California Farm Bureau Federation Forest Landowners of California The Buckeye Conservancy California Licensed Foresters Association Association of Consulting Foresters of America, California Chapter

February 14, 2010

Karen A. O'Haire Senior Staff Counsel State Water Resources Control Board 1001 I Street, 22nd Floor Sacramento, CA 95814

Re: SWRCB/OCC Files A-2029, A-2029(a), and A-2029(b) – Request for Additional Evidence

Dear Ms. O'Haire,

In response to your December 14, 2010 request for additional evidence, petitioners California Farm Bureau Federation, Forest Landowners of California, the Buckeye, California Licensed Foresters Association, and Association of Consulting Foresters of American, California Chapter (collectively "Petitioners) provide the information described in the attached document and contained on the enclosed compact disc.

The evidence provided by Petitioners includes information readily available on the internet as well as reports and data collected by Petitioners' members. Links to information publically available on the web are included in the attached summary while other evidence is provided in the enclosed compact disc.

Thank you for your consideration of this information and we look forward to working with you to provide additional information or clarification if appropriate. Please call me at (916) 561-5667 if you have any questions.

Sincerely,

1L1h

Jack L Rice California Farm Bureau Federation

Attached:Summary of EvidenceIndex of Information on Compact DiscEnclosed:compact disc

cc:

Ginevra K. Chandler	Theresa A. Dunham
Chief Counsel	Daniel Kelly
CAL FIRE	Somach Simmons & Dunn
Department of Forestry and Fire Protection	500 Capitol Mall, Ste. 1000
P.O. Box 944246	Sacramento, CA 95814
Sacramento, CA 94244-2460	
Samantha Olson	Catherine Kuhlman
David Rice	Executive Officer
Office of Chief Counsel	North Coast Regional Water Quality
State Water Resources Control Board	Control Board
P.O. Box 100	5550 Skylane Blvd., Ste. A
Sacramento, CA 95812-0100	Santa Rosa, CA 95403
John Williams	Randy Jacogszoon
Forest Landowners of California	Association of Counseling Foresters of
2300 Northpoint Pkwy.	America, California Chapter
Santa Rosa, CA 95407	P.O. Box 225
	Redwood Valley, CA 95470
Ruthann Schulte, Executive Director	Casey Keller, President
Julie Houtby, Vice-Chair	William Keye, Government Affairs
The Buckeye Conservancy	Specialist
P.O. Box 5607	California Licensed Foresters Association
Eureka, CA 95502	P.O. Box 343
	Camptonville, CA 95922

SUMMARY OF EVIDENCE SWRCB/OCC Files A-2029, A-2029(a), and A-2029(b) Request for Additional Evidence

This response is split into three sections: Section I. is a Summary of General Information provides information showing the effects of timber harvest on sediment and thermal discharges, as well as demonstrating the pervasive consideration given to water quality under the existing regulatory regimen. Section II, Response to Specific Evidentiary Requests, provides information specifically related to the three requests for additional evidence. Finally, section III provides Other Applicable Information that is important to consider in order to thoroughly understand the relationship between timber harvest and water quality.

I. Summary of General Information

Caspar Creek Watershed Study

Any inquiry into the relationship between timber harvesting and watersheds should begin with Caspar Creek. This is the longest and probably most thoroughly researched watershed in California. Studies within the Caspar Creek Watershed began in 1962 by looking at two nearly identical sub-watersheds; one watershed was clear-cut while the other was selectively harvested. From this point forward, the watersheds and the effects of timber harvest on those watersheds has been under almost continuous study. All of the relevant studies conducted in this watershed are too numerous to list, but are available at http://www.fs.fed.us/psw/topics/water/caspar/. Brief descriptions and links to the most important studies are provided below:

- Caspar Creek Hydrologic and Climate Data
 - Available At:
 - 1962-1997: <u>http://www.fs.fed.us/psw/topics/water/caspar/data/</u>
 - 1996-2004: <u>http://www.fs.fed.us/psw/topics/water/caspar/cdrom4/</u>
- Lisle, T.E. and M.B. Napolitano. 1998. Effects of recent logging on the main channel of North Fork Caspar Creek. Found in: R.R. Ziemer, Tech. Cord., Proceedings of the Conference on Coastal Watersheds: the Caspar Creek Story; Map 6, 1998, Ukiah, California.
 - Available At: <u>http://www.fs.fed.us/psw/publications/documents/gtr-168/09lisle.pdf</u>
 - Important Findings: This study showed an increase of low to moderate streamflows and greatly increased the input of large woody debris (LWD) from blow-downs in buffer strips bordering watercourses following harvests. This increase in LWD resulted in more pool formation and nutrients.
- Lewis, J. 1998. Evaluating the impacts of logging activities on erosion and sediment transport in the Caspar Creek watersheds. Found in: Ziemer, R.R., technical coordinator. Proceedings of the conference on coastal watersheds: the Caspar Creek Story, 1998 May 6; Ukiah, CA. Gen. Tech Rep. PSW GTR-168. Albany CA. Pacific Southwest Research Station Forest Service, US Department of Agriculture; pp. 55-69
 - Available At: <u>http://www.fs.fed.us/psw/publications/documents/gtr-168/07lewis.pdf</u>

- Important Findings: This study showed that a majority of sediment in watercourses comes from roads and crossings and that when the Forest Practice Rules were applied properly, they were affective at reducing sediment inputs.
- Keppeler, E.T. 1998. The summer flow and water yield response to timber harvest. USDA Forest Service General Technical Report PSW-GTR-168. pp. 35-43.
 - Available At: <u>http://www.fs.fed.us/psw/publications/documents/gtr-168/05keppeler.pdf</u>
 - Important Findings:
 - Long-term monitoring indicated increases in runoff after timber removal, the magnitude and duration of the response depend on the nature and extent of the logging and site preparation.
 - Following harvest operations, reduced interception and evapotranspiration rates allowed for additional water to be stored in the soil. Enhanced soil moisture in the rooting zone followed timber harvest in the clearcut units of the North Fork of Caspar Creek. Previously intermittent stream reaches and soil pipes became perennial. This is important as it means that timber harvest can actually increase the amount of water available for beneficial uses, particularly late in the season when it is most critical.
 - This study also showed the important role of fog in coastal watersheds.
 With the removal of forest canopy during harvest activities, fog interception decreases, but any loss from interception is overridden from reduced evapotranspiration rates.
- Ziemer, R.R. and T.E. Lisle. 1998. Chapter 3, Hydrology, pp. 43-68, Found in: Naiman, R.J., and R.E. Bilby, eds. River Ecology and Management: Lessons from the Pacific Coastal Ecoregion. Springer-Verlag, N.Y.
 - Available at: <u>http://www.humboldt.edu/~rrz7001/pubs/Ziemer98a.PDF</u>
 - Important Findings: Harvesting trees results in a general reduction in transpiration rates and makes more water available during critical summer months.

The Monitoring Study Group

In 1990 the California State Board of Forestry created the Monitoring Study Group ("MSG") intended to "develop and implement a long-term monitoring program that will provide timely information on the implementation and effectiveness of forest practices related to water quality that can be used by forest managers, agencies, and the public in California."¹ The MSG consists of representatives from 9 different government agencies, including both the State Water Resources Control Board and the North Coast Regional Water Quality Control Board, as well as the public and the timber industry. As described on the website:²

Recently, the long-term monitoring program has been expanded, utilizing a somewhat broader combination of approaches to generate information on forest practice rule implementation and effectiveness related to water quality. The major components of the program include: 1) continuation of the existing Hillslope

¹ More information available at: <u>http://www.bof.fire.ca.gov/board_committees/monitoring_study_group/</u>

² <u>http://www.bof.fire.ca.gov/board_committees/monitoring_study_group/mission_and_goals/</u>

Monitoring Program—evaluating 50 THPs and NTMPs per year, 2) incorporation of the Modified Completion Report process—using CAL FIRE Forest Practice Inspectors to evaluate Forest Practice Rule implementation and effectiveness, 3) development of selected monitoring projects that can answer key questions regarding forest practice implementation and effectiveness, and 4) development of scientifically valid monitoring plans in 303(d) listed waterbodies, along with cooperative watershed monitoring projects in selected basins for long-term instream trend monitoring.

As part of this effort, the MSG archives one of the best current libraries of information available on timber harvest and its affects on watercourses and wildlife, which can be found on the following websites:

- <u>http://www.bof.fire.ca.gov/board_committees/monitoring_study_group/msg_monitoring_reports/</u>
- <u>http://www.bof.fire.ca.gov/board_committees/monitoring_study_group/msg_archived_do</u> <u>cuments/</u>
- <u>http://www.bof.fire.ca.gov/board_committees/monitoring_study_group/meeting_minutes/</u>

These links, including the minutes from each MSG Meeting are a very good starting point to review the current state of the science on timber harvest and water quality. While some of this information does not specifically address the requested evidence, it is useful to understanding just how thoroughly water quality concerns are considered in the timber harvest process.

The following information from the MSP is particularly relevant to the information requested in your letter.

- Dr. Cajun James, et al, Draft Water Quality Monitoring Proposal for the Judd Creek Watershed: CD Exhibit
 - This study is discussed in greater detail below.

Interagency Mitigation Monitoring Program-Pilot Project

The Interagency Mitigation Monitoring Program ("IMMP") was a pilot project which began in 2005 and ran until 2008. This Program looked at individual crossings and road segments within randomly selected harvest plans and evaluated the design, installation, and regulations that govern each feature in the field. The MSG was composed of 27 representatives from 7 different State Agencies including 2 Regional Water Quality Control Boards, public interest groups, and landowners. Particularly relevant information is in:

- IMMP Pilot Project Final Report *Exh. 1 IMMP*³
 - Available at:
 - http://www.fire.ca.gov/cdfbofdb/pdfs/immp_pilotprojectrpt_finalver.pdf
 - Important Findings: This 3 year study emphasized that properly installed crossings and erosion control structures applied under the then current Forest Practice Rules held up well and contributed only very minor amounts of sediment.

³ References to Exhibits correspond to the folder names on the compact disc.

Only improperly and poorly maintain structures that might violate the Forest Practice Rules contributed to more deleterious conditions. A considerable amount of data collected by the IMMP was used in the creation of the Anadromous Salmonid Protection Rules discussed below.

The 2009 Anadromous Salmonid Protection Rules

In 2006 the California Board of Forestry & Fire Protection ("BOF") created a 12-member Technical Advisory Committee ("TAC") to serve as scientific advisors and provide the board with the best and most recent science regarding timber harvesting, fish, and watersheds. This committee provided the BOF with 149 scientific studies, papers and dissertations that represented the most recent scientific studies, not just on California, but on the entire west coast.

The TAC presented its findings to the BOF in 2007. In its summary report,⁴ the TAC outlined a number of key issues and posed several questions it recommended the Forest Practice Rules should address. The TAC created 5 categories to focus efforts on; biotic and nutrient functions, heat transfer, water flows, wood inputs, and sediment inputs. While the useful findings of this report are too numerous to list, particular attention should be given to the following:

- Temperature
 - A one tree height buffer was likely enough to moderate cumulative effects of most harvest activities.
 - Very little data exists for the requirements of non fish species.
 - The affects of microclimate need to be better understood as they relate to forest practices.
- Sediment
 - Historic logging practices and roads tend to still be the major source of sediment in watersheds today.
 - Watercourse crossings if installed correctly contribute very little sediment to downstream waters.
 - Road location and construction are very crucial to long-term success at reducing erosion and potential for failure.
 - Recent California studies showed that the Forest Practice Rules were highly effective at reducing potential problems and existing features.

Following the TAC's report to the board, and to address the need answer additional questions, the BOF directed Sound Watershed Consultants, an independent reviewer, to conduct a similar review. This literature review focused on 179 scientific literature articles and the TAC report.

The report of Scientific Literature Review of Forest Management Effects on Riparian Functions for Anadromous Salmonid Fishes from Sound Watershed Consulting is available at: http://www.soundwatershed.com/board-of-forestry.html

⁴ Available at:

http://www.bof.fire.ca.gov/board committees/technical advisory committee %28tac%29 /tac documents/t i scop eofwork ______final_approved5_11_07_.pdf

Some of the key findings summarized in this report include the following:

- Spatial context is important, as it influences functional response patterns.
- Longitudinal controls (along the channel length) on exchange functions in addition to lateral controls (buffer width) are important in maintaining the watershed-scale ecosystem structure that maintains aquatic habitats.
- There are dynamic interactions among and between riparian exchange functions that alter the importance of exchange functions for any particular setting.
- While riparian zones can buffer a stream from direct management impacts, they do not protect streams from disturbances, but in fact alter the disturbance regimes in ways that can affect the functional response expressed by both short-term and long-term evolution of riparian areas.

From the TAC and SWC reports, the BOF developed a new rule package to replace the Threatened and Impaired Watershed Rules. The Initial Statement of Reasons to develop a new set of watershed rules is available at:

http://www.bof.fire.ca.gov/regulations/proposed_rule_packages/ANADROMOUS_SALMONID PROTECTION_RULES_2009/t_i_isor_final.pdf

Over the two year period it took to develop these rules, the BOF worked with the California Department of Fish & Game, the State Water Quality Control Board, and the California Geological Society. The North Coast Regional Water Quality Control Board did not participate in the process until the final two months of the process and well after the rule language had been developed.

