Appendix B:

Sediment Source Analysis
for the Upper Eel River Sediment TMDL
Table B-1 identifies the terrain/geology types for each subwatershed and the entire basin. To determine the terrain types, the USFS Wilderness Area was removed and the USFS and State Geology maps were reviewed for the remaining basin. Similar rock types were then lumped into five basic categories: Schist, Melange, Alluvium, Coastal Belt, and Franciscan. A grid of 41.8 acre cells was then applied over the entire basin and the dominant terrain type for each cell was determined. Cells were randomly selected for inclusion in the stratified random sampling study of small sediment sources (plot features <3,000 yds3). Table B-1 also identifies the number of grid cells, their total area, and the number of plots sampled for each watershed, geology type, and ownership.

Table B-1. Number of grid cells, basin area, and sample plots by ownership, watershed, and terrain type for the Upper Eel River study area (USFS Wilderness Areas excluded)

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Stratum</th>
<th>Terrain/Geology Type</th>
<th>Public domain</th>
<th></th>
<th></th>
<th></th>
<th>Total study area (public + private)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td># grid cells</td>
<td>Area of grid cells (mi2)</td>
<td>Proposed grid cell sample</td>
<td>PWA # of grid cells sampled</td>
<td># grid cells</td>
<td>Area of grid cells (mi2)</td>
<td>Proposed grid cell sample</td>
<td>PWA # of grid cells sampled</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Entire Upper Eel watershed study area</td>
<td>1</td>
<td>Schist</td>
<td>1,955</td>
<td>127.6</td>
<td>11</td>
<td>11</td>
<td>268</td>
<td>17.5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Melange</td>
<td>609</td>
<td>39.8</td>
<td>7</td>
<td>7</td>
<td>376</td>
<td>24.6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Alluvium</td>
<td>55</td>
<td>3.6</td>
<td>3</td>
<td>3</td>
<td>204</td>
<td>13.3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Coastal Belt</td>
<td>164</td>
<td>10.7</td>
<td>5</td>
<td>5</td>
<td>830</td>
<td>54.2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Franciscan</td>
<td>2,250</td>
<td>147.0</td>
<td>14</td>
<td>14</td>
<td>3,826</td>
<td>249.8</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>5,033</td>
<td>328.7</td>
<td>40</td>
<td>40</td>
<td>5,504</td>
<td>359.4</td>
<td>40</td>
</tr>
<tr>
<td>Lake Pillsbury area removed</td>
<td></td>
<td></td>
<td>46</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>Wilderness area removed</td>
<td></td>
<td></td>
<td>270</td>
<td>17.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>Watershed</td>
<td>Stratum</td>
<td>Terrain/Geology Type</td>
<td># grid cells</td>
<td>Area of grid cells (mi²)</td>
<td>Proposed grid cell sample</td>
<td>PWA # of grid cells sampled</td>
<td># grid cells</td>
<td>Area of grid cells (mi²)</td>
<td>Proposed grid cell sample</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Outlet Creek</td>
<td>1</td>
<td>Schist</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Melange</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Alluvium</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>189</td>
<td>12.3</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Coastal Belt</td>
<td>3</td>
<td>0.2</td>
<td>--</td>
<td>468</td>
<td>30.6</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Franciscan</td>
<td>62</td>
<td>4.0</td>
<td>--</td>
<td>1,725</td>
<td>112.7</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>65</td>
<td>4.2</td>
<td>--</td>
<td>2,382</td>
<td>155.6</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td>Rice Fork</td>
<td>1</td>
<td>Schist</td>
<td>95</td>
<td>6.2</td>
<td>--</td>
<td>28</td>
<td>1.8</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Melange</td>
<td>34</td>
<td>2.2</td>
<td>--</td>
<td>18</td>
<td>1.2</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Alluvium</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Coastal Belt</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Franciscan</td>
<td>1,059</td>
<td>69.2</td>
<td>--</td>
<td>131</td>
<td>8.6</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>1,188</td>
<td>77.6</td>
<td>--</td>
<td>177</td>
<td>11.6</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>Soda Creek</td>
<td>1</td>
<td>Schist</td>
<td>482</td>
<td>31.5</td>
<td>--</td>
<td>116</td>
<td>7.6</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Melange</td>
<td>11</td>
<td>0.7</td>
<td>--</td>
<td>0</td>
<td>2.4</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Alluvium</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Coastal Belt</td>
<td>78</td>
<td>5.1</td>
<td>--</td>
<td>187</td>
<td>12.2</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Franciscan</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>10</td>
<td>0.6</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>571</td>
<td>37.3</td>
<td>--</td>
<td>349</td>
<td>22.8</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Watershed</td>
<td>Stratum</td>
<td>Terrain/Geology Type</td>
<td>Public domain</td>
<td>Private domain</td>
<td>Total study area (public + private)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>----------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td># grid cells</td>
<td>Area of grid cells (mi²)</td>
<td>Proposed grid cell sampled</td>
<td># grid cells</td>
<td>Area of grid cells (mi²)</td>
<td>Proposed grid cell sample</td>
<td>PWA # of grid cells sampled</td>
<td># grid cells</td>
</tr>
<tr>
<td>Tomki Creek</td>
<td>1</td>
<td>Schist</td>
<td>229</td>
<td>15.0</td>
<td>--</td>
<td>16</td>
<td>1.0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Melange</td>
<td>30</td>
<td>2.0</td>
<td>--</td>
<td>0</td>
<td>21.0</td>
<td>--</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Alluvium</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>0</td>
<td>0.1</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Coastal Belt</td>
<td>83</td>
<td>5.4</td>
<td>--</td>
<td>5</td>
<td>11.3</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Franciscan</td>
<td>327</td>
<td>21.3</td>
<td>--</td>
<td>2</td>
<td>122.9</td>
<td>--</td>
<td>8</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>669</td>
<td>43.7</td>
<td>--</td>
<td>8</td>
<td>2,395</td>
<td>156.3</td>
<td>20</td>
</tr>
<tr>
<td>Upper Main Eel</td>
<td>1</td>
<td>Schist</td>
<td>1,149</td>
<td>75.0</td>
<td>--</td>
<td>7</td>
<td>7.0</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Melange</td>
<td>534</td>
<td>34.9</td>
<td>--</td>
<td>6</td>
<td>0.1</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Alluvium</td>
<td>55</td>
<td>3.6</td>
<td>--</td>
<td>3</td>
<td>0.9</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Coastal Belt</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>0</td>
<td>0.0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Franciscan</td>
<td>802</td>
<td>52.4</td>
<td>--</td>
<td>6</td>
<td>5.1</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>2,540</td>
<td>165.9</td>
<td>--</td>
<td>22</td>
<td>13.1</td>
<td>--</td>
<td>2</td>
</tr>
</tbody>
</table>
Table B-2 illustrates the distribution of erosion features by ownership and terrain type for small sediment sources (<3,000 yds3) in addition to the total measured erosion and estimated sediment delivery. These numbers reflect actual plot data (before erosion and sediment delivery volumes were extrapolated to the entire basin).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Domain (plots/mi2)</td>
<td>11/127.6</td>
<td>7/39.8</td>
<td>3/3.6</td>
<td>5/10.7</td>
<td>14/147</td>
<td>40/328.7</td>
<td>40/328.7</td>
</tr>
<tr>
<td>Debris Slide (DL)</td>
<td>19</td>
<td>10</td>
<td>2</td>
<td>17</td>
<td>49</td>
<td>15,856</td>
<td>10,109</td>
</tr>
<tr>
<td>Debris Torrent Track (DT)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bank Erosion (BE)</td>
<td>10</td>
<td>4</td>
<td>14</td>
<td>13</td>
<td>23</td>
<td>6,254</td>
<td>6,061</td>
</tr>
<tr>
<td>Road related gully (GU)</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>156</td>
<td>133</td>
</tr>
<tr>
<td>Non road related gully (GU)</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>414</td>
<td>238</td>
</tr>
<tr>
<td>Stream Crossing (XI)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>183</td>
<td>132</td>
</tr>
<tr>
<td>Channel Incision (CI)</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>577</td>
<td>576</td>
</tr>
<tr>
<td>Surface Erosion (SE)</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>635</td>
<td>337</td>
</tr>
<tr>
<td>Subtotals</td>
<td>66</td>
<td>18</td>
<td>19</td>
<td>32</td>
<td>92</td>
<td>24,075</td>
<td>17,586</td>
</tr>
</tbody>
</table>
Table B-2 (continued)

