	8,423	38	11,188	0	/	913	92,000	1,337		,		
2005-06	9,105	11	11,595	0		190	92,000	1,148				
2006-07	7,392	834	10,264	0		9	86,000	1,451	0			
2007-08	6,338	1,093	10,298	0		118	82,000	1,494	0	47,069		2,58
2008-09	5,344	882	9,668	0		74	79,000	1,434	0			
2009-10	5,525	599	9,521	0		141	77,000	1,755				
2010-11	7,935	359	10,249	0	1,416	326	75,000	1,955	0	44,866	601	2,314
max	19,560	1,090	14,670	0	5,200	1,890	99,000	1,960	0	66,260	11,140	2,59
min	5,340	10	6,860	0		10	26,400	1,150				
mean	12,430	550	10,550	0		410	67,640	1,470				
last 5 yr	6,510	750	10,000	0		130	79,800	1,620				
last 10 yr	7,600	550	10,600	0	1,230	220	86,200	1,480	0	46,440	2,040	1,87

NOTES:

(1) From Annual Reports of the San Gabriel River Watermaster(2) Determined by River Watermaster

(3) From Annual Reports of the Los Angeles County Sanitation Districts

http://www.lacsd.org/waterreuse/waterreusesummaries.asp

APPENDIX M

LOADING AND ASSIMILATIVE CAPACITY OF NITRATE IN SAN GABRIEL BASIN

column #	1	2 3 = 2.718 * (1) *	4	5	6 = 2.718 * (4) * (5)	7 = (3) + (6)	8	9 = 2	10 .718 * (8) *	11 12	1 = 2.718 * (11) * (12	3 14 !)	15	16	17 = 2.718 * (14) *	18	19		21 2.718 * (18)	22	23	24 = 2.718		5 27	28	29 = 2.718 * (26) *	30	31	32	33	34		36 = 2.718 *
		(2)							(9)						(15)				* (19) * (20)			* (23)	* (24)			(27) * (28)						((30)*(+(33)*(*(31)*(32) (34)*(35))
				Nitrate load	ding							-																					
	Loading from prec			ushed (Anus	a)	total	Loading from from Puente	n subsurface i			in San Gabriel	San Gabriel		ading from	Returned flo		in Motor		c.	rface Water			Incorporate of 1	Mater				Deeue	lad Matar (wigete cell	courses, etc		
	From Valley Floor		From Wate	ersneu (Azus	d)	lolai	from Puence	Basin	River an	l San Jose Cre	ек	Uses		irect Uses)		Raymond Bas		irect Uses)			(Direc	t Uses	Imported (blend of)	Water Neymouth)			Wh	ttier Narrows	ed water (i	San Jose		<u> </u>	т
	VOLUME NO3	LOADING	VOLUME	NO3	LOADING		VOLUME N	IO3 LO		NO3	LOADING	VOLUME			OADING	VOLUME C				DLUME CO		_			03 I	OADING		COEFF. NO3	VOLU	ME COEFF		Loading	; I
	AF MG/L	LBS	AF	MG/L	LBS	LBS	AF N	/IG/L LB	S AF	MG/L	LBS	AF	M	G/L LE	BS	AF	M	G/L LB	as Al		MG/L	LBS	AF	Ν	1G/L I	LBS	AF	MG/L	AF		MG/L	LBS	
	30,000	19 1,549,000			4,155,000	5,704,000	800	12	25,000	0 96		221,089	0.09	29	1,587,000	4,648	0.09	43	49,000	14,349	0.09	19 67	,000 630		19	3,000	0	0.09	19			144	0
	26,240	19 1,355,000			3,595,000	4,950,000			22,000	0 101		207,648	0.09	37	1,874,000	5,926	0.09	43	63,000	15,483	0.09		,000 1,036		19	5,000	0	0.09	19			152	0
	23,120	19 1,194,000				4,699,000			23,000	0 61		226,016	0.09	52	2,879,000	4,262	0.09	43	45,000	13,992	0.09		,000 3,539		19	16,000	0	0.09	19		0.09	91	0
	25,560 92,110	19 1,320,000 19 4,757,000			3,259,000 12,890,000	4,579,000 17,647,000	660 730	12 12	21,000 2,6 23,000	0 63 0 70	459,000) 196,034) 181,237	0.09 0.09	46 33	2,199,000 1,461,000	3,076 4,976	0.09 0.09	43 43	32,000 52,000	14,197 14,169	0.09 0.09		,000 9,471 ,000 11,427		19 19	44,000 53,000	0	0.09 0.09	19		0.09 0.09	95 105	0
	45,940	19 2,372,000				8,267,000	850			0 70	() 198,534	0.09	42	2,040,000	4,970	0.09	43	49,000	16,436	0.09		,000 11,427		19	54,000	0	0.09	19			105	0
	81,340	19 4,201,000				15,004,000	930		29,000	0 89		207,493	0.09	40	2,026,000	5,031	0.09	43	53,000	15,427	0.09	19 72			19	61,000	0	0.09	19			133	0
	18,900	19 976,000				3,587,000	820	12		0 76		213,549	0.09	32	1,659,000	5,101	0.09	43	54,000	17,290	0.09		,000 16,799		19	78,000	0	0.09	19			113	0
	13,240	19 684,000				3,583,000	850			0 79		203,540	0.09	45	2,218,000	2,307	0.09	43	24,000	16,003	0.09	19 74	,000 17,402		19	81,000	0	0.09	19			119	0
	39,540	19 2,042,000				8,803,000	850			0 87	(192,389	0.09	39	1,828,000	5,204	0.09	43	55,000	17,560	0.09	19 82	,000 14,208		19	66,000	0	0.09	19			130	0
	7,080	19 366,000				1,728,000	800		25,000 19,7		,,		0.09	31	1,674,000	5,702	0.09	43	60,000	18,721	0.09	19 87			19	85,000	0	0.09	19			138	0
	10,250	19 529,000			, . ,	2,280,000	820	18	40,000 19,6		,,	,	0.09	41	2,227,000	6,019	0.09	43	63,000	17,786	0.09	19 83	,		19	101,000	0	0.09	19			124	0
	16,650	19 860,000			3,243,000	4,103,000		16	36,000 21,2		,		0.09	45	2,517,000	4,942	0.09	43	52,000	17,124	0.09		,000 20,872		19	97,000	0	0.09	19			113	0
	6,220	19 321,000	18,420		951,000	1,272,000			29,000 24,2		,,.		0.09	37	2,104,000	5,294	0.09	43	56,000	18,293	0.09	19 85			19	105,000	0	0.09	19			111	0
	11,590 8,340	19 599,000 19 431,000	43,810 32,120			2,861,000 2,090,000	880 890		27,000 19,8 31,000	0 70	3,783,000	233,165 233,250	0.09 0.09	43 45	2,450,000 2,544,000	3,284 5,225	0.09 0.09	36 37	29,000 47.000	14,939 19,691	0.09 0.09	19 69 19 92	,000 28,537 ,000 25,799		19 19	133,000 120,000	0	0.09 0.09	19			105 111	0
	8,020	19 414,000			1,039,000	1,691,000	910	13	30,000 6,2	• • •	1,418,000		0.09	36	2,091,000	3,549	0.09	34	30,000	13,365	0.09	19 52			19	146,000	0	0.09	19			126	0
	11,640	19 601,000				2,558,000	910		23,000 5		115,000		0.09	36	1,974,000	1,670	0.09	46	19,000	10,802	0.09		,000 29,922		19	139,000	0	0.09	19			127	0
	16,010	19 827,000				4,435,000	930	28	72,000 8,2				0.09	35	1,737,000	1,298	0.09	53	17,000	19,727	0.09	19 92			19	86,000	0	0.09	19			115	0
	36,170	19 1,868,000			6,567,000	8,435,000	890	11		0 72) 214,544	0.09	34	1,801,000	1,693	0.09	44	18,000	21,596	0.09	19 100			19	88,000	0	0.09	19			109	0
	8,310	19 429,000	26,840	19	1,386,000	1,815,000	850	10	24,000 15,2	0 62	2,552,000	220,786	0.09	39	2,112,000	2,101	0.09	36	18,000	22,820	0.09	19 106	,000 18,412	0.09	19	86,000	0	0.09	19	0	0.09	92	0
	22,220	19 1,147,000	,		5,447,000	6,594,000	860	12	,	0 60	(226,251	0.09	32	1,769,000	1,351	0.09	52	17,000	17,229	0.09	19 80			19	91,000	0	0.09	19		0.09	90	0
	12,130	19 626,000				2,744,000	810	8	17,000 13,7				0.09	33	2,033,000	1,553	0.09	52	20,000	18,940	0.09	19 88			19	79,000	0	0.09	19			107	0
	12,630	19 652,000	,		2,266,000	2,918,000	820	9	19,000 1,4		232,000		0.09	35	2,193,000	1,497	0.09	51	19,000	22,693	0.09	19 105			19	80,000	0	0.09	19		0.09	89	0
	22,950	19 1,185,000			5,377,000	6,562,000	840		,	0 64	5 722 000	235,986	0.09	37	2,121,000	1,440	0.09	50	18,000	18,054	0.09	19 84			19	66,000	0	0.09	25		0.09	97	0
	0	19 0	0		1 271 000	1 718 000	750	9	19,000 31,0				0.09	32	1,896,000	1,096	0.09	48	13,000	22,215	0.09	19 103			19	64,000	0	0.09	33			102 96	0
	6,710 7,180	19 347,000 19 371,000			1,371,000 1,490,000	1,718,000 1,861,000	760 860	9 9	18,000 23,2 20,000 10,1		4,063,000		0.09 0.09	32 31	2,061,000 1,927,000	1,985 1,663	0.09 0.09	48 46	23,000 19,000	17,011 20,031	0.09 0.09	19 79 19 93			19 19	98,000 93,000	0	0.09 0.09	28		0.09 0.09	50	27,093
	7,180	19 371,000	28,800		1,490,000	1,801,000	890	10	24,000 3,7		584.000		0.09	32	1,927,000	1,005	0.09	40	19,000	15,818	0.09		,000 19,971		19	163,000	0	0.09			0.09	-	30,668
	10,410	19 538,000	-		2,367,000	2,905,000	940	10	26,000 11,4			,	0.09	36	2,123,000	519	0.09	43	6,000	4,687	0.09	19 22			19	190,000	0	0.09			0.09		22,559
	5,730	19 296,000			1,086,000	1,382,000	960	12	30,000 28,7				0.09	32	2,036,000	553	0.09	41	6,000	7,196	0.09	19 33			19	236,000	0	0.09			0.09		18,659
	28,320	19 1,463,000			6,975,000	8,438,000	960	9		0 27	(0.09	31	1,791,000	789	0.09	40	8,000	12,289	0.09	19 57			19	142,000	38	0.09			0.09		12,847
	7,390	19 382,000	31,910	19	1,648,000	2,030,000	860	10	22,000 5,4	0 25	369,000	246,691	0.09	30	1,838,000	1,496	0.09	37	14,000	13,249	0.09	19 62	,000 23,125	0.09	19	107,000	11	0.09	28 1	,148	0.09	37 1	10,565
	0	19 0	0		0	0	950	12	31,000 6,3				0.09	30	1,989,000	1,136	0.09	38	11,000	13,948	0.09	19 65			19	120,000	834	0.09			0.09		21,442
	7,660	19 396,000			1,705,000	2,101,000	940	10	26,000 10,4				0.09	37	2,259,000	1,118	0.09	39	11,000	7,928	0.09		,000 30,174		19	140,000	1,093	0.09			0.09		23,346
	5,740	19 296,000	,			1,454,000	960	10	26,000 23,4		,,		0.09	38	2,225,000	1,144	0.09	39	11,000	13,832	0.09	19 64	,		19	101,000	882	0.09			0.09		23,752
	10,760 13,570	19 556,000	-, -		2,346,000 3,063,000	2,902,000 3,764,000		12 14	31,000 38,000 15,5	0 29		222,150	0.09	37 34	2,026,000	681 753	0.09 0.09	40 40	7,000 7,000	14,673	0.09 0.09		,000 16,329 ,000 10,316		19 19	76,000	599 359	0.09 0.09			0.09 0.09		23,299 28,451
is the annrovima	13,570 ate factor to convert a	19 701,000		19	3,003,000	3,764,000	990	14	56,000 15,5	JU 30	1,528,000	213,396	0.09	54	1,774,000	/53	0.09	40	7,000	13,543	0.09	19 03	,000 10,310	0.09	19	48,000	309	0.09	50 1	200	0.09	34 2	40,451
	92,100		249,600		12,890,000	17,647,000	1,000		72,000 31,0	0	5,723,000	270,400			2,879,000	6,000			63,000	22,800		106	,000 50,800)		236,000	1,100		-	,000		,	30,700
	0	4,757,000			12,000,000	17,047,000	700			0	3,723,000) 181,200			1,461,000	500			6,000	4,700			,000 50,800			3,000	1,100		2	0			,
2010-2011 mean	-	964,500	-		3,179,300	-			27,200 8,5	-	1,386,600				2,026,900	2,800			29,100	15,900			,800 20,100			93,200	100			400			6,400
mean	7,500	389,800	32,000		1,654,400		1,000		30,400 11,2	0	965,400				2,054,600	1,000			9,400	12,800			,400 20,900			97,000	800		1	,600		;	24,100
mean std deviation	9,000	462,800	39,400		2,034,800	2,497,600	900		27,800 10,5	0	976,600	242,300			2,002,000	900			9,200	11,700		54	,500 28,500)		132,300	400		1	,500		2	21,600
s coefficient of varia ces	Table III.6		Table III.6				Table III.6	App K	Table II	6 Apr 4		E		Ann K		G		Арр К		E		хрр К	G					~	inn K		۸.	рр К	
			1 able 111.6				1able III.6 16	App K 34		.6 App K .7 14		F		App K 2		G 15		Арр к 26		F	A	б (к	G				L	P	\рр К 10	L 11	Ap	ррк 14	

	38	39 = 2. ⁻	40 .718 * (38) * (39)	41	42	43 = 2.718 * (41) * (42)	44 = (40) +(33)	45 = (7) +(10) +(13) +(37) +(44)	46	47	48 2.718 * (46) *(47)	49	50	51 = 2.718 * (49) *(50)	52 = (48) +(51)	53 = (45) -(52)	54 =(54)i + (53)	55 =(54) / (56) / 2.718	56 = 0.75 * GW in storage	57	58 = 2.718 * (56) *(57)	59 = (58) - (54)	60 = (57) - (55)
										Nitrate unlo	ading						Groundwater mixin	g model					
	Loading	g from o	direct spread	ing (spreadin	g grounds	s)		1	Groundwat	er extractior	1	Subsurface out	flow				Using 75% of groun	dwater in	storage				
Local Ru	noff (Azus	a)		Imported Wa	ater		Spreading	Total				Flow			Total	Nitrate	Nitrate		75% of	Allowable	e loading	Assimilativ	/e
· · · · ·	d stormwa		. ,	(State Water			Total										stored in		groundwater		n Objective	capacity	
VOLUM	E NO3		DADING	VOLUME N		LOADING		loading	VOLUME					JNLOADING	unloading	balance	groundwater		in storage	NO3			
AF	MG/L	LBS	-		- 1	LBS	LBS	LBS		-1	.BS		- 4	.BS	LBS	LBS			AF	MG/L L		-	IG/L
56,8		19	2,935,000		19.0	- ,		10,827,000	221,090	20	11,754,000	23,400	5	318,000	12,072,000	-1,245,000	316,277,000	20	5,949,075	45	727,631,000	411,354,000	25
11,0 6,5		19 19	569,000 339,000	34,800 29,060	19.0 19.0			9,352,000 9,567,000	207,650 226,020	25 35	13,884,000 21,329,000	26,600 28,050	5 7	354,000 510,000	14,238,000 21,839,000	-4,886,000 -12,272,000	311,391,000 299,119,000	19 19	5,893,448 5,812,770	45 45	720,828,000 710,960,000	409,437,000 411,841,000	26 26
10,0		19	517,000	18,340	19.0			8,864,000	196,030	31	16,288,000	37,600	7	684,000	16,972,000	-8,108,000	291,011,000	19	5,740,598	45	702,132,000	411,121,000	26
129,6		19	6,694,000	20,550	19.0			27,057,000	181,240	22	10,823,000	27,050	1	74,000	10,897,000	16,160,000	307,171,000	19	5,965,875	45	729,686,000	422,515,000	26
68,0		19	3,515,000	30,970	19.0		5,114,000	15,627,000	198,530	28	15,114,000	23,850	1	58,000	15,172,000	455,000	307,626,000	19	6,007,553	45	734,784,000	427,158,000	26
97,4	20	19	5,031,000	5,800	19.0	300,000		22,576,000	207,490	27	15,007,000	23,750	4	241,000	15,248,000	7,328,000	314,954,000	19	6,144,330	45	751,513,000	436,559,000	26
49,6		19	2,566,000	0	19.0		2,566,000	8,050,000	213,550	21	12,288,000	31,950	4	305,000	12,593,000	-4,543,000	310,411,000	19	6,065,123	45	741,825,000	431,414,000	26
86,2		19	4,456,000	42,620	19.0			12,664,000	203,540	30	16,431,000	28,850	3	247,000	16,678,000	-4,014,000	306,397,000	19	6,054,578	45	740,535,000	434,138,000	26
263,8		19	13,628,000	28,340	19.0		15,092,000	25,953,000	192,390	26	13,538,000	29,250	2	133,000	13,671,000	12,282,000	318,679,000	19	6,249,780	45	764,411,000	445,732,000	26
65,7		19	3,393,000	3,330	19.0			12,152,000	218,030	21	12,397,000	26,750	5	360,000	12,757,000	-605,000	318,074,000	19	6,173,895	45	755,129,000	437,055,000	26
59,3 73,3		19 19	3,064,000 3,786,000	70 55,860	19.0 19.0			12,267,000 17,922,000	224,500 229,080	27 30	16,493,000 18,648,000	30,300 30,950	4 2	293,000 148,000	16,786,000 18,796,000	-4,519,000 -874,000	313,555,000 312,681,000	19 19	6,091,778 6,085,973	45 45	745,085,000 744,375,000	431,530,000 431,694,000	26 26
19,5		19	1,008,000	55,940	19.0		3,897,000	12,446,000	235,370	24	15,584,000	33,100	5	477,000	16,061,000	-3,615,000	309,066,000	19	5,995,275	45	733,282,000	424,216,000	20
43,4		19	2,245,000	43,990	19.0			13,869,000	233,170	29	18,151,000	34,150	7	627,000	18,778,000	-4,909,000	304,157,000	19	5,934,300	45	725,824,000	421,667,000	26
29,9		19	1,548,000	45,920	19.0			8,843,000	233,250	30	18,842,000	32,500	5	398,000	19,240,000	-10,397,000	293,760,000	19	5,840,093	45	714,302,000	420,542,000	26
54,7	90	19	2,829,000	47,500	19.0	2,453,000	5,282,000	10,750,000	238,900	24	15,487,000	32,600	8	678,000	16,165,000	-5,415,000	288,345,000	18	5,760,518	45	704,569,000	416,224,000	27
101,2	70	19	5,230,000	54,150	19.0	2,796,000	8,026,000	12,904,000	221,270	24	14,620,000	22,750	8	501,000	15,121,000	-2,217,000	286,128,000	18	5,748,105	45	703,051,000	416,923,000	27
229,5		19	11,856,000	68,300	19.0			23,537,000	201,750	23	12,864,000	17,800	11	544,000	13,408,000	10,129,000	296,257,000	18	5,892,480	45	720,709,000	424,452,000	27
232,2		19	11,993,000	62,630	19.0			25,695,000	214,540	23	13,342,000	23,950	8	498,000	13,840,000	11,855,000	308,112,000	19	6,073,103	45	742,801,000	434,689,000	26
33,5		19 19	1,733,000	38,300	19.0 19.0	,,		10,424,000	220,790	26	15,645,000	26,700	8 7	559,000	16,204,000	-5,780,000	302,332,000	19 19	5,995,178	45 45	733,270,000	430,938,000 436,481.000	26 26
221,8 125,6		19 19	11,456,000 6,486,000	22,350 32,480	19.0 19.0	, - ,	12,610,000 8,163,000	21,188,000 15,809,000	226,250 250,010	21 22	13,105,000 15,058,000	23,500 27,850	7	463,000 507,000	13,568,000 15,565,000	7,620,000 244,000	309,952,000 310,196,000	19	6,102,795 6,080,498	45 45	746,433,000 743,706,000	436,481,000	26
86,7		19	4,482,000	55,080	19.0			12,892,000	256,790	22	16,241,000	30,400	29	2,380,000	18,621,000	-5,729,000	304,467,000	19	6,032,970	45	737,893,000	433,426,000	20
184,8		19	9,545,000	62,890	19.0	,- ,		21,666,000	235,990	25	15,715,000	26,650	5	359,000	16,074,000	5,592,000	310,059,000	19	6,133,290	45	750,163,000	440,104,000	26
65,5	20	19	3,384,000	13,350	19.0	689,000	4,073,000	11,891,000	242,940	21	14,045,000	26,200	6	449,000	14,494,000	-2,603,000	307,456,000	19	6,030,683	45	737,613,000	430,157,000	26
66,2	60	19	3,422,000	61,680	19.0	3,185,000	6,607,000	14,667,000	261,680	21	15,270,000	29,300	7	541,000	15,811,000	-1,144,000	306,312,000	19	5,968,838	45	730,049,000	423,737,000	26
79,3	10	19	4,096,000	42,990	19.0		6,316,000	11,959,093	250,890	21	14,273,000	25,900	6	443,000	14,716,000	-2,756,907	303,555,093	19	5,905,305	45	722,278,000	418,723,000	26
70,5		19	3,645,000	46,080	19.0		6,025,000	8,870,668	247,880	22	14,512,000	27,650	8	609,000	15,121,000	-6,250,332	297,304,761	19	5,806,995	45	710,254,000	412,949,000	26
63,8		19	3,299,000	56,440	19.0			12,943,559	241,680	24	15,726,000	23,400	8	487,000	16,213,000	-3,269,441	294,035,320	19	5,765,985	45	705,238,000	411,203,000	26
45,7 406,0		19 19	2,361,000 20,970,000	68,320 21,720	19.0 19.0			12,181,659 32,564,847	258,380 234,980	21 21	15,078,000 13,265,000	20,500 24,100	8 8	426,000 516,000	15,504,000 13,781,000	-3,322,341 18,783,847	290,712,979 309,496,826	19 19	5,702,453 5,968,335	45 45	697,467,000 729,987,000	406,754,000 420,490,000	26 26
406,0		19	7,752,000	79,040	19.0			16,286,565	234,980	21	13,265,000	24,100	8	446,000	14,057,000	2,229,565	309,496,826 311,726,391	19	5,988,983	45	732,512,000	420,490,000	26
47,8		19	2,470,000	24,780	19.0			6,485,442	270,380	20	14,735,000	26,100	8	575,000	15,310,000	-8,824,558	302,901,833	19	5,844,788	45	714,876,000	411,974,000	26
87,2		19	4,505,000	7,730	19.0			10,311,346	250,240	25	16,732,000	38,200	8	794,000	17,526,000	-7,214,654	295,687,178	19	5,755,673	45	703,976,000	408,289,000	26
91,1	60	19	4,708,000	6,610	19.0	341,000	5,049,000	10,944,752	236,720	26	16,484,000	27,300	6	467,000	16,951,000	-6,006,248	289,680,931	19	5,686,095	45	695,466,000	405,785,000	26
192,4		19	9,938,000	32,710	19.0		11,627,000	16,760,299	222,450	25	15,007,000	28,400	10	733,000	15,740,000	1,020,299	290,701,230	19	5,724,278	45	700,136,000	409,435,000	26
259,2	10	19	13,386,000	68,420	19.0	3,533,000	16,919,000	24,169,451	213,400	23	13,137,000	23,200	11	681,000	13,818,000	10,351,451	301,052,681	19	5,873,235	45	718,355,000	417,302,000	26
400			20.070.000	70.000		4 002 000	22.002.000	22 564 666	270 462		24 220 000	20.202		2 200 000	24 020 000	40 702 000	240 670 600		6 240 200		764 444 000	445 733 000	
406,1 6,6			20,970,000 339,000	79,000 0		4,082,000 0					21,329,000 10,823,000	38,200 17,800		2,380,000 58,000	21,839,000 10,897,000	18,783,800 -12,272,000	318,679,000 286,128,000		6,249,800 5,686,100		764,411,000 695,466,000		27 25
0,0 104,4			5,390,500	36,800		1,899,800	_,				15,013,800	27,500		496,900	15,510,700	-12,272,000 -433,400	303,968,400		5,943,300		726,923,800		25
135,6			7,001,400	28,100		1,448,400					15,219,000	28,600		650,000	15,869,000	-2,134,700	296,004,800		5,776,800		726,525,800		20
141,4			7,303,400			2,126,900					14,828,700	26,200		573,400	15,402,100	-250,200	298,330,000		5,811,700		710,826,700		26
,																	7,817,213		106,171			5,405,265	0
																	0.03		0.02			0.01	0.01
Table I				Table III.6					Table III.6	Арр К		Table III.6	Арр К						Table III.6				
	28			29					33	2		34	30						36				

APPENDIX N

LOADING AND ASSIMILATIVE CAPACITY OF CHLORIDE IN SAN GABRIEL BASIN

APPENDIX N. LOADING AND A	ASSIMILATIVE (CAPACITY OF CHLOR	IDE IN	SAN GABRIE	EL BASIN																													
column #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25 26	27	28	29	30	31	32 33	34	35	36 37
		= 2.718 * (:	L) *			= 2.718 * (4) * (5)	= (3) + (6)		= 2.71	18 * (8) *		= 2.7	18 * (11) * (12)				= 2.718 * (14) *			1	= 2.718 * (18) * (19) * (20)			= 2.718 * (* (23) * (2)			* (26) * 7) * (28)					(/20	= 2.718 * = (17) +(21) +(25))*(31)*(32) +(29) +(36)
			(2)							(3)							(13)				(13) (20)			(23) (.	.4)		12	/) (20)						*(34)*(35))
				Chl	loride loa	ding																					1		1					
	Loading from	n precipitation						Loading fron	n subsurface in	flow Inci	idental Perc	olation in Sa	in Gabriel		Lo	oading fron	n Returned flo	w																
	From Valley	Floor	Fro	m Watershe	ed (Azusa	a)	total	from Puente	Basin	Rive	er and San J	lose Creek		San Gabriel E	Basin Water	¥	1	Raymond Bas	in Water			Surface Wate	r		Imported \	Vater				Recycled	l Water (irrigat	e golf courses	, etc.)	
Water														Uses	([Direct Uses)	Use	(D	irect Uses)	Use	(Dir	rect Uses)	blend of V	Veymouth)			Whittier Na			an Jose Creek		Total
Year	VOLUME C	LOADING	vo	LUME CI	1	LOADING		VOLUME C	LOAI	DING VOL	LUME CI	LOA	DING	VOLUME C	OEFF. C	I L	OADING	VOLUME CO	DEFF. CI	L	OADING	VOLUME CO	DEFF. CI	LOADING	VOLUME	COEFF. CI	LOADIN	G VO	LUME COEFF.	CL	VOLUME	COEFF. CL	Load	ing loading
	AF N	/IG/L LBS	AF	MG	G/L I	LBS	LBS	AF N	/IG/L LBS	AF	MG	i/L LBS		AF	N	1G/L L	.BS	AF	M	G/L L	BS	AF	MG	i/L LBS	AF	MG	i/L LBS	AF		MG/L	AF	M	G/L LBS	LBS
1973-74	30,000	28 2,270,0	00	80,460	28	6,123,000	8,393,000	800	53 11	14,000	0	175	0	221,089	0.09	28	1,514,000	4,648	0.09	28	32,000	14,349	0.09	28 98,00	630	0.09	85 1	3,000	0 0.	09 10	01 0	0.09	175	0 1,657,000
1974-75	26,240	28 1,985,0	00	69,620	28	5,298,000	7,283,000	710	53 10	01,000	0	137	0	207,648	0.09	28	1,422,000	5,926	0.09	28	41,000	15,483	0.09	28 106,00	1,036	0.09	85 2	2,000	0 0.	09 8	32 0	0.09	137	0 1,591,000
1975-76	23,120	28 1,749,0		67,880		5,166,000	6,915,000	730		04,000	0	145		226,016	0.09	28	1,548,000	4,262	0.09	28	29,000	13,992	0.09	28 96,00				4,000		09 9	94 0	0.09	145	0 1,747,000
1976-77	25,560	28 1,934,0		63,110		4,803,000	6,737,000				2,660	135		196,034	0.09	28	1,343,000	3,076	0.09	28	21,000		0.09	28 97,00				7,000		09 8	35 0	0.09	135	0 1,658,000
1977-78	92,110	28 6,969,0		249,610		18,996,000	25,965,000		53 10		0	161		181,237	0.09	28	1,241,000	4,976	0.09	28	34,000	,	0.09	28 97,00				8,000		09 9	90 0	0.09	161	0 1,610,000
1978-79	45,940	28 3,476,0	00 1	14,160	28	8,688,000	12,164,000	850	53 12	21,000	0	157	0	198,534	0.09	28	1,360,000	4,664	0.09	28	32,000	16,436	0.09	28 113,00	11,724	0.09	85 24	4,000	0 0.	09 11	13 0	0.09	157	0 1,749,000
1979-80	81,340	28 6,154,0	00 2	209,190		15,920,000	22,074,000		53 13		0	153	0	207,493	0.09	28	1,421,000	5,031	0.09	28	34,000	- /	0.09	28 106,00	13,032			1,000			30 0	0.09	153	0 1,832,000
1980-81	18,900	28 1,430,0	00	50,560	28	3,848,000	5,278,000	820	53 11	17,000	0	132	0	213,549	0.09	28	1,463,000	5,101	0.09	28	35,000	17,290	0.09	28 118,00	16,799	0.09	85 34	9,000	0 0.	09 9	94 0	0.09	132	0 1,965,000
1981-82	13,240	28 1,002,0		56,140		4,272,000	5,274,000		53 12		0	117	0	203,540	0.09	28	1,394,000	2,307	0.09	28	16,000	16,003	0.09	28 110,00				2,000			50 0	0.09	117	0 1,882,000
1982-83	39,540	28 2,991,0	00 1	130,930	28	9,964,000	12,955,000	850	53 12	21,000	0	132	0	192,389	0.09	28	1,318,000	5,204	0.09	28	36,000	17,560	0.09	28 120,00	14,208	0.09	85 29	5,000	0 0.	09	75 0	0.09	132	0 1,769,000
1983-84	7,080	28 536,0	00	26,370	28	2,007,000	2,543,000	800	53 11	14,000	19,750	146	7,837,000	218,028	0.09	28	1,493,000	5,702	0.09	28	39,000	18,721	0.09	28 128,00	18,298	0.09	85 38	0,000	0 0.	09	70 0	0.09	146	0 2,040,000
1984-85	10,250	28 775,0	00	33,910	28	2,581,000	3,356,000	820	53 11	17,000	19,680	89	4,761,000	224,500	0.09	28	1,538,000	6,019	0.09	28	41,000	17,786	0.09	28 122,00	0 21,676	0.09	85 45	1,000	0 0.	09	76 0	0.09	89	0 2,152,000
1985-86	16,650	28 1,260,0	00	62,800	28	4,779,000	6,039,000	840	58 13	32,000	21,250	110	6,353,000	229,077	0.09	28	1,569,000	4,942	0.09	28	34,000	17,124	0.09	28 117,00	20,872	0.09	85 43	4,000	0 0.	09	74 0	0.09	110	0 2,154,000
1986-87	6,220	28 471,0	00	18,420	28	1,402,000	1,873,000	850	55 12	27,000	24,270	120	7,916,000	235,370	0.09	28	1,612,000	5,294	0.09	28	36,000	18,293	0.09	28 125,00	22,575	0.09	85 46	9,000	0 0.	09	75 0	0.09	120	0 2,242,000
1987-88	11,590	28 877,0	00	43,810	28	3,334,000	4,211,000	880	52 12	24,000	19,840	89	4,799,000	233,165	0.09	28	1,597,000	3,284	0.09	28	22,000	14,939	0.09	28 102,00	28,537	0.09	67 46	8,000	0 0.	09 8	39 0	0.09	89	0 2,189,000
1988-89	8,340	28 631,0	00	32,120	28	2,444,000	3,075,000	890	48 11	16,000	0	125	0	233,250	0.09	28	1,598,000	5,225	0.09	28	36,000	19,691	0.09	28 135,00	0 25,799	0.09	77 48	6,000	0 0.	09	78 0	0.09	125	0 2,255,000
1989-90	8,020	28 607,0	00	24,720	28	1,881,000	2,488,000	910	54 13	33,000	6,200	129	2,174,000	238,896	0.09	28	1,636,000	3,549	0.09	28	24,000	13,365	0.09	28 92,00	0 31,478	0.09	83 63	9,000	0 0.	09 8	39 0	0.09	129	0 2,391,000
1990-91	11,640	28 881,0	00	37,900	28	2,884,000	3,765,000	910	53 13	30,000	500	152	207,000	221,270	0.09	28	1,516,000	1,670	0.09	28	11,000	10,802	0.09	28 74,00	0 29,922	0.09	93 68	1,000	0 0.	09 8	39 0	0.09	152	0 2,282,000
1991-92	16,010	28 1,211,0	00	69,870	28	5,317,000	6,528,000	930	53 13	33,000	8,200	149	3,321,000	201,750	0.09	28	1,382,000	1,298	0.09	28	9,000	19,727	0.09	28 135,00	18,606	0.09	88 40	1,000	0 0.	09 13	10 0	0.09	149	0 1,927,000
1992-93	36,170	28 2,736,0	00 1	L27,170	28	9,678,000	12,414,000	890	74 17	79,000	0	117	0	214,544	0.09	28	1,469,000	1,693	0.09	28	12,000	21,596	0.09	28 148,00	18,948	0.09	92 42	6,000	0 0.	09 9	99 0	0.09	117	0 2,055,000
1993-94	8,310	28 629,0	00	26,840	28	2,043,000	2,672,000	850	53 12	21,000	15,230	132	5,464,000	220,786	0.09	28	1,512,000	2,101	0.09	28	14,000	22,820	0.09	28 156,00	18,412	0.09	91 41	0,000	0 0.	09 9	95 0	0.09	132	0 2,092,000
1994-95	22,220	28 1,681,0	00 1	L05,470	28	8,027,000	9,708,000	860	53 12	23,000	0	118	0	226,251	0.09	28	1,550,000	1,351	0.09	28	9,000	17,229	0.09	28 118,00	19,517	0.09	96 45	8,000	0 0.	09 9	95 0	0.09	118	0 2,135,000
1995-96	12,130	28 918,0	00	41,010	28	3,121,000	4,039,000	810	45 9	9,000	13,790	110	4,123,000	250,011	0.09	28	1,712,000	1,553	0.09	28	11,000	18,940	0.09	28 130,00	16,931	0.09	91 37	7,000	0 0.	09 9	95 0	0.09	110	0 2,230,000
1996-97	12,630	28 956,0	00	43,870	28	3,339,000	4,295,000	820	53 11	17,000	1,440	114	446,000	256,789	0.09	28	1,759,000	1,497	0.09	28	10,000	22,693	0.09	28 155,00	17,205	0.09	88 37	0,000	0 0.	09 9	96 0	0.09	114	0 2,294,000
1997-98	22,950	28 1,736,0	00 1	L04,130	28	7,925,000	9,661,000	840	53 12	20,000	0	107	0	235,986	0.09	28	1,616,000	1,440	0.09	28	10,000	18,054	0.09	28 124,00	14,208	0.09	80 27	8,000	0 0.	09 9	91 0	0.09	107	0 2,028,000
1998-99	0	28	0	0	28	0	0	750	47 9	97,000	31,040	106	8,943,000	242,937	0.09	28	1,664,000	1,096	0.09	28	8,000	22,215	0.09	28 152,00	13,846	0.09	85 28	8,000	0 0.	09 8	35 0	0.09	106	0 2,112,000
1999-00	6,710	28 508,0	00	26,550	28	2,021,000	2,529,000	760	53 10	08,000	23,250	103	6,509,000	261,676	0.09	28	1,792,000	1,985	0.09	28	14,000	17,011	0.09	28 117,00	0 21,062	0.09	85 43	8,000	0 0.	09 9	94 0	0.09	103	0 2,361,000
2000-01	7,180	28 543,0	00	28,860	28	2,196,000	2,739,000	860	53 12	23,000	10,130	110	3,029,000	250,889	0.09	28	1,718,000	1,663	0.09	28	11,000	20,031	0.09	28 137,00	19,971	0.09	85 41	5,000	0 0.	09 9	97 1,268	0.09	110	34,120 2,315,120
2001-02	0	28	0	0	28	0	0	890	51 12	23,000	3,760	113	1,155,000	247,876	0.09	28	1,698,000	1,026	0.09	28	7,000	15,818	0.09	28 108,00	0 35,153	0.09	85 73	1,000	0 0.	09 9	95 1,463	0.09	113	40,440 2,584,440
2002-03	10,410	28 788,0	00	45,840	28	3,489,000	4,277,000	940	53 13	34,000	11,410	113	3,504,000	241,682	0.09	28	1,655,000	519	0.09	28	4,000	4,687	0.09	28 32,00	40,982	0.09	85 85	2,000	0 0.	09 9	99 1,329	0.09	113	36,736 2,579,736
2003-04	5,730	28 434,0	00	21,020	28	1,600,000	2,034,000	960	53 13	37,000	28,740	106	8,280,000	258,384	0.09	28	1,770,000	553	0.09	28	4,000	7,196	0.09	28 49,00	0 50,758	0.09	85 1,05	5,000	0 0.	09 9	98 1,557	0.09	106	40,373 2,918,373
2004-05	28,320	28 2,143,0	00 1	135,070	28	10,279,000	12,422,000	960	49 12	28,000	0	101	0	234,978	0.09	28	1,609,000	789	0.09	28	5,000	12,289	0.09	28 84,00	30,482	0.09	85 63	4,000	38 0.	09 10	1,262	0.09	101	32,107 2,364,107
2005-06	7,390	28 559,0	00	31,910	28	2,428,000	2,987,000	860	53 12	23,000	5,450	105	1,555,000	246,691	0.09	28	1,690,000	1,496	0.09	28	10,000	13,249	0.09	28 91,00	23,125	0.09	85 48	1,000	11 0.	09 1:	13 1,148	0.09	105	29,791 2,301,791
2006-07	0	28	0	0	28	0	0	950			6,380	104	1,803,000	270,383	0.09	28	1,852,000	1,136	0.09	28	8,000	13,948	0.09	28 96,00				7,000	834 0.	09 10		0.09	104	58,948 2,451,948
2007-08	7,660	28 580,0	00	33,010	28	2,512,000	3,092,000	940			10,440		3,178,000		0.09	28	1,714,000	1,118	0.09	28	8,000	7,928	0.09	28 54,00				2,000	1,093 0.		1,494	0.09	112	70,342 2,518,342
2008-09	5,740	28 434,0	00	22,420	28		2,140,000	960	53 13		23,480	116	7,403,000	236,716	0.09	28	1,621,000	1,144	0.09	28	8,000	13,832	0.09	28 95,00	21,683	0.09	98 52	0,000	882 0.	09 1:	1,434	0.09	116	64,856 2,308,856
2009-10	10,760	28 814,0	00	45,420	28	3,457,000	4,271,000	950		36,000	0	108	0	222,450	0.09	28	1,524,000	681	0.09	28	5,000	14,673	0.09	28 100,00	16,329	0.09	91 36	3,000	599 0.	09 9	94 1,755	0.09	108	60,095 2,052,095
2010-11	13,570	28 1,027,0	00	59,320		4,514,000	5,541,000	990			15,590	118	5,000,000	213,396	0.09	28	1,462,000	753	0.09	28	5,000	13,543	0.09	28 93,00		0.09		2,000	359 0.	09 1:	1,955	0.09	118	66,091 1,828,091
Note: 2.718 is the approxima	te factor to co	nvert acre feet into	oound	s.																														
Max	92,100	6,969,0		249,600		18,996,000	25,965,000	1,000	17	79,000	31,000		8,943,000	270,400			1,852,000	6,000			41,000	22,800		156,00	0 50,800		1,05	5,000	1,100		2,000			70,300 2,918,400
Min	0		0	0		0	0	700	g	94,000	0		0				1,241,000	500			4,000	4,700		32,00				3,000	0		0			0 1,591,000
1973-74 to 2010-2011 mean	18,700	1,413,0	00	61,600		4,685,300	6,098,300	900			8,500		2,598,300				1,561,900	2,800			19,100	15,900		108,70				7,900	100		400			14,000 2,121,600
Last 5 yrs mean	7,500	571,0	00	32,000		2,437,800	3,008,800	1,000	13	33,000	11,200		3,476,800	238,600			1,634,600	1,000			6,800	12,800		87,60	0 20,900		43	8,800	800		1,600			64,100 2,231,900
Last 10 yrs mean	9,000	677,9		39,400		2,998,500	3,676,400	900	13		10,500		3,187,800	242,300			1,659,500	900			6,400	11,700		80,20	28,500		59	4,700	400		1,500			50,000 2,390,800
Last 10 yrs std deviation																																		
Last 10 yrs coefficient of varia	ation																																	
Data Sources	Table III.6	Арр К	Та	ble III.6				Table III.6	Арр К	Tab	ble III.6	Арр К		F				G				F			G		Арр К		L	Арр	K L		Арр К	
Column	5	Average		14				16	35		17	15		3				15				4			7		23		3		11 11		15	

of 3 See Table III.8 for calibration coefficients/concentrations and minimum concentrations.

38	39 =	40 2.718 * (38) * (39)	41	42	43 = 2.718 * (41) * (42)	44 = (40) +(33)	45 = (7) +(10) +(13) +(37) +(44)	46	47	48 = 2.718 * (46) *(47)	49	50	51 = 2.718 * (49) *(50)	52 = (48) +(51)	53 = (45) -(52)	54 =(54)i + (53)	55 =(54) / (56) / 2.718	56 = 0.75 * GW in storage	57	58 = 2.718 * (56) *(57)	59 = (58) - (54)	60 = (57) - (55)
L			I					Chloride	unloading							Groundwater mix	ing mode	el				
L	oading fron	n direct spread	ling (spreadin	g grounds	5)			Groundwate	r extractio	n	Subsurface outfl	low				Using 75% of grou	undwater	in storage				
Local Runof		CD	Untreated Im			Spreading	Total				Flow			Total	CI	Chloride		75% of		le loading	Assimilati	
(diverted sto VOLUME 0		INOTT) OADING	(State Water VOLUME CI		LOADING	Total	loading	VOLUME (UNLOADING	VOLUME CI		JNLOADING	unloading	balance	stored in groundwater		groundwater in storage	Basin Pla	an Objective	capacity	ý
		.BS			LBS	LBS	LBS			LBS			.BS	LBS	LBS			AF	MG/L	LBS	LBS N	MG/L
56,830	28	4,325,000	8,840	59		5,737,000	15,901,000	221,090		12,651,000	23,400	22	1,399,000	14,050,000	1,851,000	340,406,000	21	5,949,075	100	1,616,959,000	1,276,553,000	79
11,010	28	838,000	34,800	57	5,391,000	6,229,000	15,204,000	207,650	27	15,010,000	26,600	24	1,721,000	16,731,000	-1,527,000	338,879,000	21	5,893,448	100	1,601,839,000	1,262,960,000	79
6,570	28	500,000	29,060	51		4,528,000	13,294,000	226,020	29	17,784,000	28,050	10	762,000	18,546,000	-5,252,000	333,627,000	21		100	1,579,911,000	1,246,284,000	79
10,020	28	763,000	18,340	94	,,	5,449,000	14,914,000	196,030	29	15,646,000	37,600	48	4,905,000	20,551,000	-5,637,000	327,990,000	21		100	1,560,294,000	1,232,304,000	79
129,630	28 28	9,865,000	20,550	41		12,155,000	39,834,000	181,240	25 25	12,363,000	27,050	18 19	1,323,000	13,686,000 14,860,000	26,148,000	354,138,000	22		100	1,621,525,000	1,267,387,000	78 78
68,060 97,420	28	5,180,000 7,414,000	30,970 5,800	38 17		8,379,000 7,682,000	22,413,000 31,721,000	198,530 207,490	25	13,628,000 14,056,000	23,850 23,750	19	1,232,000 968,000	14,860,000	7,553,000 16,697,000	361,691,000 378,388,000	22 23		100 100	1,632,853,000 1,670,029,000	1,271,162,000 1,291,641,000	78
49,690	28	3,782,000	5,800	57	200,000	3,782,000	11,142,000	213,550	23	13,455,000	31,950	13	1,476,000	14,931,000	-3,789,000	374,599,000	23		100	1,648,500,000	1,273,901,000	77
86,280	28	6,566,000	42,620	40	4,634,000	11,200,000	18,477,000	203,540	29	15,896,000	28,850	16	1,255,000	17,151,000	1,326,000	375,925,000	23		100	1,645,634,000	1,269,709,000	77
263,890	28	20,083,000	28,340	5		20,468,000	35,313,000	192,390	37	19,308,000	29,250	9	716,000	20,024,000	15,289,000	391,214,000	23		100	1,698,690,000	1,307,476,000	77
65,710	28	5,001,000	3,330	27	,	5,245,000	17,779,000	218,030	21	12,675,000	26,750	17	1,236,000	13,911,000	3,868,000	395,082,000	24	-, -,	100	1,678,065,000	1,282,983,000	76
59,330	28	4,515,000	70	30		4,521,000	14,907,000	224,500	28	16,907,000	30,300	14	1,153,000	18,060,000	-3,153,000	391,929,000	24	.,,	100	1,655,745,000	1,263,816,000	76
73,310	28	5,579,000	55,860	80		17,725,000	32,403,000	229,080	29	18,241,000	30,950	12	1,009,000	19,250,000	13,153,000	405,082,000	24		100	1,654,167,000	1,249,085,000	76
19,520 43,470	28 28	1,486,000 3,308,000	55,940 43,990	50 98		9,088,000 15,025,000	21,246,000 26,348,000	235,370 233,170	25 23	16,099,000 14,705,000	33,100 34,150	17 24	1,529,000 2,209,000	17,628,000 16,914,000	3,618,000 9,434,000	408,700,000 418,134,000	25 26		100 100	1,629,516,000 1,612,943,000	1,220,816,000 1,194,809,000	75 74
29,970	28	2,281,000	45,990	133		18,881,000	24,327,000	233,250	23	17,060,000	32,500	15	1,325,000	18,385,000	5,942,000	418,134,000	20	5,840,093	100	1,512,943,000	1,163,261,000	74
54,790	28	4,170,000	47,500		12,394,000	16,564,000	23,750,000	238,900	23	15,098,000	32,600	37	3,278,000	18,376,000	5,374,000	429,450,000	27	5,760,518	100	1,565,709,000	1,136,259,000	73
101,270	28	7,707,000	54,150	135	19,869,000	27,576,000	33,960,000	221,270	24	14,466,000	22,750	44	2,721,000	17,187,000	16,773,000	446,223,000	29	5,748,105	100	1,562,335,000	1,116,112,000	71
229,590	28	17,473,000	68,300	86	15,965,000	33,438,000	45,347,000	201,750	28	15,296,000	17,800	72	3,483,000	18,779,000	26,568,000	472,791,000	30	5,892,480	100	1,601,576,000	1,128,785,000	70
232,240	28	17,674,000	62,630	57		27,377,000	42,025,000	214,540	26	15,212,000	23,950	57	3,710,000	18,922,000	23,103,000	495,894,000	30		100	1,650,669,000	1,154,775,000	70
33,550	28	2,553,000	38,300	53		8,070,000	18,419,000	220,790	28	16,871,000	26,700	66	4,790,000	21,661,000	-3,242,000	492,652,000	30		100	1,629,489,000	1,136,837,000	70
221,830	28 28	16,882,000	22,350 32,480	58	-,,	20,405,000	32,371,000	226,250	26 29	15,760,000	23,500	70	4,471,000	20,231,000 23.623.000	12,140,000	504,792,000	30	., . ,	100	1,658,740,000	1,153,948,000	70
125,600 86,790	28	9,559,000 6,605,000	32,480 55,080	44 32	-,,	13,443,000 11,396,000	23,934,000 18,548,000	250,010 256,790	29	19,460,000 19,457,000	27,850 30,400	55 59	4,163,000 4,875,000	23,823,000	311,000 -5,784,000	505,103,000 499,319,000	31 30	6,080,498 6,032,970	100 100	1,652,679,000 1,639,761,000	1,147,576,000 1.140.442.000	69 70
184.830	28	14,066,000	62,890	54		23,296,000	35,105,000	235,990	28	17,346,000	26,650	51	3,694,000	21,040,000	14,065,000	513,384,000	31	6,133,290	100	1,667,028,000	1,153,644,000	69
65,520	28	4,986,000	13,350	33		6,183,000	17,335,000	242,940	21	13,716,000	26,200	48	3,418,000	17,134,000	201,000	513,585,000	31	6,030,683	100	1,639,140,000	1,125,555,000	69
66,260	28	5,043,000	61,680	43		12,252,000	23,759,000	261,680	24	17,257,000	29,300	57	4,547,000	21,804,000	1,955,000	515,540,000	32		100	1,622,330,000	1,106,790,000	68
79,310	28	6,036,000	42,990	83	9,698,000	15,734,000	23,940,120	250,890	26	17,978,000	25,900	76	5,350,000	23,328,000	612,120	516,152,120	32	5,905,305	100	1,605,062,000	1,088,910,000	68
70,580	28	5,371,000	46,080	74		14,639,000	18,501,440	247,880	33	22,560,000	27,650	60	4,509,000	27,069,000	-8,567,560	507,584,560	32		100	1,578,341,000	1,070,756,000	68
63,880	28	4,862,000	56,440	48		12,225,000	22,719,736	241,680	31	20,235,000	23,400	60	3,816,000	24,051,000	-1,331,264	506,253,296	32		100	1,567,195,000	1,060,942,000	68
45,710	28 28	3,479,000	68,320	46	-,- ,	12,021,000	25,390,373	258,380	29	20,096,000	20,500	60	3,343,000	23,439,000	1,951,373	508,204,669	33	-, - ,	100	1,549,927,000	1,041,722,000	67 67
406,070 150,120	28 28	30,904,000 11,425,000	21,720 79,040	56 37		34,210,000 19,374,000	49,124,107 26,340,791	234,980 246,690	35 32	22,456,000 21,293,000	24,100 22,800	88 59	5,777,000 3,656,000	28,233,000 24,949,000	20,891,107 1,391,791	529,095,776 530,487,567	33 33		100 100	1,622,193,000 1,627,805,000	1,093,097,000 1.097.317.000	67
47.830	28	3,640,000	24,780	70		8,355,000	12,745,948	270,380	32	21,293,000	26,100	57	4,044,000	28,621,000	-15,875,052	514,612,514	32		100	1,588,613,000	1.074.000.000	68
87,240	28	6,639,000	7,730	68	, .,	8,068,000	16,971,342	250,240	32	21,575,000	38,200	83	8,618,000	30,193,000	-13,221,658	501,390,857	32	-,- ,	100	1,564,392,000	1,063,001,000	68
91,160	28	6,938,000	6,610	72		8,232,000	20,220,856	236,720	27	17,365,000	27,300	65	4,823,000	22,188,000	-1,967,144	499,423,712	32		100	1,545,481,000	1,046,057,000	68
192,440	28	14,645,000	32,710	59	5,226,000	19,871,000	26,330,095	222,450	36	21,936,000	28,400	88	6,793,000	28,729,000	-2,398,905	497,024,807	32	5,724,278	100	1,555,859,000	1,058,834,000	68
259,210	28	19,727,000	68,420	32	5,951,000	25,678,000	38,188,091	213,400	36	20,741,000	23,200	94	5,927,000	26,668,000	11,520,091	508,544,899	32	5,873,235	100	1,596,345,000	1,087,800,000	68
100 100		20.004.000	70.000		40.000.000		40 404 400	270 400		24 577 666	20.200		0.640.655	20 402 622	20 500 000	500 407 500		6 240 222		4 600 600 600	4 207 476 022	
406,100 6.600		30,904,000 500.000	79,000 0		19,869,000 0	34,210,000 3.782,000	49,124,100 11.142.000	270,400 181.200		24,577,000 12,363,000	38,200 17,800		8,618,000 716.000	30,193,000 13.686.000	26,568,000 -15,875,100			6,249,800 5.686.100		1,698,690,000 1.545,481,000	1,307,476,000 1.041.722.000	79 67
104,400		7,943,900	36,800		6,121,900	3,782,000	25,006,500	228,000		17,269,300	27,500		3,263,800	20,533,100	4,473,400	- ,,		5,943,300		1,545,481,000	1,167,297,500	67 72
135,600		10,317,800	28,100		3,723,000	14,040,800	22,891,300	238,600		21,238,800	28,600		6,041,000	27,279,800	-4,388,500			5,776,800		1,570,138,000	1,065,938,400	68
141,400		10,763,000	41,200		5,504,300	16,267,300	25,653,300			21,283,400	26,200		5,130,600	26,414,000	-760,700			5,811,700		1,579,615,100	1,069,352,600	68
																11,472,286		106,171			18,966,449	0
																0.02		0.02			0.02	0.00
Table III.6	App K		Table III.6	App K				Table III.6	App K		Table III.6	App K						Table III.6				
28	7		29	19				33	3		34	31						36				

APPENDIX O

LOADING AND ASSIMILATIVE CAPACITY OF SULFATE IN SAN GABRIEL BASIN

APPENDIX O. LOADING AND	ASSIMILATIVE CAP	ACITY OF SULFAT	E IN SAN G	ABRIEL BAS	IN																												
column #	1	2	3	4	5 6		8	9	10 11	12	13	14	15	16	17	18	19	20	21	22	23	24 25	26	27	28	29	30	31	32	33 34	35	36	37
		= 2.718 * (1)	*		= 2.718 * (4) * (5)	= (3) + (6		= 2.718 *	(8) *	= 2	.718 * (11) * (12)				= 2.718 * (14) *				8 * (18)			= 2.718 * (22)				= 2.718 * (26) *						= 2.718 *	= (17) +(21) +(25)
		(2)						(9)						(15)			* (19) * (20)			* (23) * (24)				(27) * (28)						((30)*(31)*(32) +(33)*(34)*(35))	+(29) +(36)
				Sulfate	pading					1																						(33) (34) (33))	
	Loading from pr	ecipitation			0		Loading from	n subsurface inflo	w Incidental	Percolation in :	San Gabriel		Loa	ading from	Returned flo	w																	
	From Valley Flo		From W	atershed (A:	usa)	total	from Puente			San Jose Creek		San Gabriel B		0		Raymond Bas	in Water		Surfac	ce Water			Imported Wa	ater				Recycle	ed Water (irrig	zate golf cour	ses. etc.)		
Water					,							Uses		rect Uses)		Use		Direct Uses)	Use		(Direct L	Jses)	(blend of We				Whittier Narrows		San Jose				Total
Year	VOLUME SO4	LOADING	VOLUME	E SO4	LOADING			04 LOADIN		SO4 LO	ADING	VOLUME CO			ADING	VOLUME CO				IME COEFF.	. SO4	LOADING	VOLUME C	OEFF. SO	4 LO	ADING	VOLUME COEF	. SO4			SO4 L	bading	loading
	AF MG/	L LBS	AF	MG/L	LBS	LBS	AF I	MG/L LBS	AF	MG/L LB	s	AF	MG	G/L LB	s	AF	N	1G/L LBS	AF		MG/L	LBS	AF	MG	G/L LB	s	AF	MG/L	AF		MG/L L	BS	LBS
1973-74	30,000	49 3,995,00	0 80,4	60 4	10,716,000	14,711,000	800	158 342,0	000 0	109	0	221,089	0.09	72	3,895,000	4,648	0.09	65 7	4,000 14	4,349 (0.09	49 172,000	630	0.09	305	47,000	0	0.09	156	0 0.09	164	0	4,188,000
1974-75	26,240	49 3,495,00	0 69,63	20 4	9,272,000	12,767,000	710	158 304,0	000 0	91	0	207,648	0.09		3,827,000	5,926	0.09	65 9	4,000 15	5,483 (0.09	49 186,000	1,036	0.09	305	77,000	0	0.09	122	0 0.09	137	0	4,184,000
1975-76	23,120	49 3,079,00	0 67,8	80 4	9,040,000	12,119,000	730	158 313,0	000 0	88	0	226,016	0.09	74	4,110,000	4,262	0.09	65 6	3,000 13	3,992 (0.09	49 168,000	3,539	0.09	305	264,000	0	0.09	147	0 0.09	132	0	4,610,000
1976-77	25,560	49 3,404,00	0 63,1	10 4	8,405,000	11,809,000	660	158 283,0	2,660	94	680,000	196,034	0.09	93	4,450,000	3,076	0.09	65 4	9,000 14	4,197 (0.09	49 170,000	9,471	0.09	305	706,000	0	0.09	152	0 0.09	141	0	5,375,000
1977-78	92,110	49 12,267,00	0 249,6	10 4	33,244,000	45,511,000	730	158 313,0	000 0	97	0	181,237	0.09	79	3,497,000	4,976	0.09	65 7	9,000 14	4,169 (0.09	49 170,000	11,427	0.09	305	852,000	0	0.09	186	0 0.09	146	0	4,598,000
1978-79	45,940	49 6,118,00	0 114,10	60 4	15,204,000	21,322,000	850	158 364,0	000 0	140	0	198,534	0.09	79	3,829,000	4,664	0.09	65 7	4,000 16	5,436 (0.09	49 197,000	11,724	0.09	305	874,000	0	0.09	225	0 0.09	210	0	4,974,000
1979-80	81,340	49 10,833,00	0 209,19	90 4	19 27,860,000	38,693,000	930	158 398,0	000 0	159	0	207,493	0.09	67	3,395,000	5,031	0.09	65 8	0,000 15	5,427 (0.09	49 185,000	13,032	0.09	305	972,000	0	0.09	135	0 0.09	239	0	4,632,000
1980-81	18,900	49 2,517,00	0 50,50	60 4	6,734,000	9,251,000	820	158 351,0	000 0	109	0	213,549	0.09	63	3,294,000	5,101	0.09	65 8	1,000 17	7,290 (0.09	49 207,000	16,799	0.09	305	1,252,000	0	0.09	186	0 0.09	164	0	4,834,000
1981-82	13,240	49 1,763,00	0 56,14	40 4	19 7,477,000	9,240,000	850	158 364,0	000 0	77	0	203,540	0.09	84	4,171,000	2,307	0.09	65 3	7,000 16	5,003 (0.09	49 192,000	17,402	0.09	305	1,297,000	0	0.09	113	0 0.09	116	0	5,697,000
1982-83	39,540	49 5,266,00	0 130,93	30 4	17,438,000	22,704,000	850	158 364,0	000 0	110	0	192,389	0.09	67	3,133,000	5,204	0.09	65 8	2,000 17	7,560 (0.09	49 210,000	14,208	0.09	305	1,059,000	0	0.09	126	0 0.09	165	0	4,484,000
1983-84	7,080	49 943,00	0 26,3	70 4	9 3,512,000	4,455,000	800	158 342,0	19,750	111	5,959,000	218,028	0.09	59	3,156,000	5,702	0.09	65 9	0,000 18	8,721 (0.09	49 224,000	18,298	0.09	305	1,364,000	0	0.09	213	0 0.09	167	0	4,834,000
1984-85	10,250	49 1,365,00	0 33,9:	10 4	4,516,000	5,881,000	820	158 351,0	19,680	108	5,777,000	224,500	0.09	81	4,425,000	6,019	0.09	65 9	5,000 17	7,786 (0.09	49 213,000	21,676	0.09	305	1,616,000	0	0.09	177	0 0.09	162	0	6,349,000
1985-86	16,650	49 2,217,00	0 62,80	00 4	8,364,000	10,581,000	840	169 386,0	21,250	150	8,664,000	229,077	0.09	79	4,400,000	4,942	0.09	65 7	3,000 17	7,124 (0.09	49 205,000	20,872	0.09	305	1,556,000	0	0.09	201	0 0.09	225	0	6,239,000
1986-87	6,220	49 828,00	0 18,42	20 4	2,453,000	3,281,000	850	155 358,0	24,270	110	7,256,000	235,370	0.09	66	3,777,000	5,294	0.09	65 8	4,000 18	3,293 (0.09	49 219,000	22,575	0.09	305	1,683,000	0	0.09	186	0 0.09	165	0	5,763,000
1987-88	11,590	49 1,544,00	0 43,8	10 4	9 5,835,000	7,379,000	880	153 366,0	19,840	128	6,902,000	233,165	0.09	72	4,095,000	3,284	0.09	65 5	2,000 14	4,939 (0.09	49 179,000	28,537	0.09	287	2,000,000	0	0.09	129	0 0.09	192	0	6,326,000
1988-89	8,340	49 1,111,00	0 32,12	20 4	4,278,000	5,389,000	890	154 373,0	000 000	122	0	233,250	0.09	68	3,862,000	5,225	0.09	65 8	3,000 19	9,691 (0.09	49 236,000	25,799	0.09	276	1,742,000	0	0.09	135	0 0.09	183	0	5,923,000
1989-90	8,020	49 1,068,00	0 24,72	20 4	3,292,000	4,360,000	910	152 377,0	6,200	122	2,056,000	238,896	0.09	67	3,925,000	3,549	0.09	65 5	5,000 13	3,365 (0.09	49 160,000	31,478	0.09	269	2,068,000	0	0.09	171	0 0.09	183	0	6,209,000
1990-91	11,640	49 1,550,00	0 37,90	00 4	19 5,048,000	6,598,000	910	158 390,0	500 500	190	258,000	221,270	0.09	67	3,603,000	1,670	0.09	65 2	5,000 10	0,802 (0.09	49 129,000	29,922	0.09	293	2,141,000	0	0.09	203	0 0.09	285	0	5,899,000
1991-92	16,010	49 2,132,00	0 69,8	70 4	9,305,000	11,437,000	930	158 398,0	000 8,200	147	3,276,000	201,750	0.09	67	3,299,000	1,298	0.09	65 2	1,000 19	9,727 (0.09	49 236,000	18,606	0.09	368	1,673,000	0	0.09	246	0 0.09	221	0	5,229,000
1992-93	36,170	49 4,817,00	0 127,1	70 4	16,937,000	21,754,000	890	174 420,0	000 000	126		214,544	0.09	72	3,767,000	1,693	0.09	65 2	7,000 21	1,596 (0.09	49 259,000	18,948	0.09	356	1,648,000	0	0.09	189	0 0.09	189	0	5,701,000
1993-94	8,310	49 1,107,00	0 26,84	40 4	3,575,000	4,682,000	850	158 364,0	15,230	125	5,174,000	220,786	0.09	80	4,333,000	2,101	0.09	65 3	3,000 22	2,820 (0.09	49 274,000	18,412	0.09	375	1,689,000	0	0.09	165	0 0.09	188	0	6,329,000
1994-95	22,220	49 2,959,00	0 105,4	70 4	14,047,000	17,006,000	860	158 368,0	000 000	130	0	226,251	0.09	65	3,616,000	1,351	0.09	65 2	1,000 17	7,229 (0.09	49 207,000	19,517	0.09	395	1,883,000	0	0.09	159	0 0.09	195	0	5,727,000
1995-96	12,130	49 1,615,00	0 41,0	10 4	19 5,462,000	7,077,000	810	162 358,0	13,790	102	3,823,000	250,011	0.09	88	5,360,000	1,553	0.09	65 2	5,000 18	3,940 (0.09	49 227,000	16,931	0.09	369	1,528,000			119	0 0.09	153	0	7,140,000
1996-97	12,630	49 1,682,00	0 43,8	70 4	19 5,843,000	7,525,000	820	158 351,0	000 1,440	121	474,000	256,789	0.09	73	4,615,000	1,497	0.09	65 2	4,000 22	2,693 (0.09	49 272,000	17,205	0.09	357	1,502,000	0	0.09	128	0 0.09	182	0	6,413,000
1997-98	22,950	49 3,057,00	0 104,13	30 4	13,868,000	16,925,000		158 360,0			0	235,986	0.09		3,998,000	1,440	0.09	56 2	0,000 18	3,054 (49 216,000	14,208	0.09	326	1,131,000			125	0 0.09	156	0	5,365,000
1998-99	0	49			19 0	C	750	153 312,0			7,424,000		0.09		3,370,000	1,096	0.09	65 1				49 266,000	13,846	0.09	305	1,032,000		0.09	117	0 0.09	132	0	4,685,000
1999-00	6,710	49 894,00			19 3,536,000	4,430,000		158 325,0			4,929,000		0.09		4,543,000	1,985	0.09					49 204,000	21,062	0.09	305	1,570,000			-	0 0.09	117	0	6,348,000
2000-01	7,180	49 956,00	0 28,8		19 3,844,000	4,800,000	860	158 368,0			2,671,000		0.09		4,133,000	1,663	0.09					49 240,000	19,971	0.09	305	1,489,000		0.09	135 1,26			45,131	5,933,131
2001-02	0	49	0		19 0	C	890	160 387,0			1,032,000	247,876	0.09		5,054,000	1,026	0.09					49 190,000	35,153	0.09	305	2,621,000			147 1,46			54,219	7,935,219
2002-03	10,410	49 1,386,00	/ -		6,105,000	7,491,000		158 402,0			2,605,000		0.09		4,514,000	519	0.09			,		49 56,000	40,982	0.09	305	3,055,000		0.09	147 1,32			40,963	7,674,963
2003-04	5,730	49 763,00			2,799,000	3,562,000		158 411,0			6,796,000		0.09		4,760,000	553	0.09					49 86,000	50,758	0.09	305	3,784,000			137 1,55			49,704	8,688,704
2004-05	28,320	49 3,772,00			17,989,000	21,761,000	960	160 417,0				234,978	0.09		4,394,000	789	0.09					49 147,000	30,482	0.09	305	2,272,000		0.09	148 1,26			38,146	6,863,146
2005-06	7,390	49 984,00	/-		4,250,000	5,234,000		158 368,0			1,167,000	- ,	0.09		4,926,000	1,496	0.09					49 159,000	23,125	0.09	305	1,724,000		0.05	139 1,14		118	33,568	6,866,568
2006-07	0	49	-	-	19 0	C	950	158 407,0			1,280,000	-	0.09		6,138,000	1,136	0.09					49 167,000	25,904	0.09	176	1,112,000		0.09	143 1,45			68,425	7,504,425
2007-08	7,660	49 1,020,00			4,396,000	5,416,000		140 358,0			2,296,000		0.09		4,480,000	1,118	0.09					49 95,000	30,174	0.09	249	1,838,000		0.09	146 1,49			83,492	6,514,492
2008-09	5,740	49 764,00	- ,		2,986,000	3,750,000		158 411,0			6,248,000		0.09		3,971,000	1,144	0.09					49 166,000	21,683	0.09	359	1,901,000		0.05	162 1,43			86,465	6,142,465
2009-10	10,760	49 1,433,00			6,049,000	7,482,000		158 407,0				222,450	0.09		5,706,000	681	0.09					49 176,000	16,329	0.09	312	1,246,000			192 1,75		127	82,806	7,220,806
2010-11	13,570	49 1,807,00	/ -	20 4	19 7,900,000	9,707,000	990	158 424,0	15,590	78	3,284,000	213,396	0.09	75	3,924,000	753	0.09	65 1	2,000 13	3,543 (0.09	49 162,000	10,316	0.09	236	594,000	359	0.09	146 1,95	5 0.09	116	68,451	4,760,451
Note: 2.718 is the approxima																		-															
Max	92,100	12,267,00			33,244,000			424,0				270,400			6,138,000	6,000				2,800		274,000				3,784,000	1,100		2,00			86,500	-,,
IVIIN	0	2 407 40	•	0	0		,	283,0				181,200			3,133,000	500				4,700		56,000	600			47,000	0			0		0	4,184,000
1973-74 to 2010-2011 mean		2,487,10			8,199,400			367,3				228,000			4,151,200	2,800				5,900		190,200				1,496,400	100		40			17,100	-,,
Last 5 yrs mean	7,500	1,004,80			4,266,200			401,4			2,621,600				4,843,800	1,000				2,800		153,200				1,338,200	800		1,60			77,900	6,428,500
Last 10 yrs mean	9,000	1,192,90	0 39,40	UU	5,247,400	6,440,300	900	399,3	200 10,500	1	∠,470,800	242,300			4,786,700	900		1	4,700 11	1,700		140,400	28,500			2,014,700	400		1,50	U		60,600	7,017,100
Last 10 yrs std deviation																																	
Last 10 yrs coefficient of varia		Ann K	Table !!!	1.0			Table III C	Ann K	Table III C	Arrak						6				-			6							1			
Data Sources		App K	Table III	1.6 14			Table III.6	App K	Table III.6 17			F				G 15				F 4			G				L		1	1			
Column	5 Av	rerage		14			16	36	17	10		3				15				4			/				3		1	.1			

of 4 See Table III.8 for calibration coefficients/concentrations and minimum concentrations.