The following are some of the highlights of the 2009 ASP Rules:

- 4 specific zones within the State of California were designated to inform the discussion on water resources; the southern sub-district of the coast, those watersheds within the coast within watersheds that supported anadromous salmonids, those watersheds outside the coast (inland) within watersheds that supported anadromous salmonids, and watersheds outside of the zone of anadromy.
- Class I watercourses were split up into two categories as were class II watercourses. These new classifications were developed to add protection to flood plains and perennial water upstream of fish barring watercourses.
- No harvest zones were added to class I and II watercourses and outside of the no cut areas, canopy retention zones of 80% and 50% were upgraded from the Threatened & Impaired Watershed Rules that had previously been in place.
- Additional protection was created for class III watercourses, sites where water drafting occurs, and watersheds above the zone of anadromy.

Water Quality Monitoring in the Forested Watershed of California: Status and Future Directions

As part of the MSG report to the BOF, Drew Coe of the Central Valley Regional Water Quality Control Board prepared a report that summarized the available data currently being collected in California by industry, state agencies, NGO's, federal lands, university lands, and private consultants. Although the questionnaire that was developed for this project didn't go out to all of the interested parties, it did go out to many of those most active in forest management and represents some of the State's best scientific studies that are currently ongoing. Although this study did not contain information from NTMP holders, it is still relevant to the effects of timber harvest pursuant to the Forest Practice Rules. This report is available at: <u>http://www.bof.fire.ca.gov/board_committees/monitoring_study_group/msg_monitoring_reports/</u> draft_monitoring_tracking_report_09nov09.pdf

II. Response to Specific Evidentiary Requests

1. The waiver's specific conditions to control sediment discharges (i.e., Road Management Plans, Erosion Control Plans and/or Sediment Prevention Plans)

Because the 2009 Waiver has only been in existence for one operating season, we could find no comprehensive direct monitoring results or studies considering specific conditions to control sediment discharges (i.e., Road Management Plans, Erosion Control Plans, and/or Sediment Prevention Plans). Furthermore, because of the poor economic conditions that have been in place for the last 3 years, there were very few timber harvest operations in 2009 and 2010. Of the few harvest plans that operated under the 2009 Waiver, most are currently experiencing their first winter. The effectiveness and monitoring results of Road Management Plans, Erosion Control Plans and/or Sediment Prevention Plans will take some time to produce. In addition, with the absence of background monitoring data, it is unlikely that one year of data collection could provide meaningful results.

We are providing several copies of Erosion Control Plan, Road Management Plans, and Sediment Prevention Plans that have been prepared within the North Coast. These demonstrated the conditions currently being required by the North Coast Regional Water Quality Control Board.

In addition, studies like Caspar Creek, the monitoring results provided on the Gualala River, the two studies provided by Timber Products Company and the studies from Sierra Pacific Industries all show positive results from the implementation of the current Forest Practice Rules. Most of the sediment that is currently being generated today is coming from practices that occurred 30 or more years ago, non-forestry related roads and developments, and natural sediment sources. As the IMMP pointed out, if current projects are correctly installed, follow the Forest Practice Rules (and Best Management Practices), and the facilities are maintained, almost no sediment discharges occur.

2. The Waiver's specific conditions for control of thermal discharges (i.e. riparian shade canopy retention standards)

No monitoring results or studies are available at this time. Because the 2009 Waiver did not begin until June of 2009 for THPs and June of 2010 for NTMPs, efforts are just now underway

to collect the necessary baseline data that will be required to monitor the requirements of the 2009 waiver. These types of monitoring programs are multi-year projects that require careful planning and time, which at this point is the limiting factor.

With that said, there are 4 studies pertaining to the ASP Rules and the monitoring of thermal discharges that are directly relevant to effects of shade requirements. Two reports from Timber Products Company were prepared by Stuart Farber and study Etna Creek and McKinney Creek. These studies and model the affects of the ASP Rules which require less near stream canopy cover protection than the 2009 Waiver. Two other reports from Sierra Pacific Industries were prepared by Dr. Cajun James, *et al.* and model treatments that reduce the near stream canopy cover even more than those in the Etna and McKinney Creek studies or that would be permitted by the ASP Rules.

Etna Creek Study: Exh. 2 – Timber Products Company

The Etna Creek Study looked at both class I and II watercourses within the zone of anadromy and reduced canopy closure levels to 53% on class I watercourses and 62% on class II watercourses in their outer buffers. No harvesting was conducted in the first 50 feet for class I and 25 feet for class II watercourses. Within the no harvest areas, canopy closure ran between 11% and 100% closure. No noticeable difference was observed following this treatment in the in-stream temperature data collected pre and post harvest. This is significant as the 2009 Waiver requires 85% retention for the first 75 feet. In most instances considered by this study, the average pre-harvest canopy closure was less and was then subsequently reduced in the outer zone to 53% for class I and 62% for class II watersheds and no noticeable difference in in-stream temperature was noted yet the 2009 Waiver requires 65% canopy retention.

McKinney Creek Study: Exh. 2 Timber Products Company

The McKinney Creek Study was located in a watershed outside of the zone of anadromy. McKinney Creek is a class I watercourse that has resident trout populations. As part of this study, harvest operations retained all existing canopy within the first 50 feet from bank-full width. The average canopy closure within the first 50 feet ranged from 33% to 100%. From 50 feet to 150 feet away from bank-full, the existing canopy was reduced from 67% to 53% canopy closure. Again no noticeable difference of instream temperature was observed within the reach and downstream following harvest operations. A small increase in the overall watershed temperatures occurred in 2009 (two years after the harvest), but this is most likely due to a 64% reduction in flow from the previous year.

Southern Exposure Research Project⁵

The Southern Exposure Research Project is a water monitoring project on Sierra Pacific Industries' lands conducted by Dr. Cajun James. This project was part of her doctoral dissertation, available at the UC Berkeley Main Library. This project began in 2000 and looked at the cumulative impacts of reducing watercourse canopies on terrestrial and in-stream temperatures, near-stream microclimate, canopy cover, water quality and the response of aquatic organisms following harvesting of multiple clear-cut units adjacent to a Class I watercourse. Harvests began removing all of the trees within 175 feet of the stream bank and then reduced the

⁵ Dr. James' dissertation is available at the UC Berkeley Main Library.

buffer in successive years to 100 feet and then 50 feet. As described Howard Springs THP information (Exhibit 3):

"Microclimate results show that edge effects from the adjacent upslope clear-cut harvest units had no discernible impact within 40-feet of the stream bank. No difference in the extent of microclimate edge effects within the riparian zone was found for either the 175 ft. buffer or the 100 ft. buffer under very warm summer This study found that two separate timber harvest operations, conditions. conducted in summer 2000 and summer 2001, resulted in only minor (±1.5 °C) changes in the water temperature pattern along the experimental reach. The monthly maximum water temperature never exceeded 21.1 °C before or after harvest throughout the study area. In this experiment, no practical difference in the canopy cover, near-stream microclimate, or water temperature patterns were found between the wider 175-ft. and the narrower 100-ft. buffers. The lack of change in response variables was likely due to the very small measurable reduction in shade-producing canopy cover mid-stream and within the riparian buffer. Only minimal changes in the near stream microclimate and water temperature occurred despite the fact that 35% of the merchantable tree volume within the riparian buffer was removed during summer 2000 timber harvest operations. Results from this study show that 100-ft. vegetative buffers that maintain at least 50% vertical or 80% angular canopy cover minimize potential negative impacts to the temperature of stream water and the near-stream microclimate from adjacent upslope clear-cut harvest operations. Results from all data collected in the study show that 50-foot vegetative buffers that maintain at least 50% vertical or 80% angular canopy cover minimize potential negative impacts to the temperature of stream water and the near-stream microclimate from adjacent upslope clear-cut harvest operations."

This study is important as the ASP rules would not allow even-aged management this close to a class I watercourse. In fact, if even-age management is proposed, an additional outer buffer is required.⁶ This study was conducted as a "worse case scenario", which should translate to even higher levels of protection when discussing uneven-aged management that is employed by NTMPs and selection based THPs as they are selection based harvest, and do not reduce canopies below 50% for the entire harvest area.

Judd Creek Research Project: Exh. 3 – Sierra Pacific Industries

Judd Creek is a similar study to the Southern Exposure Research Project conducted on Sierra Pacific Industries lands. This study is a joint project between SPI, the CVRWQCB, and Cal Fire authorized by the Board of Forestry to look at watershed-wide effects of timber harvesting on watercourses.

The initial part of this project is the Engebretsen THP which is a 6 phase 8-year project.

- Phase 1 Begins in November 2004 with the signed approval of the Engebretsen THP by Cal Fire.
- Phase 2 Two-years of baseline monitoring throughout the entire watershed 2005-2006.
- Phase 3 All road construction treatments were performed in 2007.

⁶ The additional requirement exceeds that listed in Table 1, attached to this document.

- Phase 4 2008 a one-year monitoring period to collect data after the road treatments was performed.
- Phase 5 Spring-Fall 2009, all 41 harvest units were logged and the biomass was chipped and hauled.
- Phase 6 Currently in progress and will be completed following winter 2011. Phase 6 involves three years 2009-2011 of monitoring the results of both road treatments and harvesting.

The Engebretsen THP prescribed to harvest 835-acres or 13% of the entire Judd Creek watershed, accounting for 18% of all SPI lands within this watershed. When harvest operations on the THP were completed in 2009, approximately 1,105-acres or 17% of the area within the Judd Creek watershed had received an evenaged management treatment within a 10-year period.

Results from this study will hopefully be finalized later this year.

Comparison of Wet Land Protection Zone WLPZ) Protection Measures: Table 1

These studies are extremely important as they represent <u>real life</u> studies which are currently ongoing. These studies have all had the North Coast or Central Valley Regional Water Quality Control Board provide input on study designs, as well as California Department of Fish and Game. The attached table (Table 1) is a summary of the different WLPZ protection measures that were applied in comparison to the 2009 ASP Rules and the requirements of the 2009 Waiver. The stream buffers used in the studies presented above are less restrictive than both the ASP Rules and the 2009 Waiver, but still comply with the Basin Plan objectives (i.e. less than a 5 degree direct affect on water temperatures). Furthermore these buffers did not result in reaching the thermal barrier to salmonids species. Once again, in all of these studies listed above, there is no noticeable change in water temperature with buffers that are much less than what NCRWQCB says is necessary to protect the beneficial uses of water. Also of importance is the fact that all of these studies occurred in the inland areas and even smaller ranges of variation should occur on the coast where fog is a strong influence at regulating temperatures.

Information Regarding Houston/Cabin Meadows Creek Model⁷

In 2009 NCRWQCB Staff presented a model of Houston / Cabin Meadows Creek to the Board as part of the June 4 hearing. This model was used as the scientific basis for the new requirements under the 2009 Waiver. The case that Regional Board Staff presented was the reduction of a WLPZ canopy to 50 % for 3 miles along the class I watercourse. This hypothetical "worse case scenario" would not be permitted under the current Forest Practice Rules. This model and the data have not yet been made available to the public.

According to the Staff Report dated June 4, 2009 (which is included in the records submission), the above mentioned model measured a 2° C change in in-stream temperatures. This 2° C change does not even violate the Basin Plan requirement prohibiting changes of 5° F. This single example is all that has been presented to the Board and public as the need for additional protection by Staff.

⁷ Petitioners' members have not been able to obtain copies of this study or the modeling used.

3. Sediment and thermal discharges from timber operations conducted under Nonindustrial Timberland Management Plans (NTMPs) covered under North Coast Water Board Order No. R1-2004-0016, Categorical Waiver of Waste Discharge Requirements for Discharges Related to Timber Harvest Activities on Non-Federal Lands in the North Coast Region, adopted June 23, 2004.

The Petitioners have requested from NTMP holders and RPFs within the North Coast Region reports and data that have been collected since 2004. The following reports are some of the work that is currently being conducted on Nonindustrial Timber Management Plan holders' properties within the North Coast Region. It is important to understand that under the 2004 Waiver there were no requirements for landowners to conduct monitoring studies. Under the 2004 Waiver, NTMPs holders were told that their project was of low impact and that an Erosion Control Plan was all that was required of them in order for their projects to obtain coverage under a waiver.

Enclosed are studies from NTMPs which we the Petitioners would like to submit. The studies, reports, and other documents are listed below by the individual that provided the information.

Exh. 4 - Bob Kelley, NRM NTMP - 1-99NTMP-014 HUM

• In 2009, the North Coast Regional Water Quality Control Board instructed Staff to look at NTMP's after the Petitions had been filed. The purpose of these inspections was to consider the affects that the 2009 waiver would have on landowners in the field. During this visit, Staff asked the RPF or landowner a series of questions and looked at WLPZ retentions and erosion control efforts. This is the only known report, to our knowledge, that Staff provided any RPFs or landowners.

In addition, RPF Kelley has submitted photo point monitoring photos of several projects that have been completed on this NTMP.