<table>
<thead>
<tr>
<th>Erosional Feature Type</th>
<th>Number of Field Measured Features by Terrain Type (#)</th>
<th>Total measured erosion (yds3)</th>
<th>Total estimated sediment delivery (yds3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Domain (plots/mi2)</td>
<td>4/17.5</td>
<td>7/24.6</td>
<td>2/13.3</td>
</tr>
<tr>
<td>Debris Slide (DL)</td>
<td>14</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>Debris Flow Source (DF)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bank Erosion (BE)</td>
<td>5</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Road related gully (GU)</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Non road related gully (GU)</td>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Stream Crossing (XI)</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surface Erosion (SE)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active Earthflow (SDS)</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Channel Incision (CI)</td>
<td>1</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>32</td>
<td>50</td>
<td>22</td>
</tr>
<tr>
<td>Total # of features, erosion and delivery volumes for all domains</td>
<td>98</td>
<td>68</td>
<td>41</td>
</tr>
<tr>
<td>Total # of plots/terrain type area in mi2</td>
<td>15/145.1</td>
<td>14/64.4</td>
<td>5/16.9</td>
</tr>
</tbody>
</table>
Table B-2a. Total measured erosion and sediment delivery measured in the 73 sample plots by ownership, terrain type and erosional feature type for the Outlet Creek subwatershed, Upper Eel River watershed study area.

<table>
<thead>
<tr>
<th>Erosional Feature Type</th>
<th>Number of Field Measured Features by Terrain Type (#)</th>
<th>Total measured erosion (yds3)</th>
<th>Total estimated sediment delivery (yds3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Domain (plots/mi2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debris Slide (DL)</td>
<td>0 0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Flow Source (DF)</td>
<td>0 0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Torrent Track (TT)</td>
<td>0 0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bank Erosion (BE)</td>
<td>0 0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Road related gully (GU)</td>
<td>0 0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non road related gully (GU)</td>
<td>0 0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stream Crossing (XI)</td>
<td>0 0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel Incision (CI)</td>
<td>0 0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surface Erosion (SE)</td>
<td>0 0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>0 0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table B-2a (continued)

<table>
<thead>
<tr>
<th>Erosional Feature Type</th>
<th>Number of Field Measured Features by Terrain Type (#)</th>
<th>Total measured erosion (yds³)</th>
<th>Total estimated sediment delivery (yds³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Domain (plots/mi²)</td>
<td>0/0</td>
<td>0/0</td>
<td>2/12.3</td>
</tr>
<tr>
<td>Debris Slide (DL)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Flow Source (DF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Torrent Track (TT)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bank Erosion (BE)</td>
<td>0</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Road related gully (GU)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Non road related gully (GU)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stream Crossing (XI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surface Erosion (SE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active Earthflow (SDS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel Incision (CI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Total # of features, erosion and delivery volumes for all domains</td>
<td>0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Total # of plots/terrain type area in mi²</td>
<td>0/0</td>
<td>0/0</td>
<td>2/12.3</td>
</tr>
</tbody>
</table>
Table B-2b. Total measured erosion and sediment delivery measured in the 73 sample plots by ownership, terrain type and erosional feature type for the Rice Fork subwatershed, Upper Eel River watershed study area.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Domain (plots/mi2)</td>
<td>2/6.2</td>
<td>1/2.2</td>
<td>0/0</td>
<td>0/0</td>
<td>6/69.2</td>
<td>9/77.6</td>
<td>9/77.6</td>
</tr>
<tr>
<td>Debris Slide (DL)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>1,484</td>
<td>856</td>
</tr>
<tr>
<td>Debris Flow Source (DF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Torrent Track (TT)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bank Erosion (BE)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>875</td>
<td>702</td>
</tr>
<tr>
<td>Road related gully (GU)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>46</td>
<td>39</td>
</tr>
<tr>
<td>Non road related gully (GU)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Stream Crossing (XI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel Incision (CI)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>134</td>
<td>134</td>
</tr>
<tr>
<td>Surface Erosion (SE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>82</td>
<td>57</td>
</tr>
<tr>
<td>Subtotals</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>2,643</td>
<td>1,810</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Private Domain (plots/mi²)</td>
<td>1/1.8</td>
<td>0/1.2</td>
<td>0/0</td>
<td>0/0</td>
<td>0/8.6</td>
<td>1/11.6</td>
<td>1/11.6</td>
</tr>
<tr>
<td>Debris Slide (DL)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Flow Source (DF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Torrent Track (TT)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bank Erosion (BE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Road related gully (GU)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Non road related gully (GU)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Stream Crossing (XI)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Surface Erosion (SE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active Earthflow (SDS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel Incision (CI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>58</td>
<td>52</td>
</tr>
<tr>
<td>Total # of features, erosion and delivery volumes for all domains</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>2,701</td>
<td>1,862</td>
</tr>
<tr>
<td>Total # of plots/terrain type area in mi²</td>
<td>3/8</td>
<td>1/3.4</td>
<td>0/0</td>
<td>0/0</td>
<td>6/77.8</td>
<td>10/89.2</td>
<td>10/89.2</td>
</tr>
</tbody>
</table>
Table B-2c. Total measured erosion and sediment delivery measured in the 73 sample plots by ownership, terrain type and erosional feature type for the Soda Fork subwatershed, Upper Eel River watershed study area.

<table>
<thead>
<tr>
<th>Erosional Feature Type</th>
<th>Number of Field Measured Features by Terrain Type (#)</th>
<th>Total measured erosion (yds3)</th>
<th>Total estimated sediment delivery (yds3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Domain (plots/mi2)</td>
<td>1/31.5</td>
<td>0/0.7</td>
<td>0/0</td>
</tr>
<tr>
<td>Debris Slide (DL)</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Flow Source (DF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Torrent Track (TT)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bank Erosion (BE)</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Road related gully (GU)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non road related gully (GU)</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stream Crossing (XI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel Incision (CI)</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surface Erosion (SE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table B-2c (continued)

<table>
<thead>
<tr>
<th>Erosional Feature Type</th>
<th>Number of Field Measured Features by Terrain Type (#)</th>
<th>Total measured erosion (yds3)</th>
<th>Total estimated sediment delivery (yds3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Domain (plots/mi2)</td>
<td>1/7.6</td>
<td>0/2.4</td>
<td>0/0</td>
</tr>
<tr>
<td>Debris Slide (DL)</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Flow Source (DF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Torrent Track (TT)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bank Erosion (BE)</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Road related gully (GU)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non road related gully (GU)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stream Crossing (XI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surface Erosion (SE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active Earthflow (SDS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel Incision (CI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total # of features, erosion and delivery volumes for all domains</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total # of plots/terrain type area in mi2</td>
<td>2/39.1</td>
<td>0/3.1</td>
<td>0/0</td>
</tr>
</tbody>
</table>
Table B-2d. Total measured erosion and sediment delivery measured in the 73 sample plots by ownership, terrain type and erosional feature type for the Tomki Creek subwatershed, Upper Eel River watershed study area.