38	39	40 2.718 * (38) * (39)	41	42	2 43 = 2.718 * (41) * (42)	44 = (40) +(33)	45 = (7) +(10) +(13) +(37) +(44)	46	47	48 = 2.718 * (46) *(47	3 49)	50	51 = 2.718 * (49) *(50)	52 = (48) +(51)	53 = (45) -(52)	54 =(54)i + (53	4 55) =(54) / (56) / 2.718	56 = 0.75 * GW in storage	57	58 = 2.718 * (56) *(57)	59 = (58) - (54)	60 = (57) - (55)
							1		Sulfate unloadin	g	1					Groundwater mi	•					
		n direct spread				1		Groundwa	ter extraction		Subsurface ou	tflow				Using 75% of gro						
Local Runof		(0)	Untreated Im		Nater	Spreading	Total				Flow			Total	SO4	Sulfate		75% of	Allowable	0	Assimilati	
(diverted sto VOLUME		noπ) OADING	(State Water VOLUME S		LOADING	Total	loading	VOLUME	\$04	JNLOADING	VOLUME	SO4	UNLOADING	unloading	balance	stored in groundwater		groundwater in storage	SO4	n Objective	capacity	/
		BS		04 /G/L	LBS	LBS	LBS	AF		BS			LBS	LBS	LBS	LBS		AF	MG/L L	BS	LBS	MG/L
56,830	49	7,569,000	8,840	49	-	8,746,000	27,987,000	221,090	48	28,854,000		57	3,625,000	32,479,000	-4,492,000	776,406,000		5,949,075		1,616,959,000	840,553,000	52
11,010	49	1,466,000	34,800	49	4,635,000	6,101,000	23,356,000	207,650	50	28,346,000	26,600	71	5,140,000	33,486,000	-10,130,000	766,276,000	48	5,893,448	100	1,601,839,000	835,563,000	52
6,570	49	875,000	29,060	49	3,870,000	4,745,000	21,787,000	226,020	50	30,443,000	28,050	28	2,135,000	32,578,000	-10,791,000	755,485,000	48	5,812,770	100	1,579,911,000	824,426,000	52
10,020	49	1,334,000	18,340	49		3,777,000	21,924,000	196,030	62	32,961,000		30		36,027,000	-14,103,000	741,382,000		5,740,598		1,560,294,000	818,912,000	52
129,630	49	17,264,000	20,550	49		20,001,000	70,423,000	181,240	53	25,906,000		33		28,332,000	42,091,000	783,473,000		5,965,875		1,621,525,000	838,052,000	52
68,060	49	9,064,000	30,970	49		13,189,000	39,849,000	198,530	53	28,364,000		33		30,503,000	9,346,000	792,819,000		6,007,553		1,632,853,000	840,034,000	51
97,420	49	12,975,000	5,800	49		13,747,000	57,470,000	207,490	45	25,148,000		35		27,407,000	30,063,000	822,882,000		6,144,330		1,670,029,000	847,147,000	51
49,690	49	6,618,000	0	49		6,618,000	21,054,000	213,550	42	24,401,000		38		27,701,000	-6,647,000	816,235,000		6,065,123		1,648,500,000	832,265,000	50
86,280	49 49	11,491,000	42,620 28,340	49 49	-,,	17,167,000 38,919,000	32,468,000	203,540 192,390	56 44	30,900,000		39 22		33,958,000	-1,490,000 41,511,000	814,745,000		6,054,578		1,645,634,000	830,889,000	50 50
263,890	49 49	35,145,000	3,330	49		9,194,000	66,471,000 24,784,000	218,030	44 39	23,211,000		67		24,960,000 28,253,000	-3,469,000	856,256,000		6,249,780 6,173,895		1,698,690,000 1,678,065,000	842,434,000 825,278,000	50 49
65,710 59,330	49 49	8,751,000 7,902,000	3,330	49		9,194,000 7,911,000	26,269,000	218,030	39 54	32,781,000		49		36,816,000	-3,469,000	852,787,000 842,240,000		6,091,778		1,655,745,000	813,505,000	49
73,310	49	9,764,000	55,860	49	- ,	17,204,000	43,074,000	229,080	52	32,594,000		83		39,576,000	3,498,000	845,738,000		6,085,973		1,654,167,000	808,429,000	49
19,520	49	2,600,000	55,940	49		10,050,000	26,708,000	235,370	44	27,981,000		47		32,209,000	-5,501,000	840,237,000		5,995,275		1,629,516,000	789,279,000	48
43,470	49	5,789,000	43,990	49		11,648,000	32,621,000	233,170	48	30,336,000		64		36,286,000	-3,665,000	836,572,000		5,934,300		1,612,943,000	776,371,000	48
29,970	49	3,991,000	45,920	49		10,107,000	21,792,000	233,250	45	28,607,000	32,500	39	3,445,000	32,052,000	-10,260,000	826,312,000		5,840,093		1,587,337,000	761,025,000	48
54,790	49	7,297,000	47,500	49	6,326,000	13,623,000	26,625,000	238,900	45	29,077,000		81		36,254,000	-9,629,000	816,683,000		5,760,518		1,565,709,000	749,026,000	48
101,270	49	13,487,000	54,150	49	7,212,000	20,699,000	33,844,000	221,270	44	26,686,000	22,750	96	5,936,000	32,622,000	1,222,000	817,905,000	52	5,748,105	100	1,562,335,000	744,430,000	48
229,590	49	30,577,000	68,300	49	9,096,000	39,673,000	60,013,000	201,750	45	24,437,000	17,800	117	5,661,000	30,098,000	29,915,000	847,820,000	53	5,892,480	100	1,601,576,000	753,756,000	47
232,240	49	30,930,000	62,630	49		39,271,000	67,146,000	214,540	48	27,900,000		106		34,800,000	32,346,000	880,166,000		6,073,103		1,650,669,000	770,503,000	47
33,550	49	4,468,000	38,300	49		9,569,000	26,118,000	220,790	53	32,094,000		110		40,077,000	-13,959,000	866,207,000		5,995,178		1,629,489,000	763,282,000	47
221,830	49	29,544,000	22,350	49		32,521,000	55,622,000	226,250	44	26,782,000		119		34,383,000	21,239,000	887,446,000		6,102,795		1,658,740,000	771,294,000	46
125,600	49	16,728,000	32,480	49		21,054,000	39,452,000	250,010	58	39,704,000		91		46,592,000	-7,140,000	880,306,000		6,080,498		1,652,679,000	772,373,000	47
86,790	49	11,559,000	55,080	49		18,895,000	33,658,000	256,790	49 46	34,188,000		100		42,451,000	-8,793,000	871,513,000		6,032,970		1,639,761,000	768,248,000	47 47
184,830 65,520	49 49	24,616,000 8,726,000	62,890 13,350	49 49		32,992,000 10,504,000	55,642,000	235,990 242,940	46	29,612,000 24,962,000		85 80		35,769,000 30,659,000	19,873,000 -7,734,000	891,386,000 883,652,000		6,133,290		1,667,028,000 1,639,140,000	775,642,000 755,488,000	47
66,260	49	8,825,000	61,680	49		17,040,000	22,925,000 33,072,000	261,680	47	33,654,000		95		41,251,000	-8,179,000	875,473,000		6,030,683 5,968,838		1,622,330,000	746,857,000	40
79,310	49	10,563,000	42,990	49	-, -,	16,288,000	30,060,131	250,890	47	30,612,000		114	,,	38,637,000	-8,576,869	866,896,131		5,905,305	100	1,605,062,000	738,166,000	40
70,580	49	9,400,000	46,080	49		15,537,000	24,891,219	247,880	56	37,440,000		160		49,464,000	-24,572,781	842,323,350		5,806,995		1,578,341,000	736,018,000	40
63,880	49	8,508,000	56,440	49		16,025,000	34,197,963	241,680	51	33,438,000		160		43,614,000	-9,416,037	832,907,312		5,765,985		1,567,195,000	734,288,000	47
45,710	49	6,088,000	68,320	49		15,187,000	34,644,704	258,380	50	35,256,000		160		44,171,000	-9,526,296	823,381,016		5,702,453		1,549,927,000	726,546,000	47
406,070	49	54,081,000	21,720	49	2,893,000	56,974,000	86,015,146	234,980	51	32,552,000	24,100	120	7,860,000	40,412,000	45,603,146	868,984,163	54	5,968,335	100	1,622,193,000	753,209,000	46
150,120	49	19,993,000	79,040	49	10,527,000	30,520,000	44,155,568	246,690	54	36,492,000	22,800	85	5,267,000	41,759,000	2,396,568	871,380,730	54	5,988,983	100	1,627,805,000	756,424,000	46
47,830	49	6,370,000	24,780	49		9,670,000	18,861,425	270,380	62	45,466,000		88		51,709,000	-32,847,575	838,533,155		5,844,788		1,588,613,000	750,080,000	47
87,240	49	11,619,000	7,730	49		12,648,000	27,232,492	250,240	49	33,187,000		110		44,608,000	-17,375,508	821,157,647		5,755,673		1,564,392,000	743,234,000	48
91,160	49	12,141,000	6,610	49		13,021,000	29,572,465	236,720	46	29,415,000		90		36,093,000	-6,520,535	814,637,112		5,686,095		1,545,481,000	730,844,000	47
192,440	49	25,630,000	32,710	49		29,986,000	45,095,806	222,450	70	42,267,000		110		50,758,000	-5,662,194	808,974,918		5,724,278		1,555,859,000	746,884,000	48
259,210	49	34,522,000	68,420	49	9,112,000	43,634,000	61,809,451	213,400	50	29,068,000	23,200	110	6,936,000	36,004,000	25,805,451	834,780,369	52	5,873,235	100	1,596,345,000	761,565,000	48
406 100		F 4 001 000	70.000		10 527 000	FC 074 000	00 015 100	270 400		45 466 000	20.200		12 024 000	F1 700 000	45 602 400	001 200 000	`	6 340 000		1 000 000 000	047 147 000	50
406,100		54,081,000 875,000	79,000 0		10,527,000 0			270,400 181,200		45,466,000			12,024,000 1,749,000	51,709,000 24,960,000		891,386,000 741,382,000		6,249,800 5,686,100		1,698,690,000 1,545,481,000	847,147,000 726,546,000	52 46
6,600 104,400		875,000 13,901,800	0 36,800		u 4,899,600			228,000		23,211,000 30,750,100			1,749,000 5,955,400	24,960,000 36,705,500	-32,847,600 1,418,000	741,382,000 834,535,700		5,686,100 5,943,300		1,545,481,000	726,546,000 780,850,500	46
135,600		18,056,400	28,100		4,899,600 3,735,400					35,880,600			5,955,400 7,953,800	43,834,400				5,943,300		1,570,138,000	746,521,400	48 48
141,400		18,835,200			5,485,000					35,458,100			8,401,100	43,859,200				5,811,700		1,579,615,100	743,909,200	43
1.1,.00		_0,000,200	.1,200		3, 103,000	2.,520,200	.0,0 .7,000	2.2,500		23, 130, 100			0, 101,100	13,533,200	3,211,000	20,983,069		106,171		_,5,5,5,515,100	11,686,823	1
																0.03		0.02			0.02	0.01
Table III.6	Арр К		Table III.6	Арр К	[Table III.6	Арр К		Table III.6	Арр К						Table III.6				
28	8		29	20				33			34	32						36				

APPENDIX P

LOADING AND ASSIMILATIVE CAPACITY OF TDS IN SAN GABRIEL BASIN

1		= 2.718 * (1)*(2)		= 2.718 * (4) * (5)	= (3) + (6)	Ĩ	= 2.718 * (8) *		=	2.718 * (11) * (12)		15	= 2.718 * (14) * (15)	10	15	= 2.718 * (18) * (19) * (20)	22	23	= 2.718 * (22) * (23) * (24)	20	21	= 2.718 * (26) * (27) * (28)	30	51	32	33	34	35	= 2.718 * (30)*(31)*(32)
					loading																								+(3	<u>\$3)*(34)*(35)</u>
1	Loading from pre	initation		TD:	loading		Loading from s	ubsurface inflow	Incidental Per	rcolation in S	an Gabriel		10	pading from Returned flo	w															<u> </u>
	From Valley Floor		Fro	m Watersh	ed (Azusa)	total	from Puente Ba		River and San			an Gabriel Basi			tavmond Bas	in Water		Surface Water	r	1	nported Water	r			Re	cycled Water	r (irrigate gr	olf courses, etc.)		
					,						U	ses	(C	Direct Uses)	Jse	(C	irect Uses)	Use		Direct Uses_	blend of Weym			Whit	tier Narrows			n Jose Creek		
V	VOLUME TDS	LOADING	VOL	LUME TDS	LOADING		VOLUME TO	S LOADING	VOLUME 1	TDS LOA		OLUME CO	EFF. TI	DS LOADING	OLUME C	OEFF. TI	S LOADING	VOLUME CO			OLUME COI	EFF. TDS	LOADING	VOLUME CO	DEFF. TD	s voi	LUME CO	DEFF. TDS	Loar	ding
P	AF MG/L	LBS	AF	MG	i/L LBS	LBS	AF M	G/L LBS	AF M	MG/L LBS	A	F	N	1G/L LBS	NF.	M	G/L LBS	AF	M	IG/L LBS A	F	MG	/L LBS	AF	M	G/L AF		MG/L	LBS	
	30,000 3	24 26,419	3 000,	80,460	324 70,856,000	97,275,000	800	551 1,197,000	0	681	0	221,089	0.09	324 17,523,000	4,648	0.09	324 368,000	14,349	0.09	324 1,137,000	630	0.09	533 82,000	0	0.09	635	0	0.09	681	0
	26,240 3	24 23,108	,000 6	69,620	324 61,310,000	84,418,000	710	551 1,063,000	0	678	0	207,648	0.09	324 16,458,000	5,926	0.09	324 470,000	15,483	0.09	324 1,227,000	1,036	0.09	710 180,000	0	0.09	510	0	0.09	678	C
		24 20,360	,000 6	67,880	324 59,777,000	80,137,000	730	551 1,093,000	0	645	0	226,016	0.09	353 19,517,000	4,262	0.09	324 338,000	13,992	0.09	324 1,109,000	3,539	0.09	441 382,000	0	0.09	539	0	0.09	645	C
		24 22,509			324 55,577,000	78,086,000	660	551 988,000	2,660		4,685,000	196,034	0.09	362 17,359,000	3,076	0.09	324 244,000	14,197	0.09	324 1,125,000	9,471	0.09	546 1,265,000	0	0.09	567	0	0.09	648	C
	92,110 3	24 81,115	,000 24	49,610	324 219,815,000	300,930,000	730	551 1,093,000	0	656	0	181,237	0.09	357 15,827,000	4,976	0.09	324 394,000	14,169	0.09	324 1,123,000	11,427	0.09	610 1,705,000	0	0.09	510	0	0.09	656	C
		24 40,456			324 100,533,000	140,989,000	850	551 1,272,000	0	651	0	198,534	0.09	349 16,949,000	4,664	0.09	324 370,000	16,436	0.09	324 1,303,000	11,724	0.09	496 1,422,000	0	0.09	602	0	0.09	651	C
		24 71,631			324 184,219,000	255,850,000	930	551 1,392,000	0	635	0	207,493	0.09	324 16,445,000	5,031	0.09	324 399,000	15,427	0.09	324 1,223,000	13,032	0.09	502 1,600,000	0	0.09	489	0	0.09	635	C
		15 16,182			315 43,288,000	59,470,000	820	551 1,227,000	0	621	0	213,549	0.09	315 16,455,000	5,101	0.09	315 393,000	17,290	0.09	315 1,332,000	16,799	0.09	466 1,915,000	0	0.09	521	0	0.09	621	С
	.,	15 11,336			315 48,065,000	59,401,000	850	551 1,272,000	0	578	0	203,540	0.09	354 17,626,000	2,307	0.09	315 178,000	16,003	0.09	315 1,233,000	17,402	0.09	490 2,086,000	0	0.09	467	0	0.09	578	C
		15 33,853			315 112,098,000	145,951,000	850	551 1,272,000	0	582	0	192,389	0.09	336 15,813,000	5,204	0.09	315 401,000	17,560	0.09	315 1,353,000	14,208	0.09	422 1,467,000	0	0.09	503	0	0.09	582	С
		01 5,792			301 21,574,000	27,366,000	800	551 1,197,000	19,750		0,329,000	218,028	0.09	315 16,800,000	5,702	0.09	315 439,000	18,721	0.09	315 1,443,000	18,298	0.09	608 2,721,000	0	0.09	529	0	0.09	565	c
	.,	15 8,776			315 29,033,000	37,809,000	820	551 1,227,000	19,680		3,378,000	224,500	0.09	359 19,715,000	6,019	0.09	315 464,000	17,786	0.09	315 1,371,000	21,676	0.09	534 2,831,000	0	0.09	474	0	0.09	624	e
		15 14,255			315 53,767,000	68,022,000	840	598 1,365,000	21,250		4,366,000	229,077	0.09	381 21,350,000	4,942	0.09	315 381,000	17,124	0.09	315 1,319,000	20,872	0.09	492 2,512,000	0	0.09	506	0	0.09	595	0
		01 5,089			301 15,070,000	20,159,000	850	586 1,354,000	24,270		8,326,000	235,370	0.09	315 18,137,000	5,294	0.09	315 408,000	18,293	0.09	315 1,410,000	22,575	0.09	463 2,557,000	0	0.09	567	0	0.09	581	e
		15 9,923			315 37,509,000	47,432,000	880	516 1,234,000	19,840		2,557,000	233,165	0.09	340 19,393,000	3,284	0.09	315 253,000	14,939	0.09	315 1,151,000	28,537	0.09	504 3,518,000	0	0.09	485	0	0.09	604	0
		15 7,140			315 27,500,000	34,640,000	890	497 1,202,000	0	598	0	233,250	0.09	350 19,970,000	5,225	0.09	315 403,000	19,691	0.09	315 1,517,000	25,799	0.09	506 3,193,000	0	0.09	522	0	0.09	598	e
		90 8,501			390 26,204,000	34,705,000	910	522 1,291,000	6,200		0,426,000	238,896	0.09	315 18,408,000	3,549	0.09	315 273,000	13,365	0.09	390 1,275,000	31,478	0.09	511 3,935,000	0	0.09	714	0	0.09	619 638	0
		06 9,681 06 13.316			306 31,522,000 306 58,111,000	41,203,000 71,427,000	910 930	551 1,362,000	500 8.200	638 647 1	866,000	221,270	0.09 0.09	306 16,563,000	1,670	0.09	327 134,000	10,802	0.09	306 809,000 306 1,477,000	29,922	0.09	548 4,011,000	0	0.09	608 589	0	0.09 0.09	647	0
		06 13,316 06 30.083				, ,		551 1,392,000	8,200	640	4,409,000	201,750	0.09	306 15,102,000	1,298	0.09	350 111,000	19,727			18,606	0.09	620 2,822,000	0		589	0	0.09	640	0
	,	06 50,085			306 105,768,000 293 21,375,000	135,851,000 28,286,000	890 850	653 1,579,000 551 1,272,000	15.230		6.679.000	214,544 220.786	0.09	306 16,059,000 373 20.145.000	1,693 2.101	0.09	306 127,000 369 190.000	21,596 22.820	0.09	306 1,617,000 306 1,708,000	18,948 18,412	0.09	609 2,823,000 624 2.810.000	0	0.09	509	0	0.09	645	0
	- ,	06 0,911			295 21,373,000 306 87,720,000	106,201,000	860	551 1,272,000	15,230	657	0,079,000	226,251	0.09	306 16,936,000	1,351	0.09	336 111,000	17,229	0.09	306 1,290,000	18,412	0.09	647 3,089,000	0	0.09	533	0	0.09	657	0
		06 10,089			306 34,108,000	44,197,000	810	515 1,134,000	13,790		4,243,000	250,011	0.09	354 21,650,000	1,553	0.09	306 116,000	18,940	0.09	306 1,418,000	16,931	0.09	612 2,535,000	0	0.09	519	0	0.09	647	(
		06 10,089			306 36,487,000	46,991.000	810	551 1,227,000	1,440		2,450.000	256,789	0.09	338 21,232,000	1,333	0.09	347 127.000	22,693	0.09	306 1,699,000	17,205	0.09	599 2,521,000	0	0.09	526	0	0.09	626	
	,	06 19.088			306 86,606,000	105,694,000	840	520 1,187,000	1,440	599	2,430,000	235,986	0.09	306 17,664,000	1,440	0.09	354 125,000	18,054	0.09	306 1,351,000	14,208	0.09	557 1,936,000	0	0.09	587	0	0.09	599	(
		93	000 10		293 0	103,094,000	750	534 1,089,000	31,040		9,171,000	242,937	0.09	306 18,185,000	1,440	0.09	306 82,000	22,215	0.09	306 1,663,000	13,846	0.09	533 1,806,000	0	0.09	503	0	0.09	583	(
		93 5,344	-		293 21,144,000	26,488,000	760	547 1,130,000	23,250		6,736,000	261,676	0.09	306 19,587,000	1,985	0.09	342 166,000	17,011	0.09	306 1,273,000	21,062	0.09	533 2,747,000	0	0.09	551	0	0.09	581	(
		98 7.767			398 31,220,000	38,987,000	860	546 1,276,000	10.130		6,327,000	250.889	0.09	452 27,740,000	1,663	0.09	452 184,000	20,031	0.09	452 2,215,000	19,971	0.09	533 2,604,000	0	0.09	545	1,268	0.09	593	183.936
	0 3		000	0	362 0	0000	890	520 1,258,000	3,760		6,397,000	247,876	0.09	452 27,407,000	1,026	0.09	452 113,000	15,818	0.09	452 1,749,000	35,153	0.09	533 4,584,000	0	0.09	552	1,463	0.09	626	224.004
		52 12,789	.000 4	45,840	452 56,316,000	69,105,000	940	551 1,407,000	11,410		9,584,000	241,682	0.09	452 26,722,000	519	0.09	452 57,000	4,687	0.09	452 518,000	40,982	0.09	533 5,344,000	0	0.09	466	1,329	0.09	632	205,301
		98 6.199			362 20.682.000	26,881,000	960	570 1.487.000	28,740		7.839.000	258,384	0.09	366 23.133.000	553	0.09	452 61.000	7.196	0.09	452 796,000	50,758	0.09	533 6.619.000	0	0.09	550	1.557	0.09	612	233.254
	.,	52 34,792			452 165,938,000	200,730,000	960	560 1,461,000	0	626	0	234,978	0.09	380 21,842,000	789	0.09	452 87,000	12,289	0.09	452 1,359,000	30,482	0.09	533 3,975,000	38	0.09	573	1,262	0.09	626	198,579
		98 7,994			398 34,519,000	42,513,000	860	580 1,356,000	5,450		9,014,000	246,691	0.09	373 22,509,000	1,496	0.09	394 144,000	13,249	0.09	452 1,465,000	23,125	0.09	533 3,016,000	11	0.09	531	1,148	0.09	609	172,310
		62	0	0	362 0	0	950	610 1,575,000	6,380		0.942.000	270,383	0.09	452 29,896,000	1,136	0.09	452 126.000	13,948	0.09	452 1,542,000	25,904	0.09	371 2,351,000	834	0.09	550	1,451	0.09	631	336,177
	7,660 4	52 9,411	.000 3	33,010	452 40,554,000	49,965,000	940	580 1,482,000	10,440	649 1	8,402,000	250,239	0.09	452 27,669,000	1,118	0.09	373 102,000	7,928	0.09	452 877,000	30,174	0.09	491 3,624,000	1,093	0.09	540	1,494	0.09	649	381,382
		98 6,209			362 22,059,000	28,268,000	960	480 1,252,000	23,480		1,897,000	236,716	0.09	452 26,173,000	1,144	0.09	452 127,000	13,832	0.09	452 1,529,000	21,683	0.09	617 3,273,000	882	0.09	600	1,434	0.09	657	359,743
	10,760 4	52 13,219	,000 4		452 55,800,000	69,019,000	950	530 1,369,000	0	618	0	222,450	0.09	385 20,950,000	681	0.09	452 75,000	14,673	0.09	452 1,622,000	16,329	0.09	562 2,245,000	599	0.09	582	1,755	0.09	618	350,664
	13,570 4	52 16,671	,000 5	59,320	452 72,877,000	89,548,000	990	551 1,482,000	15,590	560 2	3,729,000	213,396	0.09	367 19,158,000	753	0.09	452 83,000	13,543	0.09	452 1,497,000	10,316	0.09	455 1,148,000	359	0.09	532	1,955	0.09	560	314,529
the approximate f	factor to convert	acre feet into	pounds.																											
	92,100		,000 24	49,600	219,815,000	300,930,000	1,000	1,579,000	31,000	4	9,171,000	270,400		29,896,000	6,000		470,000	22,800		2,215,000	50,800		6,619,000	1,100			2,000			381,400
	0		0	0	0	0	700	988,000	0		0	181,200		15,102,000	500		57,000	4,700		518,000	600		82,000	0			0			0
10-2011 mean	18,700	16,973	,500 e	61,600	56,552,700	73,526,200	900	1,284,300	8,500	1	4,019,800	228,000		20,001,800	2,800		226,900	15,900		1,345,400	20,100		2,611,900	100			400			77,900
an	7,500	9,102	,000 3	32,000	38,258,000	47,360,000	1,000	1,432,000	11,200	1	8,994,000	238,600		24,769,200	1,000		102,600	12,800		1,413,400	20,900		2,528,200	800			1,600			348,500
ean	9,000	10,728	400 3	39,400	46,874,500	57,602,900	900	1,412,900	10,500	1	7,780,400	242,300		24,545,900	900		97,500	11,700		1,295,400	28,500		3,617,900	400			1,500			277,600
d deviation																														
efficient of variatio	on																													
1	Table III.6		Tab	ole III.6			Table III.6	Арр К	Table III.6	Арр К		F		Арр К	G			F		Арр К	G		Арр К	L		App K	L		Арр К	

	38 39	40 = 2.718 * (38) *	41	42	43 = 2.718 * (41) *	44 = (40) +(33)	45	46	47	48 = 2.718 * (46) *(47	49		50 5 = 2.718 * (49) *(50	52 = (48) +(51)	2 53 = (45) -(52	54) =(54)i + (53	4 55 3) =(54) / (56) /	5i = 0.75 * GW in storage	5 57	58 = 2.718 * (56) *(57)	59 = (58) - (54)	60 = (57) - (55)
		= 2.718 - (38) - (39)			= 2.718 (41)	= (40) +(33)	= (7) +(10) +(13) +(37) +(44))		= 2.718 - (40) - (47			= 2.718 · (49) · (50) = (46) +(51)) = (45) -(52) =(54)i + (53	2.718	= 0.75 · GW in storage	-	= 2.718 - (50) - (57)	= (58) - (54)	= (57) - (55)
									TDS unloading							Groundwater mixin	g model					
	Loading fro	om direct sprea	ding (spreadir	ng ground:	5)	_]	Groundwa	ter extraction		Subsurface out	tflow				Using 75% of groun	dwater in st	torage			_	
	off (Azusa)		Imported Wa			Spreading	Total				Flow			Total	TDS	TDS		75% of	Allowable lo		Assimilativ	-
	stormwater r		(State Water			Total	La sulla s		T DC		VOUNT F	TOC		under aller a	halas sa	stored in		groundwater in	Basin Plan C		capacity	
VOLUME	IDS MG/L	LOADING LBS	VOLUME	TDS MG/L	LOADING LBS	IBS	loading LBS	VOLUME	IDS MG/L	UNLOADING LBS	VOLUME	TDS MG/L	UNLOADING LBS	unloading LBS	balance LBS	groundwater	MG/L	storage AF		loading LBS	IBS N	MG/L
56,83	-1	50,046,000	8,840	324		57,831,000	175,413,000	221,090	324	194,981,000	23,400		-			5,246,546,000		5,949,075	450	7,276,314,000	2,029,768,000	126
11,0		9,696,000		324		40,342,000	144,158,000	207,650	331	186,577,000	26,600					5,183,160,000			450	7,208,276,000	2,025,116,000	126
6,5	0 324	5,786,000	29,060	324	25,591,000	31,377,000	133,953,000	226,020	353	217,046,000	28,050	28	22,033,000	239,079,000	-105,126,000	5,078,034,000	321	5,812,770	450	7,109,599,000	2,031,565,000	129
10,02		8,824,000		324		24,975,000	128,727,000	196,030	362	192,781,000	37,600		, ,			4,988,533,000				7,021,325,000	2,032,792,000	130
129,63		114,156,000		324		132,253,000	453,325,000	181,240	357	175,616,000	27,050					5,249,185,000		-,,	450	7,296,862,000	2,047,677,000	126
68,06		59,936,000		324 324		87,209,000	249,514,000	198,530	349	188,198,000	23,850					5,295,202,000			450 450	7,347,837,000	2,052,635,000 2.060,558,000	126 123
97,42 49,69		85,791,000 42,543,000			5,108,000	90,899,000 42,543,000	367,808,000 123,335,000	207,490 213,550	337 306	190,105,000 177,780,000	23,750 31,950		-,,			5,454,572,000		-, ,		7,515,130,000 7,418,251,000	2,060,558,000	123
86,28		73,870,000		315	36,490,000	110,360,000	192,156,000	203,540	354	195,675,000	28,850		,,			5,352,874,000				7,405,354,000	2,052,480,000	124
263,89				315		250,199,000	416,456,000	192,390	336	175,695,000	29,250					5,568,513,000				7,644,106,000	2,075,593,000	122
65,7	0 315	56,259,000	3,330	315	2,851,000	59,110,000	139,405,000	218,030	308	182,718,000	26,750	23	16,722,000	199,440,000	-60,035,000	5,508,478,000	328	6,173,895	450	7,551,291,000	2,042,813,000	122
59,33		50,797,000		315		50,857,000	147,652,000	224,500	359	218,882,000	30,300					5,415,012,000		6,091,778		7,450,853,000	2,035,841,000	123
73,33		62,766,000		315		110,592,000	239,907,000	229,080	381	237,114,000	30,950		, -,-,-			5,401,569,000		.,,.	450	7,443,753,000	2,042,184,000	123
19,52		16,712,000	55,940	315		64,606,000	146,957,000	235,370	334	213,640,000	33,100				1	5,320,042,000		-,, -	450	7,332,821,000	2,012,779,000	124
43,43		37,218,000		315 342		74,881,000 68,344,000	180,419,000	233,170	340 350	215,655,000	34,150				1	5,252,319,000				7,258,242,000	2,005,923,000 2.001.484.000	124 126
29,9 54,79		25,659,000 58,078,000		342	,,	98,746,000	129,269,000 169,059,000	233,250 238,900	350	221,770,000 210,915,000	32,500 32,600		-,,			5,141,533,000 5,069,817,000		- , ,	450	7,143,017,000 7,045,689,000	1,975,872,000	126
101,22		84,227,000		315		139,567,000	204,515,000	238,500	325	196,000,000	22,750		- , , , ,			5,053,165,000				7,030,507,000	1,977,342,000	120
229,59		190,952,000		367	68,130,000	259,082,000	365,822,000	201,750	305	167,413,000	17,800		-, -, -,			5,227,577,000				7,207,092,000	1,979,515,000	124
232,24		193,156,000		329		249,161,000	407,217,000	214,540	319	186,114,000	23,950					5,420,428,000				7,428,012,000	2,007,584,000	122
33,55	0 306	27,904,000	38,300	306	31,854,000	59,758,000	140,848,000	220,790	373	223,552,000	26,700	47	75 34,471,000	258,023,000	-117,175,000	5,303,253,000	325	5,995,178	450	7,332,702,000	2,029,449,000	125
221,83		184,498,000		306		203,087,000	332,001,000	226,250	299	183,666,000	23,500					5,422,206,000		6,102,795		7,464,329,000	2,042,123,000	123
125,60		104,463,000		306		131,477,000	226,770,000	250,010	354	240,675,000	27,850				, ,	5,374,995,000		.,,		7,437,056,000	2,062,061,000	125
86,79		72,184,000		306		117,994,000	194,241,000	256,790	338	236,014,000	30,400					5,297,692,000				7,378,926,000	2,081,234,000	127
184,8 65,5		153,725,000 54,494,000		306 306		206,031,000 65,597,000	333,988,000 137,593,000	235,990 242,940	289 198	185,454,000 130,590,000	26,650 26,200					5,416,528,000				7,501,627,000 7,376,128,000	2,085,099,000 1,978,233,000	125 121
66,26		55,109,000		306		106,409,000	194,536,000	242,940	320	227,734,000	29,300					5,331,249,000		.,,.		7,300,485,000	1,969,236,000	121
79,3		97,435,000	42,990	452		150,250,000	239,766,936	250,890	337	229,739,000	25,900					5,306,078,936		5,905,305		7,222,779,000	1,916,700,000	119
70,58		86,710,000		452		143,321,000	185,053,004	247,880	358	241,198,000	27,650					5,213,860,939				7,102,536,000	1,888,675,000	120
63,88	0 452	78,479,000	56,440	452	69,339,000	147,818,000	270,760,301	241,680	342	224,438,000	23,400	41	26,076,000	250,514,000	20,246,301	5,234,107,240	334			7,052,376,000	1,818,269,000	116
45,7	0 452	56,156,000	68,320	452	83,934,000	140,090,000	247,139,254	258,380	366	257,061,000	20,500	41	22,845,000	279,906,000	-32,766,746	5,201,340,494	4 336	5,702,453	450	6,974,670,000	1,773,330,000	114
406,01		498,872,000		452		525,556,000	755,208,579	234,980	380	242,582,000	24,100					5,687,110,073				7,299,871,000	1,612,761,000	99
150,12		184,428,000		452		281,531,000	361,720,310	246,690	373	250,225,000	22,800					5,773,073,384				7,325,124,000	1,552,051,000	95
47,83		58,761,000 107.177.000	24,780 7,730	452 452		89,204,000 116.674.000	135,972,177 219,176,382	270,380 250,240	358 353	263,364,000 239,849,000	26,100 38,200					5,613,474,560		5,844,788 5,755,673	450	7,148,760,000 7,039,763,000	1,535,285,000 1.497.421.000	97 96
87,24		107,177,000	,	452	-, -,	120.114.000	219,176,382 222,992,743	236,720	353	239,849,000 216,184,000	38,200				/ . /	5,542,341,942		5,755,673		6,954,663,000	1,497,421,000	96
192,44		236,419,000	32,710	452		276,604,000	372,234,664	222,450	385	232,869,000	28,400				-77 -	5,617,271,350		5,724,278		7,001,364,000	1,384,093,000	89
259,23		318,449,000	68,420		84,056,000	402,505,000	539,464,529	213,400	367	212,792,000	23,200	21				5,930,701,879				7,183,554,000	1,252,852,000	78
406,10		498,872,000			97,103,000					263,364,000			50,460,000					6,249,800		7,644,106,000		130
6,60		5,786,000	0		0		123,335,000			130,590,000			13,242,000					5,686,100		6,954,663,000		78
104,40 135,60		103,675,300 166,559,800	36,800 28,100		36,507,700 34,460,400	.,,	253,277,200 297,968,100	- ,		210,070,000 233,011,600	,		26,282,100 33,430,800					5,943,300 5,776,800		7,269,238,000 7,065,620,800		118 91
135,60		173,744,400	-,		50,597,300		330,972,200	,		238,011,600			30,453,700					5,811,700		7,108,268,100		100
1-1,-1	-	_, ,,, ,,, 100	-1,200		50,557,500	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	550,57 2,200	2-2,550	16	_30,030,200	20,200		55,455,700	200,505,500	02,002,000	248,254,765		106,171		.,100,200,100	201,495,471	13
									#DIV/0!							0.04		0.02			0.13	0.13
Table III			Table III.6					Table III.6	Арр К		Table III.6							Table III.6				
:	8		29					33	1		34	- 2	29					36	i			

APPENDIX Q

HIGHLIGHTS OF TETRACHLOROETHYLENE, TRICHLOROETHYLENE, CARBON TETRACHLORIDE, AND PERCHLORATE

Appendix Q
HIGHLIGHTS OF TDS CONCENTRATIONS AT PRODUCTION WELLS IN SAN GABRIEL BASIN

PRODUCER NAME		RECORD. NUMBER	MAIN BASIN AREA	CONCENTRATION (MG/L)					
	WELL NAME							OST RECENT	
				CONSTITUENT	VALUE	DATE	VALUE	DATE	
ADAMS RANCH MWC	01	1902106	WEST	TDS	261	02/97	261	02/97	
	02	1902689	WEST	TDS	294.2	09/92	294.2	09/92	
	03	8000182	WEST	TDS	320	11/06	310	08/10	
ALHAMBRA, CITY OF	07	1903097	WEST	TDS	500	08/05	430	07/10	
	09	1900011	WEST	TDS	460	09/05	440	04/11	
	10	1900012	WEST WEST	TDS TDS	620	01/07	500	10/10 07/10	
	11	1903014 1900013	WEST	TDS	300 490	08/05	260 450	07/10	
	12	1900013	WEST	TDS	490 380	09/09	370	11/10	
	14	1900015	WEST	TDS	310	08/05	290	11/10	
	15	1900016	WEST	TDS	269	04/98	210	07/09	
	GARF	1900018	WEST	TDS	521	08/87	390	06/91	
	LON 1	1902789	WEST	TDS	280	09/06	280	09/11	
	LON 2	1900017	WEST	TDS	330	08/05	260	10/10	
	MOEL (8)	1900010	WEST	TDS	430	07/09	330	07/11	
AMARILLO MWC	01	1900791	WEST	TDS	440	08/06	260	08/10	
	02	1900792	WEST	TDS	440	08/06	330	08/10	
ARCADIA, CITY OF	BAL 1	1901015	WEST	TDS	361	04/78	361	04/78	
	BAL 2	1902791	WEST	TDS	300	07/09	300	07/09	
	CAM REAL 1	1902077	WEST	TDS	230	03/84	199	05/92	
	CAM REAL 2	1902078	WEST	TDS	296	08/89	237	06/98	
	CAM REAL 3	8000213	WEST	TDS	240	02/10	240	09/12	
	L OAK 1 LGY	8000127	WEST	TDS	333	06/95	290	06/11	
	LGY LGY 3	1902084 8000214	WEST WEST	TDS TDS	543 230	01/08	543 230	01/08 06/11	
	LON 1	1901013	WEST	TDS	230 411	04/74	250	06/11	
	LON 1	1901013	WEST	TDS	370	06/95	340	06/11	
	PECK 1	1902854	WEST	TDS	320	09/03	260	06/11	
	ST JO 1	1902358	WEST	TDS	414	09/99	400	08/01	
	ST JO 2	8000177	WEST	TDS	460	09/03	320	06/11	
ATTALLA, MARY L.	NA	8000119	WEST	TDS	475	04/98	475	04/98	
AZUSA ASSOCIATES LLC	DALTON	1900390	WEST	TDS	253	06/99	253	06/99	
AZUSA LIGHT AND WATER	05 (OLD 01)	1902533	WEST	TDS	375	06/75	270	05/09	
	06 (OLD 03)	1902535	WEST	TDS	361	03/95	230	05/09	
	GENESIS 1 (OLD 04)	1902536	WEST	TDS	650	06/86	513	06/89	
	GENESIS 2 (OLD 05)	1902537	WEST	TDS	543	04/91	340	02/08	
	GENESIS 3 (OLD 06)	1902538	WEST	TDS	646	06/86	575	03/97	
	01 (OLD 07)	8000072	WEST	TDS	318	05/82	210	05/09	
	03 (OLD 08)	8000086	WEST	TDS	315	03/92	230	05/09	
	02 (O1 NORTH)	1902457	WEST	TDS	382	03/92	220	05/09	
	04 (02 SOUTH)	1902458	WEST	TDS	354	06/89	200	05/09	
	AVWC 01 AVWC 02	1902113	WEST	TDS	416	08/87	380	09/97	
	08 (AVWC 02	1902114 1902115	WEST WEST	TDS TDS	400 354	01/98	400 300	01/98 08/10	
	08 (AVWC 04) 07 (AVWC 05)	1902115	WEST	TDS	354 378	04/95	210	05/09	
	07 (AVWC 05) 09 (AVWC 06)	1902110	WEST	TDS	555	12/85	473	01/99	
	AVWC 00)	1902425	WEST	TDS	470	02/74	365	11/85	
	10 (AVWC 08)	8000103	WEST	TDS	500	08/06	310	05/09	
	11	8000178	WEST	TDS	306	08/03	210	08/10	
	12	8000179	WEST	TDS	308	08/03	203	08/10	
BANKS, GALE & VICKI	NA	1900415	WEST	TDS	410	09/05	360	10/10	
BASELINE WC	01	1901200	EAST	TDS	675	02/98	675	02/98	
	02	1901201	EAST	TDS	391	11/98	391	11/98	
BEVERLY ACRES MWUA	ROSE HILLS	8000004	WEST	TDS	758	08/86	717	08/91	
CALIFORNIA-AMERICAN WC/DUARTE	ВV	1900355	WEST	TDS	440	09/91	200	10/10	
	B V 2	8000216	WEST	TDS	180	09/12	180	09/12	
	BACON	1900497	WEST	TDS	368	07/86	250	12/10	
	CR HV	1903018	WEST	TDS	520	09/91	330	10/10	
	ENCANTO	8000139	WEST	TDS	504	10/94	270	10/10	

Appendix Q						
HIGHLIGHTS OF TDS CONCENTRATIONS AT PRODUCTION WELLS IN SAN GABRIEL BASIN						

PRODUCER NAME				CONCENTRATION (MG/L)					
	WELL NAME	RECORD.	MAIN BASIN		HISTOR	IC HIGH	,		
		NUMBER	AREA	CONSTITUENT	VALUE	DATE	VALUE	DATE	
	1	-1	-1	0					
	FISH C	1900358	WEST	TDS	448	05/89	210	10/10	
	LAS L	1900357	WEST	TDS	448	09/91	316	11/94	
	LAS L2	8000140	WEST	TDS	344	03/95	290	10/10	
	MT AVE	1900356	WEST	TDS	548	05/89	319	09/93	
	STA FE	1900354	WEST	TDS	452	09/90	190	10/10	
	WILEY	1902907	WEST	TDS	368	09/91	250	10/10	
CALIFORNIA-AMERICAN WC/SAN MARINO	BR 1	1901441	WEST	TDS	330	07/93	323	12/96	
	BR 2 DELMAR	1902787 1903059	WEST WEST	TDS TDS	309 270	08/93 09/05	296 200	12/96 06/09	
	GRAND	1903059	WEST	TDS	270	09/05	200	06/09	
	GUESS	1900920	WEST	TDS	313	08/97	300	09/01	
	HALL 2	8000175	WEST	TDS	280	09/05	230	06/09	
	HOWLAND	1902424	WEST	TDS	261	08/85	210	06/09	
	IVAR 1	1900923	WEST	TDS	464	11/94	440	09/01	
	IVAR 2	1902867	WEST	TDS	332	12/85	332	12/85	
	LONGDEN	1900935	WEST	TDS	416	11/94	310	06/09	
	MAR 1	1900924	WEST	TDS	405	04/74	292	10/81	
	MAR 2	1900925	WEST	TDS	265	04/74	216	10/81	
	MAR 3	1903019	WEST	TDS	250	08/97	200	06/09	
	MIVW 1	1900919	WEST	TDS	280	05/01	280	05/01	
	MIVW 2	1900920	WEST	TDS	356	05/89	240	06/09	
	RIC 1	1900921	WEST	TDS	282	11/94	282	11/94	
	ROANOKE	1900934	WEST	TDS	390	08/97	325	05/00	
	ROSEMEAD	1900927	WEST	TDS	310	09/08	290	06/09	
CALIFORNIA COUNTRY CLUB	ARTES	1902531	EAST	TDS	440	10/10	440	10/10	
	SYCAMORE	1903084	EAST	TDS	1000	09/01	720	08/10	
CALIFORNIA DOMESTIC WC	02	1901181	WEST	TDS	558	08/73	270	10/11	
	03	1903057	WEST	TDS TDS	460	04/07	310	10/11 07/85	
	05 05A	1901183 8000100	WEST WEST	TDS	476 280	08/73 10/05	460 240	10/11	
	05A	1902967	WEST	TDS	468	07/85	240	10/11	
	08	1902907	WEST	TDS	400	07/83	330	10/11	
	14	8000174	WEST	TDS	440	10/11	440	10/11	
CEDAR AVENUE MWC	01 SOUTH	1901411	WEST	TDS	270	01/89	270	01/89	
	02 NORTH	1902783	WEST	TDS	380	08/79	270	01/92	
CEMEX CONS. (AZ TWO)	02	1900038	WEST	TDS	382	10/04	210	10/10	
CHAMPION MWC	02	1902816	WEST	TDS	420	09/08	410	09/10	
	03	8000121	WEST	TDS	400	09/08	400	09/10	
CITRUS VALLEY MEDICAL CENTER	01	8000138	EAST	TDS	780	07/01	540	10/10	
CLAYTON MANUFACTURING CO	02	1901055	WEST	TDS	600	08/01	350	09/03	
COINER, JAMES W.	03	1902951	WEST	TDS	560	03/96	530	10/01	
	05R	1903072	WEST	TDS	660	02/98	520	10/10	
COVINA, CITY OF	01	1901685	EAST	TDS	518	01/99	518	01/99	
	02 (GRAND)	1901686	EAST	TDS	569	08/87	499	04/99	
	03	1901687	EAST	TDS	361	10/73	361	10/73	
COVINA IRRIGATING CO	BAL 1	1900885	WEST	TDS	369	08/76	260	07/10	
	BAL 2 BAL 3	1900883 1900882	WEST WEST	TDS TDS	420 400	08/07 07/09	370 360	07/10 07/10	
	CONTR	1900882	EAST	TDS	400 510	07/09	360 497	07/10	
	VALEN	1900881	EAST	TDS	510	06/81	528	06/88	
CROWN CITY PLATING CO	01	8000012	WEST	TDS	470	02/06	470	02/06	
DEL RIO MWC	BURKETT	1900331	WEST	TDS	520	06/09	520	06/09	
DRIFTWOOD DAIRY	01	1902924	WEST	TDS	404	06/98	404	06/98	
EAST PASADENA WC	09	1901508	WEST	TDS	324	08/80	210	07/10	
	11	8000217	WEST	TDS	210	03/11	210	03/11	
EL MONTE, CITY OF	02A	1901692	WEST	TDS	364	12/10	200	06/11	
	03	1901693	WEST	TDS	620	07/10	368	12/11	
	04	1901694	WEST	TDS	565	03/76	350	07/06	
	05	1901695	WEST	TDS	567	06/99	567	06/99	

Appendix Q
HIGHLIGHTS OF TDS CONCENTRATIONS AT PRODUCTION WELLS IN SAN GABRIEL BASIN

				CONCENTRATION (MG/L)					
PRODUCER NAME	WELL NAME	RECORD.	MAIN BASIN	CONSTITUENT			_	MOST RECENT	
		NUMBER	AREA		VALUE	DATE	VALUE	DATE	
		-1	-1	1					
	10	1901699	WEST	TDS	398	12/10	214	12/11	
	11	1901700	WEST	TDS	351	10/78	308	09/79	
	12	1903137	WEST	TDS	351	10/78	308	09/79	
	13	8000101	WEST	TDS	409	08/94	154	12/11	
	MT VW	1902612	WEST	TDS	368	02/87	344	01/01	
GLENDORA, CITY OF	01-E	1901523	EAST	TDS	513	08/78	450	06/08	
	02-E	1901526	EAST	TDS	473	08/86	390	09/10	
	03-G	1901525	EAST WEST	TDS	612	08/82	580	08/99	
	04-E	1901524	-	TDS TDS	591 296	05/84 07/98	591 200	05/84 09/10	
	05-E 07-G	8000149 1900831	WEST WEST	TDS	296 528	07/98	528	09/10	
	07-G	1900831	EAST	TDS	392	04/98	180	04/98	
	08-L 09-E	1900830	WEST	TDS	342	12/89	200	09/10	
	10-E	1900828	EAST	TDS	580	09/10	580	09/10	
	11-E	1900826	EAST	TDS	550	09/07	530	09/10	
	12-G	1900827	EAST	TDS	383	05/90	190	09/10	
	13-E	8000184	EAST	TDS	460	09/10	460	09/10	
GOLDEN STATE WC/SAN GABRIEL	AZU 1	1902020	WEST	TDS	473	08/86	372	08/94	
	EARL 1	1902144	WEST	TDS	270	09/03	270	09/03	
	ENC 1	1902024	WEST	TDS	300	03/06	240	08/10	
	ENC 2	1902035	WEST	TDS	310	08/06	260	08/10	
	ENC 3	8000073	WEST	TDS	280	08/10	280	08/10	
	FAR 1	1902034	WEST	TDS	396	06/90	320	08/10	
	FAR 2	1902948	WEST	TDS	365	01/90	280	08/10	
	GAR 1	1900513	WEST	TDS	270	09/03	270	09/03	
	GAR 2	1900512	WEST	TDS	270	08/97	220	07/02	
	GID 1	1902032	WEST	TDS	299	09/93	299	09/93	
	GID 2	1902031	WEST	TDS	293	09/93	293	09/93	
	GRA 1 GRA 2	1902030	WEST WEST	TDS TDS	514 437	08/87 09/87	364 362	08/94	
	JEF 1	1902461 1902017	WEST	TDS	437 554	09/87	362 554	08/94 03/86	
	JEF 2	1902017	WEST	TDS	530	06/79	530	05/88	
	JEF 3	1902019	WEST	TDS	416	08/86	251	08/92	
	JEF 4	8000111	WEST	TDS	290	08/06	280	08/10	
	PER 1	1902027	WEST	TDS	407	08/86	390	08/10	
	SG1	1900510	WEST	TDS	720	11/05	230	06/09	
	S G 2	1900511	WEST	TDS	560	10/05	560	10/05	
	SAX 1	1900515	WEST	TDS	286	10/97	286	10/97	
	SAX 3	1900514	WEST	TDS	324	08/73	220	08/10	
	SAX 4	8000146	WEST	TDS	213	08/99	200	08/10	
GOLDEN STATE WC/SAN DIMAS	ART-1	1902151	EAST	TDS	360	01/73	360	01/73	
	ART-2	1902152	EAST	TDS	510	01/73	390	05/10	
	ART-3	1902842	EAST	TDS	510	01/73	390	05/10	
	BAS-3	1902148	EAST	TDS	520	05/09	420	05/10	
	BAS-4	1902149	EAST	TDS	530	05/09	530	05/10	
	CITY	1902286	EAST	TDS	720	10/01	700	08/08	
	COL-1	1902266	EAST	TDS TDS	513	09/75	463	10/76	
	COL-2 COL-4	1902267 1902268	EAST EAST	TDS	530 500	01/73 02/11	447 500	05/76 02/11	
	COL-4 COL-6	1902268	EAST	TDS	640	02/11	470	02/11	
	COL-0	1902270	EAST	TDS	630	05/81	547	02/11	
	COL-8	1902271	EAST	TDS	658	06/80	519	12/96	
	HIGHWAY	1902150	EAST	TDS	500	05/07	350	05/10	
	HIGHWAY 2	8000212	EAST	TDS	410	10/10	330	08/11	
	MALON	1902287	EAST	TDS	658	06/80	519	12/96	
HANSON AGGREGATES WEST, INC.	EL 1	1901492	WEST	TDS	540	03/97	310	09/02	
,	EL 3	1901493	WEST	TDS	420	07/01	310	09/02	
	EL 4	1903006	WEST	TDS	340	07/01	340	09/02	
HARTLEY, DAVID	NA	8000085	EAST	TDS	580	10/95	580	10/95	

Appendix Q
HIGHLIGHTS OF TDS CONCENTRATIONS AT PRODUCTION WELLS IN SAN GABRIEL BASIN

			1	CONCENTRATION (MG/L)					
PRODUCER NAME	WELL NAME	RECORD.	MAIN BASIN		HISTORIC HIGH MOST F			ECENT	
		NUMBER	AREA	CONSTITUENT	VALUE	DATE	VALUE	DATE	
HEMLOCK MWC	NORTH	4004470	WEGT	TDC	286	09/05	200	06/09	
	SOUTH	1901178 1902806	WEST WEST	TDS TDS	200	09/05	190	06/09	
INDUSTRY, CITY OF	01	1902581	EAST	TDS	514	03/03	510	10/92	
	02	1902582	EAST	TDS	554	01/80	537	02/86	
	03	8000078	EAST	TDS	343	08/00	200	10/05	
	04	8000096	EAST	TDS	456	08/04	440	04/07	
	05	8000097	EAST	TDS	360	04/10	360	04/10	
LA PUENTE VALLEY COUNTY WD	02	1901460	EAST	TDS	400	11/07	330	09/10	
	03	1902859	EAST	TDS	554	01/80	310	09/10	
	04	8000062	EAST	TDS	323	10/87	176	09/04	
	05	8000209	EAST	TDS	340	03/08	310	09/10	
LOS ANGELES, COUNTY OF	02	1902580	WEST	TDS	398	09/04	398	09/04	
	03A	8000150	WEST	TDS	550	07/01	480	10/08 10/08	
	05	1902665 1902666	WEST WEST	TDS TDS	440 678	09/02	370 678	11/99	
	600	8000090	WEST	TDS	731	07/98	731	07/98	
	BIG RED	8000088	WEST	TDS	710	09/02	560	10/09	
	NEW LAKE	8000089	WEST	TDS	748	09/98	650	11/10	
	SF 1	8000070	WEST	TDS	360	09/02	270	10/10	
	WHI 1	1902579	WEST	TDS	500	11/10	500	11/10	
MILLER COORS LLC	01	8000075	WEST	TDS	330	09/05	230	09/09	
	02	8000076	WEST	TDS	328	09/04	210	11/10	
MONROVIA, CITY OF	01	1900417	WEST	TDS	580	08/86	548	10/00	
	02	1900418	WEST	TDS	552	05/87	410	07/09	
	03	1900419	WEST	TDS	442	05/85	320	07/09	
	04	1900420	WEST	TDS	309	05/84	260	07/09	
	05	1940104	WEST	TDS	310	07/02	240	07/09	
	06	8000171	WEST	TDS	342	08/04	310	07/09	
MONROVIA NURSERY	DIV 4	1902456	WEST	TDS	790	09/03	700	02/07	
MONTEREY PARK, CITY OF	01	1900453	WEST	TDS	450	05/04	330	05/09	
	02	1900454	WEST	TDS	390	0/97	390	07/97	
	03	1900455	WEST	TDS	400	05/04	270	05/10	
	04	1900456 1900457	WEST WEST	TDS TDS	396 620	08/02	240 540	09/87 08/10	
	05	1900457	WEST	TDS	620 570	08/02	540 552	02/05	
	00	1900458	WEST	TDS	299	08/77	220	02/03	
	08	1902373	WEST	TDS	450	08/05	450	08/05	
	09	1902690	WEST	TDS	350	08/01	180	08/11	
	10	1902818	WEST	TDS	490	05/04	330	05/10	
	12	1903033	WEST	TDS	630	02/04	500	03/10	
	14	1903092	WEST	TDS	420	12/03	350	07/06	
	15	8000196	WEST	TDS	570	08/08	540	08/10	
	FERN	8000126	WEST	TDS	310	08/02	260	08/10	
OWL ROCK PRODUCTS CO	NA	1903119	WEST	TDS	550	06/99	190	10/09	
	NA	1902241	WEST	TDS	550	06/99	190	10/09	
POLOPOLUS ET AL.	01	1902169	WEST	TDS	405	09/92	405	09/92	
RICHWOOD MWC	NORTH 2	1901522	WEST	TDS	330	02/76	323	06/99	
	SOUTH 1	1901521	WEST	TDS	396	06/99	396	06/99	
RURBAN HOMES MWC	NORTH 1 SOUTH 2	1900120 1900121	WEST WEST	TDS TDS	390 410	03/01 09/08	290	06/09 06/09	
SAN GABRIEL COUNTRY CLUB	01	1900121	WEST	TDS	410	10/08	330 480	10/09	
CAR CADRIEL COUNTRY CLUB	01	1900547	WEST	TDS	460 251	06/99	460 158	10/04	
SAN GABRIEL COUNTY WD	05 BRA	1901669	WEST	TDS	369	08/90	328	09/00	
	05 BKA	1901671	WEST	TDS	356	07/03	310	06/09	
	08	1901672	WEST	TDS	671	08/93	671	08/93	
	09	1902785	WEST	TDS	316	08/04	240	07/10	
	10	1902786	WEST	TDS	300	05/89	212	11/98	
	11	8000067	WEST	TDS	306	08/04	250	07/10	
	12	8000123	WEST	TDS	250	11/06	220	07/10	

Appendix Q
HIGHLIGHTS OF TDS CONCENTRATIONS AT PRODUCTION WELLS IN SAN GABRIEL BASIN

				CONCENTRATION (MG/L)					
PRODUCER NAME	WELL NAME	RECORD.	MAIN BASIN					RECENT	
		NUMBER	AREA	CONSTITUENT	VALUE	DATE	VALUE	DATE	
[.	0					
	14	8000133	WEST	TDS	480	11/06	220	07/10	
SAN GABRIEL VALLEY WC	B4B	1902858	EAST	TDS	458	10/79	390	11/07	
	B4C	1902947	EAST	TDS	370	07/72	314	08/00	
	B5A	1900718	EAST	TDS	513	08/76	460	09/05	
	B5B	1900719	EAST	TDS	490	08/10	490	08/10	
	B5C B5D	8000112 8000160	EAST EAST	TDS TDS	320 460	05/07	280 220	08/07 11/09	
	B5E	8000180	EAST	TDS	310	08/08	310	08/10	
	B6B	1900721	EAST	TDS	370	09/92	370	09/92	
	B6C	1903093	EAST	TDS	570	08/10	570	08/10	
	B6D	8000098	EAST	TDS	390	11/07	340	08/10	
	11A	1900739	WEST	TDS	416	08/78	230	08/10	
	11B	1900745	WEST	TDS	430	08/08	240	08/10	
	11C	1902713	WEST	TDS	396	08/06	280	08/10	
	1B	1900729	WEST	TDS	372	09/92	320	08/10	
	1C	1902946	WEST	TDS	304	07/89	240	11/09	
	1D	8000102	WEST	TDS	279	04/99	250	08/10	
	1E	8000172	WEST	TDS	275	08/06	240	08/10	
	2C	1900749	WEST	TDS	332	05/80	280	11/05	
	2D	1902857	WEST	TDS	324	07/86	230	11/09	
	2E	8000065	WEST	TDS	370	07/03	260	11/09	
	2F	8000197	WEST	TDS	300	07/07	230	11/09	
	8A	1900736	WEST	TDS	380	07/72	330	08/89	
	8B	1900746	WEST	TDS	420	08/08	380	08/10	
	8C	1900747	WEST	TDS	390 480	11/09 07/07	390 400	11/09 06/09	
	8D 8E	1903103 8000113	WEST WEST	TDS TDS	480 300	07/07	200	11/09	
	8F	8000113	WEST	TDS	300	07/03	200	11/09	
	B1	1902635	WEST	TDS	750	08/08	750	08/06	
	B1 B2	1902525	WEST	TDS	677	11/98	677	11/98	
	B11A	1901439	EAST	TDS	550	08/04	550	08/04	
	B11B	8000108	EAST	TDS	594	02/97	430	08/10	
	B7B	1901440	EAST	TDS	606	09/76	398	08/85	
	B7C	8000068	EAST	TDS	653	08/92	530	11/09	
	B7E	8000122	EAST	TDS	320	06/06	300	08/10	
	B9	1901437	EAST	TDS	1184	02/86	963	02/87	
	B9B	8000099	EAST	TDS	300	08/03	210	08/10	
	G4A	1900725	WEST	TDS	460	08/06	340	08/10	
	B24A	8000203	EAST	TDS	540	01/07	490	11/09	
	B24B	8000204	EAST	TDS	500	01/07	410	11/09	
	B25A (SA3-1S)	8000187	EAST	TDS	490	11/07	430	08/10	
	B25B (SA3-1D)	8000188	EAST	TDS	380	11/07	300	08/10	
	B26A (SA3-2S)	8000189	EAST	TDS	490	11/07	420	08/10	
	B26B (SA3-2D)	8000190	EAST	TDS	380	11/07	320	08/10	
SIERRA LA VERNE COUNTRY CLUB	01	8000124	EAST	TDS	1360	09/04	1340	10/07	
SONOCO PRODUCTS CO	02	8000125	EAST	TDS	1400 860	10/08 07/04	200 790	10/10 12/05	
	01	1912786 1902971	EAST EAST	TDS TDS	860 860	10/03	790	12/05	
SOUTHERN CALIFORNIA EDISON CO	110RH	8000046	WEST	TDS	380	08/98	275	02/05	
	2EB76	1900343	WEST	TDS	470	07/01	415	02/07	
	MURAT	8000047	WEST	TDS	470	09/04	310	10/08	
SOUTH PASADENA, CITY OF	GRAV 2	1901679	WEST	TDS	500	05/04	470	08/10	
	WIL 2	1901681	WEST	TDS	432	08/99	393	09/00	
	WIL 3	1901682	WEST	TDS	298	08/99	290	08/10	
	WIL 4	1903086	WEST	TDS	262	08/04	250	08/10	
STERLING MWC	NEW SO.	8000132	WEST	TDS	300	09/04	280	07/07	
	NORTH	1902096	WEST	TDS	380	07/07	310	08/09	
	SOUTH	1902085	WEST	TDS	320	08/09	320	08/09	
SUBURBAN WATER SYSTEMS	101W-1	41901605	WEST	TDS	442	02/88	442	02/88	

Appendix Q
HIGHLIGHTS OF TDS CONCENTRATIONS AT PRODUCTION WELLS IN SAN GABRIEL BASIN

			1	CONCENTRATION (MG/L)				
PRODUCER NAME	WELL NAME	RECORD.	MAIN BASIN		. ,			RECENT
		NUMBER	AREA	CONSTITUENT	VALUE	DATE	VALUE	DATE
	N		JI	1				
	102W-2	1901606	WEST	TDS	345	10/75	345	10/75
	103W-1	1901607	WEST	TDS	425	01/80	425	01/80
	105W-1	1901608	WEST	TDS	491	06/86	421	06/94
	111W-1	1901610	WEST	TDS	491	03/73	491	03/73
	113W-1	1901612	WEST	TDS	407	02/86	407	02/86
	114W-1	1901613	WEST	TDS	400	11/94	400	11/94
	120W-1	1901615	WEST	TDS	478	08/96	478	08/96
	121W-1 122W-1	8000181	WEST WEST	TDS TDS	300 782	08/10 05/86	300 601	08/11 08/96
	123W-1	1901617	WEST	TDS	1100	08/96	1100	08/96
	123W-1	1901618	WEST	TDS	422	07/89	422	07/89
	125W-1	1901619	WEST	TDS	511	04/82	511	04/82
	125W-2	8000087	WEST	TDS	621	05/94	621	05/94
	126W-1	1901620	WEST	TDS	435	05/75	435	05/75
	126W-2	8000092	WEST	TDS	760	08/00	760	08/00
	131W-1	1901621	WEST	TDS	1040	10/93	1040	10/93
	133W-1	1901622	WEST	TDS	532	04/88	532	04/88
	134W-1	1901623	WEST	TDS	491	10/93	491	10/93
	135W-1	1901624	WEST	TDS	504	10/75	481	09/86
	136W-1	1901625	WEST	TDS	1060	10/93	1060	10/93
	139W-1	1901598	WEST	TDS	540	05/94	540	05/95
	139W-2	1901599	WEST	TDS	483	09/99	420	08/01
	139W-4	8000069	WEST	TDS	360	08/07	290	03/11
	139W-5	8000095	WEST	TDS	322	06/86	280	08/01
	139W-6	8000152	WEST	TDS	300	09/97	298	08/00
	140W-1	1901602	WEST	TDS TDS	543	05/75	260	01/76
	140W-3 140W-4	1903067 8000093	WEST WEST	TDS	440 530	02/04	420 530	12/09 10/03
	140W-4	8000093	WEST	TDS	430	03/09	310	08/10
	140W-3	1901597	WEST	TDS	430	06/81	476	06/81
	142W-2	8000183	WEST	TDS	305	08/07	240	02/12
	147W-1	1901596	WEST	TDS	913	03/85	913	03/85
	147W-2	1902760	WEST	TDS	300	09/76	300	09/76
	147W-3	8000077	WEST	TDS	407	09/88	330	08/11
	148W-1	1901604	WEST	TDS	536	04/97	536	04/97
	150W-1	1902519	WEST	TDS	348	05/90	316	07/92
	151W-1	1902518	WEST	TDS	701	03/98	701	03/98
	151W-2	8000207	WEST	TDS	300	12/06	260	08/10
	152W-1	1900337	WEST	TDS	839	05/86	839	05/86
	154W-1	1902762	WEST	TDS	572	05/79	572	05/79
	155W-1	1902819	WEST	TDS	1130	11/98	1130	11/98
	155W-2	1902820	WEST	TDS	1150	11/98	1150	11/98
	157W-1	1902763	WEST	TDS	378	02/86	378	02/86
	201W-2 201W-4	1901430 1901433	WEST WEST	TDS TDS	520 620	09/05 08/10	500 620	08/06 08/10
	201W-4 201W-5	1901433	WEST	TDS	620 534	08/06	620 510	08/10
	201W-5 201W-6	1901432	WEST	TDS	700	08/08	700	08/07
	201W-0 201W-7	8000195	WEST	TDS	580	08/10	580	03/03
	201W-7 201W-8	8000198	WEST	TDS	620	07/06	620	08/10
	201W-9	8000208	WEST	TDS	530	02/11	530	02/11
	201W-10	8000210	WEST	TDS	570	09/07	520	05/09
	202W-1	1901627	WEST	TDS	474	08/76	383	09/88
SUNNY SLOPE WC	08	1900026	WEST	TDS	330	09/07	260	03/10
	09	1902792	WEST	TDS	359	08/73	250	09/10
	10	8000048	WEST	TDS	300	06/84	271	03/94
	13	8000157	WEST	TDS	230	06/09	200	08/11
TEXACO INC.	14	1900001	WEST	TDS	750	09/02	680	09/03
TYLER NURSERY	NA	8000049	WEST	TDS	790	10/03	750	09/04
UNITED ROCK PRODUCTS CO	IRW-1	1900106	WEST	TDS	330	09/97	210	10/09

Appendix Q
HIGHLIGHTS OF TDS CONCENTRATIONS AT PRODUCTION WELLS IN SAN GABRIEL BASIN

				CONCENTRATION (MG/L)					
PRODUCER NAME	WELL NAME	RECORD.	MAIN BASIN		HISTORIC HIGH		MOST RECEN		
		NUMBER	AREA	CONSTITUENT	VALUE	DATE	VALUE	DATE	
			1						
	IRW-2	1903062	WEST	TDS	314	10/04	200	11/05	
VALENCIA HEIGHTS WC	01	8000051	EAST	TDS	903	08/00	854	08/07	
	02	8000052	EAST	TDS	930	09/01	898	08/07	
	03A	8000055	EAST	TDS	854	08/81	854	08/81	
	04	8000054	EAST	TDS	853	08/00	560	09/01	
	05	8000120	EAST	TDS	990	10/10	990	10/10	
	06	8000180	EAST	TDS	810	05/08	760	10/10	
	07	8000211	EAST	TDS	880	12/09	850	09/10	
VALLEY COUNTY WC	ARROW	1900034	WEST	TDS	405	08/77	370	02/97	
	B DALTON	1900035	WEST	TDS	540	06/84	470	09/07	
	E NIXON (E JOAN)	1900032	WEST	TDS	326	06/84	240	08/10	
	E MAINE	1900027	WEST	TDS	320	08/90	260	09/10	
	LANTE (SA1-3)	8000060	WEST	TDS	770	10/04	470	05/11	
	MORADA	1900029	WEST	TDS	559	09/96	559	09/96	
	PADDY LN	1900031	WEST	TDS	359	08/93	327	08/94	
	PALM	8000039	WEST	TDS	300	07/85	216	08/93	
	W NIXON (W JOAN)	1902356	WEST	TDS	275	06/84	200	08/10	
	W MAINE	1900028	WEST	TDS	312	08/04	290	08/10	
	SA1-1	8000185	WEST	TDS	590	09/07	370	05/11	
	SA1-2	8000186	WEST	TDS	540	09/07	410	06/09	
VALLEY VIEW MWC	01	1900363	WEST	TDS	326	01/79	280	09/10	
	02	1900364	WEST	TDS	308	01/80	270	09/09	
	03	1900365	WEST	TDS	339	01/78	306	03/98	
VULCAN CO (CALMAT CO)	DUR E	1902920	WEST	TDS	312	09/03	240	10/10	
	DUR W	8000063	WEST	TDS	319	08/98	270	10/09	
	REL 1	1903088	WEST	TDS	382	10/04	210	10/10	
ROSE HILLS MEMORIAL PARK	04	1902790	WEST	TDS	950	10/07	940	10/10	
	02	1900095	WEST	TDS	1130	10/04	1130	10/04	
	01	1900094	WEST	TDS	1060	10/04	930	10/10	
	03	1900052	WEST	TDS	810	09/03	630	09/05	
WHITTIER, CITY OF	09	1901745	WEST	TDS	384	01/88	384	01/88	
	10	1901746	WEST	TDS	380	01/74	380	01/74	
	11	1901747	WEST	TDS	394	01/90	394	01/90	
	12	1901748	WEST	TDS	361	01/88	361	01/88	
	13	1901749	WEST	TDS	640	09/10	600	03/11	
	15	8000071	WEST	TDS	640	09/05	540	03/11	
	16	8000110	WEST	TDS	550	09/05	510	03/11	
	17	8000135	WEST	TDS	740	09/05	460	03/08	
	18	8000136	WEST	TDS	700	09/05	540	03/11	
ΜΔΧΙΜΕΙΜ					1 / 00		1 3/10		

MAXIMUM	1,400	1,340
MINIMUM	180	154
AVERAGE	470	397

TDS: total dissolved solids MG/L: milligrams per liter CO: Company MWC: Mutual Water Company MWUA: Mutual Water Users Association WC: Water Company WD: Water District **APPENDIX R**

CRITERIA FOR DELIVERY OF SUPPLEMENTAL WATER

CRITERIA FOR DELIVERY OF SUPPLEMENTAL WATER

January 1996

(Adopted by Resolution 4-96-138 April 3, 1996)

TABLE OF CONTENTS

÷

PAGE NO.

INTRODUCTION	1
SECTION I - REVIEW OF REGULATORY STANDARDS	
FOR SUPPLEMENTAL WATER QUALITY	I-1
BACKGROUND	1-1
MAIN SAN GABRIEL BASIN WATERMASTER	
AMENDED JUDGMENT	1-1
Definition of Terms	I1
Provisions Governing Supplement Water Delivery .	I-2
MAIN SAN GABRIEL BASIN WATERMASTER - RULES	
AND REGULATIONS	1-3
REGIONAL WATER QUALITY CONTROL BOARD -	
WATER QUALITY CONTROL PLAN	1-4
CALIFORNIA DEPARTMENT OF HEALTH SERVICES	1-5
RWQCB/DOHS REGULATIONS FOR USE OF	
RECLAIMED WATER	I-5
SECTION II - AVAILABILITY OF SUPPLY	-1
BACKGROUND	11-1
METROPOLITAN WATER DISTRICT OF	
SOUTHERN CALIFORNIA	11-1
SAN GABRIEL VALLEY MUNICIPAL WATER DISTRICT	11-2
RECLAIMED WATER	11-2
OTHER SOURCES	II-3
SECTION III - REVIEW OF WATER QUALITY	111-1
BACKGROUND	111-1
SOURCES OF SUPPLY	11-1
State Water Project Water	111-1
Colorado River Water	111-1
Blended Imported Water	111-2
Reclaimed Water	111-2
COMPATIBILITY WITH REGULATORY STANDARDS	111-2
SECTION IV - ECONOMIC ANALYSIS	IV-1
	14-1

SECTION V - DEVELOPMENT OF SUPPLEMENTAL WATER	
QUALITY CRITERIA	V-1
BACKGROUND	V-1
REPLACEMENT WATER CRITERIA	V-1
CYCLIC STORAGE CRITERIA	V-3

LIST OF TABLES

TABLE NO.

TITLE

FOLLOWS PAGE NO.

1	WATER QUALITY OBJECTIVES FOR SELECTED
	CONSTITUENTS I-4
2	SOURCES OF SUPPLEMENTAL WATER
3	MAIN SAN GABRIEL BASIN BACKGROUND
	WATER QUALITY III-1
4	SUPPLEMENTAL IMPORTED WATER QUALITY III-1
5	PROJECTED SUPPLEMENTAL WATER RATES IV-1

LIST OF PLATES

FOLLOWS PLATE NO. TITLE PAGE NO. LOCATION MAP OF HYDROLOGIC SUBUNITS III-3 1 2 CRITERIA FOR SUPPLEMENTAL WATER MASS BALANCE ANALYSES FOR ALTERNATIVE SOURCES V-3 3 RADIAL DEGRADATION MODEL TDS MIGRATION (AT OR NEAR WATER TABLE) V-3 RADIAL DEGRADATION MODEL OUTPUT FROM 4 THE 1D-SOLUTE TRANSPORT PROGRAM RADIAL DEGRADATION MODEL MIGRATION 5 OF THE 450 MG/L-TDS CONTOUR V-3

LIST OF FIGURES

FIGURE NO.TITLEFOLLOWS
PAGE NO.1PROJECTED SUPPLEMENTAL WATER RATESIV-12WATERMASTER STAFF FLOWCHART FOR
REPLACEMENT WATER DELIVERIESV-13WATERMASTER STAFF FLOWCHART FOR
CYCLIC STORAGE DELIVERIESV-3

LIST OF APPENDICES

APPENDIX

TITLE

A	SCOPE OF WORK
В	WATER QUALITY OBJECTIVES
С	FUTURE BLENDS OF IMPORTED WATER

MAIN SAN GABRIEL BASIN WATERMASTER

OF SUPPLEMENTAL WATER

INTRODUCTION

At the Basin Water Quality Management Committee (BWQMC) meeting on April 12, 1995, Watermaster staff was requested to prepare a scope of work, schedule, and list of references to develop draft criteria for the delivery of supplemental water to the Basin, based upon water quality. (A copy of the Scope of Work is included as Appendix A.) At the May 16, 1995 BWQMC meeting, Watermaster staff presented a Scope of Work, Schedule and List of References, and was instructed to proceed with the study. Progress reports 1, 2 and 3 were provided to the Committee on June 14, 1995, July 12, 1995 and August 9, 1995, respectively. At the Committee's August 9, 1995 meeting, Watermaster staff was instructed to prepare a discussion draft report summarizing progress reports 1,2 and 3 and to distribute the draft report to committee members prior to the September 1995 Watermaster meeting.

In accordance with the approved scope of work, this report is organized as

follows:

- Section I. Review of Regulatory Standards for Supplemental Water Quality
- Section II. Availability of Water Supply
- Section III. Review of Water Quality
- Section IV. Economic Analysis
- Section V. Development of Supplemental Water Quality Criteria

The review of criteria for delivery of supplemental water based upon water quality is primarily intended to formalize and document the procedures that are currently used by the Watermaster. Generally, no new policies are developed through this review report.

SECTION I

REVIEW OF REGULATORY STANDARDS FOR SUPPLEMENTAL WATER QUALITY

BACKGROUND

There are three primary agencies responsible for setting guidelines and regulations associated with replenishing the ground water of the Main San Gabriel Basin (Basin). They are the Main San Gabriel Basin Watermaster (Watermaster), the Regional Water Quality Control Board (RWQCB) and the State Department of Health Services (DOHS). A review of these agencies and their authority to regulate ground water replenishment is discussed below.

MAIN SAN GABRIEL BASIN WATERMASTER AMENDED JUDGMENT

The Watermaster must approve the delivery of <u>any</u> supplemental water to the Basin for ground-water replenishment purposes. Presented below is a review of relevant provisions of the Basin Judgment and Watermaster Rules and Regulations associated with ground-water replenishment with supplemental water.

Definition of Terms

The Basin Judgment includes the definition of various terms important to the understanding of supplemental water deliveries to the Basin, as shown below.

(a) Supplemental Water -

Nontributary water imported through a Responsible Agency and Reclaimed Water.

(b) Responsible Agency -

The municipal water district which is the normal and appropriate source from whom Watermaster shall purchase Supplemental Water for replacement purposes under the Physical Solution. The three municipal water districts are: Upper San Gabriel Valley Municipal Water District, San Gabriel Valley Municipal Water District, and Three Valleys Municipal Water District.

(c) Replacement Water -

Water purchased by Watermaster to replace: (1) Production in excess of a Pumper's Share of Operating Safe Yield; (2) The consumptive use portion

resulting from the exercise of an Overlying Right; and (3) Production in excess of a Diverter's right to Divert for Direct Use.

(d) Reclaimed Water -

Water which as a result of treatment of waste, is suitable for a direct beneficial use or a controlled use that would otherwise not occur.

(e) Stored Water -

Supplemental Water stored in the Basin pursuant to a contract with Watermaster as authorized by Section 34(n) of the Judgment.

Provisions Governing Supplemental Water Delivery

There are various portions of the Judgment that address supplemental water delivery. They include: Section 34, <u>Powers and Duties</u>, Part F, <u>Physical Solution</u> and Exhibit H, <u>Watermaster Operating Criteria</u>. Pertinent excerpts from these three sections of the Judgment are presented below.

Section 34, Power and Duties

Section 34 (h), <u>Purchase of and Recharge with Supplemental Water</u>, allows Watermaster to purchase Supplemental Water, including a maximum of 30,000 acre-feet per year of Reclaimed Water, and to introduce the same into the Basin for replacement or cyclic storage purposes. However, DOHS and the RWQCB must give approval for the use of reclaimed water for ground water replenishment.

Section 34 (m), <u>Water Quality</u>, stipulates that water quality in the Basin shall be a concern of Watermaster, and all reasonable steps shall be taken to assist and encourage appropriate regulatory agencies to enforce reasonable water quality regulations affecting the Basin.

Section 34 (n) <u>Cyclic Storage Agreements</u>, allows Watermaster to enter into cyclic storage agreements with court approval. This section also gives Watermaster control of all spreading and extraction of Supplemental Water, and allows Watermaster to account for all losses in stored water.

Part F, Physical Solution

The purpose of the Physical Solution "...is to provide a legal and practical means for accomplishing the most economic, long-term, conjunctive utilization of surface, ground water, supplemental water and ground water storage capacity..." (Section 38). The Basin Operating Criteria, intended to guide the Watermaster, are contained in Exhibit H of the Judgment. Pertinent sections under the Physical Solution include Sections 40,

47 and 48. Section 40 states that the withdrawal and replenishment of supplies of the Basin and the use of available Basin storage must be subject to procedures established by Watermaster. As a result "both the quantity and quality of said water resource are thereby preserved..." Section 47 allows Watermaster to collect and carry over funds in the event a Responsible Agency "...for any reason...(is) unable to deliver Supplemental Water to Watermaster...." Section 48 allows Watermaster to accumulate Replacement Water assessments, "...to give Watermaster flexibility in Basin Management...."

Watermaster Operating Criteria (Exhibit H)

Exhibit H provides direction to the Watermaster concerning the management of the Basin, with particular emphasis on the sources of Supplemental Water and recharge criteria. This portion of the Judgment specifies that Watermaster <u>shall purchase the best</u> <u>quality of supplemental water available for replenishment of the Basin</u> (emphasis added) (Section 3(b)). The Judgment was amended in 1991 to clarify that use of reclaimed water would be consistent with the spirit of this Section 3(b).

With regard to use of reclaimed water as supplemental water, Section 3(c) notes that, "...water quality problems involved in the reuse of water within the Basin pose serious questions of increased costs and other problems to the pumpers, their customers and all water users. Accordingly, Watermaster is authorized to gather information, make and review studies, and make recommendations on the feasibility of the use of reclaimed water for replacement purposes; provided that no reclaimed water shall be recharged in the Basin by Watermaster without prior approval of the Court, after notice to all parties and hearing thereon." In 1991, the court approved the use of a maximum of 30,000 acre-feet per year of Reclaimed Water as Supplemental Water for the Basin.

MAIN SAN GABRIEL BASIN WATERMASTER - RULES AND REGULATIONS

There are two sections in the current Rules and Regulations that address control of ground-water basin recharge. Section 23 states that, "Except for the exercise of non-consumptive uses and performance of Cyclic Storage Agreements with Watermaster, no Party shall spread water within the Basin or Relevant Watershed for subsequent recovery or Watermaster credit without prior Watermaster written permission to do so because Watermaster has sole custody and control of all Ground Water storage rights in the Basin."

Section 26 of the Rules and Regulations provides the guidelines concerning the development of Cyclic Storage Agreements. Of particular importance is Section 26(d)(1)a), which states that, "The time, place and amount of said spreading shall be approved in advance by Watermaster provided, however, that when the water level of the Baldwin Park Key Well is at or above elevation two-hundred fifty (250) feet, spreading activities shall be restricted to the easterly portion of the Basin at water spreading facilities designated in advance by Watermaster, unless otherwise approved by the Court."

Section 26 also provides priorities for spreading supplemental water. That section indicates that direct delivery of Replacement Water has the <u>highest priority</u> followed by delivery by a responsible agency to a cyclic storage account and the delivery to a party's individual cyclic storage account. (Emphasis added.) While Section 26 identifies priorities for delivery, it does not associate water quality with each priority.

REGIONAL WATER QUALITY CONTROL BOARD - WATER QUALITY CONTROL PLAN

The Regional Water Pollution Control Board, predecessor to the Regional Water Quality Control Board (RWQCB), was created in 1949 by the Dickey Act. By 1952, the Regional Water Pollution Control Board began adopting water quality objectives. With the adoption of the Porter-Cologne Act in 1969, the name was changed to the Regional Water Quality Control Board (RWQCB) and a Water Quality Control Plan was thereafter adopted. The most recent amendments to that Plan were adopted by the RWQCB in June 1994.

The Water Quality Control Plan is "...designed to preserve and enhance water quality and protect the beneficial uses of all regional waters." The Water Quality Control Plan is used by the RWQCB to maintain water quality in the region and regulate discharges to receiving water and ground water. The general policy of the RWQCB is to ensure that water quality degradation does not occur.

The RWQCB, in the interest of protecting the water supply of the Main San Gabriel Basin, has developed water quality objectives for ground water and surface water. The Water Code defines water quality objectives as, "The allowable limits or levels of water quality constituents or characteristics which are established for the reasonable protection of beneficial uses...." The RWQCB has developed the water quality objectives to govern any discharge so that the quality of surface and ground water will not be degraded. The RWQCB does not regulate the use of imported water for ground-water replenishment because it is not considered a waste product (e.g. reclaimed water). The RWQCB water quality objectives for ground water are shown in Table 1. (A more inclusive review of water quality objectives is shown in Appendix B.)

In addition to establishing water quality objectives for ground water and surface water RWQCB entered into a Memorandum of Agreement (MOA) with the DOHS to regulate the use of Reclaimed Water for ground water recharge. This MOA is discussed herein.

TABLE 1

WATER QUALITY OBJECTIVES FOR SELECTED CONSTITUENTS

	WATER QUALITY OBJECTIVES (mg/L)			
GROUND-WATER BASIN	TDS	SULFATE	CHLORIDE	BORON
Main San Gabriel Basin Western Area Eastern Area	450 600	100 100	100 100	0.5 0.5

Source: Table 3-10, Water Quality Control Plan, Los Angeles Region 1994

.

CALIFORNIA DEPARTMENT OF HEALTH SERVICES

The California Department of Health Services (DOHS) is charged with ensuring that drinking water standards are met by water companies to protect the health of consumers. Drinking water standards are contained in the Domestic Water Quality and Monitoring Regulations, Chapter 15, Title 22, California Code of Regulations. Many of these standards are shown in Appendix B. The DOHS is also involved with the permitting of Reclaimed Water projects, as discussed below.

RWQCB/DOHS REGULATIONS FOR USE OF RECLAIMED WATER

The State Water Resources Control Board, along with the nine Regional Water Quality Control Boards, entered into a Memorandum of Agreement with the Department of Health Services in December 1988 to regulate the use of reclaimed water. The MOA sets forth principles and procedures that are to be followed when evaluating an application to use reclaimed water for ground-water recharge.

A reclaimed water ground-water recharge project applicant submits an application to the RWQCB for issuance of Water Reclamation Requirements (WRR). The RWQCB provides a copy of the application to DOHS for review and comments. DOHS comments are then included in the RWQCB WRRs that may be issued. The WRRs are issued on a case-by-case basis to ensure that the reclaimed water is of such quality that it fully protects public health at all times. An Engineering Report is required with the application. The Engineering Report must include relevant aspects of the project including, but not limited to:

- 1. A plan of the reclamation plant and project facilities;
- 2. a hydrogeological study of the project area;
- a description of how the project will be operated;
- 4. a description of methods to determine maximum reclaimed water contribution; and
- 5. a water quality monitoring plan.

Furthermore, an applicant must comply with other requirements, which consist of (1) site requirements (distance from a potable water well, depth to ground water, percolation rates and retention time); (2) water quality monitoring requirements; and (3) treatment performance standards (limitations on Total Organic Carbon, Coliform, turbidity and biochemical oxygen demand). The RWQCB requires an assessment to evaluate potential impacts of the project on the objectives and beneficial uses from the RWQCB's Basin Plan.

SECTION II

AVAILABILITY OF SUPPLY

BACKGROUND

The Judgment states that the three Responsible Agencies are to provide supplemental water to the Basin. The current sources of supply to those agencies includes the State Water Project (SWP) and/or the Colorado River (CR). In the future, supplemental water may be provided from other sources, including reclaimed water. A brief review of various sources of supply is provided below.

METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA

The Metropolitan Water District of Southern California (MWD) provides both SWP water and CR water as supplemental water to the Basin. Through a series of interconnected feeders, MWD has the capability of providing 100 percent SWP water, 100 percent CR water, or a blend.

MWD's Foothill Feeder provides supplemental water to service connection PM-26 and service connection USG-3. Both of these service connections provide similar quality of supplemental water. In a recent letter to the Three Valleys Municipal Water District (Three Valleys District), MWD clarified that each year, between April and September, when demands are highest, any supplemental water delivery would typically be 100 percent SWP water. Between October and March, MWD indicated that supplemental water delivery through the Foothill Feeder could be 100 percent SWP water, 100 percent CR water, or a blend of the two water supplies. The letter further clarified that the greatest potential of providing 100 percent CR water occurs between January and March. A copy of that letter is included as Appendix C.

Service connection USG-3 is located at the westerly end of the Glendora Tunnel portion of the Foothill Feeder, about 1,000 feet south of Morris Dam, where Supplemental Water is released into the San Gabriel River. USG-3 can be equipped with two different orifice plates which permit a flow rate of about 225 cubic feet per second (cfs) or about 400 cfs. However, in 1975 an agreement between the Los Angeles County Flood Control District (currently part of the County of Los Angeles Department of Public Works (DPW)) and Watermaster limited recharge to 250 cfs. Therefore, in compliance with this agreement, the USG-3 orifice plate limits flow to about 225 cfs. Service Connection PM-26 is located on the Foothill Feeder and may deliver water to Little Dalton Wash at a rate of about 20 cfs. MWD can also deliver supplemental water through service connection Cen B-48, which is located on the La Verne pipeline and allows water to flow to San Dimas Wash. Cen B-48 also has the capability of delivering CR water, SWP water or a blend of the two sources.

MWD also has the right to request access to the unused portion of the San Gabriel Districts Devil Canyon-Azusa Pipeline under the provisions of the Cooperative Water Exchange Agreement. The delivery capabilities of the Devil Canyon-Azusa Pipeline are described below.

Table 2 provides a summary of the source of supply from MWD.

SAN GABRIEL VALLEY MUNICIPAL WATER DISTRICT

The San Gabriel Valley Municipal Water District (San Gabriel District) constructed the Devil Canyon-Azusa Pipeline from the State Water Project at Devil Canyon to the Basin. San Gabriel District currently has the capability of providing State water through four different outlets. The San Dimas Turnout has a capacity of about 35 cfs and delivers water to the San Dimas Wash. The San Dimas Hydroelectric Plant turnout has a capacity of about 45 cfs and also delivers water to San Dimas Wash. The San Gabriel Flow Control Structure has a capacity of 55 cfs and delivers water to the San Gabriel River above Foothill Boulevard. The Azusa Canyon Flow Control Facility has a capacity of 50 cfs and delivers water to the San Gabriel Canyon Spreading Grounds. A summary is shown on Table 2.

