Attachment A: R Code for correlation and significance testing

```r
# Pearson's product-moment correlation

t = 6.5991, df = 8, p-value = 0.0001695
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
  0.6871920  0.9810282
sample estimates:
cor
  0.9191331

# Pearson's product-moment correlation

data:  Peak.Flow$LittleR and Peak.Flow$ElkR
t = 2.0101, df = 8, p-value = 0.07926
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.07922755  0.88582616
sample estimates:
cor
  0.5792962

# indQ is an index that matches time periods for Elk River and Little River
# gage data
> cor.test(litQ$q[indQ], LittleR, elkQ$q)
# Pearson's product-moment correlation

data:  litQ$q[indQ] and elkQ$q
t = 112.8524, df = 3650, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
  0.8741769  0.8886387
sample estimates:
cor
  0.8816146

# Kendall's rank correlation tau

T = 40, p-value = 0.0009463
alternative hypothesis: true tau is not equal to 0
sample estimates:
tau
  0.7777778

# Kendall's rank correlation tau

data:  Peak.Flow$LittleR and Peak.Flow$ElkR
T = 31, p-value = 0.1557
alternative hypothesis: true tau is not equal to 0
sample estimates:
```
> cor.test(litQ$q[indQ], elkQ$q, method='kendall')

 Kendall's rank correlation tau
 data: litQ$q[indQ] and elkQ$q
 z = 77.8789, p-value < 2.2e-16
 alternative hypothesis: true tau is not equal to 0
 sample estimates:
 tau
 0.8649752