<table>
<thead>
<tr>
<th>Erosional Feature Type</th>
<th>Number of Field Measured Features by Terrain Type (#)</th>
<th>Total measured erosion (yds3)</th>
<th>Total estimated sediment delivery (yds3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Domain (plots/mi2)</td>
<td>1/15</td>
<td>0/2</td>
<td>0/0</td>
</tr>
<tr>
<td>Debris Slide (DL)</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Flow Source (DF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Torrent Track (TT)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bank Erosion (BE)</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Road related gully (GU)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non road related gully (GU)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stream Crossing (XI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel Incision (CI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surface Erosion (SE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table B-2d (continued)

<table>
<thead>
<tr>
<th>Erosional Feature Type</th>
<th>Number of Field Measured Features by Terrain Type (#)</th>
<th>Total measured erosion (yds3)</th>
<th>Total estimated sediment delivery (yds3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Domain (plots/mi2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debris Slide (DL)</td>
<td>0</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>Debris Flow Source (DF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Torrent Track (TT)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bank Erosion (BE)</td>
<td>0</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Road related gully (GU)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non road related gully (GU)</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Stream Crossing (XI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surface Erosion (SE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active Earthflow (SDS)</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Channel Incision (CI)</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>0</td>
<td>66</td>
<td>0</td>
</tr>
</tbody>
</table>

| Total # of features, erosion and delivery volumes for all domains | 8 | 66 | 0 | 72 | 135 | 37,216 | 22,450 |

| Total # of plots/terrain type area in mi2 | 1/16.1 | 7/23 | 0/0 | 10/16.7 | 10/144.2 | 28/200 | 28/200 |
Table B-2e. Total measured erosion and sediment delivery measured in the 73 sample plots by ownership, terrain type and erosional feature type for the Upper Main Eel subwatershed, Upper Eel River watershed study area.

<table>
<thead>
<tr>
<th>Erosional Feature Type</th>
<th>Number of Field Measured Features by Terrain Type (#)</th>
<th>Total measured erosion (yds3)</th>
<th>Total estimated sediment delivery (yds3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Domain (plots/mi2)</td>
<td>7/75</td>
<td>6/34.9</td>
<td>3/3.6</td>
</tr>
<tr>
<td>Debris Slide (DL)</td>
<td>5</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Debris Flow Source (DF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Torrent Track (TT)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bank Erosion (BE)</td>
<td>1</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Road related gully (GU)</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Non road related gully (GU)</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stream Crossing (XI)</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel Incision (CI)</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Surface Erosion (SE)</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Subtotals</td>
<td>31</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>
Table B- 2e (continued)

<table>
<thead>
<tr>
<th>Erosional Feature Type</th>
<th>Number of Field Measured Features by Terrain Type (#)</th>
<th>Total measured erosion (yds3)</th>
<th>Total estimated sediment delivery (yds3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Domain (plots/mi2)</td>
<td>2/7</td>
<td>0/0.1</td>
<td>0/0.9</td>
</tr>
<tr>
<td>Debris Slide (DL)</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Flow Source (DF)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debris Torrent Track (TT)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bank Erosion (BE)</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Road related gully (GU)</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non road related gully (GU)</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stream Crossing (XI)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surface Erosion (SE)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active Earthflow (SDS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel Incision (CI)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total # of features, erosion and delivery volumes for all domains: 53 18 19 0 34 14,938 10,488

Total # of plots/terrain type area in mi2: 9/82 6/35 3/4.5 0/0 6/57.5 24/179 24/179
Table B-3 outlines the erosion and sediment delivery volumes by geology type by ownership for both small features <3,000 yds\(^3\) and air photo-identified large features >3,000 yds\(^3\). The erosion and sediment delivery volumes for plot features were extrapolated to the entire Upper Eel River study area using the stratified random sampling method. Erosion and sediment delivery volumes for landslides are actual measurements from the air photo analyses.

<table>
<thead>
<tr>
<th>Ownership 1</th>
<th>Terrain Type/Geology</th>
<th>Small Features (<3,000 yds(^3))</th>
<th></th>
<th></th>
<th>Large Features (>3,000 yds(^3))</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Non earthflow Erosion (yds(^3))</td>
<td>Non earthflow Sediment Delivery (yds(^3))</td>
<td>Earthflow Erosion (yds(^3))</td>
<td>Non earthflow Sediment Delivery (yds(^3))</td>
<td>Earthflow erosion (yds(^3))</td>
<td></td>
</tr>
<tr>
<td>Entire Upper Eel River study area</td>
<td>1</td>
<td>1,369,130</td>
<td>467,783</td>
<td>0</td>
<td>5,121,147</td>
<td>2,830,120</td>
<td>86,633</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,311,878</td>
<td>485,764</td>
<td>18,209</td>
<td>2,406,644</td>
<td>1,244,569</td>
<td>222,102</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>209,884</td>
<td>207,674</td>
<td>0</td>
<td>19,350</td>
<td>19,350</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>943,469</td>
<td>613,337</td>
<td>0</td>
<td>1,443,858</td>
<td>885,955</td>
<td>22,444</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5,963,218</td>
<td>3,627,160</td>
<td>320,428</td>
<td>4,346,122</td>
<td>2,095,365</td>
<td>163,821</td>
</tr>
<tr>
<td>Totals</td>
<td>9,797,579</td>
<td>5,401,718</td>
<td>338,637</td>
<td>13,337,121</td>
<td>7,075,359</td>
<td>495,000</td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>1</td>
<td>829,728</td>
<td>237,448</td>
<td>0</td>
<td>876,071</td>
<td>602,504</td>
<td>37,568</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>942,041</td>
<td>282,967</td>
<td>18,209</td>
<td>636,476</td>
<td>426,179</td>
<td>162,211</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>130,152</td>
<td>129,336</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>759,035</td>
<td>467,705</td>
<td>0</td>
<td>1,137,848</td>
<td>626,458</td>
<td>22,444</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4,867,629</td>
<td>2,784,053</td>
<td>320,428</td>
<td>1,548,377</td>
<td>922,885</td>
<td>106,570</td>
</tr>
<tr>
<td>Totals</td>
<td>7,528,585</td>
<td>3,901,509</td>
<td>338,637</td>
<td>4,198,772</td>
<td>2,578,026</td>
<td>328,793</td>
<td></td>
</tr>
<tr>
<td>Public</td>
<td>1</td>
<td>539,402</td>
<td>230,335</td>
<td>0</td>
<td>4,245,076</td>
<td>2,227,615</td>
<td>49,065</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>369,837</td>
<td>202,797</td>
<td>0</td>
<td>1,770,168</td>
<td>818,391</td>
<td>59,891</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>79,732</td>
<td>78,338</td>
<td>0</td>
<td>19,350</td>
<td>19,350</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>184,434</td>
<td>145,632</td>
<td>0</td>
<td>306,010</td>
<td>259,497</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1,095,589</td>
<td>843,107</td>
<td>0</td>
<td>2,797,765</td>
<td>1,172,480</td>
<td>57,251</td>
</tr>
<tr>
<td>Totals</td>
<td>2,268,994</td>
<td>1,500,209</td>
<td>0</td>
<td>9,138,349</td>
<td>4,497,333</td>
<td>166,207</td>
<td></td>
</tr>
</tbody>
</table>

1 Total erosion and sediment yield for plot features (<3,000 yds\(^3\)) for each ownership will not add up to the total yield for the entire Upper Eel River study area because each ownership is treated as a separate, smaller sample population, which is applied to each domain.
Table B-3a. Total past erosion and sediment delivery from small features <3,000 yds3 and large features >3000 yds3 by terrain type for each ownership in the Outlet Creek subwatershed, Upper Eel River watershed study area

<table>
<thead>
<tr>
<th>Ownership</th>
<th>Terrain Type/Geology</th>
<th>Small Features (<3,000 yds3)</th>
<th>Large Features (>3,000 yds3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Non earthflow Erosion (yds3)</td>
<td>Non earthflow Sediment Delivery (yds3)</td>
</tr>
<tr>
<td>Private</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>120,582</td>
<td>119,826</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1,518,862</td>
<td>1,068,638</td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td>1,639,444</td>
<td>1,188,464</td>
</tr>
<tr>
<td>Public</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>1,639,444</td>
<td>1,188,464</td>
</tr>
</tbody>
</table>