RECLAIMED WATER

The amended Judgment allows up to 30,000 acre-feet per year of reclaimed water to be used as a source of Supplemental Water. Historically, no reclaimed water has been delivered as Supplemental Water to the Basin.

There are three water reclamation plants (WRPs) which are potential sources of reclaimed water to the Basin. They are the Pomona WRP, Whittier Narrows WRP and San Jose Creek WRP. All water from the Pomona and Whittier Narrows WRPs has been fully contracted. San Jose Creek WRP has been constructed in stages with Stage I and II located adjacent to the San Jose Creek, just east of the I-605 Freeway. The total capacity of these two stages is 62.5 million gallons per day (MGD). The San Jose Creek WRP Stage III is located adjacent to the San Jose Creek and westerly of the I-605 Freeway. Stage III has a capacity of 37.5 MGD. The San Jose Creek WRP has a total capacity of 100 MGD. There are existing contracts for the use of this water with the California County Club (0.09 MGD), the City of Industry (4 MGD) and the Water

TABLE 2

SOURCES OF SUPPLEMENTAL WATER

DELIVERING <u>AGENCY</u>	SERVICE CONNECTION	SOURCE OF <u>WATER 1/</u>	DELIVERY RATE <u>(CFS)</u>	DELIVERY LOCATION
Metropolitan Water District of Southern California 2/	USG-3	SWPW, CRW Blend	225/400	San Gabriel River below Morris Dam
	PM-26	SWPW, CRW Blend	20	Little Dalton Wash
	Cen-B48	SWPW, CRW Blend	300	San Dimas Wash
	USG-SGP	SWPW	55	(All San Gabriel Valley MWD locations)
San Gabriel Valley Municipal Water District	San Dimas Turnout	SWPW	35	San Dimas Wash
	San Dimas Hydroelectric Plant Turnout	SWPW	45	San Dimas Wash
	San Gabriel Flow Control Structure	SWPW	55	San Gabriel River via Beatty Canyon Storm Drain
	Azusa Canyon Flow Control Facility	SWPW	50	San Gabriel Canyon Spreading Grounds

- 1/ SWPW = State Water Project water CRW = Colorado River water Blend = Blend of SWPW and CRW
- 2/ Provides water for Upper District and Three Valleys District

Replenishment District of Southern California (25 MGD). The total contracted capacity is about 30 MGD, resulting in available capacity of about 70 MGD. Furthermore, there are daily and seasonal supply fluctuations from the San Jose Creek WRP, which may affect the availability of supply.

OTHER SOURCES

Currently, SWP water and CR water are the only sources of Basin water supply as Supplemental Water. Local agencies have contemplated the use of reclaimed water for both direct use and supplemental water for Basin replenishment. There may be the opportunity in the future to obtain Supplemental Water from other sources. Therefore, the supplemental water criteria adopted by the Watermaster should be broad enough to consider a wide range of sources of supply.

SECTION III

REVIEW OF WATER QUALITY

BACKGROUND

The development of supplemental water quality criteria must consider the existing (background) water quality in the Basin. Where proposed supplemental water for Basin replenishment is of inferior quality to the background water quality, an investigation of potential impacts must be performed. This may include solute transport modeling.

Typical background ground-water quality at various wells located in various Basin hydrogeologic subunits is shown on Table 3. The locations of the hydrologic subunits are shown on Plate 1. The background ground-water quality in these hydrogeologic subunits of the Basin may be impacted by imported supplemental water that is recharged in nearby spreading grounds. In the report entitled, "Reconnaissance Report Background Water Quality, Main San Gabriel Basin," dated March 1994, a historic review of background water quality and the apparent impacts of supplemental water replenishment is reviewed. That report identifies the historic water quality trends in selected wells within the Basin with specific emphasis on TDS, chlorides, sulfate and nitrate. The report indicates that delivery of imported water impacts background water quality.

SOURCES OF SUPPLY

As noted earlier there are currently two sources of supplemental water supply (CR water and SWP water). A summary of SWP water and CR water quality is shown on Table 4.

State Water Project Water

The quality of State Water Project water is shown on Table 4. State Water Project water quality currently complies with the specified RWQCB basin objectives and DOHS water quality requirements. State water is currently considered the best quality of water available for Basin replenishment purposes.

Colorado River Water

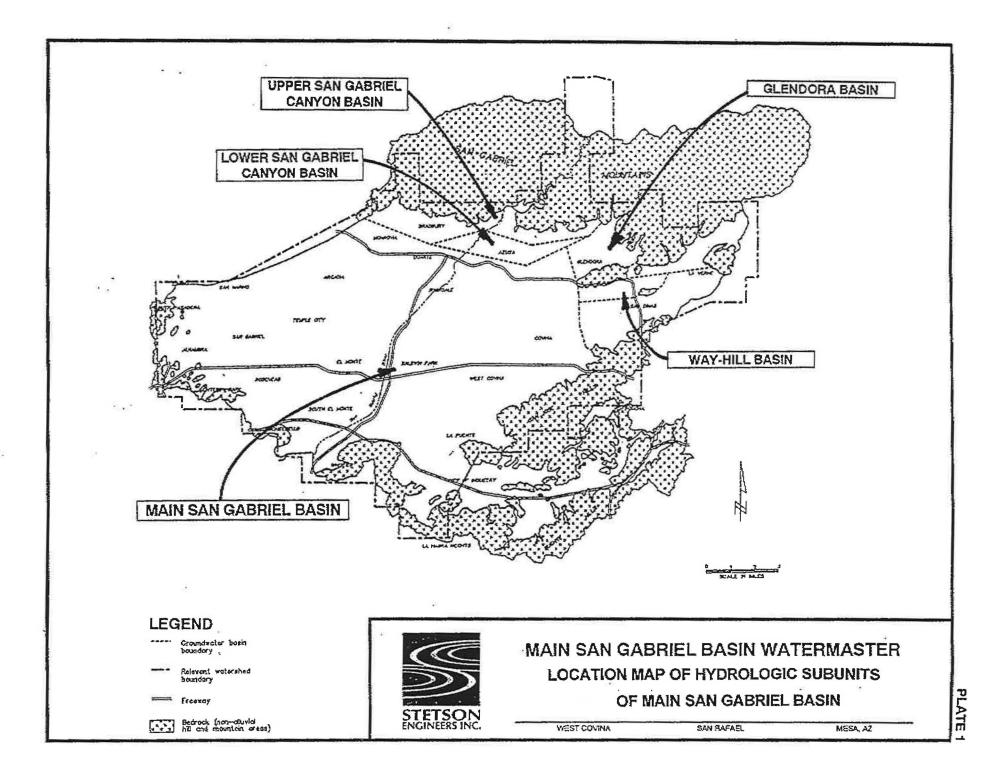

The quality of Colorado River water (CR water) is shown on Table 4. This table shows the water quality parameters that exceed RWQCB objectives are TDS and sulfate.

TABLE 3

MAIN SAN GABRIEL BASIN BACKGROUND WATER QUALITY

the second se		the second se					
PRODUCER	WELL	HYDROLOGIC SUBUNIT OF MAIN SAN GABRIEL BASIN	IMPORTED WATER SERVICE CONNECTION	TDS 1/	BACKGI WATER QUA CHLORIDE	LITY (MG/L)	
California-American Water Company	Buena Vista	Main Basin	USG-3, Beatty Canyon	216.0	19.6	33.5	2.6
Glendora	2-E	Glendora Basin	PM-26	361.1	22.5	52.9	17.0
Glendora	12-G	Upper Canyon Basin Lower Canyon Basin	USG-3 San Gabriel Canyon	225.7	16.7	38.0	2.5
San Gabriel Valley Water Company	B5A	Main Basin	USG-3, Cen B-48, San Dimas	378.1	34.1	53.7	31.3
Southern California Water Company	Columbia 7	Way-Hill Basin	Cen B-48, San Dimas	402.8	37.5	76.1	50.5

1/ TDS = Total Dissolved Solids

TABLE 4

	Sources of Supply			
	Colorado			
Water Quality Parameter	River	Project	Mathews &	
(Unit)	(Mathows) 1/	terres and the second	Silverwood	
Total Dissolved Solids (ppm)	656	324	490	
Chloride (ppm)	88	84	86	
Sulfate (ppm)	268	65	166.5	
Nitrate (ppm)	0.8	2.8	1.8	
Total Hardness as CaCO3 (ppm)	312	118	215	
Total Alkalinity as CaCO3 (ppm)	129	73	101	
Turbidity (NTU)	0.3	2.3	1.3	
Calcium (ppm)	75	24	49.5	
Magnesium (ppm)	30	14	22	
Sodium (ppm)	100	68	84	
Potassium (ppm)	5	3.4	4.2	
pH	8.24	7.96	8.1	
Iron (ppm)	0.032	0.071	0.0515	
Manganese (ppm)	ND	0.024	0.012	
Boron (ppm)	0.18	0.22	0.2	
PCE (ppm)	ND	ND	ND	
TCE (ppm)	ND	ND	ND	
CTC (ppm)	ND	ND	ND	
Total Organic Carbon (ppm)	3.54	3.39	3.46	
Other VOCs	ND	ND	ND	
Gross Alpha (pCi/l)	3,1	1.8	2.45	
Gross Beta (pCi/l)	4.7	3.8	4.25	
Langlier Index	0.8	- 0.2	0.3	
Arsenic (ppm)	0.003	0,003	0.003	
Cadmium (ppm)	0.001	ND	0.0005	
Chromium (ppm)	ND	ND	ND	
Copper (ppm)	0.04	ND	0.02	
Lead (ppm)	ND	ND	ND	
Mercury (ppm)	ND	ND	ND	
Nickel (ppm)	ND	ND	ND	
Silver (ppm)	ND	ND	ND	
Zinc (ppm)	0.02	ND	0.01	

SUPPLEMENTAL IMPORTED WATER QUALITY

Footnotes:

1/ Two-year average (calendar year 1992 and 1993). Source, annual water quality report to MWD member agencies.

NTU = NephelometricTurbidity Units

CFU = Colony - Forming Units

pCi/i = pico Curles per liter ND = Non-Detected

ppm = parts per million

ppb = parts per billion

Blended Imported Water

MWD can provide a blend of SWP water and CR water. Recently, MWD staff indicated that the supplemental water supply to the San Gabriel Basin for replenishment will vary depending upon the time of year and MWD operational conditions.

Reclaimed Water

Similar to Colorado River water, reclaimed water does not meet all of the water quality parameters established in the RWQCB's Basin Plan for Basin replenishment. In addition, reclaimed water use must be permitted by the RWQCB and approved by DOHS and the Watermaster. Use of reclaimed water for Basin replenishment must be evaluated on a case-by-case basis by the RWQCB.

COMPATIBILITY WITH REGULATORY STANDARDS

The Regional Water Quality Control Board has established water quality objectives for the Main San Gabriel Basin. Those water quality objectives are listed on Table 1. Supplemental water for ground-water recharge should be consistent with RWQCB's ground-water objectives.

Based upon the water quality of existing sources of supplemental water, the water quality parameters of concern are total dissolved solids (TDS), chloride, sulfates, nitrate and boron. This is consistent with the water quality parameters for reclaimed water evaluated in the draft report entitled "Evaluation of Potential Impacts of the San Gabriel River Water Reuse Demonstration Project," dated May 1995. These water quality parameters were selected primarily to conform to RWQCB's water quality objectives for ground water and because compliance with these objectives will help maintain beneficial uses of ground water in the Basin. Furthermore, municipal use of potable water tends to add about 300 parts per million of TDS to waste waters. Maintaining a high quality water in the ground-water basin contributes to maintaining high quality of reclaimed water produced at water reclamation facilities.

Under a variety of circumstances, the quality of available supplemental water may exceed one or more of the selected water quality criteria. Under those circumstances, the impact of the quality and quantity of the available supplemental water for Basin replenishment should be reviewed on a case-by-case basis.

SECTION IV

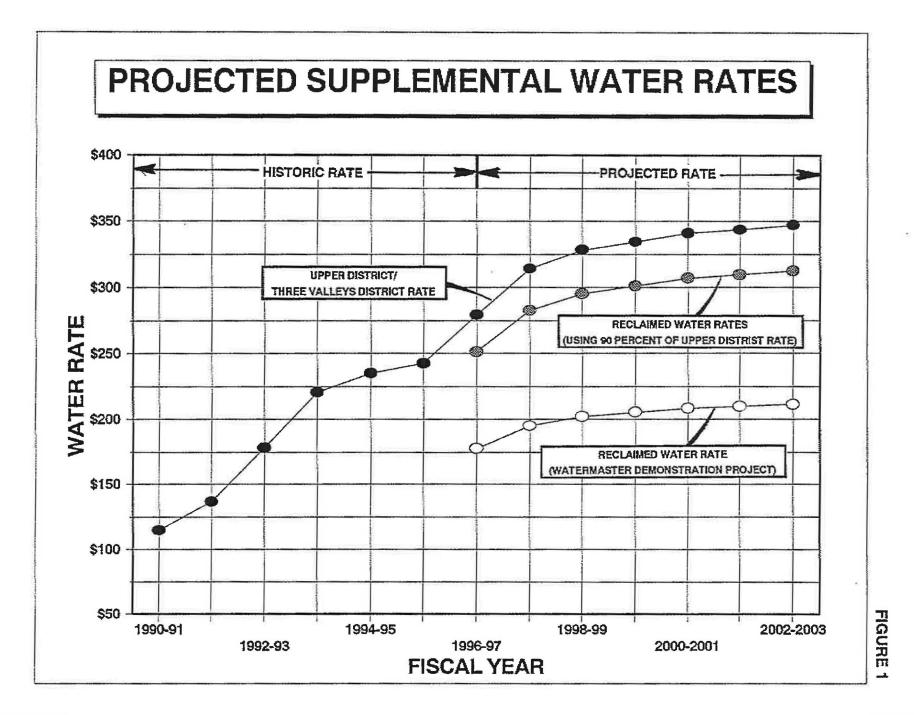
ECONOMIC ANALYSIS

Watermaster purchases supplemental water from the Responsible Agency from whose service area a Replacement Water requirement has been incurred. Watermaster can order supplemental imported water from Upper San Gabriel Valley Municipal Water District (Upper District), Three Valleys District and San Gabriel District. Upper District and Three Valleys District receive water supply from MWD, which has established water rates for replenishment water. As a result, the rate that Upper District and Three Valleys District charges Watermaster for supplemental water have been very similar. San Gabriel District has a contract for SWP water and develops its own rates. In the future, supplemental water may also be available from Responsible Agencies as reclaimed water or new sources from other watersheds. The most important criteria for selecting alternative supplemental water supplies is the quality of the supplemental water. However, the Judgment does not obligate Responsible Agencies to charge the same rate for different sources of supplemental water.

Two important economic evaluation critería are contained in the Judgment. Section 4 of Exhibit H of the Judgment states that, "Replacement Assessment rates shall be in an amount calculated to allow Watermaster to purchase one acre-foot of supplemental water for each acre-foot of excess Production to which such Assessment applies." Should Watermaster defer purchase of supplemental water and subsequently purchase supplemental water at a different cost, Section 4 of Exhibit H must be addressed. Additionally, Section 48 of the amended Judgment states that "...Watermaster may make reasonable accumulations of Replacement Water Assessments. Such monies and any interest accrued thereon shall only be used for the purchase of Replacement Water." In the interest of managing the Basin, Watermaster may choose to defer purchase of supplemental water for various reasons, including quality, price, availability, etc. Such deferral is evaluated along with the increase in water rates and the interest income that may be generated by leaving Replacement Water funds in an investment.

In the future, a Responsible Agency may choose to offer two or more different sources of supply at different rates. To demonstrate this, Table 5 and Figure 1 show that Upper District could offer imported CR water or reclaimed water, both of which are similar in quality, at differing rates.

TABLE 5


PROJECTED SUPPLEMENTAL WATER RATES


	UPPER DISTRICT/	RECLAMED WATER RATE			
FISCAL.	THREE VALLEYS DISTRICT	90 PERCENT OF UPPER DISTRICT	WATERMASTER DEMONSTRATION		
YEAR	PROJECTED RATE 1/	RATE 2/	PROJECT 3/		
1990-91	\$115.00				
1991-92	\$136.50		AL 65		
1992-93	\$178.40	**			
1993-94	\$220.40		44		
1994-95	\$235.10				
1995-96	\$242.45				
1996-97	\$279.15	\$251.24	\$177.58		
1997-98	\$314.00	\$282.60	\$195.00		
1998-99	\$328.20	\$295.38	\$202.10		
1999-2000	\$334.45	\$301.01	\$205,23		
2000-2001	\$340.90	\$306.81	\$208.45		
2001-2002	\$343.55	\$309.20	\$209,78		
2002-2003	\$346.90	\$312.21	\$211.45		

1/ Upper District/Three Valleys District Rate (MWD) - Includes new MWD charges and assumes Watermaster will pay all charges.

2/ Upper District Reclaimed Water Project - Assumes rate set at 90 percent of Upper District MWD rate.

3/ Watermaster Demonstration Project - Assumes cost of water consists of annual facility costs (\$76) plus 50 percent of savings compared to Upper District MWD rate.

08/31/95

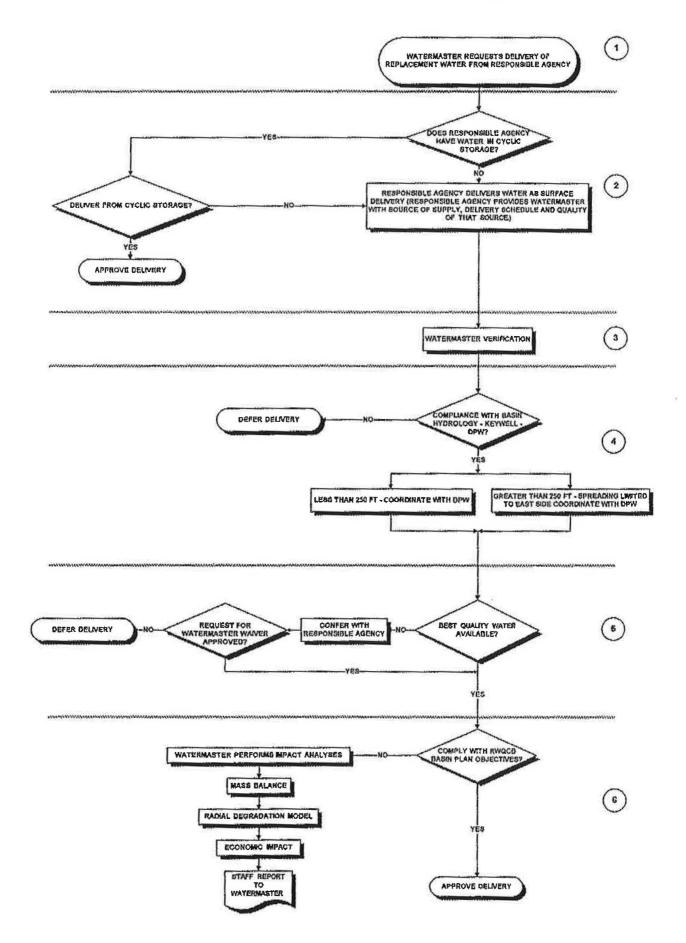
SECTION V

DEVELOPMENT OF SUPPLEMENTAL WATER QUALITY CRITERIA

BACKGROUND

Supplemental water quality criteria must be consistent with the Watermaster Judgment and Rules and Regulations. Furthermore, delivery of such water must comply with regulatory standards established by the RWQCB and DOHS, particularly in the case of reclaimed water.

The Judgment and Rules and Regulations place an emphasis on the delivery of Replacement Water. Specifically, Section 26(d)(5) of the Rules and Regulations states, "The priorities for spreading of Supplemental Water are hereby established as follows in the order of priority: <u>First</u>: Supplemental Water ordered by Watermaster...as Replacement Water..." Consequently, separate criteria have been developed for delivery of Replacement Water and Cyclic Storage Water.


REPLACEMENT WATER CRITERIA

When requesting Replacement Water deliveries from a Responsible Agency Watermaster should, in an attempt to receive the best quality of water available, request deliveries from cyclic storage. In the event water from cyclic storage is not available, then Watermaster should request surface deliveries, provided the recharge of such water is consistent with Watermaster Basin management and can be accomplished by the Los Angeles County Department of Public Works (DPW). Watermaster should immediately approve delivery of Supplemental Water for Replacement Water purposes if the water is the best quality available and complies with all other regulatory agencies' requirements.

Figure 2 provides a detailed flow-chart of the decision process that should be followed when requesting Replacement Water. Figure 2 is divided into discrete sections 1 through 6 as described below.

 Replacement Water requirements are determined by Watermaster staff by August 15 of each year for the prior year's production (July through June). Replacement Water delivery requests are submitted to the Responsible Agencies based upon the water rates set by the Responsible Agency in May of that year. The Agency normally delivers the water before a water rate change occurs -- usually by the following May. Watermaster's request will

WATERMASTER STAFF FLOWCHART FOR REPLACEMENT WATER DELIVERIES

include the best quality of water available, must meet basin plan objectives and specify selected minimum water quality criteria.

- 2. When a Responsible Agency is notified of its Replacement Water obligation, it will first determine if it has adequate supplies in cyclic storage and then determine if the water will be transferred from storage or be a surface delivery. Deliveries from cyclic storage are administrative and require no further approval. Surface deliveries must be coordinated through Watermaster. The Responsible Agency should submit the quantity, spreading location, source, quality, and schedule to Watermaster for approval prior to delivery. (Note: It is generally expected that if a basin replenishment/reclaimed water project is developed, most, if not all, deliveries will be made into cyclic storage.)
- 3. Watermaster staff will formally review each proposed surface water delivery.
- 4. Watermaster staff will review the water delivery request and the Baldwin Park Key Well provisions. If Replacement Water delivery is not in compliance with the Judgment and Rules and Regulations, a staff report will be prepared and Watermaster will make a determination. Any proposed delivery will be confirmed with the DPW in writing on a standardized form.
- 5. The Judgment requires that Replacement Water deliveries be the "best quality of water available." Watermaster will consider <u>all</u> water quality parameters to determine the best quality of water available, however, the primary indicators are Title 22 standards and the Regional Board Basin Plan objectives. If the proposed delivery is not the best quality of water available, Watermaster staff will determine if the Responsible Agency would like to request a written waiver from Watermaster. Without a written waiver request, the staff will recommend deferral of the delivery. A written waiver request will require further staff review and Watermaster approval. Except for reclaimed water, Watermaster may require court approval to accept Replacement Water that is not the "best quality of water available."

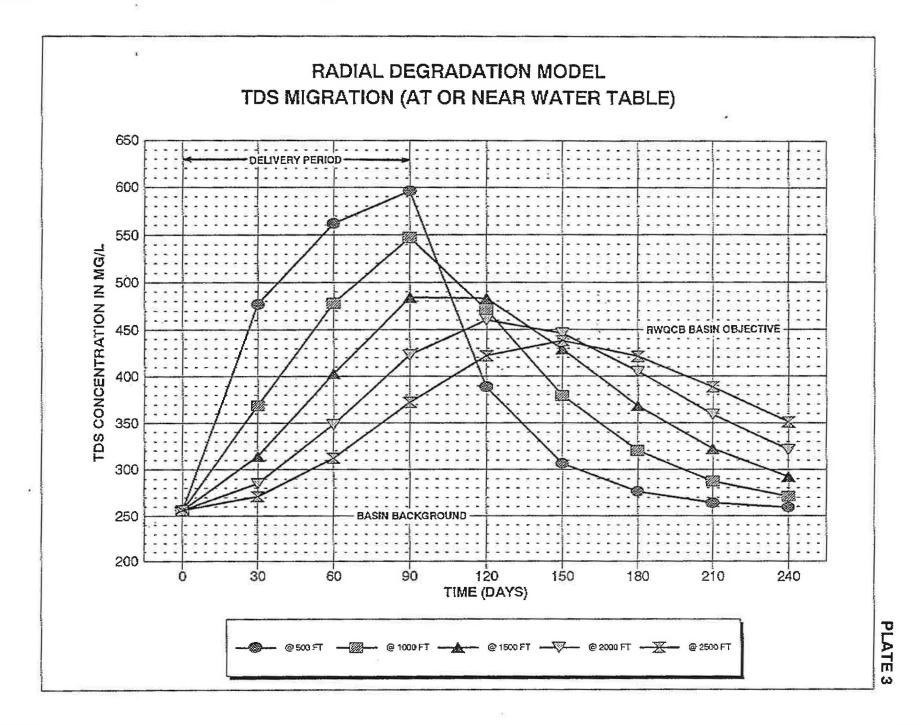
With regard to the use of reclaimed water as supplemental water for basin replenishment purposes, Watermaster will exempt from this criteria an annual amount of reclaimed water delivered from a project approved pursuant to Section 34 (h) of the Judgment. The amount of reclaimed water exempted will be agreed upon by both Watermaster and the Responsible Agency (or Agencies).

6. If the proposed Replacement Water does not meet the RWQCB Basin Plan Objectives, Watermaster staff will perform an impact analysis and submit a staff report and recommendation to Watermaster. (Except for reclaimed water delivered as approved and agreed upon, Watermaster may require Court approval to accept Replacement Water that is not the best quality of water available.) The impact analysis will include <u>at least</u>:

<u>Mass Balance</u> - If the proposed delivery is <u>not</u> the best quality of water available, a mass balance will be performed comparing the proposed supplemental water to either the best quality of water available <u>or</u> the Basin Plan objectives -- whichever results of the better water quality (comparing each key constituent). The mass balance may suggest a prorated reduction in the requested delivery. An example of a mass balance determination is shown on Plate 2.

<u>Radial Degradation Model</u> - A maximum radial degradation (area of impact) allowance will be standardized for each spreading facility. Each key constituent will be modeled according to the applicant's delivery plan.

If the modeling demonstrates that the spreading plan will not cause degradation to occur (at levels exceeding the Basin Plan) beyond the standardized degradation allowance, it will pass the radial degradation model test. An example of a radial degradation model as shown on Plates 3, 4 and 5.


<u>Economic Impact</u> - In the event that alternative water supplies are available, an economic analysis may also be used as a guide to recommend the Replacement Water supply to Watermaster.

If Watermaster approves the delivery of any supplemental water, staff will coordinate spreading with DPW.

CYCLIC STORAGE CRITERIA

Watermaster should follow a similar decision process when authorizing delivery of Supplemental Water into Cyclic Storage. However, since there is not a legal requirement to deliver such water, Watermaster may be more selective concerning the quality of water delivered into cyclic storage. Figure 3 is a detailed flow chart of the decision process that should be followed when authorizing delivery of water into Cyclic Storage. It is anticipated that if a basin replenishment/reclaimed water project is developed, a new, separate cyclic storage account will be required. Figure 3 is also divided into sections 1 through 5 which are described below.

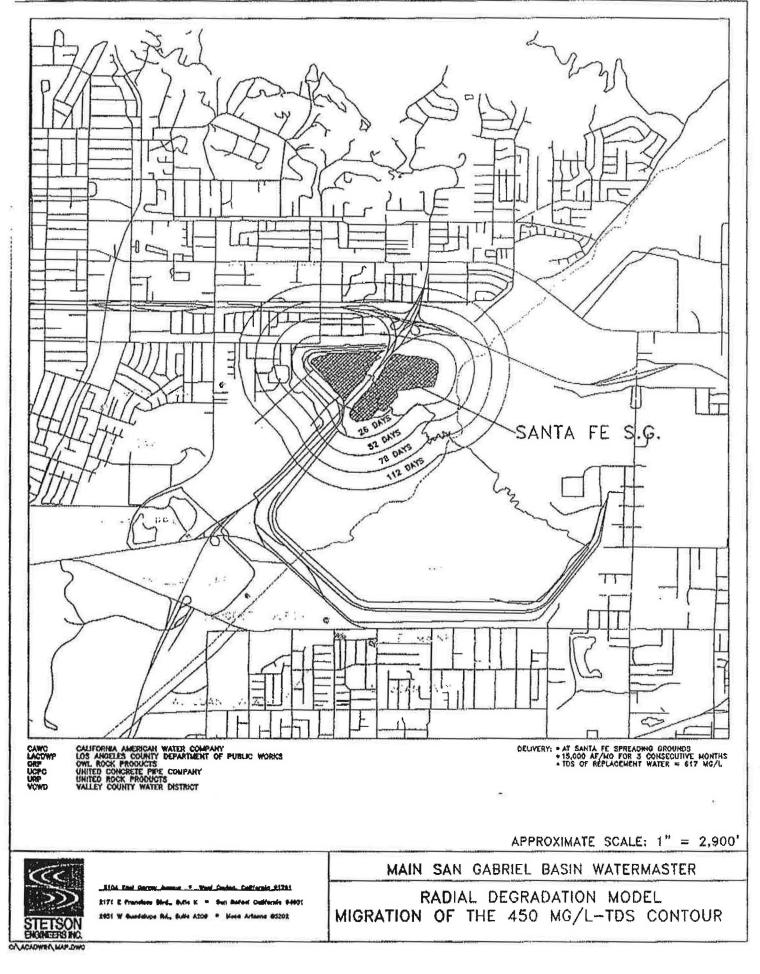
	ň	IASS BALANCE ANALYSES			
	2				
	REQUEST FOR DELIVERY				
	DELIVERY AMOUNT TDS CONCENTRATION	45000 617	ACRE-FEET MILLIGRAMS PER LITER		
	MASS BALANCED DELIVERY USING BE	ST WATER QUALITY AVAILABLE (STATE WATER	3)		
	DELIVERY AMOUNT TDS CONCENTRATION	22536 309	ACRE-FEET MILLIGRAMS PER LITER		
	MASS BALANCED DELIVERY USING RV	VQCB BASIN OBJECTIVES			
	DELIVERY AMOUNT TOS CONCENTRATION	32820 450	ACRE-FEET MILLIGRAMS PER LITER		
		*			
		MAIN SAN GABRIEL BAS	SIN WATERMASTER		
	STETSON ENGINEERS INC. West Covina San Rafael Mesa, Arizona WATER RESOURCE ENGINEERS	CRITERIA FOR SUPPLEMENTAL WATER MASS BALANCE ANALYSES FOR ALTERNATIVE SOURCES			
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10					

***** CONCENTRATION AT ELEMENTS *****

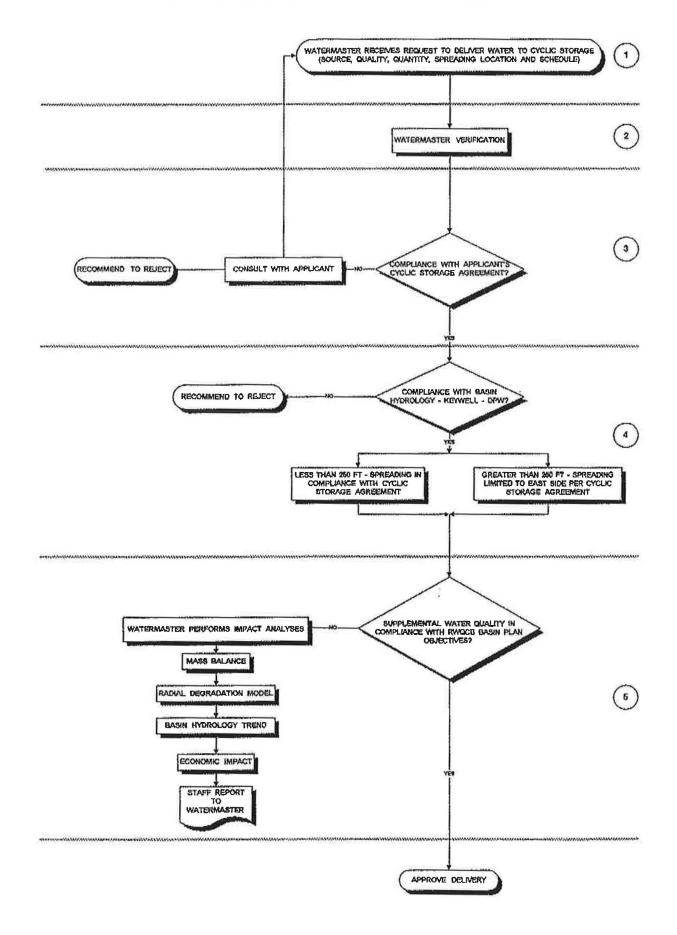
TIME/DISTANCE 0. 500. 1000. 1500. 2000. 2500. 3000. 3500. 4000. (Days/Feet)

617.00 477.08 368.77 313.59 285.49 271.17 263.87 260.16 258.27 30. 617.00 562.39 478.35 403.10 348.24 311.88 289.07 275.26 267.11 DELIVERY 60. DOIRSE 90. 617.00 595.58 546.48 483.70 422.77 372.03 333.63 306.39 287.94 256.30 387.79 470.50 483.25 459.69 421.78 382.40 347.85 320.32 120. 256.30 307.58 379.07 428.82 446.28 438.04 414.69 385.36 356.22 150. 180. 256.30 276.40 319.59 368.13 404.66 421.82 420.64 406.26 384.63 . 210. 256.30 264.21 287.08 321.97 358.85 387.99 404.09 406.57 397.96 256.30 259.42 270.74 292.40 321.30 351.08 375.44 390.44 394.97 240.

DELIVERY: AT SFSG, 15,000 AF/MO FOR THREE CONSECUTIVE MONTHS, TDS OF REPLACEMENT WATER = 617 MG/L


MAIN SAN GABRIEL BASIN WATERMASTER

11100


STETSON ENGINEERS INC. West Covina San Rafael Mesa, Arizona WATER RESOURCE ENGINEERS

RADIAL DEGRADATION MODEL OUTPUT FROM THE 1D-SOLUTE TRANSPORT PROGRAM

PLATE 5

WATERMASTER STAFF FLOWCHART FOR CYCLIC STORAGE DELIVERIES

- A more formalized process is suggested for application to deliver supplemental water to the Basin for cyclic storage purposes. The application form may be standardized to include items such as: identification of cyclic storage account and expiration date, best quality of water available data, quantity of water proposed for delivery, source and specific quality data, spreading location and schedule of deliveries. Any modifications would be formalized by the applicant.
- 2. Watermaster staff will formally review each application.
- 3. Watermaster staff will first confirm that the request is in full compliance with applicant's current cyclic storage agreement. If request is in compliance, further review follows. If not in compliance, staff consults with applicant for revisions. If staff and applicant cannot modify the application to comply with the cyclic storage agreement, applicant submits a written request for waiver to Watermaster for Watermaster determination.
- 4. Watermaster staff will review the application and the Baldwin Park Key Well provisions. If application is not in compliance with the Judgment and Rules and Regulations, a staff report will be prepared and Watermaster will make a determination. Any proposed delivery will be confirmed with DPW in writing on a standardized form.
- 5. If the supplemental water quality does not meet RWQCB Basin Plan objectives, the staff will perform an impact analysis and submit a staff report and recommendation to the Watermaster. (Except for reclaimed water delivered as approved and agreed upon, Watermaster may require Court approval to accept supplemental water that is not the best quality of water available.) The impact analyses will include at least:

<u>Mass Balance</u> - If the proposed delivery is <u>not</u> the best quality of water available, a mass balance will be performed comparing the proposed supplemental water to either the best quality of water available <u>or</u> the Basin Plan objectives -- whichever results in the better water quality (comparing each key constituent). The mass balance may suggest a prorated reduction in the requested delivery. An example of a mass balance determination is shown on Plate 2.

<u>Radial Degradation Model</u> - A maximum radial degradation (area of impact) allowance will be standardized for each spreading facility. Each key constituent will be modeled according to the applicant's delivery plan.

If the modeling demonstrates that the spreading plan will not cause degradation to occur (at levels exceeding the Basin Plan) beyond the standardized degradation allowance, it will pass the radial degradation model test. An example of a radial degradation model is shown on Plates 3, 4 and 5.

Basin Hydrology Trend - Supplemental water proposed for cyclic storage spreading will be subject to a basinwide review of hydrologic trends. This review may suggest that abundant local supplies and current storage conditions reduce the need for supplemental water that does not meet Basin Plan Objectives.

<u>Economic Impact</u> - A review will be made to determine if alternative supplies are available and the economic and legal impacts of selecting an alternative, if any. If the applicant intends to sell the cyclic storage water back to Watermaster in the future, a review will be made of the appropriate water rate.

If Watermaster approves the delivery of water, staff will coordinate spreading with DPW.

D:WOBS\1205\1205-12\DSCNDRFT.RPY

APPENDIX A

SCOPE OF WORK

, 19 ж

÷

30

• .

٠

•

SCOPE OF WORK CRITERIA FOR DELIVERY OF SUPPLEMENTAL WATER BASED ON WATER QUALITY

- I. Review Regulatory Standards for water quality
 - A. Main San Gabriel Basin Watermaster Judgment/Rules and Regulations
 - 1. Definition of Terms
 - 2. Provisions Governing Supplemental Water Delivery
 - a. Physical solution
 - b. Engineering criteria (Exhibit H) of Judgment
 - c. Cyclic Storage Agreements
 - B. Water Quality Control Plan Regional Water Quality Control Board
 - 1. Surface Water Objectives
 - 2. Ground Water Objectives
 - a. Flexibility
 - b. Applicability of standards
 - i. imported water
 - ii. reclaimed water

C. Department of Health Services

- 1. Drinking Water Standards
- 2. Reclaimed Water Recharge Standards
- II. Availability of Supply
 - A. MWD (SWP/CRW)
 - 1. Delivery Rate
 - 2. Delivery Location
 - 3. Quality
 - B. SGVMWD (SWP)
 - 1. Delivery Rate
 - 2. Delivery Location

.

3. Quality

×.

3

.

- C. Reclaimed Water
 - 1. Delivery Rate
 - 2. Delivery Location
 - 3. Quality

III. Water Quality Analyses

- A. Compatibility with Regulatory Standards
- B. Impacts to Existing Basin Quality
 - 1. Solute Transport Model/Basin Impacts
- IV. Economic Analyses
 - A. MWD Rates and Charges
 - 1. Assess Impacts of
 - a. Readiness-to-Serve Charge
 - b. New Demand Charge
 - c. Connection Maintenance Charge
 - d. Commodity Charge
 - e. Projections

B. SGVMWD

- 1. Projected Rates
- C. Reclaimed Water
 - 1. Capital Cost of Facilities
 - 2. Annual O & M
 - 3. Water Quality Monitoring
 - 4. Cost of Water from RWQCB
- D. Comparison of Costs

V. Develop Supplemental Water Delivery Criteria (Ranking)

- A. Request Deliveries to Commence October 1 of Each Year
- B. Deliver Highest Quality Available

D:\JOBS\1205\1205-12\SUPPWTR.OUT

APPENDIX B

WATER QUALITY OBJECTIVES

e! ,

•

		DOHS	RWQCB OBJECTIVES	
CONSTITUENT	DOHS	RECL. WATER	GROUND	SURFACE
	Title 22	STANDARDS	WATER	WATER
BACTERIA (MCL in coliforms per 100 mi)				
COLIFORM	5% OF SAMPLES 1/	2.2	1.1	200
NORGANICS CHEMICALS (MCLS in mg/l)				
ALUMINUM	1.000	1.000	NR	1.000
AMMONIA, UN-IONIZED (as NITROGEN)	NR	NR	NR	0.21
AMMONIA, TOTAL (as NITROGEN)	NR	NR	NR	5.60
ANTIMONY	0.006	0.006	NR	NR
ARSENIC	0.05	0.050	0.050	0.050
ASBESTOS (In Million Fibers per Liter (MFL))	7.000	7.000	NR	NR
BARIUM	1.0	1,000	1.000	1,000
BERYLLIUM	0.004	0.004	NR	NR
CADMIUM	0.005	0.005	0.010	0.010
CHROMIUM	0.05	0.050	0.050	0.050
CYANIDE	0.2	0.200	NR	NR
FLUORIDE	1.4-2.4	1.400-2.400	1.400-2.400	1.400-2.400
LEAD	0.05	NR	0.050	0.050
MERCURY	0.002	0.002	0.002	0,002
NICKEL	0.1	0.100	NR	NR
NITRATE (as NITRATE)	45	NR	45.000	45.000
NITRITE (as NITROGEN)	1.000	NR	1.000	1.000
NITRATE + NITRITE (as NITROGEN)	10.0	NR	10.000	8.000
TOTAL NITROGEN (as NITROGEN)	NR	10.000	NR	NR
SELENIUM	NR	0,050	0.010	0.010
SILVER	0.1	NR	0,050	0.050
THALLIUM	0.002	0.002	NR	NR
RADIOACTIVITY (MCLS in pCI/L)				
RADIUM-226 + RADIUM-228	5	5	5	5
GROSS ALPHA PARTICLE ACTIVITY	15	15	15	15
TRITIUM	20,000	20,000	20,000	20,000
STRONTIUM-90	8	8	8	8
GROSS BETA PARTICLE ACTIVITY	50	50	50	50
URANIUM	20	20	20	20
OLATILE ORGANIC CHEMICALS (MCLS in mg/l)				
BENZENE	0.001	0.0010	0.0010	0.0010
CARBON TETRACHLORIDE	0.0005	0.0005	0,0005	0,0005

		DOHS	RWQCB OBJECTIVES	
CONSTITUENT	DOHS	RECL. WATER	GROUND	SURFACE
	Title 22	STANDARDS	WATER	WATER
1,2-DICHLOROBENZENE	0.6	0.6000	NR	NR
1,4-DICHLOROBENZENE	0.005	0.0050	0.0050	0.0050
1.1-DICHLOROETHANE	0.005	0.0050	0.0050	0.0050
1,2-DICHLOROETHANE	0.0005	0.0005	0.0005	0.0005
1,1-DICHLOROETHYLENE	0.006	0,0060	0.0060	0.0060
cis-1,2-DICHLOROERTHYLENE	0,006	0.0060	0.0060	0.0060
trans-1,2-DICHLOROETHYLENE	0.01	0.0100	0.0100	0.0100
DICHLOROMETHANE	0.005	0.0050	NR	NR
1.2-DICHLOROPROPANE	0.005	0.0050	0.0050	0,0050
	0.0005	0.0005	0,0005	0.0005
		0.7000	0.6800	0.6800
ETHYLBENZENE	0.7			
ETHYLENE DIBROMIDE	0.00005	NR	0,00005	0.00005
MONOCHLOROBENZENE	0.07	0.0700	0.0300	0.0300
STYRENE	0,1	0.1000	NR	NR
1,1,2,2-TETRACHLOROETHANE	0.001	0,0010	0.0010	0.0010
TETRACHLOROETHYLENE	0.005	0.0050	0,0050	0.0050
TOLUENE	0.15	0.1500	NR	NR
1,2,4-TRICHLOROBENZENE	0.07	0.0700	NR	NR
OLATILE ORGANIC CHEMICALS (MCLS in mg/l)				
1,1,1-TRICHLOROETHANE	0.2	0.2000	0.2000	0.2000
1,1,2-TRICHLOROETHANE	0.005	0.0050	0.0050	0.0050
TRICHLOROETHYLENE	0.005	0.0050	0.0050	0,0050
TRICHLOROFLUOROMETHANE (FREON 11)	0.15	0.1500	0.1500	0,1500
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE (FREON 113)	1.2	1.2000	1.2000	1.2000
VINYL CHLORIDE	0.0005	0.0005	0.0005	0.0005
XYLENES	1.750*	1.7500	1,7500	1.7500
ION-VOLATILE SYNTHETIC ORGANIC CHEMICALS (MCLS In mg/l)				
ALACHLOR	0.002	0.0020	NR	NR
ATRAZINE	0.003	0.0030	0.0030	0.0030
BENTAZON	0.018	0.0180	0,0180	0.0180
BENZO(A)PYRENE	0.0002	0.0002	NR	NR
CARBOFURAN	0.018	0.0180	0.0180	0.0180
CHLORDANE	0.0001	0.0001	0.0001	0.0100
	0.0001	0.0700	0.0001	0.07
2,4-D				
DALAPON	0.2	0,2000	NR	NR
1,2-DIBROMO-3-CHLOROPROPANE	0.0002	0,0002	0.0002	0.0002
	0.4	0.4000	NR	NR
DI (2-ETHYLHEXYL) ADIPATE	1			
DI (2-ETHYLHEXYL) ADIPATE DI (2-ETHYLHEXYL) PHTHALATE DINOSEB	0.004	0.0040	0.0040 NR	0.0040 NR

and a second sec		DOHS	RWQCB O	BJECTIVES	
CONSTITUENT	DOHS	RECL. WATER	GROUND	SURFACE	
	Title 22	STANDARDS	WATER	WATER	
DIQUAT	0.02	0.0200	NR	NR	
ENDOTHALL	0.1	0.1000	NR	NR	
ENDRIN	0.002	0.0020	0.0002	0,0002	
ETHYLENE DIBROMIDE	0.00005	0.0001	NR	NR	
GLYPHOSATE	0.7	0.7000	0,7000	0.7000	
HEPTACHLOR	0.00001	0.00001	0.00001	0.00001	
NON-VOLATILE SYNTHETIC ORGANIC CHEMICALS (MCLS in mg/i)					
HEPTACHLOR EPOXIDE	0.00001	0.00001	0.00001	0.00001	
HEXACHLOROBENZENE	0,001	0.0010	NR	NR	
HEXACHLOROCYCLOPENTADIENE	0.05	0.0500	NR	NR	
LINDANE	0.0002	0.0002	0.0002	0.0002	
METHOXYCHLOR	0.04	0.0400	0.04	0.04	
MOLINATE	0.02	0.0200	0.0200	- 0.0200	
OXAMYL	0.2	0,2000	NR	NR	
PENTACHLOROPHENOL	0.001	0.0010	NR	NR	
PICLORAM	0.5	0.5000	NR	NR	
POLYCHLORNATED BIPHENOLS	0.0005	0.0005	NR	NR	
POLYCHLORINATED BIPHENYLS (PCBs) (in ng/l)		NR	NR	14.0-30.0	
SIMAZINE	0,004	0.0040	0.004	0.004	
THIOBENCARB	0.07	0.0700	0.0700	0.0700	
TOXAPHENE	0.003	0.0030	0.003	0.003	
2,3,7,8-TCDD (DIOXIN)	3E-08	3E-08	NR	NR	
A DECEMBER OF	0.05	0.0500	0.0100	0.0100	
2,4,5-TP (SILVEX)	0.05	0.0500	0.0100	0.0100	
ECONDARY STANDARDS (MCLS in mg/l)				1	
ALUMINUM	0.2	0.2000	1.0000	1.0000	
BORON	NR	NR	0.5	0.5	
CHLORIDE	250-500	250-500	100	100	
COLOR (Units)	15	15	NR	NR	
COPPER	1	1.0000	NR	NR	
CORROSIVITY	Non-corrosive	NR	NR	NR	
FOAMING AGENTS (MBAS)	0.5	0.5000	NR	0.5	
IRON	0.3	0.3000	NR	NR	
MANGANESE	0.05	0.0500	NR	NR	
ECONDARY STANDARDS (MCLS in mg/i)					
ODOR-THRESHOLD (Units)	3	3	NR	NR	
pH (Units)	6.5-8.85	6.5-8.5	NR	6.5-8.5	
•					

		DOHS	RWQCB O	BJECTIVES
CONSTITUENT	DOHS Title 22	RECL. WATER STANDARDS	GROUND WATER	SURFACE WATER
SULFATE	250-500	250-500	100	100
THIOBENCARB	0.001	0.0010	NR	NR
TOTAL DISSOLVED SOLIDS (TDS)	500-1000	500-1,000	450-600	450
TOTAL ORGANIC CARBON (TOC)	NR	20.0	NR	NR
SUSPENDED SOLIDS (SS)	NR	30.0	NR	NR
BIOCHEMICAL OXYGEN DEMAND (BOD)	NR	30.0	NR	NR
TURBIDITY (Units)	5	2	NR	10%-20%
ZINC	5	5.0000	NR	NR
DISSOLVED OXYGEN (DO)	NR	NR	NR	5.0
TEMPERATURE (F)	NR	NR	NR	5-80
Market and Annual Market and An				1

NOTES

DOHS : STATE DEPARTMENT OF HEALTH SERVICES

RWQCB : CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD/LOS ANGELES REGION

MCL : MAXIMUM CONTAMINANT LEVEL

mg/I : MILLIGRAMS PER LITER

ng/I : NANOGRAMS PER LITER

pCI/L : PICOCURIES PER LITER

NR : NOT REQUIRED

TOTAL NITROGEN = AMMONIA NITROGEN + ORGANIC NITROGEN + NITRATE (AS NITROGEN) + NITRITE (AS NITROGEN)

1/ IF AT LEAST 40 OR MORE SAMPLES COLLECTED PER MONTH, OTHERWISE NO MORE THAN ONE SAMMPLE PER MONTH SHALL BE BE POSITIVE, SEE PAGE 11 DOHS TITLE 22.

"MCL IS FOR EITHER A SINGLE ISOMER OR THE SUM OF THE ISOMERS.

4

APPENDIX C

.

:

1

.

5

.

*

10 - 10 102

. .

...

.

.

•

FUTURE BLENDS OF IMPORTED WATER 7

•

MAYIA

D

MVVD METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA

Office of the General Manager

Mr. Richard W. Hansen General Manager Three Valleys Municipal Water District P.O. Box 1300 Claremont, California 91711

Post-It" brand fax transmittal i	memo 7571 # of pages +
"Canol Illelliame	Rick Hannen?
con later marter	"nei's 20 up Mut
Dapt.	Phone - 904- 621-5568
Fax #818 205-1506	Fax #

1

Dear Mr. Hansen:

Future Blends on Foothill Feeder/Rialto Pipeline at USG-3

1

You have asked that Metropolitan provide Information on our plans for deliveries of State project and Colorado River water at Service Connection USG-3. This memo can serve as an indication of what to expect for a source of supply at your new spreading connection, PlvI-26. In particular, you have requested information as to our operating plans for the next five years. The recently adopted blending policy of Metropolitan will potentially add some new ramifications in this regard as well.

Historical Operation

Historically, water supplied to USG-3 has been either 100-percent State project water or 100-percent Colorado River water, virtually at all times. (On some very rare occasions, blending has occurred below the La Verne Pipeline-Rialto Pipeline junction through the Glendora Tunnel for short time periods.) Prior to construction of the Etiwanda Pipeline and Control Facility, the configuration of our system in that area did not permit us to routinely provide "blended" water to USG-3. Flows into the east portal of the Glendora Tunnel came from either the Rialto Pipeline (State project water) or the La Verne Pipeline (Colorado River water, flowing northward from the Upper Feeder), but normally not both at the same time. When the Rialto Pipeline was in operation, it delivered flow into the La Verne Pipeline (flowing southward) to supply the Weymouth Filtration Plant. With this configuration, in order to produce a blended flow from the Weymouth and Diemer plants, State project water is supplied via the Rialto Pipeline and La Verne Pipeline and no Colorado River water can reach USG-3. P.01

• •

Mr. Richard W. Hensen

The vast majority of the time, historical deliveries to USG-3 have been 100-percent State project water. Operationally, this has been considered our "normal" mode of operation. Only on limited occasions has it been necessary to deliver Colorado River water to USG-3. In recent years, this has typically occurred at times of the year when demands were very low and the level of Lake Mathews had to be controlled in order to avoid laying off Colorado River water. This has usually occurred in the January-March time frame. This has typically been the only foreseeable circumstance under which Colorado River water would have been delivered to USG-3.

-2-

Operational Changes for Blending

With the addition of the Etiwanda Pipeline and Control Facility, it is now physically possible to move State project water through either the Rialto Pipeline or the Upper Feeder and La Verne Pipeline to USG-3. Further, this latter route can provide a true blend of State project water and Colorado River water to USG-3 under normal operations, but only when State project water is being delivered to the Upper Feeder (and no deliveries are being made on the Rialto Pipeline west of Live Oak Reservoir). This, however, will not materially increase the probability of Colorado River water reaching USG-3. Typically, the blending of Upper Feeder flows will occur in the high-demand periods of the year, while the historical need to deliver Colorado River water to USG-3 has occurred in low-demand periods when blending is not required. Thus, when blending is occuring in the Upper Feeder, it will normally be done to augment supplies to meet Weymouth demands, not solely to meet the requirements of the new blending policy.

The new blending policy also calls for approximately equal blends at Weymouth, Diemer, and Skinner. The only way to assure that such is the case for Weymouth and Diemer is to provide State project water to both plants via the La Verne Pipeline. The most desirable way to provide State project water to Diemer (without blending in Lake Mathews) is via the La Verne Pipeline and the Yorba Linda Feeder. While the facilities exist to provide State project water to Diemer via the Etiwanda Pipeline, Upper Feeder, and Yorba Linda Feeder, this mode of operation makes it very difficult to balance the Weymouth and Diemer blends. Thus, as long as a blending operation is occurring (typically in the April-September period), all flows to USG-3 (and PM-26) will be 100percent State project water. Mr. Richard W. Harlson

Conclusion

It is anticipated that the likelihood of a change in the frequency of deliveries of Colorado River water to USG-3 in the next five years will not be materially different from recent years. Such deliveries have typically only occurred in the January-March period when there was a need to control the level of Lake Mathews and avoid laying off Colorado River water. The new blending policy will not affect the frequency of such deliveries, as the operational changes necessitated for blending occur in the April-September period when there has historically been no need to make deliveries of Colorado River water to USG-3.

-3-

If you have any additional questions concerning this issue, please contact Michael B. Young at (213) 217-6440 or Jim Daber at (213) 217-6885.

G. Means

Chief of Operations

JVDVcj (opsexecusas_tv.coc)

cc: Mr. Bruce J. Milne

APPENDIX S

WATER QUALITY SAMPLING SCHEDULE

	WELL IDENTIFICA		SAMPLING SCHEDULE			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
ADAMS RANCH	H MUTUAL WATER COMPA	NY				
	3	1910009-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 10 06 / 10 06 / 10 06 / 10	06 / 13 06 / 13 06 / 13 06 / 13	

GROUND AND SURFACE WATER					
GENERAL MINERAL AND GENERAL PHYSICAL SAMPLING SCHEDULE					

	WELL IDENTIFICA	TION		SAMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
ALHAMBRA, C	ITY OF					
	7	1910001-006	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 13 06 / 13 06 / 13 06 / 13	06 / 16 06 / 16 06 / 16 06 / 16	
	8	1910001-007	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	07 / 11 07 / 11 07 / 11 07 / 11	07 / 14 07 / 14 07 / 14 07 / 14	
	9	1910001-008	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 11 04 / 11 04 / 11 04 / 11	04 / 14 04 / 14 04 / 14 04 / 14	
	11	1910001-010	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 12 05 / 12 05 / 12 05 / 12	05 / 15 05 / 15 05 / 15 05 / 15 05 / 15	
	12	1910001-011	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	
	13	1910001-012	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	11 / 10 11 / 10 11 / 10 11 / 10	11 / 13 11 / 13 11 / 13 11 / 13 11 / 13	
	14	1910001-013	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	11 / 10 11 / 10 11 / 10 11 / 10	11/ / 13 11/ / 13 11/ / 13 11 / 13	
	15	1910001-014	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 13 04 / 13 04 / 13 04 / 13	04 / 16 04 / 16 04 / 16 04 / 16	
	GARFIELD	1910001-001	GM 3 YR GP 3 YR	06 / 92 09 / 91	/ /	INACTIVE
	LONGDEN 1	1910001-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 11 09 / 11 09 / 11 09 / 11	09 / 14 09 / 14 09 / 14 09 / 14	
	LONGDEN 2	1910001-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16	

	WELL IDENTIFICA	TION	SAMPLING SCHEDULE			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
AMARILLO MU	TUAL WATER COMPANY					
	1	1910002-001	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16	
	2	1910002-002	GM 3 YR TDS 1 YR NO₃1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16 05 / 16	

GROUND AND SURFACE WATER					
GENERAL MINERAL AND GENERAL PHYSICAL SAMPLING SCHEDULE					

	WELL IDENTIFIC	WELL IDENTIFICATION		SAMPLING SCHEDULE		
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
ARCADIA, CITY	(OF					
	BALDWIN 2	1910003-002	GM 3 YR GP 3 YR	03 / 09 03 / 09	/ /	INACTIVE
	Camino Real 3	1910003-041	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	LIVE OAK 1	1910003-007	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	LONGDEN 1	1910003-008	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	LONGDEN 2	1910003-009	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	LONGLEY 2	1910003-010	GM 3 YR GP 3 YR	04 / 78 04 / 78	/ /	INACTIVE
	LONGLEY 3	1910003-040	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	PECK ROAD 1	1910003-015	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	ST JOSEPH 2	1910003-018	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	

A

	WELL IDENTIFIC	ATION	:	SAMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
AZUSA LIGHT	AND WATER					
	1 (CITY 7)	1910007-001	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 13 09 / 13 09 / 13 09 / 13	09 / 16 09 / 16 09 / 16 09 / 16	
	2	1910007-002	GM 3 YR TDS 1 YR NO₃ 1 YR	06 / 13 06 / 13 06 / 13	06 / 16 06 / 16 06 / 16	
	(CITY NORTH)		GP 3 YR	06 / 13	06 / 16	
	3 (CITY 8)	1910007-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 13 04 / 13 04 / 13 04 / 13	04 / 16 04 / 16 04 / 16 04 / 16	
		1910007-004	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 13 09 / 13 09 / 13 09 / 13	09 / 16 09 / 16 09 / 16 09 / 16	
	(CITY SOUTH) 5 (CITY 1)	1910007-005	GP 3 YR GM 3 YR TDS 1 YR	09 / 13 08 / 13 08 / 13	09 / 16 08 / 16 08 / 16	
			NO ₃ 1 YR GP 3 YR	08 / 13 08 / 13	08 / 16 08 / 16	
	6 (CITY 3)	1910007-006	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 13 04 / 13 04 / 13 04 / 13	04 / 16 04 / 16 04 / 16 04 / 16	
	7 (AVWC 5)	1910007-007	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 13 04 / 13 04 / 13 04 / 13	04 / 16 04 / 16 04 / 16 04 / 16	
	8 (AVWC 4)	1910007-008	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 12 05 / 12 05 / 12 05 / 12	05 / 15 05 / 15 05 / 15 05 / 15	
	9 (AVWC 6)	1910007-039	GM 3 YR GP 3 YR	11 / 90 11 / 90	/ /	INACTIVE
	10 (AVWC 8)	1910007-010	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 13 09 / 13 09 / 13 09 / 13	09 / 16 09 / 16 09 / 16 09 / 16	
	11	1910007-033	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 11 10 / 11 10 / 11 10 / 11	10 / 14 10 / 14 10 / 14 10 / 14	
	12	1910007-034	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 11 10 / 11 10 / 11 10 / 11	10 / 14 10 / 14 10 / 14 10 / 14	
	DIVERSION	1910007-014	GM 1 YR TDS 1 YR NO₃ 1 YR GP 1 YR	12 / 12 12 / 12 12 / 12 12 / 12 12 / 12	12 / 13 12 / 13 12 / 13 12 / 13 12 / 13	

* Old well numbers are in parentheses behind re-numbered Azusa Light and Water wells.

	WELL IDENTIFIC	ATION	s	AMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
CALIFORNIA A / DUARTE	MERICAN WATER COMP	ANY				
	BACON	1910186-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	12 / 10 12 / 10 12 / 10 12 / 10 12 / 10	12 / 13 12 / 13 12 / 13 12 / 13 12 / 13	
	BUENA VISTA	1910186-001	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 10 10 / 10 10 / 10 10 / 10	10 / 13 10 / 13 10 / 13 10 / 13	
	BUENA VISTA 2	1910186-019	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 11 04 / 11 04 / 11 04 / 11	04 / 14 04 / 14 04 / 14 04 / 14	
	CROWN HAVEN	1910186-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 10 10 / 10 10 / 10 10 / 10	10 / 13 10 / 13 10 / 13 10 / 13	
	ENCANTO	1910186-009	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 10 10 / 10 10 / 10 10 / 10	10 / 13 10 / 13 10 / 13 10 / 13	
	FISH CANYON	1910186-004	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 10 10 / 10 10 / 10 10 / 10	10 / 13 10 / 13 10 / 13 10 / 13	
	LAS LOMAS 2	1910186-010	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 10 10 / 10 10 / 10 10 / 10	10 / 13 10 / 13 10 / 13 10 / 13	
	MOUNTAIN AVE	1910186-006	GM 3 YR GP 3 YR	/ /	/ /	INACTIVE
	SANTA FE	1910186-007	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	10 / 10 10 / 10 10 / 10 10 / 10	10 / 13 10 / 13 10 / 13 10 / 13 10 / 13	
	WILEY	1910186-008	GM 3 YR TDS 1 YR NO₃1 YR GP 3 YR	10 / 10 10 / 10 10 / 10 10 / 10	10 / 13 10 / 13 10 / 13 10 / 13	

						1
	WELL IDENTIFIC	ATION		SAMPLING SCHEDU		
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST	NEXT TEST	COMMENTS
				(month/year)	(month/year)	
CALIFORNIA A / SAN MARINO	MERICAN WATER COMP	ANY				
	BLUE RIBBON 1	1910139-015	GM 3 YR GP 3 YR	12 / 84 05 / 84	/ /	INACTIVE
	BLUE RIBBON 2	1910139-016	GM 3 YR GP 3 YR	12 / 84 03 / 81	/ /	INACTIVE
	DEL MAR	1910139-017	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 13 09 / 13 09 / 13	09 / 16 09 / 16 09 / 16	
	GRAND	1910139-010	GM 3 YR TDS 1 YR NO₃ 1 YR	09 / 13 09 / 13 09 / 13	09 / 16 09 / 16 09 / 16 09 / 16	
	GUESS	1910139-018	GP 3 YR GM 3 YR GP 3 YR	09 / 13 05 / 01 05 / 01	09 / 16 / /	INACTIVE
	HALL 2	1910139-032	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	09 / 13 09 / 13 09 / 13 09 / 13 09 / 13	09 / 16 09 / 16 09 / 16 09 / 16 09 / 16	
	HOWLAND	1910139-020	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 13 09 / 13 09 / 13 09 / 13 09 / 13	09 / 16 09 / 16 09 / 16 09 / 16	
	LONGDEN	1910139-007	GM 3 YR GP 3 YR	09 / 10 09 / 10	09 / 13 09 / 13	OUT OF SERVICE
	MARIPOSA 2	1910139-022	GM 3 YR GP 3 YR	/ /	/ /	INACTIVE
	MARIPOSA 3	1910139-023	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 13 09 / 13 09 / 13 09 / 13	09 / 16 09 / 16 09 / 16 09 / 16	
	MISSION VIEW 2	1910139-011	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 13 09 / 13 09 / 13 09 / 13	09 / 16 09 / 16 09 / 16 09 / 16	
	RICHARDSON 1	1910139-025	GM 3 YR GP 3 YR	11 / 94 11 / 94	/ /	INACTIVE
	ROANOKE	1910139-009	GM 3 YR GP 3 YR	05 / 00 05 / 00	/ /	INACTIVE
	ROSEMEAD	1910139-014	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 13 09 / 13 09 / 13 09 / 13	09 / 16 09 / 16 09 / 16 09 / 16	
	PATTON	1910139-044	GM 3 YR GP 3 YR	07 / 09 07 / 09	07 / 12 07 / 12	INACTIVE

	WELL IDENTIFICA	TION	S	SAMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
CALIFORNIA D	OMESTIC WATER COMPA	NY				
	2	1910199-004	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 13 04 / 13 04 / 13 04 / 13	04 / 16 04 / 16 04 / 16 04 / 16	
	3	1910199-005	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 13 04 / 13 04 / 13 04 / 13	04 / 16 04 / 16 04 / 16 04 / 16	
	5A	1910199-006	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 13 04 / 13 04 / 13 04 / 13	04 / 16 04 / 16 04 / 16 04 / 16	
	6	1910199-007	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 13 04 / 13 04 / 13 04 / 13	04 / 16 04 / 16 04 / 16 04 / 16	
	8	1910199-008	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 12 10 / 12 10 / 12 10 / 12 10 / 12	10 / 15 10 / 15 10 / 15 10 / 15 10 / 15	
	14	1910199-014	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 13 04 / 13 04 / 13 04 / 13	04 / 16 04 / 16 04 / 16 04 / 16	

	WELL IDENTIFICA	TION	5	SAMPLING SCHEDU	LE				
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS			
CHAMPION MU	CHAMPION MUTUAL WATER COMPANY								
	1	1900706-001	GM 3 YR GP 3 YR	/ /	/ /	INACTIVE			
	2	1900706-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 09 10 / 09 10 / 09 10 / 09	10 / 12 10 / 12 10 / 12 10 / 12				
	3	1900706-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 09 10 / 09 10 / 09 10 / 09	10 / 12 10 / 12 10 / 12 10 / 12				

	WELL IDENTIFICATION		ç	SAMPLING SCHEDULE			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS	
COVINA, CITY	OF						
	2 (Grand)	1910127-003	GM 3 YR GP 3 YR	04 / 99 04 / 99	/ /	INACTIVE	

	WELL IDENTIFICA		S	SAMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
COVINA IRRIG	ATING COMPANY					
	BALDWIN 1	1910128-001	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	01 / 13 01 / 13 01 / 13 01 / 13	01 / 16 01 / 16 01 / 16 01 / 16	producer samples quarterly
	BALDWIN 2	1910128-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	01 / 13 01 / 13 01 / 13 01 / 13	01 / 16 01 / 16 01 / 16 01 / 16	producer samples quarterly
	BALDWIN 3	1910128-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	01 / 13 01 / 13 01 / 13 01 / 13	01 / 16 01 / 16 01 / 16 01 / 16	producer samples quarterly
	CONTRACT	1910128-004	GM 3 YR GP 3 YR	06 / 88 06 / 88	/ /	INACTIVE
	VALENCIA	1910128-006	GM 3 YR GP 3 YR	06 / 81 06 / 81	/ /	INACTIVE
	DIVERSION	1910128-011	GM 1 YR TDS 1 YR NO₃ 1 YR GP 1 YR	07 / 10 07 / 10 07 / 10 07 / 10	07 / 14 07 / 14 07 / 14 07 / 14	producer samples quarterly after treatment

	WELL IDENTIFICATION		S	LE			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS	
DEL RIO MUTUAL WATER COMPANY							
	BURKETT	1900130-001	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	07 / 10 07 / 10 07 / 10 07 / 10	07 / 13 07 / 13 07 / 13 07 / 13		
	KLINGERMAN	1900130-002	GM 3 YR GP 3 YR	/ /	/ /	INACTIVE	

	WELL IDENTIFICA	TION	ş	AMPLING SCHEDULE				
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS		
EAST PASADENA WATER COMPANY								
	9	1910020-005	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	03 / 12 03 / 12 03 / 12 03 / 12	03 / 15 03 / 15 03 / 15 03 / 15 03 / 15			
	11	1910020-012	GP 3 YR TDS 1 YR NO₃1 YR GP 3 YR	03 / 12 09 / 12 09 / 12 09 / 12 09 / 12	03 / 15 09 / 15 09 / 15 09 / 15 09 / 15			

	WELL IDENTIFICA	TION	s	AMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
EL MONTE, CIT	TY OF					
	2A	1910038-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	12 / 12 12 / 12 12 / 12 12 / 12 12 / 12	12 / 15 12 / 15 12 / 15 12 / 15 12 / 12	
	3	1910038-003	GM 9 YR GP 9 YR	12 / 12 12 / 12	12 / 21 12 / 21	STANDBY
	4	1910038-004	GM 9 YR GP 9 YR	06 / 08 06 / 08	06 / 17 06 / 17	Out of Service 4/08 (STANDBY)
	10	1910038-006	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	12 / 12 12 / 12 12 / 12 12 / 12 12 / 12	12 / 15 12 / 15 12 / 15 12 / 15 12 / 15	
	12	1910038-008	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	12 / 12 12 / 12 12 / 12 12 / 12 12 / 12	12 / 15 12 / 15 12 / 15 12 / 15 12 / 15	
	13	1910038-009	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	12 / 12 12 / 12 12 / 12 12 / 12 12 / 12	12 / 15 12 / 15 12 / 15 12 / 15 12 / 15	

	WELL IDENTIFICA	TION	5	SAMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
GLENDORA, C	ITY OF					
	1-E	1910044-001	GM 3 YR GP 3 YR	06 / 08 06 / 08	06 / 11 06 / 11	DESTROYED
	2-E	1910044-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	3-G	1910044-003	GM 3 YR GP 3 YR	08 / 86 08 / 83	/ /	INACTIVE
	4-E	1910044-004	GM 3 YR GP 3 YR	05 / 84 06 / 84	/ /	INACTIVE
	5-E	1910044-015	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	7-G	1910044-005	GM 3 YR GP 3 YR	03 / 96 03 / 96	/ /	INACTIVE
	8-E	1910044-006	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	9-E	1910044-007	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	10-E	1910044-008	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	11-E	1910044-009	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	12-G	1910044-010	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	13-E	1910044-020	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	

G

	WELL IDENTIFIC	ATION		SAMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
GOLDEN STAT / SAN DIMAS	E WATER COMPANY					
	ARTESIA 3	1910142-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16	
	BASELINE 3	1910142-004	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16	
	BASELINE 4	1910142-005	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16	
	CITY	1910142-006	GM 3 YR GP 3 YR	08 / 06 08 / 06	08 / 09 08 / 09	INACTIVE
	COLUMBIA 1	1910142-007	GM 3 YR GP 3 YR	10 / 76 10 / 76	/ /	INACTIVE
	COLUMBIA 2	1910142-008	GM 3 YR GP 3 YR	10 / 76 /	/ /	INACTIVE
	COLUMBIA 4	1910142-017	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	02 / 11 02 / 11 02 / 11 02 / 11	02 / 14 02 / 14 02 / 14 02 / 14	
	COLUMBIA 6	1910142-009	GM 3 YR GP 3 YR	02 / 11 02 / 11	02 / 14 02 / 14	INACTIVE
	COLUMBIA 8	1910142-011	GM 3 YR GP 3 YR	06 / 83 06 / 82	/ /	INACTIVE
	HIGHWAY	1910142-013	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16	
	HIGHWAY 2	1910142-051	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 10 10 / 10 10 / 10 10 / 10	10 / 13 10 / 13 10 / 13 10 / 13 10 / 13	
	MALONE	1910142-014	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 12 08 / 12 08 / 12 08 / 12	08 / 15 08 / 15 08 / 15 08 / 15	

	WELL IDENTIFICA	TION	9	SAMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
GOLDEN STAT / SOUTH ARCA	E WATER COMPANY DIA					
	ENCINITA 1	1910212-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 12 08 / 12 08 / 12 08 / 12	08 / 15 08 / 15 08 / 15 08 / 15	
	ENCINITA 2	1910212-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 12 08 / 12 08 / 12 08 / 12	08 / 15 08 / 15 08 / 15 08 / 15	
	ENCINITA 3	1910212-004	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16	
	FARNA 1	1910212-005	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 12 08 / 12 08 / 12 08 / 12	08 / 15 08 / 15 08 / 15 08 / 15	
	FARNA 2	1910212-006	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 12 08 / 12 08 / 12 08 / 12	08 / 15 08 / 15 08 / 15 08 / 15	
	GRAYDON 1	1910212-009	GM 3 YR GP 3 YR	08 / 94 08 / 94	/ /	INACTIVE
	GRAYDON 2	1910212-010	GM 3 YR GP 3 YR	08 / 94 08 / 94	/ /	INACTIVE
	JEFFRIES 1	1910212-011	GM 3 YR GP 3 YR	07 / 83 07 / 83	/ /	INACTIVE
	JEFFRIES 3	1910212-013	GM 3 YR GP 3 YR	08 / 86 12 / 84	/ /	INACTIVE
	JEFFRIES 4	1910212-014	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 12 08 / 12 08 / 12 08 / 12	08 / 15 08 / 15 08 / 15 08 / 15	
	PERSIMMON 1	1910212-015	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 12 08 / 12 08 / 12 08 / 12	08 / 15 08 / 15 08 / 15 08 / 15	

	WELL IDENTIFICATION		SAMPLING SCHEDULE						
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS			
GOLDEN STATE WATER COMPANY / SOUTH SAN GABRIEL									
	SAN GABRIEL 1	1910223-004	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 13 08 / 13 08 / 13 08 / 13	08 / 16 08 / 16 08 / 16 08 / 16				
	SAN GABRIEL 2	1910223-005	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	07 / 12 07 / 12 07 / 12 07 / 12	07 / 15 07 / 15 07 / 15 07 / 15				
	SAXON 3	1910223-008	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 12 08 / 12 08 / 12 08 / 12	08 / 15 08 / 15 08 / 15 08 / 15 08 / 15				
	SAXON 4	1910223-009	GM 3 YR TDS 1 YR NO₃1 YR GP 3 YR	08 / 12 08 / 12 08 / 12 08 / 12	08 / 15 08 / 15 08 / 15 08 / 15				

	WELL IDENTIFICATION		SAMPLING SCHEDULE						
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS			
HEMLOCK MUTUAL WATER COMPANY									
	NORTH	1910053-001	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 10 10 / 10 10 / 10 10 / 10	10 / 13 10 / 13 10 / 13 10 / 13 10 / 13				
	SOUTH	1910053-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 10 10 / 10 10 / 10 10 / 10	10 / 13 10 / 13 10 / 13 10 / 13 10 / 13				

	WELL IDENTIFICA	TION	ş	AMPLING SCHEDU	LE			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS		
INDUSTRY PUBLIC UTILITIES								
	3	1910029-005	GM 9 YR TDS 1 YR NO₃ 1 YR GP 9 YR	07 / 16 07 / 16 07 / 16 07 / 06	08 / 15 08 / 15 08 / 15 08 / 15	STANDBY		
	4	1910029-006	GM 9 YR TDS 1 YR NO₃ 1 YR GP 9 YR	04 / 07 04 / 07 04 / 07 04 / 07	04 / 16 04 / 16 04 / 16 04 / 16	STANDBY		
	5	1910029-007	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	01 / 12 01 / 12 01 / 12 01 / 12	01 / 15 01 / 15 01 / 15 01 / 15			

	WELL IDENTIFICA	TION	S	SAMPLING SCHEDU	LE			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS		
LA PUENTE VALLEY COUNTY WATER DISTRICT								
	2	1910060-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 12 10 / 12 10 / 12 10 / 12	10 / 15 10 / 15 10 / 15 10 / 15			
	3	1910060-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	12 / 12 12 / 12 12 / 12 12 / 12 12 / 12	12 / 15 12 / 15 12 / 15 12 / 15 12 / 15			
	4	1910060-004	GM 9 YR GP 9 YR	03 / 97 03 / 97	03 / 06 03 / 06	INACTIVE OUT OF SERVICE (01/05 - 06/08)		
	5	1910060-023	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	01 / 12 01 / 12 01 / 12 01 / 12	01 / 15 01 / 15 01 / 15 01 / 15	(

	WELL IDENTIFICATION		S	LE					
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS			
MONROVIA, CI	MONROVIA, CITY OF								
	2	1910090-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16				
	3	1910090-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16				
	4	1910090-004	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16				
	5	1910090-005	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16				
	6	1910090-008	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16				

	WELL IDENTIFIC	NATION		SAMPLING SCHEDU	16	
WATER SYSTEM	SOURCE	SOURCE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
MONTEREY PA	ARK, CITY OF					
	1	1910092-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	12 / 11 12 / 11 12 / 11 12 / 11 12 / 11	12 / 14 12 / 14 12 / 14 12 / 14 12 / 14	
	3	1910092-004	GM 3 YR GP 3 YR	05 / 10 05 / 10	05 / 13 05 / 13	INACTIVE
	5	1910092-006	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 12 10 / 12 10 / 12 10 / 12	10 / 15 10 / 15 10 / 15 10 / 15	
	6	1910092-007	GM 9 YR GP 9 YR	09 / 03 09 / 03	09 / 12 09 / 12	INACTIVE OUT OF SERVICE (08/05 - 06/08)
	7	1910092-008	GM 9 YR GP 9 YR	08 / 08 08 / 08	08 / 17 08 / 17	INACTIVE
	8	1910092-009	GM 9 YR GP 9 YR	10 / 08 10 / 08	10 / 17 10 / 17	INACTIVE
	9	1910092-010	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 11 09 / 11 09 / 11 09 / 11	09 / 14 09 / 14 09 / 14 09 / 14	
	10	1910092-011	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16	
	12	1910092-013	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	03 / 13 03 / 13 03 / 13 03 / 13 03 / 13	03 / 16 03 / 16 03 / 16 03 / 16 03 / 16	
	14	1910092-014	GM 9 YR GP 9 YR	01 / 07 01 / 07	01 / 16 01 / 16	INACTIVE
	15	1910092-038	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	07 / 12 07 / 12 07 / 12 07 / 12	07 / 15 07 / 15 07 / 15 07 / 15	
	FERN	1910092-001	GM 9 YR TDS 1 YR NO₃ 1 YR GP 9 YR	10 / 12 10 / 12 10 / 12 10 / 12	10 / 15 10 / 15 10 / 15 10 / 15 10 / 15	

	WELL IDENTIFICA	TION	S	AMPLING SCHEDU	LE			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS		
RURBAN HOMES MUTUAL WATER COMPANY								
	1-NOR	1910141-001	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	11 / 11 11 / 11 11 / 11 11 / 11 11 / 11	11 / 14 11 / 14 11 / 14 11 / 14			
	2-SOU	1910141-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	11 / 11 11 / 11 11 / 11 11 / 11 11 / 11	11 / 14 11 / 14 11 / 14 11 / 14			

	WELL IDENTIFICA	TION	S	SAMPLING SCHEDU	LE			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS		
SAN GABRIEL COUNTY WATER DISTRICT								
	5 BRA	1910144-003	GM 3 YR GP 3 YR	06 / 00 06 / 00	/ /	INACTIVE		
	7	1910144-005	GM 3 YR GP 3 YR	06 / 09 06 / 09	06 / 12 06 / 12	DESTROYED		
	8	1910144-006	GM 3 YR GP 3 YR	08 / 93 08 / 93	/ /	INACTIVE		
	9	1910144-007	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 12 06 / 12 06 / 12 06 / 12	06 / 15 06 / 15 06 / 15 06 / 15			
	10	1910144-008	GM 3 YR GP 3 YR	08 / 93 08 / 93	/ /	INACTIVE		
	11	1910144-009	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 12 06 / 12 06 / 12 06 / 12	06 / 15 06 / 15 06 / 15 06 / 15			
	12	1910144-010	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 12 06 / 12 06 / 12 06 / 12	06 / 15 06 / 15 06 / 15 06 / 15			
	14	1910144-011	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 12 06 / 12 06 / 12 06 / 12	06 / 15 06 / 15 06 / 15 06 / 15			