Exh. 5 - Donald Osterhoudt - NTMP 1-09NTMP-003 SIS

• RPF Donald Osterhoudt and his client have been collecting water temperature data on a class I watercourse within the boundary of approved NTMP 1-09NTMP-003 SIS. This data has only been collected for a portion of one year and will continue into the future

Exh. 6 – John Williams, Environmental Resource Solutions - 1-08NTMP-009 MEN

- *Exh. 15 Gualala Redwood*: A 10-year watershed study on the Gualala River that has been conducted by the Gualala Watershed Council. This study includes lands within NTMP 1-08NTMP-009 MEN. The Report includes temperature, sediment, and other instream monitoring efforts.
- *Exh. 15 Gualala Redwood*: A second report conducted by Gualala Redwoods has been included which looked at the North Fork of the Gualala River from 1981 through 2007.
- In addition to this information, John Williams has already submitted to the State Board a letter about the potential costs to this NTMP if the 2009 waiver is not redone.

Exh. 7 – *Charll Stoneman*, Stoneman Forestry Services – Sediment Prevention Plan

• RPF Charll Stoneman prepared a Sediment Prevention Plan for a 2008 THP. This is an example of what the 2009 Waiver would require of many THPs and NTMPs in addition to an Erosion Control Plan.

Exh. 8 – Matt Greene, Edward A. Tunheim Consulting Forester – Erosion Control Plans

• RPF Matt Greene prepared Erosion Control Plans for NTMPs under the 2004 and 2009 waivers. These are examples of what every NTMP is required to produce.

Exh. 9 – *Craig Blencowe* – Weger Ranch NTMP

- RPF Craig Blencowe and his client, the Weger Ranch which maintain an active NTMP began monitoring temperatures in the watercourses within the property in 2000 as part of the Mendocino County Stream Temperature Monitoring Program in association with UC Extension. This 10 year study will be discussed in much more detail by landowner and petitioner Lisa Weger, but shows that selection harvesting that has occurred on the property has not degraded the beneficial uses of water even with 2 major fires on the property that have burned almost the entire property.
- In addition, RPF Blencowe has provided a copy of the economic questionnaire that was sent out to selected landowners in 2009 prior to the Waiver being adopted by the NCRWQCB.

Exh. 10 – Nick Kent, Kent & Associates – Erosion Control Plans

• RPF Nick Kent prepared three Erosion Control Plans that are attached. These Erosion Control Plans are examples of what was required under the 2004 Waiver.

Exh. 11 – Jerry Garvey, Natural Resource Management Corporation – Road Management Plan

• RPF Jerry Garvey prepared a Road Management Plan for a 2004 NTMP. This is an example of what a Road Management Plan would require under the 2009 Waiver.

III. Other Applicable Information

- Questionnaire for Economic Considerations: *Exh. 12 North Coast Regional Water Quality Control Board Information*
 - A blank copy of the questionnaire that Staff submitted to some RPFs within the region in order to complete their economic analysis on for the 2009 Waiver. This waiver was only sent out to a handful of RPFs and no landowners.
- Coastal Watershed Program
 - This Program conducted watershed wide assessments of several watersheds including the Gualala River, Albion River, Big River, the Mattole River, Redwood Creek and many others within the region. The following web page is the home of the North Coast Watershed Assessment Program:
 - http://coastalwatersheds.ca.gov/Home/tabid/54/Default.aspx
- MRC & HRC: *Exh.* 13 *MRC* & *HRC*
 - Mendocino and Humboldt Redwood Companies maintain a large database of reports from company lands. The reports from the different watersheds are located in two places:
 - http://www.hrcllc.com/Reports-WatershedAnalysis.aspx
 - http://www.hrcllc.com/Monitoring-Aquatic.aspx
 - The following is a link to a Watershed Assessment that was prepared for Elk Creek and is an example of the kind of work the MRC and HRC are conducting on their properties:

- http://www.hrcllc.com/pdf/Aquatic/HRC/Other_Watershed_Mon_Rpts/W atershed%20Monitoring%20Report_Elk%20River_2005.pdf
- Green Diamond
 - Green Diamond Timber Company currently has a Habitat Conservation Plan in place with NOAA Fisheries. This HCP includes numerous monitoring projects that are currently underway. The HCP and all of the studies that Green Diamond is currently studying can be found at the following web page:
 - <u>http://www.nwr.noaa.gov/Salmon-Habitat/Habitat-Conservation-Plans/Green-Diamond/index.cfm</u>

• Marin County Water District: Exh. 14 – Marin County

• This report is included to demonstrate that salmonids concerns extend outside areas where timber harvest occurs.

Central Coast Regional Water Quality Control Board

- Recognizing the effectiveness of the Forest Practice Rules in protecting water quality, particularly for NTMPs, the CVRWQCB did not adopt additional restrictions when it renewed its timber harvest waiver.
 - <u>http://www.swrcb.ca.gov/centralcoast/board_decisions/adopted_orders/20</u> <u>10/2010_0041_.pdf</u>

Table 1

2009 ASP Rules - Inland Zone				
Class I without a flood plain Class I with a flood plain		Class II - Large	Class II - Standard	Class III
30 feet no cut	No harvest within the channel migration zone 30 feet of additional no cut			
80% canopy closure for 40 feet	80% canopy closure for 70 to 120 feet	20 feet no cut	0-10 feet of no cut (slope dependent)	
50% canopy closure for 30 feet	50% canopy closure for 50 feet	70% canopy closure for 80 feet	70% canopy closure for 50 to 90 feet	30 to 50 feet of ELZ

2009 ASP Rules - Coastal Zone				
Class I without a flood plain Class I with a flood plain Class II - Large Class II - Standard				Class III
	No harvest within the channel migration zone			
30 feet no cut	30 feet of additional no cut			
80% canopy closure for 70 feet	80% canopy closure for 70 to 120 feet	30 feet no cut	0-15 feet of no cut (slope dependent)	
50% canopy closure for 50 feet	50% canopy closure for 50 feet	80% canopy closure for 70 feet	80% canopy closure for 55 to 85 feet	30 to 50 feet of ELZ

2009 Waiver Requirements		
Class I Class II Class III		Class III
85% canopy retention for 75 feet	85% canopy retention for 50 feet	
65% canopy closure for the remainder 65% canopy closure for the remainder No harvest within the ch		No harvest within the channel zone
Note: If canopies are less than 85% then any tree with the potential to cast shade on the watercourse must be retained.		

Etna Creek Study 2006 to 2010		
Class I	Class II	Class III
50 feet of no cut	25 feet of no cut	
50% canopy closure for 100 feet	50% canopy closure for 75 feet	Pre ASP Forest Practice Rules

McKinney Creek		
Class I	Class II	Class III
50 feet of no cut		
50% canopy closure for 100 feet	NA	NA

Index of Information on Compact Disc

Exh 1 - IMMP

• Interagency Mitigation Monitoring Program, Pilot Project Final Report, 2008.

Exh 2 - Timber Products Company

- Etna Creek Study, 2010
- McKinney Creek Study, 2010

Exh 3 - Sierra Pacific Industries

- Howard Springs THP, Alternative Information about the Southern Exposure Study and Judd Creek
- Water Quality Monitoring Proposal for the Judd Creek Watershed
- Water Quality Monitoring Project in the Judd Creek Watershed Based upon the Engebretsen Timber Harvest Plan (2-04-084-TEH) MSG Joint Project between CDF, CVRWQCB and SPI

Exh 4 - RPF Bob Kelley

- Photo Point Monitoring for NTMP 1-99NTMP-014 HUM
- Water Quality Inspection Report for NTMP 1-99-014 HUM

Exh 5 - RPF Donald Osterhoudt

• Water Temperature Monitoring of NTMP 1-09NTMP-003 SIS

Exh 6 - RPF John Williams

- 1-08NTMP-009 MEN Cumulative Impacts Assessment
- 1-08NTMP-009 MEN Map

Exh 7 - RPF Charll Stoneman

- Sediment Prevention Plan, 2008.
- Map of the SPP area, 2008

Exh 8 - RPF Matt Greene

- Erosion Control Plan for 1-10NTMP-001 SON
- Erosion Control Plan for 1-05NTMP-026 SON

Exh 9 - RPF Craig Blencowe

- A reference to Hannon 1991 and how is relates to ground disturbance
- Weger Ranch Water Temperature Monitoring
- Reply to the Economic Analysis of the 2009 Waiver for RPFs

Exh 10 - RPF Nick Kent

- Erosion Control Plan for 1-05NTMP-017 SON
- Erosion Control Plan for 1-07NTMP-016 SON
- Erosion Control Plan for 1-08NTMP-006 SON

Exh 11 - RPF Jerry Garvey

• Road Management Plan for a 2004 THP

Exh 12 - North Coast Regional Water Quality Control Board Information

- Economic Analysis of the 2009 Waiver Questionnaire
- Staff report prepared for The Revised Categorical Waiver of Waste Discharge Requirements for Timber Harvesting Activities on Non-Federal Lands in the North Coast Region Draft Order No. R1-2009-0038, Jim Burke, 2009.
- A letter from Robert Klamt to the Board of Forestry about the ASP Rules, 2009.
- Executive Officer Summary Report for the 2009 Waiver, 2009.
- The 2009 ASP Rules

Exh 13 - MRC & HRC

- Garcia River Sediment Budgeting, Mendocino Redwood Company, LLC 2003.
- A Summary Report of Water Quality Status and Trends, PALCO, 2005.

Exh 14 - Marin County

• Lagunitas Creek Sediment and Riparian Management Plan Review and Evaluation Report 1997 to 2009, Marin Municipal Water District, 2010.

Exh 15 - Gualala Redwoods

- Quality Assurance Project Plan for Monitoring Sediment Reduction, Gualala River Watershed Council, 2002.
- Steam Monitoring Report for the North Fork of the Gualala River, Gualala River Watershed Council, 2011.
- Thalweg Report for the North Fork of the Gualala River, Gualala River Watershed Council, 2011.
- North Fork of the Gualala River Reach Site #204 Report 1999-2008, Gualala River Watershed Council, 2008.
- North Fork of the Gualala River Table of THP Activity, 2010.
- THP History Map of the North Fork of the Gualala River, 2010.

Interagency Mitigation Monitoring Program Pilot Project Final Report

September 2008

California Resources Agency California Environmental Protection Agency Central Valley Regional Water Quality Control Board North Coast Regional Water Quality Control Board California Department of Fish and Game California Department of Forestry and Fire Protection California Geological Survey

> Arnold Schwarzenegger Governor State of California

MSG¹ Interagency Mitigation Monitoring Program Subcommittee Members²

California Department of Forestry and Fire Protection Jerry Ahlstrom Curt Babcock California Department of Fish and Game Tina Bartlett California Department of Fish and Game Marty Berbach California Department of Fish and Game (currently DWR) **Clay Brandow** California Department of Forestry and Fire Protection Pete Cafferata California Department of Forestry and Fire Protection Joe Croteau* California Department of Fish and Game Shane Cunningham* California Department of Forestry and Fire Protection Suzanne DeLeon* California Department of Fish and Game Richard Fitzgerald* California Department of Fish and Game **Tom Francis** California Department of Forestry and Fire Protection **Richard Gienger** Humboldt Watershed Council Dennis Hall California Department of Forestry and Fire Protection University of California, Berkeley **Richard Harris** North Coast Regional Water Quality Control Board Dave Hope* Dave Longstreth* California Geological Survey Anthony Lukacic* California Department of Forestry and Fire Protection John Munn California Department of Forestry and Fire Protection Jennifer Navicky California Department of Fish and Game **Campbell Timberland Management** Peter Ribar Palma Risler³ U.S. Environmental Protection Agency Duane Shintaku California Department of Forestry and Fire Protection Bill Short California Geological Survey Ahmed Soliman California Department of Fish and Game Tom Spittler California Geological Survey Stacy Stanish* California Department of Fish and Game Central Valley Regional Water Quality Control Board Angela Wilson*

Representatives from all of the Review Team agencies (CGS, DFG, RWQCBs, and CAL FIRE) contributed to this final report. Primary authors were: Dave Longstreth, Anthony Lukacic, Joe Croteau, Angela Wilson, Dennis Hall, and Pete Cafferata. Shane Cunningham was the lead author on the protocol questions (Appendix A) and the protocol field guide (Appendix B). John Munn was the main document editor.

² Subcommittee members with asterisks following their names participated as Coast or Inland team members collecting pilot project field data during 2006 and/or 2007. Some of the listed IMMP Subcommittee members did not participate throughout the entire three year pilot project program (March 2005 through June 2008). Several additional people participated to a limited degree.

¹ The State Board of Forestry and Fire Protection's Monitoring Study Group (MSG) and its subcommittees are composed of members from the public, state and federal resource agencies, and the timber industry. Each agency and organization is responsible for determining the appropriate person(s) to serve as a representative on the MSG and its subcommittees (i.e., the Board does not make formal appointments).

³ The Board and Monitoring Study Group recognize the contributions to the pilot project made by Palma Risler of the US EPA. Ms. Risler passed away on June 21, 2008 in San Francisco.