1 Total erosion and sediment yield for plot features <3,000 yds3 for each subwatershed will not add up to the total yield for the entire Upper Eel River basin because each ownership is treated as a separate, smaller sample population which is applied to each domain.
Table B-3b. Total past erosion and sediment delivery from small features <3,000 yds\(^3\) and large features >3000 yds\(^3\) by terrain type for each ownership in the Rice Fork subwatershed, Upper Eel River watershed study area

<table>
<thead>
<tr>
<th>Ownership(^1)</th>
<th>Terrain Type/Geology</th>
<th>Small Features (<3,000 yds(^3))</th>
<th>Large Features (>3,000 yds(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Non earthflow Erosion (yds(^3))</td>
<td>Non earthflow Sediment Delivery (yds(^3))</td>
</tr>
<tr>
<td>Private</td>
<td></td>
<td>1,624</td>
<td>1,456</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>1,624</td>
<td>1,456</td>
</tr>
<tr>
<td>Public</td>
<td></td>
<td>22,658</td>
<td>13,062</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>382,299</td>
<td>270,928</td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>404,957</td>
<td>283,990</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>406,581</td>
<td>285,446</td>
</tr>
</tbody>
</table>

\(^1\) Total erosion and sediment yield for plot features <3,000 yds\(^3\) for each subwatershed will not add up to the total yield for the entire Upper Eel River basin because each ownership is treated as a separate, smaller sample population which is applied to each domain.
Table B-3c. Total past erosion and sediment delivery from small features <3,000 yds\(^3\) and large features >3000 yds\(^3\) by terrain type for each ownership in the Soda Creek subwatershed, Upper Eel River watershed study area

<table>
<thead>
<tr>
<th>Ownership(^1)</th>
<th>Terrain Type/Geology</th>
<th>Small Features (<3,000 yds(^3))</th>
<th>Large Features (>3,000 yds(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Non earthflow Erosion (yds(^3))</td>
<td>Non earthflow Sediment Delivery (yds(^3))</td>
</tr>
<tr>
<td>Private</td>
<td></td>
<td>1.187.376</td>
<td>227.244</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45,316</td>
<td>19,012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>1,232,692</td>
<td>246,256</td>
</tr>
<tr>
<td>Public</td>
<td></td>
<td>220,274</td>
<td>130,622</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>220,274</td>
<td>130,622</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>1,452,966</td>
<td>376,878</td>
</tr>
</tbody>
</table>

\(^1\) Total erosion and sediment yield for plot features <3,000 yds\(^2\) for each subwatershed will not add up to the total yield for the entire Upper Eel River basin because each ownership is treated as a separate, smaller sample population which is applied to each domain.
Table B-3d. Total past erosion and sediment delivery from small features <3,000 yds\(^3\) and large features >3000 yds\(^3\) by terrain type for each ownership in the Tomki Creek subwatershed, Upper Eel River watershed study area

<table>
<thead>
<tr>
<th>Ownership(^1)</th>
<th>Terrain Type/Geology</th>
<th>Small Features (<3,000 yds(^3))</th>
<th>Large Features (>3,000 yds(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Non earthflow Erosion (yds(^3))</td>
<td>Non earthflow Sediment Delivery (yds(^3))</td>
</tr>
<tr>
<td>Private</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>804,243</td>
<td>241,575</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230,615</td>
<td>147,105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,763,011</td>
<td>1,471,254</td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>3,797,869</td>
<td>1,859,934</td>
</tr>
<tr>
<td>Public</td>
<td></td>
<td>78,776</td>
<td>68,242</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93,342</td>
<td>73,704</td>
</tr>
<tr>
<td></td>
<td></td>
<td>353,160</td>
<td>296,262</td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>525,278</td>
<td>438,208</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>4,323,147</td>
<td>2,298,142</td>
</tr>
</tbody>
</table>

\(^1\) Total erosion and sediment yield for plot features <3,000 yds\(^3\) for each subwatershed will not add up to the total yield for the entire Upper Eel River basin because each ownership is treated as a separate, smaller sample population which is applied to each domain.
Table B-3e. Total past erosion and sediment delivery from small features <3,000 yds3 and large features >3000 yds3 by terrain type for each ownership in the Upper Main Eel subwatershed, Upper Eel River watershed study area.

<table>
<thead>
<tr>
<th>Ownership</th>
<th>Terrain Type/Geology</th>
<th>Small Features (<3,000 yds3)</th>
<th>Large Features (>3,000 yds3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Non earthflow Erosion (yds3)</td>
<td>Non earthflow Sediment Delivery (yds3)</td>
</tr>
<tr>
<td>Private</td>
<td>1</td>
<td>112,860</td>
<td>82,782</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>112,860</td>
<td>82,782</td>
</tr>
<tr>
<td>Public</td>
<td>1</td>
<td>288,399</td>
<td>74,193</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>378,339</td>
<td>207,459</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>79,732</td>
<td>78,338</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>332,964</td>
<td>253,833</td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>1,079,433</td>
<td>613,823</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>1,192,293</td>
<td>696,605</td>
</tr>
</tbody>
</table>

1 Total erosion and sediment yield for plot features <3,000 yds2 for each subwatershed will not add up to the total yield for the entire Upper Eel River basin because each ownership is treated as a separate, smaller sample population which is applied to each domain.
Table B-4 identifies sediment yield rates by time period for <3,000 yds^3 small features and >3,000 yds^3 large features for the Upper Eel River basin. The results are divided into earthflow and non-earthflow contributions for the small and large sediment sources. The sediment delivery rates for plot features were extrapolated to the entire Upper Eel River study area using the stratified random sampling method. The separation in the time period corresponds with the approximate changes in the Forest Practice Rules.