	WELL IDENTIFICA	TION		SAMPLING SCHEDULE		
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
SAN GABRIEL	VALLEY WATER COMPAN	Y				
	1B	1910039-001	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 11 09 / 11 09 / 11 09 / 11	09 / 14 09 / 14 09 / 14 09 / 14	
	1C	1910039-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 13 08 / 13 08 / 13 08 / 13	08 / 16 08 / 16 08 / 16 08 / 16	
	1D	1910039-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 11 06 / 11 06 / 11 06 / 11	06 / 14 06 / 14 06 / 14 06 / 14	
	1E	1910039-070	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	11 / 11 11 / 11 11 / 11 11 / 11	11 / 14 11 / 14 11 / 14 11 / 14	
	2D	1910039-005	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 13 08 / 13 08 / 13 08 / 13 08 / 13	08 / 16 08 / 16 08 / 16 08 / 16	
	2E	1910039-006	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 13 08 / 13 08 / 13 08 / 13 08 / 13	08 / 16 08 / 16 08 / 16 08 / 16	
	2F	1910039-076	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 13 08 / 13 08 / 13 08 / 13	08 / 16 08 / 16 08 / 16 08 / 16	
	8A	1910039-008	GM 3 YR GP 3 YR	08 / 89 06 / 87	/ /	INACTIVE
	8B	1910039-009	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	
	8C	1910039-010	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 13 08 / 13 08 / 13 08 / 13 08 / 13	08 / 16 08 / 16 08 / 16 08 / 16	
	8D	1910039-011	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 13 08 / 13 08 / 13 08 / 13 08 / 13	08 / 16 08 / 16 08 / 16 08 / 16	
	8E	1910039-012	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 13 08 / 13 08 / 13 08 / 13 08 / 13	08 / 16 08 / 16 08 / 16 08 / 16	
	8F	1910039-066	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 10 10 / 10 10 / 10 10 / 10	10 / 13 10 / 13 10 / 13 10 / 13 10 / 13	
	11A	1910039-013	GM 3 YR TDS 1 YR	09 / 11 09 / 11	09 / 14 09 / 14	

	WELL IDENTIFICA		s	AMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
			NO ₃ 1 YR GP 3 YR	09 / 11 09 / 11	09 / 14 09 / 14	
	11B	1910039-014	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	12 / 12 12 / 12 12 / 12 12 / 12 12 / 12	12 / 15 12 / 15 12 / 15 12 / 15 12 / 15	
	11C	1910039-015	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	09 / 11 09 / 11 09 / 11 09 / 11	09 / 14 09 / 14 09 / 14 09 / 14	
	B1	1910039-016	GM 3 YR GP 3 YR	03 / 05 03 / 05	/ /	INACTIVE
	B2	1910039-019	GM 3 YR GP 3 YR	07 / 82 08 / 82	/ /	INACTIVE
	B4B	1910039-020	GM 3 YR GP 3 YR	03 / 08 03 / 08	/ /	INACTIVE

	WELL IDENTIFICA	TION		SAMPLING SCHEDUI	_E	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
SAN GABRIEL	VALLEY WATER COMPANY	(
	B4C	1910039-021	GM 3 YR GP 3 YR	03 / 99 03 / 99	/ /	INACTIVE
	B5A	1910039-022	GM 3 YR GP 3 YR	09 / 05 09 / 05	09 / 08 09 / 08	INACTIVE
	B5B	1910039-023	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 11 04 / 11 04 / 11 04 / 11	04 / 14 04 / 14 04 / 14 04 / 14	
	B5C	1910039-024	GM 3 YR GP 3 YR	05 / 07 05 / 07	05 / 10 05 / 10	INACTIVE
	B5D	1910039-069	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 13 08 / 13 08 / 13 08 / 13	08 / 16 08 / 16 08 / 16 08 / 16	
	B5E	1910039-077	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	04 / 11 04 / 11 04 / 11 04 / 11	04 / 14 04 / 14 04 / 14 04 / 14	
	B6C	1910039-026	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 13 08 / 13 08 / 13 08 / 13	08 / 16 08 / 16 08 / 16 08 / 16	
	B6D	1910039-027	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 13 08 / 13 08 / 13 08 / 13	08 / 16 08 / 16 08 / 16 08 / 16	
	B7C	1910039-029	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 13 08 / 13 08 / 13 08 / 13	08 / 16 08 / 16 08 / 16 08 / 16	
	B7E	1910039-030	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 12 06 / 12 06 / 12 06 / 12	06 / 15 06 / 15 06 / 15 06 / 15	
	В9	1910039-032	GM 3 YR GP 3 YR	02 / 87 06 / 84	/ /	INACTIVE
	B9B	1910039-033	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 11 09 / 11 09 / 11 09 / 11	09 / 14 09 / 14 09 / 14 09 / 14	
	B11A	1910039-017	GM 3 YR GP 3 YR	02 / 03 02 / 03	02 / 06 02 / 06	INACTIVE
	B11B	1910039-018	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 12 06 / 12 06 / 12 06 / 12	06 / 15 06 / 15 06 / 15 06 / 15	
	B24A	1910039-117	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 11 09 / 11 09 / 11 09 / 11	09 / 14 09 / 14 09 / 14 09 / 14	
					GM=Genera	al Mineral GP=Genera

	WELL IDENTIFIC	ATION	S	AMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
	B24B	1910039-116	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 11 09 / 11 09 / 11 09 / 11	09 / 14 09 / 14 09 / 14 09 / 14	
	B25A	1910039-112	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	
	B25B	1910039-113	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	
	B26A	1910039-114	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	
	B26B	1910039-115	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	
	G4A	1910039-036	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	12 / 12 12 / 12 12 / 12 12 / 12 12 / 12	12 / 15 12 / 15 12 / 15 12 / 15 12 / 15	

	WELL IDENTIFIC	ATION	S	SAMPLING SCHEDU	LE			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS		
SOUTH PASADENA, CITY OF								
	GRAVES 2	1910154-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 12 05 / 12 05 / 12 05 / 12	05 / 15 05 / 15 05 / 15 05 / 15			
	WILSON 2	1910154-004	GM 3 YR GP 3 YR	01 / 99 07 / 00	01 / 02 07 / 03	INACTIVE		
	WILSON 3	1910154-005	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 12 05 / 12 05 / 12 05 / 12	05 / 15 05 / 15 05 / 15 05 / 15			
	WILSON 4	1910154-006	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	05 / 12 05 / 12 05 / 12 05 / 12	05 / 15 05 / 15 05 / 15 05 / 15			

	WELL IDENTIFIC	ATION	0,0	AMPLING SCHEDU	LE			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS		
STERLING MUTUAL WATER COMPANY								
	NEW SOUTH	1910158-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 10 09 / 10 09 / 10 09 / 10	09 / 13 09 / 13 09 / 13 09 / 13			
	NORTH	1910158-001	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	09 / 10 09 / 10 09 / 10 09 / 10	09 / 13 09 / 13 09 / 13 09 / 13			

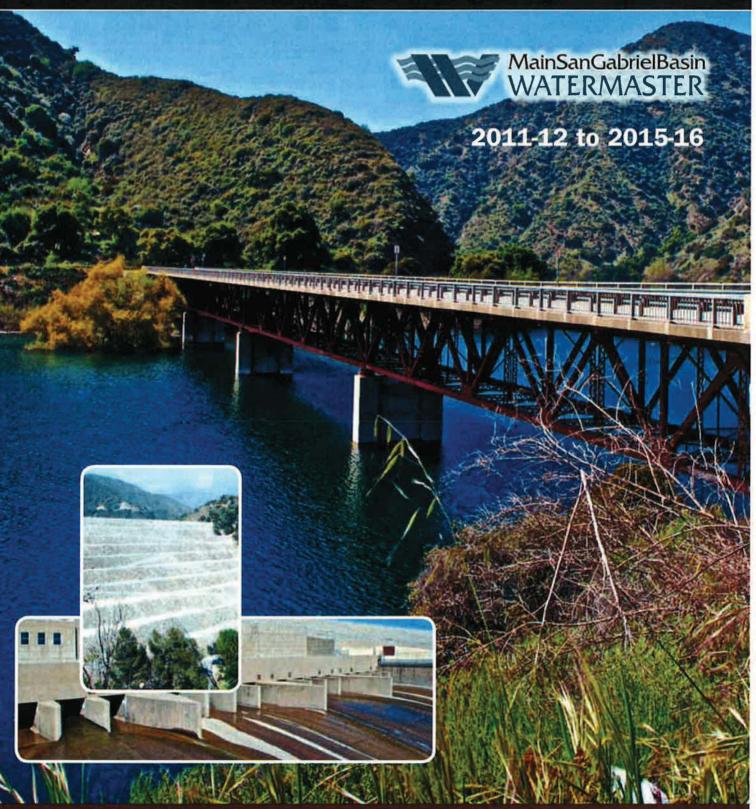
	WELL IDENTIFI	CATION	S	AMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
SUBURBAN W / SAN JOSE	ATER SYSTEMS					
	121W1	1910205-064	GM 3 YR TDS 1 YR NO₃1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	
	126W2	1910205-018	GM 3 YR GP 3 YR	04 / 00 04 / 00	04 / 03 04 / 03	INACTIVE
	139W2	1910205-025	GM 3 YR GP 3 YR	03 / 01 03 / 01	03 / 04 03 / 04	INACTIVE
	139W4	1910205-027	GM 9 YR TDS 1 YR NO₃ 1 YR GP 9 YR	03 / 11 03 / 11 03 / 11 03 / 11	03 / 20 03 / 20 03 / 20 03 / 20	STANDBY
	139W5	1910205-028	GM 3 YR GP 3 YR	06 / 01 06 / 01	06 / 04 06 / 04	INACTIVE
	140W3	1910205-030	GM 9 YR TDS 1 YR NO₃ 1 YR GP 9 YR	12 / 06 12 / 06 12 / 06 12 / 06 12 / 06	12 / 15 12 / 15 12 / 15 12 / 15 12 / 15	STANDBY
	140W4	1910205-031	GM 3 YR GP 3 YR	07 / 01 07 / 01	07 / 04 07 / 04	INACTIVE
	140W5	1910205-045	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	11 / 12 11 / 12 11 / 12 11 / 12 11 / 12	11 / 15 11 / 15 11 / 15 11 / 15 11 / 15	
	142W2	1910205-065	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	02 / 12 02 / 12 02 / 12 02 / 12	02 / 15 02 / 15 02 / 15 02 / 15 02 / 15	
	147W3	1910205-034	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	
	151W2	1910205-075	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	11 / 12 11 / 12 11 / 12 11 / 12	11 / 15 11 / 15 11 / 15 11 / 15 11 / 15	

	WELL IDENTIFICATION		s			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
SUBURBAN W. / WHITTIER	ATER SYSTEMS					
	201W4	1910174-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 10 08 / 10 08 / 10 08 / 10	08 / 19 08 / 19 08 / 19 08 / 19	STANDBY
	201W5	1910174-004	GM 3 YR GP 3 YR	05 / 05 05 / 05	05 / 08 05 / 08	INACTIVE
	201W7	1919174-020	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	
	201W8	1910174-031	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	08 / 12 08 / 12 08 / 12 08 / 12 08 / 12	08 / 15 08 / 15 08 / 15 08 / 15 08 / 15	
	201W9	1910174-033	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	02 / 11 02 / 11 02 / 11 02 / 11	02 / 14 02 / 14 02 / 14 02 / 14	
	201W10	1910174-035	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	06 / 12 06 / 12 06 / 12 06 / 12	06 / 15 06 / 15 06 / 15 06 / 15	

	WELL IDENTIFICATION		Ş			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
SUNNY SLOPE WATER COMPANY						
	8	1910157-003	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	03 / 10 03 / 10 03 / 10 03 / 10 03 / 10	03 / 13 03 / 13 03 / 13 03 / 13 03 / 13	
	9	1910157-004	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 12 08 / 12 08 / 12 08 / 12	08 / 15 08 / 15 08 / 15 08 / 15	
	13	1910157-017	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	

	WELL IDENTIFICA	TION	SAMPLING SCHEDULE			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
VALENCIA HEI	GHTS WATER COMPANY					
	5	1910163-005	GM 3 YR TDS 1 YR NO₃1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	
	6	1910163-010	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	
	7	1910163-012	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	08 / 11 08 / 11 08 / 11 08 / 11	08 / 14 08 / 14 08 / 14 08 / 14	

	WELL IDENTIFICA	TION	SAMPLING SCHEDULE			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
VALLEY COUN	ITY WATER DISTRICT					
	CLINTON O. NIXON EAST	1910009-005	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	10 / 12 10 / 12 10 / 12 10 / 12	10 / 15 10 / 15 10 / 15 10 / 15	
	CLINTON O. NIXON WEST	1910009-006	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	02 / 12 02 / 12 02 / 12 02 / 12	02 / 15 02 / 15 02 / 15 02 / 15 02 / 15	
	LANTE	1910009-007	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	05 / 11 05 / 11 05 / 11 05 / 11	05 / 14 05 / 14 05 / 14 05 / 14	
	MAINE EAST	1910009-001	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	02 / 12 02 / 12 02 / 12 02 / 12	02 / 15 02 / 15 02 / 15 02 / 15 02 / 15	
	MAINE WEST	1910009-002	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	02 / 12 02 / 12 02 / 12 02 / 12 02 / 12	02 / 15 02 / 15 02 / 15 02 / 15 02 / 15	
	SA1-1	1910009-033	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	05 / 11 05 / 11 05 / 11 05 / 11	05 / 14 05 / 14 05 / 14 05 / 14	
	SA1-2	1910009-034	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	03 / 08 03 / 08 03 / 08 03 / 08	03 / 11 03 / 11 03 / 11 03 / 11	


	WELL IDENTIFICATION		S			
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
VALLEY VIEW MUTUAL WATER COMPANY						
	1	1910165-001	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	01 / 09 01 / 09 01 / 09 01 / 09	01 / 12 01 / 12 01 / 12 01 / 12	
	2	1910165-002	GM 3 YR TDS 1 YR NO ₃ 1 YR GP 3 YR	05 / 13 05 / 13 05 / 13 05 / 13 05 / 13	05 / 16 05 / 16 05 / 16 05 / 16	
	3	1910165-003	GM 3 YR GP 3 YR	09 / 87 02 / 84	/ /	INACTIVE

	WELL IDENTIFICA	TION	s	SAMPLING SCHEDU	LE	
WATER SYSTEM	SOURCE NAME	SOURCE CODE	TYPE AND FREQUENCY	LAST TEST (month/year)	NEXT TEST (month/year)	COMMENTS
WHITTIER, CIT	Y OF					
	12	1910173-007	GM 3 YR GP 3 YR	01 / 87 12 / 86	/ /	INACTIVE
	13	1910173-008	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	03 / 11 03 / 11 03 / 11 03 / 11	03 / 14 03 / 14 03 / 14 03 / 14	
	15	1910173-010	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	03 / 11 03 / 11 03 / 11 03 / 11	03 / 14 03 / 14 03 / 14 03 / 14	
	16	1910173-011	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	03 / 11 03 / 11 03 / 11 03 / 11	03 / 14 03 / 14 03 / 14 03 / 14	
	17	1910173-012	GM 3 YR GP 3 YR	03 / 08 03 / 08	03 / 11 03 / 11	INACTIVE
	18	1910173-013	GM 3 YR TDS 1 YR NO₃ 1 YR GP 3 YR	03 / 11 03 / 11 03 / 11 03 / 11	03 / 14 03 / 14 03 / 14 03 / 14	

APPENDIX T

FIVE-YEAR WATER QUALITY AND SUPPLY PLAN

Five-Year Water Quality and Supply Plan

"To assure that pumping does not lead to further degradation of water quality in the Basin, a Five-Year Water Quality and Supply Plan must be prepared and updated annually by Watermaster..."

Section 28 of Watermaster's Rules and Regulations

Five-Year Water Quality and Supply Plan

November 2011

Telephone (626) 815-1300 • Fax (626) 815-1303 725 North Azusa Avenue • Azusa, California 91702 www.watermaster.org

CONTENTS

I. INTRODUCTION	2
PURPOSE OF THE FIVE-YEAR PLAN	2
WATERMASTER BACKGROUND	2
Figure 1. Area Covered by Main San Gabriel Basin	3
II. CURRENT WATER SUPPLY CONDITIONS	4
WATER SUPPLY INFLOWS DURING 2010-11	4
Figure 2. Average Rainfall During the Last Ten Years	4
Figure 3. Key Well Elevations During the Last Ten Years	5
Figure 4. Water Stored in San Gabriel Canyon Reservoirs	6
BASIN REPLENISHMENT ACTIVITIES	6
PROJECTED GROUNDWATER DEMANDS	7
Figure 5. Projected and Historical Water Production	7
III. CURRENT WATER QUALITY CONDITIONS	8
PRIMARY CONTAMINANTS IN THE GROUNDWATER BASIN	9
Figure 6. Volatile Organic Compound Levels in Groundwater	10
Figure 7. Nitrate Levels in Groundwater	10
WELLS ASSESSED FOR VULNERABILITY TO CONTAMINATION	11
IV. FIVE-YEAR WATER QUALITY AND SUPPLY PLAN	12
GROUNDWATER MONITORING PROGRAMS	12
GROUNDWATER ELEVATION MONITORING	13
GROUNDWATER QUALITY MONITORING	14
GROUNDWATER FLOW AND CONTAMINANT MIGRATION STUDIES	14
GROUNDWATER CLEANUP PROJECTS	15
BASIN CLEANUP PROJECTS/USEPA OPERABLE UNIT PLANS	16
Figure 8. Location Map of USEPA Operable Units	17
Figure 9. VOC Plume Map in BPOU	18
Figure 10. Perchlorate Plume Map in BPOU	19
PRODUCERS' WATER SUPPLY PLANS	26
CONDUCT STUDIES, MONITORING AND INVESTIGATIONS	27
IDENTIFY AND REDUCE POTENTIAL SOURCES OF CONTAMINATION	28
AQUIFER PERFORMANCE TESTS	28
V. DIRECTORY TO APPENDICES	29
Appendix A. Projected Groundwater Demands — 2011-12 to 2015-16	
Appendix B. Simulated Changes in Groundwater Elevations at Wells or Wellfields in Main San Gabriel Basin	
Appendix C. Highlights of Volatile Organic Compounds and Nitrate Concentrations, and Wells Vulnerable to Contamination	
Appendix D. Potential Sites for Aquifer Performance Tests	
Appendix E. Summary of Treatment Facility Activity in the Main San Gabriel Basin	
Appendix F. Maps Showing Wells Vulnerable to VOC, Nitrate and Perchlorate Contamination Within Five Years (Figures 11a, 11b, and 11c)	
Appendix G: Simulated Basin Groundwater Contours 2010-11 and 2015-16 (Figures 12 and 13)	

INTRODUCTION

Watermaster prepares and annually updates this Five-Year Water Quality and Supply Plan (Five-Year Plan) in accordance with the requirements of Section 28 of its Rules and Regulations. The objective is to coordinate groundwater-related activities so that both water supply and water quality in the Main San Gabriel Basin (Basin) are protected and improved.

PURPOSE OF THE FIVE-YEAR PLAN

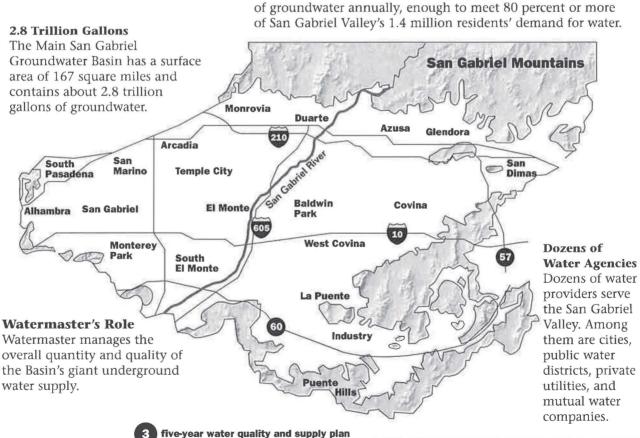
Many important issues are detailed in the Five-Year Plan, including how Watermaster plans to:

- 1. monitor groundwater supply and quality;
- 2. develop projections of future groundwater supply and quality;
- 3. ensure adequate supplemental water is available for groundwater replenishment;
- 4. review and cooperate on cleanup projects, and provide technical assistance to other agencies;
- 5. assure that pumping does not lead to further degradation of water quality in the Basin;
- 6. address emerging contaminants in the Basin;
- develop a cleanup and water supply program consistent with the U.S. Environmental Protection Agency (USEPA) plans for its San Gabriel Basin Superfund sites; and
- 8. continue to perform responsibilities under the Baldwin Park Operable Unit (BPOU) Project Agreement relating to project administration and performance evaluation.

WATERMASTER BACKGROUND

The Los Angeles County Superior Court created the Main San Gabriel Basin Watermaster in 1973 to resolve water issues that had arisen among water users in the San Gabriel Valley. Watermaster's mission was to generally manage the water supply of the Main San Gabriel Groundwater Basin.

main san gabriel basin watermaster


During the late 1970s and early 1980s, significant groundwater contamination was discovered in the Basin. The contamination was caused in part by past practices of local industries that had inappropriately disposed of industrial solvents, as well as by infiltration of nitrates from an earlier agricultural period. Cleanup efforts for industrial contamination were undertaken at the local, state, and federal levels.

WATERMASTER RECEIVES WATER OUALITY RESPONSIBILITIES

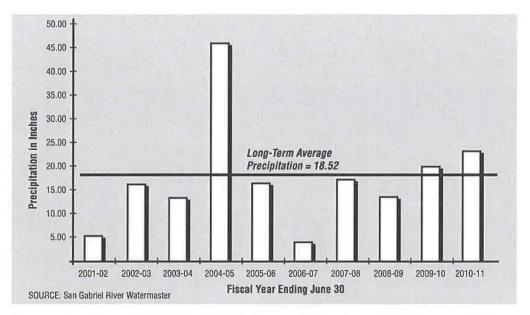
By 1989, local water agencies adopted a joint resolution regarding water quality issues that stated that Watermaster should coordinate local activities aimed at preserving and restoring the quality of groundwater in the Basin. The joint resolution also called for a cleanup plan.

In 1991, the Los Angeles County Superior Court granted Watermaster the authority to control pumping for water quality purposes. Accordingly, Watermaster added Section 28 to its Rules and Regulations regarding water quality management. The new responsibilities included: developing this Five-Year Water Quality and Supply Plan; updating it annually, and submitting it to the California Regional Water Quality Control Board, Los Angeles Region (Regional Board); and making it available for public review by November 1 of each year.

Figure 1. AREA COVERED BY MAIN SAN GABRIEL BASIN

Precious Underground Water Supply

The Main San Gabriel Basin provides up to 90 billion gallons


CURRENT WATER SUPPLY CONDITIONS

Rainfall in the San Gabriel Valley averaged about 24 inches during 2010-11, or about 130 percent of the long-term average. The above-average rainfall resulted in above-average replenishment of storm runoff. In addition, a significant amount of untreated imported water was delivered to and replenished in the Basin as a result of increased statewide water supply. As a result, the groundwater level increased by about 29 feet during fiscal year 2010-11.

WATER SUPPLY INFLOWS DURING 2010-11

VALLEY RECEIVES ABOVE-AVERAGE RAINFALL

In 2010-11, the San Gabriel Valley received about 24 inches of rain, which is about 130 percent of the long-term average of 18.52 inches.

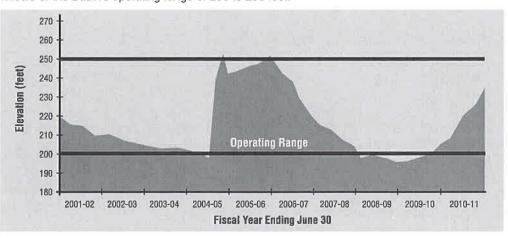
Figure 2. AVERAGE RAINFALL DURING THE LAST TEN YEARS Rainfall in 2010-11 was about 24 inches. Average precipitation in the Main San Gabriel Basin for the 10-year period from 2001-02 to 2010-11 was 18.1 inches. The long-term average rainfall is 18.52 inches. The rainfall total is made up of an average taken from four stations located in San Dimas, Diamond Bar, El Monte, and Pasadena.

LOCAL STORMWATER CAPTURE 200 PERCENT OF AVERAGE

During fiscal year 2010-11, rainfall was about 130 percent of average and contributed to stormwater capture of about 220,000 acre-feet, which is about 200 percent of average. Fiscal year 2010-11 represents the second consecutive year of above-average rainfall and runoff after four consecutive years of below-average rainfall and three consecutive years of below-average storm water runoff. In addition, as of June 30, 2011, about 58,000 acre-feet of local storm runoff remained in storage in reservoirs in the San Gabriel Canyon, compared to about 13,000 acre-feet which typically remains in storage. As a result, approximately 45,000 acre-feet of water was available for groundwater replenishment purposes and potentially represents about an additional six-foot increase in groundwater elevations within the Main Basin.

4 🔤

main san gabriel basin watermaster


LOCAL WATER USE BELOW AVERAGE

Total water use within the San Gabriel Valley consists of groundwater production, surface water diversions, and treated imported water deliveries. During fiscal year 2010-11, total water use was about 239,700 acre-feet, consisting of about 216,000 acre-feet of groundwater production, 13,400 acre-feet of treated local surface water and 10,300 acre-feet of treated imported water. This total is about 15 percent lower than the 10-year average of about 283,000 acre-feet. The reduction is partly due to above-average rainfall in 2010-11, which generally decreases water demands. The reduction is also a result of Watermaster's and others' efforts to promote and encourage water conservation.

Main San Gabriel Basin Watermaster annually establishes an Operating Safe Yield, which is based on prevailing hydrologic conditions in the San Gabriel Valley. Production in excess of the Operating Safe Yield is subject to an assessment that is used to purchase untreated imported water to replenish the Basin. Overproduction during fiscal year 2010-11 was 48,500 acre-feet, which is above the 10-year average of 45,100 acre-feet.

KEY WELL WITHIN OPERATING RANGE

The Baldwin Park Key Well is used as the benchmark for determining the groundwater level for the entire Basin. Pursuant to the Judgment, Watermaster works to keep the Key Well water level between 200 feet and 250 feet to the extent possible. Below-average rainfall between fiscal years 2005-06 and 2008-09, coupled with below-average storm runoff, contributed to the Baldwin Park Key Well water level falling from about 248.4 feet in June 2005 to 195.6 feet in June 2009. The Key Well water level fell to a historical low of 189.2 feet on December 3, 2009. However, two consecutive years of above-average rainfall (20 inches during fiscal year 2009-10 and 24 inches during fiscal year 2010-11), along with delivery and replenishment of about 68,000 acrefeet of untreated imported water during fiscal year 2010-11, contributed to an increase in the groundwater elevation at the Key Well to about 233.5 feet as of June 30, 2011. This level is 29 feet higher than the year before and above the mid-point of the operating range.

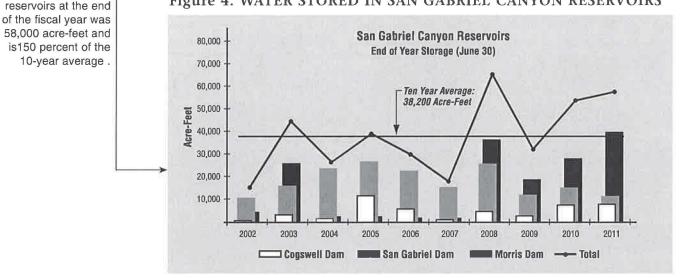


Figure 3. KEY WELL ELEVATIONS DURING THE LAST TEN YEARS The groundwater elevation at the Key Well on June 30, 2011 was about 233.5 feet, which is above the middle of the Basin's operating range of 200 to 250 feet.

INCREASE IN WATER STORED IN CANYON RESERVOIRS

Cogswell, San Gabriel, and Morris Reservoirs have a combined maximum storage capacity of about 85,000 acre-feet. At the end of the 2010-11 fiscal year, about 58,000 acre-feet of water was stored in these reservoirs. This is an increase from the previous year and represents about 150 percent of the 10-year average of about 38,200 acre-feet of water in storage at the end of the fiscal year. In addition, about 220,000 acre-feet of local runoff was released from storage in local reservoirs for recharge into the groundwater basin during fiscal year 2010-11.

Figure 4. WATER STORED IN SAN GABRIEL CANYON RESERVOIRS

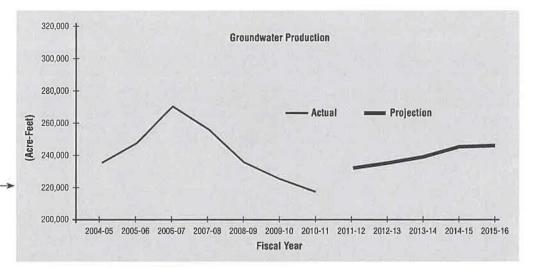
BASIN REPLENISHMENT ACTIVITIES

Basin management continues to encourage producers to maximize groundwater production instead of relying on treated imported water. Under normal conditions, Watermaster quantifies groundwater production in excess of Producers' water rights and arranges to have an equal amount of untreated imported water delivered to replenish the overproduction from the Basin at a "Replenishment Water" rate. This practice takes advantage of historically lower-cost water and allows water agencies to deliver untreated imported water on a flexible basis instead of requiring a continuous flow, as is the case of "Full Service" treated water demands. Deliveries of untreated imported water at the "Replenishment Water" rate for groundwater replenishment had been suspended by Metropolitan Water District since May 2007. However, as the result of statewide aboveaverage rainfall and significant water stored in MWD's various facilities, MWD reinstated the "Replenishment Rate" in May 2011 for the balance of the calendar year. Consequently, Watermaster and other local producers ordered over 60,000 acre-feet of untreated imported water at the "Replenishment Rate". MWD has indicated untreated imported water at the "Replenishment Rate" may be available in only 3 out of 10 years in the future. Watermaster is actively pursuing alternative means of Basin replenishment including:

• encouraging reduced groundwater production through conservation efforts;

Total water stored in San Gabriel Canyon

- securing alternative supplemental supplies and maximizing delivery of imported water from State Water Project contractors; and
- securing a firm supply of advanced treated recycled water.


PROJECTED GROUNDWATER DEMANDS

PRODUCER ESTIMATES

Section 28 requires that each Producer submit a report to Watermaster detailing its projected water supply and water production requirements over the following five years. Projections were received from 27 Producers, accounting for about 90 percent of the groundwater production from the Basin.

For those Producers who did not submit projections, Watermaster provided an estimate based on the assumption that each Producer had an aggregate projected growth rate that was the same as those Producers who did submit projections. Projected groundwater production is shown in Appendix A.

Figure 5 shows the total projected and historical groundwater production from the Basin since 2003-04.

Water production has decreased over the prior year, due in part to aboveaverage rainfall and Basinwide water conservation efforts.

> **Figure 5. PROJECTED AND HISTORICAL WATER PRODUCTION** Total groundwater production for the 2010-11 fiscal year from the Basin was 216,000 acre-feet, which is lower than the previous year's production of 225,200 acre-feet. The decrease in groundwater production is due partially to Basinwide water conservation and partially to above-average rainfall.

> Groundwater production is influenced by a variety of conditions, including population, seasonal precipitation, groundwater contamination, and availability of surface water. Excluding the impacts of seasonal precipitation, groundwater production had been experiencing a gradual long-term increase consistent with increasing population. The impacts of groundwater contamination during the 1980s and 1990s resulted in reduced groundwater production, offset by an equal increase of treated imported water purchases. During the past 10 years various groundwater production and treatment facilities have become operational, enabling water purcyors to resume use of groundwater and again reflecting a gradual increase. However, since 2008 the economic downturn and above average rainfall have significantly reduced groundwater production.

five-year water quality and supply plan

CURRENT WATER QUALITY CONDITIONS

Groundwater delivered to customers continues to be of high quality and always meets state and federal drinking water standards. However, a number of contaminants in areas of the Basin require careful monitoring and treatment before the water is served for domestic use. These contaminants include a variety of industrial solvents referred to as volatile organic compounds, or VOCs. Another common contaminant found in the Basin is nitrate, primarily from fertilizers used during the Valley's agricultural period. Since 1997, additional contaminants have been detected: perchlorate, a solid rocket fuel ingredient; N-nitrosodimethylamine (NDMA), associated with liquid rocket fuel; 1,2,3-trichloropropane (1,2,3-TCP), a degreasing agent; and 1,4-dioxane, a stabilizer for chlorinated solvents.

In response to the detection of these contaminants, Watermaster and local water entities aggressively pursued construction of treatment facilities to control the spread of contaminants and continue providing high quality water to consumers. This policy of remediation and reuse both preserves a valuable resource and reduces the overall cost of groundwater cleanup. Initially, a number of VOC treatment facilities were constructed, while excessive nitrate concentrations were blended with higher quality water to acceptable levels. Since the detection of perchlorate and NDMA, Watermaster has been instrumental in the successful operation of treatment facilities to treat VOCs, perchlorate, and NDMA.

While only present in limited parts of the Basin, these chemicals pose difficult challenges to water Producers. When the chemicals were initially detected, Watermaster responded vigorously by working closely with the local water community to sponsor research, as well as to design, fund, and construct cleanup projects as rapidly as possible rather than wait for the USEPA and the firms named as responsible for the contamination. Watermaster subsequently led negotiations that resulted in the Baldwin Park Operable Unit (BPOU) Project Agreement, including an initial reimbursement for groundwater cleanup costs from certain parties responsible for the contamination. Under the BPOU Agreement, Watermaster is responsible for overall project coordination and administration, groundwater monitoring, and compliance with USEPA reporting requirements. Watermaster also participates in decisions regarding technology selection, construction, and operations. Now that all of the BPOU treatment facilities are operational, Watermaster also monitors the BPOU project's performance in containing and removing contamination.

PRIMARY CONTAMINANTS IN THE GROUNDWATER BASIN

VOLATILE ORGANIC COMPOUNDS AND NITRATES

VOCs and nitrates are the most prevalent contaminants found in the Basin. Intensive monitoring and research concerning these two types of contaminants have been underway for many years. The location and cleanup methods for VOCs are generally well understood; during fiscal year 2010-11, 30 plants treated about 30 billion gallons of VOC-contaminated water. Water containing nitrates above the Maximum Contaminant Level (MCL) is either blended with other sources or not used.

Note in Figure 6 that although VOC contamination is substantial, it is centered in just a few areas, leaving a substantial portion of the Basin unaffected. The same is true for nitrates, which have the highest concentrations in the eastern portion of the Basin, away from the most productive pumping areas (see Figure 7).

PERCHLORATE

In January 2002, California Department of Public Health (CDPH), formerly the California Department of Health Services, lowered the Notification Level (NL) for perchlorate from 18 to 4 parts per billion, and a total of 22 wells were removed from service due to unacceptable levels of perchlorate. CDPH subsequently raised the NL to 6 parts per billion in March 2004 and later established an MCL of 6 parts per billion during October 2007. Watermaster played a key role in development of the first treatment technology to remove perchlorate from drinking water; ion-exchange technology is now operational at five sites in the BPOU and at two facilities in other parts of the Basin.

Figure 6. VOLATILE ORGANIC COMPOUND LEVELS IN GROUNDWATER THROUGHOUT THE BASIN

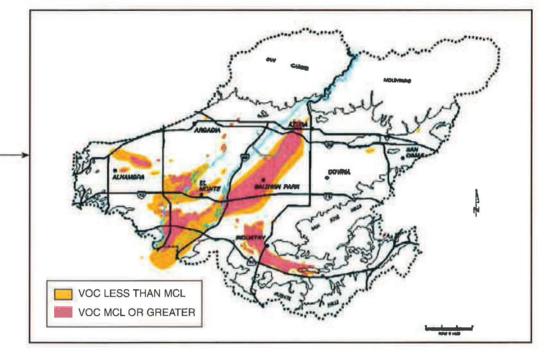
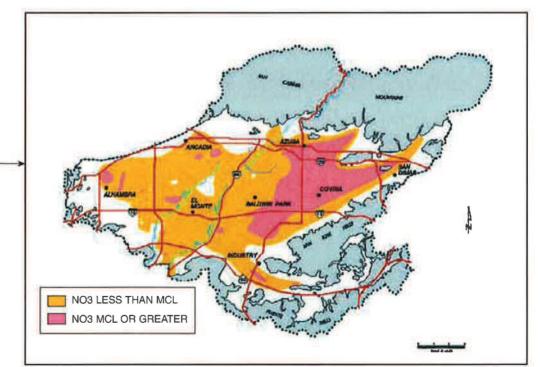



Figure 7. NITRATE LEVELS IN GROUNDWATER THROUGHOUT THE BASIN

Extensive cleanup programs are underway in the areas affected by VOC contamination. Because the main plumes of contamination are centered in just a few areas, much of the Basin remains unaffected.

Nitrate (NO3) contamination is highest in the eastern portion of the Basin, away from the San Gabriel River, the area of most intensive groundwater pumping.

main san gabriel basin watermaster

NDMA

During 1998, eight local wells were found to contain levels of NDMA above the NL at that time of 2 parts per trillion. Five of the wells with measurable levels of NDMA had already been taken out of service for other reasons, and the other three were put on inactive status once NDMA was detected. CDPH subsequently raised the NL to 10 parts per trillion. As with perchlorate, Watermaster played a key role in the construction of NDMA treatment facilities in the BPOU area of the Basin. Five facilities were operational during fiscal year 2010-11.

1,2,3-TRICHLOROPROPANE

The compound 1,2,3-trichloropropane is a degreasing agent that has been detected in the groundwater above the NL of 5 parts per trillion, primarily in the BPOU and the Area 3 OU. It was detected in the BPOU during the winter of 2006, and its presence delayed use of one treatment facility for potable purposes. Following detection, CDPH indicated the appropriate treatment technology is liquid phase granular activated carbon. Subsequently, Watermaster, in cooperation with its BPOU project partners, worked to construct treatment facilities to remove 1,2,3-TCP from the groundwater to make it suitable for potable uses. That treatment facility was operational during fiscal year 2010-11.

WELLS ASSESSED FOR VULNERABILITY TO CONTAMINATION

One of the primary purposes of the Five-Year Plan is to identify wells in the Basin that are vulnerable to contamination. A well is considered vulnerable if the concentration of contaminants reaches 50 percent of the NL or MCL allowed by state drinking water regulations. Watermaster reviews water quality tests performed on each well, regional water quality conditions, and contaminant migration patterns in an effort to project which wells may be vulnerable over the next five years and prepare plans to construct treatment facilities, as needed. (See Figures 11a, 11b and 11c in Appendix F).

WATER QUALITY PROTECTION PLAN

Watermaster maintains a Water Quality Protection Plan that provides an early warning to Producers of potential increases in contaminant levels. The Water Quality Protection Plan also provides suggested alternative sources of supply, and proposes long-term actions to solve the contamination problem(s) without contributing to the migration of contaminants in the Basin.

FIVE-YEAR WATER QUALITY AND SUPPLY PLAN

The Main San Gabriel Basin's designation as a federal Superfund site was prompted by the discovery of widespread VOC contamination. Cleanup plans were developed to contain and remove VOCs from groundwater, and Watermaster, along with various other local water agencies, water Producers and regulators, has worked to develop the expertise, financing and treatment technologies to effectively address Basinwide cleanup of VOCs.

The discovery of perchlorate and NDMA, however, complicated the existing VOC cleanup approach by creating a number of challenges. Most important, these new contaminants could not be removed using existing treatment facilities, and new, additional treatment methods had to be identified, financed and implemented.

This report outlines a combined cleanup and water supply plan for each of > the USEPA Operable Units. Watermaster's plan for each area is consistent with the USEPA plans, and its goal is to implement cleanup as promptly as possible, with or without the cooperation of the Responsible Parties.

GROUNDWATER MONITORING PROGRAMS

Monitoring involves measuring groundwater levels, groundwater quality, and groundwater flow. Watermaster continuously refines its understanding of the groundwater Basin to increase the safe yield of the Basin, and to protect and improve local water quality.

Watermaster facilitates groundwater cleanup projects that also meet water supply needs.

GROUNDWATER ELEVATION MONITORING

CONTINUE KEY WELL AND SUPPLEMENTAL KEY WELL OPERATION AND DATA PROCESSING

The entire 167-square-mile groundwater Basin is managed as one unit based on the groundwater levels as measured at a single Key Well in Baldwin Park. Water levels have been measured at this well since 1903 and are currently measured every three hours by an automated recorder.

Additional groundwater level recorders have been installed near the Santa Fe Spreading Grounds; adjacent to the San Gabriel River above the I-210 Freeway; in the City of Rosemead; in the City of Covina; and near the Whittier Narrows Dam. These water level records are synchronized with the record in the Key Well. Collectively, water level data from these wells provides a better understanding of impacts of recharge operations at the Santa Fe Spreading Grounds on Basin hydrogeology. Water elevation data are collected semi-annually at about 170 additional wells throughout the Basin, and water level recorders may be installed in those wells over the next five years.

CONTINUE BASINWIDE GROUNDWATER ELEVATION MONITORING PROGRAM (BGWEMP)

The purpose of the BGWEMP is to obtain groundwater level measurements from a large number of wells across the Basin. The information is used to prepare groundwater contour maps showing the direction of groundwater flow. The data are also used in the Basin computer model to simulate future groundwater flow patterns. The BGWEMP plan for the coming years includes:

- taking weekly measurements of water levels in nine primary wells;
- gathering semi-annual measurements of water levels in 170 primary wells;
- obtaining water levels in secondary wells from well owners or water Producers, the San Gabriel Valley Protective Association, Regional Board, USEPA, and others;
- updating the database with water level data; and
- preparing semi-annual groundwater contour maps of the entire Basin.

GROUNDWATER QUALITY MONITORING

CONTINUE BASINWIDE GROUNDWATER QUALITY MONITORING PROGRAM (BGWQMP)

Under the BGWQMP, all production wells in the Basin are sampled at least once a year for VOCs and nitrates. The frequency of BGWQMP sampling complements the monitoring requirements under state law and supplements information gathered through Regional Water Quality Control Board source investigations and USEPA remedial investigations. The data collected by BGWQMP are used to identify and evaluate the current locations and magnitude of contaminant levels.

CONTINUE TITLE 22 WATER QUALITY TESTING

Watermaster continues to perform CDPH-mandated Title 22 water quality sampling of groundwater from approximately 200 active wells in the Basin. Watermaster also continues to track regulations and inform local water purveyors about regulatory issues and requirements. Information from centralized water quality testing is added to Watermaster's water quality database, which contains data from many sources. The centralized testing enables Watermaster to identify water quality trends on a regional scale that might otherwise go unnoticed at a specific well, and also lowers monitoring costs to Producers.

GROUNDWATER FLOW AND CONTAMINANT MIGRATION STUDIES

Groundwater level and quality data are entered into the Basin computer model, which simulates where contamination is projected to flow in the future. The goal is to project contaminant levels by areas in advance of the actual event, and identify remedial steps to be taken.

GROUNDWATER ELEVATION SIMULATIONS SHOW FUTURE PUMPING WILL NOT SIGNIFICANTLY CHANGE GROUNDWATER MOVEMENT

To determine the direction of groundwater flow through the Basin, Watermaster compiles the daily average 2010-11 production for each well, enters the data into the groundwater model, and simulates how production impacts water levels throughout the Basin. A computer simulation is then run using estimated production for 2015-16. These simulations indicate that the estimated increase in groundwater production during the next five years will not significantly change the overall direction of Basin groundwater movement, which continues to flow generally from east to west to a pumping trough in the western portion of the Basin, and also northeast to

Simulations of the direction of groundwater flow in 2010-11 and projections for 2015-16 show that the estimated increase in groundwater pumping during this period would not significantly change the overall direction of Basin groundwater movement. southwest, exiting through Whittier Narrows. The simulation for 2015-16 also shows localized pumping depressions in the Baldwin Park area, which are expected to be created by continuous pumping from groundwater extraction wells associated with the BPOU contaminant cleanup project to contain and control groundwater contaminant movement. Contaminated groundwater from those wells is treated at several treatment facilities and the CDPH-permitted water is provided for potable use.

SIMULATE IMPACTS OF GROUNDWATER PUMPING ON CONTAMINANT MIGRATION

Simulations similar to the ones described above were used to make the finding that pumping particularly from USEPA mandated cleanup projects and managed by Watermaster helps to control and contain contaminant migration.

Groundwater quality data collected during 2010-11 and projected quality data for > 2015-16 were entered into the groundwater model for the contamination migration studies. The computer model is used to simulate how the flow of water would affect the migration of contamination. The simulation showed that changes in groundwater flow did not have major impacts on the migration of contaminants (refer to Figures 12 and 13 in Appendix G).

GROUNDWATER CLEANUP PROJECTS

Watermaster coordinates and provides technical assistance on many cleanup projects in the Basin, although the cleanup facilities are owned and operated by local water utilities. Watermaster's involvement includes coordinating proposed USEPA cleanup programs to ensure, to the extent feasible, that treated water is put to beneficial use within the Basin, and that projects are consistent with the Judgment.

REVIEW OF SECTION 28 APPLICATIONS

Watermaster reviews every proposal to construct, destroy, or modify a well or build a treatment plant pursuant to Section 28 of its Rules and Regulations.

Watermaster's review ensures that any new or increased extractions from the Basin or any changes in production patterns are consistent with contamination cleanup efforts and will not adversely affect Basin water quality. In conjunction with the evaluation of an application to construct a new well or a treatment facility, Watermaster uses a computer model to predict the potential future impacts of each project on contaminant migration and Basin cleanup.

BASIN CLEANUP PROJECTS/USEPA OPERABLE UNIT PLANS

The USEPA established Operable Units for the various areas within the Basin that have been contaminated and require groundwater cleanup. The Operable Units are Area 3 (Alhambra area), Baldwin Park, Puente Valley, El Monte, South El Monte, and Whittier Narrows (See Figure 8). USEPA has established a methodical process that includes a review of the extent of contamination (Remedial Investigation), development of cleanup alternatives (Feasibility Study) and selection of the most appropriate cleanup plan (Proposed Plan). Following these activities, the USEPA issues a report identifying the agreed upon Cleanup Plan (Record of Decision). Subsequently, the project facilities are designed and constructed.

The USEPA has identified cleanup plans for nearly all the Operable Units. Unlike the USEPA, Watermaster is not only concerned with cleaning up the Basin, but also wants to ensure that the water supply needs of the region are met. With USEPA plans generally in place, Watermaster continues to work with affected Producers, Responsible Parties, and others to implement solutions that not only provide effective cleanup and conform to the USEPA plans, but also meet local water supply needs.

This Five-Year Plan describes each of the Operable Units along with the USEPA proposed cleanup plan. In addition, Appendix A identifies current and projected groundwater production to address the contamination and to implement the cleanup plans. In areas where the groundwater supply has been affected by contamination, Watermaster works with affected Producers and other local water agencies to implement cleanup as quickly as possible, with or without the cooperation of the Responsible Parties. Watermaster and affected Producers continue to seek cost recovery from the Responsible Parties for any cleanup costs they incur.

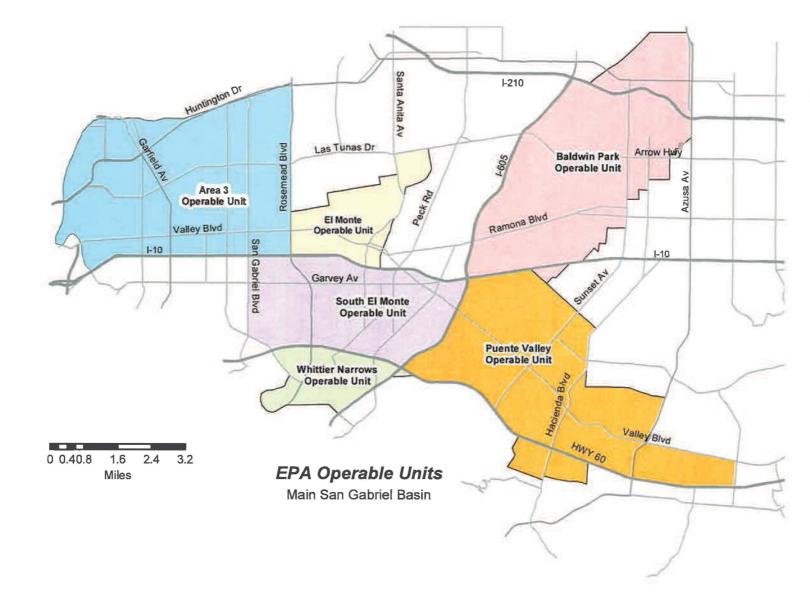
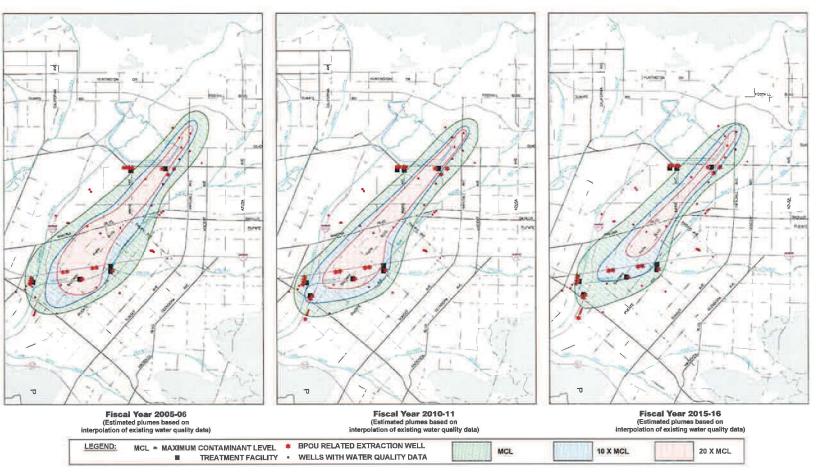
BALDWIN PARK OPERABLE UNIT (BPOU)

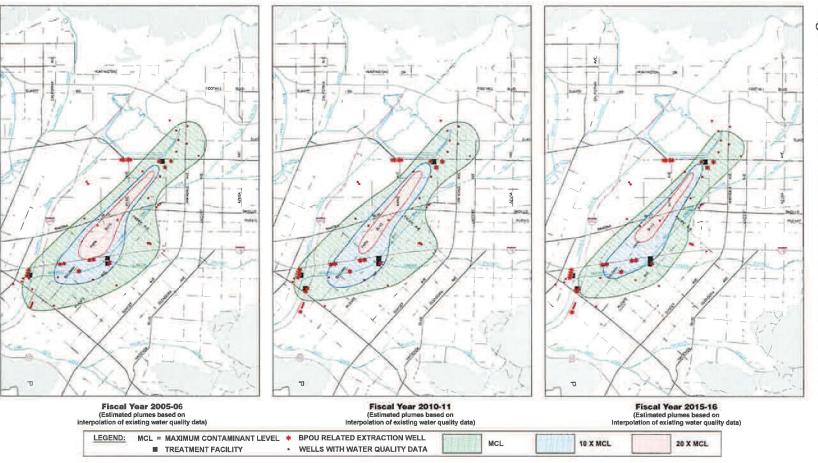
The BPOU is a seven-mile-long, one-mile-wide area of groundwater contamination that lies east of the San Gabriel River, stretching from an area north of the I-210 freeway in Azusa to south of the I-10 freeway in Baldwin Park (see Figure 8). The contamination primarily has been the result of improper use and disposal of industrial chemicals in the Azusa area, and it continues to spread generally in a southwesterly direction.

The USEPA originally issued its Record of Decision (ROD), or cleanup plan, for the BPOU in the mid-1990s. The ROD calls for pumping and treating groundwater in the northern area, where contaminant concentrations are highest, and also in the southern area to limit further migration of contaminants. The ROD involves pumping and treating an average of about 7,000 gallons per minute in the northern area and 16,000 gallons per minute in the southern area. The ROD also recommends the use of existing water supply wells, treatment systems, and pipelines when feasible. Importantly, the plan encourages adding the treated water to the potable supply, rather than simply recharging it back into the ground or disposing of it to storm drains.

main san gabriel basin watermaster

With USEPA plans generally in place, Watermaster is working with others to ensure cleanup plans also address local water supply needs.


Figure 8. LOCATION MAP OF USEPA OPERABLE UNITS

The discovery of perchlorate and NDMA during the late 1990s resulted in the shutdown of numerous treatment facilities, including the La Puente Valley County Water District (LPVCWD) Plant and San Gabriel Valley Water Company (SGVWC) Plant B6 that were designed by local water agencies to remove VOCs but not the new contaminants. Shutting down the VOC treatment plants allowed contaminants to migrate southward into previously unaffected areas, in turn forcing the shutdown of other water supply wells.

In 2002, after several years of negotiation led by Watermaster, eight of the BPOU Responsible Parties (called Cooperating Respondents, or CRs) and seven water entities signed the BPOU Project Agreement. Under this landmark agreement, Watermaster continues to provide overall project management and project coordination services. The CRs have paid the cost to construct, and will continue to provide funding to operate, the USEPA-required BPOU cleanup facilities for about 15 years. Several water purveyors own and operate the facilities and use the highly treated water in their water systems. The San Gabriel Basin Water Quality Authority (WQA) has also obtained outside funds to help construct necessary BPOU treatment facilities, extraction wells and pipelines.

The BPOU Project consists of four centralized treatment facilities with a combined extraction and treatment capacity of up to 25,900 gpm. Those treatment facilities are located at Valley County Water District's Lante Plant (7,800 gpm), San Gabriel Valley Water Company's Plant B6 (7,800 gpm) and Plant B5 (7,800 gpm), and La Puente Valley County Water District's (LPVCWD) site (2,500 gpm). The location of these treatment facilities is shown on Figures 9 and 10.

VALLEY COUNTY WATER DISTRICT (VCWD) PROJECT. In the northerly portion of the BPOU, the VCWD Project consists of three extraction wells, including two new wells, pumping up to 7,800 gpm (average annual rate of 7,000 gpm) to a centralized treatment facility at the VCWD Lante Plant. The VCWD Project consists of separate facilities to treat VOCs, 1,2,3-TCP, perchlorate, NDMA, and 1,4-dioxane. In addition, a treated water pipeline provides up to 6,000 gpm of fully treated water to Suburban Water Systems (SWS) to offset production lost due to contamination of some of its wells; VCWD can use the remaining portion of the treated water. The VCWD Project began operation for contamination cleanup in 2006 and received its CDPH operating permit in July 2007 to provide potable water to customers, and is operational. Since operation began in 2006, the VCWD treatment facility has treated about 40,300 acre-feet and has removed about 29,700 pounds of contaminants.

VCWD and its BPOU partners are coordinating the construction of a new single-pass ion-exchange facility that will remove perchlorate more cost effectively. Construction of the new system is nearly complete, but start-up has been pushed back while the parties determine the most cost-effective way to address high nitrate concentrations. Meanwhile, the existing VCWD treatment facility continues to provide treated water for municipal use.

LPVCWD PROJECT. The LPVCWD consists of three existing production wells. Well pumping capacity is limited to 2,500 gpm to equal the capacity of the treatment facility. The LPVCWD project consists of separate facilities to treat VOCs, perchlorate, NDMA and 1,4-dioxane. The LPVCWD project is permitted by CDPH and has been operating since March 2001. Treated water in excess of LPVCWD's needs is provided to SWS to enable the treatment facility to be operated on a continuous basis. Since operation began, the LPVCWD treatment facility has treated about 46,400 acre-feet (including prior operations with only VOC treatment) and removed about 9,100 pounds of contaminants.

SGVWC B6 PROJECT. The SGVWC B6 project is permitted by CDPH and has been operational since July 2005. The B6 project consists of four new extraction wells and a centralized treatment facility that treats up to 7,800 gpm (average annual rate of 7,000 gpm). The facility treats the contaminated groundwater for VOCs, perchlorate, NDMA, and 1,4-dioxane. The treated water is provided to SGVWC customers. Since operation began, the SGVWC B6 treatment facility has treated about 75,300 acre-feet, (including prior operations with only VOC treatment), and removed about 12,900 pounds of contaminants.

The BPOU project partners are coordinating the construction of a new single pass ion-exchange facility, similar to the ones at the LPVCWD project and the VCWD Project. Construction of the new ion-exchange facility was completed during fiscal year 2009-10 while the existing treatment facility continued to provide treated water for municipal use. Treatment facility operational testing, CDPH permitting and full scale operation for municipal use is anticipated to occur during fiscal year 2011-12.

SGVWC B5 PROJECT. The SGVWC B5 Project consists of one new extraction well and two existing wells that provide up to 7,800 gpm (average annual rate of 7,000 gpm) to a centralized treatment facility located at the SGVWC B5 site. The treatment facility treats the contaminated water for VOCs, perchlorate, NDMA, and 1,4-diox-ane. The treated water is provided to City of Industry customers (1,200 gpm) and the balance (6,600 gpm) is provided to SGVWC customers. The SGVWC B5 Project was permitted by CDPH in fiscal year 2007-08. Since operation began in 2007, the SGVWC B5 treatment facility has treated about 40,700 acre-feet and has removed about 1,100 pounds of contaminants.

PURVEYOR PROJECTS. In addition to the USEPA-required BPOU facilities, several water purveyors have built treatment facilities at other wells within the BPOU area to meet water supply needs until the USEPA remedy prevents the continued spread of contamination. California Domestic Water Company (CDWC) has constructed facilities at its wellfield to remove VOCs, perchlorate and NDMA. Similarly, Watermaster has issued permits under Section 28 of its Rules and Regulations to SWS to construct new wells that also are being used to blend with wells impacted by contaminants. These activities reduce reliance on expensive imported water and contribute to contaminant removal.

BPOU CLEANUP PROGRESS. Watermaster regularly reviews water quality data to evaluate the impact the production wells and specially-constructed extraction wells have on control of contamination migration. It is difficult to develop a precise picture of the geographic extent of contamination because water quality is obtained from numerous wells that produce water from different depths below the groundwater table. Figure 9 shows the approximate geographic extent of VOC contamination and operating VOC treatment facilities from about five years ago, and from current data. In addition, the anticipated treatment facilities and the approximate geographic extent of VOC contamination, using engineering judgment, for five years in the future is also shown on Figure 9. The 2010-11 plume indicates the treatment facilities have begun to control plume movement. It also indicates that, as a result of above-average groundwater replenishment, groundwater flow has shifted VOC contamination to the east in the northwesterly portion of the plume. In the future, Watermaster anticipates the area of the VOC plume will begin to decrease, as shown on the 2015-16 plume. Similarly, Figure 10 shows the approximate geographic extent of perchlorate. The series of three plume characterizations and facility indicators show that in 2005-06 treatment existed at four sites. With the construction and operation of treatment facilities (2010-11), plume movement is expected to be controlled and, similar to VOCs, begin to decrease in the future (2015-16).

The term of the BPOU Project Agreement is 15 years and extends through 2017. Watermaster will continue to coordinate BPOU cleanup activities among the various parties to the BPOU Project Agreement over at least the next six years, including interfacing with USEPA, overseeing agreements between water purveyors to use the treated water, and providing accounting services to track BPOU Project costs and funds received. With all of the BPOU facilities now operational, Watermaster is also coordinating collection of field data, such as water production, water quality and water levels, and is providing BPOU Project performance reports to USEPA in cooperation with the CRs.

The projects will ensure that there is an adequate water supply for the BPOU area. These projects are consistent with the USEPA ROD, meet contaminant removal and containment requirements, and meet local water supply needs.

SOUTH EL MONTE OPERABLE UNIT (SEMOU)

The SEMOU covers approximately eight square miles in the south-central portion of the Basin. It is bounded by the I-10 Freeway, the 60 Freeway, the I-605 Freeway, and San Gabriel Boulevard. (See Figure 8). A ROD for the SEMOU was issued in 2000 addressing VOC contamination in a limited area. Subsequently, additional water supply wells became contaminated and new contaminants, including perchlorate, were detected in wells in the SEMOU area. In November 2005, USEPA revisited its ROD and issued an Explanation of Significant Differences (ESD) indicating that SEMOU cleanup projects would also address treatment of perchlorate. Since a perchlorate source has not yet been identified in that area, the Responsible Parties (RPs) objected to a requirement to pay for perchlorate treatment, and negotiations for the RPs to fund SEMOU groundwater cleanup activities have been moving slowly.

In the meantime, area water purveyors who were impacted by contaminant migration and new perchlorate detections were forced to construct new or additional treatment facilities to maintain safe, reliable water supplies. The City of Monterey Park, San Gabriel Valley Water Company, and Golden State Water Company (GSWC) have all constructed new or additional treatment facilities within SEMOU. The San Gabriel Basin Water Quality Authority (WQA) has assisted these Producers by providing outside funding to help offset project costs.

MONTEREY PARK PROJECT. Monterey Park constructed a water treatment facility at its Delta Plant to treat VOCs and perchlorate. Monterey Park Well No. 9 (which only had detectable concentrations of VOCs) began operating through the VOC treatment facility in April 2002. Following construction and permitting of the perchlorate treatment facility, Monterey Park Well No. 12 began operation in spring 2005. Monterey Park began operation of Well No. 15 in summer 2006. Production is from Monterey Park Wells No. 12 and No. 15 to operate consistent with the SEMOU ROD. Watermaster and Monterey Park maintain data on water quality in monitoring wells located upgradient of Wells No. 9, 12, and 15. Since the treatment facility began operation, over 38,500 acre-feet of water has been treated and about 5,400 pounds of contaminants removed from the groundwater.

SAN GABRIEL VALLEY WATER COMPANY (SGVWC) PLANT 8 PROJECT.

SGVWC Plant 8 VOC Treatment Facility has a capacity of 5,000 gpm and has been in operation since fiscal year 2001-02. In response to increasing VOC concentrations, SGVWC voluntarily constructed supplemental VOC treatment at Plant 8. The supplemental VOC treatment facility was permitted by CDPH in September 2006 and went online in December 2006. Since the original VOC treatment facility operation, over 26,600 acre-feet of water has been treated and about 2,700 pounds of contaminants have been removed from the groundwater.

GOLDEN STATE WATER COMPANY (GSWC) PROJECT. GSWC VOC treatment facility at San Gabriel Wells No. 1 and 2 had been permitted and operating. However, with the establishment of the revised Perchlorate NL in 2002, GSWC voluntarily removed the wells from operation. Subsequently, GSWC installed an ionexchange system to remove perchlorate and has resumed operation at its San Gabriel Well No. 1. The treatment facility has treated about 9,000 acre-feet of water and removed about 340 pounds of contaminants.

EL MONTE OPERABLE UNIT (EMOU)

The EMOU covers an area of about 10 square miles in the south-central portion of the Basin. It is bounded by the I-10 Freeway in the south, Rosemead Boulevard in the west, and Santa Anita Avenue and Rio Hondo on the east. The northern bound-ary generally follows Lower Azusa Road (see Figure 8). While shallow contamination is found throughout the EMOU, deep (intermediate zone) contamination is found in the northwest and easterly area of the EMOU.

The USEPA's ROD for the EMOU includes numerous small, shallow extraction wells and treatment, along with two areas of deep extraction and treatment. Due to generally poor water quality in the area, the shallow groundwater will not be used for a potable supply. The deep extractions are recommended for potable use by local water purveyors. The remediation efforts are separated into "Westside" and "Eastside" activities.

EMOU Westside Projects. On the Westside there are plans to clean up contaminants occurring in the shallow aquifer. Watermaster is coordinating with the Westside entities to address the disposition of the treated water. The deep zone extraction and treatment in the northwest area is being accomplished by the existing Encinita Wellfield and Treatment Facility owned by GSWC, which began operation during 1998. During July 2002, USEPA issued an Explanation of Significant Differences (ESD), which indicated that perchlorate, NDMA, 1,4-dioxane, and hexavalent chromium had been detected in excess of CDPH notification levels. In the event water from extraction wells cannot be blended to acceptable levels, additional treatment facilities will need to be installed, significantly increasing cleanup costs. Thus far, extraction and treatment of VOCs at GSWC Encinita Plant have not been impacted. The GSWC treatment facility has treated about 16,000 acre-feet of water and has removed about 380 pounds of contaminants.

EMOU Eastside Projects. The remediation on the Eastside will also involve cleanup of contaminants in the shallow aquifer. Final disposition of the water has not yet been determined and is still being coordinated by Watermaster. The VOC contamination in the deep aquifer is anticipated to be produced from three wells and the fully treated water will be provided to the City of El Monte. Watermaster will continue to assist with data collection and permitting of facilities over the next five years.

PUENTE VALLEY OPERABLE UNIT (PVOU)

The PVOU lies in the southeastern portion of the Basin, essentially bounded by the 60 Freeway in the south, Azusa Avenue in the east, and the I-10 Freeway in the north (see Figure 8). The PVOU encompasses the Puente Valley, which is tributary to the southeasterly portion of the Basin. Contamination in the PVOU includes various VOCs. All aquifers within the PVOU (shallow, intermediate, and deep) are considered sources for municipal water supplies. The USEPA has issued a ROD for the PVOU. The plan identified in the ROD includes extraction and treatment of groundwater within the shallow and intermediate zones from wells located in the center of the PVOU.

PVOU Shallow Zone Project. The cleanup plan for shallow zone contamination includes nine wells that will collectively produce about 1,000 gpm. Due to the poor quality of shallow zone water (which is high in naturally-occurring dissolved solids), the water will not be used as drinking water, but will instead be treated to remove VOCs and will then be recharged back into the Basin. Watermaster is currently working with USEPA and the Responsible Party to develop an agreement to allow production and discharge of the PVOU shallow zone water. The shallow zone project is currently anticipated to be operational during fiscal year 2012-13.

PVOU Intermediate Zone. Watermaster is working with USEPA, Responsible Parties and local water entities to develop a cleanup solution that meets potable water supply needs. Approximately 1,000 gpm will be produced from the intermediate zone extraction wells, treated and used for potable purposes by a local water purveyor. The intermediate zone project is currently anticipated to be operational during fiscal year 2012-13.

WHITTIER NARROWS OPERABLE UNIT (WNOU)

The USEPA has declared that the WNOU is a "fund-lead" project, meaning that the USEPA (with the state) has funded the design, construction, and operation of the remedy and will seek cost recovery from Responsible Parties later. The USEPA cleanup plan involves a series of shallow and intermediate zone extraction wells with treatment (see Figure 8). The total extractions are estimated to be about 11,000 gallons per minute (5,000 gpm shallow and 6,000 gpm intermediate zone).

<u>WNOU Intermediate Zone Project.</u> The City of Whittier has obtained a CDPH permit to use the 6,000 gpm of treated intermediate zone water for municipal use instead of producing water from its existing wells. Since production began in late 2005, about 29,000 acre-feet of groundwater has been treated and about 1,100 pounds of contaminants removed.

WNOU Shallow Zone Project. During fiscal year 2002-03, NDMA was detected in some of the shallow extraction wells, prolonging the testing and review process for the shallow zone water through June 2007. Studies indicated the shallow zone contamination could be adequately contained at an extraction rate of 2,500 gpm. Treated shallow zone water is discharged for conservation and recreational use at Legg Lake, and Watermaster has entered into a production agreement with USEPA and the County of Los Angeles regarding the accounting of that water.

Since production began at the WNOU facility, over 27,300 acre-feet of groundwater has been treated, and over 1,620 pounds of contaminants have been removed.

AREA 3 OPERABLE UNIT

The Area 3 Operable Unit is located in the westerly portion of the Basin. It is generally bounded on the south by the I-10 Freeway, on the east by Rosemead Boulevard, on the North by Huntington Drive and on the west by the boundary of the Main Basin (see Figure 8). EPA has installed a series of monitoring wells to collect water quality data to supplement data collected from water supply wells and has initiated a Remedial Investigation and Feasibility Study to identify the extent of the contamination and to evaluate appropriate cleanup remedies. In addition, Watermaster issued a permit during 2005-06 to the City of Alhambra to construct a treatment facility to remove VOCs from wells No. 7, 8, 11 and 12. The treatment facility became operational in April 2009 prior to USEPA's development of a final remedy but is necessary for Alhambra to receive a reliable source of supply from the groundwater basin. The facility has treated about 8,100 acre-feet and has removed about 230 pounds of contaminants.

PRODUCERS' WATER SUPPLY PLANS

Watermaster's Water Quality Protection Plan provides early warning to Producers before their wells are found to exceed drinking water quality standards. The Plan also contains pre-analyzed suggestions to the Producers for responding to the presence of contaminants.

WATER SUPPLY PLANS TO MEET PROJECTED DEMANDS Water Producers propose to construct 12 new wells and build six treatment plants during the next five years. Watermaster will continue providing the following services to assist Producers in meeting water demand:

- investigate all new or increased water extractions;
- provide computer modeling and technical support on treatment issues concerning the impact of extractions on contaminant migration;
- prioritize areas requiring further investigation, and coordinate with Producers on water supply modifications; and
- direct changes in pumping or treatment as necessary.

CONDUCT STUDIES, MONITORING AND INVESTIGATIONS

The Main San Gabriel Groundwater Basin is very complex, covering 167 square miles and holding about 2.8 trillion gallons of water. Water enters the Basin from countless natural and man-made locations, and is extracted from over 200 wells operated by dozens of independent Producers. Watermaster conducts special studies to identify projected water demands and to increase understanding of the Basin, so that it can be managed in a way that preserves and improves water supply and quality. In addition, Watermaster routinely reviews available data and is prepared to construct new monitoring wells to obtain supplemental water level and water quality data to better manage the Basin. As a result of these activities, and the cooperative activities with the Regional Board (noted below), there is no longer on-going VOC or Perchlorate contamination occurring; rather the focus and emphasis are on clean-up activities.

LANDFILL INSPECTIONS

Watermaster routinely conducts on-site inspections of area landfills to ensure they are operated in a way that does not allow contaminants to seep into the ground-water. Watermaster reports any violations of Waste Discharge Requirements to the Regional Water Quality Control Board for enforcement.

IDENTIFY AND REDUCE POTENTIAL SOURCES OF CONTAMINATION

COOPERATE WITH THE REGIONAL

WATER QUALITY CONTROL BOARD

Since 1993, Watermaster has obtained information from the Regional Board about sources of VOC contamination in the Basin as part of the Regional Board investigations of potential contaminated sites. The information includes a description of all potential sources of contamination investigated by the Regional Board, including:

- maps showing the location of all investigation sites;
- available cause-and-effect relationships between pollution sources and contaminated wells; and
- plans and tentative schedules to abate the source of pollution and to clean up the soil and water.

Watermaster has reviewed a large amount of information gathered in Regional Board files and entered it into a database. This information is used in Watermaster's Section 28 process to help evaluate changes in pumping practices in relation to known contamination sources.

AQUIFER PERFORMANCE TESTS

Watermaster has developed a groundwater flow model for the entire Basin that assists in evaluating the potential impacts of changes in groundwater production.

Although Watermaster completed its three-year Aquifer Performance Test investigation, additional tests will be conducted as required for Section 28 applications or for other needs. A tabulation of potential Aquifer Performance Test investigation sites is included in Appendix D. The sites identified include a pumping well and at least one monitoring well. The tests provide information on the characteristics of the aquifer, such as transmissivity, hydraulic conductivity, and coefficient of storage. The information gathered on aquifer characteristics will support cleanup activities including groundwater model development and calibration (see Appendix D).

DIRECTORY TO APPENDICES

The Following Appendices Are Found in This Section:

- A. Projected Groundwater Demands from 2011-12 to 2015-16
- B. Simulated Changes in Groundwater Elevations at Wells or Wellfields in Main San Gabriel Basin
- C. Highlights of Volatile Organic Compounds and Nitrate Concentrations and Wells Vulnerable to Contamination
- D. Potential Sites for Aquifer Performance Tests
- E. Summary of Treatment Facility Activity in the Main San Gabriel Basin
- F. Maps Showing Wells Vulnerable to VOC, Nitrate and Perchlorate Contamination Within Five Years (Figures 11a, 11b, and 11c)
- G. Simulated Basin Groundwater Contours 2010-11 and 2015-16 (Figures 12 and 13)

RECORDATION PROJECTED GROUNDWATER DEMANDS WELL WELL CAPACITY 2010-11 NUMBER NAME ACRE-FEET PRODUCTION 2012-13 2013-14 GPM 2011-12 2014-15 2015-16 ADAMS RANCH MUTUAL WATER COMPANY 1902106 1 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1902689 2 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 8000182 3 NA 65.94 75.00 75.00 75,00 75.00 75.00 NA SUBTOTAL: NA NA 65.94 75.00 75.00 75.00 75,00 75.00 ALHAMBRA, CITY OF (1) 1900010 MOELR (8) 3,145 1,950 2,384.36 2,900.78 2,942.10 2,983.98 3,026.16 3,068.90 1900011 887 550 0.00 0.00 0.00 0.00 0.00 0.00 9 1900012 10 323 200 14.15 17.21 17.46 17.71 17.96 18.21 1900013 12 968 600 1.03 1.25 1.27 1.29 1.33 1.31 1900014 2,371 0.06 0.07 0.07 13 1.470 0.08 0.08 0.08 1900015 1,061.56 1,291,48 1,309.87 1,328.52 1,347.30 14 2.016 1.250 1.366.33 1900016 1.767.46 1.792.63 15 1.823 1.130 1,452.80 1.818.15 1.843.85 1.869.89 1900017 2 LON 1,971.08 1,999.15 2,056.27 2.355 1,460 1.620.17 2.027.61 2.085.31 1900018 GARF 763 473 0.00 0.00 0.00 0.00 0.00 0.00 1902789 368.26 448.02 454.40 460.87 467.38 473 99 11 ON 948 1.529 1903014 701.54 568.55 691.69 721.59 11 839 520 711.53 731.78 1903097 7 896 74 1.090.96 1.106.50 2,581 1,600 1.122.25 1,138.11 1,154.19 SUBTOTAL: 10.325.00 19,600 12.151 8.367.68 10,180.00 10,472.00 10 620.00 10,770,00 AMARILLO MUTUAL WATER COMPANY (SAN GABRIEL VALLEY WATER COMPANY) (1) 1900791 644 399 357.48 406.51 414.64 422.93 431.38 431_38 1900792 2 424 263 0.24 0.47 0.48 0.48 0.50 0.50 SUBTOTAL: 1,068 662 357.72 406.98 415,11 423,42 431.88 431.88 ANDERSON, RAY L. AND HELEN 8000085 NA 0.00 0.00 0.00 0.00 0.00 0.00 18 11 SUBTOTAL: 18 0.00 0.00 0.00 0,00 0.00 0.00 11 ARCADIA, CITY OF 1901013 1 LON 2.250 770.15 800.00 800.00 800.00 800.00 3.629 800.008 1901014 390.35 2 LON 500.00 500.00 500.00 3.629 2.250 500.00 500.00 1901015 1 BAL 0.00 0.00 0.00 0.00 NA NA 0.00 0.00 1902077 1 CAM 0.00 0.00 0.00 0.00 0.00 0.00 NA NA 1902078 2 CAM NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1902084 21 GY NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1902358 0.00 0.00 1 STJ NA NA 0.00 0.00 0.00 0.00 1902791 2 BAL 323 200 0.00 0.00 0.00 0.00 0.00 0.00 4,200.00 4,200.00 4,200.00 1902854 1 PEC 5,646 3,500 4,089.79 4,200.00 4,200.00 8000127 110 7.097 4.400 3.930.68 4.000.00 4.000.00 4.000.00 4,000.00 4.000.00 8000177 2 STJ 4,839 3,000 41.62 100.00 100.00 100.00 100.00 100.00 8000213 3 CAM 4,033 2,500 261.78 800,00 800.00 800,00 800.00 800.00 8000214 3 LGY 4,033 2,500 356,21 1,000.00 1,000.00 1,000.00 1,000.00 1,000.00 SUBTOTAL: 33,228 20,600 9,840.58 11,400.00 11,400.00 11,400.00 11,400.00 11,400.00 ATTALLA, MARY L. 8000119 NA NA NA 0.00 0.00 0.00 0.00 0.00 0.00

PROJECTED GROUNDWATER DEMANDS FROM 2011-12 TO 2015-16

0.00

0.00

0.00

0.00

0.00

0.00

NA

NA

SUBTOTAL:

RECORDATION	WELL	WELL CAPA		2010-11		PROJECTED GR	ROUNDWATER	DEMANDS	
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-16
<u></u>		A data	and a set	la sette					
AZUSA, CITY OF (A	AZUSA AGRICULI	TURE WATER CON	IPANY, AZL	ISA VALLEY WAT	ER COMPANY) (1)			
1902533	5 (1)	1,613	1,000	360,52	1,514.00	1,514.00	1,514.00	1,514_00	1,514.00
1902535	6 (3)	4,839	3,000	133.57	397.00	397,00	397.00	397.00	397.00
1902536	GENESIS 1 (4)	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1902537	GENESIS 2 (5)	NA	NA	0,00	0.00	0.00	0.00	0.00	0.00
1902538	GENESIS 3 (6)	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
8000072	1 (7)	5,242	3,250	722,55	1,692.00	1,692.00	1,692.00	1,692.00	1,692.00
8000086	3 (8)	4,516	2,800	3,877.38	2,980.00	2,980.00	2,980.00	2,980.00	2,980.00
1902457	2 (1 NORTH)	4,516	2,800	1,084.30	4,079.00	4,079.00	4,079,00	4,079.00	4,079.00
1902458	4 (2 SOUTH)	4,033	2,500	2,932.46	3,314.00	3,314.00	3,314.00	3,314.00	3,314.00
1902113	AVWC 1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1902114	AVCW 2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1902115	8 (AVWC 4)	2,984	1,850	53,40	38.00	38.00	38.00	38.00	38.00
1902116	7 (AVWC 5)	1,694	1,050	74.31	258.00	258.00	258.00	258.00	258.00
1902117	9 (AVWC 6)	NA	NA	0.00	0.00	0.00	0.00	0.00	0,00
1902425	AVWC 7	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
8000103	10 (AVWC 8)	4,194	2,600	3.41	6.00	6.00	6.00	6.00	6.00
8000178	11	3,549	2,200	2,181.74	1,076.00	1,076.00	1,076_00	1,076.00	1,076.00
8000179	12	2,581	1,600	1,372,80	1,136.00	1,136.00	1,136.00	1,136.00	1,136.00
1903119	VULCAN			0,94	50.00	50.00	50.00	50.00	50.00
SUBTOTAL:		15,001	9,300	12,797.38	16,540.00	16,540.00	16,540.00	16,540.00	16,540.00
CEMEX CONSTRUC	CTION MATERIAL	S L.P. (AZ-TWO IN	C.)						
1900038	2	2,305	1,429	0.00	0.00	0.00	0,00	0.00	0.00
SUBTOTAL:		2,305	1,429	0.00	0.00	0.00	0.00	0.00	0.00
B & B RED-I-MIX C	ONCRETE INC.								
1902589	1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0,00	0.00	0,00	0.00	0.00
BANKS, GALE & VI	ICKI (1)								
1900415	NA	560	347	23.14	25.00	25.00	25.00	25.00	25.00
SUBTOTAL:		560	347	23.14	25.00	25.00	25.00	25.00	25.00
BASELINE WATER	COMPANY								
100/000						0.00	0.00		
1901200	1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1901201	2	NA	NA	0.00	0.00	0.00	0.00	0.00	0_00
1901202	3	NA	NA	0.00	0_00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0,00	0.00	0.00	0.00	0.00	0.00
BEVERLY ACRES	MUTUAL								
8000004	ROSE HILLS	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
BIRENBAUM, MAX									
8000005	NA	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00

ń.