EXECUTIVE SUMMARY

The California Department of Forestry and Fire Protection (CAL FIRE) and the State Board of Forestry and Fire Protection (Board) have supported several monitoring projects over the past decade to evaluate the implementation and effectiveness of the California Forest Practice Rules. This monitoring work has provided considerable information on the effects of timber harvesting related to water quality. Data have been collected from randomly selected Timber Harvesting Plans (THPs) and locations within plans. Overall, rule implementation rates were reported to be high and erosion features were usually associated with improper application of the rules. Additionally, these monitoring programs found that there was a need for improved implementation of practices on forest roads, particularly at or near watercourse crossings.

The public and other resource agencies have expressed skepticism about these monitoring conclusions in the past, largely due to the monitoring methods used (including random site selection) and lack of direct participation in data collection. To address these concerns and increase cooperation between agencies, in the fall of 2004 CAL FIRE proposed using a multi-agency team approach that included all the Review Team agencies in the collection of monitoring data. Following agreements to participate by the Resources Agency and the California Environmental Protection Agency, the Interagency Mitigation Monitoring Program (IMMP) Subcommittee of the Board's Monitoring Study Group was formed in the spring of 2005 to develop the new program. The IMMP Subcommittee is composed of a diverse group of state agency personnel, landowner representatives, and the public. It includes representatives from the Department of Fish and Game (DFG), California Geological Survey (CGS), the North Coast Regional Water Quality Control Board (CVRWQCB), as well as CAL FIRE.

The IMMP Subcommittee established the following goals for the program: (1) to develop a forum for cooperation and to promote information sharing among interagency team members; (2) to develop and test repeatable protocols for field data collection to evaluate the effectiveness of practices; and (3) to test the interagency team approach as a mechanism for enabling state agencies to work together productively and for widely distributing monitoring conclusions.

A pilot project was conducted from 2005 to 2008 to develop a methodology and make needed refinements prior to implementing the long-term program. The pilot focused on watercourse crossings and the road segments that drain to crossings, since past monitoring work has shown that these are particularly high risk sites for sediment delivery to watercourses. The pilot project field work was conducted by two IMMP teams, with one team working in the Coast Range, headquartered in Santa Rosa, and the other working in the interior portion of the state and headquartered in Redding. Each team had one representative from each of the four Review Team agencies.

Field protocols were evaluated on 54 watercourse crossings selected from 22 plans on non-federal timberlands in California in 2006 and 2007. Watercourse crossings for the

pilot project were selected based on screening criteria that included the types of practices used for watercourse crossing construction, identified beneficial uses of water present, slope, soil types, geologic considerations, and/or design and mitigation needed for complex conditions. This was not a random sample. Field work emphasized performance-based effectiveness evaluations after at least one wintering period for practices applied at or near watercourse crossing sites within a plan that were thought to pose a high risk to water quality. The pilot project work focused on the effectiveness of practices currently being utilized on plans, and not on specific regulatory requirements or violations that could result in legal/enforcement actions.

To expedite the pilot program, the IMMP Subcommittee adapted a portion of the Best Management Practices (BMP) Monitoring Protocol developed by the U.S. Forest Service for 12 northeastern states. The IMMP Subcommittee found this approach to be a transparent, repeatable, standardized monitoring method emphasizing performance-based evaluation of practices that could help achieve stated pilot project goals. While the USFS BMP approach proved to be a valuable model for developing pilot program protocols, field testing of the USFS BMP monitoring protocol during 2006 revealed that it does not apply well to California watersheds, included questions related to BMPs not relevant to this state, and does not include questions related to California forest practices.

To address these problems, numerous additional "California-specific" questions were added to the USFS BMP protocol, as well as a set of subjective questions used to promote consensus among all the agency team members. Following the 2006 field season, the two pilot project teams merged the USFS BMP monitoring protocol, California-specific questions, and subjective questions, forming a new "California watercourse crossing protocol." This revised protocol consists of 270 questions, including general questions; questions regarding both road approaches to the crossing, the crossing structure, water drafting areas; and summary questions. In most cases, fewer than half of the questions are answered at a single site, since many do not apply to the crossing being evaluated. Usually three to four crossings can be evaluated per day (45 minutes to two hours per crossing). Detailed field guidelines and a photographic log were developed, as well as a relational database to store watercourse crossing data.

Changes in pilot project protocols during and between the two phases of the pilot project limited data entry, analysis, and conclusions that can be made from the overall data set. Therefore, general findings from the pilot are presented in this report rather than specific data results. These findings include:

A protocol for evaluating practice effectiveness at and near watercourse crossings in California has been successfully developed;
 While tedious to use, the protocol forced team members to be objective and reach consensus;

(3) The pilot project was an effective team building exercise—demonstrating that the Review Team agencies can work together cooperatively and achieve consensus;

(4) Virtually all crossings and/or road approaches to crossings deliver some sediment (i.e., "trace" amounts) to watercourses, even when the rules and additional THP measures are properly applied;

(5) Improper installation and/or maintenance of crossings and drainage structures near crossings, and improper crossing removal, are major causes of sediment movement and deposition;

(6) Road approaches near crossings produce a high percentage of sediment transport/deposition problems;

(7) Photographic logs are extremely valuable in documenting effectiveness of practices;

(8) The pilot project was a beneficial training exercise that developed skills necessary for evaluating watercourse crossing and road approach performance;
(9) The IMMP approach for problem solving should be continued, but not be limited to watercourse crossings; and

(10) Better practice implementation can be achieved with improved Licensed Timber Operator (LTO) training, and more active and post-active multi-agency inspections.

The main recommendations from the pilot program focus on using the California watercourse crossing protocol as a <u>multi-agency training tool</u> to help field personnel recognize critical situations during field inspections. The IMMP Subcommittee recommends that the protocol be used as a mandatory Review Team training tool, where agency staff are rotated into regional teams on a regular basis to prevent staff "burn-out." Quality assurance/quality control (QA/QC) oversight team(s) will be needed to verify data accuracy and consistent application of the protocol. Additional recommendations include securing adequate funding to allow the program to continue, obtaining long-term database assistance, using the field teams to refine and test additional monitoring protocols selected by the IMMP Subcommittee, and continuing outreach to landowners, Registered Professional Foresters, and LTOs based on monitoring results.

TABLE OF CONTENTS

Executive Summary	iii
List of Figures	vii
List of Tables	vii
List of Abbreviations	viii
Introduction	1
Background Information	1
Past Water Quality Monitoring Projects and Their Relation to the IMMP	2
IMMP Pilot Project Goals and Objectives	5
Pilot Project Study Area	6
Protocol Development and Methods	9
Crossing Selection Procedure	9
Adaption and Modification of USFS BMP Monitoring Protocol	10
Structure of the California Watercourse Crossing Protocol	15
Field Testing	16
Development of Protocol Field Guide	22
Data Recording	22
Database Development	23
IMMP Pilot Project Findings	24
IMMP Pilot Project Discussion and Limitations	29
IMMP Pilot Project Recommendations	32
Acknowledgements	34
Literature Cited	35
Appendices	39
Appendix A—California Watercourse Crossing Protocol	40
Appendix B—Protocol Field Guide	. 117

LIST OF FIGURES

1.	Diagram of a watercourse crossing and road segments draining to the crossing.	1
2.	The pilot project timeline from January 2006 through June 2008.	5
3.	Map displaying locations of 22 plans sampled as part of the pilot project during 2006 and 2007	7
4.	Pilot project Coast team during 2006	8
5.	California subjective crossing matrix used for the pilot project	. 15
6.	Typical protocol survey area, including approach areas A and B	
	inside and outside the WLPZ/ELZ, and the crossing structure	. 16
7.	Pilot project training in western Mendocino County in May 2006	. 17
8.	Pilot project training on LaTour Demonstration State Forest, located in	
	Shasta County, in June 2006	. 18
9.	Bridge evaluated in Humboldt County by the Coast team during the	
	2006 field season.	.20
10.	Example of a completed pilot project photo log.	.21
11.	Anthony Lukacic, CAL FIRE, using a PDA for data entry during the LaTour Demonstration State Forest field training session in	
	June 2006	.22
12.	Pilot project Inland team members Dave Longstreth, CGS, and Joe	
	August 2006	.25
13.	Pilot project Coast team members Dave Longstreth, CGS, and	
	in August 2006	25
14.	Diagram illustrating the relationship of IMMP work to other water quality-	. 20
	related monitoring approaches currently underway in California	.31

LIST OF TABLES

1.	Summary of pilot project field testing of monitoring protocols	19	9
----	--	----	---

LIST OF ABBREVIATIONS

BMPs	Best Management Practices
BOF/Board	California State Board of Forestry and Fire Protection
CAL FIRE	California Department of Forestry and Fire Protection
CFA	California Forestry Association
CGS	California Geological Survey
CLFA	California Licensed Foresters Association
CRA	California Resources Agency
CSES	Critical Sites Erosion Study
CVRWQCB	Central Valley Regional Water Quality Control Board
DFG	California Department of Fish and Game
ECMP	Erosion Control Maintenance Period
EHR	Erosion Hazard Rating
ELZ	Equipment Limitation Zone
FLOC	Forest Landowners of California
FORPRIEM	Forest Practice Rule Implementation and Effectiveness Monitoring
FPA	Forest Practice Act
FPRs	Forest Practice Rules
GPS	Global Positioning System
HMP	Hillslope Monitoring Program
IMMP	Interagency Mitigation Monitoring Program
KREW	Kings River Experimental Watershed Study
LTO	Licensed Timber Operator
MCR	Modified Completion Report Monitoring
MOU	Memorandum of Understanding
MSG	Monitoring Study Group
NTMP	Nonindustrial Timber Management Plan
NCRWQCB	North Coast Regional Water Quality Control Board
PDA	Personal Digital Assistant (pocket computer)
PHI	Pre-Harvest Inspection
PMP	Pilot Monitoring Program
QA/QC	Quality Assurance/Quality Control
RPF	Registered Professional Forester
RWQCB	Regional Water Quality Control Board
SWRCB	State Water Resources Control Board
THP	Timber Harvesting Plan
US EPA	U.S. Environmental Protection Agency
USFS	U.S. Department of Agriculture, Forest Service
WDRs	Waste Discharge Requirements
WLPZ	Watercourse and Lake Protection Zone

INTRODUCTION

Background Information

This report summarizes findings of the Interagency Mitigation Monitoring Program (IMMP) pilot project conducted from March 2005 through June 2008. Work on the IMMP has been directed by a subcommittee of the State Board of Forestry and Fire Protection's Monitoring Study Group (MSG), composed of individuals from the resource agencies, the timber industry, and the public. Primary goals of the IMMP have been to reach agreement on monitoring methods and to improve agency communication.

The IMMP pilot project promoted agency consensus on the development and use of monitoring methods to be used in a full scale monitoring program, as recommended by MacDonald (1994). The IMMP Subcommittee determined that the pilot should be focused on watercourse crossings and road segments draining to crossings (Figure 1), since past monitoring and research work has shown that these are particularly high risk sites for sediment delivery to watercourse channels (Pyles and others 1989, Wemple and others 1996, Furniss and others 1998, BOF 1999, Cafferata and Munn 2002, Bundros and others 2003, MacDonald and others 2004, USFS 2004, Coe 2006, Brandow and others 2006).

Figure 1. Diagram of a watercourse crossing and road segments draining to the crossing. Figure 7.11 in Keller and Sherar 2003.

The pilot project work was conducted by two IMMP field teams, one working out of Santa Rosa (Coast team) and the other headquartered in Redding (Inland team). The Coast team evaluated crossings in the Coast Range, while the Inland team examined crossings in the interior portion of the state (i.e., Klamath Mountains, Cascade Range, and northern Sierra Nevada). This report includes findings and recommendations for future monitoring protocols, but does not include data or results from field evaluations of individual watercourse crossings. Changes in pilot project protocols during and between the two phases of the pilot project limited data entry, analysis, and conclusions that can be made from the overall data set.

Past Water Quality Monitoring Projects and Their Relation to the IMMP

The California Department of Forestry and Fire Protection (CAL FIRE) and the California State Board of Forestry and Fire Protection (Board) have recognized the importance of implementation and effectiveness monitoring to determine whether the Forest Practice Rules (FPRs) and the Timber Harvesting Plan (THP) review process adequately protect the beneficial uses of the state's waters since the mid-1980's. The earliest monitoring project, implemented as a cooperative project by the Board, CAL FIRE, the California Department of Fish and Game, and the State Water Resources Control Board, was a qualitative assessment of 100 non-randomly selected THPs conducted on non-federal timberlands in 1986 by a team of four resource professionals (i.e., the "208 Study"). This effort found that the FPRs were generally effective when properly implemented on terrain that was not overly sensitive (i.e., areas without highly erodible soils or elevated mass wasting potential), and that inadequate rule implementation was the most common cause of water quality impacts. Poor road location, construction, drainage and/or removal were noted as common reasons for significant adverse impacts (CSWRCB 1987). Results from this monitoring project were used by the Board to modify the FPRs for water guality protection (Johnson 1993).