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Ownership domain</th>
<th>Pre-1970</th>
<th>Post-1970</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Small features (<3,000 yds^3)</td>
<td>Large Features (>3,000 yds^3)</td>
<td>Total</td>
<td>Small features (<3,000 yds^3)</td>
<td>Large Features (>3,000 yds^3)</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>non Ef</td>
<td>EF</td>
<td>non Ef</td>
<td>EF</td>
<td>total</td>
</tr>
<tr>
<td>Entire Upper Eel River watershed study area</td>
<td>Private</td>
<td>yds^3/yr/yr</td>
<td>243</td>
<td>20</td>
<td>188</td>
<td>24</td>
<td>475</td>
<td>105</td>
<td>10</td>
<td>45</td>
<td>6</td>
<td>166</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/yr/yr</td>
<td>374</td>
<td>30</td>
<td>289</td>
<td>37</td>
<td>730</td>
<td>162</td>
<td>16</td>
<td>70</td>
<td>9</td>
<td>257</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public</td>
<td>yds^3/yr/yr</td>
<td>70</td>
<td>0</td>
<td>311</td>
<td>9</td>
<td>390</td>
<td>73</td>
<td>0</td>
<td>128</td>
<td>7</td>
<td>207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/yr/yr</td>
<td>107</td>
<td>0</td>
<td>479</td>
<td>14</td>
<td>601</td>
<td>112</td>
<td>0</td>
<td>197</td>
<td>10</td>
<td>319</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>yds^3/yr/yr</td>
<td>160</td>
<td>10</td>
<td>247</td>
<td>17</td>
<td>434</td>
<td>90</td>
<td>5</td>
<td>85</td>
<td>6</td>
<td>186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/yr/yr</td>
<td>247</td>
<td>16</td>
<td>380</td>
<td>26</td>
<td>669</td>
<td>138</td>
<td>8</td>
<td>130</td>
<td>10</td>
<td>286</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet Creek</td>
<td>Private</td>
<td>yds^3/yr/yr</td>
<td>107</td>
<td>0</td>
<td>94</td>
<td>18</td>
<td>219</td>
<td>130</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/yr/yr</td>
<td>165</td>
<td>0</td>
<td>144</td>
<td>28</td>
<td>337</td>
<td>200</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public</td>
<td>yds^3/yr/yr</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/yr/yr</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-totals</td>
<td></td>
<td>yds^3/yr/yr</td>
<td>104</td>
<td>0</td>
<td>91</td>
<td>18</td>
<td>213</td>
<td>127</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/yr/yr</td>
<td>161</td>
<td>0</td>
<td>140</td>
<td>27</td>
<td>328</td>
<td>195</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watershed</td>
<td>Ownership domain</td>
<td>Pre-1970</td>
<td>Post-1970</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small features (<3,000 yds³)</td>
<td>Large Features (>3,000 yds³)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>non Ef</td>
<td>EF</td>
<td>non Ef</td>
<td>EF</td>
<td></td>
</tr>
<tr>
<td>Rice Fork</td>
<td>Private</td>
<td>yds³/mi²/yr</td>
<td>4</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/mi²/yr</td>
<td>6</td>
<td>0</td>
<td>47</td>
<td>0</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public</td>
<td>yds³/mi²/yr</td>
<td>43</td>
<td>0</td>
<td>120</td>
<td>10</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/mi²/yr</td>
<td>66</td>
<td>0</td>
<td>185</td>
<td>15</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-totals</td>
<td>yds³/mi²/yr</td>
<td>38</td>
<td>0</td>
<td>109</td>
<td>9</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/mi²/yr</td>
<td>58</td>
<td>0</td>
<td>167</td>
<td>13</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>Soda Creek</td>
<td>Private</td>
<td>yds³/mi²/yr</td>
<td>132</td>
<td>0</td>
<td>861</td>
<td>49</td>
<td>1042</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/mi²/yr</td>
<td>203</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>1605</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public</td>
<td>yds³/mi²/yr</td>
<td>0</td>
<td>0</td>
<td>391</td>
<td>2</td>
<td>393</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/mi²/yr</td>
<td>0</td>
<td>0</td>
<td>602</td>
<td>3</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-totals</td>
<td>yds³/mi²/yr</td>
<td>50</td>
<td>0</td>
<td>569</td>
<td>1</td>
<td>621</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/mi²/yr</td>
<td>77</td>
<td>0</td>
<td>877</td>
<td>2</td>
<td>955</td>
<td></td>
</tr>
<tr>
<td>Watershed</td>
<td>Ownership domain</td>
<td>Small features (<3,000 yds3)</td>
<td>Large Features (>3,000 yds3)</td>
<td>Total</td>
<td>Small features (<3,000 yds3)</td>
<td>Large Features (>3,000 yds3)</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>non Ef</td>
<td>EF</td>
<td>non Ef</td>
<td>EF</td>
<td>Total</td>
<td>non Ef</td>
<td>EF</td>
<td>non Ef</td>
<td>EF</td>
<td>Total</td>
<td>non Ef</td>
<td>EF</td>
<td>non Ef</td>
<td>EF</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomki Creek</td>
<td>Private</td>
<td>yds3/mi2/yr</td>
<td>304</td>
<td>33</td>
<td>180</td>
<td>29</td>
<td>546</td>
<td>82</td>
<td>18</td>
<td>60</td>
<td>4</td>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/mi2/yr</td>
<td>468</td>
<td>51</td>
<td>277</td>
<td>45</td>
<td>841</td>
<td>126</td>
<td>28</td>
<td>92</td>
<td>6</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public</td>
<td>yds3/mi2/yr</td>
<td>260</td>
<td>0</td>
<td>703</td>
<td>26</td>
<td>989</td>
<td>65</td>
<td>0</td>
<td>196</td>
<td>0</td>
<td>261</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/mi2/yr</td>
<td>401</td>
<td>0</td>
<td>1083</td>
<td>40</td>
<td>1524</td>
<td>100</td>
<td>0</td>
<td>301</td>
<td>0</td>
<td>401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-totals</td>
<td>yds3/mi2/yr</td>
<td>294</td>
<td>0</td>
<td>294</td>
<td>29</td>
<td>617</td>
<td>78</td>
<td>0</td>
<td>90</td>
<td>3</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/mi2/yr</td>
<td>453</td>
<td>0</td>
<td>453</td>
<td>44</td>
<td>950</td>
<td>120</td>
<td>0</td>
<td>138</td>
<td>4</td>
<td>263</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Main Eel</td>
<td>Private</td>
<td>yds3/mi2/yr</td>
<td>112</td>
<td>0</td>
<td>371</td>
<td>0</td>
<td>483</td>
<td>87</td>
<td>0</td>
<td>73</td>
<td>6</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/mi2/yr</td>
<td>172</td>
<td>0</td>
<td>571</td>
<td>0</td>
<td>743</td>
<td>134</td>
<td>0</td>
<td>113</td>
<td>9</td>
<td>257</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public</td>
<td>yds3/mi2/yr</td>
<td>40</td>
<td>0</td>
<td>287</td>
<td>6</td>
<td>333</td>
<td>74</td>
<td>0</td>
<td>144</td>
<td>5</td>
<td>223</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/mi2/yr</td>
<td>61</td>
<td>0</td>
<td>442</td>
<td>10</td>
<td>514</td>
<td>114</td>
<td>0</td>
<td>222</td>
<td>8</td>
<td>344</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-totals</td>
<td>yds3/mi2/yr</td>
<td>45</td>
<td>0</td>
<td>293</td>
<td>6</td>
<td>344</td>
<td>75</td>
<td>0</td>
<td>139</td>
<td>5</td>
<td>219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tons/mi2/yr</td>
<td>69</td>
<td>0</td>
<td>452</td>
<td>9</td>
<td>530</td>
<td>115</td>
<td>0</td>
<td>214</td>
<td>8</td>
<td>337</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Total erosion and sediment yield for plot features <3,000 yds2 for each ownership will not add up to the total yield for the entire Upper Eel River basin study area because each ownership is treated as a separate, smaller sample population which is applied to each domain.
Table B-5 compares pre-1970 and post-1970 sediment volumes for management and non-management land use association on private and public lands.

<table>
<thead>
<tr>
<th>Ownership</th>
<th>Total Yield by Time Period for Management Sediment Yield (yds³ & %)</th>
<th>Total Yield by Time Period for Non-Management Sediment Yield (yds³ & %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non Earthflow</td>
<td>Earthflow</td>
</tr>
<tr>
<td>Basin-wide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>Pre-1970 (30 years)</td>
<td>2,299,049 (32%)</td>
</tr>
<tr>
<td></td>
<td>Post-1970 (34 years)</td>
<td>698,328 (10%)</td>
</tr>
<tr>
<td></td>
<td>Subtotals</td>
<td>2,997,377 (42%)</td>
</tr>
<tr>
<td>Public</td>
<td>Pre-1970 (30 years)</td>
<td>711,708 (12%)</td>
</tr>
<tr>
<td></td>
<td>Post-1970 (34 years)</td>
<td>612,852 (10%)</td>
</tr>
<tr>
<td></td>
<td>Subtotals</td>
<td>1,324,560 (22%)</td>
</tr>
<tr>
<td>Basin-wide Total</td>
<td>4,321,937 (32%)</td>
<td>50,928 (<1%)</td>
</tr>
<tr>
<td>Outlet Creek subwatershed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>Pre-1970 (30 years)</td>
<td>304,216 (17%)</td>
</tr>
<tr>
<td></td>
<td>Post-1970 (34 years)</td>
<td>279,910 (16%)</td>
</tr>
<tr>
<td></td>
<td>Subtotals</td>
<td>584,126 (33%)</td>
</tr>
<tr>
<td>Public</td>
<td>Pre-1970 (30 years)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Post-1970 (34 years)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Subtotals</td>
<td>0</td>
</tr>
<tr>
<td>Totals for the Outlet Creek subwatershed</td>
<td>584,126 (33%)</td>
<td>11,330 (<1%)</td>
</tr>
</tbody>
</table>
Table B-5 (continued)