RECORDATION	WELL	WELL CAPA		2010-11	P	ROJECTED GR	OUNDWATER	DEMANDS	
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-16
BROOKS, GIFFORD	JR.								
1902144	1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
	2			-97-0					
SUBTOTAL:		NA	NA	0.00	0_00	0.00	0.00	0.00	0.00
BURBANK DEVELO	PMENT COMP	ANY							
1900093	BURB	NA	NA	0.00	0.00	0.00	0.00	0,00	0.00
UBTOTAL:		NA	NA	0.00	0.00	0.00	0_00	0.00	0.00
ALIFORNIA-AMER	ICAN WATER O	COMPANY/DUARTE	SYSTEM (1)						
1900354	STA FE	3,226	2,000	412.73	484,78	492.05	499.46	507.02	514.57
1900355	B-V	3,468	2,150	559.35	657.00	666.85	676.89	687.13	697.3
1900356	MT AVE	1,936	1,200	0,00	0.00	0.00	0.00	0_00	0.00
1900357	LAS L	1,113	690	0.00	0.00	0.00	0.00	0.00	0.0
1900358	FISH C	1,936	1,200	0.00	0.00	0.00	0.00	0.00	0.0
1902907	WILEY	2,581	1,600	1,254.36	1,473,34	1,495,43	1,517,96	1,540.91	1,563.8
1903018	CR HV	2,823	1,750	941.38	1,105.72	1,122,30	1,139,21	1,156.43	1,173.6
8000139	ENCTO	3,549	2,200	1,794.78	2,108,11	2,139,72	2,171.94	2,204.79	2,237.6
8000140	LASL 2	2,742	1,700	741.25	870.66	883,71	897.02	910.59	924.1
11900497	BACON	726	450	88.02	103.39	104,94	106,52	108.13	109.7
UBTOTAL:		24,098	14,940	5,791.87	6,803.00	6,905.00	7,009.00	7,115.00	7,221.0
ALIFORNIA-AMER	ICAN WATER C	COMPANY/SAN MAR	NINO SYSTEM	VI (1)					
1900917	HALL	NA	NA	0.00	0.00	0,00	0.00	0.00	0.00
1900918	GUESS	634	393	0.00	0.00	0.00	0.00	0.00	0_0
1900919	MISVW	NA	NA	0.00	0.00	0.00	0.00	0.00	0.0
1900920	MISVW	2,571	1,594	1,701.45	1,816,80	1,844.11	1,871.81	1,899,72	1,928.0
1900921	RIC-1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.0
1900922	RIC-2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.0
1900923	IVR-1	1,339	830	0.00	0.00	0.00	0.00	0.00	0.0
1900924	MAR-1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.0
1900925	MAR-2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.0
1900926	GRAND	1,816	1,126	502.64	536.72	544.78	552.97	561.21	569.5
								564.84	573.2
1900927	ROSE	929	576	505.89	540.19 0.00	548.31	556.54	0.00	0.0
1900934	ROAN	1,952	1,210	0.00		0.00	0.00 829.49		0.0 854.3
1900935	LONG	3,152	1,954	753.99	805.11	817,21		841,85	
1901441	BR-1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.0
1902424	HOWL	1,707	1,058	521.29	556.63	565,00	573.49	582.04	590.7
1902787	BR-2	NA	NA	0.00	0,00	0.00	0.00	0.00	0.0
1902867	IVR-2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.0
1903019	MAR-3	2,766	1,715	1,834.10	1,958.45	1,987.88	2,017.75	2,047.83	2,078.3
1903059	DELMAR	1,571	974	1,167.35	1,246.49	1,265.23	1,284.24	1,303.38	1,322.8
8000175	HALL-2	NA	NA	1,549.56	1,654,61	1,679.48	1,704.72	1,730.13	1,755.9
UBTOTAL:		18,437	11,430	8,536,27	9,115.00	9,252.00	9,391.00	9,531.00	9,673.00
ALIFORNIA COUN	TRY CLUB								
1902529	CLUB	NA	NA	0.00	0.00	0,00	0,00	0,00	0.0
1902531	ARTES	1,129	700	0.01	4,12	4.12	4.12	4,12	4.1
1903084	SYC	1,290	800	0.03	0,88	0.88	0.88	0.88	0,8
SUBTOTAL:		2,420	1,500	0.04	5.00	5.00	5.00	5.00	5,00

PROJECTED GROUNDWATER DEMANDS FROM 2011-12 TO 2015-16

RECORDATION	WELL	WELL CAP	ACITY	2010-11 PROJECTED GROUNDWATER DEMANDS					
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-16
CALIFORNIA DOMI	ESTIC WATER CO	MPANY (1)							
1901181	2	5,404	3,350	894.45	1,037.51	1,121.63	1,233.79	1,385,21	1,413,25
1901182	1-E	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1901183	5	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1901185	13-N	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1902967	6	6,775	4,200	2,789.13	3,235.22	3,497.53	3,847.29	4,319.46	4,406.89
1903057	3	7,581	4,700	6,852.03	7,947.93	8,592.36	9,451.60	10,611.57	10,826.38
1903081	8	5,162	3,200	308.03	357.30	386.27	424.89	477.04	486.69
8000100	5A	7,742	4,800	5,105,48	5,922.04	6,402.21	7,042_43	7,906.73	8,066.78
8000174	14	4,516	2,800	0.00	0.00	0.00	0.00	0_00	0.00
11900092		NA	NA	0.00	0,00	0.00	0.00	0.00	0.00
SUBTOTAL:		37,180	23,050	15,949.12	18,500.00	20,000.00	22,000.00	24,700.00	25,200.00
CEDAR AVENUE M	UTUAL WATER C	OMPANY							
1901411	1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1902783	2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		0	0	0.00	0,00	0.00	0.00	0.00	0.00
CHAMPION MUTUA	L WATER COMP	ANY (1)							
1900908	1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1902816	2	516	320	0.58	0,57	0.57	0,57	0.57	0.57
8000121	3	145	90	88.20	86.93	86.93	86.93	86.93	86,93
SUBTOTAL:		661	410	88.78	87.50	87.50	87.50	87.50	87.50
CHEVRON USA									
1900250	TEMP1	NA	NA	0,00	0,00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
CLAYTON MANUE	CTURING COMP	ANY							
1901055	2	NA	NA	0.00	0.00	0.00	0.00	0,00	0.00
8000170	MW-4	NA	NA	0_00	0_00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0_00	0.00
COLLISON, E.O.									
1902968	NA	NA	NA	0.00	0.00	0,00	0,00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0,00	0.00	0.00
ULCAN MATERIA	LS COMPANY (CA	LMAT COMPANY)						
1902920		6 306	2 050	78.85	73,82	83.05	92.28	101 51	110 74
	E DUR	6,386	3,959	000.01				101.51	110.74
1903088	1 REL	4,068	2,522	309.01	289.31	325.48	361.64	397.81	433.97
8000063	WDUR	NA	NA	39.37	36.86	41.47	46.08	50.68	55,29
UBTOTAL:		10,454	6,481	427,23	400.00	450.00	500.00	550.00	600.00
ORCORAN BROS									
1902814	1	NA	NA	0,00	0.00	0.00	0,00	0,00	0.00
SUBTOTAL:		NA	NA	0,00	0.00	0.00	0.00	0.00	0.00

*

6					NDS FROM 2011-12 TO 2015-16					
RECORDATION	WELL	WELL CAP	ACITY	2010-11	F	ROJECTED GF	ROUNDWATER			
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-16	
COUNTY SANITATIO	ON DISTRICT N	O. 18								
8000008	2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
8000009	3	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
8000104	LE 1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
8000105	LE 2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
8000106	LE 3	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
8000107	LE 4	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
8000128	E08A	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
8000129	E09A	NA	NA	0.00	0.00	0.00	0,00	0.00	0.00	
8000130	E10A	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
8000131	E11A	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
8000141	EX1	NA	NA	0.61	0.63	0.63	0.63	0.63	0.63	
8000142	EX2	NA	NA	0.64	0.66	0.66	0,66	0.66	0.66	
8000143	EX3	NA	NA	0.02	0.02	0.02	0.02	0.02	0.02	
8000144	EX4	NA	NA	0.07	0.07	0.07	0.07	0.07	0.07	
8000153	E16A	NA	NA	1.10	1.14	1,14	1.14	1.14	1.14	
8000154	E17A	NA	NA	7.11	7.35	7.35	7.35	7.35	7.35	
8000155	E18A	NA	NA	0.62	0.64	0.64	0.64	0.64	0.64	
8000156	E19A	NA	NA	0.98	1.01	1.01	1.01	1_01	1.01	
8000173	E20A	NA	NA	1.45	1.50	1,50	1.50	1.50	1.50	
8000161	E01R	NA	NA	0.23	0.24	0.24	0.24	0.24	0.24	
8000162	E03R	NA	NA	0.14	0.14	0.14	0.14	0.14	0,14	
8000163	E05R	NA	NA	0.68	0.70	0,70	0.70	0.70	0.70	
8000164	E07R	NA	NA	1.72	1.78	1.78	1.78	1.78	1.78	
8000165	E02R	NA	NA	1.91	1.97	1.97	1.97	1,97	1.97	
8000166	E04R	NA	NA	0.71	0.73	0,73	0.73	0.73	0.73	
8000167	E06R	NA	NA	0.28	0.29	0.29	0.29	0.29	0.29	
8000168	E08R	NA	NA	1.09	1.13	1.13	1.13	1.13	1.13	
SUBTOTAL:		NA	NA	19.36	20,00	20,00	20.00	20,00	20,00	
AZUSA ASSOCIATE	S LLC (COVEL	L, ET AL)								
1900390	DALTON	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
COVINA, CITY OF										
COVINA, CITTOP										
1901685	1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
1901686	2	968	600	0.00	0.00	0.00	0,00	0.00	0.00	
1901687	3	NA	NA	0.00	0,00	0.00	0.00	0.00	0.00	
SUBTOTAL:		968	600	0.00	0.00	0.00	0,00	0.00	0_00	
COVINA IRRIGATIN	G COMPANY (1))								
1900881	CONTR	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
1900882	3 BAL	3,549	2,200	907.97	1,200.00	1,200.00	1,500.00	1,500.00	2,000.00	
1900883	2 BAL	3,226	2,200	871.86	1,200.00	1,200.00	1,500.00	1,500.00	1,500.00	
1900885	1 BAL	2,420	1,500	952.17	1,600.00	2,000.00	2,000.00	2,400.00	2,400.00	
11900880	VALEN	2,420 NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
21900880	VALEN	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	
SUBTOTAL:		9,194	5,700	2,732.00	4,000,00	4,400.00	5,000.00	5,400.00	5,900.00	
CREVOLIN, A.J.										
8000011	NA	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00	

PROJECTED GROUNDWATER DEMANDS FROM 2011-12 TO 2015-16

0,00

0.00

0.00

0.00

0.00

0.00

NA

NA

SUBTOTAL:

RECORDATION	WELL	WELL CAPA	CITY	2010-11	1	PROJECTED GR	OUNDWATER	DEMANDS	
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-16
CROWN CITY PLAT	ING COMPANY								
8000012	01	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0,00	0,00	0.00	0.00	0.00	0.00
DAVIDSON OPTRO	NICS INC.								
8000013	NA	NA	NA	0.00	0.00	0.00	0.00	0.00	0,00
SUBTOTAL:		NA	NA	0,00	0.00	0.00	0.00	0.00	0.00
DAWES, MARY K.									
1902952	04	NA	NA	0.00	0.00	0,00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0,00	0,00	0.00
DEL RIO MUTUAL W	VATER COMPAN	Y (2)							
1900331 1900332	BURKE KLING	261 NA	162 NA	110.34 0.00	150.00 0.00	150,00 0,00	150.00 0.00	150.00 0.00	150.00 0.00
SUBTOTAL:		261	162	110.34	150.00	150.00	150.00	150.00	150.00
DRIFTWOOD DAIRY									
1902924	01	298	185	57.02	80,00	80.00	80.00	80,00	80.00
SUBTOTAL:		298	185	57.02	80.00	80.00	80.00	80.00	80.00
DUNNING, GEORGE									
1900091	1910	NA	NA	0,00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0,00	0.00	0.00	0.00	0.00	0.00
EAST PASADENA W	ATER COMPAN	Y, LTD. (1)							
11901508	9	2,500	1,550	1,474.01	1,536.21	1,543.87	1,551.59	1,559.36	1,567.15
SUBTOTAL:		2,500	1,550	1,474.01	1,536.21	1,543.87	1,551.59	1,559,36	1,567,15
EL MONTE, CITY OF	(1)								
1901692	2A	1,532	950	395,65	496.55	496.55	496,55	496.55	496.55
1901693	3	1,936	1,200	0.00	0.00	0.00	0.00	0.00	0.00
1901694	4	2,258	1,400	0.00	0.00	0.00	0.00	0.00	0.00
1901695	5	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1901699	10	2,420	1,500	733.56	920.63	920,63	920.63	920.63	920,63
1901700	11	NA	NA	0.00	0.00	0.00	0.00	0,00	0.00
1902612 1903137	MT VW 12	807	500	0.00	0.00	0.00	0.00	0,00	0.00
8000066	12	3,468 NA	2,150 NA	742.33 0.00	931.63 0.00	931,63 0.00	931.63 0.00	931.63 0.00	931_63 0.00
8000101	13	4,678	2,900	382,62	480.19	480.19	480.19	480,19	480.19
SUBTOTAL:		17,098	10,600	2,254.16	2,829.00	2,829.00	2,829.00	2,829.00	2,829.00
EL MONTE CEMETE	RY ASSOCIATIO	N							
8000017	NA	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0,00

RECORDATION WELL CAPACITY PROJECTED GROUNDWATER DEMANDS WELL 2010-11 NUMBER NAME ACRE-FEET GPM PRODUCTION 2011-12 2012-13 2013-14 2014-15 2015-16 FRUIT STREET WATER COMPANY 1901199 NA NA NA 0.00 0.00 0,00 0.00 0.00 0.00 SUBTOTAL: NA NA 0.00 0.00 0,00 0.00 0.00 0.00 GATES, JAMES RICHARD 8000215 GATES 1 NA NA 1.60 4.00 4,00 4,00 4.00 4.00 SUBTOTAL: NA NA 1.60 4.00 4.00 4.00 4.00 4.00 GLENDORA, CITY OF (1) 78.66 102,67 102.67 1900826 11-E 1,281 794 99.71 102.67 102.67 1900827 12-G 1,833 2,746.66 3,481.76 3,584.93 3,584.93 3,584.93 3,584.93 2.957 1900828 10-E 150.35 190.59 196.24 196.24 196.24 196.24 629 390 1900829 2,258 1,400 2,070.35 2,624.45 2,702.21 2,702.21 2,702.21 2,702.21 8-E 1900830 2,757 2.175.17 2,757.32 2,839.02 2.839.02 2,839.02 2,839,02 9-E 1,709 1900831 0.00 0.00 0.00 0.00 0.00 0.00 7-G NA NA 1901523 215 0.00 0.00 0.00 0.00 1-E 347 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1901524 3 549 2.200 4-F 1901525 0.00 0.00 0.00 0.00 0.00 0.00 3-G 3.307 2,050 255.44 1901526 195.71 248.09 255 44 255.44 255 44 2-E 484 300 8000003 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 8000149 5-F 3,039 1,884 2,227,97 2 824 25 2,907,94 2,907,94 2,907,94 2,907,94 8000184 13-E 1,168 724 1,004,88 1,273.82 1,311.56 1,311.56 1,311.56 1,311.56 SUBTOTAL: 21,774 13,499 10,649.75 13,500.00 13,900.00 13,900.00 13,900.00 13,900.00 GOEDERT, LILLIAN 8000027 GOEDERT NA NA 0.00 0.00 0.00 0.00 0.00 0.00 SUBTOTAL: NA 0.00 0.00 0.00 0.00 0.00 0.00 NA **GREEN, WALTER** 8000027 0.00 0.00 0.00 0.00 0.00 0.00 NA NA NA 8000028 NA NA 0.00 0.00 0.00 0.00 0.00 NA 0.00 SUBTOTAL: NA NA 0.00 0.00 0.00 0.00 0.00 0.00 HANSEN, ALICE 2946 0.00 0.00 0.00 0.00 0.00 0.00 8000029 NA NA SUBTOTAL: NA 0.00 0.00 0.00 0.00 0.00 0.00 NA HARTLEY, DAVID 0.00 0.00 8000029 NA NA NA 0.00 0.00 0.00 0.00 SUBTOTAL: NA NA 0.00 0,00 0.00 0,00 0.00 0.00 HEMLOCK MUTUAL WATER COMPANY

PROJECTED GROUNDWATER DEMANDS FROM 2011-12 TO 2015-16

17.82

70.41

88,23

20.20

79.80

100.00

20.20

79.80

100.00

20,20

79,80

100.00

20.20

79.80

100.00

20.20

79.80

100.00

1901178

1902806

SUBTOTAL:

NORTH

SOUTH

219

516

736

136

320

456

	WELL	WELL CAP	ACITY	2010-11	Р	ROJECTED GR	OUNDWATER	DEMANDS	
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-16
		3/1							
NDUSTRY WATER	WORKS SYSTE	M, CITY OF (1)							
1902581	1	2,887	1,790	0.00	0.00	0.00	0.00	0.00	0.00
1902582	2	NA	NA	0.00	0.00	0,00	0.00	0,00	0.00
1902583	5TH AVE	NA	NA	0,00	0.00	0.00	0.00	0.00	0.00
8000078	3	2,420	1,500	0,00	0.00	0.00	0.00	0.00	0.00
8000096	4	3,871	2,400	0,00	0.00	0,00	0.00	0,00	0.00
8000097	5	1,936	1,200	1,394.78	1,840.00	1,840.00	1,840,00	1,840.00	1,840.00
SUBTOTAL:		11,114	6,890	1,394.78	1,840.00	1,840.00	1,840.00	1,840.00	1,840.00
(IYAN, HIDEO									
1902970	NA	NA	NA	0_00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0,00	0,00	0.00	0,00	0,00	0.00
A PUENTE VALLE	Y COUNTY WAT	TER DISTRICT (1)							
1901459	1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1901460	2	2,016	1,250	994.53	4.00	4.00	4.00	4.00	4,00
1902859	3	2,016	1,250	1,085.17	4.00	4.00	4.00	4.00	4.00
8000062	4	807	500	0.00	0.00	0.00	0.00	0.00	0,00
8000209	5	4,033	2,500	1,573.32	3,628.00	3,628.00	3,628.00	3,628.00	3,628.00
SUBTOTAL:		8,872	5,500	3,653.02	3,636.00	3,636.00	3,636.00	3,636.00	3,636.00
A VERNE, CITY OF	ē								
1902322	SNIDO	NA	NA	0.00	0.00	0.00	0.00	0,00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
AKIN, KELLY									
8000158	NA	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0,00	0,00	0,00	0.00	0.00	0.00
ANDEROS, JOHN									
8000031	NA	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
ANSON AGGREG	ATES WEST, IN	C. (LIVINGSTON-GR	AHAM)						
1900961	1 01 14	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1900963	1 DUA 1 KIN	NA NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1900983	1 EL	3,302	2,047	245.09	279,24	325.78	372.32	418-86	465.40
1901493	3 EL	4,563	2,829	18.16	20.69	24.14	27.59	31.04	34.48
1903006	4 EL	356	221	0.06	0.07	0,08	0.09	0.10	0,11
SUBTOTAL:		8,221	5,097	263.31	300,00	350,00	400.00	450,00	500.00
obionite.	UNTY OF								
			1,680	0.00	0.00	0.00	0.00	0.00	0.00
.OS ANGELES, CO	1 WHI	2,710			0.00	0.00	0.00	0.00	0.00
OS ANGELES, CO	1 WHI 2	2,710 1,697		0.00	0.00			0.00	0.00
OS ANGELES, CO 1902579 1902580	2	1,697	1,052	0.00					
OS ANGELES, CO 1902579 1902580 1902663	2 3	1,697 566	1,052 351	0.00	0.00	0,00	0.00	0.00	0.00
OS ANGELES, CO 1902579 1902580 1902663 1902664	2 3 4	1,697 566 832	1,052 351 516	0.00 0,00	0.00 0.00	0,00 0,00	0.00 0.00	0.00	0.00
OS ANGELES, CO 1902579 1902580 1902663 1902664 1902665	2 3 4 5	1,697 566 832 652	1,052 351 516 404	0.00 0.00 0.00	0.00 0.00 0.00	0,00 0,00 0.00	0.00 0.00 0,00	0.00 0.00 0.00	0.00
OS ANGELES, CO 1902579 1902580 1902663 1902664 1902665 1902666	2 3 4 5 6	1,697 566 832 652 NA	1,052 351 516 404 NA	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0,00 0.00	0.00 0.00 0.00 0.00	0.00 0,00 0,00
OS ANGELES, CO 1902579 1902560 1902663 1902664 1902665 1902666 8000070	2 3 4 5 6 1 SF	1,697 566 832 652 NA 3,349	1,052 351 516 404 NA 2,076	0.00 0.00 0.00 0.00 81.32	0.00 0.00 0.00 83.54	0.00 0.00 0.00 0.00 83.54	0.00 0.00 0.00 0.00 83.54	0.00 0.00 0.00 0.00 83.54	0.00 0.00 0.00 83,54
OS ANGELES, CO 1902579 1902560 1902663 1902664 1902665 1902665 8000070 8000074	2 3 4 5 6 1 SF 2 SF	1,697 566 832 652 NA 3,349 458	1,052 351 516 404 NA 2,076 284	0.00 0,00 0,00 81.32 24.68	0.00 0.00 0.00 83.54 25.35	0.00 0.00 0.00 83.54 25.35	0.00 0.00 0.00 83,54 25,35	0.00 0.00 0.00 83.54 25.35	0.00 0.00 0.00 83.54 25.35
OS ANGELES, CO 1902579 1902560 1902663 1902664 1902665 1902666 8000070	2 3 4 5 6 1 SF	1,697 566 832 652 NA 3,349	1,052 351 516 404 NA 2,076	0.00 0.00 0.00 0.00 81.32	0.00 0.00 0.00 83.54	0.00 0.00 0.00 0.00 83.54	0.00 0.00 0.00 0.00 83.54	0.00 0.00 0.00 0.00 83.54	0.00 0.00 0.00 83.54 25.35 0.00 0.01

PROJECTED GROUNDWATER DEMANDS FROM 2011-12 TO 2015-16

RECORDATION	WELL	WELL CAP	ACITY	2010-11		PROJECTED GR	OUNDWATER	DEMANDS	
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-16
								0.00	
11902158	BN PK	2,087	1,294	0.00	0.00	0.00	0.00	0.00	0.00
8000150	3A	1,936	1,200	0.00	0.00	0.00	0.00	0.00	0.00
NA	WNOU	NA	NA	2,619,60	2,691.10	2,691.10	2,691,10	2,691.10	2,691.10
UBTOTAL:		15,783	9,785	2,725.61	2,800.00	2,800,00	2,800.00	2,800.00	2,800.00
OS FLORES MUTU	AL WATER CO	MPANY							
11902098	1-LO	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
21902098	1-HI	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
OUCKS, DAVID									
8000032	NA	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0,00	0,00	0.00	0.00	0,00
MAECHTLEN, J.J. TI	RUSTEE								
1902321	OLD60	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1902322	SNIDO	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1902323	M&N	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
UBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
ANNING BROS. RC	OCK & SAND C	OMPANY							
1900117	36230	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0_00	0.00	0.00	0.00	0.00	0.00
MAPLE WATER COM	IPANY (SUBUR	RBAN WATER SYS	TEMS)						
1900042	2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
8000109	1	NA	NA	0.00	0,00	0,00	0,00	0,00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0,00	0.00	0.00
ARTINEZ, FRANCE	S MERCY								
8000033	NA	NA	NA	0.00	0,00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
METROPOLITAN WA	TER DISTRICT	OF SOUTHERN C	ALIFORNIA						
1900693	2	NA	NA	0.00	0.00	0.00	0,00	0.00	0.00
1900694	3	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
	S WEST, L.P. (N	MILLER BREWING	COMPANY)						
8000034		NA	NA	0.00	0.00	0_00	0.00	0.00	0.00
8000075	1	5,533	3,430	589.18	600.00	600.00	600.00	600.00	600.00
8000075	2	5,533	3,430	0.00	0.00	0.00	0.00	0.00	0.00
	2								
SUBTOTAL:		11,065	6,860	589.18	600.00	600.00	600.00	600,00	600.00

8

RECORDATION	WELL	WELL CAP	ACITY	2010-11	P	ROJECTED GR	OUNDWATER	DEMANDS	
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-16
MONROVIA, CITY O	F (1)								
1900417	1	NA	NA	0.00	0,00	0.00	0.00	0.00	0.00
1900418	2	3,549	2,200	1,374.78	1,393.26	1,400.88	1,386.84	1,375.81	1,363,78
1900419	3	2,581	1,600	1,034.68	1,048.59	1,054.33	1,043.76	1,035.46	1,026.40
1900420	4	3,226	2,000	1,300.37	1,317.85	1,325.06	1,311.78	1,301.35	1,289,96
1940104	5	4,678	2,900	2,059.42	2,087.10	2,098.52	2,077.49	2,060.97	2,042.94
8000171	6	4,516	2,800	1,085.60	1,100.19	1,106.21	1,095.13	1,086.42	1,076.91
SUBTOTAL:		18,550	11,500	6,854.85	6,947,00	6,985.00	6,915_00	6,860.00	6,800.00
MONROVIA NURSER	RY								
1902456	DIV 4	NA	NA	0,04	0,00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.04	0.00	0.00	0.00	0.00	0.00
MONTEREY PARK, O	CITY OF (2)								
1900453	1	1,613	1,000	20.71	22.02	22.02	22.02	22.02	22.02
1900454	2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1900455	3	1,532	950	187.38	199.23	199.23	199.23	199.23	199.23
1900456	4			0.00	0.00	0.00	0.00	0.00	0.00
		NA	NA						
1900457	5	2,903	1,800	1,181.46	1,256,19	1,256,19	1,256.19	1,256,19	1,256,19
1900458	6	968	600	0.00	0.00	0.00	0.00	0.00	0.00
1902372	7	1,290	800	67,95	72.25	72.25	72.25	72.25	72.25
1902373	8	2,903	1,800	0.00	0.00	0.00	0.00	0.00	0.00
1902690	9	2,903	1,800	1,055.02	1,121.75	1,121,75	1,121.75	1,121.75	1,121.75
1902818	10	2,903	1,800	1,308.91	1,391.70	1,391.70	1,391.70	1,391.70	1,391.70
1903033	12	3,226	2,000	2,975,44	3,163.65	3,163.65	3,163.65	3,163.65	3,163.65
1903092	14		700	0.00	0.00	0.00	0.00	0.00	0.00
		1,129							
8000126 8000196	FERN 15	1,613	1,000	145.71 1,460.63	154.93 1,553.02	154.93 1,553.02	154.93 1,553.02	154.93 1,553.02	154.93 1,553.02
	15	3,226	2,000	1,400.05	10. • (10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	040	1,555.02	1,555.02	1,555.02
SUBTOTAL:		26,211	16,250	8,403.21	8,934.75	8,934.75	8,934,75	8,934,75	8,934.75
NAMIMATSU FARMS	SINC.								
1901034	NA	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
NICK TOMOVICH & S	SON								
8000037	NA	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0,00	0,00	0,00	0.00	0.00	0.00
NO. 17 WALNUT PLA	CE MUTUAL W	ATER COMPANY							
8000038	NA	NA	NA	0.00	0.00	0,00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
OWL ROCK PRODUC	CTS (ROBERTS	ON'S READY MIX)							
1000040	NI A			0.00	0.00	0.00	0.00	0.00	0.00
1900043	NA	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1902241	NA	3,205	1,987	0,00	0.00	0.00	0.00	0.00	0.00
1903119	NA	NA	NA		0,00	0_00	0.00	0.00	0.00
SUBTOTAL:		3,205	1,987	0.00	0.00	0,00	0.00	0.00	0.00

PROJECTED GROUNDWATER DEMANDS FROM 2011-12 TO 2015-16

RECORDATION	WELL	WELL CAPA	CITY	2010-11		PROJECTED GR	OUNDWATER	DEMANDS	
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-16
PARK WATER CO.									
1901307 8000039	26-A NA	NA NA	NA NA	0.00 0.00	0_00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00
SUBTOTAL:		NA	NA	0.00	0.00	0,00	0.00	0.00	0.00
PICO COUNTY WAT	ER DISTRICT								
8000040	NA	NA	NA	0.00	0.00	0.00	0.00	0,00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0,00
POLOPOLUS, ET AI	L								
1902169	1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
CITRUS VALLEY ME	EDICAL CENTER	R, QUEEN OF THE V	ALLEY CAN	IPUS (QUEEN OF 1	HE VALLEY HO	OSPITAL)			
8000138	NA	NA	NA	2.88	20.00	20.00	20.00	20,00	20.00
SUBTOTAL:		NA	NA	2.88	20.00	20.00	20.00	20.00	20.00
RICHWOOD MUTUA	L WATER COMP	PANY							
1901521 1901522	1 SOUTH 2 NORTH	NA NA	NA NA	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0,00
WORKMAN MILL IN	VESTMENT CON	IPANY (RINCON DIT	СН СОМРА	NY)					
1902790	4	2,153	1,335	307.12	300.00	300.00	300.00	300.00	100.00
SUBTOTAL:		2,153	1,335	307.12	300_00	300,00	300.00	300.00	100.00
WORKMAN MILL IN	VESTMENT CON	PANY (RINCON IRF	RIGATION C	OMPANY)					
1900132 11900095	1 2	NA 1,428	NA 885	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:	2	1,428	885	0.00	0.00	0.00	0.00	0.00	0.00
	VESTMENT CON	IPANY (ROSE HILLS			0.00	0,00	0,00	0.00	0.00
1900052	3	1,192	739	14.60	14.78	14.78	14.78	14.78	14,78
1900094	1	673	417	182,96	185.22	185.22	185.22	185.22	185.22
SUBTOTAL:		1,865	1,156	197.56	200.00	200.00	200.00	200,00	200.00
ROWLAND WATER	DISTRICT								
NA	NA	NA	NA	117.43	69.76	69.76	69.76	69.76	69,76
SUBTOTAL:		NA	NA	117.43	69_76	69.76	69.76	69.76	69.76
RURBAN HOMES M	UTUAL WATER	COMPANY (2)							
1900120 1900121	1-NORTH 2-SOUTH	484 484	300 300	195.59 3.71	196.28 3.72	196,28 3.72	196.28 3,72	196.28 3.72	196.28 3,72
SUBTOTAL:		968	600	199.30	200.00	200.00	200.00	200.00	200.00
RUTH ROY									

RUTH, ROY

RECORDATION	WELL	WELL CAP	ACITY	2010-11		PROJECTED GP	ROUNDWATER	DEMANDS	
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-16
8000041	NA	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
S.L.S. & N. INC.									
8000151	NA	NA	NA	4.77	50.00	50.00	50,00	50.00	50,00
SUBTOTAL:		NA	NA	4.77	50.00	50.00	50,00	50.00	50.00
SAN GABRIEL COUN	ITRY CLUB								
1900547 1902979	1 2	NA 750	NA 465	0.01 226.08	16.51 283.49	16,51 283,49	16.51 283.49	16,51 283,49	16,51 283,49
SUBTOTAL:		750	465	226.09	300.00	300,00	300.00	300.00	300.00
SAN GABRIEL COUN	ITY WATER DI	ISTRICT (1)							
1901669	5 BRA	1,613	1,000	0.00	0.00	0.00	0.00	0.00	0.00
1901670	6 BRA	NA	NA	0.00	0.00	0.00	0,00	0.00	0.00
1901671	7	1,048	650	913.62	1,330.00	1,330.00	1,330.00	1,330.00	1,330.00
1901672	8 9	NA	NA	0_00 1,827.24	0.00 2,100.00	0.00 2,100.00	0.00	0.00	0,00 2,100.00
1902785 1902786	9 10	2,258 NA	1,400 NA	0.00	2,100,00	0.00	2,100.00 0.00	2,100,00 0,00	2,100.00
8000067	11	1,532	950	674.59	1,090.00	1,110,00	1,130.00	1,150.00	1,170.00
8000123	12	3,387	2,100	1,432.84	1,770.00	1,790.00	1,810.00	1,830.00	1,850.00
8000133	14	3,549	2,200	1,241.31	1,295.00	1,315.00	1,335.00	1,355.00	1,375.00
SUBTOTAL:		13,388	8,300	6.089.60	7,585.00	7,645.00	7,705.00	7,765.00	7,825.00
SAN GABRIEL VALL	EY WATER CO				.,			10	
						100 00		100.00	100.00
1900725	G4A	1,855	1,150	148.26	420.00	420.00	420.00	420.00	420,00
1900733	5A	NA	NA	0.00	0.00	0.00	0.00	0.00	0,00
1902635	B1	1,815	1,125	0.00	0.00	0.00	0.00	0.00	0.00
8000112	B5C	3,186	1,975	0.00	0.00	0.00	0.00	0.00	0.00
8000038 211900729	1B	NA	1 700	0_00 342.70	0.00 240.00	0.00 240.00	0.00 240,00	0.00 240.00	240.00
11902946	1C	2,742 2,452	1,700 1,520	4.56	40.00	40.00	40.00	40.00	40.00
18000081	1B4	2,452 NA	1,520 NA	0.00	40.00	0.00	0.00	0.00	40.00
18000082	1B5	NA	NA	0.00	0.00	0.00	0,00	0.00	0,00
18000102	1D3	4,678	2,900	260.11	240.00	240.00	240.00	240.00	240.00
21900749	2C	1,924	1,193	0.00	0.00	0.00	0.00	0.00	0.00
21902857	2D	3,226	2,000	285.61	240.00	240.00	240.00	240.00	240.00
28000065	2E	4,436	2,750	1,741.04	240.00	240.00	240,00	240.00	240.00
31900736	8A	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
31900746	8B	2,016	1,250	7.52	1,345.00	1,345.00	1,345,00	1,345.00	1,345.00
31900747	8C	2,097	1,300	826.58	1,200.00	1,200.00	1,200.00	1,200.00	1,200.00
31903103	8D	5,000	3,100	1,569.63	1,650.00	1,650.00	1,650.00	1,650.00	1,650.00
38000113	8E	4,839	3,000	23.31	580.00	580.00	580.00	580.00	580.00
41900739	11A	4,436	2,750	299.10	195.00	195.00	195,00	195.00	195.00
41900745	11B	2,984	1,850	646.51	340.00	340.00	340,00	340.00	340.00
41902713	11C	1,742	1,080	12,49	140.00	140.00	140.00	140.00	140.00
48000083	11B7	NA	NA	0.00	0.00	0.00	0,00	0,00	0,00
51902858	B4B	3,629	2,250	0.00	0.00	0.00	0,00	0.00	0.00
51902947	B4C	3,629	2,250	0.00	0.00	0.00	0.00	0.00	0.00
61900718	B5A	3,065	1,900	0.00	0.00	0.00	0.00	0,00	0.00
61900719	B5B	5,323	3,300	4,766.11	5,200.00	5,200.00	5,200.00	5,200.00	5,200.00
71900721 71903093	B6B B6C	NA 3,226	NA 2,000	0.00	0.00 40.00	0.00 40.00	0.00 40.00	0.00 40.00	0.00 40.00
78000084	B6B2			0.00	0.00	0.00	0.00	0.00	40.00
78000084	B6B2	NA 3,226	NA 2,000	0.00	40.00	40.00	40.00	40.00	40.00
81902525	B6D B2	3,226 NA	2,000 NA	0.00	40.00	0.00	0.00	40.00	40.00
	B7E	968	600	251.41	150.00	150.00	150.00	150.00	150.00
		900	000						
8000122		NIA	ALA.	0.00	0.00	0.00	0.00	0.00	0.00
91901435	BB	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
	B8 B9	NA NA NA	NA NA NA	0.00 0.00 0.00	0.00 0,00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00

PROJECTED GROUNDWATER DEMANDS FROM 2011-12 TO 2015-16

RECORDATION	WELL	WELL CAF	PACITY	2010-11	PROJECTED GROUNDWATER DEMANDS					
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-1	
91901440	B7B	NA	NA	0.00	0.00	0.00	0.00	0.00	0.0	
98000068	B7B B7C	3,791	2,350	1.197.24	360.00	360.00	360.00	360.00	360.0	
98000094	B7D	NA	2,550 NA	0.00	0.00	0.00	0.00	0.00	0.0	
98000099	B9B	1,613	1,000	551.16	320.00	320.00	320.00	320.00	320.0	
98000108	B11B	4,033	2,500	1,439.74	460.00	460.00	460.00	460.00	460.0	
8000172	1E	5,283	3,275	3,660.21	240.00	240.00	240.00	240.00	240.0	
8000160	B5D	4,839	3,000	916.76	200.00	200.00	200.00	200.00	200.0	
8000169	8F	5,646	3,500	112.02	180,00	180,00	180.00	180.00	180.0	
NA	G4B	NA	NA	0.00	0.00	0.00	0,00	0.00	0.0	
NA	1F	NA	NA	0.00	240.00	240.00	240.00	240.00	240.0	
8000197	2F	NA	2,200	1,304.60	200.00	200,00	200.00	200.00	200.0	
NA	B11C	3,226	2,000	0.00	0,00	0,00	0.00	0.00	0.0	
8000203	B24A	4,033	2,500	120.70	380.00	380,00	380.00	380.00	380.0	
8000204	B24B	4,033	2,500	122.93	380,00	380,00	380.00	380.00	380.0	
8000187	B25A	4,516	2,800	2,474.68	4,400.00	4,400.00	4,400.00	4,400.00	4,400.0	
8000188	B25B	4,516	2,800	2,087.08	4,400.00	4,400.00	4,400.00	4,400.00	4,400.0	
8000189	B26A	1,774	1,100	1,597.62	1,600.00	1,600.00	1,600.00	1,600.00	1,600.0	
8000190	B26B	1,774	1,100	1,570,39	1,600.00	1,600.00	1,600.00	1,600.00	1,600.0	
8000205	B5E	5,565	3,450	4,095.48	5,200.00	5,200.00	5,200.00	5,200.00	5,200.0	
NA	11D			0.00	140.00	140.00	140.00	140.00	140.0	
SUBTOTAL:		128,101	81,618	32,436.53	32,600.00	32,600.00	32,600.00	32,600,00	32,600.0	
LOAN RANCHES										
1901198	1	NA	NA	0.00	0.00	0.00	0,00	0.00	0.0	
8000045	2	NA	NA	0.00	0.00	0.00	0.00	0.00	0_0	
UBTOTAL:		NA	NA	0.00	0.00	0,00	0.00	0.00	0.0	
ERRA LA VERNE	COUNTRY CLUE	3								
8000124	1	NA	NA	12.15	34.82	34.82	34.82	34_82	34.8	
8000125	2	NA	NA	0,00	0.00	0.00	0,00	0.00	0.0	
8000192	15 OFFSITE	NA	NA	12,83	15.18	15.18	15,18	15.18	15.1	
SUBTOTAL:		NA	NA	24.98	50.00	50.00	50.00	50.00	50.00	
SIERRA MADRE, C	ITY OF									
8000193	NA	NA	NA	0.00	0.00	0,00	0,00	0.00	0.0	
SUBTOTAL:		NA	NA	0.00	0,00	0.00	0.00	0.00	0.0	
ONOCO PRODUC	TS COMPANY									
1902786	1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.0	
1902971	2	NA	NA	154.90	150.00	150.00	150.00	150.00	150.0	
UBTOTAL:		NA	NA	154.90	150.00	150.00	150.00	150.00	150.0	
OUTH COVINA W	ATER SERVICE									
1901606	102	NA	NA	0.00	0,00	0.00	0.00	0.00	0.0	
UBTOTAL:		NA	NA	0.00	0.00	0,00	0.00	0.00	0.0	
OUTH PASADENA	CITY OF (1)									

SOUTH PASADENA, CITY OF (1)

NUMBER NAME ACRE-FET GPM PRODUCTION 2011-12 2012-13 2013-14 2014-15 2015-16 1901667 GRAV 2 1.200 B00 522.80 1,100.73 1,110.73 1,110.73 540.12 540.12 1901661 2 MIL 3.407 2,100 2.87.75 0.00 0.00 1.00.9 60.00 0.00 1.00.9 598.15 1.22.57.99 2.57.79 2.57.79 2.57.79 2.57.79 2.57.79 2.57.79 2.57.79 2.57.79 2.590.79 4.406.92 4.406.92 50.07 1.190.73 1,190.73 1,190.73 1,190.73 1,190.79 2.590.79 4.406.92 4.406.92 50.00 0.00	RECORDATION	WELL	WELL CAPA		2010-11	F	PROJECTED GR	ROUNDWATER	DEMANDS	
190:681 2 ML NA NA NA 0.00 0.00 0.00 0.00 0.00 100.682 110.101 2.257.55 2.00 0.00 110.101 2.257.55 2.257.55 2.00 0.00 110.101 2.257.55 2.257.						2011-12	2012-13	2013-14	2014-15	2015-16
190:681 2 ML NA NA NA 0.00 0.00 0.00 0.00 0.00 100.682 110.101 2.257.55 2.00 0.00 110.101 2.257.55 2.257.55 2.00 0.00 110.101 2.257.55 2.257.	1001670	CPAV 2	1 290	800	522.80	1 100 73	1 100 73	1 100 73	540.12	540.12
1901882 3 ML 3,87 2,100 2,697,75 0,00 0,00 1,41,91 2,537,59								10.0 CONCEPTION 00018		
1903096 4 Wil, 1,774 1,100 87.311 0.00 0.00 968.15 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,328.21 1,406.82 4,406.83 4,406.83 4,406.83 4,406.83										
Southern California Edison Company 190343 1EB85 Na Na D.00 D.00 <thd.00< th=""> D.00 <thd.00< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thd.00<></thd.00<>										
190342 1EB8 NA NA 0.00 0	SUBTOTAL:		6,452	4,000	4,353.66	1,190.73	1,190.73	2,930.79	4,406.92	4,406.92
1900043 2EP76 211 131 0.00 <	SOUTHERN CALIFO	RNIA EDISON	COMPANY							
B000046 110RH NA NA 0.00 <th< td=""><td>1900342</td><td>1EB86</td><td>NA</td><td>NA</td><td>0.00</td><td>0.00</td><td>0,00</td><td>0.00</td><td>0.00</td><td>0.00</td></th<>	1900342	1EB86	NA	NA	0.00	0.00	0,00	0.00	0.00	0.00
B000047 21900344 UIRAT 38W 2.420 NA 1.500 NA 0.00 NA 0.00 NA <td>1900343</td> <td>2EB76</td> <td>211</td> <td>131</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	1900343	2EB76	211	131	0.00	0.00	0.00	0.00	0.00	0.00
11900244 38HIS 1.415 PT7 0.00 0.00 0.00 0.00 0.00 0.00 SUBTOTAL: 4.045 2.508 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 GOLDEN STATE WATER COMPANY (SOUTHERN CALIFORNIA WATER COMPANY)SAN DIMAS DISTRICT (1) 981.07 989.07 980.07										
21900344 38W NA NA 0.00 0.00 0.00 0.00 0.00 0.00 SUBTOTAL: 4,045 2,508 0.00 0.00 0.00 0.00 0.00 0.00 GOLDEN STATE WATER COMPANY (SOUTHERN CALIFORNU WATER COMPANY)SAN DIMAS DISTRUCT (J) 968.07										
SUBTOTAL: 4,045 2,508 0.00 0.00 0.00 0.00 0.00 GOLDEN STATE WATER COMPANY (SOUTHERN CALIFORNU WATER COMPANY)SAN DIMAS DISTRICT (1) 1902:148 BAS-3 968 600 947,65 969.07 96										
GOLDEN STATE WATER COMPANY (SOUTHERN CALIFORNIA WATER COMPANY)/SAN DIMAS DISTRICT (I) 1902149 BAS-3 B68 600 947.65 969.07 669.07 969.07 969.07 969.07 969.07 969.07 969.07 969.07 969.07 961.07 <td< td=""><td>21900344</td><td>38VV</td><td>NA</td><td>NA</td><td>0.00</td><td>0,00</td><td>0,00</td><td>0.00</td><td>0,00</td><td>0_00</td></td<>	21900344	38VV	NA	NA	0.00	0,00	0,00	0.00	0,00	0_00
1902148 BAS:3 968 600 947.65 969.07	SUBTOTAL:		4,045	2,508	0.00	0.00	0.00	0.00	0.00	0.00
1902:H9 BAS:4 1.210 750 1938.83 991.07 <td>GOLDEN STATE WA</td> <td>TER COMPANY</td> <td>Y (SOUTHERN CALI</td> <td>FORNIA W</td> <td>ATER COMPANY)/S</td> <td>AN DIMAS DIST</td> <td>RICT (1)</td> <td></td> <td></td> <td></td>	GOLDEN STATE WA	TER COMPANY	Y (SOUTHERN CALI	FORNIA W	ATER COMPANY)/S	AN DIMAS DIST	RICT (1)			
1902/150 HWY 1,129 700 1,070.43 1,044.83 1,004 0,00										
1902/151 ART-1 NA NA 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1902152 ART-2 484 300 0.00 <									CONTRACTOR OF A	
1902154 L.H-2 NA NA 0.00 0.00 0.00 0.00 0.00 1902267 COL-2 NA NA 0.00 0.00 0.00 0.00 0.00 1902268 COL-4 726 450 71.55 73.17 73.1										
1902266 COL-1 NA NA 0.00 0.00 0.00 0.00 0.00 1902267 COL-2 NA NA 0.00 0.00 0.00 0.00 0.00 1902268 COL-4 726 450 71.55 73.17 73.1										
1902267 COL-2 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1902268 COL-4 726 450 71.55 73.17										
1902268 COL-4 726 450 71.15 73.17 7										
1902299 COL-5 NA NA O.00 O.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
1902270 COL-6 686 425 3.30 3.37 3.37 3.37 3.37 3.37 3.37 3.37 1.37 1902271 COL-7 NA NA NA 0.00 0.00 0.00 0.00 0.00 1902286 CITY 323 200 111,11 113,62 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1902271 COL-7 NA NA NA 0.00 0.00 0.00 0.00 0.00 1902272 COL-8 NA NA 0.00										
1902272 COL-8 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1002 1902286 CITY 323 200 111.11 113.62										
1902286 CITY 323 200 111.11 113.62										
1902842 ART-3 403 250 398.68 407.69 407.69 407.69 407.69 407.69 407.69 407.69 633.76										
31902287 MALON 605 375 613,75 613,76 633,76 493,61 405,00 40,00 4,750,00 4,750,00 4,750,00 4,750,00 4,750,00 4,750,00 4,750,00 4,750,00 4,750,00 4,050 1,061,71 1,016,71 1,016,71										
8000212 HWY 2 1,613 1,000 462.70 493.61 4,750.00 4,551.70 1,91.90										
GOLDEN STATE WATER COMPANY (SOUTHERN CALIFORNIA WATER COMPANY)/SAN GABRIEL DISTRICT (2) 1900510 1 S G 1,774 1,100 1,048,89 1,047,79 1,049,86 1,051,92 1,053,99 1,056,06 1900511 2 S G 1,452 900 1,49 1,49 1,49 1,49 1,50 1,50 1900512 2 GAR 327 203 0,00	8000212		1,613		482.70	493.61	493,61	493.61		
1900510 1 S G 1,774 1,100 1,048,89 1,047,79 1,049,86 1,051,92 1,053,99 1,056,06 1900511 2 S G 1,452 900 1,49 1,49 1,49 1,49 1,50 1,50 1,50 1900512 2 GAR 327 203 0,00 0	SUBTOTAL:		8,146	5,050	4,645.00	4,750.00	4,750.00	4,750.00	4,750.00	4,750.00
1900511 2 S G 1,452 900 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,50 1,50 1900512 2 GAR 327 203 0,00	GOLDEN STATE WA	TER COMPANY	(SOUTHERN CALI	FORNIA W	ATER COMPANY)/S	AN GABRIEL DI	STRICT (2)			
1900511 2 S G 1,452 900 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,50 1,50 1900512 2 GAR 327 203 0,00	1900510	1 S G	1,774	1,100	1,048.89	1,047,79	1,049.86	1,051.92	1,053,99	1,056.06
1900512 2 GAR 327 203 0,00 <							The second			
19005143 SAX565350254.13253.86254.36254.87255.37255.8719005151 SAXNANA0.000.000.000.000.000.000.0080001464 SAX1,5329501,009.871,008.811,010.801,012.791,014.781,016.7719021441 EAR5693650.000.000.000.000.000.000.000.0019020171 JEFNANA0.000.000.000.000.000.000.0019020182 JEFNANA0.000.000.000.000.000.000.0019020201 AZUNANA0.000.000.000.000.000.0019020241 ENC1,9361,200865.31864.40866.11867.81869.52871.2219020371 GERNANA0.000.000.000.000.000.0019020321 GIDNANA0.000.000.000.000.0019020341 FAR1,9361,200406.52406.09406.90407.70408.50409.3019020352 ENC968600288.24287.94288.51289.07289.64290.2119020412 GRA4943060.000.000.000.000.000.0019020352 ENC968600288.24287.94	1900512	2 GAR	327	203	0.00	0.00	0.00	0.00	0.00	0.00
1900515 1 SAX NA NA 0.00 0.00 0.00 0.00 0.00 0.00 8000146 4 SAX 1,532 950 1,008.87 1,008.81 1,010.80 1,012.79 1,014.78 1,016.77 1902144 1 EAR 589 365 0.00 0.00 0.00 0.00 0.00 0.00 1,012.79 1,014.78 1,016.77 190217 1 JEF NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1902018 2 JEF NA NA 0.00	1900513	1 GAR	321	199	0,00	0,00	0.00	0.00	0.00	0.00
8000146 4 SAX 1,532 950 1,009.87 1,008.81 1,010.80 1,012.79 1,014.78 1,016.77 1902144 1 EAR 589 365 0.00										
1902144 1 EAR 589 365 0.00 0.00 0.00 0.00 0.00 0.00 1902017 1 JEF NA NA 0.00										
1902017 1 JEF NA NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1902018 2 JEF NA NA 0.00										
1902018 2 JEF NA NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1902019 3 JEF NA NA 0.00										
1902019 3 JEF NA NA NA 0.00 0										
1902020 1 AZU NA NA 0.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
19020241 ENC1,9361,200865.31864.40866.11867.81869.52871.2219020271 PER69743281.8881.7981.9682.1282.2882.4419020301 GRANANA0.000.000.000.000.000.0019020312 GIDNANA0.000.000.000.000.000.0019020321 GIDNANA0.000.000.000.000.000.0019020341 FAR1,9361,200406.52406.09406.90407.70408.50409.3019020352 ENC968600288.24287.94288.51289.07289.64290.2119024612 GRA4943060.000.000.000.000.000.0019029482 FAR1,21075019.9819.9620.0020.0420.0820.1280000733 ENC1,048650595.13594.51595.68596.65598.02599.2080001114 JEF2,0971,3001,115.711,114.541,116.741,118.941,121.131,123.33										
19020271 PER69743281.8881.7981.9682.1282.2882.4419020301 GRANANA0.000.000.000.000.000.0019020312 GIDNANA0.000.000.000.000.000.0019020321 GIDNANA0.000.000.000.000.000.0019020341 FAR1,9361,200406,52406.09407.70408.50409.3019020352 ENC968600288,24287.94288.51289.07289,64290.2119024612 GRA4943060.000.000.000.000.000.0019029482 FAR1,21075019.9819.9620.0020.0420.0820.1280000733 ENC1,048650595.13594.51595.68596.85598.02599.2080001114 JEF2,0971,3001,115.711,114.541,116.741,118.941,121.131,123.33										
1902030 1 GRA NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1902031 2 GID NA NA 0.00 0.										
1902031 2 GID NA NA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1902032 1 GID NA NA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1902032 1 GID NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1902034 1 FAR 1,936 1,200 406,52 406,09 407,70 408,50 409,30 1902035 2 ENC 968 600 288,24 287,94 288,51 289,07 289,64 290,21 1902461 2 GRA 494 306 0.00 20.04 20.08 20.12 8000111 4 JEF 2.097										
19020321 GIDNANA0.000.000.000.000.000.000.0019020341 FAR1,9361,200406,52406.09406.90407,70408,50409.3019020352 ENC968600288,24287,94288,51289,07289,64290.2119024612 GRA4943060.000.000.000.000.000.0019029482 FAR1,21075019.9819.9620.0020.0420.0820.1280000733 ENC1,048650595.13594.51595.68596.85598.02599.2080001114 JEF2,0971,3001,115.711,114.541,116.741,118.941,121.131,123.33										
19020341 FAR1,9361,200406,52406,09406,90407,70408,50409.3019020352 ENC966600288,24287,94288,51289,07289,64290,2119024612 GRA4943060.000.000.000.000.000.000.0019029482 FAR1,21075019,9819,9620.0020,0420,0820,1280000733 ENC1,048650595,13594,51595,68596,65598,02599,2380001114 JEF2,0971,3001,115,711,114,541,116,741,118,941,121,131,123,33										
19020352 ENC968600288,24287,94288,51289,07289,64290.2119024612 GRA4943060.000.000.000.000.000.0019029482 FAR1,21075019.9819.9620.0020.0420.0820.1280000733 ENC1,048650595.13594.51595.68596.85598.02599.2080001114 JEF2,0971,3001,115.711,114.541,116.741,118.941,121.131,123.33										
19024612 GRA4943060.000.000.000.000.000.000.0019029482 FAR1,21075019.9819.9620.0020.0420.0820.1280000733 ENC1,048650595.13594.51595.68596.85598.02599.2080001114 JEF2,0971,3001,115.711,114.541,116.741,118.941,121.131,123.33										
19029482 FAR1,21075019.9819.9620.0020.0420.0820.1280000733 ENC1,048650595.13594.51595.68596.85598.02599.2080001114 JEF2,0971,3001,115.711,114.541,116.741,118.941,121.131,123.33										
8000073 3 ENC 1,048 650 595.13 594.51 595.68 596.85 598.02 599.20 8000111 4 JEF 2,097 1,300 1,115.71 1,114.54 1,116.74 1,118.94 1,121.13 1,123.33										
8000111 4 JEF 2,097 1,300 1,115.71 1,114.54 1,116.74 1,118.94 1,121.13 1,123.33										
SUBTOTAL: 10,384 6,438 5,687,15 5,681.20 5,692.40 5,703.60 5,714.80 5,726.00										
	SUBTOTAL:		10,384	6,438	5,687,15	5,681.20	5,692,40	5,703.60	5,714.80	5,726.00

RECORDATION PROJECTED GROUNDWATER DEMANDS WELL WELL CAPACITY 2010-11 NUMBER NAME ACRE-FEET PRODUCTION 2011-12 2012-13 2013-14 2014-15 2015-16 GPM STERLING MUTUAL WATER COMPANY 1902085 SOUTH NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1902096 NORTH 397 246 67.11 80.30 80.30 80.30 80.30 80.30 8000132 NEW SO NA NA 58.25 69.70 69.70 69.70 69.70 69.70 SUBTOTAL: 397 246 125 36 150.00 150.00 150.00 150.00 150.00 SUBURBAN WATER SYSTEMS (1) 1900337 152W1 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1901429 201W1 NA NA 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0,00 1901430 201W2 2,049 1,270 0.00 0.00 0.00 0.00 1901431 201W3 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 0,00 1901432 201W5 1,936 0.00 0.00 0.00 0.00 0.00 3,123 0.00 1901433 201W4 4.083 2,531 0.00 0.00 0.00 0.00 0.00 1901434 201W6 2,047 0.00 0.00 0.00 0.00 0.00 0.00 3.302 1901596 147W1 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1901597 142W1 0.00 0.00 0.00 0.00 0.00 0,00 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1901598 139W1 NA NA 0.00 0.00 0.00 0.00 0.00 1901599 0.00 139W2 4.049 2 5 1 0 0.00 0.00 0.00 0.00 0.00 0.00 1901600 139W3 NA NA 0.00 0.00 0.00 0.00 0.00 1901602 140\//1 0.00 NA NA 0.00 0.00 0.00 0.00 1901604 148W1 NA NA 0.00 0.00 1901608 105W1 NΔ NΔ 0 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1901609 106W1 NA NA 0.00 1901610 111W/1 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1901611 112W1 NA NA 0.00 0.00 0.00 0.00 0.00 1901612 113W1 NA NA 0.00 0.00 0.00 0.00 0.00 1901613 114W1 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1901614 117W1 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1901615 120W1 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1901616 122W1 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 123W1 0.00 0.00 0.00 0.00 0.00 0.00 1901617 NA NA 1901618 124W1 0.00 0.00 0.00 0.00 0.00 0.00 NA NA 1901619 125W1 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1901620 126W1 NA NA 0.00 0.00 1901621 131W1 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1901622 133W1 NA NA 0.00 0.00 1901623 134W1 0.00 0.00 0.00 0.00 0.00 0.00 NA NA 1901624 135W1 0.00 0.00 0.00 0.00 0.00 0.00 NA NA 1901625 136W1 0.00 0.00 0.00 0.00 0.00 0,00 NA NA 1901627 202W1 0.00 0.00 0.00 0.00 0.00 0.00 NA NA 0.00 0.00 0.00 0,00 0.00 0.00 1902119 149W1 NA NA 1902519 0.00 0.00 0.00 0.00 0.00 0.00 150W1 NA NA 0,00 0.00 0.00 0.00 1902760 147W2 NA NA 0.00 0.00 1902761 NA 0.00 0.00 0.00 0.00 0.00 0.00 153W1 NA 0.00 0.00 0.00 0.00 1902762 0.00 0.00 154W/1 NA NA 0.00 1902763 157W1 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 1903067 0.00 0.00 0.00 0.00 140W3 1.774 1.100 0.00 0.00 0.00 0.00 0.00 8000069 139W4 4,749 2.944 0.00 0.00 2 025 58 2,025.58 2.025.58 2.025.58 2.025.58 8000077 147W3 1.860 1,153 1,463,60 8000087 125W2 1,286 797 0.00 0.00 0.00 0.00 0.00 0.00 8000092 126W2 1.234 765 0.00 0.00 0.00 0.00 0.00 0.00 8000093 140W4 4,286 2.657 0.00 0.00 0.00 0.00 0.00 0.00 8000145 140W5 6,468 4,010 1.649.15 1.740.24 1.740.24 1,740,24 1.740.24 1,740.24 8000095 139W5 5,323 3,300 0.00 0.00 0.00 0.00 0.00 0.00 8000152 139W6 5,647 3.501 0.00 0.00 0.00 0.00 0.00 0.00 11902518 151W1 5,162 3,200 0.00 0.00 0.00 0.00 0.00 0.00 21902518 151W2 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 31902819 155W1 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 31902820 155W2 0_00 0.00 0.00 0.00 0.00 0.00 NA NA 101W1 0.00 0.00 0.00 0.00 0.00 0.00 41901605 NA NA 103W1 0.00 0.00 0.00 0.00 0.00 0.00 41901607 NA NA 8000181 121W1 3,624 2,247 2,767.30 2,213,37 2,213,37 2,213.37 2,213.37 2,213.37 4,331.95 4,331.95 4,331.95 4,331.95 4,331.95 8000183 142W2 4,194 2,600 4,314,96 4,725.65 4,725.65 4,725.65 8000195 201W7 4.615 2,861 4,639.09 4,725,65 4,725.65 4,396.64 8000198 201W8 4.263 2,643 4,383.02 4,396.64 4,396.64 4.396.64 4,396.64

PROJECTED GROUNDWATER DEMANDS FROM 2011-12 TO 2015-16

4,968.12

3.200

5,162

8000207

151W2

4,766,16

4,766,16

4,766.16

4,766.16

4,766.16

RECORDATION WELL PROJECTED GROUNDWATER DEMANDS WELL CAPACITY 2010-11 NUMBER NAME ACRE-FEET PRODUCTION 2012-13 2013-14 2014-15 2015-16 GPM 2011-12 8000208 2011/09 4.121 2 555 2 668 67 652.86 652 86 652 86 652.86 652 86 8000210 201W10 4,408 2,733 2,273.50 3,678.66 3,678.66 3,678.66 3,678.66 3,678.66 SUBTOTAL: 84,779 52,560 29,127.41 28,531.11 28,531.11 28,531.11 28,531,11 28,531.11 SUNNY SLOPE WATER COMPANY (1) 1900026 2,932 1,818 989.54 998.48 1,071.68 1,144.88 1,218,07 1,283.76 8 9 1,918 870.44 878.31 942.69 1,007,08 1,071.47 1,129,25 1902792 3,094 8000048 10 NA 0.00 0.00 0.00 0.00 0.00 0.00 NA 8000157 13 3,060 1,897 1,165.03 1,175.56 1,261.74 1,347.92 1,434.09 1,511.43 SUBTOTAL: 3,025.01 3,052.35 3,276.11 3,499.88 3,723.64 3,924.45 9,086 5,633 TEXACO INC. 1900001 14 519 322 0.00 0.00 0.00 0,00 0.00 0.00 SUBTOTAL: 519 0.00 0.00 0.00 0.00 0.00 0.00 322 TYLER NURSERY 0.00 0.00 0.00 0.00 8000049 NA NA 0.00 0.00 NA SUBTOTAL: NA NA 0.00 0.00 0.00 0.00 0.00 0.00 UNITED CONCRETE PIPE CORPORATION 8000067 NA NA NA 0.00 0.00 0.00 0.00 0.00 0.00 SUBTOTAL: NA NA 0.00 0.00 0.00 0.00 0.00 0,00 UNITED ROCK PRODUCTS CORPORATION 1900106 IRW-1 NA NA 374.71 398.05 422.92 447.80 472.68 497.56 1902532 SIERRA NA NA 1.84 1.95 2.08 2.20 2.32 2.44 1903062 0.00 0.00 0.00 0.00 0.00 0.00 IRW-2 NA NA SUBTOTAL: 376.55 400.00 425.00 450.00 475.00 500.00 NA NA UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 0.00 0.00 0.00 0.00 NA EW4-3 NA NA 0.00 0.00 0.00 0.00 0.00 NA EW4-4 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NA FW4-8 NA NA 0.00 0.00 EW4-9 0.00 0.00 0.00 0.00 0.00 NA NA NA 0.00 SUBTOTAL: 0 0 0.00 0.00 0 00 0.00 0.00 0.00 VALENCIA HEIGHTS WATER COMPANY (1) 1,142.17 0.00 8000051 0.00 0.00 0 00 0.00 1 524 325 8000052 2 526 326 0.00 0.00 0.00 0.00 0.00 0.00 8000054 4 NA NA 0.00 0.00 0.00 0.00 0.00 0.00 8000055 3A 205 127 0.00 0.00 0.00 0.00 0.00 0.00 8000120 5 1,613 1,000 0.00 362,79 362.79 373.95 373.95 382,33 8000180 6 1,331 825 0.00 332.56 332.56 342.79 342.79 350.47 8000211 7 2,420 1,500 0.00 604,65 604.65 623.26 623.26 637.21 6,618 4,103 SUBTOTAL: 1.142.17 1.300.00 1.300.00 1.340.00 1.340.00 1.370.00

PROJECTED GROUNDWATER DEMANDS FROM 2011-12 TO 2015-16

RECORDATION	WELL	WELL CAPACITY		2010-11	PROJECTED GROUNDWATER DEMANDS				
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-16
VALECITO WATE	R COMPANY								
1901435	1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1901435	2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
	3	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1901437									
1901438	4	NA	NA	0.00	0.00	0.00	0.00	0_00	0,00
1901439	5	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1901440	6	NA	NA	0.00	0.00	0.00	0.00	0,00	0,00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0,00
VALLEY COUNTY	WATER DISTRICT	(1)							
1900027	E MAIN	3,387	2,100	2,238,51	2,413_16	2,413.16	2,413,16	2,413.16	2,413.16
1900028	WMAIN	2,178	1,350	1,312,80	1,415.23	1,415.23	1,415,23	1,415.23	1,415.23
1900029	MORADA	1,936	1,200	0.00	0.00	0.00	0.00	0.00	0.00
1900031	PADDY	2,360	1,463	0.00	0.00	0.00	0.00	0.00	0.00
1900032	E NIXON (JOAN)	5,162	3,200	2,533.64	2,731.32	2,731.32	2,731.32	2,731.32	2,731.32
						0.00	0.00	0.00	0.00
1900034	ARROW	4,839	3,000	0.00	0.00				
1900035	B DAL	4,839	3,000	0.00	0,00	0.00	0.00	0.00	0.00
1901307	11	NA	NA	0.00	0.00	0,00	0_00	0_00	0.00
1902356	W NIXON (JOAN)	5,242	3,250	1,697.23	1,829.65	1,829.65	1,829.65	1,829.65	1,829,65
8000039	PALM	1,194	740	0.00	0.00	0.00	0.00	0.00	0.00
8000060	LANTE (SA1-3)	5,484	3,400	4,900.40	5,282.74	5,282.74	5,282,74	5,282,74	5,282.74
8000185	SA1-1	5,484	3,400	2,118,60	2,283.90	2,283,90	2,283.90	2,283.90	2,283,90
8000186	SA1-2	3,871	2,400	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		45,975	28,503	14,801_18	15,956.00	15,956.00	15,956.00	15,956.00	15,956.00
VALLEY VIEW MU	ITUAL WATER CON	PANY (1)							
1900363	1	768	476	331.10	327.07	327.07	327.07	327.07	327.07
									340.93
1900364	2	310	192	345.14	340,93	340,93	340.93	340.93	
1900365	3	NA	NA	0.00	0,00	0.00	0.00	0.00	0.00
SUBTOTAL:		1,077	668	676.24	668,00	668.00	668,00	668.00	668.00
VIA TRUST									
1903012	1	NA	NA	0.00	0.00	0.00	0.00	0.00	0,00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
VIETNAMESE AM	ERICAN BUDDHIST	TEMPLE							
8000191	NA	NA	NA	15,48	15,00	15,00	15.00	15.00	15.00
SUBTOTAL:		NA	NA	15.48	15.00	15,00	15,00	15.00	15,00
WHITTIER, CITY C	0F (1)								
1901745	9	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
									0.00
1901746	10	NA	NA	0.00	0.00	0.00	0.00	0.00	
1901747	11	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1901748	12	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1901749	13	1,774	1,100	1.45	1.76	1.76	1.76	1.76	1.76
8000021	FROM	NA	NA	0.00	0.00	0,00	0.00	0.00	0.00
8000071	15	5,968	3,700	4.72	5.73	5.73	5,73	5.73	5.73
8000110	16	5,968	3,700	16.67	20.23	20.23	20,23	20.23	20,23
8000135	17	6,452	4,000	0.00	0.00	0.00	0.00	0.00	0.00
8000136	18	6,452	4,000	0.00	0.00	0.00	0.00	0.00	0.00
8000200	EW4-5	4,355	2,700	2,397.42	2,909.48	2,909.48	2,909,48	2,909.48	2,909,48
8000201	EVV4-6	4,516	2,800	1,410.81	1,712.14	1,712,14	1,712.14	1,712,14	1,712,14
8000202	EW4-7	4,516	2,800	2,307.76	2,800.67	2,800.67	2,800.67	2,800.67	2,800.67
SUBTOTAL:		26,615	16,500	6,138.83	7,450,00	7,450.00	7,450.00	7,450.00	7,450.00

WILMOTT, ERMA M.