Further monitoring was required, however, as a condition of having the FPRs certified as Best Management Practices (BMPs) by the U.S. EPA (BOF 2007). Based on a strategy developed through the MSG, several hillslope and instream monitoring projects were implemented, beginning in the early 1990's. These efforts included the Pilot Monitoring Program (PMP) that operated from 1993 through 1995 to test procedures for hillslope and instream monitoring (Tuttle 1995, Rae 1995, Spittler 1995, Lee 1997). Following the completion of the PMP, a long-term monitoring program was initiated in 1996. This program has included several cooperative instream monitoring projects and two state-sponsored hillslope or onsite monitoring programs that were conducted from 1996 through 2004.

The Hillslope Monitoring Program (HMP) ran from 1996 to 2002, with data collected by independent contractors (BOF 1999, Cafferata and Munn 2002). The first phase of a Modified Completion Report (MCR) monitoring program was implemented by CAL FIRE from 2001 to 2004, using state Forest Practice Inspectors to collect onsite data as part of required Work Completion Report inspections (Brandow and others 2006). Results from these studies were similar and have been widely distributed to state and federal

agencies, timberland owners, and the public. In general, implementation rates of California's water quality-related FPRs were found to be high (>90 percent), which is similar to findings of studies in other western states (Ice and others 2004, Ice and Schilling 2007, CWSF 2007). The California studies also reported that erosion features were usually associated with improper application of the rules, and that individual practices required by the Rules were effective in preventing hillslope erosion features when properly implemented.

On randomly selected high risk sites (i.e., roads, landings, skid trails, crossings, and Watercourse and Lake Protection Zones) found within the randomly sampled THPs, most of the water quality problems and sediment delivery sites were associated with roads and associated watercourse crossings. Watercourse crossings had the highest rate of problems, with significant implementation and/or effectiveness issues reported on approximately 20 percent of the randomly sampled crossings in both monitoring programs. These problems were mainly related to diversion potential, plugging, scour at the outlet, road drainage structure function near the crossing, and fillslope erosion.

The other main problem area was erosion from roads caused by improper design, construction, and maintenance of drainage structures. In the HMP, nearly half the randomly selected road transects had one or more rills present and approximately 25 percent had at least one gully. Evidence of sediment transport to a watercourse channel was found on approximately 13 percent and 25 percent of these rill and gully features, respectively, with high percentages of delivery to Class III watercourses (headwater channels). These erosion features were mostly caused by drainage feature deficiencies that were usually not in compliance with the FPRs (Cafferata and Munn 2002).⁴ In the MCR study, erosion was found at more than 50 percent of the road-related features that were identified as departing from the FPRs, and evidence of sediment transport to channels was found at 11 percent of these sites. In contrast, erosion was found at five percent of the sites with acceptable FPR implementation, and evidence of sediment transport to a channel was observed only one percent of the time (Brandow and others 2006).

These past monitoring programs have clearly shown the need for improved implementation of practices on forest roads and at watercourse crossings to prevent adverse impacts to water quality. However, considerable skepticism has been expressed about the conclusion that properly implemented FPRs are generally effective in protecting beneficial uses of water in California (as well as in other western states) (Ice and others 2004). Reasons for such lack of confidence include the monitoring methods used by past studies (e.g., lack of information about both fine sediment delivery to watercourses during winter storms and in-unit mass wasting rates [Stillwater

⁴ More recent work by Coe (2006) showed that the majority of forest road sediment delivery from surface erosion processes occurs at or near watercourse crossings. Working in the central Sierra Nevada, he found that adequately maintained roads typically have smaller areas between drainage structures, which limits sediment production, and that when the Forest Practice Rules are properly implemented, sediment delivery is usually not an issue (BOF 2006).

Sciences 2002]); lack of multi-agency participation in the monitoring process; and the use of random sampling procedures that limited evaluation of less frequent "high risk" sites that are major sources of erosion and sediment.⁵ Concerns have also been expressed about how monitoring results have been used in the public arena, as well as lack of public participation in monitoring programs and data collection. As a result, a new, more broadly-based monitoring approach was needed to address concerns about water quality impacts from timber operations at high risk sites.

Options for collecting onsite monitoring data on non-federal timberlands in California have been described by Tuttle (1995). They include using: (1) private consultants, (2) CAL FIRE Forest Practice Inspectors, (3) one or more multi-interdisciplinary teams of state agency staff, and (4) self-monitoring by landowners with or without state agency oversight. The HMP and MCR programs relied on options (1) and (2), respectively, and the Regional Water Quality Control Boards are currently using option (4) to monitor requirements of Region-specific Waivers of Waste Discharge Requirements (WDRs) or General WDRs for silvicultural activities.

The multi-interdisciplinary team approach has been used effectively in the past in California (e.g., the "208 Study") and in other western states. For example, Montana has used interdisciplinary teams to monitor BMP implementation and effectiveness since 1990 (Ethridge 2004). Advantages provided by the designated multi-interdisciplinary team approach include a balance of interests among involved agencies and greater public confidence in monitoring results. In addition, trained staff can provide continuity in applying monitoring protocols. The main disadvantage is the relatively high cost of dedicating agency staff to multi-agency teams (Tuttle 1995).

Based on the need for greater acceptance of monitoring results and direction from the California Resources Agency for improved interagency cooperation, CAL FIRE proposed forming the Interagency Mitigation Monitoring Program (IMMP) in the fall of 2004. Following agreement by Department of Fish and Game (DFG), California Geological Survey (CGS), the North Coast Regional Water Quality Control Board (NCRWQCB), and the Central Valley Regional Water Quality Control Board (CVRWQCB) to participate in this new program, the first MSG IMMP Subcommittee meeting was held in March 2005. Prior to initiating field studies, a "general framework report" was prepared to document agreed-to IMMP concepts (CRA and others 2006). A timeline for the pilot project is presented in Figure 2.

⁵ Currently, information on fine sediment delivery during winter storm events related to forestry operations is being evaluated by cooperative instream monitoring projects, such as the Caspar Creek, Little Creek, Judd Creek, South Fork Wages Creek, and Kings River watershed studies. Regarding random sampling, MacDonald (2005) concluded that if the primary objective of a study is to evaluate the effectiveness of BMPs for protecting water quality, then the focus of sampling should be on sites that are at higher risk, rather than using a random sample. It is imperative, however, to know the proportion of high risk sites that occur in a population to extend results to the total population of high risk and other sites.

Figure 2. The pilot project timeline from January 2006 through June 2008.

IMMP Pilot Project Goals and Objectives

The primary goals of the pilot project were to: (1) provide a mechanism for interagency monitoring by the Review Team agencies, promoting increased cooperation between the agencies, and (2) develop a set of protocols for data collection on the effectiveness of practices that past monitoring has shown to be the most likely source of adverse impacts to water quality (i.e., watercourse crossings and road segments that drain to crossings). To implement these objectives, the pilot project focused on developing protocols for evaluating the effectiveness of practices used at higher risk (non-random) watercourse crossing sites.⁶ Some lower risk crossings were included to test whether pre-determined high risk sites actually produce larger water quality impacts. The pilot project did not develop protocols to evaluate the implementation and effectiveness of individual FPRs related to forest roads and watercourse crossings, since this had previously been done by the HMP and MCR work (Cafferata and Munn 2002, Brandow and others 2006).

Specific objectives of the pilot project were to:

(1) Develop a forum for cooperation and to promote information sharing among interagency team members.

⁶ Higher risk sites in plans related to water quality are usually in close proximity to watercourses and/or located on steeper, more erodible slopes. Specific criteria for higher risk sites are provided in the MOU Monitoring Workgroup (2005) document titled "Joint Report on Monitoring Terms and Authorities."

- (2) Develop and test repeatable protocols for field data collection to evaluate the effectiveness of practices implemented at watercourse crossings and road segments that drain to crossings (locations where there is a high risk of impact to water quality). Practices included FPRs, additional mitigation measures, and special plan requirements. The protocol developed should allow any user (agency representatives, landowners, etc.) to reach similar conclusions.
- (3) Test the interagency team approach as a mechanism for enabling state agencies to work together productively and widely distribute monitoring conclusions.

PILOT PROJECT STUDY AREA

The study area for the pilot phase of the IMMP was located in northern California and was divided into two sub-units defined primarily by the participating agency districts (Figure 3). Site evaluations within each area were conducted by separate teams of agency representatives.

The Inland pilot project team was comprised of CGS's Northern Unit, DFG's Northern Region, the northern part of the RWQCB's Central Valley Region, and the Cascade component of CAL FIRE's Northern Region. These boundaries overlapped in Shasta and Tehama Counties, southeast Siskiyou County, southern through north-central Modoc County, and western through northern Lassen County.

The Coast team was comprised of the same CGS unit, DFG's Bay-Delta Region, the RWQCB's North Coast Region, and the coastal part of CAL FIRE's Northern Region. Overlapping districts included only portions of Sonoma, Napa, and Santa Cruz counties. To obtain a more representative sample of watercourse crossings, the Santa Rosa team extended its sample area within the boundaries of CAL FIRE's Coast Forest Practice District. This allowed Humboldt and Mendocino Counties to be added to the study area.

The field teams included members from each agency that participates in timber harvest review (CAL FIRE, CDFG, RWQCBs, and CGS). To promote interagency interaction, unbiased observations, cooperation, and information sharing, it was determined that no individual agency would assume control of the field work. Inland team members in 2006 were Shane Cunningham, CAL FIRE; Joe Croteau, DFG; Angela Wilson, CVRWQCB; and Dave Longstreth, CGS. In 2007, Stacy Stanish replaced Joe Croteau as the DFG team representative. Coast team members in 2006 were Anthony Lukacic, CAL FIRE; Richard Fitzgerald, DFG; Dave Hope, NCRWQCB; and Dave Longstreth, CGS (Figure 4). In 2007, Suzanne DeLeon replaced Richard Fitzgerald as the DFG team representative.

Figure 3. Map displaying locations of 22 plans sampled as part of the pilot project during 2006 and 2007.

Figure 4. Pilot project Coast team during 2006, comprised of Dave Longstreth, CGS, Anthony Lukacic, CAL FIRE, Dave Hope, NCRWQCB, and Richard Fitzgerald, DFG.

PROTOCOL DEVELOPMENT AND METHODS

The pilot project consisted of the development of procedures that evaluate effectiveness of practices prescribed for perceived "high risk" watercourse crossings. The various approaches tested in the pilot are described in the sections below.

Crossing Selection Procedure

One of the main complaints about previous monitoring efforts was the infrequent evaluation of higher risk sites that resulted from use of random sampling, which limited sample size of these less frequent, but very important, potential erosion sites. To overcome this limitation, IMMP Subcommittee members have stated that the effectiveness of the FPRs must be evaluated at worst-case scenarios (i.e., "high risk" locations).⁷

Contributing factors that can be used to categorize "risk" at a watercourse crossing are many, and may include the following (and their relationships to one another) (see MOU Monitoring Workgroup 2005 for a more detailed list of factors):

- Underlying geology, unstable soils
- Watercourse classification
- Channel morphology
- Road approach conditions
- Side slope steepness
- Proposed use of the crossing
- Ease of access for maintenance
- Beneficial uses of water in and downstream of adjacent watercourses (aquatic organisms, threatened or impaired species, domestic supply, etc.)
- Past flow events
- Topography
- Elevation (area of rain-on-snow events)
- Precipitation levels
- High and Extreme erosion hazard rating (EHR)

To address these concerns, watercourse crossings in the pilot project were selected using agency knowledge of proposed and/or existing crossings that appeared difficult and/or complex to install, repair, upgrade, or remove because of existing conditions, which were assumed to pose the greatest chance of performance problems and sediment delivery.

⁷ Use of non-randomly selected sites is supported by past studies, which have shown that a small percentage of a road network produces most of the hillslope erosion (McCashion and Rice 1983, Durgin and others 1989) and a small percentage of decommissioned or upgraded watercourse crossings produce most of the sediment input to streams (Klein 2003, PWA 2005, Keppeler and others 2007, Harris and others 2008).

THPs submitted by both large and small timberland owners were included in the pilot program. Selected sites generally had been through at least one winter period following installation, upgrading, or removal of watercourse crossings and the installation of road drainage structures, but were still within the Erosion Control Maintenance Period (ECMP). Crossings on Class I, II, and III watercourses were included in the pilot work, as were all types of watercourse crossings (e.g., culverts, fords, bridges, removed crossings, etc.).

The resulting sample did not provide a basis for reaching conclusions about all crossings. It did, however, provide an objective and repeatable approach for promoting interagency cooperation and interaction, and for addressing each agency's concerns. Because the resulting sample was limited to "high risk" crossings, a non-random method of evaluation was conducted. As such sampling was not conducted as a controlled experiment that would provide a "scientific" level of trial and evidence and does not provide a statistically valid basis for conclusions about all types of watercourse crossings (high risk and non-high risk). The goal of the pilot project was to provide an objective and repeatable approach for promoting interagency cooperation and interaction, and for addressing each agency's concerns regarding forest practices in California and their impacts to water quality.

An unanticipated complication from using a non-random sampling approach arose during the first phase of protocol development. During the THP review process, a "high risk" crossing is identified either by the Registered Professional Forester (RPF) or by the Review Team agencies. Consequently, the RPF/Plan Submitter and/or reviewing agencies often spend considerable effort in mitigating the site to effectively lower the perceived risk. Thus, a previously identified "high risk" crossing should, by the process of applying mitigations in addition to FPR requirements, result in a reduction of potential impacts. Subsequent review might then indicate that the site has not merited the "high risk" categorization. This could lead to a conclusion that resource professionals evaluating these sites are not correctly identifying potentially "high risk" crossings when, in fact, the mitigations applied to the crossing prevented or significantly reduced the threats that led to identification of the crossing in the first place.