<table>
<thead>
<tr>
<th>Ownership</th>
<th>Total Yield by Time Period for Management Sediment Yield (yds3 & %)</th>
<th>Total Yield by Time Period for Non-Management Sediment Yield (yds3 & %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non Earthflow</td>
<td>Earthflow</td>
</tr>
<tr>
<td>Rice Fork subwatershed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-1970 (30 years)</td>
<td>3,556 (9%)</td>
<td>0</td>
</tr>
<tr>
<td>Post-1970 (34 years)</td>
<td>8,980 (21%)</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>12,536 (30%)</td>
<td>0</td>
</tr>
<tr>
<td>Public</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-1970 (30 years)</td>
<td>38,903 (5%)</td>
<td>2,682 (<1%)</td>
</tr>
<tr>
<td>Post-1970 (34 years)</td>
<td>67,388 (8%)</td>
<td>830 (<1%)</td>
</tr>
<tr>
<td>Subtotals</td>
<td>106,291 (13%)</td>
<td>3,512 (<1%)</td>
</tr>
<tr>
<td>Totals for the Rice Fork subwatershed</td>
<td>118,827 (14%)</td>
<td>3,512 (<1%)</td>
</tr>
<tr>
<td>Soda Creek subwatershed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-1970 (30 years)</td>
<td>206,403 (20%)</td>
<td>10,526 (1%)</td>
</tr>
<tr>
<td>Post-1970 (34 years)</td>
<td>220,572 (21%)</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>426,975 (41%)</td>
<td>10,526 (1%)</td>
</tr>
<tr>
<td>Public</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-1970 (30 years)</td>
<td>73,674 (10%)</td>
<td>0</td>
</tr>
<tr>
<td>Post-1970 (34 years)</td>
<td>160,228 (22%)</td>
<td>639 (<1%)</td>
</tr>
<tr>
<td>Subtotals</td>
<td>233,902 (32%)</td>
<td>639 (<1%)</td>
</tr>
<tr>
<td>Totals for the Soda Creek subwatershed</td>
<td>660,877 (37%)</td>
<td>11,165 (<1%)</td>
</tr>
<tr>
<td>Ownership</td>
<td>Total Yield by Time Period for Management Sediment Yield (yds3 & %)</td>
<td>Total Yield by Time Period for Non-Management Sediment Yield (yds3 & %)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Non Earthflow</td>
<td>Earthflow</td>
</tr>
<tr>
<td>Tomki Creek subwatershed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-1970 (30 years)</td>
<td>1,270,622 (37%)</td>
<td>6,105 (<1%)</td>
</tr>
<tr>
<td>Post-1970 (34 years)</td>
<td>206,090 (6%)</td>
<td>3,703 (<1%)</td>
</tr>
<tr>
<td>Subtotals</td>
<td>1,476,712 (43%)</td>
<td>9,808 (<1%)</td>
</tr>
<tr>
<td>Public</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-1970 (30 years)</td>
<td>256,799 (15%)</td>
<td>971 (<1%)</td>
</tr>
<tr>
<td>Post-1970 (34 years)</td>
<td>105,203 (6%)</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>362,002 (21%)</td>
<td>971 (<1%)</td>
</tr>
<tr>
<td>Totals for the Tomki Creek subwatershed</td>
<td>1,838,714 (36%)</td>
<td>10,779 (<1%)</td>
</tr>
<tr>
<td>Upper Main Eel subwatershed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-1970 (30 years)</td>
<td>154,450 (59%)</td>
<td>0</td>
</tr>
<tr>
<td>Post-1970 (34 years)</td>
<td>41,103 (15%)</td>
<td>0</td>
</tr>
<tr>
<td>Subtotals</td>
<td>195,553 (74%)</td>
<td>0</td>
</tr>
<tr>
<td>Public</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-1970 (30 years)</td>
<td>290,888 (10%)</td>
<td>6,863 (<1%)</td>
</tr>
<tr>
<td>Post-1970 (34 years)</td>
<td>294,600 (10%)</td>
<td>7,279 (<1%)</td>
</tr>
<tr>
<td>Subtotals</td>
<td>585,488 (20%)</td>
<td>14,142 (<1%)</td>
</tr>
<tr>
<td>Totals for the Upper Main Eel subwatershed</td>
<td>781,041 (25%)</td>
<td>14,142 (<1%)</td>
</tr>
</tbody>
</table>
Table B-6 identifies sediment delivery rates by management practice and ownership for small features (<3,000 yds³) and large features (>3,000 yds³). These results are also separated by earthflow and non-earthflow contributions.