APPENDIX A

RECORDATION	WELL	WELL CAP	ACITY	2010-11		PROJECTED O	GROUNDWATE	R DEMANDS	
NUMBER	NAME	ACRE-FEET	GPM	PRODUCTION	2011-12	2012-13	2013-14	2014-15	2015-16
8000006 SUBTOTAL:	1	NA	NA	0.00	0,00	0.00	0,00 0.00	0_00 0.00	0.00
WOODLAND, RICH	ARD				0.00	0100	0100	0.00	
1902949	1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
1902950	2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL:		NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
COINER, JAMES W	, DBA COINER	NURSERY (WOOD	LAND FARM	S INC.)					
1902951	3	NA	NA	0.00	0.00	0.00	0.00	0.00	0,00
1903072	5R	NA	NA	101.71	100.00	100.00	100.00	100,00	100.00
SUBTOTAL:		NA	NA	101.71	100.00	100,00	100.00	100,00	100.00
тот	AL	695,978	433,681	213,493.13	231,583.59	234,741.34	239,877.39	245,228.72	246,801.53

PROJECTED GROUNDWATER DEMANDS FROM 2011-12 TO 2015-16

NOTES :

GROUNDWATER PRODUCTION AND DEMANDS IN ACRE-FEET GPM : GALLONS PER MINUTE NA : NOT AVAILABLE

(1) PROJECTED GROUND-WATER DEMANDS PROVIDED BY PRODUCER
 (2) PROJECTED GROUND-WATER DEMANDS PROVIDED BY PRODUCER AND ADJUSTED BY WATERMASTER

SIMULATED CHANGES IN GROUNDWATER ELEVATION AT WELLS OR WELLFIELDS IN MAIN SAN GABRIEL BASIN

•

WELL OR	RECORDATION	WELL	SIMULATED	ELEVATION (1)	CHANGE (2)	REMARKS
WELLFIELD	NUMBER	STATUS	2010-11	2015-16	(FEET)	
ADAMS RANCH M	IUTUAL WATER CO	OMPANY				
01 02 03	1902106 1902689 8000182	INACTIVE INACTIVE ACTIVE	202.15	201.85	-0.30	
ALHAMBRA, CITY	OF					
MOEL (08)	1900010	ACTIVE	163.61	160.07	-3.54	PRODUCTION INCREASED
09	1900011	INACTIVE	167.38	166.57	-0.81	
10	1900012	ACTIVE	170.01	168.21	-1,80	
12	1900013	INACTIVE	167.47	165.81	-1.66	
13	1900014	ACTIVE	175.25	173,55	-1.70	
14	1900015	ACTIVE	168,30	164.95	-3.35	PRODUCTION INCREASED
15	1900016	ACTIVE	181,12	179.09	-2.03	PRODUCTION INCREASED
LON 1 LON 2	1903014 1900017	ACTIVE ACTIVE	168.25	163.37	-4.88	PRODUCTION INCREASED
GARF	1900018	INACTIVE	166.49	166,20	-0.29	
11	1903014	ACTIVE	166.8	163.59	-3.21	PRODUCTION INCREASED
07	1903097	STANDBY	164,22	160,78	-3.44	PRODUCTION INCREASED
AMARILLO MUTU	AL WATER COMPA	NY				
01 02	1900791 1900792	ACTIVE ACTIVE	200.87	199,91	-0.96	
ARCADIA, CITY O	F					
LON 1	1901013	ACTIVE	221.60	221.34	-0.26	
LON 2	1901014	ACTIVE	221.96	221.64	-0.32	
CAM REAL 3	8000213	ACTIVE	219.32	218.23	-1.09	
ST JO 2	8000177	ACTIVE	223,15	222,99	-0.16	
BAL 2	1902791	INACTIVE	207.31	206.97	-0.34	
PECK 1	1902854	ACTIVE	222.79	222.72	-0.07	
L OAK 1	8000127	ACTIVE	218.82	218.72	-0.10	
LGY 3	8000214	ACTIVE	213.65	212.36	-1.29	
AZUSA, CITY OF (AZUSA AGRICULT	URE WATER C	OMPANY, AZUS	A VALLEY WATER	COMPANY)	
05 (01)	1902533	ACTIVE	600.27	595.60	-4.67	PRODUCTION INCREASED
06 (03)	1902535	ACTIVE	602.54	598.83	-3.71	PRODUCTION INCREASED
GENESIS 1 (04)	1902536	DESTROYED	251.27	251.36	0.09	
GENESIS 2 (05)	1902537	DESTROYED	248,14	248.19	0.05	

SIMULATED CHANGES IN GROUNDWATER ELEVATION AT WELLS OR WELLFIELDS IN MAIN SAN GABRIEL BASIN

WELL OR	RECORDATION	WELL	SIMULATED	ELEVATION (1)	CHANGE (2)	REMARKS
WELLFIELD	NUMBER	STATUS	2010-11	2015-16	(FEET)	
GENESIS 3 (06)	1902538	DESTROYED	251.96	252.05	0.09	
01 (07)	8000072	ACTIVE	630,80	625.52	-5.28	PRODUCTION INCREASED
03 (08)	8000086	ACTIVE	628.07	625.46	-2.61	PRODUCTION INCREASED
02 (1 NORTH)	1902457	ACTIVE	627.46	621,69	-5.77	PRODUCTION INCREASED
04 (2 SOUTH)	1902458	ACTIVE	626,69	621.51	-5.18	PRODUCTION INCREASED
AVWC 01	1902113	DESTROYED	239.94	239.82	-0.12	
AVWC 02	1902114	DESTROYED	244,73	244.74	0.01	
08 (AVWC 04)	1902115	ACTIVE	600.78	597.92	-2.86	PRODUCTION INCREASED
07 (AVWC 05)	1902116	ACTIVE	598.00	594,94	-3.06	PRODUCTION INCREASED
09 (AVWC 06)	1902117	INACTIVE	248.80	248.85	0.05	
10 (AVWC 08)	8000103	ACTIVE	248.32	248.37	0.05	
11	8000178	ACTIVE	627.81	626.34	-1.47	
12	8000179	ACTIVE	628,52	627.95	-0.57	
BASELINE WATER	R COMPANY					
01 02	1901200 1901201	INACTIVE INACTIVE	976.65	977.10	0.45	
03	1901202	INACTIVE	979.25	979.69	0.44	
CALIFORNIA-AME	RICAN WATER CO	MPANY/DUAR	TE SYSTEM			
STA FE	1900354	ACTIVE	284,12	284.49	0,37	
BV	1900355	ACTIVE	242.16	242.17	0.01	
MT AVE	1900356	DESTROYED	231.89	231.91	0.02	
FISH C	1900358	INACTIVE	640.91	639,15	-1.76	
WILEY	1902907	ACTIVE	623.25	621.30	-1.95	
CR HV	1903018	ACTIVE	268,36	268,28	-0.08	
ENCANTO	8000139	ACTIVE	624.33	622.25	-2.08	PRODUCTION INCREASED
LAS L2	8000140	ACTIVE	607.88	606.72	-1.16	
BACON	1900497	ACTIVE	610.73	610.03	-0.70	
CALIFORNIA-AME	RICAN WATER CO	MPANY/SAN M	ARINO SYSTEI	м		
GUESS	1900918	INACTIVE	200,89	200.52	-0.37	
MIVW 2	1900920	ACTIVE	198,92	198.29	-0.63	
RIC 1	1900921	INACTIVE	193.59	192.72	-0.87	
IVAR 1	1900923	INACTIVE	205.10	204.45	-0.65	
GRAND	1900926	ACTIVE	195.12	194,45	-0.67	

•

WELL OR WELLFIELD	RECORDATION	WELL STATUS	SIMULATED I 2010-11	ELEVATION (1) 2015-16	CHANGE (2) (FEET)	REMARKS
1	· · · · · · · · · · · · · · · · · · ·					
ROSEMEAD	1900927	ACTIVE	194.36	193.62	-0.74	
ROANOKE	1900934	INACTIVE	166.81	166.43	-0,38	
LONGDEN	1900935	ACTIVE	166.35	162.69	-3.66	IMPACT FROM SGCWD EXTRACTION
BR 1	1901441	INACTIVE	212.80	212.56	-0.24	
HOWLAND	1902424	ACTIVE	208,11	207.79	-0.32	
BR 2	1902787	INACTIVE	211.87	211.60	-0_27	
MAR 3	1903019	ACTIVE	205.09	204,45	-0,64	
DELMAR	1903059	ACTIVE	160.10	155,69	-4.41	IMPACT FROM ALHAMBRA EXTRACTION
HALL 2	8000175	ACTIVE	209.82	209.21	-0.61	
CALIFORNIA COL	JNTRY CLUB					
ARTES	1902531	STANDBY	226.77	226.57	-0,20	
SYCAMORE	1903084	STANDBY	226.69	226.51	-0.18	
CALIFORNIA DOM	IESTIC WATER CO	MPANY				
02	1901181	ACTIVE	221.24	216.49	-4.75	PRODUCTION INCREASED
06	1902967	ACTIVE	219.94	213,09	-6.85	PRODUCTION INCREASED
03	1903057	ACTIVE	217.56	209.93	-7.63	PRODUCTION INCREASED
08	1903081	ACTIVE	222.93	219.64	-3.29	PRODUCTION INCREASED
05A	8000100	ACTIVE	219,89	212.77	-7.12	PRODUCTION INCREASED
14	8000174	INACTIVE	220.80	215.18	-5.62	PRODUCTION INCREASED
CHAMPION MUTU	JAL WATER COMPA	NY				
02 03	1902816 8000121	ACTIVE ACTIVE	227.58	229.94	2.36	IMPACT FROM SGVWC EXTRACTION
VULCAN MATERIA	ALS COMPANY (CA	LMAT COMPA	NY)			
DUR E DUR W	1902920 8000063	ACTIVE ACTIVE	234.44	234.39	-0.05	
REL 1	1903088	ACTIVE	257.19	257.18	-0.01	
COVINA, CITY OF						
01	1901685	INACTIVE	262,99	263,14	0.15	
02 (GRAND)	1901686	INACTIVE	337.54	337.64	0,10	
COVINA IRRIGAT	ING COMPANY					
CONTR	1900881	STANDBY	248.08	248.13	0.05	
BAL 3	1900882	ACTIVE	235.78	235.06	-0.72	
BAL 1 BAL 2	1900885 1900883	ACTIVE ACTIVE	235.92	235.05	-0,87	

WELL OR	RECORDATION	WELL	SIMULATED I	ELEVATION (1)	CHANGE (2)	REMARKS
WELLFIELD	NUMBER	STATUS	2010-11	2015-16	(FEET)	
VALEN	1900880	INACTIVE	531.96	532.28	0.32	
CROWN CITY PLA	TING COMPANY					
01	8000012	INACTIVE	208.13	207.89	-0.24	
DEL RIO MUTUAL	WATER COMPANY	Y				
BURKETT	1900331	ACTIVE	224.43	224.17	-0.26	
DRIFTWOOD DAI	RY					
01	1902924	ACTIVE	216.41	216.85	0.44	
EAST PASADENA	WATER COMPANY	Y, LTD.				
09	1901508	ACTIVE	199.81	199.46	-0.35	
EL MONTE, CITY	OF					
02A	1901692	ACTIVE	216,49	216.10	-0.39	
03	1901693	INACTIVE	217.49	217.18	-0.31	
04	1901694	INACTIVE	218.47	218.15	-0,32	
05	1901695	INACTIVE	215_16	215.01	-0,15	
10	1901699	STANDBY	218.42	217.86	-0,56	
MT VW	1902612	DESTROYED	223,40	222.41	-0.99	
12	1903137	STANDBY	214_80	214,31	-0.49	
13	8000101	ACTIVE	215.16	214,76	-0.40	
GLENDORA, CITY	OF					
11-E	1900826	ACTIVE	581,62	581.45	-0.17	
08-E 09-E	1900829 1900830	ACTIVE	612.28	605.05	-7,23	PRODUCTION INCREASED
12-G	1900827	ACTIVE				
10-E	1900828	ACTIVE	589,33	589.00	-0.33	
07-G	1900831	INACTIVE	247.94	247.98	0.04	
01-E 13-E	1901523 8000184	INACTIVE ACTIVE	599.07	598.42	-0.65	
02-E	1901526	ACTIVE	600.15	599.54	-0.61	
03-G	1901525		245.99	246_01	0.02	
04-E	1901524	INACTIVE				
05-E	8000149	ACTIVE	627,97	624.56	-3.41	PRODUCTION INCREASED
HARTLEY, DAVID						
NA	8000085	INACTIVE	647.58	647.26	-0.32	
	AL WATER COMPA					
NORTH	1901178	ACTIVE	230.04	230.86	0.82	

WELL OR	RECORDATION	WELL	SIMULATED E	ELEVATION (1)	CHANGE (2)	REMARKS
WELLFIELD	NUMBER	STATUS	2010-11	2015-16	(FEET)	
SOUTH	1902806	ACTIVE				
INDUSTRY WATE	RWORKS SYSTEM,	CITY OF				
01 03 04	1902581 8000078 8000096	INACTIVE INACTIVE INACTIVE	225,11	223,68	-1.43	
02 05	1902582 8000097	INACTIVE ACTIVE	225,09	223.71	-1.38	(BPOU EXTRACTION WELL)
LA PUENTE VALL	EY COUNTY WATE	RDISTRICT				
02 04	1901460 8000062	ACTIVE INACTIVE	230.20	230,43	0.23	(BPOU EXTRACTION WELL)
03 05	1902859 NA	ACTIVE ACTIVE	229.53	228.91	-0_62	(BPOU EXTRACTION WELL) (BPOU EXTRACTION WELL)
HANSON AGGRE	GATES WEST, INC.	(LIVINGSTON-C	GRAHAM)			
EL 4	1903006	ACTIVE	232.11	231,88	-0.23	
EL 1 EL 3	1901492 1901493	ACTIVE ACTIVE	232,45	232.06	-0.39	
LOS ANGELES, C	OUNTY OF					
KEY WELL	3030F	MONITORING	234.42	234.33	-0_09	
WHI 1	1902579	INACTIVE	211,44	211.08	-0.36	
02	1902580	DESTROYED	215.09	214.79	-0,30	
03A	8000150	DESTROYED	210.41	209,99	-0.42	
04	1902664	DESTROYED	208.46	207.86	-0.60	
05	1902665	DESTROYED	207.00	206.08	-0_92	
06	1902666	DESTROYED	207.34	206.82	-0.52	
SF 1	8000070	ACTIVE	246.46	246.63	0.17	
BIG RED	8000088	INACTIVE	216.99	216.65	-0.34	
NEW LAKE	8000089	INACTIVE	209.39	208.99	-0.40	
MILLER BREWER	IES WEST, L.P. (MII	LLER BREWING	COMPANY)			
01	8000075	ACTIVE	252.81	253.02	0.21	
02	8000076	INACTIVE	258.15	258.39	0.24	
MONROVIA, CITY	OF					
02 03	1900418 1900419	ACTIVE	219.19	219.08	-0.11	
04	1900420	ACTIVE	223.67	223.60	-0.07	
05	1940104	ACTIVE	220.85	220.77	-0.08	
06	8000171	ACTIVE	220.34	220.23	-0,11	

SIMULATED CHANGES IN GROUNDWATER ELEVATION AT WELLS OR WELLFIELDS IN MAIN SAN GABRIEL BASIN

WELLPIELD NUMBER STATUS 2010-11 2015-16 (FEET) IDIN 4 1902456 ACTIVE 531.96 532.28 0.32 DIV 4 1902455 ACTIVE 531.96 532.28 0.32 IONTEREY PARK, CITY OF 1 1900453 ACTIVE 191.83 190.68 -0.82 03 1900457 ACTIVE 191.83 190.68 -0.82 04 1900458 IACTIVE 191.83 192.50 -0.85 05 1902372 ACTIVE 205.63 204.78 -0.85 07 1902373 INACTIVE 203.07 206.13 -0.96 10 1902890 ACTIVE 203.37 202.49 -0.88 11 1902303 ACTIVE 203.37 202.49 -0.89 12 1903030 ACTIVE 203.37 202.49 -0.99 15 8000198 ACTIVE 208.72 205.82 -0.90 15 8000198 ACTIVE	WELL OR	RECORDATION	WELL	SIMULATED	ELEVATION (1)	CHANGE (2)	REMARKS	
DIV 4 1902459 ACTIVE 531.96 532.28 0.32 INTERCE PARK, UTUPE 01 1900453 ACTIVE 196.60 195.78 -0.82 03 1900455 ACTIVE 191.63 190.66 -0.97 04 1900450 INACTIVE 195.36 192.50 -0.86 07 1902372 ACTIVE 205.63 204.78 -0.86 08 1902373 INACTIVE 207.99 206.13 -0.96 10 1902818 ACTIVE 204.81 203.95 -0.96 11 1902818 ACTIVE 201.92 202.47 -0.86 12 1903030 ACTIVE 203.02 202.47 -0.86 14 1903092 INACTIVE 208.62 -0.99 -0.99 15 8000196 ACTIVE 208.62 -0.90 -0.90 15 8000196 ACTIVE 208.72 202.49 -0.81 16 900308 ACTIVE 208.55 -2.62 IMPACT FROM CLENDORA EXTRACTIO <td colspace<<="" th=""><th>WELLFIELD</th><th>NUMBER</th><th>STATUS</th><th>2010-11</th><th>2015-16</th><th></th><th></th></td>	<th>WELLFIELD</th> <th>NUMBER</th> <th>STATUS</th> <th>2010-11</th> <th>2015-16</th> <th></th> <th></th>	WELLFIELD	NUMBER	STATUS	2010-11	2015-16		
NONTERELY PARK, HTV OF 01 1900453 ACTIVE 191.63 195.78 -0.82 03 1900455 ACTIVE 191.63 190.66 -0.97 04 1900457 ACTIVE 185.96 144.72 -1.23 05 1900458 INACTIVE 205.63 204.78 -0.85 07 1902372 ACTIVE 205.63 204.78 -0.85 08 1902393 INACTIVE 207.09 206.13 -0.96 09 1902890 ACTIVE 204.81 203.95 -0.86 14 1902919 ACTIVE 203.02 202.47 -0.81 15 8000196 ACTIVE 203.02 202.24 -0.81 15 8000196 ACTIVE 208.12 -0.90 -0.90 15 8000196 ACTIVE 204.02 202.24 -0.81 16 900309 INACTIVE 208.92 -0.90 -0.90 17 900309 INACTIVE<	MONROVIA NURS	ERY						
01 1900453 ACTIVE 196.80 195.78 -0.82 03 1900455 ACTIVE 191.83 190.66 -0.97 05 1900457 ACTIVE 195.95 184.72 -1.23 06 1900458 INACTIVE 193.38 192.50 -0.85 07 1902372 ACTIVE 205.63 204.73 -0.85 08 1902373 INACTIVE 207.09 208.13 -0.96 09 1902800 ACTIVE 203.95 -0.86 - 10 1902818 ACTIVE 203.02 202.47 -0.55 FERN 8000126 ACTIVE 206.72 205.82 -0.90 15 8000126 ACTIVE 208.72 205.82 -0.90 MA 1902241 INACTIVE 208.72 205.82 -0.90 ITUEVALLEY MEDICAL CENTERU 205.57 205.24 -0.91 NA 1902169 INACTIVE 205.57 205.24 -0.92 </td <td>DIV 4</td> <td>1902456</td> <td>ACTIVE</td> <td>531.96</td> <td>532.28</td> <td>0.32</td> <td></td>	DIV 4	1902456	ACTIVE	531.96	532.28	0.32		
D3 1900455 ACTIVE 191 63 190.66 -0.97 D5 1900457 ACTIVE 185.95 184.72 -1.23 D6 1900458 INACTIVE 205.063 -0.86 D7 1902372 ACTIVE 205.633 -0.85 D8 1902690 ACTIVE 207.09 208.13 -0.96 10 1902800 ACTIVE 204.01 203.95 -0.86 11 1903033 ACTIVE 203.02 202.49 -0.86 12 1903033 ACTIVE 203.02 202.47 -0.55 FERN 8000126 ACTIVE 206.72 205.82 -0.99 15 8000136 ACTIVE 206.72 205.82 -0.90 INA 1902241 INACTIVE 208.84 238.85 -0.91 NA 1902191 INACTIVE 205.57 235.24 -0.32 INACTIVE 205.57 235.24 -0.32 IMACTIFENDINICTIVE	MONTEREY PARK	, CITY OF						
05 1900457 ΛCTIVE 185,95 184,72 -1,23 06 1900458 INACTIVE 193,36 192,50 -0,86 07 1902372 ACTIVE 205,63 204,78 -0,85 07 1902373 INACTIVE 207,09 206,13 -0,86 08 1902373 INACTIVE 207,09 206,13 -0,86 08 1902373 INACTIVE 203,05 -0,86 10 1902880 ACTIVE 203,37 202,49 -0,86 14 1930302 INACTIVE 203,02 202,47 -0,55 FERN 8000136 ACTIVE 208,07 208,62 -0,90 15 8000136 ACTIVE 208,72 208,62 -0,90 16 902241 INACTIVE 238,84 238,83 -0,01 17 902159 INACTIVE 235,57 235,24 -0,33 17 1902180 ACTIVE 233,94 233,96 0,26 <td>01</td> <td>1900453</td> <td>ACTIVE</td> <td>196,60</td> <td>195.78</td> <td>-0,82</td> <td></td>	01	1900453	ACTIVE	196,60	195.78	-0,82		
06 1900458 INACTIVE 193.36 192.50 -0.85 07 1902372 ACTIVE 205.63 204.78 -0.85 08 1902373 INACTIVE 207.09 206.13 -0.96 09 1902590 ACTIVE 204.81 203.95 -0.86 10 1902818 ACTIVE 203.37 -0.86 - 12 1903033 ACTIVE 203.37 202.49 -0.86 14 1903092 INACTIVE 203.02 202.47 -0.55 FERN 8000126 ACTIVE 206.72 205.82 -0.90 15 8000196 ACTIVE 206.72 205.82 -0.91 NA 1902241 INACTIVE 238.84 238.83 -0.01 NA 1902119 INACTIVE 235.57 2.62 IMPACT FROM GLENDORA EXTRACTIVE OLOPOLUS ET AL- CENTER, VENDEROF THE VALLEY CAMPUS (VENDEROF THE VALLEY MOSPITAL) - - - NA 8000138 ACTIV	03	1900455	ACTIVE	191,63	190.66	-0.97		
07 1902372 ACTIVE 205.63 204.78 -0.85 08 1902373 INACTIVE 207.09 206.13 -0.96 09 1902690 ACTIVE 204.81 203.95 -0.86 10 1902818 ACTIVE 181.84 180.61 -1.23 12 1903033 ACTIVE 203.37 202.49 -0.86 14 1903092 INACTIVE 203.02 202.47 -0.55 FERN 8000126 ACTIVE 191.67 190.68 -0.99 15 8000196 ACTIVE 206.72 205.62 -0.90 WIL ROCK PRODUCTOMPANY INACTIVE 238.83 -0.01 NA 1902141 INACTIVE 238.75 2.62 IMPACT FROM GLENDORA EXTRACTION OLOPOLUS ET AL. 1902169 INACTIVE 233.57 235.24 -0.33 ITTRUS VALLEY MEDIC COMPANY (RINCON DITCH COMPANY) 203.96 0.02 - Q1 1902150 ACTIVE 210.55 211.12 </td <td>05</td> <td>1900457</td> <td>ACTIVE</td> <td>185.95</td> <td>184.72</td> <td>-1,23</td> <td></td>	05	1900457	ACTIVE	185.95	184.72	-1,23		
08 1902373 INACTIVE 207.09 206.13 -0.96 09 1902690 ACTIVE 204.81 203.95 -0.86 10 1902818 ACTIVE 181.84 180.61 -1.23 12 1903032 ACTIVE 203.07 202.49 -0.86 14 1903092 INACTIVE 203.02 202.47 -0.55 FERN 8000196 ACTIVE 206.72 205.82 -0.90 INTROCK PRODUCTORMARY NURROCK PRODUCTORMARY NA 1902191 INACTIVE 238.83 -0.01 NA 1902191 INACTIVE 235.57 235.24 -0.33 INTROCK PRODUCTERON FUTURE VALUEY COMPUTE VALUEY HOSPITAL NA 8000138 ACTIVE 233.94 233.96 0.02 INCOMMAN MILL INVERTINE COMPUTE VIRICON FUTURE VALUEY INTROC VIEVENCE Q1 1902790 ACTIVE 211.42 0.57 INCOM SUTURE CONFINENTION FUTURE VALUEY INTROC VIEVENTIC <td cols<="" td=""><td>06</td><td>1900458</td><td>INACTIVE</td><td>193,36</td><td>192.50</td><td>-0.86</td><td></td></td>	<td>06</td> <td>1900458</td> <td>INACTIVE</td> <td>193,36</td> <td>192.50</td> <td>-0.86</td> <td></td>	06	1900458	INACTIVE	193,36	192.50	-0.86	
θ9 1902690 ACTIVE 204.81 203.95 -0.86 10 1902818 ACTIVE 181.84 180.61 -1.23 12 1903033 ACTIVE 203.37 202.49 -0.88 14 1903092 INACTIVE 203.02 202.47 -0.55 FERN 8000126 ACTIVE 206.72 205.82 -0.90 I5 8000196 ACTIVE 208.72 205.82 -0.90 WLROCK PRODUCTS COMPANY INACTIVE 238.84 238.83 -0.01 NA 190219 INACTIVE 238.77 235.24 -0.33 ITRUS VALLEY MEDICAL CENTER, QUEEN OF THE VALLEY CAMPUS (QUEEN OF THE VALLEY HOSPITAL) NA 1900138 ACTIVE 233.94 233.96 0.02 IORKMAN MILL INVESTIVENT COMPANY QUEINO TIVE QUEINO TIVE QUEINO TIVE QUEINO TIVE Q2 190095 INACTIVE 211.12 0.57 QUEINO TIVE Q3 1900052 ACTIVE 210.55 21.1.12 0	07	1902372	ACTIVE	205.63	204.78	-0.85		
10 1902818 ACTIVE 181.84 180.81 -1.23 12 1903033 ACTIVE 203.37 202.49 -0.88 14 1903092 INACTIVE 203.02 202.47 -0.55 FERN 8000126 ACTIVE 191.67 190.68 -0.99 15 8000196 ACTIVE 206.72 205.82 -0.90 WIRCK PRODUCTS COMPANY NA 1902241 INACTIVE 238.84 238.83 -0.01 NA 1902169 INACTIVE 639.17 636.55 -2.62 IMPACT FROM GLENDORA EXTRACTION COLOPOLUS ET AL OLIPO 1002169 INACTIVE 235.97 235.24 -0.33 INACTIVE 233.94 233.96 0.02 INACTIVE 233.94 233.96 0.02 INACTIVE 210.55 211.12 0.57 INACTIVE 210.55 211.12 0.57 INACTIVE 211.83 212.08 0.25 INACTIVE 211.83 2	08	1902373	INACTIVE	207.09	206.13	-0.96		
12 1903033 ACTIVE 203.37 202.49 -0.88 14 1903092 INACTIVE 203.02 202.47 -0.55 FERN 8000126 ACTIVE 191.67 190.68 -0.99 15 8000196 ACTIVE 206.72 205.82 -0.90 WILROCK PRODUCCOMPANY NA 190211 INACTIVE 238.84 238.83 -0.01 NA 1902119 INACTIVE 639.17 636.55 -2.62 IMPACT FROM GLENDORA EXTRACTION OLOPOLUS ET ALI 01 1902169 INACTIVE 235.57 235.24 -0.33 ITRUS VALLEY MEDICA CENTER, VEEN OF THE VALLEY CAMPUS (VEEN OF THE VALLEY HOSPITAL) NA 8000138 ACTIVE 233.94 233.96 0.02 INACTIVE 210.55 211.12 0.57 INACTIVE 211.83 212.08 0.25 INACTIVE 211.83 212.08 0.25 INACTIVE 211.15 211.50 0.35 INACTIVE	09	1902690	ACTIVE	204.81	203.95	-0.86		
14 1903092 INACTIVE 203.02 202.47 -0.55 FERN 8000126 ACTIVE 191.67 190.88 -0.99 15 8000196 ACTIVE 206.72 205.82 -0.90 WLROCK PROUUTS COMPANY UNACTIVE 208.84 238.83 -0.01 NA 1902141 INACTIVE 639.17 636.55 -2.62 IMPACT FROM GLENDORA EXTRACTION OLOPOLUS ET AL. UNACTIVE 235.57 235.24 -0.33 ITRUS VALLEY MEDICAL CENTER UEEN OF THE VALLEY CAMPUS (UUEEN OF THE VALLEY HOSPITAL) 0.02 NA 8000138 ACTIVE 233.94 233.96 0.02 VORKMAN MILL INVESTMENT COMPANY (RINCON DITCH COMPANY) 0.057 0.02 0.057 Q2 190095 INACTIVE 211.83 212.08 0.25 ORTRMAN MILL INVESTMENT COMPANY (ROSE HILLS MEMORIAL PARU) 0.25 0.25 0.25 Q3 190095 ACTIVE 211.15 0.35 0.23 Q3 1900052 ACTIVE 211.15 <th< td=""><td>10</td><td>1902818</td><td>ACTIVE</td><td>181.84</td><td>180.61</td><td>-1.23</td><td></td></th<>	10	1902818	ACTIVE	181.84	180.61	-1.23		
FERN 8000126 ACTIVE 191.67 190.68 -0.99 15 8000196 ACTIVE 206.72 205.82 -0.90 WIL ROCK PRODUCTS COMPANY UNACTIVE 238.84 238.83 -0.01 NA 1902241 INACTIVE 639.17 636.55 -2.62 IMPACT FROM GLENDORA EXTRACTION COLOPOLUS ET AL. 01 1902169 INACTIVE 235.57 235.24 -0.33 1TRUS VALLEY MEDICAL CENTER, QUEEN OF THE VALLEY CAMPUS (QUEEN OF THE VALLEY HOSPITAL) NA 8000138 ACTIVE 233.94 233.96 0.02 VORKMAN MILL INVESTMENT COMPANY (RINCON DITCH COMPANY) QUEEN OF THE VALLEY MEDICAL CENTER, QUEEN OF THE VALLEY MOSPITAL) 0.02 02 1900095 INACTIVE 210.55 211.12 0.57 VORKMAN MILL INVESTMENT COMPANY (RINCON IRTEGATION COMPANY) QUES QUES QUES QUES 03 1900052 ACTIVE 211.83 120.08 0.25 QUES 01 1900094 ACTIVE 210.28 210.51 0.23 QUES QUES	12	1903033	ACTIVE	203.37	202,49	-0.88		
15 8000196 ACTIVE 206.72 205.82 -0,90 WI ROCK PRODUCTS COMPANY NA 1902241 INACTIVE 238.84 238.83 -0,01 NA 1903119 INACTIVE 639.17 636.55 -2.62 IMPACT FROM GLENDORA EXTRACTION OLOPOLUS ET AL. 01 1902169 INACTIVE 235.57 235.24 -0,33 ITRUS VALLEY MEDICAL CENTER, QUEEN OF THE VALLEY CAMPUS (QUEEN OF THE VALLEY HOSPITAL) NA 8000138 ACTIVE 233.94 233.96 0.02 INREMINANTING DIFECTOR PANY (RINCON DIFECTOR PANY) 04 1902790 ACTIVE 210.55 211.12 0.57 INREMINE COMPANY (RINCON IRTIGATION COMPANY) 02 1900095 INACTIVE 211.83 212.08 0.25 INREMINANTILI INVESTMENT COMPANY (ROSE HILLS MEMORIAL PARK) 03 1900052 ACTIVE 211.15 0.35 01 1900094 ACTIVE 210.28 210.51 0.23 INREMINANTILI WATER COMPANY INREMINANTINE COMP	14	1903092	INACTIVE	203.02	202.47	-0.55		
WL ROCK PRODUCTS COMPANY NA 1902241 INACTIVE 238.84 238.83 -0.01 NA 1903119 INACTIVE 639.17 636.55 -2.62 IMPACT FROM GLENDORA EXTRACTION OLOPOLUS ET AL. UNACTIVE 235.57 235.24 -0.33 ITRUS VALLEY MEDICAL CENTER, QUEEN OF THE VALLEY CAMPUS (QUEEN OF THE VALLEY HOSPITAL) NA 8000138 ACTIVE 233.94 233.96 0.02 NA 1902790 ACTIVE 210.55 211.12 0.57 ORKMAN MILL INVESTMENT COMPANY (RINCON IRTIGATION COMPANY) 0.25 0.25 0.25 ORKMAN MILL INVESTMENT COMPANY (ROSE HILLS MEMORIAL PARK) 0.35 0.23 0.23 ORKMAN MILL INVESTMENT COMPANY (ROSE HILLS MEMORIAL PARK) 0.23 0.25 0.25 ORKMAN MILL INVESTMENT COMPANY (ROSE HILLS MEMORIAL PARK) 0.35 0.23 0.23 0.23 ONORTH 1 1900092 ACTIVE 210.28 210.51 0.23 0.23	FERN	8000126	ACTIVE	191.67	190.68	-0,99		
NA 1902241 INACTIVE 238,84 238,83 -0.01 NA 1903119 INACTIVE 639,17 636,55 -2.62 IMPACT FROM GLENDORA EXTRACTION OLOPOLUS ET AL. 1 1902169 INACTIVE 235,57 235,24 -0.33 ITRUS VALLEY MEDICAL CENTER, QUEEN OF THE VALLEY CAMPUS (QUEEN OF THE VALLEY HOSPITAL) NA 8000138 ACTIVE 233,94 233,96 0.02 IORKMAN MILL INVESTMENT COMPANY (RINCON DICCOMPANY) Q10,55 211,12 0.57 Q10,057 IORKMAN MILL INVESTMENT COMPANY (RINCON IRRIGATION COMPANY) Q10,055 Q11,83 Q12,08 Q.25 IORKMAN MILL INVESTMENT COMPANY (RINCON IRRIGATION COMPANY) Q12,08 Q.25 Q11,05 Q12,09 Q1 1900095 INACTIVE 211,83 212,08 Q.25 Q11,05 Q3 1900052 ACTIVE 211,28 Q12,01 Q23 Q23 Q1 1900094 ACTIVE 210,28 210,51 Q.23 Q.23 Q1 1900094 ACTIVE 210,28 <t< td=""><td>15</td><td>8000196</td><td>ACTIVE</td><td>206.72</td><td>205.82</td><td>-0,90</td><td></td></t<>	15	8000196	ACTIVE	206.72	205.82	-0,90		
NA 1903119 INACTIVE 639.17 636.55 -2.62 IMPACT FROM GLENDORA EXTRACTION OLOPOLUS ET AL. 01 1902169 INACTIVE 235.57 235.24 -0.33 ITRUS VALLEY CENTER, QUEEN OF THE VALLEY CAMPUS QUEEN OF THE VALLEY HOSPITAL) NA 8000138 ACTIVE 233.94 233.96 0.02 INACTIVE QUEN OF THE VALLEY CAMPUS QUEEN OF THE VALLEY HOSPITAL) NA 8000138 ACTIVE 210.55 211.12 0.57 INACTIVE QUIDE IRRIGON IRRIGATION COMPANY 02 1900095 INACTIVE 211.83 212.08 0.25 INACTIVE QUIDE PARKINA MILL INVESTMENT COMPANY (RISCE HILLS MEMORIAL PARK) 03 1900052 ACTIVE 211.15 0.15 03 1900052 ACTIVE 210.28 210.51 0.23 URBAN HOMES MULL WATER COMPANY 210.28 210.51 0.23	WL ROCK PROD	UCTS COMPANY						
OLOPOLUS ET AL. 01 1902169 INACTIVE 235,57 235.24 -0.33 ITRUS VALLEY MEDICAL CENTER, UEEN OF THE VALLEY CAMPUS (UEEN OF THE VALLEY HOSPITAL) NA 8000138 ACTIVE 233.94 233.96 0.02 IORKMAN MILL INVESTMENT COMPANY (RINCON DET COMPANY) 04 1902790 ACTIVE 211.65 211.12 0.57 02 1900095 INACTIVE 211.83 212.08 0.25 IORKMAN MILL INVESTMENT COMPANY (RINCON IRTEGORIAL PARK) 02 1900095 INACTIVE 211.15 0.35 03 1900052 ACTIVE 211.28 0.35 01 1900094 ACTIVE 210.28 210.51 0.23 URBAN HOMES HUMENT COMPANY 210.28 210.51 0.23	NA	1902241	INACTIVE	238,84	238,83	-0,01		
01 1902169 INACTIVE 235.57 235.24 -0.33 ITRUS VALLEY MEDICAL CENTER, ULEEN OF THE VALLEY CAMPUS (ULEEN OF THE VALLEY HOSPITAL) NA 8000138 ACTIVE 233.94 233.96 0.02 INACTIVE INFORMATION DIFERENCE INFORMATION MILL INFORMATION DIFERENCE INFORMATION INFOR	NA	1903119	INACTIVE	639.17	636.55	-2.62	IMPACT FROM GLENDORA EXTRACTION	
ALLEY CAMPUS (QUEEN OF THE VALLEY HOSPITAL) NA 8000138 ACTIVE 233.94 233.96 0.02 CORKMAN MILL INVESTMENT COMPANY (RINCON DITCH COMPANY) 04 1902790 ACTIVE 210.55 211.12 0.67 CORKMAN MILL INVESTMENT COMPANY (RINCON IRCIGATION COMPANY) 02 1900095 INACTIVE 211.83 212.08 0.25 CORKMAN MILL INVESTMENT COMPANY (ROSE HILLS MEMORIAL PARK) 03 1900052 ACTIVE 211.15 211.50 0.35 01 1900094 ACTIVE 210.28 210.51 0.23 URBAN HOMES MUTUL WATER COMPANY NORTH 1 1900120 ACTIVE 230.37 231.42 1.05	OLOPOLUS ET A	L.						
NA 8000138 ACTIVE 233.94 233.96 0.02 ORKMAN MILL INVESTMENT COMPANY (RINCON DITCH COMPANY) 04 1902790 ACTIVE 210.55 211.12 0.57 ORKMAN MILL INVESTMENT COMPANY (RINCON IRRIGATION COMPANY) 02 1900095 INACTIVE 211.83 212.08 0.25 ORKMAN MILL INVESTMENT COMPANY (ROSE HILLS MEMORIAL PARK) 03 1900052 ACTIVE 211.15 211.50 0.35 O1 1900094 ACTIVE 210.28 210.51 0.23 URBAN HOMES WURDET WATER COMPANY 230.37 231.42 1.05	01	1902169	INACTIVE	235.57	235.24	-0,33		
ORKMAN MILL INVESTMENT COMPANY (RINCON DITCH COMPANY) 04 1902790 ACTIVE 210.55 211.12 0.57 ORKMAN MILL INVESTMENT COMPANY (RINCON IRRIGATION COMPANY) 02 1900095 INACTIVE 211.83 212.08 0.25 ORKMAN MILL INVESTMENT COMPANY (ROSE HILLS MEMORIAL PARK) 03 1900052 ACTIVE 211.15 211.50 0.35 01 1900094 ACTIVE 210.28 210.51 0.23 URBAN HOMES INTER UNTER UNTE	ITRUS VALLEY N	IEDICAL CENTER,	QUEEN OF TH	E VALLEY CAMP	PUS (QUEEN OF T	THE VALLEY HOS	SPITAL)	
04 1902790 ACTIVE 210.55 211.12 0.57 VORKMAN MILL INVESTMENT COMPANY (RINCON IRRIGATION COMPANY) 02 1900095 INACTIVE 211.83 212.08 0.25 VORKMAN MILL INVESTMENT COMPANY (ROSE HILLS MEMORIAL PARK) 03 1900052 ACTIVE 211.15 211.50 0.35 01 1900094 ACTIVE 210.28 210.51 0.23 URBAN HOMES WATER COMPANY NORTH 1 1900120 ACTIVE 230.37 231.42 1.05	NA	8000138	ACTIVE	233.94	233.96	0.02		
VORKMAN MILL INVESTMENT COMPANY (RINCON IRRIGATION COMPANY) 02 1900095 INACTIVE 211.83 212.08 0.25 VORKMAN MILL INVESTMENT COMPANY (ROSE HILLS MEMORIAL PARK) 03 1900052 ACTIVE 211.15 211.50 0.35 01 1900094 ACTIVE 210.28 210.51 0.23 URBAN HOMES MUTUAL WATER COMPANY NORTH 1 1900120 ACTIVE 230.37 231.42 1.05	ORKMAN MILL I	NVESTMENT COM	PANY (RINCON	DITCH COMPAN	NY)			
02 1900095 INACTIVE 211.83 212.08 0.25 ORKMAN MILL INVESTMENT COMPANY (ROSE HILLS MEMORIAL PARK) 03 1900052 ACTIVE 211.15 211.50 0.35 01 1900094 ACTIVE 210.28 210.51 0.23 URBAN HOMES WUTUAL WATER COMPANY NORTH 1 1900120 ACTIVE 230.37 231.42 1.05	04	1902790	ACTIVE	210.55	211.12	0.57		
VORKMAN MILL INVESTMENT COMPANY (ROSE HILLS MEMORIAL PARK) 03 1900052 ACTIVE 211.15 211.50 0.35 01 1900094 ACTIVE 210.28 210.51 0.23 URBAN HOMES MUTUAL WATER COMPANY NORTH 1 1900120 ACTIVE 230.37 231.42 1.05	VORKMAN MILL II	NVESTMENT COM	PANY (RINCON	IRRIGATION CO	MPANY)			
03 1900052 ACTIVE 211.15 211.50 0.35 01 1900094 ACTIVE 210.28 210.51 0.23 URBAN HOMES MUTUAL WATER COMPANY NORTH 1 1900120 ACTIVE 230.37 231.42 1.05	02	1900095	INACTIVE	211.83	212.08	0.25		
01 1900094 ACTIVE 210.28 210.51 0.23 URBAN HOMES MUTUAL WATER COMPANY NORTH 1 1900120 ACTIVE 230.37 231.42 1.05	VORKMAN MILL I	NVESTMENT COM	PANY (ROSE H	ILLS MEMORIAL	. PARK)			
URBAN HOMES MUTUAL WATER COMPANY NORTH 1 1900120 ACTIVE 230.37 231.42 1.05	03	1900052	ACTIVE	211.15	211.50	0.35		
NORTH 1 1900120 ACTIVE 230.37 231.42 1.05	01	1900094	ACTIVE	210,28	210.51	0,23		
	URBAN HOMES	MUTUAL WATER C	OMPANY					
				230,37	231.42	1.05		

SAN GABRIEL COUNTRY CLUB

WELL OR	RECORDATION	WELL	SIMULATED E	LEVATION (1)	CHANGE (2)	REMARKS
WELLFIELD	NUMBER	STATUS	2010-11	2015-16	(FEET)	NEMAKKO
01 02	1900547 1902979	ACTIVE ACTIVE	174.38	171,44	-2.94	IMPACT FROM ALHAMBRA EXTRACTION
SAN GABRIEL CO	UNTY WATER DIS	TRICT				
05 BRA	1901669	INACTIVE	197.94	197,51	-0,43	
07	1901671	ACTIVE	166.69	161.82	-4.87	PRODUCTION INCREASED
08	1901672	INACTIVE	167,51	166,27	-1.24	
09	1902785	ACTIVE	180,41	178.70	-1.71	
10	1902786	INACTIVE	187.23	186.24	-0.99	
11	8000067	ACTIVE	189.36	187_35	-2.01	PRODUCTION INCREASED
12	8000123	ACTIVE	190.15	188.48	-1,67	
14	8000133	ACTIVE	180.83	179.32	-1.51	
SAN GABRIEL VA	LLEY WATER CON	PANY				
G4A	1900725	ACTIVE	200.50	199,30	-1.20	
B1	1902635	INACTIVE	221.22	221.10	-0.12	
B5A	1900718	INACTIVE	220.53	217.84	-2.69	PRODUCTION INCREASED
B5B B5C	1900719 8000112	ACTIVE INACTIVE				(BPOU EXTRACTION WELL)
B5D	8000160	ACTIVE	221.78	219.29	-2.49	IMPACT FROM BPOU EXTRACTION
B5E	NA	ACTIVE	220.75	218.04	-2.71	(BPOU EXTRACTION WELL)
B25A	8000187	ACTIVE	221.07	212.31	-8.76	PRODUCTION INCREASED
B25B	8000188	ACTIVE				
B26A B26B	8000189 8000190	ACTIVE ACTIVE	226.08	225.08	-1.00	
8A	1900736	INACTIVE	207.82	206.05	-1.77	
8B	1900746	ACTIVE	207.02	200.00		
8C	1900747	ACTIVE				
8E	8000113	ACTIVE				
8D 8F	1903103 8000169	ACTIVE	207.58	206.22	-1,36	
1B	1000720	ACTIVE	221 69	207 40	E 91	PRODUCTION REDUCED
10	1900729 1902946	ACTIVE	221.68	227.49	5.81	FRODUCTION REDUCED
1D	8000102	ACTIVE				
1E	8000172	ACTIVE				
2C	1900749	DESTROYED	218.17	220.83	2.66	PRODUCTION REDUCED
2D	1902857	ACTIVE				
2E	8000065	ACTIVE				
2F	8000197	ACTIVE				
11A	1900739	ACTIVE	224.25	224.64	0.39	
11B	1900745	ACTIVE				
11C	1902713	ACTIVE	225.27	225.17	-0.10	
B4B	1902858	INACTIVE	227.45	224.91	-2.54	IMPACT FROM BPOU EXTRACTION

WELL OR	RECORDATION	WELL	SIMULATED	ELEVATION (1)	CHANGE (2)	REMARKS
WELLFIELD	NUMBER	STATUS	2010-11	2015-16	(FEET)	NEWARRS
B4C	1902947	INACTIVE				
B6C B6D	1903093 8000098	ACTIVE ACTIVE	230.95	230.80	-0.15	(BPOU EXTRACTION WELL) (BPOU EXTRACTION WELL)
B7C B7E	8000068 8000122	ACTIVE ACTIVE	228,63	230.24	1.61	
B2	1902525	INACTIVE	220,73	220.56	-0.17	
B11A B11B B11C	1901439 8000108 NA	INACTIVE ACTIVE PLANNED	226.54	228,82	2,28	PRODUCTION REDUCED
B9B	8000099	ACTIVE	228.50	229.61	1.11	
B24A B24B	8000203 8000204	ACTIVE ACTIVE	230,29	230.58	0,29	
SIERRA LA VERN	E COUNTRY CLUB					
01	8000124	ACTIVE	1080.22	1080.66	0.44	
02	8000125	ACTIVE	1099,24	1099.64	0.40	
SONOCO PRODU	CTS COMPANY					
01 02	1912786 1902971	ACTIVE ACTIVE	226.68	225.50	-1.18	
SOUTHERN CALI	FORNIA EDISON C	OMPANY				
110RH	8000046	ACTIVE	236.19	236.15	-0.04	
2EB76	1900343	ACTIVE	235.10	235,38	0.28	
MURAT	8000047	ACTIVE	198.63	197.80	-0.83	
GOLDEN STATE	WATER COMPANY	(SOUTHERN C	LIFORNIA WA	TER COMPANY)/S/	AN DIMAS DISTRIC	т
BAS-3	1902148	ACTIVE	896.54	896.51	-0.03	
BAS-4	1902149	ACTIVE	877.92	877.75	-0.17	
HIGHWAY	1902150	ACTIVE	889,38	889.21	-0,17	
HWY-2		ACTIVE	895,91	895.82	-0.09	
ART-3	1902842	ACTIVE	883.25	883.08	-0_17	
COL-4	1902268	ACTIVE	512.92	512.69	-0.23	
COL-6	1902270	ACTIVE	511.37	511.14	-0.23	
COL-7	1902271	DESTROYED	547.51	547.45	-0.06	
COL-8	1902272	INACTIVE	734.48	733,85	-0,63	
CITY	1902286	ACTIVE	1035.85	1036.45	0,60	
MALON	1902287	ACTIVE	1003,38	1003,93	0.55	
GOLDEN STATE	WATER COMPANY	(SOUTHERN C	LIFORNIA WA	TER COMPANY)/S/	AN GABRIEL VALL	EY DISTRICT
S G 1	1900510	ACTIVE	181.99	180.95	-1.04	

WELL OR	RECORDATION	WELL	SIMULATED	ELEVATION (1)	CHANGE (2)	REMARKS
WELLFIELD	NUMBER	STATUS	2010-11	2015-16	(FEET)	REMARKS
S G 2	1900511	INACTIVE				
GAR 1 GAR 2	1900513 1900512	INACTIVE INACTIVE	193.40	192,56	-0.84	
SAX 1 SAX 3 SAX 4	1900515 1900514 8000146	DESTROYED ACTIVE ACTIVE	184.55	183.65	-0,90	
EARL 1	1902144	INACTIVE	199.79	199.01	-0.78	
JEF 1 JEF 3 JEF 4	1902017 1902019 8000111	DESTROYED INACTIVE ACTIVE	220,59	220.41	-0.18	
AZU 1	1902020	DESTROYED	213,18	213.19	0.01	
ENC 1	1902024	ACTIVE	200.13	199.83	-0.30	
ENC 2 ENC 3	1902035 8000073	ACTIVE ACTIVE	199.33	199.01	-0,32	
PER 1	1902027	ACTIVE	216.26	216.68	0.42	
GRA 1 GRA 2	1902030 1902461	INACTIVE INACTIVE	225.80	225.68	-0.12	
GID 1 GID 2	1902032 1902031	DESTROYED DESTROYED	213.98	213.89	-0.09	
FAR 1	1902034	ACTIVE	226.39	227.01	0.62	
FAR 2	1902948	ACTIVE	224.90	225.54	0.64	
SOUTH PASADE	A, CITY OF					
GRAV 2	1901679	ACTIVE	163.54	163.24	-0.30	
WIL 2	1901681	INACTIVE	166.25	165.10	-1.15	
WIL 3 WIL 4	1901682 1903086	ACTIVE ACTIVE	164,42	163,24	-1.18	
STERLING MUTU	AL WATER COMPA	NY				
NEW SO. NORTH	8000132 1902096	ACTIVE ACTIVE	225.58	225,98	0.40	
SUBURBAN WAT	ER SYSTEMS					
114W-1	1901613	INACTIVE	244,91	244.93	0.02	
121W-1	8000181	ACTIVE	234.32	234.74	0.42	
125W-2	8000087	INACTIVE	255.17	255.17	0.00	
126W-2	8000092	INACTIVE	257.58	257.58	0.00	
139W-2 139W-4	1901599 8000069	INACTIVE INACTIVE	234.96	234.96	0_00	
139W-5 139W-6	8000095 8000152	INACTIVE INACTIVE	234,80	234.78	-0.02	
140W-3	1903067	INACTIVE	230.01	229.83	-0.18	

WELL OR	RECORDATION	WELL	SIMULATED	ELEVATION (1)	CHANGE (2)	REMARKS
WELLFIELD	NUMBER	STATUS	2010-11	2015-16	(FEET)	
140W-4 140W-5	8000093 8000145	INACTIVE ACTIVE				
142W-2	8000183	ACTIVE	232.11	232.18	0.07	
147W-3	8000077	ACTIVE	226.63	227.32	0.69	
151W-2	8000207	ACTIVE	229.04	229,24	0.20	
155W-1	1902819	INACTIVE	270.05	270.29	0.24	
201W-2	1901430	ACTIVE	206.53	206.65	0,12	
201W-4 201W-9	1901433 8000208	ACTIVE ACTIVE	206.11	208.02	1.91	
201W-5	1901432	INACTIVE	208_97	209.54	0.57	
201W-6	1901434	INACTIVE	210.53	210.24	-0.29	
201W-7	8000195	ACTIVE	205,24	205.46	0.22	
201W-8	8000198	ACTIVE	205,47	205.40	-0.07	
201W-10	NA	ACTIVE	209.33	207.84	-1.49	
SUNNY SLOPE W	ATER COMPANY					
08 09	1900026 1902792	ACTIVE ACTIVE	188.41	186.63	-1.78	
10	8000048	INACTIVE	199.71	199.41	-0.30	
13	8000157	ACTIVE	189.22	187.63	-1.59	
TYLER NURSERY						
NA	8000049	INACTIVE	217.61	217.41	-0,20	
UNITED CONCRE	TE PIPE CORPORA	TION				
NA	8000067	INACTIVE	236.93	236,82	-0_11	
UNITED ROCK PF	RODUCTS CORPOR	ATION				
IRW-1	1900106	ACTIVE	235.34	235,17	-0,17	
IRW-2	1903062	ACTIVE	234.89	234.82	-0.07	
UNITED STATES	ENVIRONMENTAL	PROTECTION A	GENCY			
MW4-1	NA	MONITORING	207.31	206.67	-0.64	SOUTH EL MONTE OPERABLE UNIT
MW4-2	NA	MONITORING	208.48	207.65	-0.83	
MW4-3	NA	MONITORING	206.53	205.61	-0.92	
MW4-4	NA	MONITORING	199.71	199.61	-0.10	
MW4-5	NA	MONITORING	200.29	200.18	-0.11	
MW4-6	NA	MONITORING	200.87	200.75	-0.12	
MW4-7	NA	MONITORING	212.06	211.60	-0.46	

WELL OR	RECORDATION	WELL	SIMULATED	ELEVATION (1)	CHANGE (2)	REMARKS
WELLFIELD	NUMBER	STATUS	2010-11	2015-16	(FEET)	I NEW CONTRACTOR
MW4-8	NA	MONITORING	214,41	214.08	-0.33	
MW4-9	NA	MONITORING	214.92	214.58	-0.34	
MW4-10	NA	MONITORING	219.21	218,97	-0.24	
MW4-11	NA	MONITORING	223.48	223.41	-0.07	
MW5-1	NA	MONITORING	236.76	236.40	-0_36	BALDWIN PARK OPERABLE UNIT
MW5-3	NA	MONITORING	240.15	240.11	-0.04	
MW5-5	NA	MONITORING	232.75	232,51	-0.24	
MW5-8	NA	MONITORING	233.29	233.14	-0.15	
MW5-11	NA	MONITORING	241,23	241.26	0.03	
MW5-13	NA	MONITORING	244.06	244,13	0.07	14
MW5-15	NA	MONITORING	233.97	233.89	-0.08	
MW5-17	NA	MONITORING	243.53	243,63	0.10	
MW5-18	NA	MONITORING	241.62	241.64	0.02	
MW5-19	NA	MONITORING	223,54	220.76	-2.78	IMPACT FROM BPOU EXTRACTION
MW5-20	NA	MONITORING	229,81	229.18	-0.63	
MW5-22	NA	MONITORING	226.19	224.78	-1.41	
MW5-23	NA	MONITORING	226.32	223.52	-2.80	IMPACT FROM BPOU EXTRACTION
MW6-1	NA	MONITORING	229.31	229.17	-0.14	PUENTE VALLEY OPERABLE UINT
MW6-2	NA	MONITORING	226.99	226.88	-0.11	
MW6-4	NA	MONITORING	233.75	234_04	0.29	
MW6-5	NA	MONITORING	235,40	235.70	0.30	
MW6-6	NA	MONITORING	243.28	243.48	0.20	
MW6-7	NA	MONITORING	326,28	326.43	0,15	
MW6-8	NA	MONITORING	447.94	448,25	0.31	
EW4-3	NA	REMEDIAL	209.36	208,60	-0.76	
EW4-4	NA	REMEDIAL	206,36	205.22	-1.14	WNOU EXTRACTION
EW4-5 EW4-9	8000200 NA	REMEDIAL REMEDIAL	204.75	203,35	-1.40	WNOU EXTRACTION
EW4-6 EW4-10	8000201 NA	REMEDIAL REMEDIAL	206.36	205.43	-0.93	WNOU EXTRACTION
EW4-7	8000202	REMEDIAL	204.92	203.51	-1.41	WNOU EXTRACTION
EW4-8	NA	REMEDIAL	209,36	208.62	-0.74	
VALENCIA HEIGH	TS WATER COMP	ANY				
01	8000051	INACTIVE	265.17	265.02	-0.15	

SIMULATED CHANGES IN GROUNDWATER ELEVATION AT WELLS OR WELLFIELDS IN MAIN SAN GABRIEL BASIN

WELL OR	RECORDATION	WELL	SIMULATED I	ELEVATION (1)	CHANGE (2)	REMARKS
WELLFIELD	NUMBER	STATUS	2010-11	2015-16	(FEET)	
02 06	8000052 8000180	ACTIVE ACTIVE				
04	8000054	ACTIVE	256,40	256.44	0.04	
05 07	8000120 8000211	ACTIVE ACTIVE	276,29	276.12	-0.17	
VALLEY COUNTY	WATER DISTRICT					
E MAINE W MAINE	1900027 1900028	ACTIVE ACTIVE	234.44	234.22	-0.22	
MORADA	1900029	STANDBY	243,39	243.38	-0.01	
E NIXON (JOAN) W NIXON (JOAN)	1900032 1902356	ACTIVE ACTIVE	234.61	234.38	-0.23	
ARROW LANTE (SA1-3)	1900034 8000060	INACTIVE ACTIVE	235.42	235.16	-0.26	
PALM	8000039	INACTIVE	233.85	233,80	-0.05	
B DALTON	1900035	INACTIVE	234.31	234.22	-0.09	
PADDY LN	1900031	STANDBY	232.81	232.67	-0.14	
SA1-1	8000185	ACTIVE	237.29	237.11	-0.18	
SA1-2	8000186	ACTIVE	237.03	236.87	-0,16	
VALLEY VIEW MU	TUAL WATER CON	IPANY				
01 02	1900363 1900364	ACTIVE ACTIVE	234.44	234.39	-0_05	
WHITTIER, CITY O	F					
13	1901749	ACTIVE	211.34	210.98	-0.36	
15	8000071	ACTIVE	210.27	210,01	-0.26	
16 17	8000110 8000135	ACTIVE INACTIVE	209.59	209.41	-0.18	
18	8000136	INACTIVE	209.20	209,06	-0.14	
WOODLAND, RICH	ARD					
01 02	1902949 1902950	INACTIVE INACTIVE	224.87	223.31	-1.56	
COINER, JAMES V	V., DBA COINER N	JRSERY (WOO	DLAND FARM IN	C.)		
03	1902951	INACTIVE	225.11	223.60	-1.51	
05R	1903072	ACTIVE	226.35	225,49	-0.86	
			AV	ERAGE CHANGE	-0.75	
1						

(1) SIMULATED ELEVATION IN FEET ABOVE MEAN SEA LEVEL (2) DIFFERENCE BETWEEN 2015-16 AND 2010-11 SIMULATED ELEVATIONS

HIGHLIGHTS OF VOLATILE ORGANIC Compounds and Nitrate Concentrations and Wells Vulnerable to Contamination

		1124.67		CONCENTRA	TION (NO3 I	N MG/L, O	THERS IN	UG/L)	-)	
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORI	C HIGH	MOST	RECENT	REMARKS	
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE		
ADAMS RANC	H MUTUAL WATER	COMPANY								
01	1902106	MUNICIPAL	INACTIVE	TCE	2.2	05/88	ND	02/97	VULNERABLE	
01	1002100	mornon / L	III IIII	NO3	97.0	04/92	38.9	02/97	(NO3)	
				CLO4	NA	NA	NA	NA		
02	1902689	MUNICIPAL	INACTIVE	TCE	3.5	08/86	2.5	09/86	VULNERABLE	
				NO3	NA	NA	NA	NA	(VOCS)	
				CLO4	NA	NA	NA	NA		
03	8000182	MUNICIPAL	ACTIVE	TCE	18,5	11/06	6.5	02/11	(1)	
				PCE	6.2	08/10	4.0	02/11		
				NO3	21.0	03/04	13.0	05/09		
				CLO4	ND	08/08	ND	08/10		
ALHAMBRA, C	ITY OF									
07	1903097	MUNICIPAL	STANDBY	TCE	13.4	08/91	4.5	01/11	VULNERABLE	
				PCE	0.8	04/07	ND	04/11	(VOCS AND NO3) (1)	
				C-1,2-DCE	1.6	02/05	0.5	04/11		
				CTC	0.6	02/85	ND	01/11		
				NO3	53.2	07/93	44.0	07/10		
				CLO4	2,4	10/07	ND	04/11		
09	1900011	MUNICIPAL	INACTIVE	TCE	21.1	08/08	5.3	04/11		
				C-1,2-DCE	2.3	10/07	0.7	04/11		
				CF	1.6	04/11	1.6	04/11		
				NO3	57.3	06/93	55.0	04/11		
				CLO4	2.2	10/07	ND	04/11		
10	1900012	IRRIGATION	ACTIVE	TCE	30.1	02/09	22.0	10/10		
				C-1,2-DCE	5.8	03/05	ND	10/10		
				1,1-DCE	0.5	03/05	ND	10/10		
				NO3	56.3	01/07	55.0	10/10		
				CLO4	ND	08/97	ND	08/97		
11	1903014	MUNICIPAL	ACTIVE	PCE	1,9	08/02	1.3	04/11	VULNERABLE	
				TCE	4.2	05/89	ND	07/10	(VOCS AND NO3) (1)	
				C-1,2-DCE	1.5	04/08	ND	07/10		
				NO3	41.3	07/90	21.0	09/09		
				CLO4	ND	08/97	ND	04/11		
12	1900013	MUNICIPAL	INACTIVE	TCE	39.4	08/08	30.0	07/10	VULNERABLE	
				PCE	1.1	10/10	0,7	04/11	(NO3) (1)	
				C-1,2-DCE	33,6	08/08	33.0	07/10		
				1,1-DCE	0,8	09/08	0.7	04/11		
				T-1,2-DCE NO3	0.9 34.1	09/08 08/89	0.7 32.0	01/11 08/08		
				CLO4	54. I ND	08/08	32.0 ND	04/11		
46										
13	1900014	MUNICIPAL	INACTIVE	TCE	0.5	08/07	ND 57.0	11/10		
				NO3 CLO4	57.0 ND	11/10 03/97	57.0 ND	11/10 11/10		
14	1000045	MUNICIDAL	ACTIVE							
14	1900015	MUNICIPAL	ACTIVE	TCE NO3	2.4 42.4	08/08 08/89	0.9 33.0	04/11 11/10	VULNERABLE (NO3)	
				CLO4	42.4 ND	08/97	ND	11/10	(1405)	
15	1900016	MUNICIPAL	ACTIVE	VOCS		05/00	ND	11/00		
15	1900010	WUNUFAL	ACTIVE	NO3	ND 18.0	05/89 11/02	ND 5.9	11/08 04/07		
				CLO4	ND	08/97	ND	04/09		
				OLO4		00/07		01100		

			1	CONCENTRA	TION (NO3 IN	MG/L, O	THERS IN	UG/L)	
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORIC	CHIGH	MOSTR	ECENT	REMARKS
	NOMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
CARE	1000010		IN A OTIVE	TOF	44.0	00/00	AUD.	00/00	
GARF	1900018	MUNICIPAL	INACTIVE	TCE PCE	11.0 0.5	08/82 11/87	ND ND	09/93 09/93	VULNERABLE (VOCS)
				CTC	0.1	04/80	ND	09/93	(1003)
				1,1,2,2-PCA	1.0	11/87	ND	09/93	
				NO3	68.1	08/89	53,6	09/93	
				CLO4	NA	NA	NA	NA	
LON 1	1902789	MUNICIPAL	ACTIVE	PCE	0.3	07/81	ND	07/10	VULNERABLE
				NO3	23.0	09/04	22,0	07/10	(NO3 AND CLO4)
				CLO4	5.0	12/97	ND	04/09	
LON 2	1900017	MUNICIPAL	ACTIVE	PCE	1.3	06/10	1.3	07/10	VULNERABLE
				MC	4.3	05/87	ND	07/10	(VOCS, NO3, AND CLO4)
				NO3	50.4	04/86	23.0 ND	07/10	
				CLO4	5.6	07/97	ND	04/11	
MOEL (8)	1900010	MUNICIPAL	ACTIVE	TCE	16.0	07/09	11,0	07/10	
				PCE	1.6	07/08	ND	04/11	
				C-1,2-DCE	1.8	07/09	0.9	04/11	
				NO3 CLO4	76.0 ND	07/08	76.0 ND	07/08 04/11	
				0104	ND	12/99	ND	04/11	
AMARILLO MU	TUAL WATER CON	IPANY							
01	1900791	MUNICIPAL	ACTIVE	PCE	5,5	10/99	3.3	02/11	VULNERABLE
				TCE	1.2	02/08	ND	02/11	(VOCS AND NO3)
				CTC	0.1	08/82	ND	08/10	
				MC	3.2	06/89	ND	08/10	
				NO3 CLO4	27.4 ND	10/99 08/97	23.0 ND	02/11 08/10	
		1945-115 Mill 120326 120	15 CC 10 200						
02	1900792	MUNICIPAL	INACTIVE	PCE	5.7	02/02	3.0	02/11	VULNERABLE
				TCE MC	1.5 2.0	01/99 06/89	ND ND	02/11 08/10	(VOCS AND NO3)
				NO3	29.9	02/96	23.0	02/11	
				CLO4	ND	08/97	ND	08/10	
	MILY MARITAL TR	IIST							
01	8000079	DOMESTIC	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3 CLO4	NA NA	NA NA	NA NA	NA NA	
				0104	INA	NA	INA	INA	
ARCADIA, CITY	Y OF								
BAL 1	1901015	MUNICIPAL	INACTIVE	VOCS	ND	09/98	ND	09/98	VULNERABLE
				NO3	52.0	04/78	3.0	09/98	(NO3)
				CLO4	NA	NA	NA	NA	
BAL 2	1902791	MUNICIPAL	INACTIVE	VOCS	ND	05/89	ND	06/09	VULNERABLE
				NO3	33.4	05/08	28.0	06/09	(NO3)
				CLO4	ND	08/97	ND	07/08	
CAM REAL 1	1902077	MUNICIPAL	DESTROYED	VOCS	ND	01/85	ND	05/92	
				NO3	28.1	05/91	22.4	08/92	
				CLO4	NA	NA	NA	NA	
CAM REAL 2	1902078	MUNICIPAL	DESTROYED	VOCS	ND	05/89	ND	06/98	
		and the second s		NO3	58.0	05/92	39.0	05/98	
				CLO4	ND	08/97	ND	12/97	

HIGHLIGHTS OF VOLATILE ORGANIC COMPOUNDS, NITRATE, AND PERCHLORATE CONCENTRATIONS AND WELLS VULNERABLE TO CONTAMINATION (AS OF JUNE 30, 2011)

			1	CONCENTRA	TION (NO3 I	N MG/L, O	THERS IN U	JG/L)	
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORI	C HIGH	MOSTR	ECENT	REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
CAM REAL 3		MUNICIPAL	ACTIVE	VOCS	ND	03/11	ND	03/11	
OAM NEAL 3		MONIONAL	AOTIVE	NO3	NA	NA	NA	NA	
				CLO4	ND	03/11	ND	03/11	
	9000127	MUNICIDAL	ACTIVE	PCE	1.4	01/08	ND	06/09	
L OAK 1	8000127	MUNICIPAL	ACTIVE	TCE	3.6	09/10	ND	03/11	
				NO3	21.5	03/91	16.0	09/09	
				CLO4	ND	08/97	ND	09/10	
LGY	1902084	MUNICIPAL	DESTROYED	CF	1.0	01/08	1.0	01/08	
				NO3	104.0	01/08	104.0	01/08	
				CLO4	6.0	01/08	6.0	01/08	
LON 1	1901013	MUNICIPAL	ACTIVE	TCE	30,0	07/87	ND	03/11	VULNERABLE
				PCE	2,7	07/87	0.8	03/11	(VOCS AND NO3) (1)
				1,1-DCE	4.1	06/87	ND	12/09	
				1,2-DCA	1.4	07/87	ND	12/09	
				1,1,1-TCA	4.6	07/87	ND	06/09	
				MC	25.0	09/87	ND	06/09	
				NO3	43.0	12/09	14.0	03/11	
				CLO4	ND	12/97	ND	09/10	
LON 2	1901014	MUNICIPAL	ACTIVE	TCE	62,0	01/85	1.2	03/11	VULNERABLE
				PCE	7.7	01/82	2.1	03/11	(VOCS AND NO3) (1)
				CTC	2.6	09/87	ND	03/11	
				1,1-DCE	0.9	05/87	ND	03/11	
				1,1,1-TCA	12.0	01/85	ND	03/11	
				NO3	109.1	05/85	31.0	03/11	
				CLO4	ND	07/97	ND	09/10	
PECK 1	1902854	MUNICIPAL	ACTIVE	VOCS	ND	05/89	ND	06/09	
				NO3	11.0	08/09	7.4	12/09	
				CLO4	ND	08/97	ND	09/10	
ST JO 1	1902358	MUNICIPAL	DESTROYED	TCE	5.4	01/02	4.8	02/02	
				PCE	2.7	08/91	2.2	02/02	
				NO3	60.0	06/96	46.0	06/02	
				CLO4	1.0	08/97	ND	01/02	
ST JO 2	8000177	MUNICIPAL	ACTIVE	TCE	2.4	12/09	1.2	03/11	VULNERABLE
				PCE	7.7	12/09	3.5	03/11	(VOCS AND CLO4)
				NO3	51,0	12/04	49.0	02/11	
				CLO4	8,6	06/02	ND	09/10	
ATTALLA, MAR	RY L.								
NIA	0000440	IDDIOATION		VOCE	ND	00/06	ND	04/08	
NA	8000119	IRRIGATION	ACTIVE	VOCS	ND 10.4	09/96	ND	04/98	
				NO3 CLO4	19.4 ND	04/98 04/98	19.4 ND	04/98 04/98	
				0104	ND	04/90	ND	04/90	
AZUSA ASSOC	CIATES LLC								
DALTON	1900390	IRRIGATION	DESTROYED	VOCS	ND	03/98	ND	03/98	
		a and a constant of the		NO3	4.7	03/98	4.7	03/98	
				CLO4	ND	03/98	ND	03/98	
AZUSA, CITY C	DF								
05	1902533	MUNICIPAL	ACTIVE	TCE	1.0	12/80	ND	08/10	VULNERABLE
(OLD 01)				PCE	0.3	12/80	ND	08/10	(NO3)
				CF	1.5	08/04	1.3	08/09	
				NO3	22.9	07/95	11.0	08/10	
				CLO4	ND	07/97	ND	08/10	

è

[]		UG/L)							
WELL NAME	RECORDATION	USAGE	STATUS		HISTOR			RECENT	REMARKS
	NUMBER	OUNCE	GIAIGO	CONTAMINANT OF CONCERN	VALUE	DATE	VALUE	DATE	ILEMANNS
				OF CONCERN	VALUE	DATE	VALUE	DATE	l
06	1902535	MUNICIPAL	ACTIVE	VOCS	ND	03/85	ND	08/10	
(OLD 03)				NO3	14.2	03/95	3.4	08/10	
(CLO4	ND	07/97	ND	08/10	
GENESIS 1	1902536	MUNICIPAL	DESTROYED	MTBE	1.2	11/98	1.1	11/98	
(OLD 04)				NO3	126.6	06/87	109.8	11/98	
				CLO4	7.2	11/98	7.2	11/98	
	1000507		DESTROYER	705		10/20			
GENESIS 2	1902537	MUNICIPAL	DESTROYED	TCE PCE	250_0 95.0	12/79	3.7	02/08	VULNERABLE
(OLD 05)				1,1-DCE	18.0	04/80 02/08	1.0 18.0	02/08 02/08	(NO3)
				CF	2.6	02/08	2.6	02/08	
				1,1,1-TCA	2.5	02/08	2.5	02/08	
				NO3	105.5	02/93	15.9	02/08	
				CLO4	ND	11/98	ND	02/08	
GENESIS 3	1902538	MUNICIPAL	DESTROYED	PCE	3.5	03/97	ND	03/97	
(OLD 06)				TCE	0.1	01/80	ND	03/97	
				NO3	112.9	06/86	ND	04/01	
				CLO4	NA	NA	NA	NA	
01	8000072	MUNICIPAL	ACTIVE	VOCS	ND	06/87	ND	08/10	
(OLD 07)				NO3	4.5	07/97	2.5	08/10	
				CLO4	ND	07/97	ND	08/10	
03	8000086	MUNICIPAL	ACTIVE	VOCS	ND	06/87	ND	08/10	
(OLD 08)	000000		AOTIVE	NO3	4.4	03/95	ND	08/10	
(012 00)				CLO4	ND	07/97	ND	08/10	
							1.000		
02	1902457	MUNICIPAL	ACTIVE	VOCS	ND	06/89	ND	08/10	
(01 NORTH)				NO3	5.5	03/92	2.3	08/10	
				CLO4	ND	07/97	ND	08/10	
04	1902458	MUNICIPAL	ACTIVE	VOCS	ND	06/88	ND	08/10	
(02 SOUTH)				NO3	5.5	06/89	2.1	08/10	
				CLO4	ND	07/97	ND	08/10	
AVWC 01	1902113	MUNICIPAL	DESTROYED	VOCS	ND	09/97	ND	09/97	
AVV0 01	1902115	WONGFAL	DESTROILD	NO3	55.0	08/87	32.1	09/97	
				CLO4	5.6	09/97	5.6	09/97	
AVWC 02	1902114	MUNICIPAL	DESTROYED	VOCS	ND	01/98	ND	01/98	
				NO3	43.1	01/98	43.1	01/98	
				CLO4	6.9	01/98	6.9	01/98	
							5 A.S.		
08	1902115	MUNICIPAL	ACTIVE	TCE	0.8	03/94	ND	08/10	
(AVWC 04)				CF	0.5	08/04	ND	08/10	
				NO3	12.1	09/94	8.0	08/10	
				CLO4	ND	07/97	ND	08/10	
07	1902116	MUNICIPAL	ACTIVE	VOCS	ND	06/88	ND	08/10	VULNERABLE
(AVWC 05)	1002110		NOTIVE	NO3	24.7	04/95	4.3	08/10	(NO3)
······································				CLO4	ND	06/97	ND	08/10	(
				0.7			20 5 51		
09	1902117	MUNICIPAL	INACTIVE	PCE	7.4	12/87	0.6	01/99	VULNERABLE
(AVWC 06)				NO3	117,7	12/89	84.0	01/99	(VOCS)
				CLO4	NA	NA	NA	NA	
					2 Mile				
AVWC 07	1902425	MUNICIPAL	DESTROYED	TCE	4.5	01/80	ND	03/85	
				NO3	107.0	02/77	39.4	12/85	
				CLO4	NA	NA	NA	NA	

				CONCENTRA	TION (NO3 I	N MG/L, O	THERS IN U	JG/L)	
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORIC		MOSTR		REMARKS
	NOMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
10	0000400	MUNICIPAL		DOE		00/00	ND	00/44	
10 (AVWC 08)	8000103	MUNICIPAL	ACTIVE	PCE CF	0.9 1.4	02/09 03/94	ND ND	02/11 11/10	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				NO3	66.0	05/08	61.0	02/11	
				CLO4	12.6	08/05	8.4	02/11	
11	8000178	MUNICIPAL	ACTIVE	VOCS	ND	06/02	ND	08/10	
11	8000178	MONICIFAL	ACTIVE	NO3	3.7	08/08	2,9	08/10	
				CLO4	ND	06/02	ND	08/10	
12	8000179	MUNICIPAL	ACTIVE	VOCS	ND	06/02	ND	08/10	
				NO3 CLO4	3.9 ND	08/08 06/02	2.9 ND	08/10 08/10	
				0204	ND	00/02	ND	00/10	
B & B RED-I-M	IX CONCRETE INC.								
03	1902589	INDUSTRIAL	INACTIVE	vocs	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
BANKS, GALE	& VICKI								
BARRO, GALL	a viola								
NA	1900415	IRRIGATION	ACTIVE	VOCS	ND	08/96	ND	10/10	
				NO3	20.7	10/98	17.0	10/10	
				CLO4	ND	09/97	ND	09/97	
BASELINE WA	TER COMPANY								
01	1901200	IPPICATION	DESTROYED	VOCS	ND	02/98	ND	02/98	
01	1901200	IRRIGATION	DESTRUTED	NO3	99.7	02/98	99.7	02/98	
				CLO4	12,9	02/98	12.9	02/98	
	1001001	IDDIOATION	DEGEDOVED	1000	ND	44/00	ND	11/00	
02	1901201	IRRIGATION	DESTRUYED	VOCS NO3	ND 74.3	11/98 11/98	ND 74.3	11/98 11/98	
				CLO4	10.6	11/98	10.6	11/98	
~~									
03	1901202	IRRIGATION	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3 CLO4	NA NA	NA NA	NA NA	NA NA	
				0104	IN/A	INA	INA.	NA.	
BEVERLY ACR	ES MUTUAL WATE	ER USERS ASSO	CIATION						
ROSE HILLS	8000004	MUNICIPAL	DESTROYED	TCE	8.4	10/88	2.5	03/93	
	000004	MONTON VIL	BEOINGTED	PCE	6.0	10/88	2.8	03/93	
				C-1,2-DCE	8.0	08/86	2.4	03/93	
				NO3	22.5	08/86	14.6	09/90	
				CLO4	NA	NA	NA	NA	
BIRENBAUM, N	XAN								
NA	0000005		NAOTUE	Voca	N1A		NIA	NIA	
NA	8000005	NON-POTABLE	INACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
POTEL I O MAR					A RECEIPT THE				
BUTELLU WA	TER COMPANY								
NA	1900635	MUNICIPAL	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	

				CONCENTRA	TION (NO3 II	MG/L, O	THERS IN	UG/L)	L)		
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORIC	CHIGH	MOST	RECENT	REMARKS		
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE			
	VELOPMENT COM	PANY									
BURB	1900093	NON-POTABLE	INACTIVE	VOCS	NA	NA	NA	NA			
				NO3	NA	NA	NA	NA			
				CLO4	NA	NA	NA	NA			
CALIFORNIA-A	MERICAN WATER	COMPANY/DUA	RTE SYSTEM								
ВV	1900355	MUNICIPAL	ACTIVE	VOCS	ND	02/85	ND	09/10			
				NO3	3.9	10/10	3.9	10/10			
				CLO4	ND	06/97	ND	07/10			
BACON	1900497	MUNICIPAL	ACTIVE	BF	1.8	09/08	1.8	09/08			
DACON	1300437	MONIOIPAL	ACTIVE	DBCM	1.0	10/06	ND	09/08			
				MC	0.6	06/89	ND	09/08			
				NO3	10.0	10/81	3.3	10/10			
				CLO4	ND	06/97	ND	09/09			
CDUN	4000040	MUNICIPAL	ACTIVE	VOCC	ND	00/00	ND	00/40			
CR HV	1903018	MUNICIPAL	ACTIVE	VOCS NO3	ND 7 B	06/88	ND 5.5	09/10			
				CLO4	7.8 ND	07/86 06/97	5.5 ND	10/10 09/10			
ENCANTO	8000139	MUNICIPAL	ACTIVE	VOCS	ND	12/92	ND	12/10			
				NO3	11.3	12/92	4.5	10/10			
				CLO4	ND	06/97	ND	09/10			
FISH C	1900358	MUNICIPAL	INACTIVE	VOCS	ND	02/85	ND	03/11			
			Accession and	NO3	6.7	11/94	2.8	03/11			
				CLO4	ND	06/97	ND	03/11			
LAS L	1900357	MUNICIPAL	DESTROYED	VOCS	ND	02/85	ND	06/91			
LICE	1000007	MONUTION AL		NO3	12.1	08/80	4.1	09/91			
				CLO4	NA	NA	NA	NA			
14810	8000140	MUNICIDAL	ACTIVE	TOF	16	09/06	ND	00/10			
LAS L2	8000140	MUNICIPAL	ACTIVE	TCE NO3	1.6	08/96 12/92	ND 6.3	09/10 10/10			
				CLO4	16.6 ND	06/97	ND	09/10			
MT AVE	1900356	MUNICIPAL	DESTROYED	TCE	16.5	07/87	ND	09/93			
				PCE	1.0	08/82	ND	09/93			
				1,1,1-TCA	8.4	04/85	ND	09/93			
				1,1-DCE	3.4	07/87	ND	09/93			
				T-1,2-DCE NO3	2.0 65.0	04/85 05/89	ND 10.1	09/93 09/93			
				CLO4	NA	NA	NA	NA			
074	1000000										
STA FE	1900354	MUNICIPAL	ACTIVE	TCE	3.3	04/84	ND	09/10			
				CF MC	0.5 0.5	07/87 09/08	ND ND	09/10 09/10	(VOCS AND NO3)		
				NO3	0.5 59.0	09/08	ND 2.2	10/10			
				CLO4	59.0 ND	06/97	ND	09/10			
WILEY	1902907	MUNICIPAL	ACTIVE	CF	4.2	09/01	ND	09/10			
				NO3 CLO4	11.0 ND	03/81 06/97	3.5 ND	10/10 09/10			
Santan and States - Second						00/31		00/10			
ALIFORNIA-A	MERICAN WATER	COMPANY/SAN	MARINO SYST	EM							
BR 1	1901441	MUNICIPAL	INACTIVE	СТС	0.5	12/96	0.5	12/96	VULNERABLE		
				TCE	27.0	07/93	27.0	12/96	(NO3)		
				PCE	9.0	07/93	7.7	12/96			
				NO3 CLO4	31.4	12/96	31.4	12/96 NA			
					NA	NA	NA				

1		UG/L)	1						
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORIO		MOSTR		REMARKS
	NUMBER	UUAGE	014100	OF CONCERN	VALUE	DATE	VALUE	DATE	KEMAKKS
<u>[]</u>		l			TALOL	DATE	TALUL	DATE	J
BR 2	1902787	MUNICIPAL	INACTIVE	TCE	17.0	12/96	17.0	12/96	VULNERABLE
				PCE	6.4	12/96	6.4	12/96	(NO3)
				NO3	25.3	07/93	25.1	12/96	
				CLO4	NA	NA	NA	NA	
DELMAR	1903059	MUNICIPAL	ACTIVE	VOCS	ND	06/88	ND	09/10	
				NO3	14.0	9/2010	14.0	09/10	
				CLO4	ND	06/97	ND	09/10	
ODAND	1000000	MUNICIPAL	AOTIVE	TOF	4.0	00/07		00/44	
GRAND	1900926	MUNICIPAL	ACTIVE	TCE PCE	4.8 2.1	03/07 12/08	2.2 1.1	03/11 03/11	VULNERABLE
				NO3	10.9	09/03	9.5	12/10	(VOCS)
				CLO4	ND	08/97	ND	12/10	
				0201	ND	00/07	110	12/10	
GUESS	1900918	MUNICIPAL	INACTIVE	TCE	5.2	09/99	5,2	12/01	
				PCE	5.4	12/01	5.4	12/01	
				NO3	20.0	05/01	19.0	09/01	
				CLO4	ND	08/97	ND	03/00	
HALL	1900917	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
	1000017		DEGINOTED	NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
10 Marcia 6 Dar			10 10 10 10 10 10 10 10		449-422 2717				
HALL 2	8000175	MUNICIPAL	ACTIVE	VOCS	ND	03/01	ND	06/09	VULNERABLE
				NO3	23.6	04/01	15.0	09/10	(NO3)
				CLO4	ND	03/00	ND	09/10	
HOWLAND	1902424	MUNICIPAL	ACTIVE	TCE	6.9	07/89	1.0	03/11	VULNERABLE
				PCE	3.6	03/01	ND	03/11	(VOCS)
				C-1,2-DCE	3.3	11/87	ND	07/10	
				MC	7.5	05/87	ND	07/10	
				NO3	12.4	09/91	5.8	09/10	
				CLO4	ND	08/97	ND	09/10	
IVAR 1	1900923	MUNICIPAL	DESTROYED	PCE	7.4	06/99	6.2	06/00	
				TCE	1.7	06/99	ND	06/00	
				NO3	29.2	09/94	26.0	09/01	
				CLO4	ND	08/97	ND	03/01	
IVAR 2	1902867	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
IVAN 2	1902007	WONIGIPAL	DESTROTED	NO3	24.0	12/84	24.0	12/84	
				CLO4	NA	NA	NA	NA	
LONGDEN	1900935	MUNICIPAL	ACTIVE	PCE	8.6	12/09	3.7	03/11	VULNERABLE
				NO3	69.6	03/08	68.0	03/11	(CLO4)
				CLO4	5.1	10/09	ND	03/11	
MAR 1	1900924	MUNICIPAL	DESTROYED	VOCS	ND	01/85	ND	01/85	
				NO3	89.0	03/79	39.0	01/84	
				CLO4	NA	NA	NA	NA	
MAR 2	1900925	MUNICIPAL	DESTROYED	VOCS	NA	NA	NIA	NA	
	1900920	WONGPAL	DESTRUTED	NO3	NA 33.0	NA 01/84	NA 33.0	01/84	
				CLO4	NA	NA	33.0 NA	NA	
MAR 3	1903019	MUNICIPAL	ACTIVE	VOCS	ND	01/85	ND	09/10	
				NO3	6.1	09/09	5.9	09/10	
				CLO4	ND	06/97	ND	09/10	
MIVW 1	1900919	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	31.0	03/01	31.0	03/01	
				CLO4	NA	NA	NA	NA	
				0.1					

	(Ĩ	CONCENTRA	TION (NO3 II	N MG/L	THERS IN	UG/L)	
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORI		And and a state of the local division of the	RECENT	REMARKS
	NUMBER	CONCE	CIAIGO	OF CONCERN	VALUE	DATE	VALUE	DATE	NEMAKKO
		I	Л						
MIVW 2	1900920	MUNICIPAL	ACTIVE	VOCS	ND 21.0	07/87	ND	09/10	
				NO3 CLO4	21.0 ND	09/09 06/97	21.0 ND	09/10 09/10	
				0204	ne -	00/01	ne -	00/10	
RIC 1	1900921	MUNICIPAL	INACTIVE	VOCS	ND	02/85	ND	12/90	VULNERABLE
				NO3	23.4	08/89	11,8	11/94	(NO3)
				CLO4	NA	NA	NA	NA	
RIC 2	1900922	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
ROANOKE	1900934	MUNICIPAL	INACTIVE	TCE	5.0	06/00	4.7	12/00	VULNERABLE
NOAHORE	1000304	WORKON AL	MACINE	PCE	1.2	04/90	ND	09/00	(VOCS, NO3, AND CLO4)
				C-1,2-DCE	0.5	09/00	ND	12/00	()
				NO3	33.0	05/89	29.2	12/00	
				CLO4	5.6	06/97	ND	03/00	
ROSEMEAD	1900927	MUNICIPAL	ACTIVE	TCE	4.7	12/01	3.9	03/11	VULNERABLE
ROOLMEAD	1500527	MONIONAL	AOTIVE	PCE	3.4	03/09	2.8	03/11	(VOCS AND NO3)
				NO3	37.0	09/09	22.0	03/11	(1000/110100)
				CLO4	ND	08/97	ND	09/10	
CALIFORNIA C	OUNTRY CLUB								
ARTES	1902531	IRRIGATION	STANDBY	vocs	ND	05/87	ND	10/10	VULNERABLE
ANTES	1902001	INRIGATION	STANDET	NO3	29.0	10/10	29.0	10/10	(NO3)
				CLO4	NA	NA	NA	NA	((100)
CLUB	1902529	IRRIGATION	INACTIVE	PCE	189.0	11/87	189.0	11/87	
				1,1,2,2-PCA	24.0	11/87	24.0	11/87	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
SYCAMORE	1903084	IRRIGATION	STANDBY	PCE	7.1	09/02	0.6	10/10	VULNERABLE
				TCE	0.7	09/01	ND	10/10	(VOCS AND NO3)
				NO3	128.0	10/07	19.0	10/10	
				CLO4	ND	02/98	ND	02/98	
CALIFORNIA D	OMESTIC WATER	COMPANY							
01-E	1901182	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
UTL	1001102	MONION AL	DEGINOTED	NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
02	1901181	MUNICIPAL		OTO	0.7	00/00	ND	04/44	
02	1901181	MUNICIPAL	ACTIVE	CTC PCE	0.7 2.0	09/96 04/08	ND ND	04/11 04/11	VULNERABLE (VOCS, NO3, AND CLO4)
				TCE	4.0	10/99	ND	04/11	(VOC3, NO3, AND CEO4)
				NO3	24.3	08/96	16.0	04/11	
				CLO4	5.6	10/99	ND	05/11	
00	1002057	MINIODA	AOTUE	070		00/04	4.5	04/11	
03	1903057	MUNICIPAL	ACTIVE	CTC PCE	5.3	02/01	1.5	04/11	VULNERABLE
				TCE	21.0 34.0	05/10 05/10	12.0 19.0	04/11 04/11	(NO3) (1)
				1,1-DCE	34.0	07/09	2.6	04/11	
				C-1,2-DCE	2.9	05/10	1.8	04/11	
				CF	0.7	08/04	ND	04/11	
				NO3	47.6	01/07	21.0	04/11	
				CLO4	9.7	08/09	7.6	05/11	
05	1901183	MUNICIPAL	DESTROYED	PCE	2.0	02/85	ND	12/90	
				NO3	13.0	03/84	13.0	03/84	
				CLO4	NA	NA	NA	NA	

