Response Levels Lowered for Water Systems
Statewide as PFAS Investigation Continues

New Stricter Standard Established for PFOA and PFOS

February 6, 2020

SACRAMENTO – The State Water Resources Control Board announced today it will reduce the levels of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in drinking water that trigger responses by local water systems.

The Board will set new response levels (RLs) of 10 parts per trillion (ppt) for PFOA and 40 ppt for PFOS. Previously, the RL was 70 ppt for the total concentration of the two contaminants combined.

Under a new California law (Assembly Bill 756), if a water system receives a State Water Board order for testing and finds that the PFOA or PFOS concentration exceeds their RL, the system is required to take the water source out of service, provide treatment, or notify their customers in writing. Water systems are also required to take several other measures to communicate the test results to the public.

Today’s action follows the State Water Board’s August 2019 reduction of the notification levels (NLs) for the two contaminants from 14 to 5.1 ppt for PFOA and from 13 to 6.5 ppt for PFOS. A notification level is a health-based concentration of a contaminant in drinking water that warrants notification and further monitoring and assessment.

The new RLs and NLs are based on updated health recommendations from the California Environmental Protection Agency’s Office of Environmental Health Hazard Assessment (OEHHA).

The reductions of the response and notification levels are part of the State Water Board’s comprehensive investigation into the extent of PFOA and PFOS contamination in water systems and groundwater statewide. They have been widely used in firefighting foams, non-stick coatings, and numerous grease and stain-resistant products.

PFOA and PFOS are part of a broader group of per- and polyfluoroalkyl substances (PFAS) that includes nearly 5,000 chemicals. Through the State Water Board’s investigation, seven additional PFAS chemicals have been detected in multiple...
Media Release

wells in California. The State Water Board has requested OEHHA’s recommendation in developing notification levels for these chemicals.

Exposure to PFOA and PFOS can cause adverse health effects, including harm to a developing fetus or infant, immune system and liver effects, and cancer. While consumer products are a large source of exposure to these chemicals, drinking water has become an increasing concern due to their persistence in the environment and their tendency to accumulate in groundwater.

The State Water Board is also seeking to establish its first enforceable regulatory standards for PFOA and PFOS. In August, the Board requested that OEHHA develop public health goals (PHGs) for the two chemicals as the next step in developing regulatory standards, known as maximum contaminant levels (MCLs). Other PFAS chemicals may be considered for PHG and MCL development later, as data permits.

Data on PFAS detections from more than 600 water system sites in California have been reported to the State Water Board since August 2019 and continue to be collected on a quarterly basis. The data can be found on a special web portal.

In the first phase of testing, public water systems were ordered to sample drinking water supply wells near landfills and airports, locations where these chemicals are believed to be especially prevalent. They were also ordered to test wells near where the contaminants had been previously found. Subsequent phases of testing will look at other sources, such as industrial sites and wastewater treatment systems.

For more information about PFOA and PFOS, the updated notification and response levels, and the work the State Water Board’s Division of Drinking Water is doing to assess the presence of these contaminants in drinking water, please visit the following resources:

- [Fact Sheet on PFOA and PFOS](#)
- [PFAS Web Portal](#) (sampling results and interactive map)
- [Assembly Bill 756 Fact Sheet](#)
- [Resources page on PFOA and PFOS](#)

###