APPENDIX C

SEDIMENT DELIVERY CALCULATIONS

NAVARRO RIVER WATERSHED TECHNICAL SUPPORT DOCUMENT

TABLE OF CONTENTS

C.1	Road Analysis	1
C.2	Road-Related Gullying	
C.3	Vineyard Erosion	1
C.4	Road Mass Wasting	2
C.5	Road Surface Erosion	2
C.6	Management Related Mass Wasting	3
C.7	Stream Crossing Erosion	3
LIST	OF TABLES	
C-1	Road Mileage by Category	1
C-2	Erosion Rates and Factors used in Calculating Surface Erosion	2

APPENDIX C SEDIMENT DELIVERY CALCULATIONS

This appendix briefly describes many of the calculations Regional Board staff made while computing human-caused sediment delivery in the Navarro Watershed.

C.1 Road Analysis

The length of roads in each use category, as identified in the aerial photo analysis, is presented in Table C-1.

Table C-1: Road Mileage by Category

New Primary	36.9mi
New Secondary	67.4mi
New Rarely Used	10.3mi
Primary	496.8mi
Secondary	973.7mi
Rarely Used	275.8mi
Total Miles	1860.9mi

C.2 Road-Related Gullying

Form: [Basin-Wide Average Stream Crossing Delivery per Mile of Road] [Miles of Road] [Miles of Watershed Area]⁻¹ = Road Related Gully Delivery

Example: Indian Creek

 $(17.9 \text{ tons mile}^{-1} \text{ year}^{-1}) (166.2 \text{ miles}) (39 \text{ miles}^2)^{-1} = 90 \text{ tons mile}^{-2} \text{ year}^{-1}$

C.3 Vineyard Erosion

From: [Acres of Cultivated Vineyards] [Erosion Rate] [Delivery Rate] [Area of Watershed miles²]⁻¹ = Rate of Vineyard Related Sediment Yield

Example: Anderson Creek

 $(1088 \text{ acres}) (10 \text{ tons acre}^{-1} \text{ year}^{-1}) (0.5) (46 \text{ miles}^2)^{-1} = 118 \text{ tons mile}^{-2} \text{ year}^{-1}$

C.4 Road Mass Wasting

Form: [Landslide Delivery] [# Road Miles]⁻¹ [10 year RI]⁻¹ = Rate of Road Related Mass Wasting Yield

C.5 Road Surface Erosion

Form: [Basic Erosion Rate (tons acre⁻¹ year⁻¹)] [Traffic/Precipitation Factor (Cover Factor for Ditch/Cutbank) (dimensionless)] [Road Prism Contribution (dimensionless)] [Hydrologic Connectivity (dimensionless)] [Road Width (feet)] [Conversion Factor (acre foot⁻¹ mile⁻¹)] = Rate of Road Surface Erosion Yield (tons mile⁻¹ year⁻¹)

In all calculations, road prism and ditch/cutbank contribution was 0.4, hydrologic connectivity was 0.56, ditch/cutbank width was 6 feet, and road width was 21 feet. Other factors that varied are presented in Table C-2.

Example: Existing primary roads in areas receiving greater than 45" annual precipitation

Road Tread: $(60 \text{ tons acre}^{-1} \text{ year}^{-1}) (4) (0.4) (0.56) (21 \text{ ft}) (0.1212 \text{ ac ft}^{-1} \text{ mi}^{-1}) = 137 \text{ tons mile}^{-1} \text{ year}^{-1}$

Ditch and Cutbank: $(60 \text{ tons acre}^{-1} \text{ year}^{-1}) (0.37) (0.4) (0.56) (6 \text{ ft}) (0.1212 \text{ ac ft}^{-1} \text{ mi}^{-1}) = 3.6 \text{ tons mile}^{-1} \text{ year}^{-1}$

Total surface erosion yield: (137 + 3.6) tons mile⁻¹ year⁻¹ = 140.6 tons mile⁻¹ year⁻¹

Table C-2					
Erosion Rates and Factors used in Calculating Surface Erosion					
Category	Basic Erosion	Traffic/Precip. Factor			
	Rate	(cover factor for ditch			
	(tons/acre/year)	and cutbank)			
Primary Roads, <45" annual precip	60	2			
Secondary Roads, <45" annual precip	60	1			
Rarely Used Roads, >45" annual precip	60	.05			
Primary Roads, >45" annual precip	60	4			
Secondary Roads, >45" annual precip	60	1			
Rarely Used Roads, >45" annual precip	60	.05			
New Primary Roads, <45" annual precip	110	2			
New Secondary Roads, <45" annual precip	110	1			
New Rarely Used Roads, >45" annual precip	110	.05			
New Primary Roads, >45" annual precip	110	4			
New Secondary Roads, >45" annual precip	110	1			
New Rarely Used Roads, >45" annual precip	110	.05			
New Ditch and Cutbank	110	.37			
Previously existing Ditch and Cutbank	60	.63			

C.6 Management Related Mass Wasting

Form: [Rate of Natural Shallow Landslide (from Entrix 1998)] [Management to Natural Ratio] = Management Related Rate

C.7 Stream Crossing Erosion

Navarro road data: 109 stream crossings, average fill volume per crossing = 422 tons.

Data from Furniss et al (1998):

69% (n=266) of stream crossings failed (overtopped culvert).

Of those that failed, 21% had no erosion, 44% eroded 1-25% of their fill, 12% eroded 26-50% of their fill, 10% eroded 51-75% of their fill, and 13% eroded 76-100% of their fill.

Applying data from Furniss et al (1998) to Navarro road data:

69% of 109 = 75 crossings expected to fail

Assume high end of range of fill erosion:

(75)(0.21)(0)(422 tons) + (75)(0.44)(0.25)(422 tons) + (75)(0.12)(0.50)(422 tons) + (75)(0.10)(0.75)(422 tons) + (75)(0.13)(1.0)(422 tons) = 12,133 tons

(Mass of eroded stream crossing fill volume) (total number of stream crossings)⁻¹ = $(12,133 \text{ tons})....(109 \text{ crossings})^{-1} = 111 \text{ tons crossing}^{-1}$

Assuming 10-year recurrence interval storms trigger 69% of stream crossings to fail: (111tons crossing⁻¹) (10 years)⁻¹ = 11.1 tons crossing⁻¹ year⁻¹