CONCENTRATION (NO3 IN MG/L, OTHERS IN UG/L)								UG/L)	
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORI	Contraction of the local day		RECENT	REMARKS
	NUMBER	CONCE	UNA CONTRACTOR	OF CONCERN	VALUE	DATE	VALUE	DATE	
<u> </u>			Ц		THEOR	DATE	THEOR	BALL	۱
05A	8000100	MUNICIPAL	ACTIVE	СТС	1.9	08/96	ND	04/11	VULNERABLE
				PCE	14.6	10/08	3.7	04/11	(VOCS AND NO3) (1)
				TCE 1,1-DCE	17.8 2.7	10/08 10/08	4.2 0_7	04/11 04/11	
				C-1,2-DCE	1.6	10/08	ND	04/11	
				NO3	29.0	04/01	8.0	04/11	
				CLO4	ND	06/97	ND	05/11	
06	1902967	MUNICIPAL	ACTIVE	CTC	3.5	12/06	ND	04/11	VULNERABLE
				PCE	16.1	10/08	ND	04/11	(VOCs, NO3, AND CLO4) (1)
				TCE	23.7	10/08	ND	04/11	
				1,1-DCE	4.5	10/08	ND	04/11	
				C-1,2-DCE NO3	2.6	10/08 04/11	ND 32.0	04/11 04/11	
				CLO4	32.0 5.1	10/06	32.0	04/11	
				0104	5.1	10/00	5.5	00/11	
08	1903081	MUNICIPAL	ACTIVE	PCE	9.8	02/09	2.0	04/11	VULNERABLE
				TCE	12.0	02/09	ND	04/11	(VOCS, NO3, AND CLO4)
				CTC	1.1	09/93	ND 16.0	04/11	
				NO3 CLO4	24.0 5.6	08/02 08/02	16.0 ND	04/11 05/11	
				CLO4	5.0	00/02	ND	05/11	
13-N	1901185	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
14	8000174	MUNICIPAL	INACTIVE	СТС	4.4	10/07	ND	04/11	VULNERABLE
				PCE	3,9	04/01	0.8	04/11	(VOCs, NO3, AND CLO4) (1)
				TCE	18.0	05/01	1.9	04/11	
				1,2-DCA	1.0	06/08	ND	04/11	
				C-1,2-DCE	0.7	11/01	ND	01/11	
				1,1-DCE CF	0.6	08/02	ND	01/11	
				NO3	1.3 41.7	06/08 02/00	0.8 25.0	01/11 04/11	
				CLO4	14.0	11/01	5.2	05/11	
				0204	14,0	11/01	0.2	00/11	
CEDAR AVENU	JE MUTUAL WATER	R COMPANY							
01 SOUTH	1901411	MUNICIPAL	DESTROYED	PCE	2.2	09/90	ND	06/94	
				NO3	26.8	08/93	8.9	06/94	
				CLO4	NA	NA	NA	NA	
02 NORTH	1902783	MUNICIPAL	DESTROYED	PCE	0.8	04/92	ND	06/94	
				NO3	20.0	01/86	7.4	08/93	
				CLO4	NA	NA	NA	NA	
CEMEX CONST	RUCTION MATERI	ALS L.P. (AZ TV	VO)						
02	1900038	INDUSTRIAL	DESTROYED	PCE	700.0	01/85	2.8	09/03	
				TCE	940.0	04/85	6.3	09/03	
				CTC	2.2	09/02	ND	09/03	
				1,1-DCE	350.0	01/87	7.2	09/03	
				1,1-DCA	1.0	08/01	ND	09/03	
				1,1,1-TCA	430.0	01/87	3.6	09/03	
				VC NO3	19.0 79.0	12/87 09/02	ND 73.1	09/03 09/03	
				CLO4	4.2	06/97	ND	09/98	

1				CONCENTRA	TION (NO3 II	MG/L, O	THERS IN	UG/L)	(
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORIC		MOSTR		REMARKS
	NOWBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
CHAMPION MI	UTUAL WATER CO	MPANY							
01	1900908	MUNICIPAL	INACTIVE	PCE NO3	3.0 NA	09/86 NA	2.1 NA	09/91 NA	VULNERABLE (VOCS)
				CLO4	NA	NA	NA	NA	(1003)
0.2	1000040	MUNICIPAL	AOTIVE	DOC	0.0	00/00	ND	00/40	
02	1902816	MUNICIPAL	ACTIVE	PCE NO3	0.6 28.0	06/88 09/10	ND 7.5	09/10 03/11	VULNERABLE (NO3)
				CLO4	ND	09/97	ND	09/10	
03	8000121	MUNICIPAL	ACTIVE	PCE	1.3	09/96	ND	09/10	VULNERABLE
				FREON 113	18,0	03/07	ND	03/11	(NO3)
				NO3	24.0	03/09	14.0	03/11	
				CLO4	ND	03/98	ND	09/10	
CHEVRON US	A INC.								
TEMP 1	1900250	NON-POTABLE	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
CITRUS VALLE	EY MEDICAL CENT	ER, QUEEN OF 1	THE VALLEY CA	AMPUS					
01	8000138	NON-POTABLE	ACTIVE	VOCS	ND	09/96	ND	10/10	
				NO3	104.8	02/98	83.0	10/10	
				CLO4	24.0	02/98	24.0	02/98	
CLAYTON MAN	NUFACTURING CO	MPANY							
02	1901055	INDUSTRIAL	DESTROYED	TCE	150.0	08/01	47.0	09/03	
				PCE	30.0	08/01	ND	09/03	
				1,1-DCE C-1,2-DCE	10.0 1.7	08/01 08/01	1.7 ND	09/03 09/03	
				1,1-DCA	15.0	08/01	ND	09/03	
				1,2-DCA	13.0	08/01	ND	09/03	
				1,1,1-TCA NO3	1.1 87.0	08/01 08/01	ND 39.7	09/03 09/03	
				CLO4	4.0	09/97	4.0	09/97	
COINER, JAME	ES W., DBA COINER	RNURSERY							
03	1902951	NON-POTABLE	INACTIVE	PCE	293.5	02/98	170.0	10/01	VULNERABLE
03	1902931	NON-FOTABLE	INACTIVE	TCE	10.2	11/87	3.4	10/01	(NO3 AND CLO4)
				CTC	1.6	08/87	1.6	10/01	
				1,1-DCE	6.7	02/98 07/96	4.6 2.7	10/01	
				C-1,2-DCE 1,1,1-TCA	6.8 22.0	07/98	12.0	10/01 10/01	
				NO3	67.0	10/01	44.7	09/07	
				CLO4	9.0	02/98	ND	09/98	
05R	1903072	NON-POTABLE	ACTIVE	PCE	7.7	02/98	3.6	10/10	VULNERABLE
				TCE CTC	1.6	10/01	ND	10/10	(VOCS AND CLO4)
				1,1-DCE	2.7 5.5	07/96 10/01	ND 1,3	10/10 10/10	
				CF	6.7	02/98	1.1	10/10	
				NO3 CLO4	110.0 9_0	10/09 02/98	72.0 4.0	10/10 09/98	
CORCORAN	POTUERS				3.0	02/30	4.0	03/30	
CORCORAN B									
01	1902814	NON-POTABLE	DESTROYED	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	

			1	CONCENTRA	TION (NO3 I	N MG/L. O	THERS IN	UG/L)	
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORI			RECENT	REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
<u> </u>			л	ht.				<u></u>	
COUNTY SANI	TATION DISTRICT	NO. 18							
E08A	8000128	REMEDIAL	ACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
E09A	8000129	REMEDIAL	ACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
E10A	8000130	REMEDIAL	ACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
E11A	8000131	REMEDIAL	ACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
EX1	8000141	REMEDIAL	ACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
EX2	8000142	REMEDIAL	ACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
EX3	8000143	REMEDIAL	ACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
EX4	8000144	REMEDIAL	ACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
LE1	8000104	REMEDIAL	ACTIVE	TCE	4.2	06/86	3.7	09/86	VULNERABLE
				PCE	0.8	09/86	0,8	09/86	(VOCS)
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
LE2	8000105	REMEDIAL	ACTIVE	TCE	0.1	06/86	ND	09/86	
				PCE	NA	06/86	ND	09/86	
				NO3 CLO4	NA NA	NA NA	NA NA	NA NA	
				CL04	100		110	NA	
LE3	8000106	REMEDIAL	ACTIVE	TCE	1.5	06/86	1.2	09/86	
				PCE	1.6	06/86	0.8	09/86	
				NO3 CLO4	NA NA	NA NA	NA NA	NA NA	
LE4	8000107	REMEDIAL	ACTIVE	TCE	5.1	09/86	5.1	09/86	
				PCE NO3	2,0 NA	09/86 NA	2.0 NA	09/86 NA	
				CLO4	NA	NA	NA	NA	
COVINA, CITY	OF								
01	1001005	MUNICIDAL	NACTIVE	DOF	0.6	01/00	0.6	01/00	
01	1901685	MUNICIPAL	INACTIVE	PCE NO3	0.6 120.0	01/99 01/99	0.6 120.0	01/99 01/99	
				CLO4	NA	NA	NA	NA	

			1	CONCENTRA	TION (NO3 II	N MG/L. O	THERS IN	UG/L)	
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORI		MOSTR	A REAL PROPERTY AND A REAL	REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
b			(D ₁₀	0					
02 (GRAND)	1901686	MUNICIPAL	INACTIVE	VOCS	ND	06/88	ND	09/98	
				NO3	116.0	08/89	103.0	04/99	
				CLO4	23.0	09/97	22.0	09/98	
03	1901687	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	72.0	10/73	72.0	10/73	
				CLO4	NA	NA	NA	NA	
COVINA IRRIG	ATING COMPANY								
BAL 1	1900885	MUNICIPAL	ACTIVE	TCE	200.0	07/80	ND	11/10	VULNERABLE
DALI	1900665	WONICIPAL	ACTIVE	PCE	7.6	07/80	ND	11/10	(VOCS AND NO3)
				1,1-DCE	0.5	10/06	ND	11/10	(VOC3 AND NO3)
				MC	0.9	10/06	ND	11/10	
				NO3	35.5	12/89	8.6	01/11	
				CLO4	35.5 1.5	12/89	ND	07/10	
				ULU4	1.0	10/00		0//10	
BAL 2	1900883	MUNICIPAL	ACTIVE	TCE	195.0	06/80	ND	11/10	VULNERABLE
				PCE	7.9	06/80	ND	11/10	(VOCS, NO3 AND CLO4)
				1,1-DCE	0.8	07/07	ND	04/11	
				NO3	47.0	03/10	18.0	04/11	
				CLO4	5.5	03/09	ND	04/11	
BAL 3	1900882	MUNICIPAL	ACTIVE	TCE	225.0	01/80	ND	11/10	VULNERABLE
				PCE	10.0	02/85	ND	11/10	(VOCS, NO3 AND CLO4)
				CTC	3.0	04/85	ND	11/10	
				1,1-DCA	4.0	04/85	ND	11/10	
				1,2-DCA	3.7	02/85	ND	11/10	
				1,1-DCE	2.1	04/85	ND	11/10	
				T-1,2-DCE	2.9	02/85	ND	11/10	
				1,1,1-TCA	5.2	04/85	ND	11/10	
				NO3	57.3	08/89	22.0	04/11	
				CLO4	5.6	09/08	ND	04/11	
CONTR	1900881	MUNICIPAL	INACTIVE	PCE	1.4	12/92	1.3	03/94	
				NO3	125.3	12/89	108.0	03/94	
				CLO4	NA	NA	NA	NA	
VALEN	1900880	MUNICIPAL	INACTIVE	PCE	2.4	08/85	0.6	09/97	
				NO3	73.0	06/81	69.3	09/97	
				CLO4	6.4	09/97	6.4	09/97	
CREVOLIN, A.	J.								
NA	8000011	DOMESTIC	INACTIVE	VOCS	NA	NA	NA	NA	
11A	0000011	DOWLONG	INACIAL	NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
CROWN CITY I		(
01	9000040	INDUSTRIAL	INIACTIVE	TCE	10	00/04	1.0	09/04	
01	8000012	INDUSTRIAL	INACTIVE	T-1,2-DCE	1.2 1.4	09/04 05/87	1.2 ND	09/04	
				NO3	7.4	09/04	3.4	09/04	
				CLO4	ND	09/04	ND	10/07	
DAVIDSON OP	TRONICS INC.								
N/A	8000040		INIAOTIUE	VOCC	NIA	N/A	NIA	NIA	
NA	8000013	INDUSTRIAL	INACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
				0204	11/7	14/1	1.1/1		

	RECORDATION		1	CONCENTRA	TION (NO3 II	N MG/L, O	THERS IN	UG/L)	
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORI			RECENT	REMARKS
				OF CONCERN	VALUE	DATE	VALUE	DATE	
DAWES, MARY	/ K.								
		IDDIGATION		1/0.00					
04	1902952	IRRIGATION	INACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
DEL RIO MUTU	JAL WATER COMP	ANY							
BURKETT	1900331	MUNICIPAL	ACTIVE	TCE	2.2	06/90	ND	09/10	VULNERABLE
				PCE	3.7	03/97	ND	09/10	(VOCS AND NO3)
				NO3	31.0	12/03	7.3	09/10	
				CLO4	ND	09/97	ND	09/10	
KLING	1900332	MUNICIPAL	INACTIVE	PCE	1.3	08/86	ND	02/89	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
	AIRY								
01	1902924	INDUSTRIAL	ACTIVE	PCE	13.9	06/98	13.9	06/98	
				1,1,1-TCA	0.3	03/93	ND	06/98	
				NO3 CLO4	65.1	03/93	46.8 ND	06/98	
				CLO4	ND	06/98	ND	06/98	
UNNING, GEO	ORGE								
1910	1900091	IRRIGATION	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
AST PASADE	NA WATER COMPA	ANY, LTD.							
09	1901508	MUNICIPAL	ACTIVE	VOCS	ND	06/88	ND	07/10	
				NO3	4.1	03/98	3.6	03/09	
				CLO4	ND	07/97	ND	03/09	
L MONTE, CIT	TY OF								
02A	1901692	MUNICIPAL	ACTIVE	PCE	13.0	03/98	5,8	04/11	VULNERABLE
				TCE	5.3	01/95	1.5	04/11	(NO3) (1)
				NO3	29.0	10/09	9.1	03/11	
				CLO4	ND	07/97	ND	07/10	
03	1901693	MUNICIPAL	INACTIVE	PCE	23.6	12/00	2.7	03/11	VULNERABLE
				1,1,1-TCA	1.0	11/93	ND	03/11	(NO3)
				NO3	71.6	08/89	11.0	04/11	
				CLO4	ND	07/97	ND	07/10	
04	1901694	MUNICIPAL	INACTIVE	PCE	16.2	03/84	0.6	01/08	VULNERABLE
				TCE	7.8	02/80	ND	12/07	(VOCS AND NO3)
				NO3 CLO4	44.4 ND	12/07 07/97	40.3 ND	01/08 07/03	
				0104		01/9/	ND	07703	
05	1901695	MUNICIPAL	DESTROYED	TCE	150.0	07/93	70,0	12/96	
				PCE	51,0	07/93	32.0	12/96	
				CTC NO3	4.3 53.9	07/93 12/96	1.4 26.3	12/96 06/99	
				CLO4	53.9	06/97	20,3	06/99	
10	1901699	MUNICIPAL	ACTIVE	TCE	7,2	09/81	0.8	04/11	VULNERABLE
10					477	10/00	2 4		
10				PCE NO3	17.7 21.0	12/93 01/10	3.1 8.2	04/11 04/11	(VOCS) (1)

	CONCENTRATION (NO3 IN MG/L, OTHERS IN UG/L)							UG/L)	
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORI			RECENT	REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
0			0						Te.
11	1901700	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
	1301700	MONION AL	DEGINOTED	NO3	21.6	07/79	21.6	07/79	
				CLO4	NA	NA	NA	NA	
12	1903137	MUNICIPAL	ACTIVE	TCE	53.2	06/92	41.0	04/11	VULNERABLE
	1000101		A CONTE	PCE	21.0	01/11	21.0	04/11	(NO3) (1)
				CTC	1.0	06/92	0.7	04/11	A SULPASSOR (A SULPASSOR)
				NO3	41_0	06/05	35.0	04/11	
				CLO4	ND	06/97	ND	07/10	
13	8000101	MUNICIPAL	ACTIVE	PCE	3.2	07/09	1.2	04/11	VULNERABLE
				TCE	3.2	07/09	0.7	04/11	(VOCS)
				NO3	17.0	03/03	4.7	03/11	
				CLO4	ND	07/97	ND	07/10	
MT VW	1902612	IRRIGATION	DESTROYED	PCE	2.1	08/85	ND	01/01	
				TCE	2.0	01/85	ND	01/01	
				NO3	30,0	02/87	10.0	01/01	
				CLO4	ND	09/97	ND	11/97	
EL MONTE CEI	METERY ASSOCIA	TION							
NA	8000017	IRRIGATION	INACTIVE	VOCS	NA	NA	NA	NA	
14/1	0000011		INACTIVE	NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
FRUIT STREET	WATER COMPAN	Y							
NA	1901199	IRRIGATION	DESTROYED	VOCS	NA	NA	NA	NA	
NA	1901199	IKRIGATION	DESTROTED	NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
GATES, JAMES	S RICHARD								
		IPPIONTION							
GATES 1	8000215	IRRIGATION	ACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
GIFFORD, BRC	JOKS JR.								
01	1902144	NA	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
GLENDORA, C	ITY OF								
01-E	1901523	MUNICIPAL	INACTIVE	TCE	0"8	12/80	ND	09/07	VULNERABLE
				NO3	38.1	10/88	35_0	08/08	(NO3)
				CLO4	ND	06/97	ND	03/03	
02-E	1901526	MUNICIPAL	ACTIVE	VOCS	ND	03/85	ND	09/10	VULNERABLE
		2000000000 (1968)2220 (20. 32 ⁻²)	n, Jone Spir Mokula	NO3	70.0	05/78	10.0	09/10	(NO3)
				CLO4	ND	07/97	ND	09/10	
03-G	1901525	MUNICIPAL	INACTIVE	TCE	0.5	12/79	ND	05/97	
				PCE	0.5	05/97	0,5	05/97	
				NO3	162.4	08/83	111.0	08/99	
				CLO4	NA	NA	NA	NA	

HIGHLIGHTS OF VOLATILE ORGANIC COMPOUNDS, NITRATE, AND PERCHLORATE CONCENTRATIONS	
AND WELLS VULNERABLE TO CONTAMINATION (AS OF JUNE 30, 2011)	

				CONCENTRA	TION (NO3 IN	MG/L, O	THERS IN I	UG/L)	
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORIC	C HIGH	MOSTR	ECENT	REMARKS
				OF CONCERN	VALUE	DATE	VALUE	DATE	
04-E	1901524	MUNICIPAL	INACTIVE	TCE	0.7	08/80	ND	08/91	
0.12	1001021	Mortion / L	in the control	PCE	0.1	07/81	ND	08/91	
				NO3	126,0	06/83	56.8	08/91	
				CLO4	NA	NA	NA	NA	
05-E	8000149	MUNICIPAL	ACTIVE	VOCS	ND	02/95	ND	09/10	
				NO3	3.2	05/95	2.1	06/09	
				CLO4	ND	07/97	ND	09/10	
07-G	1900831	MUNICIPAL	INACTIVE	TCE	302.0	01/81	ND	04/98	VULNERABLE
				PCE	25.0	01/81	1.9	04/98	(VOCS AND CLO4) (3)
				1,1-DCE	435.0	05/84	ND	04/98	
				C-1,2-DCE	21.0	05/82	ND	04/98	
				1,1-DCA	5.0	05/84	ND	04/98	
				1,2-DCA	12.1	12/93	ND	04/98	
				1,1,1-TCA	3200.0	05/84	64.0	04/98	
				NO3	106.0	04/98	75.9	04/98	
				CLO4	5.3	04/98	5.3	04/98	
08-E	1900829	MUNICIPAL	ACTIVE	MC	0.7	08/02	ND	03/11	
				NO3	6.6	08/86	ND	09/10	
				CLO4	ND	07/97	ND	09/10	
09-E	1900830	MUNICIPAL	ACTIVE	VOCS	ND	05/89	ND	09/10	
				NO3	4.1	08/96	ND	09/10	
				CLO4	ND	07/97	ND	09/10	
10-E	1900828	MUNICIPAL	ACTIVE	CF	1.9	07/97	ND	03/11	VULNERABLE
				NO3	78.0	05/77	36.0	03/11	(NO3)
				CLO4	ND	07/97	ND	09/10	
11-E	1900826	MUNICIPAL	ACTIVE	VOCS	ND	05/82	ND	09/10	VULNERABLE
				NO3	117.5	08/73	47.0	03/11	(NO3)
				CLO4	4.9	12/10	ND	03/11	
12-G	1900827	MUNICIPAL	ACTIVE	TCE	0,9	12/80	ND	09/10	
				MC	2.2	05/89	ND	09/10	
				NO3	4.7	07/98	ND	09/10	
				CLO4	ND	06/97	ND	09/10	
13-E	8000184	MUNICIPAL	ACTIVE	BF	0.7	06/04	ND	03/11	VULNERABLE
				NO3	29.0	12/09	14.0	03/11	(NO3)
				CLO4	ND	06/04	ND	09/10	
GOEDERT, LIL	LIAN								
GOEDERT	8000159	IRRIGATION	DESTROYED	VOCS	ND	06/98	ND	06/98	
OOLDEIN	0000105	INNOATION	DESINOTED	NO3	7.0	06/98	7.0	06/98	
				CLO4	ND	06/98	ND	06/98	
GOLDEN STAT	E WATER COMPAN	IY/SAN GABRI	EL VALLEY DIS	TRICT					
					15.0	07/00		24105	
AZU 1	1902020	MUNICIPAL	DESTROYED	TCE	15.0	07/93	0.6	01/95	
				PCE	1.9	07/93	ND	01/95	
				NO3	72.9	12/90	35.0	07/02	
				CLO4	NA	NA	NA	10/02	
EARL 1	1902144	MUNICIPAL	INACTIVE	PCE	6.0	09/03	6.0	09/03	
				NO3	7.2	08/03	7,1	09/03	
				CLO4	ND	08/97	ND	08/03	

Î Î	CONCENTRATION (NO3 IN MG/L, OTHERS IN UG/L)								i
WELL NAME	RECORDATION	USAGE	STATUS		HISTORIO		and the second data was not a second data was	RECENT	DEMARKS
AACTE NAME	NUMBER	USAGE	STATUS	OF CONCERN					REMARKS
			JL	OFCONCERN	VALUE	DATE	VALUE	DATE	
ENC 1	1902024	MUNICIPAL	ACTIVE	TCE	21.0	04/03	4,2	04/11	VULNERABLE
2.10	TOOLDET		NOTICE	PCE	3.5	04/03	0.9	04/11	(VOCS, NO3 AND CLO4) (1)
				CF	0.9	08/00	ND	04/11	
				NO3	77.6	08/91	11.0	02/11	
				CLO4	4.2	12/03	ND	05/11	
ENC 2	1902035	MUNICIPAL	ACTIVE	TCE	29.1	02/01	3,0	04/11	VULNERABLE
				PCE	6.1	02/01	1.5	04/11	(VOCS) (1)
				NO3	21.0	02/09	11.0	02/11	
				CLO4	1.5	03/10	ND	05/11	
ENC 3	8000073	MUNICIPAL	ACTIVE	TCE	11.0	01/02	7.2	04/11	VULNERABLE
Entere	0000070	MONION AL	AOTIVE	PCE	4.7	01/02	2.6	04/11	(NO3) (1)
				NO3	43.2	07/93	16.0	02/11	
				CLO4	1.9	03/10	ND	05/11	
FAR 1	1902034	MUNICIPAL	ACTIVE	TCE	11.9	10/80	ND	03/11	VULNERABLE
				PCE	3.1	10/87	ND	03/11	(VOCS)
				NO3	13.0	07/89	ND	06/09	
				CLO4	ND	08/97	ND	06/09	
FAR 2	1902948	MUNICIPAL	ACTIVE	TCE	12.9	07/80	ND	08/10	VULNERABLE
				PCE	2,6	10/87	ND	08/10	(VOCS)
				NO3	12.2	07/90	4.1	08/10	
				CLO4	ND	08/97	ND	08/10	
GAR 1	1900513	MUNICIPAL	INACTIVE	CF	0.8	08/99	ND	07/03	VULNERABLE
				PCE	4.5	10/03	4.5	10/03	(VOCS)
				NO3	8.3	08/03	7.7	09/03	()
				CLO4	ND	08/97	ND	08/03	
GAR 2	1900512	MUNICIPAL	INACTIVE	PCE	12.0	07/03	11.0	08/03	
				TCE	2,2	08/03	2.2	08/03	
				NO3	7.3	08/97	4.6	07/02	
				CLO4	ND	08/97	ND	08/03	
	4000000		DEGTROVER	TOP		0.4/05		00/00	
GID 1	1902032	MUNICIPAL	DESTROYED	TCE	6,6	04/85	4.1	09/93	
				PCE	0.9	09/93	0.9	09/93	
				NO3 CLO4	40.6 NA	09/93 NA	40.6 NA	09/93 NA	
				CLO4	NA	INA	INA	IN/A	
GID 2	1902031	MUNICIPAL	DESTROYED	TCE	86.0	05/87	5.2	09/93	
Trans. and				PCE	20.0	05/87	1.5	09/93	
				CTC	3.0	05/87	ND	09/93	
				NO3	45.8	09/93	45.8	09/93	
				CLO4	NA	NA	NA	NA	
GRA 1	1902030	MUNICIPAL	INACTIVE	TCE	33.0	09/88	25.4	11/94	VULNERABLE
				PCE	2.5	11/93	0.6	11/94	(NO3)
				NO3	86.8	08/89	44.4	07/95	
				CLO4	NA	NA	NA	NA	
GRA 2	1902461	MUNICIPAL	INACTIVE	TCE	31.3	08/89	24.6	08/94	VULNERABLE
GRA Z	1902401	MUNUFAL	INACTIVE	PCE	31.3	09/94	24.6	08/94	(NO3)
				1,1-DCE	4.8	09/94	4.8	09/94	(1005)
				NO3	4.0 82.1	07/90	4.8	07/95	
				CLO4	NA	NA	44.2 NA	NA	
				0204	10/3			11/1	

10				0000000000		100 0	THERE W	100	
	RECORDATION			CONCENTRA	the second se				
WELL NAME	NUMBER	USAGE	STATUS	CONTAMINANT	HISTORIC	HIGH	MOST	RECENT	REMARKS
				OF CONCERN	VALUE	DATE	VALUE	DATE	
JEF 1	1902017	MUNICIPAL	DESTROYED	TCE	340.0	01/80	98.0	01/85	
				PCE	23,0	03/81	8.0	01/85	
				1,1,1-TCA	31.0	01/85	31.0	01/85	
				MC	10.0	01/85	10.0	01/85	
				NO3	52.0	07/83	48.7	03/86	
				CLO4	NA	NA	NA	NA	
JEF 2	1902018	MUNICIPAL	DESTROYED	TCE	260.0	01/80	140.0	01/85	
				PCE	15.0	03/81	6.0	01/85	
				1,1-DCE	20.0	01/85	20.0	01/85	
				1,1,1-TCA	54.0	01/85	54.0	01/85	
				MC	6.0	01/85	6.0	01/85	
				NO3	68.0	06/77	61.0	06/79	
				CLO4	NA	NA	NA	NA	
	1002010	MUNICIDAL	INIACTIVE	TCE	101.0	02/81	4.9	08/02	VULNERABLE
JEF 3	1902019	MUNICIPAL	INACTIVE		121.0	02/81		08/92 08/92	
				PCE	12.0		0,6		(VOCS AND NO3) (3)
				1,1,1-TCA	29.0	04/85	ND	08/92 08/92	
				T-1,2-DCE	2.4	04/85	ND		
				NO3	52.0	12/84	23.5	08/92	
				CLO4	NA	NA	NA	NA	
JEF 4	8000111	MUNICIPAL	ACTIVE	VOCS	ND	08/89	ND	08/10	
				NO3	14.7	07/89	4.5	08/10	
				CLO4	ND	08/97	ND	08/10	
PER 1	1902027	MUNICIPAL	ACTIVE	TCE	25.8	10/80	0.7	02/11	VULNERABLE
T EIX T	1002021	MORIONITIE	NOTIVE	PCE	6.8	07/87	ND	02/11	(VOCS AND NO3) (3)
				NO3	35.0	08/10	10.0	02/11	
				CLO4	ND	08/97	ND	08/10	
S G 1	1900510	MUNICIPAL	ACTIVE	PCE	46.0	04/06	13.0	03/11	VULNERABLE
				TCE	6.8	12/03	0.6	03/11	(NO3 AND CLO4) (1)
				C-1,2-DCE	1.8	11/04	ND	03/11	
				1,1-DCA	1.8	06/04	ND	03/11	
				1,1-DCE	0.7	11/04	ND	03/11	
				FREON 11	1.2	08/03	ND	03/11	
				NO3	27.0	04/02	19.0	03/11	
				CLO4	8.1	08/03	1.7	03/11	
SG2	1900511	MUNICIPAL	INACTIVE	PCE	28.0	05/11	28.0	05/11	VULNERABLE
				TCE	3.6	06/99	1.0	05/11	(NO3 AND CLO4) (1)
				1,1-DCE	0.7	04/11	0.7	05/11	 Second and the second se
				C-1,2-DCE	1.2	02/01	ND	05/11	
				NO3	53.1	10/05	33.0	05/11	
				CLO4	7_0	02/03	1.9	05/11	
SAX 1	1900515	MUNICIPAL	DESTROYED	PCE	1.4	04/97	0.9	12/97	
SAA I	1900212	WONGPAL	DESTRUTED	MC	2.2	04/97	ND	08/97	
				NO3	33.1	10/97	33.1	10/97	
				CLO4	ND	08/97	ND	12/97	
1	and the second second								
SAX 3	1900514	MUNICIPAL	ACTIVE	VOCS	ND	04/89	ND	08/10	VULNERABLE
				NO3	27.3	11/96	2.4	08/10	(NO3)
				CLO4	ND	08/97	ND	08/10	
SAX 4	8000146	MINICIPAL	ACTIVE	VOCS	ND	03/92	ND	08/10	
				NO3	11.9	08/99	2.6	08/10	
				CLO4	ND	08/97	ND	08/10	
							100.000 Tel	100000-0000	

	DECORDATION		1	CONCENTRA	TION (NO3 II	MG/L, O	THERS IN	UG/L)	
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORIO	CHIGH	MOST	RECENT	REMARKS
	Nombert			OF CONCERN	VALUE	DATE	VALUE	DATE	
COLDEN STAT	TE WATER COMPA		DISTRICT						
GOLDEN GIA		TISAN DIMAS	District						
ART-1	1902151	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	60.0	10/74	60.0	10/74	
				CLO4	NA	NA	NA	NA	
ART-2	1902152	MUNICIPAL	DESTROYED	VOCS	ND	06/89	ND	05/07	
				NO3	26.2	08/07	9.4	09/07	
				CLO4	ND	08/97	ND	09/07	
ART-3	1902842	MUNICIPAL	ACTIVE	VOCS	ND	05/89	ND	05/09	VULNERABLE
				NO3	60.0	01/73	21.0	05/11	(NO3 AND CLO4) (4)
				CLO4	4.7	02/09	1.7	05/11	
BAS-3	1902148	MUNICIPAL	ACTIVE	VOCS	ND	06/89	ND	05/09	VULNERABLE
				NO3	67.0	01/03	25.0	05/11	(NO3 AND CLO4) (4)
				CLO4	17.0	03/03	2,8	05/11	
BAS-4	1902149	MUNICIPAL	ACTIVE	vocs	ND	03/85	ND	05/09	(4)
540-4	1302140	MONION AL	ACTIVE	NO3	106.0	05/76	65.0	05/11	(-)
				CLO4	20.0	01/02	11.0	05/11	
	4000000	MUNICIPAL		NOOS	ND	00/00	ND	05/00	
CITY	1902286	MUNICIPAL	INACTIVE	VOCS NO3	ND 44.7	06/88 09/93	ND 31.0	05/08 11/08	VULNERABLE (NO3)
				CLO4	ND	08/97	ND	08/08	(100)
					100.000		101120-001	60 ST 10	
COL-1	1902266	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3 CLO4	93.0 NA	09/75 NA	10.0 NA	10/76 NA	
				0201	10.1	10.0	103		
COL-2	1902267	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3 CLO4	117.5 NA	10/76 NA	117.5 NA	10/76 NA	
				CLO4					
COL-4	1902268	MUNICIPAL	ACTIVE	CF	7.5	09/97	ND	08/10	VULNERABLE
				NO3	64.0	03/83	33.0	04/11	(NO3)
				CLO4	2.9	04/11	2.3	05/11	
COL-5	1902269	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
COL-6	1902270	MUNICIPAL	ACTIVE	PCE	7.2	07/85	ND	02/11	VULNERABLE
				CF	0.6	09/97	ND	08/10	(VOCS AND NO3)
				NO3	56.0	06/85	36.0	02/11	
				CLO4	ND	09/97	ND	08/10	
COL-7	1902271	MUNICIPAL	DESTROYED	PCE	22.0	12/87	3_1	11/99	
				TCE	9.9	01/80	ND	09/99	
				1,1-DCE	1.1	03/85	ND	09/99	
				1,1,1-TCA NO3	1.7 118.0	07/85 05/79	ND 68.1	09/99 01/00	
				CLO4	4.2	01/02	4.2	01/02	
COL-8	1902272	MUNICIPAL	INACTIVE	PCE	0.2	09/80	ND	12/96	
				NO3 CLO4	120.0 NA	06/83 NA	50.8 NA	12/96 NA	
								1.57.3	
HIGHWAY	1902150	MUNICIPAL	ACTIVE	TCE	0,6	12/80	ND	05/09	VULNERABLE
				PCE NO3	0.1	12/80	ND 14.0	05/09	(NO3 AND CLO4) (4)
				CLO4	42.5 8.0	10/03 10/03	14.0 ND	05/11 05/11	
				ULU4	0.0	10/03	ND	00/11	

1	CONCENTRATION (NO3 IN MG/L, OTHERS IN UG/L)							UG/L)	1
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORI		MOST		REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
e,			r						n/
L HILL 2	1902154	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3 CLO4	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
MALON	1902287	MUNICIPAL	ACTIVE	CF	1.7	08/96	ND	05/09	VULNERABLE
				NO3	42.0	09/87	16.0	05/11	(NO3)
				CLO4	ND	08/97	ND	08/10	
GREEN, WALT	ER								
510	000007	IDDICATION	IN A OTIVE	1000					
NA	8000027	IRRIGATION	INACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
					x				
NA	8000028	NON-POTABLE	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
HALL (W.E.) CO	OMPANY								
NA	1002406	DOMESTIC	INIAOTIVE	VOCE	NIA	NIA	NIA	NIA	
INA	1902496	DOMESTIC	INACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
	_								
HANSEN, ALIC	E								
2946C	8000029	IRRIGATION	ACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
HANSON AGGI	REGATES WEST, I	NC.							
DUA 1	1000061		INACTIVE	VOCC	NIA	NIA	N1.0	NIA	
DUAT	1900961	INDUSTRIAL	INACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
-									
EL 1	1901492	INDUSTRIAL	ACTIVE	VOCS	ND	05/98	ND	09/02	
				NO3 CLO4	17.0 ND	02/93 03/98	2,2 ND	09/02 03/98	
				0201	110	00,00	ND	00/00	
EL 3	1901493	INDUSTRIAL	ACTIVE	VOCS	ND	06/98	ND	09/02	
				NO3	22.0	05/93	2.8	09/02	
				CLO4	ND	03/98	ND	03/98	
EL 4	1903006	INDUSTRIAL	ACTIVE	VOCS	ND	12/87	ND	09/02	
				NO3	6.3	06/98	ND	09/02	
				CLO4	NA	NA	NA	NA	
KIN 1	1900963	INDUSTRIAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
HARTLEY, DAV	/ID								
NA	8000085	DOMESTIC	ACTIVE	VOCS	ND	10/95	ND	10/95	
				NO3 CLO4	111.0 NA	01/96 NA	75.0 NA	04/96 NA	
				ULU4	INA	NA	NA	INA	

Odd Odd <thodd< th=""> <thodd< th=""> <thodd< th=""></thodd<></thodd<></thodd<>		09/10 09/10	VULNERABLE
04/82 12/87 12/06 09/97 12/87	ND ND 2.2	09/10 09/10	
12/87 12/06 09/97 12/87	ND 2.2	09/10	
12/87 12/06 09/97 12/87	ND 2.2	09/10	
12/87 12/06 09/97 12/87	ND 2.2	09/10	
12/06 09/97 12/87	2.2		(VOCS) (1)
12/87	ND	12/10	
		09/10	
	ND	03/11	VULNERABLE
04/89	ND	06/09	(VOCS AND NO3) (1)
12/94	7.2	03/11	
09/97	ND	09/10	
01/80	1.7	10/92	
04/80	5.0	10/92	
10/92	5.7	10/92	
10/92	15.3	10/92	
10/92 10/92	0.6 60.2	10/92 10/92	
NA	NA	NA	
01/80	2.3	04/81	
04/81	10.0	04/81	
02/86	55.5	02/86	
04/99	100.0	04/99	
09/80	1.6	07/06	VULNERABLE
07/06	12.0	07/06	(NO3, AND CLO4)
	0.5		
04/99	ND	07/06	
08/01	0.5	07/06	VULNERABLE
11/01	1.7	07/06	(VOCS AND NO3)
09/02	0.6	07/06	
06/01	6.5	01/06	
04/11	3.0	05/11	VULNERABLE
04/96	2.0		(VOCS, NO3, AND CLO4) (1,4)
09/02	ND	05/11	,
12/10	NĎ	05/11	
01/07	ND	05/11	
	27.0		
04/04	4.5	05/11	
12/80	0.3	12/80	
		NA	
NA NA	NA NA	NA	
NA			
NA NA	NA	NA	
NA			
	07/06 07/06 07/03 07/03 09/02 08/00 04/99 08/01 11/01 09/02 11/01 06/89 06/02 06/01 04/11 04/11 04/96 09/02 12/10 01/07 08/08 04/04	07/06 12.0 07/06 0.5 07/06 0.5 07/03 ND 07/03 ND 07/03 ND 09/02 0.6 08/00 ND 04/99 ND 08/01 0.5 11/01 1.7 09/02 0.6 11/01 ND 06/02 33.0 06/01 6.5 04/11 3.0 04/96 2.0 09/02 ND 12/10 ND 01/07 ND 08/08 27.0 04/04 4.5 12/80 0.3	07/06 12.0 07/06 07/06 0.5 07/06 07/06 0.5 07/06 07/06 0.5 07/06 07/03 ND 07/06 07/03 ND 07/06 07/03 ND 07/06 09/02 0.6 07/06 08/00 ND 07/06 04/99 ND 07/06 08/01 0.5 07/06 08/02 0.6 07/06 11/01 1.7 07/06 09/02 0.6 07/06 11/01 ND 07/06 09/02 0.6 07/06 11/01 ND 07/06 09/02 0.6 07/05 06/03 3.0 04/07 06/01 6.5 01/06 04/11 3.0 05/11 09/02 ND 05/11 09/02 ND 05/11 04/04 4.5 05/11

			Y	CONCENTRA	TION (NO3 I	IN MG/L, O	THERS IN	UG/L)	
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTOR			RECENT	REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
								21	
LANDEROS, J	ОНИ								
NA	8000031	DOMESTIC	INACTIVE	VOCS	NA	NA	NA	NA	
NA	0000031	DOMESTIC	INACTIVE	NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
LA PUENTE VA	ALLEY COUNTY WA	ATER DISTRICT							
01	1901459	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
02	1901460	MUNICIPAL	ACTIVE	TCE	110_0	12/09	110.0	06/11	VULNERABLE
				PCE	6.6	03/00	5.0	06/11	(NO3) (1,4)
				CTC	8.5	12/02	5,7	06/11	
				1,1-DCA	2,1	11/03	0.7	06/11	
				1,2-DCA	6.1	03/00	4.0	06/11	
				1,1-DCE	1.6	12/00	0.5	06/11	
				C-1,2-DCE CF	1.9 2.8	04/10 04/10	1.9 2.6	06/11 06/11	
				NO3	32.0	02/09	25.0	06/11	
				CLO4	183.0	02/98	81.0	06/11	
				0204	100.0	02/30	01.0	00/11	
03	1902859	MUNICIPAL	ACTIVE	TCE	72.0	03/11	3.3	06/11	VULNERABLE
				PCE	6.3	04/85	0_9	06/11	(VOCs AND NO3) (1,4)
				CTC	8.5	11/04	ND	06/11	
				1,1-DCE	0,9	10/95	ND	06/11	
				1,2-DCA	6.7	02/99	ND	06/11	
				C-1,2-DCE	1.4	01/97	ND	06/11	
				1,1-DCA CF	0.5 1.9	09/01 03/11	ND ND	06/11 06/11	
				NO3	95.0	01/80	37.0	06/11	
				CLO4	174.0	02/98	11.0	06/11	
04	8000062	MUNICIPAL	STANDBY	TCE	84.3	03/00	46.0	04/04	VULNERABLE
04	8000082	MUNICIPAL	STANDBT	PCE	6.6	03/00	2.9	04/04	(NO3) (1,4)
				CTC	7.6	04/95	1.9	04/04	(1003) (1,4)
				1,1-DCA	0.7	04/04	0.7	04/04	
				1,2-DCA	8.1	03/00	4.4	04/04	
				1,1-DCE	1.3	04/97	0.5	04/04	
				C-1,2-DCE	15.6	11/98	1.7	04/04	
				CF	2.3	04/04	2.3	04/04	
				NO3	24,9	04/95	18.1	04/04	
				CLO4	159.0	06/97	71.2	04/04	
05	8000209	MUNICIPAL	ACTIVE	TCE	43.0	03/08	24.0	06/11	VULNERABLE
106777	20200-0-01.000-01.000			PCE	3.8	03/08	2.3	06/11	(NO3) (1,4)
				CTC	2,3	03/08	1.1	06/11	
				1,1-DCA	0.5	03/08	ND	06/11	
				1,2-DCA	2.7	03/08	1.0	06/11	
				1,1-DCE	0.5	03/08	ND	06/11	
				C-1,2-DCE	0.8	11/08	0.7	06/11	
				CF NO3	1.7	03/08	ND 20.0	06/11	
				CLO4	31.0 65.0	10/09 03/08	30.0 26.0	06/11 06/11	
				0104	00.0	00/00	20.0	00/11	
LA VERNE, CIT	TY OF								
SNIDO	1902322	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	

1		UG/L)	1						
WELL NAME	RECORDATION	USAGE	STATUS	CONCENTRA	HISTOR		-	ECENT	REMARKS
TELS NAME	NUMBER	USAGE	314103	CONTAMINANT OF CONCERN	VALUE	DATE	VALUE	DATE	. NEWARRS
ll		<u></u>			TALUL	DATE	THEOL	DATE	
W15-L	1902769	MUNICUPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
W24-L	1901197	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
	1001101		DEGINOTED	NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
LEE, PAUL									
01	8000018	DOMESTIC	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
02	8000019	DOMESTIC	INACTIVE	VOCS	NA	NA	NA	NA	
02	0000010	DOMEOTIO	in which the	NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
~~	0000000	DOMESTIC	IN LA OTH /C	10000			N14	NI A	
03	8000020	DOMESTIC	INACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
04	8000021	DOMESTIC	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
LOS ANGELES	COUNTY OF			CLO4	NA	NA	NA	NA	
	,								
02	1902580	NON POTABLE	DESTROYED	PCE	6.6	09/04	6.6	09/04	
				TCE	1.3	09/04	1.3	09/04	
				1,2-DCA NO3	0.5 10.7	01/96 09/04	ND 10.7	09/04 09/04	
				CLO4	ND	08/97	ND	08/97	
03	1902663	IRRIGATION	DESTROYED	PCE	2.1	06/94	2.1	06/94	
				TCE	0.7	06/94	0.7	06/94	
				NO3 CLO4	4.8 NA	06/94 NA	4.8 NA	06/94 NA	
				0201			147		
03A	8000150	IRRIGATION	DESTROYED	PCE	2.5	11/99	ND	10/08	
				NO3	2.1	08/96	ND	10/08	
				CLO4	ND	08/97	ND	08/97	
04	1902664	IRRIGATION	DESTROYED	1,1,1-TCA	0.7	05/87	ND	11/87	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
05	1902665	IRRIGATION	DESTROYED	PCE	39.0	09/03	35.7	10/08	
05	1902003	INNIGATION	DESTROTED	TCE	1.3	09/03	ND	10/08	
				NO3	18.0	09/03	14.0	10/08	
				CLO4	ND	08/97	ND	08/97	
06	1902666	IRRIGATION	DESTROVER	PCE	74	08/06	20	11/00	
06	1902000	IRRIGATION	DESTROYED	TCE	7.4 8.3	08/96 08/96	2.8 2.9	11/99 11/99	VULNERABLE (VOCS)
				1,1-DCA	2.0	08/96	ND	11/99	(
				1,1-DCE	1.4	08/96	ND	11/99	
				C-1,2-DCE	4.5	08/96	0.8	11/99	
				NO3	11.6	08/96	8.4	11/99	
				CLO4	NA	NA	NA	NA	
600	8000090	IRRIGATION	INACTIVE	VOCS	ND	07/98	ND	07/98	
			mene unoi 2022 2024	NO3	4.8	07/98	4.8	07/98	
				CLO4	ND	07/98	ND	07/98	

		1		CONCENTRA	TION (NO3 IN	MG/L.O	THERS IN	UG/L)	1
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORIC			RECENT	REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
<u></u> /		л	n	A1				1	n0
BIG RED	8000088	NON POTABLE	INACTIVE	1,2-DCA	0.6	01/96	ND	10/09	VULNERABLE
				NO3 CLO4	12.0 ND	09/02 08/97	ND ND	10/09 08/97	(VOCS)
				CLO4	ND	00/9/	ND	00/97	
NEW LAKE	8000089	NON POTABLE	INACTIVE	PCE	19.7	02/00	ND	11/10	VULNERABLE
				TCE	0.9	02/00	ND	11/10	(VOCS)
				CF	2,6	11/10	2.6	11/10	
				NO3	22.0	02/00	18.0	11/10	
				CLO4	ND	08/97	ND	08/97	
SF 1	8000070	NON POTABLE	ACTIVE	TCE	4.3	09/04	ND	10/10	VULNERABLE
				PCE	7.6	09/04	ND	10/10	(VOCS)
				VC	1.4	12/87	ND	10/10	
				NO3	16.0	09/02	6.3	10/10	
				CLO4	ND	06/97	ND	05/10	
WHI 1	1902579	NON POTABLE	INACTIVE	PCE	3.8	09/04	1.4	11/10	VULNERABLE
				TCE	1.0	09/04	ND	11/10	(VOCS)
				NO3	7.7	10/09	5.1	11/10	
				CLO4	ND	08/97	ND	08/97	
	UTUAL WATER C	OMPANY							
LUS FLORES I	NOTOAL WATER C	OWPANT							
HI 1	21902098	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
101	44000000		DEOTOOVED	1000					
LO 1	11902098	MUNICIPAL	DESTROYED	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
LOUCKS, DAV	ID								
NIA	9000033	DOMESTIC	INIAOTIVE	VOCE	NIA	N1A	NIA	NIA	
NA	8000032	DOMESTIC	INACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
MAECHTLEN E	STATE								
M-N	1902323	DOMESTIC	INACTIVE	VOCS	NA	NA	NA	NA	
101-14	1902323	DOMESTIC	INACTIVE	NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
OLD60	1902321	DOMESTIC	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
SNIDO	1902322	DOMESTIC	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
	THERS ROCK ANI								
MANNING BRU	THERS RUCK ANI	SAND COMPA							
36230	1900117	INDUSTRIAL	DESTROYED	TCE	520.0	12/79	100.0	01/80	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
MAPLE WATER	COMDANY								
MALLE WAIEP	COMPANY								
01	8000109	MUNICIPAL	DESTROYED	VOCS	ND	06/89	ND	07/96	
				NO3	68.0	09/94	55.5	07/96	
				CLO4	NA	NA	NA	NA	

				CONCENTRA	FION (NO3 IN	MG/L.O	THERS IN I	UG/L)	
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORIC	and the second se	MOSTR	statement of the local data	REMARKS
	NUMBER	USACE	SIRIOS	OF CONCERN	VALUE	DATE	VALUE	DATE	
		<u>I</u>]	I		THEOL	DATE	THEFE	BATE	
02	1900042	MUNICIPAL	DESTROYED	VOCS	ND	06/89	ND	07/96	
				NO3	62.7	11/89	55.3	07/96	
				CLO4	NA	NA	NA	NA	
MARTINEZ, FRAM	NCES M.								
NA	8000033	DOMESTIC	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3 CLO4	NA NA	NA NA	NA NA	NA NA	
				0104	194		110	110	
METROPOLITAN	WATER DISTRIC	T OF SOUTHER	N CALIFORNIA	L .					
02	1900693	NON-POTABLE	DESTROVED	VOCS	NA	NA	NA	NA	
02	1900693	NON-POTABLE	DESTRUTED	NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
03	1900694	NON-POTABLE	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3 CLO4	NA NA	NA NA	NA NA	NA NA	
				ULU4	INA	INA	INA	IN/A	
MILLER COORS L	LLC (MILLER BR	EWING COMPAN	NY)						
01	8000075		ACTIVE	vocs	ND	01/92	ND	10/09	
UT	8000075	INDUSTRIAL	ACTIVE	NO3	ND 9.8	01/92	4.3	10/09	
				CLO4	ND	06/97	ND	06/08	
02	8000076	INDUSTRIAL	INACTIVE	VOCS	ND	01/92	ND	11/10	
				NO3 CLO4	14.0 ND	10/92 06/97	3.0 ND	11/10 05/08	
				0204	110	00/07	110	00.00	
N BREWER	8000034	INDUSTRIAL	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
MONROVIA, CITY	OF								
24	1000117		DEOTOOVED	705	40.0	14/00	10.0	0.4/00	
01	1900417	MUNICIPAL	DESTROYED	TCE PCE	46.8 3.9	11/92 03/81	12.0 0.8	04/02 04/02	
				1,1-DCE	1.2	08/96	0.9	04/02	
				1,1,1-TCA	2.1	08/87	ND	07/01	
				CF	3.2	07/01	3.2	07/01	
				NO3	78.0	02/01	60.0	03/02	
				CLO4	11,1	02/01	8.4	04/02	
02	1900418	MUNICIPAL	ACTIVE	TCE	167.0	08/82	2.9	04/11	VULNERABLE
				PCE	11.0	08/82	0.5	04/11	(VOCS, NO3 AND CLO4) (1)
				1,1,1-TCA	7.1	02/87	ND	07/10	
				1,1-DCE	3.4	06/87	ND	04/11	
				1,2-DCA	1.5	02/87	ND	07/10	
				CF NO3	2.2 65.6	07/07 12/91	ND 15.0	07/10 04/11	
				CLO4	6.0	01/05	ND	04/11	
05	4000440	MUNICIPAL	A OT !! (=		40.0	00/00	ND	04/44	
03	1900419	MUNICIPAL	ACTIVE	TCE PCE	18.0 17.0	08/82 08/82	ND ND	04/11 04/11	VULNERABLE (VOCS AND NO3) (1)
				1,1-DCE	0.8	12/08	ND	04/11	
				CF	1.8	07/08	ND	07/10	
				NO3	49.6	05/76	7.2	04/11	
				CLO4	ND	08/97	ND	07/10	

HIGHLIGHTS OF VOLATILE ORGANIC COMPOUNDS, NITRATE, AND PERCHLORATE CONCENTRATIONS
AND WELLS VULNERABLE TO CONTAMINATION (AS OF JUNE 30, 2011)

[)	1		CONCENTRA	TION (NO21	N MC/L O		16/1.)	r I
WELL NAME	RECORDATION	USAGE	STATUS	CONCENTRA	HISTORI	hand the second damage	MOST R	and the second data	DEMARKS
WELL WAME	NUMBER	USAGE	STATUS	CONTAMINANT OF CONCERN	VALUE	DATE	VALUE	DATE	REMARKS
<u> </u>]		l	l		TALUL	DATE	TALUL		
04	1900420	MUNICIPAL	ACTIVE	TCE	6.5	02/91	ND	04/11	VULNERABLE
				PCE	1.0	02/91	ND	04/11	(VOCS AND NO3) (1)
				1,1-DCE	1.1	01/05	ND	04/11	
				MC	2.5	05/89	ND	07/10	
				CF	0.7	07/02	ND	07/10	
				NO3	28.8	06/91	2.9	04/11	
				CLO4	ND	08/97	ND	07/10	
05	1940104	MUNICIPAL	ACTIVE	TCE	5.1	01/91	ND	04/11	VULNERABLE
				PCE	1.0	10/02	ND	04/11	(VOCS AND NO3) (1)
				1,1-DCE	1.0	10/02	ND	04/11	
				MC	4.9	05/89	ND	07/10	
				CF	1.2	07/02	ND	07/10	
				NO3	29.4	01/91	3.0	04/11	
				CLO4	ND	08/97	ND	07/10	
06	8000171	MUNICIPAL	ACTIVE	TCE	10.0	10/09	ND	04/11	VULNERABLE
00	0000171	WONGPAL	ACTIVE	PCE	2,3	01/10	1.0	04/11	(VOC AND NO3) (1)
							ND		(VOC AND NO3) (1)
				1,1-DCE	0,8	10/07		04/11	
				CF	1.0	08/04	ND	07/10	
				NO3	37.4	10/04	14.0	04/11	
				CLO4	ND	10/99	ND	07/10	
MONROVIA NU	JRSERY								
DIV 4	1902456	IRRIGATION	DESTROYED	VOCS	ND	08/96	ND	02/07	
				NO3	213.0	09/04	202.0	02/07	
				CLO4	ND	02/98	ND	02/98	
DIV 8	1902455	IRRIGATION	INACTIVE	vocs	NA	NA	NA	NA	
	1002 100		in a rot rot 2	NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
MONTEREY PA	ARK, CITY OF								
01	1900453	MUNICIPAL	STANDBY	PCE	64.1	12/08	33.0	02/10	VULNERABLE
01	1900453	MUNICIPAL	STANDBY						
				TCE	4.1	05/04	ND ND	02/10	(CLO4) (1)
				1,1-DCE	0.6	05/04	ND	02/10	
				1,1-DCA	1.0	05/04 03/04	ND	02/10 02/10	
				C-1,2-DCE	1.0 17.0				
				NO3 CLO4	4.7	03/09 05/04	17.0 ND	02/10 08/09	
02	1900454	MUNICIPAL	DESTROYED	PCE	6.4	04/98	6.4	04/98	
				NO3	18,3	07/95	13.0	07/97	
				CLO4	3.0	07/97	ND	03/98	
03	1900455	MUNICIPAL	STANDBY	PCE	21.0	05/04	17.0	02/11	VULNERABLE
				TCE	2.7	05/04	1.0	02/11	(CLO4) (1)
				C-1,2-DCE	0.8	05/04	ND	02/11	100 B 100
				NO3	13.3	07/97	5.4	02/11	
				CLO4	4.2	05/04	ND	08/10	
04	1900456	MUNICIPAL	DESTROYED	PCE	0.4	01/80	ND	11/87	
- 1		and a second second		NO3	6.2	09/87	6.2	09/87	
				CLO4	NA	NA	NA	NA	
				0101					

		1	ľ	CONCENTRA	TION (NO3	IN MG/L, O	THERS IN	UG/L)	
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTOR			RECENT	REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
0		n	A	R					hr
05	1900457	MUNICIPAL	ACTIVE	PCE	35.8	08/08	24.0	02/11	VULNERABLE
				TCE	7.0	01/92	3.3	02/11	(NO3 AND CLO4) (3)
				C-1,2-DCE	2.0	11/01	1.1	02/11	
				1,1-DCA	1.1	11/01	0,6	02/11	
				1,1-DCE	0.7	11/01	ND	02/11	
				NO3	23.0	02/10	19.0	02/11	
				CLO4	6.5	02/01	ND	02/11	
06	1900458	MUNICIPAL	STANDBY	PCE	13.6	03/01	3.1	05/05	VULNERABLE
				TCE	6.4	05/89	3.1	05/05	(VOCS, NO3, AND CLO4) (3)
				C-1,2-DCE	1.3	01/99	1.2	05/05	
				1,1-DCA	0_8	11/01	0.6	05/05	
				NO3	30.0	06/03	24.7	05/05	
				CLO4	5.9	04/02	5.9	04/02	
07	1902372	MUNICIPAL	ACTIVE	PCE	6,0	09/10	6.0	09/10	
				CF	3.6	07/98	ND	08/10	
				NO3	12.8	08/89	2,7	08/10	
				CLO4	ND	08/97	ND	08/10	
08	1902373	MUNICIPAL	INACTIVE	PCE	2,5	02/05	1.9	03/09	
				NO3	17.0	08/05	ND	11/08	
				CLO4	ND	08/97	ND	11/08	
09	1902690	MUNICIPAL	ACTIVE	PCE	11.0	03/04	7.6	11/10	(1,4)
				TCE	1.3	04/97	ND	11/10	
				NO3	6.8	08/01	2.4	11/10	
				CLO4	ND	08/97	ND	11/10	
10	1902818	MUNICIPAL	ACTIVE	PCE	16.0	02/10	11.0	02/11	VULNERABLE
				TCE	2.6	05/04	0.6	02/11	(NO3 AND CLO4) (1)
				C-1,2-DCE	0.8	05/04	ND	02/11	
				NO3	27.1	08/07	16.0	02/11	
				CLO4	4.3	05/04	ND	08/10	
12	1903033	MUNICIPAL	ACTIVE	PCE	85.0	05/02	33.0	11/10	VULNERABLE
				TCE	5.4	10/95	2.9	11/10	(NO3 AND CLO4) (1,4)
				1,1-DCA	1.0	11/08	0.8	11/10	
				C-1,2-DCE	1.1	08/05	1.1	11/10	
				NO3	27.2	08/07	14.0	11/10	
				CLO4	15.0	09/97	ND	11/10	
14	1903092	MUNICIPAL	INACTIVE	PCE	2.2	05/02	0.7	05/06	VULNERABLE
				TCE	2.9	11/02	1.5	05/06	(VOCS)
				1,1-DCA	0.8	08/02	ND	05/06	
				C-1,2-DCE	1.0	11/02	ND	05/06	
				NO3	10.0	10/06	10.0	10/06	
				CLO4	ND	08/97	ND	05/03	
15	8000196	MUNICIPAL	ACTIVE	PCE	128.0	11/08	86,0	08/10	VULNERABLE
				TCE	3.4	07/06	2.7	08/10	(NO3) (1,4)
				NO3 CLO4	23.0 2.4	11/08 07/06	17.0 ND	08/10 08/10	
FERN	8000126	MUNICIPAL	ACTIVE	PCE	12.0	08/10	8.8	02/11	(1)
				TCE	2.3	08/02	0.8	02/11	
				C-1,2-DCE	0.7	03/04	ND	02/11	
				NO3	6.5	03/04	2.3	08/10	
				CLO4	2.0	08/97	ND	02/11	

	DECODENTION		1	CONCENTRA	TION (NO3 II	N MG/L, O	THERS IN	UG/L)	
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORI	C HIGH	MOST	RECENT	REMARKS
	NOMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
NAMIMATSU F	ARMS								
	1001001	IDDIOATION		11000					
NA	1901034	IRRIGATION	INACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
	ODUCTS COMPAN	v							
	CODUCTS COMPAN	11							
NA	1903119	INDUSTRIAL	INACTIVE	VOCS	ND	05/87	ND	10/09	
				NO3	8.7	08/89	ND	10/09	
				CLO4	NA	NA	NA	NA	
NA	1900043	INDUSTRIAL	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
NA	1902241	INDUSTRIAL	ACTIVE	VOCS	ND	10/02	ND	11/04	
				NO3	ND	10/02	ND	11/04	
				CLO4	NA	NA	NA	NA	
ICO COUNTY	WATER DISTRICT								
NA	8000040	MUNICIPAL	INACTIVE	VOCS	NA	NA	NA	NA	
147	0000040	MONION /12	INVIO IIVE	NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
OLOPOLUS E	TAL.								
04	1000100		IN LA OTIVE	DOF	220.0	10/00	070.0	00/00	
01	1902169	IRRIGATION	INACTIVE	PCE TCE	330.0 498.9	10/96 09/92	270.0 180.0	03/98 03/98	VULNERABLE (NO3)
				1,1-DCA	22.0	03/98	22.0	03/98	(1403)
				1,2-DCA	1.2	06/96	0.9	03/98	
				1,1-DCE	115.3	09/92	22.0	03/98	
				T-1,2-DCE	1.5	06/87	ND	03/98	
				1,1,1-TCA	53.0	09/92	12.0	03/98	
				CTC	0.8	06/96	0.6	03/98	
				NO3	50.8	07/91	29.7	03/98	
				CLO4	ND	03/98	ND	03/98	
	JTUAL WATER CO	MPANY							
				205				10/00	
NORTH 2	1901522	MUNICIPAL	DESTROYED	PCE TCE	93.0 3.0	05/83	4.0 ND	12/93 05/92	
				CTC	0.2	03/81 10/80	ND ND	05/92	
				NO3	25.0	02/84	19.7	06/99	
				CLO4	NA	NA	NA	NA	
SOUTH 1	1901521	MUNICIPAL	DESTROYED	PCE	96.0	05/83	3.4	12/93	
				TCE	0.7	12/82	ND	05/92	
				NO3	28.6	06/99	28.6	06/99	
				CLO4	NA	NA	NA	NA	
OY, RUTH									
NA	8000041	DOMESTIC	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	

HIGHLIGHTS OF VOLATILE ORGANIC COMPOUNDS, NITRATE, AND PERCHLORATE CONCENTRATIONS AND WELLS VULNERABLE TO CONTAMINATION (AS OF JUNE 30, 2011)

ł.