Adaption and Modification of USFS BMP Monitoring Protocol

To expedite the pilot program, the IMMP Subcommittee adapted a portion of the Best Management Practices (BMP) Monitoring Protocol developed by the U.S. Forest Service for 12 northeastern states (Welsch and others 2007).⁸ The IMMP Subcommittee found this approach to be a transparent, repeatable, standardized monitoring method emphasizing performance-based evaluation of effectiveness of practices that could help achieve stated pilot project goals. It was thought that use of the USFS protocol in California would produce data comparable with other states using the same protocol. Only those portions of the USFS BMP protocol that evaluated watercourse crossings and road approaches to crossings were used in the pilot project. Other sections of the

⁸ Further description of the U.S. Forest Service BMP monitoring protocol are found in the following references: Ryder 2004, Ryder and Edwards 2005, and Ferrare and others 2007.

USFS BMP protocol that evaluated roads and landings in the buffer, riparian buffers, chemical pollution control, and wetlands were not used (136 out of 197 questions were answered).

Overarching Questions

Initial testing of the USFS BMP Monitoring Protocol suggested that it does not specifically address performance of California Forest Practice Rules and other Review Team agency concerns, primarily because it was developed outside of California. In order to address issues that were not covered by the USFS protocol, each agency developed key (overarching) questions that were needed to properly evaluate effectiveness of California Forest Practice Rules and impacts to water quality at or near watercourse crossings (summarized below, complete questions are included in CRA and others 2006).

- IMPLEMENTATION and EFFECTIVNESS of watercourse crossings in relation to requirements of current California Forest Practice Rules (FPRs) and additional Best Management Practices (BMPs).
- AQUATIC HABITAT PROTECTION in relation to watercourse crossing design, installation, and the California Department of Fish and Game 1600 Streambed Alteration Agreement process.
- FISH PASSAGE and DOWNSTREAM RESOURCE PROTECTION in relation to watercourse classification and crossing characteristics.
- PERFORMANCE OF CROSSING TYPES in relation to PHYSICAL SETTING FACTORS.
- GEOLOGY, GEOMORPHOLOGY, and SOIL CHARACTERISTICS in relation to mass wasting, erosion, and sediment delivery at watercourse crossings.

California Specific Questions

In order to address the overarching questions, each agency developed specific questions not already included in the USFS BMP monitoring protocol. Collectively, the agencies produced 54 questions in addition to those in the USFS protocol. These questions require observation of potential or actual causes of erosion and sediment delivery associated with watercourse crossings and their approaches. Examples of specific questions that were developed in response to overarching questions are provided below.
OVERARCHING QUESTION

SAMPLE OF SPECIFIC QUESTIONS

IMPLEMENTATION and EFFECTIVENESS of watercourse crossings in relation to requirements of current California Forest Practice Rules (FPRs) and additional BMPs. Enter the code indicating if the size of the crossing structure opening meets state requirements at the time of plan approval. 1. Yes 2. No 3. Unknown Were principles / practices applied? 1. Yes 2. No Were measures employed that were over and above the requirements of the plan and/or Rules? 1. Yes

2. No

Enter one or more codes that describe the plan requirements for the crossing site being evaluated.

- 1. Standard California Forest Practice Rules including the Threatened or Impaired Watersheds Rule Package (July 1, 2000) where appropriate.
- Additional mitigation measures assigned during plan review were required and/or the RPF proposed additional measures, which were above and beyond the FPRs.
- 3. Exceptions, alternatives or in-lieu practices were proposed, which superseded the standard Forest Practice Rules.

Is there a DFG 1600 agreement?

- 1. Yes
- 2. No
- 3. Unknown

Have modifications been made to the crossing, for purposes such as water drafting, which have impacted the functionality of the crossing?

- 1. No
- 2. Yes
- 3. Yes (1600 agreement)
- 4. Unknown

Enter the code indicating if there is evidence of stream downcutting, scouring, or aggradation within 100 feet downstream of the outlet end of the structure.

- 1. Evidence of scouring and downcutting.
- Evidence of scouling and downcutting.
 Evidence of aggrading or widening.
- 3. Stable.

Enter the code indicating if there is evidence of stream downcutting, scouring, or aggradation within 100 feet upstream of the inlet end of the structure.

- 1. Evidence of scouring and downcutting.
- 2. Evidence of aggrading or widening.
- 3. Stable.

AQUATIC HABITAT PROTECTION in relation to watercourse crossing design, installation and the California DFG Streambed Alteration Agreement (1600).

OVERARCHING QUESTION

SAMPLE OF SPECIFIC QUESTIONS

- 7. 501-1000 cubic yards
- 8. Greater than 1000 cubic yards
- 5. Greater than 1000 cubic yards

OVERARCHING QUESTION

SAMPLE OF SPECIFIC QUESTIONS

Enter the code indicating the specific underlying rock type/formation (the standard geologic formation letter symbology may be initially coded in).

Enter the code indicating the type of mapped landslides under the site (pick one or more).

- Active rockslide 1 2.
 - Dormant rockslide
- 3 Active debris flow or debris slide
- Dormant debris flow or debris slide 4
- 5. Active earthflow
- Dormant earthflow 6.
- Inner Gorae 7.
- 8. Debris slide slope
- 9. No mapped landslide

Enter the code indicating if a recent landslide impacts the crossing.

1. Yes 2. No

GEOLOGY, GEOMORPHOLOGY,

and SOIL CHARACTERISTICS in

relation to mass wasting, erosion,

and sediment delivery at

watercourse crossings.

California Subjective Questions

To achieve interagency interaction, cooperation, and normalization of observations, a series of summary questions were designed to guery whether the interagency team members reached agreement on the overall performance of the crossing and approaches being studied. The questions ask the IMMP team members to reach a subjective conclusion about performance of the crossing and approaches, with the hope of developing a common point of view that can eventually be applied to other forestry topics. An example of one of these subjective guestions is provided below in Figure 5.

Additionally, at the end of the questionnaire, the interagency team "graded" each crossing and its approaches (together) using a letter grading system. This was included as an intuitive grading system that the project IMMP participants were familiar with (A = Excellent, B = Good, C = Fair, D = Poor, F = Fail). The assigned letter grade is recorded in the pilot project protocol and on the photographic log discussed below. Grading the crossings and its approaches compelled the team members to discuss their opinions regarding the evaluation before reaching consensus.

Enter the appropriate rating for the crossing, utilizing the matrix provided below.								
	Performing properly, no sign. sediment delivery problems Performing properly, sediment is s being deliver		Performing properly, no sediment delivery, but there is potential	Not performing properly, sign. sediment delivery problems				
Properly designed and constructed	1 2		3	4				
Properly designed, not properly constructed	5	6	7	8				
Not properly designed, constructed to design	9	10	11	12				

Figure 5. California subjective crossing matrix used for the pilot project.

Structure of the California Watercourse Crossing Protocol

After field testing in 2006, the California specific and subjective questions (described above) were merged with the crossing portion of the USFS BMP monitoring protocol, forming a new "California watercourse crossing protocol" consisting of 270 questions (described below and provided in Appendix A). This revised protocol was field tested in 2007.

The California watercourse crossing protocol is divided into seven main categories:

- <u>General Questions</u>. Questions gathering information on landowners, THP number, crossing location, bedrock geology, watercourse classification, and other site information.
- <u>Approach Areas A and B</u>. Questions that evaluate design, implementation, and performance of the road approach on the left side of the crossing when looking downstream ("A Side Approach") and on the right side of the crossing when looking downstream ("B Side Approach") (Figure 6). The approaches are further divided into the portions of the approaches that are outside and inside of the Watercourse and Lake Protection Zone (WLPZ)/Equipment Limitation Zone (ELZ) (i.e., areas of increased watercourse protection as defined in the FPRs).

- <u>Water Drafting Areas A and B</u>. Questions that evaluate implementation, design, and performance of water drafting sites on either side of the crossing.
- <u>Crossing Structure</u>. Questions evaluating implementation, design, and performance of the crossing structure itself.
- <u>Summary Questions</u>. Subjective questions requiring field crew members to formulate conclusions based on cumulative knowledge and opinion developed during discussion and response to the numerous objective questions in the monitoring protocol. These questions query overall performance (implementation, design, and observed direct or potential sediment delivery) of the crossing and its approaches. Additionally, a letter grade is assigned to the crossing and its approaches. Responses are based on consensus among field crew participants.

Figure 6. Typical protocol survey area, including approach areas A and B inside and outside the WLPZ/ELZ, and the crossing structure (Figure 2 in the IMMP Protocol Field Guide).

Field Testing

Field work began in July 2006 and was divided into two data collection phases (one in 2006 and the other in 2007), with each phase followed by revisions to the monitoring protocol (see discussion above, "Adaption and Modification of USFS BMP Monitoring

Protocol"). Landowner cooperation was recognized as a key component to success of the pilot project. As such, a letter that described the pilot project with assurance that the project would not include legal/enforcement actions was widely distributed (e.g., sent to CFA, FLOC, CLFA, the Forest Guild, UC Cooperative Extension, Farm Bureau, Forest Stewardship newsletter).

a) Training

Two training sessions were conducted with the purpose of familiarizing field crews with the USFS BMP monitoring protocol questions, California specific questions, and data collection. Field training sites were located at Jackson Demonstration State Forest and nearby industrial timberlands in the northern part of Coast Range and at LaTour Demonstration State Forest in the Cascade Range during May and June of 2006 (Figures 7 and 8). Data was recorded on hand held computers (PDAs), as specified by the USFS BMP monitoring protocol. Each watercourse crossing and both road approaches to the crossing were photo documented with standardized protocols.

Figure 7. Pilot project training in western Mendocino County in May 2006.

Figure 8. Pilot project training on LaTour Demonstration State Forest, located in Shasta County, in June 2006.

b) Protocol Testing

Following training, the field crews evaluated watercourse crossings in their respective areas. Sites were located on both large and small private timberland ownerships. Of the 22 plans visited, all were THPs except for two Nonindustrial Timber Management Plans (NTMPs). Two THPs were associated with timberland conversions. A total of 54 crossings were evaluated by the two teams during 2006 and 2007. Generally, three to four crossings were evaluated per field day with each evaluation taking between 45 minutes and two hours to complete, depending on field team familiarity with protocol questions and crossing complexity. The Inland team inspected 14 additional crossings without using the protocol. An overall summary of the crossings evaluated during the pilot program is provided in Table 1.

	Coast Team	Inland Team	Totals
Crossings Inspected with Protocols	29	25	54
Crossings Inspected without Protocols ⁹	0	14	14
Crossings Re- Inspected with Protocols	0	3	3
Total Crossings Evaluated	29	42	71
Total Number of Times Protocols Used	29	28	57
Plans	13	9	22
Field Days	9	14	23
Crossings/Day	3-4	3-4	3-4

Table 1. Summary of pilot project field testing of monitoring protocols.

Field sampling typically began by driving and/or walking to a pre-selected high risk watercourse crossing. After answering general questions, the portion of the "A" side road approach that was outside of the WLPZ/ELZ was identified using a cloth or nylon tape (Figure 9). Questions in the protocol about this portion of road approach were then answered. Next, road approach side "A" within the WLPZ/ELZ was observed and questions related to this segment were answered. The crossing structure itself was then evaluated, followed by an evaluation of road approach side "B" (inside and outside the WLPZ/ELZ). Finally, summary questions about total sediment delivery and overall performance of the crossing and approaches were answered. Late in the second field season, additional questions about water drafting sites within approach areas A and B were added to the protocol.

During the course of field work, problems in using the USFS BMP monitoring protocol were identified. In particular, the field teams found that the USFS protocol did not apply well to California forested watersheds, and included BMPs that are not relevant to California timber operations, while not addressing California FPR requirements. For example, the USFS protocol required making evaluations several hundred feet from the watercourse being evaluated, with observed sediment movement often being assessed in a watercourse other than the one being evaluated.

⁹ After the Inland team completed protocol evaluations, additional crossings were inspected the same day without using the California watercourse crossing protocol due to the tedious nature of the process (i.e., "protocol fatigue") and because of limited field time.

Figure 9. Bridge evaluated in Humboldt County by the Coast team during the 2006 field season. Note the tape stretched along the road approach to measure road length in the WLPZ.

c) Photo Documentation

Site conditions were documented with a series of digital photographs that were taken from the "A" side approach towards the crossing, the "B" side approach towards the crossing, upstream towards the crossing, and downstream towards the crossing. Additional photographs were taken of noteworthy features (e.g., where there was evidence of significant problems related to Forest Practice Rule implementation or effectiveness, such as fill slope failure, sediment deposition related to the crossing, etc.). A paper field photo log was developed to track photos (see example, Figure 10). While sketches were not regularly made during the pilot project, the photo log form includes space to draw sketches if needed. A blank photo log is included in the Protocol Field Guide (Appendix B).