<table>
<thead>
<tr>
<th>Domain (Private and Public ownership) (mi²)</th>
<th>Non Earthflow</th>
<th>Earthflow</th>
<th>Total sediment yield (non EF+ EF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yds³/mi²/yr</td>
<td>94 26 30 19 0</td>
<td>15 0 0 0 0</td>
<td>15 184</td>
</tr>
<tr>
<td>tons/mi²/yr</td>
<td>145 40 46 30 0</td>
<td>23 0 0 0 0</td>
<td>23 284</td>
</tr>
<tr>
<td>%</td>
<td>56 15 18 11 0</td>
<td>100 0 0 0 0</td>
<td>100 100</td>
</tr>
<tr>
<td>Plot >3,000 yds³ sediment sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yds³/mi²/yr</td>
<td>56 22 30 2 2</td>
<td>12 1 0 0 0</td>
<td>13 125</td>
</tr>
<tr>
<td>tons/mi²/yr</td>
<td>86 35 47 3 3</td>
<td>18 2 0 0 0</td>
<td>20 192</td>
</tr>
<tr>
<td>%</td>
<td>50 20 27 2 1</td>
<td>91 9 0 0 0</td>
<td>100 100</td>
</tr>
<tr>
<td>Sub-total/ %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yds³/mi²/yr</td>
<td>150 48 61 21 2</td>
<td>26 1 0 0 0</td>
<td>27 309</td>
</tr>
<tr>
<td>tons/mi²/yr</td>
<td>230 74 93 33 3</td>
<td>41 2 0 0 0</td>
<td>43 476</td>
</tr>
<tr>
<td>%</td>
<td>53 17 22 8 <1</td>
<td>100 4 0 0 0</td>
<td>100 100</td>
</tr>
<tr>
<td></td>
<td>Domain (Private and Public ownership) (mi²)</td>
<td>Non Earthflow</td>
<td>Earthflow</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>No land use</td>
<td>Road Related</td>
<td>Timber harvest</td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>yds³/mi²/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>62</td>
<td>13</td>
</tr>
<tr>
<td>>3,000 yds³ sediment sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>yds³/mi²/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>177</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>272</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>82</td>
<td>11</td>
</tr>
<tr>
<td>Sub-total/ %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>yds³/mi²/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>50</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>77</td>
<td>11</td>
</tr>
<tr>
<td>Basin-wide (688.1 mi²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>yds³/mi²/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>28</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>57</td>
<td>15</td>
</tr>
<tr>
<td>PWA >3,000 yds³ sediment sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>yds³/mi²/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>114</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>35</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>71</td>
<td>14</td>
</tr>
<tr>
<td>Sub-total/ %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>yds³/mi²/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>184</td>
<td>41</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>283</td>
<td>63</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>65</td>
<td>14</td>
</tr>
<tr>
<td>Domain (Private and Public ownership) (mi²)</td>
<td>Non Earthflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>No land use</td>
<td>Road Related</td>
<td>Timber harvest</td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>122</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>67</td>
<td>17</td>
</tr>
<tr>
<td>Plot >3,000yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>46</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>61</td>
<td>23</td>
</tr>
<tr>
<td>Sub-total/ %</td>
<td>yds³/mi²/yr</td>
<td>109</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>168</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>65</td>
<td>19</td>
</tr>
<tr>
<td>Domain (Private and Public ownership) (mi²)</td>
<td>Non Earthflow</td>
<td>Earthflow</td>
<td>Total sediment yield (non EF+ EF)</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>-----------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr: 0 0 0 0 0 0</td>
<td>yds³/mi²/yr: 0 0 0 0 0 0</td>
<td>yds³/mi²/yr: 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr: 0 0 0 0 0 0</td>
<td>tons/mi²/yr: 0 0 0 0 0 0</td>
<td>tons/mi²/yr: 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>%: 0 0 0 0 0 0</td>
<td>%: 0 0 0 0 0 0</td>
<td>%: 0 0 0 0 0 0</td>
</tr>
<tr>
<td>>3000 yds³ sediment sources</td>
<td>yds³/mi²/yr: 0 0 0 0 0 0</td>
<td>yds³/mi²/yr: 0 0 0 0 0 0</td>
<td>yds³/mi²/yr: 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr: 0 0 0 0 0 0</td>
<td>tons/mi²/yr: 0 0 0 0 0 0</td>
<td>tons/mi²/yr: 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>%: 0 0 0 0 0 0</td>
<td>%: 0 0 0 0 0 0</td>
<td>%: 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Outlet Creek CAWAA Totals (159.8 mi²)</td>
<td>yds³/mi²/yr: 77 20 10 9 0 116</td>
<td>yds³/mi²/yr: 77 20 10 9 0 116</td>
<td>yds³/mi²/yr: 77 20 10 9 0 116</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr: 119 30 15 14 0 179</td>
<td>tons/mi²/yr: 119 30 15 14 0 179</td>
<td>tons/mi²/yr: 119 30 15 14 0 179</td>
</tr>
<tr>
<td></td>
<td>%: 67 17 8 8 0 100</td>
<td>%: 67 17 8 8 0 100</td>
<td>%: 67 17 8 8 0 100</td>
</tr>
<tr>
<td>PWA >3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr: 29 11 5 2 0 47</td>
<td>yds³/mi²/yr: 29 11 5 2 0 47</td>
<td>yds³/mi²/yr: 29 11 5 2 0 47</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr: 45 17 8 4 0 73</td>
<td>tons/mi²/yr: 45 17 8 4 0 73</td>
<td>tons/mi²/yr: 45 17 8 4 0 73</td>
</tr>
<tr>
<td></td>
<td>%: 61 23 11 5 0 100</td>
<td>%: 61 23 11 5 0 100</td>
<td>%: 61 23 11 5 0 100</td>
</tr>
<tr>
<td>Sub-total/ %</td>
<td>yds³/mi²/yr: 106 31 14 12 0 164</td>
<td>yds³/mi²/yr: 106 31 14 12 0 164</td>
<td>yds³/mi²/yr: 106 31 14 12 0 164</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr: 164 47 23 18 0 252</td>
<td>tons/mi²/yr: 164 47 23 18 0 252</td>
<td>tons/mi²/yr: 164 47 23 18 0 252</td>
</tr>
<tr>
<td></td>
<td>%: 65 19 9 7 0 100</td>
<td>%: 65 19 9 7 0 100</td>
<td>%: 65 19 9 7 0 100</td>
</tr>
</tbody>
</table>
Table B-6b. Sediment yield (in yds³/mi²/year, tons/mi²/year and %) by ownership and primary land use association for small and large features in the Rice Fork subwatershed, Upper Eel River watershed study area

<table>
<thead>
<tr>
<th>Domain (Private and Public ownership) (mi²)</th>
<th>Non Earthflow</th>
<th>Earthflow</th>
<th>Total sediment yield (non EF+ EF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No land use</td>
<td>Road Related</td>
<td>Timber harvest</td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td><1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td><1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>>3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>58</td>
<td>9</td>
</tr>
<tr>
<td>Sub-total/ %</td>
<td>yds³/mi²/yr</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>55</td>
<td>9</td>
</tr>
<tr>
<td>Domain (Private and Public ownership) (mi²)</td>
<td>Non Earthflow</td>
<td>Earthflow</td>
<td>Total sediment yield (non EF+ EF)</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>-----------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>No land use</td>
<td>Road Related</td>
<td>Timber harvest</td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>45</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>69</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>78</td>
<td>17</td>
</tr>
<tr>
<td>>3000yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>84</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>130</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>90</td>
<td>2</td>
</tr>
<tr>
<td>Public Sub-total/ %</td>
<td>yds³/mi²/yr</td>
<td>129</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>198</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>86</td>
<td>8</td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>39</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>60</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>78</td>
<td>17</td>
</tr>
<tr>
<td>>3,000yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>76</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>117</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>89</td>
<td>2</td>
</tr>
<tr>
<td>Total Rice Fork CALWAA (89.2 mi²)</td>
<td>yds³/mi²/yr</td>
<td>115</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>177</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>85</td>
<td>8</td>
</tr>
</tbody>
</table>

Sub-total/ %

Total sediment yield (non EF+ EF)
Table B-6c. Sediment yield (in yds\(^3\)/mi\(^2\)/year, tons/mi\(^2\)/year and %) by ownership and primary land use association for small and large features in the Soda Creek subwatershed, Upper Eel River watershed study area

<table>
<thead>
<tr>
<th>Domain (Private and Public ownership) (mi(^2))</th>
<th>Non Earthflow</th>
<th>Earthflow</th>
<th>Total sediment yield (non EF+ EF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot <3,000 yds(^3) sediment sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yds(^3)/mi(^2)/yr</td>
<td>11</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>tons/mi(^2)/yr</td>
<td>17</td>
<td>0</td>
<td>260</td>
</tr>
<tr>
<td>%</td>
<td>7</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>>3,000 yds(^3) sediment sources(^5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yds(^3)/mi(^2)/yr</td>
<td>336</td>
<td>115</td>
<td>499</td>
</tr>
<tr>
<td>tons/mi(^2)/yr</td>
<td>518</td>
<td>176</td>
<td>768</td>
</tr>
<tr>
<td>%</td>
<td>67</td>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>Sub-total/ %</td>
<td>348</td>
<td>114</td>
<td>668</td>
</tr>
<tr>
<td>yds(^3)/mi(^2)/yr</td>
<td>35</td>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td>tons/mi(^2)/yr</td>
<td>535</td>
<td>176</td>
<td>1028</td>
</tr>
<tr>
<td>%</td>
<td>52</td>
<td>17</td>
<td>100</td>
</tr>
</tbody>
</table>
Table B-6c (continued)

<table>
<thead>
<tr>
<th>Domain (Private and Public ownership) (mi²)</th>
<th>Non Earthflow</th>
<th>Earthflow</th>
<th>Total sediment yield (non EF+ EF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No land use</td>
<td>Road Related</td>
<td>Timber harvest</td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>>3000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>199</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>307</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>82</td>
<td>13</td>
</tr>
<tr>
<td>Sub-total/ %</td>
<td>yds³/mi²/yr</td>
<td>199</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>307</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>63</td>
<td>10</td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>PWA >3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>251</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>387</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>74</td>
<td>19</td>
</tr>
<tr>
<td>Soda Creek CALWAA Total (60.1 mi²)</td>
<td>yds³/mi²/yr</td>
<td>255</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>393</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>58</td>
<td>15</td>
</tr>
</tbody>
</table>
Table B-6d. Sediment yield (in yds^3/mi^2/year, tons/mi^2/year and %) by ownership and primary land use association for small and large features in the Tomki Creek subwatershed, Upper Eel River watershed study area