	BECORDATION			CONCENTRA	TION (NO3	IN MG/L, O	THERS IN	UG/L)	
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTOR	IC HIGH	MOST	RECENT	REMARKS
	NOMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
URBAN HOM	ES MUTUAL WATE	R COMPANY							
NORTH 1	1900120	MUNICIPAL	ACTIVE	PCE	16.0	11/80	ND	03/11	VULNERABLE
				1,1-DCE	0.9	09/08	ND	03/11	(VOCS AND NO3)
				CF	0.8	02/02	ND	09/10	 D. Donard - and Discount of Anticipation 2
				FREON 11	13.3	05/04	ND	03/11	
				FREON 113	64.4	05/04	ND	03/11	
				NO3	30.0	03/01	22.0	09/10	
				CLO4	ND	09/97	ND	09/10	
SOUTH 2	1900121	MUNICIPAL	ACTIVE	PCE	24.3	02/81	ND	12/10	VULNERABLE
0001112	TOODILT		NOTIVE	1,1-DCE	1.7	10/08	ND	12/10	(VOCS AND NO3)
				CF	3.8	02/02	ND	09/09	(1000 AND 1000)
				FREON 11	14.1	02/02	ND	12/10	
				FREON 113	54.2	05/04	ND	12/10	
				MC	1.1	08/02	ND	09/09	
				NO3	38.2	03/07	17_0	12/09	
				CLO4	ND	09/97	ND	09/09	
AN GABRIEL	COUNTRY CLUB								
01	1900547	IRRIGATION	ACTIVE	VOCS	ND	05/85	ND	08/05	VULNERABLE
•.		in a north of the	NOTITE	NO3	67.0	07/96	54.0	08/05	(CLO4)
				CLO4	8.5	07/97	5,4	08/05	(0-0-0)
02	1002070		ACTIVE	VOCS	ND	05/07	ND	00/05	
02	1902979	IRRIGATION	ACTIVE	VOCS	ND	05/87	ND	08/05	VULNERABLE
				NO3	23.0	10/02	20.3	08/05	(NO3)
				CLO4	1.4	12/97	1.1	08/05	
AN GABRIEL	COUNTY WATER D	DISTRICT							
05 BRA	1901669	MUNICIPAL	INACTIVE	TCE	0.9	01/97	ND	03/01	
				PCE	1.9	02/99	1.0	03/01	
				NO3	83.9	08/89	70.7	03/01	
				CLO4	ND	09/97	ND	09/00	
06 BRA	1901670	MUNICIPAL	DESTROYED	VOCS	ND	02/99	ND	02/99	
				NO3	108.9	08/72	57.6	03/00	
				CLO4	3.0	02/99	3.0	02/99	
07	1901671	MUNICIPAL	ACTIVE	VOCS	ND	09/89	ND	10/10	VULNERABLE
			A STATE	NO3	48.0	03/03	26.0	04/11	(NO3 AND CLO4)
				CLO4	5.6	03/03	ND	04/11	
08	1901672	MUNICIPAL	INACTIVE	VOCS	ND	01/90	ND	03/91	VULNERABLE
~~~	1001072	MONOFAL	INACTIVE	NO3	76.0	01/82	23.4	08/93	(NO3)
				CLO4	NA	NA	23.4 NA	NA	(1405)
09	1902785	MUNICIPAL	ACTIVE	PCE	2.0	01/09	1.4	04/11	VULNERABLE
				NO3	51.0	03/03	19.0	04/11	(NO3)
				CLO4	ND	09/97	ND	07/10	
10	1902786	MUNICIPAL	INACTIVE	PCE	18.0	08/93	1.9	11/98	VULNERABLE
				NO3	50.0	05/89	31.0	11/98	(VOCS, NO3, AND CLO4)
				CLO4	5.5	11/98	5.5	11/98	
11	8000067	MUNICIPAL	ACTIVE	PCE	2.0	06/89	1,2	04/11	VULNERABLE
	0000007		AVITVE	NO3	32.2	04/04	17.0	04/11	(NO3)
									(1403)
				CLO4	ND	09/97	ND	07/10	

		1	-	CONCENTRA	TION (NO3 IN	MG/L, O	THERS IN	UG/L)	1
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORIC		-	RECENT	REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
<u>.                                    </u>		/	n	J I					
12	8000123	MUNICIPAL	ACTIVE	TCE	0.8	09/02	ND	07/10	
				PCE	0.6	10/10	ND	04/11	
				MC	0.6	05/90	ND	07/10	
				NO3	7.0	10/01	3.9	01/11	
				CLO4	ND	09/97	ND	07/10	
14	8000133	MUNICIPAL	ACTIVE	PCE	0.6	09/02	ND	07/10	
				NO3	3.8	12/02	3,0	07/10	
				CLO4	ND	09/97	ND	07/10	
SAN GABRIEL	VALLEY WATER C	OMPANY							· /
B4B	1902858	MUNICIPAL	INACTIVE	TCE	25.2	02/08	25.2	02/08	(1)
040	1002000	MONION AL	INAO IIVE	PCE	43.0	11/07	5.8	02/08	(1)
				CTC	10.0	11/03	6.6	02/08	
				1,2-DCA	1.0	09/07	0.5	02/08	
				1,1-DCE	3.2	11/07	2.3	02/08	
				C-1,2-DCE	4.2	11/07	2.7	02/08	
				NO3	13.1	11/07	13.1	11/07	
				CLO4	24,5	04/08	24.5	04/08	
B4C	1902947	MUNICIPAL	INACTIVE	CTC	22,3	02/01	14.0	08/01	VULNERABLE
040	1502547	MONION AL	INACTIVE	TCE	15,5	02/01	9.3	08/01	(CLO4) (1)
				PCE	3.4	02/01	2.2	08/01	(0204)(1)
				1,1-DCE	2.3	09/01	2.3	09/01	
				C-1,2-DCE	2.4	09/01	2.4	09/01	
				NO3	14.2	02/01	14,2	02/01	
				CLO4	6.0	06/00	ND	07/00	
B5A	1900718	MUNICIPAL	INACTIVE	PCE	17.5	03/91	ND	11/05	VULNERABLE
				TCE	5.2	03/98	ND	11/05	(VOCS, NO3, AND CLO4)
				1,1-DCE	2.5	03/85	ND	08/05	(**************************************
				CTC	1.1	12/91	ND	11/05	
				1,1,1-TCA	3.7	03/90	ND	08/05	
				CF	1.4	08/01	1.1	08/05	
				NO3	46.1	07/96	25.3	11/05	
				CLO4	14_0	06/97	4,0	08/05	
B5B	1900719	MUNICIPAL	ACTIVE	TCE	5.8	02/97	3.0	04/11	VULNERABLE
				PCE	3.9	02/09	1.8	04/11	(VOCS) (1,4)
				CTC	2.3	02/85	0.2	04/11	(1000) (11)
				1,2-DCA	0.6	09/07	0.3	04/11	
				CF	2.4	01/07	0.7	04/11	
				NO3	54.0	11/08	50.0	05/11	
				CLO4	12,0	06/97	7.8	05/11	
B5C	8000112	MUNICIPAL	INACTIVE	VOCS	ND	05/89	ND	08/07	
600 K. 689	901 10009-905 St. 50/St.		errer verbindet tettil	NO3	3.8	05/07	3.8	05/07	
				CLO4	ND	06/97	ND	03/08	
B5D	8000160	MUNICIPAL	ACTIVE	CTC	0.7	05/09	0.4	04/11	VULNERABLE
				NO3	4.9	08/08	3.1	04/11	(VOCS) (1,4)
				CLO4	ND	12/97	ND	04/11	
B5E	8000205	MUNICIPAL	ACTIVE	TCE	8.5	11/10	7.9	04/11	VULNERABLE
				PCE	1.3	11/10	1.3	04/11	(NO3) (1,4)
				CTC	5.2	05/07	2,1	04/11	·····
				CF	3.9	01/07	0.4	04/11	
				NO3	23_0	08/07	17.0	04/11	
				CLO4	11.0	12/10	9.2	04/11	

		1	r	CONCENTRA				IG/L)	1
WELL NAME	RECORDATION	USAGE	OTATUC		the local sectors and		MOST F		DEMARKO
WELL NAME	NUMBER	USAGE	STATUS	CONTAMINANT OF CONCERN	HISTORIC	DATE	VALUE	DATE	REMARKS
				OF CONCERN	VALUE	DATE	VALUE	DATE	
B6B	1900721	MUNICIPAL	DESTROYED	TCE	111.0	02/85	35.8	09/92	
				PCE	6.4	10/81	4.3	09/92	
				CTC	17.0	02/85	5.0	09/92	
				1,1-DCE	1.1	04/85	0.5	09/92	
				1,1-DCA	0.6	09/92	0.6	09/92	
				1,2-DCA	8.3	09/92	8.3	09/92	
				NO3	85.4	02/91	57,2	09/92	
				CLO4	NA	NA	NA	NA	
B6C	1903093	MUNICIPAL	ACTIVE	TCE	84.0	03/88	4.6	03/10	(1,4)
				PCE	12.0	11/81	0.6	03/10	
				CTC	13.0	02/85	ND	03/10	
				1,2-DCA	9.0	05/88	0.6	03/10	
				1,1-DCE	1.5	06/94	ND	03/10	
				C-1,2-DCE	6.2	04/88	ND	03/10	
				CF	1.7	04/04	ND	03/10	
				NO3	87.0	09/08	81,0	02/09	
				CLO4	370.0	11/05	27.0	02/09	
B6D	8000098	MUNICIPAL	ACTIVE	TCE	140.0	05/11	140.0	05/11	(1,4)
				PCE	7.1	05/09	2.0	05/11	
				CTC	14.0	05/11	14.0	05/11	
				1,1-DCA	1.1	05/09	ND	05/11	
				1,2-DCA	3.7	05/11	3.7	05/11	
				1,1-DCE	1.0	08/08	ND	05/11	
				C-1,2-DCE	2.8	05/09	ND	05/11	
				CF	2.9	05/09	2.5	05/11	
				NO3	21.6	11/08	15.3	05/11	
				CLO4	390.0	11/05	69.0	05/11	
11A	1900739	MUNICIPAL	ACTIVE	PCE	1.5	02/08	ND	02/11	
				NO3	14.7	07/89	2.2	08/10	
				CLO4	ND	08/97	ND	08/10	
11B	1900745	MUNICIPAL	ACTIVE	PCE	17.8	04/90	ND	02/11	VULNERABLE
TID.	1000140	NONION AL	AOTIVE	TCE	4,0	04/90	ND	02/11	(VOCS) (1)
				1,1-DCE	0.2	04/89	ND	11/10	(*000)(1)
				C-1,2-DCE	3.0	04/89	ND	11/10	
				NO3	18.3	08/06	6.4	11/10	
				CLO4	ND	06/97	ND	08/10	
11C	1902713	MUNICIPAL	ACTIVE	PCE	4.1	12/91	ND	02/11	VULNERABLE
				TCE	0.6	12/91	ND	08/10	(VOCS)
				1,1-DCE	1.1	08/08	ND	08/10	
				C-1,2-DCE	2.5	03/92	ND	02/11	
				NO3	12.0	08/06	5.0	08/10	
				CLO4	ND	08/97	ND	08/10	
1B	1900729	MUNICIPAL	ACTIVE	PCE	46.0	04/81	ND	02/11	VULNERABLE
				TCE	1.8	02/80	ND	08/10	(VOCS)
				MC	7,1	04/87	ND	08/10	
				FREON 113	22.3	08/08	ND	02/11	
				NO3	22.4	05/08	15.0	02/11	
				CLO4	1.1	03/08	ND	08/10	
1C	1902946	MUNICIPAL	ACTIVE	VOCS	ND	07/98	ND	08/10	
				NO3	6.9	08/09	4.7	08/10	
				CLO4	ND	10/99	ND	08/10	
1D	8000102	MUNICIPAL	ACTIVE	vocs	ND	07/98	ND	08/10	
.0	0000102			NO3	5.0	07/89	4.1	11/10	
				CLO4	ND	08/97	ND	08/10	
				0204		00/01		0010	

( <b></b> )		CONCENTRATION (NO3 IN MG/L, OTHERS IN UG/L)							1
WELL NAME	RECORDATION	USAGE	OTATUS		HISTORIC			RECENT	DEMARKS
AAEEE INVIA	NUMBER	USAGE	STATUS	CONTAMINANT OF CONCERN	VALUE		VALUE		REMARKS
				OF CONCERN	VALUE	DATE	VALUE	DATE	
1E	8000172	MUNICIPAL	ACTIVE	PCE	0.7	09/02	ND	02/11	VULNERABLE
				NO3	4.3	11/00	4,1	11/10	(CLO4)
				CLO4	5.0	06/00	ND	08/10	
						on containing the			
2C	1900749	MUNICIPAL	DESTROYED	TCE	15.2	12/80	ND	11/05	
				PCE NO3	3.0 16.4	10/87 08/04	ND 5,2	11/05 08/05	
				CLO4	ND	08/97	ND	02/03	
				0201	140	00/01	110	02/00	
2D	1902857	MUNICIPAL	ACTIVE	TCE	25.0	12/80	ND	02/11	VULNERABLE
				PCE	0.7	01/88	ND	08/10	(VOCS)
				NO3	8.2	07/86	4.8	08/10	
				CLO4	ND	08/97	ND	08/10	
2E	8000065	MUNICIPAL	ACTIVE	TCE	18.0	01/80	ND	02/11	VULNERABLE
26	0000000	MONION AL	ACTIVE	PCE	0.9	01/88	ND	02/11	(VOCS)
				NO3	13.0	08/09	11.0	08/10	( )
				CLO4	ND	08/97	ND	08/10	
2F	8000197	MUNICIPAL	ACTIVE	TCE	0.8	06/08	0.7	02/11	
				NO3 CLO4	5.3 ND	08/10 09/06	5.3 ND	08/10 08/10	
				CLO4	ND	09/00	ND	00/10	
8A	1900736	MUNICIPAL	INACTIVE	PCE	0.6	11/87	ND	02/97	VULNERABLE
				NO3	40.2	02/97	40.2	02/97	(NO3) (5)
				CLO4	NA	NA	NA	NA	
<b>0D</b>	1000710		A OTU (F	DOF	000.0	00/00	100.0	00/44	
8B	1900746	MUNICIPAL	ACTIVE	PCE TCE	220.0 1.1	02/09 11/10	100.0 1.1	02/11 02/11	VULNERABLE (NO3) (5)
				NO3	23.0	08/08	21.0	02/11	(NO3) (5)
				CLO4	3.0	08/97	ND	08/10	
8C	1900747	MUNICIPAL	ACTIVE	PCE	170.0	05/09	57.0	02/11	VULNERABLE
				TCE	0.8	05/09	ND	02/11	(CLO4) (5)
				NO3	20.0	07/98	10.0	08/10	
				CLO4	4.0	03/08	ND	08/10	
8D	1903103	MUNICIPAL	ACTIVE	PCE	62.3	02/09	59.0	02/11	VULNERABLE
				TCE	0.6	08/04	ND	02/11	(NO3) (5)
				C-1,2 DCE	0.8	05/04	ND	06/09	
				CTC	0.6	06/88	ND	06/09	
				NO3	29.0	06/09	23,0	02/11	
				CLO4	2.3	03/08	ND	08/10	
8E	8000113	MUNICIPAL	ACTIVE	PCE	10.0	03/03	ND	02/11	VULNERABLE
				NO3	7.2	07/01	ND	08/10	(VOCS) (5)
				CLO4	ND	08/97	ND	08/10	
						10100			(5)
8F	8000169	MUNICIPAL	ACTIVE	VOCS	ND	10/98	ND	08/10	(5)
				NO3 CLO4	19.0 ND	11/10 01/99	19.0 ND	11/10 08/10	
				0104		01100		00/10	
B1	1902635	MUNICIPAL	INACTIVE	TCE	12.0	04/85	ND	08/06	VULNERABLE
				PCE	7.3	05/88	ND	08/06	(VOCS)
				C-1,2-DCE	7.2	12/92	ND	08/06	
				1,1-DCE	2.1	08/89	ND 3.5	08/06	
				NO3 CLO4	17.4 ND	02/87 08/97	3.5 ND	03/05 02/03	
				0104		00/31	nD.	02/03	

# HIGHLIGHTS OF VOLATILE ORGANIC COMPOUNDS, NITRATE, AND PERCHLORATE CONCENTRATIONS AND WELLS VULNERABLE TO CONTAMINATION (AS OF JUNE 30, 2011)

· · · · ·			1	CONCENTRA	TION (NO2)	N MOIL O			
WELL NAME	RECORDATION	1104.05	071710	CONCENTRA			1		DEM DIKO
WELL NAME	NUMBER	USAGE	STATUS	CONTAMINANT OF CONCERN	HISTORI	DATE	VALUE	DATE	REMARKS
				OFCONCERN	VALUE	DATE	VALUE	DATE	l]
B2	1902525	MUNICIPAL	INACTIVE	TCE	17.0	03/80	ND	11/98	VULNERABLE
				PCE	15,8	06/80	0.7	11/98	(VOCS)
				CTC	1.7	05/82	ND	11/98	
				1,2-DCA	7.7	07/82	ND	11/98	
				1,1,1-TCA	7.6	07/82	ND	11/98	
				C-1,2-DCE	2.6	08/93	ND	11/98	
				NO3	8.7	11/98	8.7	11/98	
				CLO4	ND	11/98	ND	11/98	
B11A	1901439	MUNICIPAL	INACTIVE	TCE	9.8	08/01	5.8	08/04	VULNERABLE
				PCE	21.7	05/92	8.5	08/04	(NO3 AND CLO4)
				1,1-DCE	14.0	08/01	2.8	08/04	<ul> <li>A STREAM AND THE STREAM AND A STREAM AND AND AND AND AND AND AND AND AND AND</li></ul>
				CTC	0.9	01/88	ND	08/04	
				C-1,2-DCE	1.5	08/01	0.6	09/04	
				1,1-DCA	1.0	08/01	ND	08/04	
				NO3	37.7	03/00	36.5	08/04	
				CLO4	8.0	12/97	ND	08/04	
B11B	8000108	MUNICIPAL	ACTIVE	TCE	20.0	02/97	5.3	02/11	VULNERABLE
DIID	0000100	MONUFAL	ACTIVE	PCE	34.5	06/92	6.7	02/11	(NO3 AND CLO4) (1)
				1,1-DCE	36.0	12/10	10.0	02/11	(100 AND 0204)(1)
				1,1-DCA	2.6	12/88	0.6	02/11	
				1,1,1-TCA	2.9	10/88	ND	12/10	
				C-1,2-DCE	3.6	03/05	0.9	02/11	
				NO3	35,9	02/97	19.0	02/11	
				CLO4	7.0	06/00	ND	08/10	
87B	1901440	MUNICIPAL	DESTROYED	TCE PCE	2.4	03/85	2.4	03/85	
				NO3	1.4 12.4	03/85 08/87	1.2 12.4	03/85 08/87	
				CLO4	NA	NA	NA	NA	
				0204	1973	1.1/1	19/3	13/3	
B7C	8000068	MUNICIPAL	ACTIVE	TCE	15.0	11/10	2.1	02/11	VULNERABLE
				PCE	35.0	03/03	6.3	02/11	(NO3) (1)
				1,1-DCE	6.7	12/89	1.3	02/11	
				C-1,2-DCE	4.7	12/93	0.5	02/11	
				CTC	0.6	02/89	ND	08/10	
				NO3	28.4	08/92	12.0	08/10	
				CLO4	ND	06/97	ND	08/10	
B7D	8000094	MUNICIPAL	INACTIVE	PCE	5.3	07/87	3.5	09/87	VULNERABLE
				TCE	3.9	07/87	3.3	09/87	(VOCS)
				1,1-DCE	5.3	05/87	5.0	09/87	()
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
075	0000100								
B7E	8000122	MUNICIPAL	ACTIVE	VOCS	ND	08/90	ND	08/10	
				NO3 CLO4	16.0 ND	11/08 06/97	2.9 ND	05/09 08/10	
				ULU4	ND	00/37		00/10	
B8	1901436	MUNICIPAL	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
50	4004 407	MUNICIPAL	IN LA OTHE	TOP	07.0	00/05		04/07	
B9	1901437	MUNICIPAL	INACTIVE	TCE	37.0	02/85	34.7	01/87	
				PCE	4.9	01/87	4.9	01/87	
				CTC NO3	8.3 84.7	01/87 02/86	8.3 68.1	01/87 02/87	
				CLO4	NA	NA	NA	NA	
				0104		11/1	13/3		
B9B	8000099	MUNICIPAL	ACTIVE	VOCS	ND	06/87	ND	08/10	
				NO3	4.5	06/87	3.5	08/10	
				CLO4	1.2	03/08	ND	08/10	

23

	DEGODELEIGU			CONCENTRA	TION (NO3 I	N MG/L, O	THERS IN	JG/L)	
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORI	C HIGH	MOSTR	ECENT	REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
									**************************************
G4A	1900725	MUNICIPAL	ACTIVE	PCE	6.6	08/08	2.7	02/11	VULNERABLE
64A	1900725	MUNICIPAL	ACTIVE	TCE	1.3	11/97	ND	02/11	(VOCS AND NO3) (1)
				NO3	24.9	02/08	20.0	02/11	(VOCS AND NOS) (1)
				CLO4	1.0	03/08	ND	08/10	
				0204	1.0	00/00	nD	00/10	
B24A	8000203	MUNICIPAL	ACTIVE	VOCS	ND	01/07	ND	02/11	
				NO3	2.5	02/11	2.5	02/11	
				CLO4	ND	01/07	ND	08/10	
B24B	8000204	MUNICIPAL	ACTIVE	PCE	2.1	05/07	ND	02/11	
				TCE	0.7	05/07	ND	02/11	
				NO3	13.0	02/11	13.0	02/11	
				CLO4	ND	01/07	ND	08/10	
5									
B25A	8000187	MUNICIPAL	ACTIVE	TCE	60.3	02/08	43.0	04/11	(1,4)
(SA3-1S)		18		PCE	28.0	05/08	21.0	04/11	
				CTC	5.9	10/07	2.3	04/11	
				1,2-DCA	1.4	10/07	0.9	04/11	
				1,1-DCE	6.6	02/08 08/07	4.2	04/11	
				C-1,2-DCE CF	6.3	10/07	3.8 1.3	04/11 04/11	
				NO3	1.7 78.0	05/09	56.0	04/11	
				CLO4	40.0	11/10	31.0	04/11	
B25B	8000188	MUNICIPAL	ACTIVE	TCE	21.0	03/09	14.0	04/11	VULNERABLE
(SA3-1D)				PCE	7.6	03/09	5.2	04/11	(NO3) (1,4)
				CTC	10.0	09/04	4.9	04/11	
				1,1-DCA	1.2	10/07	ND	04/11	
				1,1-DCE	2.6	03/09	1.6	04/11	
				C-1,2-DCE	2.4	04/10	1.5	04/11	
				NO3	27.0	05/09	8.8	04/11	
				CLO4	9.9	11/09	6.8	04/11	
B26A	8000189	MUNICIPAL	ACTIVE	TCE	57.0	05/09	48.0	05/11	(1,4)
(SA3-2S)				PCE	6.8	12/10	4.8	05/11	• • • •
				CTC	5.4	12/10	2,1	05/11	
				1,1-DCA	0.8	05/09	0,6	05/11	
				1,2-DCA	4.3	11/04	3.0	05/11	
				1,1-DCE	2.0	12/10	1.1	05/11	
				C-1,2-DCE	3.3	05/06	2.7	05/11	
				CF	3.1	07/06	2.5	05/11	
				NO3	61.0	11/09	53.0	05/11	
				CLO4	87.0	07/06	61.0	05/11	
B26B	8000190	MUNICIPAL	ACTIVE	TCE	39.0	11/10	42.0	05/11	(1,4)
(SA3-2D)				PCE	1.4	12/10	1.3	05/11	
				CTC	16.6	02/09	11.0	05/11	
				1,2-DCA	1.4	03/11	1.4	05/11	
				CF	1.4	03/11	1.0	05/11	
				NO3	14.0	12/10	13,0	05/11	
				CLO4	40.0	12/10	34.0	05/11	
SIERRA LA VE		UB							
			a Vigo garden Versen V						
01	8000124	IRRIGATION	ACTIVE	VOCS	ND	08/96	ND	10/07	
				NO3	10.5	05/99	ND	10/07	
				CLO4	ND	03/98	ND	03/98	
02	8000125	IRRIGATION	INACTIVE	MC	0.5	10/08	ND	10/10	VULNERABLE
				NO3	17.4	08/96	ND	10/10	(CLO4)
				CLO4	28.0	03/98	ND	04/98	

		1		CONCENTRA	TION (NO3 I	N MG/L, O	THERS IN	UG/L)	
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORI	C HIGH	MOST	RECENT	REMARKS
	NOMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
SLOAN RANCH	HES								
01	1901198	IRRIGATION	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3 CLO4	NA NA	NA NA	NA NA	NA NA	
				0201	101		10.1		
02	8000045	IRRIGATION	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3 CLO4	NA NA	NA NA	NA NA	NA NA	
2011000 000				0101					
SONOCO PRO	DUCTS COMPANY								
01	1912786	INDUSTRIAL	ACTIVE	TCE	28.6	12/99	0.6	12/05	VULNERABLE
				PCE	8.5	12/99	ND	12/05	(VOCS)
				1,1-DCE	113.0	12/99	1.0	12/05	
				1,1,1-TCA CTC	71_8 1.2	12/99 07/96	ND ND	12/05 12/05	
				CF	1.2	07/96	0.6	12/05	
				NO3	72.8	12/05	72.8	12/05	
				CLO4	ND	06/98	ND	07/04	
02	1902971	INDUSTRIAL	ACTIVE	СТС	0.9	11/87	ND	12/05	VULNERABLE
02	1002071	INDOGINIAL	ACHIVE	1,1,1-TCA	2.0	11/87	ND	12/05	(VOCS AND CLO4)
				1,1-DCE	5.9	02/98	1.0	12/05	(,
				PCE	1.8	10/03	0.6	12/05	
				TCE	16.0	10/03	1.0	12/05	
				CF	1.4	09/02	1,2	12/05	
				NO3	74.5	12/05	74.5	12/05	
				CLO4	10.0	02/98	ND	07/04	
SOUTH COVIN	A WATER SERVIC	E							
102W-1	1901606	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
SOUTHERN CA	LIFORNIA EDISO	N COMPANY							
110RH	8000046	NON-POTABLE	INACTIVE	vocs	ND	08/89	ND	02/07	
				NO3	8,9	02/07	8,9	02/07	
				CLO4	ND	11/97	ND	11/97	
1EB86	1900342	NON-POTABLE	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
2EB76	1900343	IRRIGATION	INACTIVE	PCE	4.3	09/04	4.1	02/07	VULNERABLE
				TCE	1.3	09/04	0.7	02/07	(VOCS AND NO3)
				NO3	51.4	09/98	26.5	02/07	
				CLO4	2.0	11/97	2.0	11/97	
38EIS	1900344	NON-POTABLE	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
38W	1900344	NON-POTABLE	INACTIVE	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
MURAT	8000047	IRRIGATION	INACTIVE	PCE	4.1	09/02	0.6	10/08	VULNERABLE
				TCE	0.9	09/02	ND	10/08	(VOCS AND NO3)
				NO3	26,9	09/04	14.0	10/08	
				CLO4	ND	04/98	ND	04/98	

	CONCENTRATION (NO3 IN MG/L, OTHERS IN UG/L)									
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORIC			RECENT	REMARKS	
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE		
									n	
SOUTH PASA	DENA, CITY OF									
GRAV 2	1901679	MUNICIPAL	ACTIVE	PCE	16.0	07/08	5.2	02/11	VULNERABLE	
				CTC	0.9	07/08	ND	02/11	(CLO4)	
				NO3	58.2	04/87	49.0	02/11		
				CLO4	6.9	02/03	4.1	02/11		
WIL 2	1901681	MUNICIPAL	INACTIVE	PCE	23.0	01/88	9,1	03/01	VULNERABLE	
				TCE	4.6	03/00	4.6	03/01	(CLO4)	
				NO3	86.8	03/00	77.9	02/01		
				CLO4	5.0	07/97	ND	12/99		
WIL 3	1901682	MUNICIPAL	ACTIVE	PCE	9.5	08/94	2.0	02/11	VULNERABLE	
1000 To To				TCE	1.6	02/10	1,0	02/11	(VOCS AND NO3)	
				NO3	66.0	01/83	20.0	02/11	······	
				CLO4	ND	07/97	ND	08/10		
	1002096	MUNICIDAL	ACTIVE	DCE	0.4	06/00	25	02/44		
WIL 4	1903086	MUNICIPAL	ACTIVE	PCE TCE	8.1 2.1	06/00 05/07	2,5 1.2	02/11 02/11	VULNERABLE (VOCS AND NO3)	
				NO3	30.0	02/03	19.0	02/11	(VOCS AND NOS)	
				CLO4	ND	02/03	ND	08/10		
				CLO4	ND	01131	ND	00/10		
SPEEDWAY 60	05 INC.									
NA	1902968	NON-POTABLE	INACTIVE	VOCS	NA	NA	NA	NA		
				NO3	NA	NA	NA	NA		
				CLO4	NA	NA	NA	NA		
STERLING MU	TUAL WATER COM	WPANY								
	0000400	MUNICIPAL	A OTIVE	1/2.22	NB	00/0/		20///2		
NEW SO.	8000132	MUNICIPAL	ACTIVE	VOCS	ND	06/91	ND	08/10	VULNERABLE	
				NO3	35.0	02/10	15.0	02/11	(NO3)	
				CLO4	ND	10/97	ND	08/09		
NORTH	1902096	MUNICIPAL	ACTIVE	VOCS	ND	06/88	ND	08/10	VULNERABLE	
				NO3	43.4	02/07	24_0	02/11	(NO3)	
				CLO4	ND	09/97	ND	08/09		
SOUTH	1902085	MUNICIPAL	DESTROYED	VOCS	ND	01/85	ND	06/91		
000111	1002000	WONIGIFAL	DEGINOTED	NO3	16.2	03/91	16.2	08/91		
				CLO4	NA	NA	NA	NA		
				0204	19/3	1973	003	190		
SUBURBAN W	ATER SYSTEMS									
101W-1	41901605	MUNICIPAL	DESTROYED	TCE	1.5	07/87	ND	08/89		
				NO3	54,2	08/89	54.2	08/89		
				CLO4	NA	NA	NA	NA		
102W-1	1901605	MUNICIPAL	DESTROYED	vocs	NA	NA	NA	NA		
	1001000		510 HOILD	NO3	NA	NA	NA	NA		
				CLO4	NA	NA	NA	NA		
1001410	1004000	MUNICIPAL	DEPEDOVED	TOP	2.0	04/00	ND	00/05		
102W-2	1901606	MUNICIPAL	DESTROYED	TCE NO3	2.0	01/80 NA	ND	06/85 NA		
				CLO4	NA NA	NA	NA NA	NA		
103W-1	1901607	MUNICIPAL	DESTROYED	TCE	2.5	06/80	ND	07/82		
				NO3	NA	NA	NA	NA		
				CLO4	NA	NA	NA	NA		

		(	1	CONCENTRA	TION (NO3)	N MG/L O	THERS IN	UG/L)	1
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTOR		1	RECENT	REMARKS
	NUMBER	UUNUL	CIAICO	OF CONCERN	VALUE	DATE	VALUE	DATE	
Į[				L		1			AA
105W-1	1901608	MUNICIPAL	DESTROYED	PCE	1.4	01/96	1.4	01/96	
				NO3	46.2	04/95	46.2	04/95	
				CLO4	NA	NA	NA	NA	
106W-1	1901609	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
111W-1	1901610	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
			510	NO3	82.5	03/73	82.5	03/73	
				CLO4	NA	NA	NA	NA	
112W-1	1901611	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
11200-1	1901011	WONGPAL	DESTRUTED	NO3	99.2	07/69	99.2	07/69	
				CLO4	NA	NA	NA	NA	
	1001010			705				00/05	
113W-1	1901612	MUNICIPAL	DESTROYED	TCE NO3	0.7 85.0	02/80 10/85	0.5 67.8	03/85 02/88	
				CLO4	NA	NA	NA	NA	
114W-1	1901613	MUNICIPAL	INACTIVE	TCE	2.9	01/80	ND	07/95	VULNERABLE
				PCE NO3	0.5 46.7	12/93 08/91	ND 39.8	07/95 04/95	(VOCS AND NO3)
				CLO4	NA	NA	NA	NA	
				Start Travelise Da					
117W-1	1901614	MUNICIPAL	DESTROYED	VOCS NO3	NA	NA	NA NA	NA NA	
				CLO4	NA NA	NA NA	NA	NA	
120W-1	1901615	MUNICIPAL	DESTROYED	TCE	0.3	07/82	ND	08/96	
				NO3 CLO4	66.0 NA	07/88 NA	60.5 NA	08/96 NA	
				0L04	11/3	13/3	1973	1973	
121W-1	8000181	MUNICIPAL	ACTIVE	VOCS	ND	10/02	ND	05/11	VULNERABLE
				NO3	18.0	03/10	12.0	05/11	(CLO4)
				CLO4	4.7	11/08	3.4	05/11	
122W-1	1901616	MUNICIPAL	DESTROYED	TCE	2.6	08/96	2.6	08/96	
				NO3	90.0	05/86	60.7	08/96	
				CLO4	NA	NA	NA	NA	
123W-1	1901617	MUNICIPAL	DESTROYED	TCE	26.8	04/81	ND	08/96	
				PCE	33.0	04/81	ND	08/96	
				NO3	47.0	05/76	4.0	08/96	
				CLO4	NA	NA	NA	NA	
124W-1	1901618	MUNICIPAL	DESTROYED	TCE	0.5	06/83	ND	08/89	
				NO3	60.0	09/84	53.6	08/89	
				CLO4	NA	NA	NA	NA	
125W-1	1901619	MUNICIPAL	DESTROYED	VOCS	ND	01/80	ND	09/81	
				NO3	30.0	05/76	21.0	05/79	
				CLO4	NA	NA	NA	NA	
125W-2	8000087	MUNICIPAL	INACTIVE	VOCS	ND	03/83	ND	07/95	VULNERABLE
12044-2	0000007	MONIOR AL	INAUTIVE.	NO3	50.0	08/87	40,6	03/95	(NO3)
				CLO4	NA	NA	NA	NA	
126W-1	1001000	MUNICIDAL	DESTROYER	VOCE	NIA	NIA	NIA	NA	
12000-1	1901620	MUNICIPAL	DESTROYED	VOCS NO3	NA 18.0	NA 05/75	NA 18.0	NA 05/75	
				CLO4	NA	NA	NA	NA	

1			r	CONCENTRA	TION (NO3 I	N MG/L, O	THERS IN	UG/L)	
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORI		MOST		REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
126W-2	8000092	MUNICIPAL	INACTIVE	VOCS	ND	03/85	ND	08/00	VULNERABLE
				NO3 CLO4	38.8 4.8	07/91 07/97	34.9 ND	03/01 01/98	(NO3 AND CLO4)
				CLO4	4_0	0//9/	ND	01/98	
131W-1	1901621	MUNICIPAL	DESTROYED	TCE	56.0	10/93	56.0	10/93	
				PCE	227.0	04/80	52.0	10/93	
				CTC	2.7	10/93	2.7	10/93	
				1,1-DCE	40.0	10/93	40.0	10/93	
				1,1,1-TCA	5.3	10/93	5.3	10/93	
				NO3	62.0	09/81	55.3	10/93	
				CLO4	NA	NA	NA	NA	
133W-1	1901622	MUNICIPAL	DESTROYED	TCE	0.5	07/87	ND	08/89	
10011	1001022	MONION AL	DEGINOTED	CTC	0.5	08/89	0.5	08/89	
				NO3	49.1	08/89	47.8	09/89	
				CLO4	NA	NA	NA	NA	
134W-1	1901623	MUNICIPAL	DESTROYED	TCE	56.0	10/93	56.0	10/93	
				PCE	0.1	12/80	ND	10/93	
				1,1-DCE	8.6	10/93	8.6	10/93	
				1,1,1-TCA NO3	13.2 43.0	03/83 06/87	ND 40.9	10/93 10/93	
				CLO4	NA	NA	NA	NA	
				0204	1.47	147.1	1421	14/1	
135W-1	1901624	MUNICIPAL	DESTROYED	TCE	0.8	03/85	0.3	05/85	
				NO3	59.0	02/86	47.5	09/86	
				CLO4	NA	NA	NA	NA	
136W-1	1901625	MUNICIPAL	DESTROYED	PCE	335.0	03/80	66_0	10/93	
10011	1001020	MONION //E	DEGINOTED	TCE	53.0	03/80	9.1	10/93	
				CTC	2.4	10/93	2.4	10/93	
				1,1-DCE	15.0	10/93	15.0	10/93	
				NO3	48.0	01/77	37.6	10/93	
				CLO4	NA	NA	NA	NA	
139W-1	1901598	MUNICIPAL	DESTROYED	TCE	34.8	06/81	ND	01/97	
10040-1	1001000		DEGINOTED	PCE	5_0	02/88	ND	01/97	
				CTC	0.8	09/80	ND	07/96	
				NO3	99.2	05/94	92.9	07/96	
				CLO4	NA	NA	NA	NA	
10014/0	1001500		NH OTHE						
139W-2	1901599	MUNICIPAL	INACTIVE	TCE	18.7	09/80	ND	05/10	VULNERABLE
				PCE CTC	12.1 0.8	03/80 09/80	ND ND	05/10 05/10	(VOCS)
				CF	0.6	10/08	ND	05/10	
				NO3	103.5	10/08	58.5	05/10	
				CLO4	34.0	10/08	15.0	15/10	
e 17							1 mm		
139W-4	8000069	MUNICIPAL	INACTIVE	TCE	4.7	04/97	ND	12/09	VULNERABLE
				MC NO3	0.7 49.0	09/07 03/11	ND 49.0	12/09 03/11	(VOCS)
				CLO4	12.0	12/03	9.2	12/09	
139W-5	8000095	MUNICIPAL	INACTIVE	TCE	19.0	08/01	19.0	08/01	VULNERABLE
				PCE	10.8	05/99	0.7	08/01	(NO3)
				CTC	1.0	08/01	1.0	08/01	
				1,2-DCA MC	1.0 2.4	02/00 09/97	ND ND	08/01 08/01	
				NO3	36.5	06/01	36.5	10/09	
				CLO4	12.0	09/97	12.0	10/09	

				CONCENTRA	TION (NO3 I	N MG/L. O	THERS IN	UG/L)	
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORI			RECENT	REMARKS
	NUMBER	UUAUL	CIAIGO	OF CONCERN	VALUE	DATE	VALUE	DATE	
U		0	1	36		<b>N</b>			1
139W-6	8000152	MUNICIPAL	INACTIVE	TCE	51.2	02/01	ND	05/10	VULNERABLE
				PCE	2.8	02/01	ND	05/10	(VOCS, NO3, AND CLO4)
				CTC	1.9	02/01	ND	05/10	
				1,2-DCA	1.6	02/01	ND	05/10	
				NO3	42.8	10/08	36.5	05/10	
				CLO4	35.4	11/00	2.0	05/10	
140W-1	1901602	<b>MUNICIPAL</b>	DESTROYED	TCE	1.0	01/80	1.0	01/80	
				NO3	86.9	04/73	68.0	05/75	
				CLO4	NA	NA	NA	NA	
140W-3	1903067	MUNICIPAL	ACTIVE	TCE	13.6	03/80	3.2	12/09	VULNERABLE
				PCE	1.0	06/88	ND	12/09	(VOCS, NO3, AND CLO4)
				CTC	1.0	09/81	ND	12/09	()
				1,1-DCE	1.1	10/09	1.1	12/09	
				NO3	78.0	03/85	45.0	12/09	
				CLO4	16.0	12/05	5.6	12/09	
140W-4	8000093	MUNICIPAL	INACTIVE	TCE	7.0	01/96	1.5	11/06	VULNERABLE
				NO3	36.4	10/03	36.3	12/04	(VOCS AND NO3)
				CLO4	12,6	10/03	11.6	12/04	
140W-5	8000145	MUNICIPAL	ACTIVE	TCE	21,0	02/91	4.5	05/11	VULNERABLE
				PCE	1.0	06/07	ND	05/11	(VOCs AND NO3)
				NO3	30.0	03/09	16.0	05/11	
				CLO4	10.0	06/11	8.4	06/11	
142W-1	1901597	MUNICIPAL	DESTROYED	VOCS	ND	02/80	ND	07/82	
1-1211-1	1001001	MONION AL	DEGINOTED	NO3	74.0	06/81	74.0	06/81	
				CLO4	NA	NA	NA	NA	
14014/0	0000402	MUNICIPAL		Voce	ND	00/04	ND	05/44	
142W-2	8000183	MUNICIPAL	ACTIVE	VOCS	ND	03/04	ND	05/11	
				NO3	10.0 3.6	05/10	10.0 ND	05/11	
				CLO4	3.0	10/09	ND	05/11	
147W-1	1901596	MUNICIPAL	DESTROYED	TCE	23.0	03/85	23.0	03/85	
				PCE	1.2	03/85	1.2	03/85	
				NO3	100.0	03/85	100.0	03/85	
				CLO4	NA	NA	NA	NA	
147W-2	1902760	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
			DEGINGTED	NO3	54.0	09/74	54.0	09/74	
				CLO4	NA	NA	NA	NA	
147W-3	8000077	MUNICIPAL	ACTIVE	TCE	4.4	01/02	2.4	05/11	VULNERABLE
14/ 00-3	8000077	NUNICIPAL	ACTIVE	PCE	4.1 4.4	01/92 04/89	2.1 1.3	05/11	(VOCS)
				1,1-DCE	8.9	04/89	2.1	05/11	(1003)
				1,1-DCE	4.8	05/89	ND	05/11	
				NO3	19.8	09/88	8.4	05/11	
				CLO4	3.0	04/10	ND	05/11	
				0204	0,0	04/10	ND	00/11	
148W-1	1901604	MUNICIPAL	DESTROYED	TCE	0.8	06/80	ND	04/97	
				NO3	47.0	02/76	34.8	04/97	
				CLO4	NA	NA	NA	NA	
149W-1	1902119	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
150W-1	1902519	MUNICIPAL	DESTROYED	TCE	6.0	09/81	ND	08/93	
10044-1	1002010	AUDITOLIAL	PLOINOILD	NO3	53.0	03/86	13.4	08/94	
				CLO4	NA	NA	NA	NA NA	
				0.001					

1		1	T	CONCENTRA	TION (NO3	N MG/L O	THERS IN I	IG/L)	1
WELL NAME	RECORDATION	USAGE	STATUS	1	HISTORI		MOSTR		REMARKS
	NUMBER	USAGE	314103	OF CONCERN	VALUE	DATE	VALUE	DATE	
<u>.</u>		ц	Л	la constanti de la constanti d					h
151W-1	1902518	MUNICIPAL	DESTROYED	VOCS	ND	01/80	ND	03/98	
				NO3	116_0	03/98	116.0	03/98	
				CLO4	21.6	03/98	21.6	03/98	
151W-2	8000207	MUNICIPAL	ACTIVE	VOCS	ND	05/09	ND	05/11	
	0000207	MONION AL	AOTIVE	NO3	6.0	05/11	6.0	05/11	
				CLO4	ND	04/09	ND	05/11	
150\4/ 1	1000337	MUNICIPAL	DESTROYER	TOF	10.0	44/00		02/05	
152W-1	1900337	WUNICIPAL	DESTROYED	TCE PCE	12.8 0.8	11/82 11/82	8.0 0.3	03/85 03/85	
				NO3	43.4	05/86	43.4	05/86	
				CLO4	NA	NA	NA	NA	
45014/4	4000704	MUNICIPAL	IN LA OTIVIT	1/000					
153W-1	1902761	MUNICIPAL	INACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
154W-1	1902762	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	81.0	05/79	81.0	05/79	
				CLO4	NA	NA	NA	NA	
155W-1	1902819	MUNICIPAL	INACTIVE	PCE	190.0	11/80	90.0	11/98	VULNERABLE
			States and the second	TCE	50.0	07/81	24.0	11/98	(CLO4)
				CTC	19.0	02/82	ND	11/98	
				1,1-DCE	16_0	03/85	13.0	11/98	
				NO3	60.0	11/80	49.8	11/98	
				CLO4	5.4	11/98	5,4	11/98	
155W-2	1902820	MUNICIPAL	DESTROYED	PCE	190.0	09/93	76.0	11/98	
				TCE	39.0	04/80	22.0	11/98	
				1,1-DCE	21.0	09/93	11.0	11/98	
				1,1-DCA	3.0	09/93	1.4	11/98	
				C-1,2-DCE NO3	16.0 49.0	03/85 11/98	1.8 49.0	11/98 11/98	
				CLO4	4.3	11/98	ND	11/98	
157W-1	1902763	MUNICIPAL	DESTROYED	TCE	12.2	02/80	ND	03/85	
				NO3 CLO4	58.0 NA	02/86 NA	58.0 NA	02/86 NA	
				0204	10.1	1473	1444	13/3	
201W-1	1901429	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
201W-2	1901430	MUNICIPAL	DESTROYED	TCE	6.8	04/89	1.7	08/06	
				PCE	3.9	09/88	1.4	08/06	
				1,1-DCE	3.2	08/89	ND	08/06	
				C-1,2-DCE	6.1	02/91	4,3	08/06	
				NO3 CLO4	6.8 ND	08/94 08/97	6,3 ND	08/06 09/03	
				0104	ND	00/9/	ND	09/03	
201W-3	1901431	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	
201W-4	1901433	MUNICIPAL	ACTIVE	TCE	6.4	09/89	ND	02/09	VULNERABLE
				PCE	4.1	09/88	ND	02/09	(VOCS)
				1,1-DCE	2.0	07/88	ND	02/09	
				C-1,2-DCE	5.2	05/97	ND	02/09	
				BF DBCM	4.7 1.9	11/07 11/07	2.2 1.0	02/09 02/09	
				NO3	18.0	08/10	18.0	02/09	
				CLO4	ND	06/97	ND	08/10	

			1	CONCENTRA	TION (NO3 IN	MG/L.O	THERS IN	UG/L)	1
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORIC		MOST F		REMARKS
The Real	NUMBER	UUNUL	VIATOO	OF CONCERN	VALUE	DATE	VALUE	DATE	
ĮĮ			н	lI	1				A0
201W-5	1901432	MUNICIPAL	INACTIVE	TCE	6.4	09/89	ND	03/08	VULNERABLE
				PCE	3.8	09/89	ND	03/08	(VOCS)
				1,1-DCE C-1,2-DCE	2.9 4.9	09/88 08/88	ND ND	03/08 03/08	
				BDCM	1.7	11/07	ND	03/08	
				BF	6.4	11/07	0.6	03/08	
				DBCM	4.6	11/07	ND	03/08	
				NO3	12.0	08/94	12.0	08/07	
				CLO4	ND	06/97	ND	06/03	
201W-6	1901434	MUNICIPAL	DESTROYED	TCE	3.9	05/88	ND	09/05	
20100-0	1001404	MONION AL	DEGINOTED	PCE	3.3	05/88	ND	09/05	
				1,1-DCE	3.2	09/88	ND	09/05	
				C-1,2-DCE	8.7	05/88	ND	09/05	
				NO3	20.0	06/85	7.7	05/05	
				CLO4	ND	06/97	ND	06/03	
20414/7	0000405	MUNICIPAL	A OTIV/C	DOE	0.0	00/00	0.0	08/40	
201W-7	8000195	MUNICIPAL	ACTIVE	PCE C-1,2-DCE	0.6 0.9	08/08 08/08	0.6 ND	08/10 08/10	
				NO3	14.0	08/08	13.0	08/10	
				CLO4	ND	08/08	ND	08/10	
				0101	110	00.00			
201W-8	8000198	MUNICIPAL	ACTIVE	TCE	0.5	05/07	ND	08/10	
				C-1,2-DCE	1,1	05/07	ND	08/10	
				EBZ	0,8	07/06	ND	08/10	
				NO3	10.0	08/10	10.0	08/10	
				CLO4	2.1	07/06	ND	08/10	
201W-9	8000208	MUNICIPAL	ACTIVE	VOCS	ND	11/08	ND	08/09	
				NO3	14.0	02/10	14.0	02/11	
				CLO4	ND	03/08	ND	09/10	
201W-10	8000210	MUNICIPAL	ACTIVE	TCE	1.4	09/07	ND	02/10	
				PCE	1.3	09/07	ND	02/10	
				C-1,2-DCE	3.0	09/07	ND	02/10	
				NO3	3.8	09/07	2.8	05/09	
				CLO4	ND	09/07	ND	05/09	
202W-1	1901627	MUNICIPAL	DESTROYED	TCE	4.3	09/81	ND	01/89	
LOLITI	1001021		BLOINGILD	PCE	15.0	10/88	12.1	01/89	
				NO3	24.0	07/87	23.0	10/88	
				CLO4	NA	NA	NA	NA	
		,							
SUMME SLUPE	WATER COMPANY								
08	1900026	MUNICIPAL	ACTIVE	VOCS	ND	01/87	ND	09/10	VULNERABLE
				NO3	24.0	09/94	2.7	03/11	(NO3)
				CLO4	ND	07/97	ND	09/10	
09	1902792	MUNICIPAL	ACTIVE	VOCS	ND	01/85	ND	03/11	VULNERABLE
755	1000000		0.020.00.000	NO3	36.0	06/03	11.0	03/11	(NO3)
				CLO4	ND	07/97	ND	09/10	
10	8000048	MUNICIPAL	INACTIVE	vocs	ND	01/85	ND	08/96	
10	0000040	MUNICIPAL	INAGINE	NO3	63.6	12/94	50.9	08/96	
				CLO4	NA	NA	NA	NA	
13	8000157	MUNICIPAL	ACTIVE	VOCS	ND	08/96	ND	09/10	
				NO3	7.2	09/09	6.9	09/10	
				CLO4	ND	07/97	ND	09/10	

# HIGHLIGHTS OF VOLATILE ORGANIC COMPOUNDS, NITRATE, AND PERCHLORATE CONCENTRATIONS AND WELLS VULNERABLE TO CONTAMINATION (AS OF JUNE 30, 2011)

21

CONCENTRATION (NO3 IN MG/L, OTHERS IN UG/L)								JG/L)	
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORIC		MOSTR		REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
TAYLOR HERE	GARDEN								
NIA	1000064		IN A OTIVE	VOCE	NIA	NIA	NIA	NIA	
NA	1902964	IRRIGATION	INACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	
TEXACO INC.									
14	1900001	INDUSTRIAL	DESTROYED	PCE	40.0	07/01	2.8	09/03	
				TCE 1,2-DCA	5.0	05/85	ND	09/03	
				MC	0.6 4.6	01/96 04/87	ND ND	09/03 09/03	
				NO3	33.0	07/01	6.4	09/03	
				CLO4	ND	09/97	ND	09/97	
THOMPSON, E	ARL W.								
01	1900680	DOMESTIC	INACTIVE	VOCS NO3	NA NA	NA NA	NA	NA NA	
				CLO4	NA	NA	NA NA	NA	
TOMOVICH (NI	CK) & SON								
NA	8000037	DOMESTIC	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3 CLO4	NA NA	NA NA	NA NA	NA NA	
TYLER NURSE	RY								
NA	8000049	IRRIGATION	INACTIVE	TCE	12.9	12/99	1,2	09/04	VULNERABLE
				PCE	44.6	12/99	1.2	09/04	(VOCS AND NO3)
				1,1-DCE 1,1-DCA	0_6 0.9	09/02 09/02	ND ND	09/04 09/04	
				C-1,2-DCE	8.7	09/02	ND	09/04	
				NO3 CLO4	31.0 NA	09/02 NA	ND NA	09/04 NA	
		PATION		OLOY	110	NA	nna.		
	RETE PIPE CORPO		INIACTIVE	1000	ND	00/00		40/00	
NA	8000067	INDUSTRIAL	INACTIVE	VOCS NO3	ND 4.3	08/89 08/89	ND 4.3	10/08 08/89	
				CLO4	NA	NA	NA	NA	
UNITED ROCK	PRODUCTS CORP	ORATION							
IRW-1	1900106	INDUSTRIAL	ACTIVE	VOCS	ND	08/89	ND	10/09	
				NO3 CLO4	6.4 ND	07/96 02/98	2.5 ND	10/09 02/98	
IRW-2	1903062	INDUSTRIAL	ACTIVE	VOCS	ND	07/96	ND	11/05	
				NO3	4.5	10/04	2.6	11/05	
				CLO4	ND	02/98	ND	02/98	
SIERRA	1902532	INDUSTRIAL	INACTIVE	VOCS NO3	NA NA	NA NA	NA NA	NA NA	
				CLO4	NA	NA	NA	NA	

1				CONCENTRA	TION (NO3 I	N MG/L, O	THERS IN	UG/L)		
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORI	and the second s	MOST	and the second se	REMARKS	
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE		
VALENCIA HEI	GHTS WATER COM	IPANY								
01	8000051	MUNICIPAL	ACTIVE	MC	0.7	06/89	ND	07/09	VULNERABLE	
				NO3	46.5	04/99	32.6	07/07	(NO3 AND CLO4)	
				CLO4	8.5	08/00	ND	07/09	<u>(</u>	
02	8000052	MUNICIPAL	ACTIVE	TCE	0.2	01/80	ND	07/08	VULNERABLE	
0L	000002	MONION //L	NOTIVE	NO3	53.7	07/97	27.0	07/06	(NO3 AND CLO4)	
				CLO4	8.0	10/98	4.2	07/08		
03A	8000055	MUNICIPAL	DESTROYED	VOCS	ND	03/85	ND	03/92		
034	8000055	WONGFAL	DESTRUTED	NO3	34.8	03/85	12.1	03/92		
				CLO4	NA	NA	NA	NA		
04	8000054	MUNICIPAL	INACTIVE	PCE	1.0 90.0	09/99	ND	09/01		
				NO3 CLO4	32.6	11/97 11/00	78.0 28.0	03/02 03/02		
				0204	OL O	11/00	20.0	UUIUE		
05	8000120	MUNICIPAL	ACTIVE	VOCS	ND	06/90	ND	07/10	VULNERABLE	
				NO3	36.0	07/10	36.0	07/10	(NO3 AND CLO4)	
				CLO4	7.2	11/00	ND	04/11		
06	8000180	MUNICIPAL	ACTIVE	CF	13.0	12/02	ND	07/10	VULNERABLE	
				NO3	49.3	06/04	48.0	08/09	(CLO4)	
				CLO4	8.9	01/07	ND	04/11		
07	8000211	MUNICIPAL	INACTIVE	VOCS	ND	05/08	ND	09/10	VULNERABLE	
				NO3	29.0	12/09	25.0	12/10	(NO3)	
				CLO4	ND	05/08	ND	04/11		
ALLEY COUN	TY WATER DISTRI	СТ								
ARROW	1900034	MUNICIPAL	INACTIVE	TCE	700.0	07/82	600.0	12/96	VULNERABLE	
				PCE	980.0	12/96	980.0	12/96	(NO3)	
				1,1-DCE	64.0	12/96	64.0	12/96		
				C-1,2-DCE	59.0	12/96 09/92	59.0	12/96		
				CTC 1,2-DCA	14.5 9.0	09/92	8.0 7.3	12/96 12/96		
				1,1,1-TCA	45.0	12/96	45.0	12/96		
				1,1-DCA	2.9	02/95	2.7	12/96		
				NO3	26.4	08/96	26.4	08/96		
				CLO4	NA	NA	NA	NA		
<b>B</b> DALTON	1900035	MUNICIPAL	INACTIVE	TCE	137.0	04/85	ND	05/11	VULNERABLE	
				PCE	8.0	04/85	ND	05/11	(VOCS)	
				1,1-DCA	0.9	05/96	ND	05/11		
				C-1,2-DCE	2.0	11/95	ND	05/11		
				CTC	9.9	04/85	ND	05/11		
				1,2-DCA	11.0	12/98	ND	05/11		
				NO3	72.0	10/09	72.0	05/11		
				CLO4	99_1	12/98	11.0	05/11		
E NIXON	1900032	MUNICIPAL	ACTIVE	TCE	7.0	11/08	ND	02/11	VULNERABLE	
(E JOAN)				PCE	11.0	10/04	ND	02/11	(VOCS) (1)	
				1,1-DCE	1.3	10/04	ND	02/11		
				C-1,2-DCE	1.7	10/04	ND	02/11		
				NO3	13.6	02/05	6,1	02/11		
				CLO4	ND	05/97	ND	02/11		

			CONCENTRATION (NO3 IN MG/L, OTHE					JG/L)		
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORI	C HIGH	MOST R	ECENT	REMARKS	
	NUMBER			OF CONCERN	VALUE	DATE	VALUE	DATE		
E MAINE	1900027	MUNICIPAL	ACTIVE	TCE	36.0	10/04	ND	05/11	VULNERABLE	
EWAINE	1900027	MONICIFAL	ACTIVE	PCE	110.0	10/04	ND	05/11	(VOCs AND CLO4) (1)	
				1,1-DCE	10.1	02/91	ND	05/11	(VOCS AND CLO4)(1)	
				1,2-DCA	1.4	10/04	ND	05/11		
				1,1,1-TCA	9.1	02/91	ND	05/11		
				C-1,2-DCE	13.0	06/03	ND	05/11		
				CF	1.1	10/04	ND	05/11		
				NO3	21.0	02/11	15.3	05/11		
				CLO4	7.8	10/04	ND	05/11		
LANTE	8000060	MUNICIPAL	ACTIVE	TCE	1315.0	04/98	150.0	05/11	VULNERABLE	
(SA1-3)				PCE	1200.0	11/96	510.0	05/11	(NO3) (1,4)	
				1,1-DCE	110_0	11/96	8.0	05/11		
				C-1,2-DCE	90.0	11/96	15.0	05/11		
				T-1,2-DCE	110.0	04/85	ND	05/11		
				1,1-DCA	18.0	08/04	ND	05/11		
				1,2-DCA	12.5	01/92	0.6	05/11		
				CTC	17,6	01/92	1.2	05/11		
				1,1,1-TCA	170.0	04/85	ND	05/11		
				MC	24.4	05/87	ND	05/11		
				CF	3.2	05/06	0.9	05/11		
				o-DCB	0.6	08/04	ND	05/11		
				p-DCB	3.1	08/04	ND	05/11		
				NO3	43.0	05/05	37.0	05/11		
				CLO4	94,0	04/98	17.0	05/11		
MORADA	1900029	MUNICIPAL	INACTIVE	TCE	770.0	03/80	ND	05/11	VULNERABLE	
				PCE	100.0	02/85	2.2	05/11	(VOCS)	
				CTC	29.0	04/84	ND	05/11		
				1,1-DCE	2,5	04/88	ND	05/11		
				1,1-DCA	8.5	02/85 04/88	ND ND	05/11 05/11		
				1,2-DCA C-1,2-DCE	0.7 8.1	08/95	ND	05/11		
				CF	1.7	10/08	ND	05/11		
				NO3	110.8	11/90	85.5	05/11		
				CLO4	21.0	02/04	11.0	05/11		
PADDY LN	1900031	MUNICIPAL	INACTIVE	TCE	166.0	04/94	29.0	05/11	VULNERABLE	
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			PCE	42.0	11/93	3.5	05/11	(NO3)	
				CF	4.9	05/10	1.8	05/11	( )	
				CTC	15.0	12/87	1.0	05/11		
				1,1-DCE	17.2	11/93	1.6	05/11		
				C-1,2-DCE	23.8	11/93	1,9	05/11		
				1,2-DCA	6,6	02/04	2.6	05/11		
				NO3	63.0	05/10	39.6	05/11		
				CLO4	154.0	02/98	38.0	05/11		
PALM	8000039	MUNICIPAL	INACTIVE	СТС	48.0	07/82	0.8	02/04	VULNERABLE	
				TCE	56.0	02/04	56.0	02/04	(CLO4)	
				PCE	51.0	02/04	51.0	02/04		
				CF	0.7	02/04	0.7	02/04		
				C-1,2-DCE	7.1	02/04	7.1	02/04		
				1,1,1-TCA	1.8	02/04	1.8	02/04		
				NO3 CLO4	11.0 5.6	12/94 02/04	10,0 5,6	02/04 02/04		
W NIXON	1902356	MUNICIPAL	ACTIVE	TCE		11/04	ND	03/11	VULNERABLE	
	1902330	MUNICIPAL	AGIVE	PCE	4.0 8.0	11/04	ND	03/11		
(W JOAN)				MC	1.6	05/89	ND	10/09	(VOCS) (1)	
				NO3	8.5	02/05	6.1	03/11		
				CLO4	ND	05/97	ND	08/10		
				0104		03/37		00/10		

				CONCENTRA	TION (NO3 IN				
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORIC		MOSTR		REMARKS
	NUMBER			OF CONCERN	VALUE	DATE	ATE VALUE D		
W MAINE	1900028	MUNICIPAL	ACTIVE	TCE	47.3	02/91	ND	05/11	VULNERABLE
				PCE	70.0	02/03	ND	05/11	(VOCS AND CLO4) (1)
				1,1-DCE	14.2	02/91	ND	05/11	
				1,2-DCA	0.8	08/04	ND	05/11	
				1,1,1-TCA	10.6	02/91	ND	05/11	
				C-1,2-DCE	9.0	02/03	ND	05/11	
				NO3	20.8	05/90	9.0	05/11	
				CLO4	6.3	10/04	ND	05/11	
SA1-1	8000185	MUNICIPAL	ACTIVE	TCE	34,0	07/05	4.2	05/11	(1,4)
SAI-1	0000100	WONICIFAL	ACTIVE	PCE	47.0	04/07	7.4	05/11	(1,4)
				1,1-DCA	11.0	07/05	ND	05/11	
				1,1-DCA	110,0	07/05		05/11	
						07/05	6.5 ND	05/11	
				1,2-DCA	1.0				
				C-1,2-DCE	4.1	07/05	ND	05/11	
				1,1,1-TCA	6.0	05/06	ND	05/11	
				CF	1.6	12/04	ND	05/11	
				MC	2.2	04/07	ND	05/11	
				FREON 11	1,9	04/11	2.3	05/11	
				NO3	87.0	01/05	71.0	05/11	
				CLO4	17.0	01/05	7.1	05/11	
SA1-2	8000186	MUNICIPAL	ACTIVE	TCE	25.0	04/06	2.0	12/09	VULNERABLE
				PCE	37.0	05/06	4.8	12/09	(VOCS) (1,4)
				1,1-DCA	8,7	07/05	ND	12/09	
				1,1-DCE	62.0	04/06	1.2	12/09	
				1,2-DCA	1.0	07/05	ND	12/09	
				C-1,2-DCE	6.2	07/05	ND	12/09	
				1,1,1-TCA	2.2	05/06	ND	12/09	
				CF	1.3	05/06	ND	12/09	
				NO3	72.0	03/05	59.0	12/09	
				CLO4	15.0	03/05	11.0	12/09	
VALLEY VIEW	MUTUAL WATER	COMPANY							
01	1900363	MUNICIPAL	ACTIVE	VOCS	ND	06/89	ND	09/10	
				NO3	6.4	09/09	5.7	09/10	
				CLO4	ND	08/97	ND	09/10	
02	1900364	MUNICIPAL	ACTIVE	VOCS	ND	06/88	ND	12/10	
UZ	1500504	MONICIFAL	ACTIVE	NO3	7.7	09/09	5.4	12/10	
					ND				
				CLO4	ND	08/97	ND	12/10	
03	1900365	MUNICIPAL	INACTIVE	TCE	1.3	01/80	ND	03/98	VULNERABLE
				NO3	26.9	03/98	26.9	03/98	(NO3)
				CLO4	18.6	03/98	18.6	03/98	
VIA TRUST									
01	1903012	NON-POTABLE	DESTROYED	VOCS	NA	NA	NA	NA	
				NO3	NA	NA	NA	NA	
				CLO4	NA	NA	NA	NA	

				CONCENTRA	TION (NO3 I	N MG/L, O	THERS IN	UG/L)		
WELL NAME	RECORDATION NUMBER	USAGE	STATUS	CONTAMINANT	HISTORI	C HIGH	MOSTI	RECENT	REMARKS	
				OF CONCERN	VALUE	DATE	VALUE	DATE		
VULCAN MAT	ERIALS COMPANY	(CALMAT COMP	ANY)							
DUR E	1902920	INDUSTRIAL	ACTIVE	TCE PCE 1,1-DCE C-1,2-DCE 1,1,1-TCA CF MC NO3 CLO4	32.0 27.0 5.3 2.8 0.7 0.7 1.1 16.2 ND	11/04 11/04 11/04 11/04 11/04 11/04 10/06 10/04 04/98	ND 0.9 ND ND ND ND 7.2 ND	10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/08	VULNERABLE (VOCS)	
DUR W	8000063	INDUSTRIAL	ACTIVE	PCE NO3 CLO4	0.8 16.0 4.0	02/07 07/01 05/98	ND 14.0 4.0	10/09 10/09 05/98	VULNERABLE (CLO4)	
REL 1	1903088	INDUSTRIAL	ACTIVE	VOCS NO3 CLO4	ND 6.5 ND	05/94 09/02 05/98	ND ND ND	10/10 10/10 05/98		
WADE, RICHA	RD I.									
NA	8000056	DOMESTIC	INACTIVE	VOCS NO3 CLO4	NA NA NA	NA NA NA	NA NA NA	NA NA NA		
WEST COVINA	VENTURE LIMITE	D C								
NA	1902970	NA	INACTIVE	VOCS NO3 CLO4	NA NA NA	NA NA NA	NA NA NA	NA NA NA		
WILMOTT, ERI	MA M.									
01	8000006	DOMESTIC	ACTIVE	VOCS NO3 CLO4	NA NA NA	NA NA NA	NA NA NA	NA NA NA		
WOODLAND, F	RICHARD									
01	1902949	NON-POTABLE	INACTIVE	VOCS NO3 CLO4	NA NA NA	NA NA NA	NA NA NA	NA NA NA		
02	1902950	NON-POTABLE	INACTIVE	VOCS NO3 CLO4	NA NA NA	NA NA NA	NA NA NA	NA NA NA		
ROSE HILLS M	IEMORIAL PARK (V	VORKMAN MILL	INVESTMENT	COMPANY)						
04	1902790	IRRIGATION	ACTIVE	PCE TCE 1,1-DCE 1,1,1-TCA NO3 CLO4	5.3 11.0 14.0 3,3 52.8 ND	08/87 04/85 04/85 04/85 02/07 06/98	ND ND ND 43.0 ND	10/09 10/09 10/09 10/09 10/10 06/98	VULNERABLE (VOCS AND NO3)	
01	1900132	IRRIGATION	INACTIVE	VOCS NO3 CLO4	NA NA NA	NA NA NA	NA NA NA	NA NA NA		

		1	1	CONCENTRA	TION (NO3 I	N MG/L. O	THERS IN	UG/L)	1	
WELL NAME	RECORDATION	USAGE	STATUS	CONTAMINANT	HISTORI	CARL CONTRACTOR OF		RECENT	REMARKS	
	NUMBER	OUNCE		OF CONCERN	VALUE	DATE	VALUE	DATE		
L{		1		N		1		1	N	
02	1900095	IRRIGATION	INACTIVE	PCE	8.6	04/85	ND	10/04	VULNERABLE	
				TCE	11.0	04/85	ND	10/04	(VOCS)	
				NO3	91.4	10/04	91.4	10/04		
				CLO4	ND	06/98	ND	06/98		
01	1900094	IRRIGATION	ACTIVE	TCE	6.1	04/87	ND	10/10	VULNERABLE	
-				PCE	6.4	11/87	1.1	10/10	(VOCS AND NO3)	
				1,2-DCA	0.8	01/96	ND	10/10	· · · · · · · · · · · · · · · · · · ·	
				1,1-DCE	1.0	04/87	ND	10/10		
				C-1,2-DCE	2.6	05/85	ND	10/10		
				NO3	45.2	02/98	31.0	10/10		
				CLO4	ND	02/98	ND	02/98		
03	1900052	IRRIGATION	ACTIVE	TCE	21.0	05/85	ND	09/05	VULNERABLE	
	TOTOTOL			PCE	7.4	05/85	ND	09/05	(VOCS AND NO3)	
				1,1-DCE	2.7	05/85	ND	09/05	()	
				C-1,2-DCE	28.0	05/85	ND	09/05		
				1,1-DCA	1.1	05/85	ND	09/05		
				1,1,1-TCA	7.5	05/85	ND	09/05		
				NO3	46.4	08/00	25.7	09/05		
				CLO4	ND	02/98	ND	02/98		
WHITTIER, CIT	YOF									
trining off										
09	1901745	MUNICIPAL	DESTROYED	TCE	1_4	04/85	ND	08/89		
				PCE	1.9	10/88	0.6	08/89		
				NO3	8.8	08/89	8.8	08/89		
				CLO4	NA	NA	NA	NA		
10	1901746	MUNICIPAL	DESTROYED	VOCS	NA	NA	NA	NA		
				NO3	6.6	01/74	6.6	01/74		
				CLO4	NA	NA	NA	NA		
11	1901747	MUNICIPAL	DESTROYED	VOCS	ND	06/87	ND	11/90		
				NO3	10.1	01/90	10.1	01/90		
				CLO4	NA	NA	NA	NA		
12	1901748	MUNICIPAL	DESTROYED	TCE	1.5	07/88	1.5	07/88		
12	1001740	MONION AL	DEGINOTED	PCE	0.7	07/88	0.7	07/88		
				NO3	10.0	12/84	8.5	12/85		
				CLO4	NA	NA	NA	NA		
13	1901749	MUNICIDAL	ACTIVE	PCE	4.9	11/87	ND	03/11	VULNERABLE	
13	1901/49	MUNICIPAL	ACTIVE	TCE	4,9	06/87	ND	03/11	(VOCS) (3)	
				MTBE	6.4	03/02	ND	03/11	(1003)(0)	
				NO3	17.0	03/11	17.0	03/11		
				CLO4	ND	08/97	ND	09/10		
15	8000071	MUNICIPAL	ACTIVE	PCE	9.4	03/03	ND	03/11	VULNERABLE	
				TCE	0.7	09/04	ND	03/11	(VOCS) (3)	
				C-1,2-DCE NO3	2.5	12/93 08/89	ND 7.0	12/10 09/10		
				CLO4	13.0 ND	08/89	ND	09/10		
16	8000110	MUNICIPAL	ACTIVE	PCE	3.4	12/02	0.6	03/11	VULNERABLE	
				TCE	1.4	01/97	ND	03/11	(VOCS) (3)	
				C-1,2-DCE	2.5	10/96	ND 11.0	03/11		
				NO3 CLO4	11.0 ND	03/11 08/97	11.0 ND	03/11 12/10		
				0104	ND	00/97	ND	12/10		

	BECORDATION		STATUS	CONCENTRA	TION (NO3 I	N MG/L, O	THERS IN U	JG/L)	
WELL NAME	RECORDATION	USAGE		CONTAMINANT	HISTOR	C HIGH	MOST R	ECENT	REMARKS
	NOMBER			OF CONCERN	VALUE	DATE	VALUE	DATE	
17	8000135	MUNICIPAL	INACTIVE	PCE	12.0	12/02	3.3	09/08	VULNERABLE
17	6000135	MONICIPAL	INACTIVE	TCE	2.2	05/92	0.5	09/08	(VOCS) (3)
				C-1.2-DCE	1.2	04/95	ND	09/08	(1000)(0)
				NO3	13.0	03/03	9.1	03/08	
				CLO4	ND	08/97	ND	09/08	
				CLO4	ND	00/97	ND	09/08	
18	8000136	MUNICIPAL	INACTIVE	PCE	9.2	09/08	4.0	03/11	VULNERABLE
				TCE	2.4	11/95	0.8	03/11	(VOCS) (3)
				C-1,2-DCE	0.7	10/96	ND	03/11	
				NO3	14.7	03/05	14.0	03/11	
				CLO4	ND	08/97	ND	12/10	
EW4-5	8000200	MUNICIPAL	ACTIVE	PCE	29.0	10/06	14.0	12/09	(1)
				TCE	4.1	10/06	1.4	12/09	(-)
				NO3	16.0	12/05	12.0	09/09	
				CLO4	ND	12/05	ND	09/09	
EW4-6	8000201	MUNICIPAL	ACTIVE	PCE	8.1	06/06	ND	12/09	VULNERABLE
			10 (1) Th	TCE	1.1	10/06	ND	12/09	(VOCS) (1)
				NO3	15.0	11/06	12.0	09/09	(
				CLO4	ND	05/06	ND	09/09	
EW4-7	8000202	MUNICIPAL	ACTIVE	PCE	8.2	01/06	3.1	12/09	VULNERABLE
				TCE	1.8	02/06	ND	12/09	(VOCS) (1)
				NO3	18.0	01/06	11.0	09/09	(1000)(1)
				CLO4	ND	12/05	ND	09/09	
NOTES	ABBREVIATION	CONTAMINANT		MAXIMUM		METHOD		REMARKS	

NOTES	ABBREVIATION	CONTAMINANT	MAXIMUM CONTAMINANT LEVEL	METHOD DETECTION LIMIT	REMARK	S
	1,1-DCA 1,1-DCE 1,1,1-TCA 1,1,2,2-PCA 1,2-DCA BDCM BF CF CLO4 CTC C-1,2-DCE DBCM EBZ FREON 111 FREON 113 MC MTBE NO3 O-DCB P-DCB PCE TCE T-1,2-DCE VC	1,1-Dichloroethane 1,1-Dichloroethylene 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,2-Dichloroethane Bromoform Chloroform Perchlorate Carbon Tetrachloride Cis-1,2-Dichloroethylene Dibromochloromethane Ethylbenzene Trichlorofluoromethane Trichlorofluoromethane Methylene Chloride Methyl Tert-Butyl Ether Nitrate as Nitrate 1,2-Dichlorobenzene 1,4-Dichlorobenzene Trians-1,2-Dichloroethylene Trians-1,2-Dichloroethylene Vinyl Chloride	5 micrograms per liter (ug/L) 6 ug/L 200 ug/L 1 ug/L 0,5 ug/L 80 ug/L 80 ug/L 80 ug/L 6 ug/L 6 ug/L 6 ug/L 80 ug/L 150 ug/L 150 ug/L 150 ug/L 13 ug/L 13 ug/L 45 milligrams per liter (mg/L) 600 ug/L 5 ug/L	0.5 ug/L 0.5 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 0.5 ug/L	(1) (2) (3) (4) (5) NA ND NL VOCS	Existing VOC treatment VOC treatment under construction VOC treatment proposed Existing CLO4 treatment CLO4 treatment proposed Not Available Not Detected Notification Level Volatile Organic Compounds
			0.5 ug/L	010 08/-		



# APPENDIX D. Potential Sites for Aquifer Performance Tests

#### APPENDIX D

#### POTENTIAL SITES FOR AQUIFER PERFORMANCE TESTS

NAME	RECORD.	USAGE	STATUS	PERFO. (1)	FUNCTION	REMARKS
ALHAMBRA, C	ITY OF					
LON 1	1902789	MUNICIPAL	ACTIVE	411-800	MONITORING	÷
LON 2	1900017	MUNICIPAL	ACTIVE	296-563	PUMPING	
AZUSA, CITY C	DF					
NO. 11	8000178	MUNICIPAL	ACTIVE	200-320	PUMPING	
NO. 12	8000179	MUNICIPAL	ACTIVE	206-311	MONITORING	
CALIFORNIA D	OMESTIC WA	ATER COMPAN	Y			
05A	8000100	MUNICIPAL	ACTIVE	?-920	PUMPING	
06	1902967	MUNICIPAL	ACTIVE	200-800	MONITORING	
CHAMPION MU	TUAL WATE	R COMPANY				
01	1900908	MUNICIPAL	INACTIVE	100-130	MONITORING	
02 03	1902816 8000121	MUNICIPAL MUNICIPAL	ACTIVE ACTIVE	152-265 107-299	PUMPING MONITORING	
		PANY (CALMAT		107-200	Montroland	
DUR E DUR W	1902920 8000063	INDUSTRIAL	ACTIVE	238-484 ?-525	PUMPING MONITORING	
GLENDORA, C	ITY OF					
05-E	8000149	MUNICIPAL	ACTIVE	150-400	PUMPING	
NA	1903119	INDUSTRIAL	ACTIVE	?-220	MONITORING	OWL ROCK PRODUCTS WELL
MONTEREY PA	RK, CITY OF					
15	8000196	MUNICIPAL	ACTIVE	200-425	PUMPING	
04 06	1902664 1902666	IRRIGATION IRRIGATION	ACTIVE ACTIVE	260-752 226-475	MONITORING MONITORING	LAC DEPARTMENT OF PUBLIC WORKS LAC DEPARTMENT OF PUBLIC WORKS
						EAG DEPARTMENT OF FUBLIC WORKS
WORKMAN MII	LL INVESTME	NT COMPANY	(ROSE HILL	S MEMORIAL	_ PARK)	
01	1900094	IRRIGATION	ACTIVE	137-264	PUMPING	
ROSE HILLS	8000004	MUNICIPAL	INACTIVE	?-200	MONITORING	BEVERLY ACRES MWC
RURBAN HOM	ES MUTUAL V	NATER COMP	ANY			
NORTH 1 SOUTH 2	1900120		ACTIVE	140-190		
	1900121	MUNICIPAL	ACTIVE	125-165	PUMPING	
SAN GABRIEL	COUNTY WA	TER DISTRICT				
05 BRA	1901669	MUNICIPAL	ACTIVE	450-800	MONITORING	
11 12	8000067 8000123	MUNICIPAL MUNICIPAL	ACTIVE ACTIVE	350-800 470-1320	PUMPING MONITORING	
SAN GABRIEL	VALLEY WAT	FER COMPANY				
B24A	8000203	MUNICIPAL	ACTIVE	600-1150	PUMPING	

#### APPENDIX D

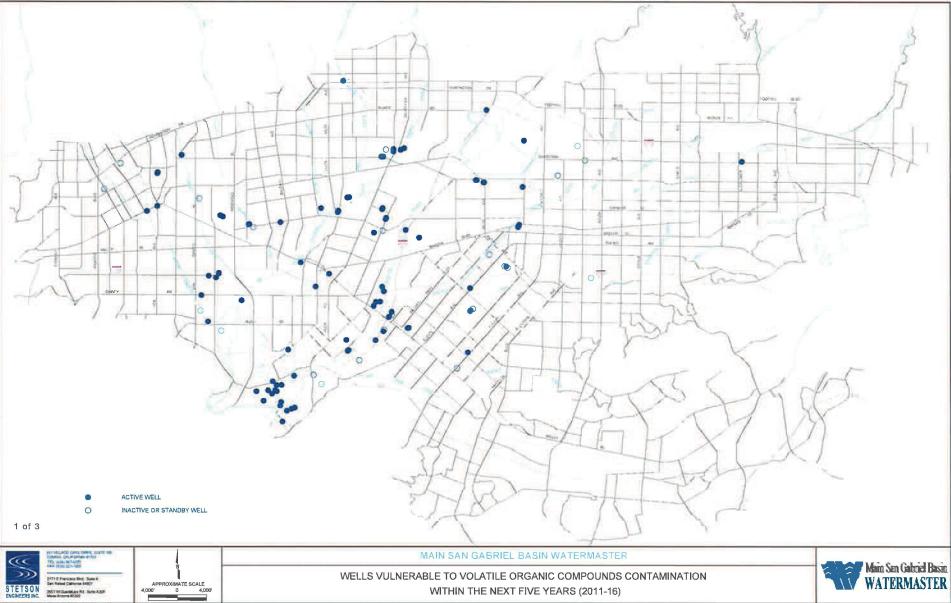
#### POTENTIAL SITES FOR AQUIFER PERFORMANCE TESTS

NAME	RECORD.	USAGE	STATUS	PERFO. (1)	FUNCTION	REMARKS
GOLDEN STATI	E WATER CO	DMPANY (SOU	HERN CALI	FORNIA WA	IER COMPANY	)/SAN GABRIEL VALLEY DISTRIC
FAR 1	1902034	MUNICIPAL	ACTIVE	274-455	PUMPING	
FAR 2	1902948	MUNICIPAL	ACTIVE	229-600	MONITORING	
GAR 1	1900513	MUNICIPAL	ACTIVE	?-424	MONITORING	ALTERNATE FOR MONTEREY PARK SITE
GAR 2	1900512	MUNICIPAL	ACTIVE	377-404	PUMPING	
GRA 1	1902030	MUNICIPAL	STANDBY	NA	PUMPING	
GRA 2	1902461	MUNICIPAL	STANDBY	400-475	MONITORING	
SG 1	1900510	MUNICIPAL	ACTIVE	190-411	MONITORING	
SG 2	1900511	MUNICIPAL	ACTIVE	209-393	PUMPING	
GOLDEN STATI	E WATER CO	MPANY (SOUT			ER COMPANY	)/SAN DIMAS DISTRIC
COL-4	1902268	MUNICIPAL	ACTIVE	122-190	PUMPING	
COL-6	1902270	MUNICIPAL	ACTIVE	?-414	MONITORING	
SUBURBAN WA	ATER SYSTE	MS				
201W-9	8000208	MUNICIPAL	ACTIVE	260-650	PUMPING	
201W-7	8000195	MUNICIPAL	ACTIVE	200-650	MONITORING	
201W-8	8000198	MUNICIPAL	ACTIVE	200-650	MONITORING	
201W-10	8000210	MUNICIPAL	NA	NA	MONITORING	
05	8000120	MUNICIPAL	ACTIVE	230-720	PUMPING	
07	8000211	MUNICIPAL	ACTIVE	244-724	MONITORING	
VALLEY COUN	TY WATER D	ISTRICT				
E NIXON (JOANBRIDGE)	1900032	MUNICIPAL	ACTIVE	300-586	MONITORING	ALTERNATE FOR MAINE SITE
W NIXON (JOANBRIDGE)	1902356	MUNICIPAL	ACTIVE	300-584	PUMPING	
E MAINE	1900027	MUNICIPAL	ACTIVE	250-580	PUMPING	ALTERNATE FOR NIXON SITE
W MAINE	1900028	MUNICIPAL	ACTIVE	250-580	MONITORING	
VALLEY VIEW	NUTUAL WA		(			
01	1900363	MUNICIPAL	ACTIVE	300-585	MONITORING	
02	1900364	MUNICIPAL	ACTIVE	300-535	PUMPING	
03	1900365	MUNICIPAL	INACTIVE	100-200	MONITORING	

#### NOTES

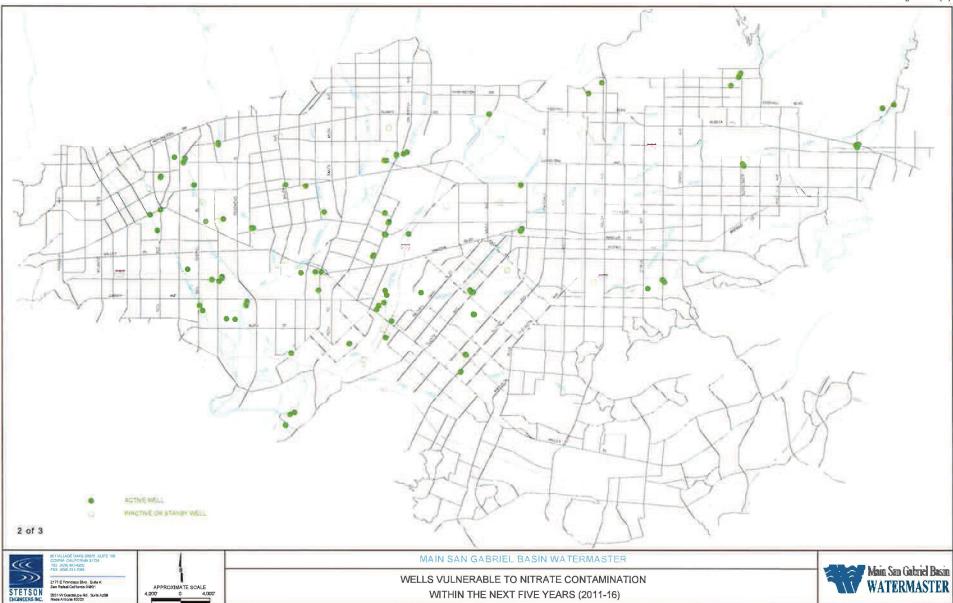
NA NOT AVAILABLE

(1) TOP OF THE TOP INTERVAL - BOTTOM OF THE BOTTOM INTERVAL (DEPTH BELOW GROUND SURFACE IN FEET)


# APPENDIX E. Summary of Treatment Facility Activity in the Main San Gabriel Basin



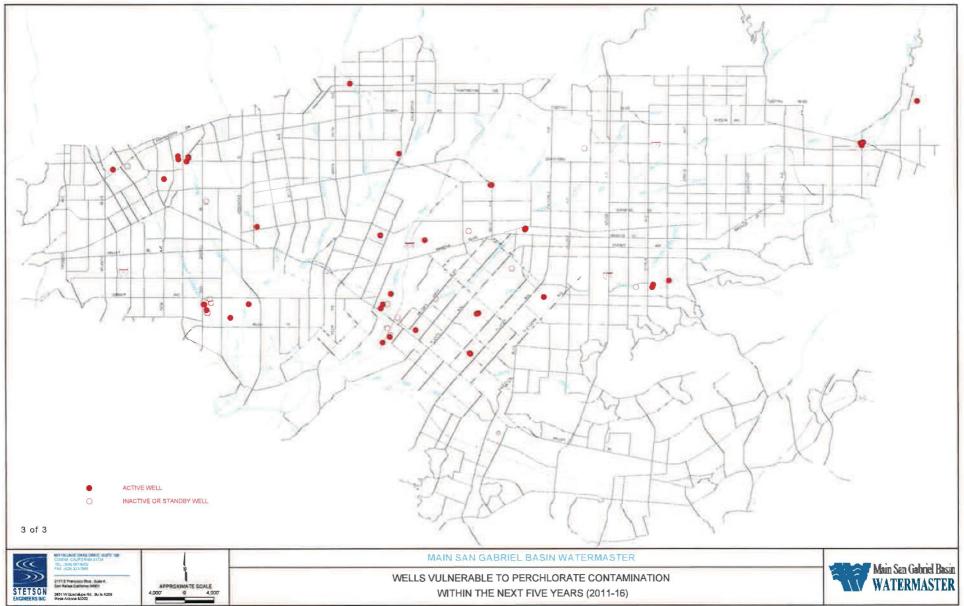
# SUMMARY OF TREATMENT FACILITY ACTIVITY IN THE MAIN SAN GABRIEL BASIN AS OF JUNE 30, 2011


				Fiscal	r Treated	Fiscal	ants Removed	
Operable Unit	Treatment Facility Owner	Treatment Facility(s)	Start Date 1/	Year 2010-11 (Acre-feet)	Accum. Total (Acre-feet)	Year 2010-11 (Pounds)	Accum. Total (Pounds)	
AREA 3					N _ 1.92			
	ALHAMBRA, CITY OF	Well No. 7 Well No. 7, 8, 11 & 12	July 2001 April 2009	3,853.00	7,582.35 8,157.00	84.1	130 235	
BPOU	LA PUENTE VALLEY	Well No. 2, 3 & 4	August 1992	-	11,493,13	-	826	
	COUNTY WATER DISTRICT	Well No. 2 & 3 (BPOU)	January 2000	3,643,60	34,888.69	716.9	8,304	
	SAN GABRIEL VALLEY WATER COMPANY	Well B6C Well B6D	April 1994 April 1994	-	5,194,17 14,526,27	1	856 421	
		Plant B5 (BPOU) Plant B6 (BPOU)	January 2007 September 2004	11,175.63 7,730.74	40,713.00 55,620,57	445.3 1,961.5	1,187 11,582	
	VALLEY COUNTY WATER	Lante	June 1984	122	7,719.61	-	10,356	
	DISTRICT	Lante, SA1-1 & SA1-2 (BPOU)	December 2004	6,658.87	40,261,64	6,659,5	29,667	
MOU	ADAMS RANCH MUTUAL	Well No. 3	November 2003	65,94	585.81	2.4	20	
	WATER COMPANY							
	GOLDEN STATE WATER COMPANY (SGV)	Encinita No., 1, 2 & 3	April 1998	1,748,66	15,979,97	38,3	380	
vou								
	BDP - CARRIER	Carrier	April 1988	117.43	6,232.91	12.0	2,797	
EMOU	MONTEREY PARK, CITY OF	Well No. 5	Seplember 1999	1,172.48	12,261.90	91.5	879	
	Monteller Production	Well No. 9 & 12, 15	April 2002	5,482 10	38,464.23	843.3	5,350	
	SAN GABRIEL VALLEY WATER COMPANY	Well 8B, 8C, 8D & 8E	August 2002	2,391,89	26,574,94	402.2	2,653	
	WATER COMPANY							
	GOLDEN STATE	San Gabriel No 1 & 2	November 2001	1,049,20	9,022,09	26,9	337	
NOU	WATER COMPANY (SGV)							
INOU	EPA	WNOU (Shallow Zone)	December 1999	2,640.33	27,319.53	4.8	1,618	
	WHITTIER, CITY OF	WNOU	December 2005	6,117,44	29,023,61	208.1	1,091	
		(Intermediate Zone)						
RODUCER ACILITY								
	ARCADIA, CITY OF	Longden 1 & 2	January 1985	1,355_77	65,066,12	16.4	716	
	BOZUNG	Well B36, F38, F39	Oclober 1994		233,00	-	131	
		& BC34 2/						
	CALIFORNIA DOMESTIC WATER COMPANY	Well No. 3, Well No. 5A, Well No. 6 & Well No. 14	September 1993 April 1997	14,746.65	254,731.83	946.2	8,518	
	EL MONTE, CITY OF	Well No. 12	February 1997	662.42	13,893,79	101_7	852	
		Well No. 10 Well No. 2A	May 2004 July 1999	733_56 395_64	4,897_01 5,837_07	5.3 4.4	39 100	
	EPA	Richwood (North Well) 3/	April 1990	=	451,98		ŧ	
		Richwood (South Well) 3/	April 1990					
	GOLDEN STATE WATER COMPANY (SD)	Arl 2 & 3, Base 3 & 4, Hwy 1	May 2005	2,297,50	10,838,35	40,5	130	
	HEMLOCK MUTUAL	Hemlock (North Well) 4/	April 1986	-	2,553.65	-	44	
	WATER COMPANY	Hemlock (South Well) 4/	April 1986					
	MONROVIA, CITY OF	Wells No. 2 & 6	March 1996	2,402.37	33,287.22	36.1	559	
		Wells No. 3, 4 & 5	October 2007	2,238,33	5,900.13	6.4	39	
	MONTEREY PARK, CITY OF	Well No. 1, 3, 10 & Fern	June 2004	1,659,10	16,720,86	69.3	1,309	
	SAN GABRIEL VALLEY WATER COMPANY	Well 11B Well B11B	March 1991 March 1993	646.50 1,439.74	38,735.26 37,919.91	1.1 120.5	302 2,772	
		Well B7C Well B4B & B4C	March 1993 January 1999	1,197.24	42,090.66 24,093.04	81.8	1,620	
		Well G4A	December 2005	148.26	3,075.94	1.5	49	
	SUBURBAN WATER SYSTEMS	Well No. 140W-4 4/	May 2001	-	2,247,59		16	
	VALLEY COUNTY WATER DISTRICT	Maine Easl & Wesl Nixon Easl & Wesl 4/	June 1990 January 2004	3,582,47 4,249,68	34,560.86 18,991.78	13.2 13.7	1,702 161	
	WATER QUALITY	Arrow (Project No. 1) 4/	February 1992		7,250,41		17,423	
	AUTHORITY		March 1992				17,423	
		Big Dalton (Project No. 2)			1,229.02			
		Whilmore Street	January 2008	38,65	136,37	24.0	9	
		SEMOU	July 1999	1.00	3,885,19		1,55	

Footnotes: 1/ From date of beginning of operation, 2/ Treatment facility has been permanently dismantled, 3/ Wells destroyed in June 1999, 4/ Wellfield no longer pumps to treatment facility,



DUCKERSENDER NOTATION CONTRACTOR INCOME. I TRATING OF


Figure 11(a)

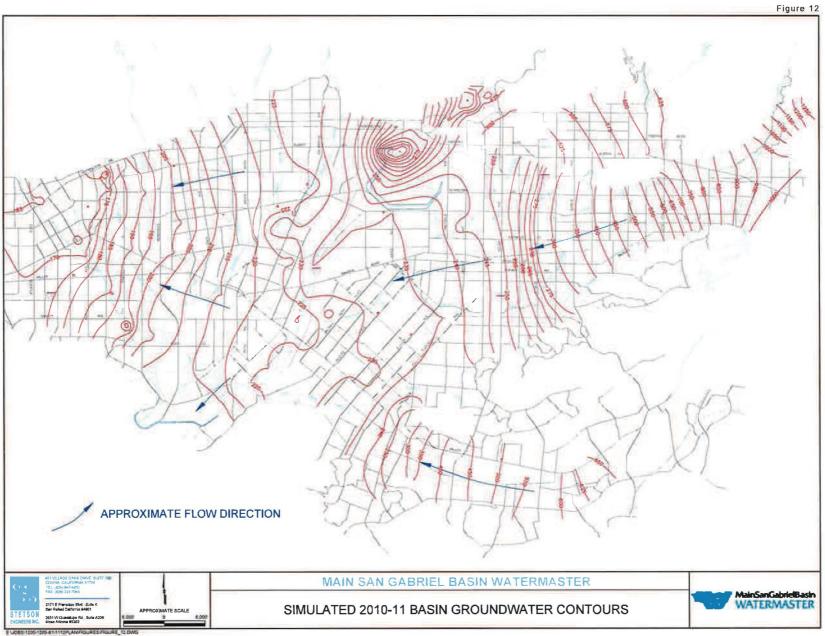


Displant point of an international state of the second state of th

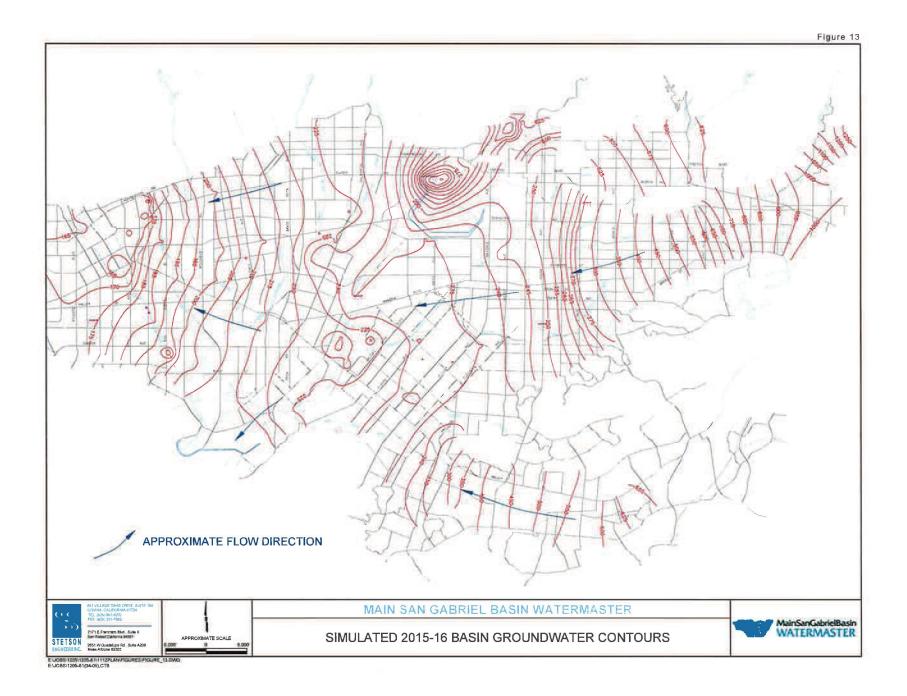
Figure 11(b)






Disconstant (2014 http://www.figueseifebuild_+lighter(F)204 Disconstances and accession




**APPENDIX G.** 

# SIMULATED BASIN GROUNDWATER CONTOURS 2010-11 AND 2015-16 (FIGURES 12 AND 13)





F140601205-6104-051 C18





725 North Azusa Avenue • Azusa, California 91702 Telephone (626) 815-1300 • Fax (626) 815-1303 www.watermaster.org

MANAGING GROUNDWATER FOR OVER ONE MILLION PEOPLE