CAL FIRE California Department of Fish and Game Regional Water Quality Control Boards California Geological Survey									
Page 1	Of 1	Date 7/18/2006	Protocol No. (enter code G1) CA06N0004	Plan No. 2-05-060	-SHA	Crossing No.	Photographer: Longstreth		
Participants: Cunningham, Wilson, Croteau, Longstreth 40.9		GPS Location Latiti 40.93096	PS Location Latitude N 0.93096		PS Location Longitude V	Crossing Type (enter code GC-110) 1 – Single Pipe Culvert			
Overall Letter Grade For Crossing (enter code C C			er code O-269)	O-269) Overall		rall Letter Grade For Approaches (enter code O-270) C			
		NARRAT	IVE DESCRIF	TION C)F PH	OTOGRAPHS /	SKETCHES		
		VIE	LOOKING UP: Looking foregroup where the the armo overtopp	STREAM north, ups nd. Thes ere is an ring and t ed this wi	TOWA stream e bould eviden the CM inter.	RDS CROSSING ((outlet), at the cros lers apparently orig lack of armoring. P. This apparently	SUTLET sing. Note the boulders in the inated from above the CMP Also note the gully to the left of resulted when the crossing was		
A	1ª		PHOTO FI	PHOTO FILE NO. 3					
VIEW LOOKING D Looki instal evide condu DISTA PHOT				DOWNSTREAM TOWARDS CROSSING INLET ing south, downstream (inlet) of the crossing. Note the skewed llation of the CMP and the fresh excavation in the foreground. Forensic ince indicated that this CMP overtopped and maintenance was ucted which resulted in the channel excavation pictured. ANCE AND BEARING FROM CROSSING MIDPOINT (FEET):~ 40 feet/South 0 FILE NO. 2					
			VIEW	FROM A	PPRO	ACH A SIDE			
			Approach picture. DISTANCE PHOTO FIL	n A lookin : AND BEAF .E NO. 1	ig west RING FR	towards crossing. OM CROSSING MIDPO	Crossing is in the middle off the		
VIEW FROM APPROACH B SIDE									
			Approach Note grai down slo DISTANCH PHOTO FIL	n B lookin y road roo pe in a gu E AND BEA LE NO. 4	ig east cking ir ully indi RING FF	towards the crossir front of the pickup cating that the culv ROM CROSSING MIDPO	ig in the middle of the picture. . This road material was found ert likely overtopped. DINT (FEET): ~40 feet/East		

ID DUCTOODADUUG DEDO

Figure 10. Example of a completed pilot project photo log.

Development of Protocol Field Guide

A field guide describing use of the protocol was developed at the beginning of the pilot project and substantially modified in 2007 (see Appendix B). The field guide includes a list of equipment needed to complete watercourse crossing evaluations, explanation of how to conduct field procedures, photo log and sketch procedures, monitoring tips, and definitions of terms used in the protocol. Also included are numerous illustrations and photographs to aid in the understanding of the protocol questions.

Data Recording

Fifty-four watercourse crossings were evaluated using protocols that varied from between 194 to 270 questions (depending on which revision of the protocol was being used). While not every question was answered during each evaluation, a substantial amount of data has been accumulated.¹⁰ At the start of the 2006 field season, the field teams entered data directly into hand held PDAs (Figure 11), but it was determined that keeping track of the evaluation questions in the field was easier if paper forms were used. Some questions were inadvertently skipped when using the PDA because not all of the protocol questions are shown on the PDA screen at one time. Additionally, the PDAs were difficult to use in bright sunlight, and, in some instances, battery power was depleted before the end of the field session. As a result, much of the pilot program data was recorded on paper log sheets.

Figure 11. Anthony Lukacic, CAL FIRE, using a PDA for data entry during the LaTour Demonstration State Forest field training session in June 2006.

¹⁰ For the seven watercourse crossing evaluations entered in the IMMP pilot project database, an average of approximately 120 questions per watercourse crossing were answered.

Database Development

A Microsoft Access database has been developed for entering and analyzing the pilot project data. Beta version 0.9 of this database has incorporated all the California watercourse crossing protocol questions and answers developed during the two-year pilot phase, and an intersect table has been developed to facilitate question branching and identifying unique answer codes. A responses table is provided to store the answers for each crossing. The database form includes several input masks, edit and new crossing prompts, sample queries, and at least one sample report. Examples of possible database queries, loosely tied to IMMP overarching questions, include the following:

- How many crossings (defined as the road area within bankfull channel width), where the provisions of both the FPRs and the plan were properly implemented, contributed measurable amounts of sediment to the watercourse?
- By what mechanism was the measurable amount of sediment delivered to the watercourse from the crossing (defined as the road area within bankfull channel width), where the FPRs and the plan were properly implemented?
- What was the one, primary cause or contributing factor of soil movement from the crossing (defined as the road area within bankfull), where the FPRs and the plan were implemented?
- > What percentage of culvert crossings had diversion potential?
- What percentage of culvert crossings had a diameter equal to or larger than the active channel width?
- Number/percentage of crossings or approaches receiving various letter grades (i.e., A, B, C, D, and F).
- Percentages of crossings, by crossing type (e.g., culvert, ford, bridge, etc.) with different sediment delivery categories (e.g, trace (<1 cubic yard), 1-10 cubic yards, 11-50 cubic yards, etc.).

IMMP PILOT PROJECT FINDINGS

Field work completed in 2006 and 2007 by the two pilot project field teams provide the following products and conclusions. Because the pilot project protocols were revised several times during collection of field data, not all data is comparable, which limits formal analysis of the overall data set.

• Development of a watercourse crossing evaluation protocol.

As described above, a portion of the existing USFS BMP monitoring protocol was used as the starting point for IMMP watercourse crossing evaluations. During the course of the pilot project, the field teams determined that the USFS protocol, while detailed, did not adequately account for situations routinely found on state and private land timber harvesting projects in California. The IMMP teams, with support from the IMMP Subcommittee, made and tested several protocol revisions to more accurately reflect conditions as found in California THPs. The resulting IMMP protocol can be used by Review Team agencies and the regulated public to evaluate how well practices associated with perceived "high risk" watercourse crossings are performing.

Demonstration that the Review Team agencies can work together cooperatively and achieve consensus, with a greater appreciation for each agency's concerns and objectives related to the impacts from timber harvesting (Figures 12 and 13).

All the Review Team agencies agree protection of resources at risk (e.g., soil, water quality, biological) are of primary importance. However, during the review process, agency representatives may disagree as to the best way to specify crossing mitigation within a plan, or even if a given mitigation is necessary. These differing opinions can affect the overall review process, both by creating tension among the Review Team members and occasionally by affecting individual landowners. Such inability to reach consensus can lead to longer plan review periods.

The IMMP process allowed Review Team agency representatives to work together in a non-regulatory environment without review process concerns, regulatory timelines, and competing and sometimes conflicting regulations. This more "relaxed" situation allowed the members of the IMMP field teams to focus on evaluating the selected watercourse crossings, often prompted spirited discussion, and ultimately led to consensus on all watercourse crossings evaluated. This environment and discussion also led to a greater appreciation among the Review Team agencies for each agency's expertise and concerns that are not always obvious during the narrowly focused review process.

Figure 12. Pilot project Inland team members Dave Longstreth, CGS, and Joe Croteau, DFG, at a culvert installed on a THP in Shasta County in August 2006.

Figure 13. Pilot project Coast team members Dave Longstreth, CGS, and Richard Fitzgerald, DFG, evaluating a removed watercourse crossing in Mendocino County in August 2006.

• Agreement that the IMMP approach to interagency problem solving should be fostered and continued, but not limited to watercourse crossings.

A goal of the IMMP was to encourage Review Team agencies to work cooperatively and reach consensus on issues related to timber harvesting. As noted previously, high risk watercourse crossings were selected as the subject of the pilot project to test this approach. However, it was not the intent of the IMMP Subcommittee to focus exclusively on watercourse crossings for the long-term program. Rather, it was agreed that the IMMP process should be used to look at multiple issues related to the impacts of timber harvesting on resources at risk.

• For the IMMP team members, the pilot project was a beneficial training exercise for evaluating watercourse crossings and an effective team building exercise.

The detailed evaluation of watercourse crossings required by the protocol developed a heightened appreciation in IMMP Team members for what is required to properly install or remove a watercourse crossing. This awareness has carried over to team members' duties on Pre-Harvest Inspections (PHIs), routine plan inspections, etc.

The detailed evaluation of watercourse crossings required by the protocol increased the awareness of the IMMP teams to the issues surrounding watercourse installation (including upgrading) and removal. It also pointed to the need for follow-up inspections by trained staff to insure proper implementation of required practices. Finally, the protocol helped the team members recognize the need to evaluate the entire crossing area, including road approaches and the watercourse upstream and downstream of the crossing.

• Virtually all watercourse crossings or approaches to crossings deliver some sediment, even when the Forest Practice Rules or any additional THP specific mitigation measures are followed appropriately.

The detailed evaluation of watercourse crossings required by the protocol revealed that virtually all crossings and/or the associated approaches delivered some sediment to a watercourse. This sediment delivery consisted of "trace" (defined as less than one cubic yard) amounts for the majority of evaluated crossings. But some sediment was delivered. The IMMP teams concluded that, while it appears some sediment delivery is unavoidable, assiduously following the Forest Practice Rules and THP requirements generally limited delivery to trace amounts. There was general agreement that: (1) it is nearly impossible to stop trace amounts of fine sediment from entering watercourses at crossings, (2) better location and installation of road drainage facilities/structures is required near crossings to prevent larger amounts of sediment from being delivered, (3) rock, mulch, or additional sediment control measures are often needed on road approaches near crossings to limit sediment entry, and (4) training and oversight of crossing installation is necessary.

• Improper installation of crossings and drainage structures near crossings, and improper crossing removal, are major causes of sediment movement and deposition, which is consistent with findings of both the earlier HMP and MCR studies.

Installation problems included misapplication of the requirements of the Forest Practice Rules/BMPs or THP-specific engineering requirements, or simply poor workmanship.

• The high value of photo logs to document practices.

The final IMMP protocol specifies that at least four photos be taken of every crossing (upstream and downstream of each crossing and from both approaches). The resulting photo logs provide a means of comparison for crossings that are reinspected, allowing the Review Team agencies and the regulated public to evaluate how well crossings have held up over multiple winters. The photo log catalogs well installed and poorly installed crossings that can be used for training purposes.

Although the protocol was comprehensive, repetitious, and tedious to use, it forced team members to be objective and was instrumental in allowing the team members to reach consensus.

The pilot project protocol is tedious to carry out. As a result, the IMMP teams often reached the point of "protocol fatigue" by the end of the day. This condition increased as the field portion of the pilot protocol progressed. However, the required attention to detail forced the team members to work in a more cooperative manner than is generally experienced during PHIs and Review Team meetings, which often require agency representatives to focus on individual resources. This positive atmosphere led to greater appreciation for each agency's expertise and concerns, provided an effective team building exercise, and was also instrumental in reaching team consensus.

• Although more time was often spent on road approaches than on the crossing itself, this effort revealed that a high percentage of problems (i.e., sediment transport and deposition into a watercourse) originate on the approaches.

The Forest Practice Rules and THP specific mitigations, as well as evaluations during PHIs, generally focus on the relatively small area taken up by the crossing because the relatively large amount of earth movement during installation is considered to be the major potential source of sediment to the watercourse.

However, when tracking potential sediment sources from origin to the final deposition point, as required by the protocol, the field teams discovered that sediment deposited in the WLPZ or within bankfull stage often originated from the approaches, or was in addition to sediment being input from crossing installation or removal.

 In areas not dominated by mass wasting processes, the majority of management-related sediment input into watercourses is often a result of poor installation or maintenance of crossings and associated road approaches. This includes installation and maintenance of road drainage structures and appropriate road surfacing near crossings.

Reducing sediment deposition into a watercourse can be accomplished with improved installation, maintenance, and removal practices at and near crossings. IMMP field team members have concluded that this requires:

- Improved Licensed Timber Operator (LTO) training. LTO recognition of the importance and need for quality installations is a key factor in reducing sediment input. This training should include why sediment input into a watercourse can result in an adverse impact to the beneficial uses of water.
- <u>Greater emphasis placed on active and post-active multi-agency inspections</u>. Inspections by trained staff from all Review Team agencies will allow potential problems to be noted and addressed. This could also reduce adverse effects from poor implementation or maintenance-related issues.

IMMP PILOT PROJECT DISCUSSION AND LIMITATIONS

The pilot project has accomplished a majority of its goals. A monitoring protocol that promotes interagency interaction and cooperation and that addresses overarching agency questions about watercourse crossing design and installation has been developed, tested, and is ready for routine use. In addition, a database application has been developed to automate data entry and analysis.

Interagency Interaction and Cooperation

The California watercourse crossing protocol is a labor intensive process, where the same or very similar questions are asked several times during an evaluation. This repetition may appear to be a limitation, but field testing found the process to focus attention on details that may be overlooked under other circumstances. The protocol also promoted field discussions at crossing evaluation sites and required development of answers to subjective summary questions. This led to consensus among different agency representatives about the extent and cause of observed problems and how crossing installation or design might be improved.

