Background

Department of Pesticide Regulation
Environmental Monitoring Branch

- Early 1980’s & soil fumigants EDB, DBCP, 1,2-D in ground water
- Aldicarb in NY, WI, CA ground water
- Pesticide Contamination Protection Act
 - Science-based
 - Monitoring
 - Data evaluation
 - Physicochemical characteristics
- Prospective pesticides evaluated through modeling
Ground Water Protection Program for Pesticides

Murray Clayton MS Ag Eng
Staff Environmental Scientist

Department of Pesticide Regulation

Central Valley Regional Water Quality Control Board
August 2, 2012
Outline

- Law
- Ground water protection areas
- Regulations to protect GW
- Evaluating new pesticides
- Long term trends
Pesticide Contamination Prevention Act (PCPA)

- Enacted in 1985 to prevent further pollution of ground water due to agricultural use of pesticides
“Pollution”

- Means the introduction into the groundwaters of the state of a pesticide chemical above a level, with an adequate margin of safety, that does not cause adverse human health effects.
Agricultural Use in California
PCPA Requirements:

✓ Collect environmental fate data for agricultural use pesticides
PCPA Requirements:

- Use those data to identify pesticides with the potential to pollute ground water (GWPL)
 - SNVs
 - Label language conducive to pesticide movement to ground water

Specific Numerical Values

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility related properties:</td>
<td></td>
</tr>
<tr>
<td>Water solubility</td>
<td>>3 ppm</td>
</tr>
<tr>
<td>Soil adsorption (Koc)</td>
<td><1900 cm³/g</td>
</tr>
<tr>
<td>Persistence related properties:</td>
<td></td>
</tr>
<tr>
<td>Hydrolysis half-life</td>
<td>>14 days</td>
</tr>
<tr>
<td>Soil anaerobic half-life</td>
<td>>9 days</td>
</tr>
<tr>
<td>Soil aerobic half-life</td>
<td>>610 days</td>
</tr>
</tbody>
</table>
Establishing Trigger Values for Leachers (SNVs)
PCPA Requirements:

✓ Collect samples and analyze for those pesticides on the GWPL to determine if they are migrating to ground water
PCPA Requirements:

✓ All state and local agencies to submit to DPR results of all wells sampled for pesticides
 • Allows DPR to leverage ground water monitoring resources from other agencies
PCPA Requirements:

- Maintain a database of pesticide monitoring and provide an annual summary of well monitoring results
Summary of Well Inventory Data Base

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>DPR Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Records</td>
<td>2,092,495<sup>a</sup></td>
<td>70,310</td>
</tr>
<tr>
<td>Wells Sampled</td>
<td>23,204</td>
<td>5,610</td>
</tr>
<tr>
<td>Wells with Pesticide Residues</td>
<td>4,875<sup>b</sup></td>
<td>1,464</td>
</tr>
</tbody>
</table>

^a Data submitted by DPH for municipal wells is major portion of records.

^b The larger number of total positive wells is due to DBCP detections made in late 1970’s and early 1980’s.
PCPA Requirements:

✓ Determine if a detected pesticide is due to legal agricultural use
PCPA Requirements:

- Formally review, with recommendations from SWRCB and OEHHA, pesticides found in GW due to legal agricultural use to determine if continued use can be allowed.
PCPA Requirements:

✓ Adopt regulations to modify use if necessary to protect ground water
Outline

• Law
• Ground water protection areas
• Regulations to protect GW
• Evaluating new pesticides
• Long term trends
Identify Ground Water Protection Areas (GWPAs)

- CALVUL model developed by DPR
- Based on pesticide detections or
- Specified soil types1,2 and a depth to ground water of 70 feet or shallower

1Troiano, J., et al. 1994. Use of cluster and principal component analyses to profile areas in California where ground water has been contaminated by pesticides. Environ. Monitor. Assess. 32: 269-288.

Types of GWPAs

- Leaching – coarse soils with high water infiltration rates & shallow GW
- Runoff – hardpan and some clay soils with low water infiltration rates & shallow GW
Outline

• Law
• Ground water protection areas
• Regulations to protect GW
• Evaluating new pesticides
• Long term trends
Permits from the County Agricultural Commissioner

- Require operator to get a permit to use atrazine, bentazon, bromacil, diuron, norflurazon, prometon or simazine in GWPAs
- Permit must be conditioned with one of the enforceable management practice options
Leaching GWPAs – 3 Enforceable Management Practice Options

- Control irrigation water
 - No irrigation for 6 months, or
 - Irrigate away from the treated site
 - Manage irrigation efficiently

Runoff GWPAS - 7 Enforceable Management Practice Options

In general:

- Incorporate the pesticide\(^1\), or
- Manage contaminated runoff water by recirculating back onto field

Statewide requirements – all pesticides

- Protect wellheads\(^1\)
- Use backflow prevention devices\(^2\)

\(^1\) 3CCR section 6609
\(^2\) 3CCR section 6610
Outline

- Law
- Ground water protection areas
- Regulations to protect GW
- Evaluating new pesticides
- Long term trends
Evaluation of New Products/Uses

- SNV classification
- Review of field study data e.g. field dissipation studies, ground water monitoring studies, lysimeter studies
- Computer modeling to estimate leaching potential in vulnerable California soils

Probabilistic Approach for Leaching Potential

Distributional input
- Soil adsorption values
- Field dissipation rate

Mass leached below root zone (multiple simulations)

Input constants
- Chemical application
- Water applications
- Chemical properties
- Climate data
- Soils data
- Hydraulic properties

Residues dissipated in vadose zone and groundwater aquifer

Distribution of concentration in well water

- Not a leacher – No further action
- Potential leacher – More data required or mitigation action necessary
Verification of Probabilistic Model
(Atrazine, Simazine, Diuron, Norflurazon, Bromacil, Hexazinone)

Model predictions
- 25th percentile = 0.14 ppb
- 50th percentile = 0.23 ppb
- 75th percentile = 0.35 ppb
- 95th percentile = 0.48 ppb

Observed data
- 25th percentile = 0.12 ppb
- 50th percentile = 0.21 ppb
- 75th percentile = 0.32 ppb
- 95th percentile = 0.74 ppb

Outline

- Law
- Ground water protection areas
- Regulations to protect GW
- Evaluating new pesticides
- Long term trend
Well Network

- Monitoring ~70 domestic wells
- Measuring effectiveness of regulations

Troiano, et al. Association Between Regulation and Pesticide Concentration in Domestic Water Wells in Fresno and Tulare Counties, California. Submitted to Journal of Environmental Quality
Domestic Monitoring Well Network
Overall Analysis

Simazine – 64 Domestic Wells
- Leaching GWPA
- Runoff GWPA
Slope = -0.004

Diuron – 46 Domestic Wells
- Leaching: slope = -0.018
- Runoff: slope = -0.016