<table>
<thead>
<tr>
<th>Domain (Private and Public ownership) (mi^2)</th>
<th>Non Earthflow</th>
<th>Earthflow</th>
<th>Total sediment yield (non EF+ EF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No land use</td>
<td>Road Related</td>
<td>Timber harvest</td>
</tr>
<tr>
<td>Plot <3,000 yds^3 sediment sources</td>
<td>yds^3/mi^2/yr</td>
<td>113</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>tons/mi^2/yr</td>
<td>175</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>62</td>
<td>17</td>
</tr>
<tr>
<td>>3,000 yds^3 sediment sources</td>
<td>yds^3/mi^2/yr</td>
<td>41</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>tons/mi^2/yr</td>
<td>63</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>35</td>
<td>14</td>
</tr>
<tr>
<td>Sub-total/ %</td>
<td>yds^3/mi^2/yr</td>
<td>154</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>tons/mi^2/yr</td>
<td>238</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>52</td>
<td>16</td>
</tr>
<tr>
<td>Domain (Private and Public ownership) (mi²)</td>
<td>Non Earthflow</td>
<td>Earthflow</td>
<td>Total sediment yield (non EF+ EF)</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>No land use</td>
<td>Road Related</td>
<td>Timber harvest</td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>83</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>128</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>53</td>
<td>29</td>
</tr>
<tr>
<td>>3000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>369</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>569</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>85</td>
<td>5</td>
</tr>
<tr>
<td>Sub-total/ %</td>
<td>yds³/mi²/yr</td>
<td>452</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>697</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>77</td>
<td>11</td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>107</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>164</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>61</td>
<td>19</td>
</tr>
<tr>
<td>PWA >3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>113</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>173</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>61</td>
<td>9</td>
</tr>
<tr>
<td>Tomki Creek CALWAA Total (200 mi²)</td>
<td>yds³/mi²/yr</td>
<td>219</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>338</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>61</td>
<td>14</td>
</tr>
</tbody>
</table>

Public Sub-total/ %	yds³/mi²/yr	77	11	10	<1	1	100	97	3	0	0	100
	tons/mi²/yr	109	12	14	1	1	100	97	3	0	0	100
	%	77	11	10	<1	1	100	97	3	0	0	100

| Total sediment yield (non EF+ EF) | 157 | 0 | 0 | 0 | 0 | 0 | 241 | 0 | 0 | 0 | 0 | 0 | 100 |

Public Sub-total/ %	77	11	10	<1	1	100	97	3	0	0	0	100
	109	12	14	1	1	100	97	3	0	0	0	100
	77	11	10	<1	1	100	97	3	0	0	0	100

| Total sediment yield (non EF+ EF) | 157 | 0 | 0 | 0 | 0 | 0 | 241 | 0 | 0 | 0 | 0 | 0 | 100 |

Public Sub-total/ %	77	11	10	<1	1	100	97	3	0	0	0	100
	109	12	14	1	1	100	97	3	0	0	0	100
	77	11	10	<1	1	100	97	3	0	0	0	100

| Total sediment yield (non EF+ EF) | 157 | 0 | 0 | 0 | 0 | 0 | 241 | 0 | 0 | 0 | 0 | 0 | 100 |

Public Sub-total/ %	77	11	10	<1	1	100	97	3	0	0	0	100
	109	12	14	1	1	100	97	3	0	0	0	100
	77	11	10	<1	1	100	97	3	0	0	0	100

| Total sediment yield (non EF+ EF) | 157 | 0 | 0 | 0 | 0 | 0 | 241 | 0 | 0 | 0 | 0 | 0 | 100 |

Public Sub-total/ %	77	11	10	<1	1	100	97	3	0	0	0	100
	109	12	14	1	1	100	97	3	0	0	0	100
	77	11	10	<1	1	100	97	3	0	0	0	100

| Total sediment yield (non EF+ EF) | 157 | 0 | 0 | 0 | 0 | 0 | 241 | 0 | 0 | 0 | 0 | 0 | 100 |

Public Sub-total/ %	77	11	10	<1	1	100	97	3	0	0	0	100
	109	12	14	1	1	100	97	3	0	0	0	100
	77	11	10	<1	1	100	97	3	0	0	0	100

| Total sediment yield (non EF+ EF) | 157 | 0 | 0 | 0 | 0 | 0 | 241 | 0 | 0 | 0 | 0 | 0 | 100 |
Table B-6e. Sediment yield (in yds3/mi2/year, tons/mi2/year and %) by ownership and primary land use association for small and large features in the Upper Main Eel subwatershed, Upper Eel River watershed study area

<table>
<thead>
<tr>
<th>Domain (Private and Public ownership) (mi2)</th>
<th>Non Earthflow</th>
<th>Earthflow</th>
<th>Total sediment yield (non EF+ EF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No land use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road Related</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber harvest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag/ Grazing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yds3/mi2/yr</td>
<td><1</td>
<td>1</td>
<td>97</td>
</tr>
<tr>
<td>tons/mi2/yr</td>
<td><1</td>
<td>2</td>
<td>150</td>
</tr>
<tr>
<td>%</td>
<td><1</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>yds3/mi2/yr</td>
<td>78</td>
<td>88</td>
<td>47</td>
</tr>
<tr>
<td>tons/mi2/yr</td>
<td>121</td>
<td>136</td>
<td>72</td>
</tr>
<tr>
<td>%</td>
<td>37</td>
<td>41</td>
<td>22</td>
</tr>
<tr>
<td>yds3/mi2/yr</td>
<td>79</td>
<td>89</td>
<td>144</td>
</tr>
<tr>
<td>tons/mi2/yr</td>
<td>121</td>
<td>137</td>
<td>222</td>
</tr>
<tr>
<td>%</td>
<td>25</td>
<td>29</td>
<td>46</td>
</tr>
<tr>
<td>Plot <3,000 yds3 sediment sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yds3/mi2/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tons/mi2/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yds3/mi2/yr</td>
<td>78</td>
<td>88</td>
<td>47</td>
</tr>
<tr>
<td>tons/mi2/yr</td>
<td>121</td>
<td>136</td>
<td>72</td>
</tr>
<tr>
<td>%</td>
<td>37</td>
<td>41</td>
<td>22</td>
</tr>
<tr>
<td>yds3/mi2/yr</td>
<td>79</td>
<td>89</td>
<td>144</td>
</tr>
<tr>
<td>tons/mi2/yr</td>
<td>121</td>
<td>137</td>
<td>222</td>
</tr>
<tr>
<td>%</td>
<td>25</td>
<td>29</td>
<td>46</td>
</tr>
<tr>
<td>>3,000 yds3 sediment sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yds3/mi2/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tons/mi2/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yds3/mi2/yr</td>
<td>78</td>
<td>88</td>
<td>47</td>
</tr>
<tr>
<td>tons/mi2/yr</td>
<td>121</td>
<td>136</td>
<td>72</td>
</tr>
<tr>
<td>%</td>
<td>37</td>
<td>41</td>
<td>22</td>
</tr>
<tr>
<td>yds3/mi2/yr</td>
<td>79</td>
<td>89</td>
<td>144</td>
</tr>
<tr>
<td>tons/mi2/yr</td>
<td>121</td>
<td>137</td>
<td>222</td>
</tr>
<tr>
<td>%</td>
<td>25</td>
<td>29</td>
<td>46</td>
</tr>
<tr>
<td>Domain (Private and Public ownership) (mi²)</td>
<td>No land use</td>
<td>Road Related</td>
<td>Timber harvest</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>69</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>77</td>
<td>4</td>
</tr>
<tr>
<td>>3000yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>169</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>261</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>80</td>
<td>15</td>
</tr>
<tr>
<td>Sub-total/ %</td>
<td>yds³/mi²/yr</td>
<td>214</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>329</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>79</td>
<td>13</td>
</tr>
<tr>
<td>Plot <3,000 yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>41</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>64</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>68</td>
<td>3</td>
</tr>
<tr>
<td>>3,000yds³ sediment sources</td>
<td>yds³/mi²/yr</td>
<td>163</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>250</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>77</td>
<td>17</td>
</tr>
<tr>
<td>PWA</td>
<td>yds³/mi²/yr</td>
<td>204</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>tons/mi²/yr</td>
<td>314</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>75</td>
<td>14</td>
</tr>
</tbody>
</table>