Field team interactions improved the quality of observations and analysis skills of individual team members for evaluating watercourse crossing performance and potential for sediment delivery. Both field teams found that the pilot project promoted interagency cooperation, consensus building, and development of interpersonal communication skills. The teams also determined that use of the California watercourse crossing protocol could provide useful training for both the government and private sectors.

Development of Database, Analysis, and Overarching Questions

A Microsoft Access database was developed for data entry and to analyze pilot project data. Field data from seven watercourse crossing evaluations that utilized the most recent version of the protocol have been entered into the database. From this limited sample, it appears that queries can be developed to answer agency overarching questions. However, because the monitoring protocol includes dependent layers, these queries may capture only a portion of the monitoring protocol data related to an overarching question. Moreover, because overarching questions encompass numerous generalized issues while the monitoring protocol asks very specific questions, it may take several queries to address one overarching question.

Because sampling was limited to "high risk" crossings, a non-random method of site selection was used. As a result, the pilot project was not a "scientific" or "statistically valid" study. Results from this approach may be useful in understanding impacts from high risk watercourse crossings in California, but does not provide a basis for developing generalized principles or conclusions.

Field Monitoring, Corrective Actions, and Water Quality Protection

The pilot project focused on the effectiveness of current practices, and not on legal/enforcement actions. Field observations did, however, lead to implementation of some corrective work to reduce the potential for sediment delivery before stressing winter storms. Such corrective work required communication with the RPF and LTO responsible for the THPs. Additionally, it became clear to the field teams that forest practices could be corrected and improved upon utilizing increased multi-agency inspection that results in LTO and RPF education.

Timber Harvest Review Efficiency

The California watercourse crossing protocol produced by the IMMP pilot program encourages interagency cooperation, normalization of observation skills, and development of multi-agency post PHI (active and post active) inspections to minimize the potential for sediment delivery. This is consistent with the recommendations of larger statewide plans that call for improvements in timber harvesting review efficiency that conserve available financial, governmental, physical, and social resources, while providing more expeditious review timelines.

Comparability to Other Monitoring Programs

Because the California watercourse crossing protocol was adapted from the USFS BMP monitoring protocol (Welsch and others 2007), many of the questions remain the same or are very similar. As such, comparison of IMMP protocol findings with results from states using the USFS BMP monitoring protocol may be possible. Such analyses, however, have not been completed to date.

While the pilot project may be used to evaluate the implementation and effectiveness of practices at high risk, non-random watercourse crossings in California, it cannot answer all relevant water quality-related monitoring questions. To put the results of the IMMP work into proper context, it must be viewed as only one part of several additional monitoring projects already being undertaken in California (Figure 14). These efforts include monitoring work that occurs on all or a large percentage of plans (e.g., Forest Practice inspections conducted by CAL FIRE, DFG 1600 permit inspections), a random 10 percent selection of plans for crossing, road, and WLPZ monitoring known as FORPRIEM (Forest Practice Rule Implementation and Effectiveness Monitoring) conducted by CAL FIRE, and a limited number of instream watershed-scale research projects/instream channel monitoring studies (e.g., Caspar Creek, Kings River Experimental Watershed [KREW] study, South Fork Wages Creek, Judd Creek, etc.).

Figure 14. Diagram illustrating the relationship of IMMP work to other water qualityrelated monitoring approaches currently underway in California.

Wider Concerns Regarding Timber Harvest Practices in California

The IMMP pilot project is focused on evaluation of high risk watercourse crossings and the road approaches to the crossings. It does not address a variety of other topics and issues regarding review of timber harvesting in California (e.g., tree removal (harvesting, wildfire) versus impacts to habitat, slope stability, water quality and public safety). While the IMMP pilot project has been successful in meeting its initial goals regarding interagency study of high risk watercourse crossings, future work by the IMMP Subcommittee will need to be implemented to address these other issues.

IMMP PILOT PROJECT RECOMMENDATIONS

The recommendations developed from the pilot project are as follows:

- Use the current version of the protocol as a multi-agency <u>training tool</u> to help field personnel recognize critical situations on post-harvest Erosion Control Maintenance Program (ECMP) inspections. There is consensus that the IMMP watercourse crossing protocol should be used as a **mandatory** Review Team training tool, allowing agency staff to benefit and learn from the IMMP "process."
- 2. Form interagency teams of professionals and/or technicians from the Review Team agencies to fully implement the IMMP watercourse crossing protocol. Agency personnel from all the Review Team agencies should be trained on erosional processes at and near crossings, rotating agency staff into multiple regional teams on a regular basis to prevent staff "burn-out." Resource professionals and/or technicians can do this work if: (1) they are adequately trained, (2) they carefully read and consider the questions, (3) they have observational skills, (4) they have a basic understanding of erosion processes and BMPs, and (5) the IMMP Subcommittee has an adequate quality assurance/quality control (QA/QC) program in place to check their work.
- Create QA/QC field team(s) from experienced personnel to provide oversight of the rotating IMMP field teams. The IMMP Subcommittee should develop QA/QC procedures that will utilize CAL FIRE Monitoring Foresters and other agency representatives as available, to verify data accuracy and consistent application of the IMMP protocols.
- 4. Create a dedicated database site where interagency teams may deposit data and photographic logs. The database site will require dedicated personnel capable of managing and processing data, conducting data analysis, and reporting results on a regular basis to the regulated public, agency managers, and appropriate boards.
- 5. Continue interagency outreach to landowners, RPFs, LTOs, and agency representatives based on the results of monitoring work. Training should also be provided to RPFs and landowners on use of the IMMP watercourse crossing protocol on their lands, with the goal of improving crossing practice implementation and ensuring effective crossing design in THP development.
- 6. The State Board of Forestry and Fire Protection's newly forming Research and Science Committee should investigate the use of the IMMP watercourse crossing protocol to meet various agency monitoring requirements, including monitoring requirements in watersheds with state and federally listed coho salmon.
- 7. Provide adequate funding and agency personnel years for full implementation of the IMMP watercourse crossing protocol, to support training programs, and to develop and test monitoring protocols developed by the IMMP Subcommittee for timber

operations. Funding should be sought through a joint agency Budget Change Proposal. The Board and the IMMP Subcommittee members should also investigate the possibility of acquiring funding from other sources, including state, federal and/or private grants to support this work.

- 8. Evaluate the remainder of the U.S. Forest Service's "Repeatable Regional Protocol for Performance-Based Monitoring of Forestry Best Management Practices" (Welsch and others 2007) utilizing the IMMP Subcommittee, to determine if more comprehensive and efficient protocols could be developed for additional practices used to protect water quality in California.
- 9. Use the IMMP field teams to refine and test new monitoring protocols determined to be appropriate by the IMMP Subcommittee.
- 10. Utilize the IMMP Subcommittee and IMMP field teams to: (1) examine other issues of concern related to timber harvesting operations; (2) facilitate the resolution of issues in a mutually agreeable manner; (3) develop recommendations for each team member's respective agency's management, and (4) develop curriculum for interagency training. This will continue improvements in agency response to timber harvesting issues to protect water quality and increase efficient THP review.

ACKNOWLEDGEMENTS

We thank all the landowners that assisted us with the pilot project during 2006 and 2007. Large landowners included: Collins Pine Company, Crane Mills, Green Diamond Resource Company, Hawthorne Timber Company/Campbell Timberland Management, Mendocino Redwood Company, The Pacific Lumber Company, Redwood Empire, Roseburg Resource Company, and Sierra Pacific Industries. Company personnel were very cooperative and several representatives attended IMMP field inspections. Small landowners included: Peter Michael Winery, Nash Creek Vineyards Inc., Bohemia Ranch, LLC, Diane Marvin, Greg Gates, and George Koenig. We also acknowledge the staff on Jackson and LaTour Demonstration State Forests for their assistance with the pilot project field training sessions in the spring of 2006. Mr. Dave Welsch, U.S. Forest Service Northeastern Area State and Private Forestry, and Dr. Robert Sacks, Blue Jay Software Associates, provided generous assistance with the USFS BMP Monitoring Protocols and the software program used with the pocket computers in 2006. Mr. Doug Burch, California Department of Fish and Game, developed the majority of the pilot project database.

LITERATURE CITED

- Board of Forestry and Fire Protection (BOF). 1999. Hillslope monitoring program: Monitoring results from 1996 through 1998. Interim report prepared by the Monitoring Study Group (MSG). Sacramento, CA. 70 p. Available at: <u>http://www.fire.ca.gov/CDFBOFDB/pdfs/rept9.pdf</u>
- Board of Forestry and Fire Protection (BOF). 2006. Monitoring Study Group (MSG) minutes for the meeting held in Redding, CA on May 23, 2006. 6 p. Available at: http://www.fire.ca.gov/CDFBOFDB/pdfs/MSGMay2006.pdf
- Board of Forestry and Fire Protection (BOF). 2007. Monitoring Study Group Strategic Plan. California State Board of Forestry and Fire Protection. Sacramento, CA. 32 p. Available at: http://www.fire.ca.gov/CDFBOFDB/PDFS/MSG_Strategic_Plan%20_12a.pdf
- Brandow, C.A., P.H. Cafferata, and J.R. Munn. 2006. Modified completion report monitoring program: monitoring results from 2001 through 2004. Monitoring Study Group Final Report prepared for the California State Board of Forestry and Fire Protection. Sacramento, CA. 85 p. Available at: http://www.fire.ca.gov/CDFBOFDB/pdfs/MCRFinal Report 2006 07 7B.pdf
- Bundros, G.J., D. Short, B.E. Barr, and V.C Hare. 2003. Upper Redwood Creek watershed road assessment summary report. Unpublished Redwood National and State Parks final report submitted to the Pacific Coast Fish, Wetlands and Wildlife Restoration Association. Arcata, CA. 137 p.
- Cafferata, P.H. and J.R. Munn. 2002. Hillslope monitoring program: monitoring results from 1996 through 2001. Final Report submitted to the California State Board of Forestry and Fire Protection. Sacramento, CA. 114 p. Available at: http://www.fire.ca.gov/CDFBOFDB/pdfs/ComboDocument 8 .pdf
- California Resources Agency, California Department of Forestry and Fire Protection, California Department of Fish and Game, California Geological Survey, Central Valley Regional Water Quality Control Board, North Coast Regional Water Quality Control Board (CRA et al.). 2006. Interagency Mitigation Monitoring Program general framework report. Sacramento, CA. 20 p. Available at: <u>http://bofdata.fire.ca.gov/board_committees/monitoring_study_group/msg_monitoring_reports/cra_et_al. 2006_immp_general_framework_report.pdf</u>
- California State Water Resources Control Board (CSWRCB). 1987. Final report of the Forest Practice Rules assessment team to the State Water Resources Control Board ("208 Report"). Sacramento, CA. 200 p.
- Coe, D.B.R. 2006. Sediment production and delivery from forest roads in the Sierra Nevada, California. Master of Science Thesis. Colorado State University, Fort Collins, CO. 110 p. Available at: http://www.bof.fire.ca.gov/pdfs/DrewCoe_FinalThesis.pdf
- Council of Western State Foresters (CWSF). 2007. Forestry best management practices for western states: a summary of approaches to water quality implementation and effectiveness monitoring. Lakewood, CO. 20 p. Available at: <u>http://www.wflccenter.org/news_pdf/240_pdf.pdf</u>
- Durgin, P.B., R.R. Johnston, and A.M. Parsons. 1989. Critical sites erosion study. Tech. Rep. Vol. I: Causes of erosion on private timberlands in Northern California: Observations of the Interdisciplinary Team. Cooperative Investigation by CDF and USDA Forest Service Pacific Southwest Forest and Range Experiment Station. Arcata, CA. 50 p.
- Ethridge, R. 2004. Montana forestry Best Management Practices monitoring 2004 forestry BMP audit report. Montana Department of Natural Resources and Conservation. Missoula, MT. 64 p. Available at: <u>http://www.dnrc.state.mt.us/bmp.pdf</u>

- Ferrare, K., D. Welsch, W. Frament, T. Luther, and P. Barten. 2007. Best management practices (BMP) manual—desk reference: Implementation and effectiveness for protection of water resources. USDA Forest Service, Northeastern Area State and Private Forestry. NA-FR-02-07. Newtown Square, PA. 153 p. plus Appendices. Available at: <u>http://www.na.fs.fed.us/pubs/detail.cfm?id=3464</u>
- Furniss, M.J., T.S. Ledwith, M.A. Love, B. McFadin, S.A. Flanagan. 1998. Response of road-stream crossings to large flood events in Washington, Oregon, and northern California. USDA Forest Service. Technology and Development Program. 9877--1806—SDTDC. 14 p. Available at: http://www.stream.fs.fed.us/water-road/w-r-pdf/floodeffects.pdf
- Harris, R.R., J.M. Gerstein, and P.H. Cafferata, 2008. Changes in stream channel morphology caused by replacing road-stream crossings on timber harvesting plans in northwestern California. Western Journal of Applied Forestry 23(2): 69-77.
- Ice, G., L. Dent, J. Robben, P. Cafferata, J. Light, B. Sugden, and T. Cundy. 2004. Programs assessing implementation and effectiveness of state forest practice rules and BMPs in the west. Paper prepared for the Forestry Best Management Practice Research Symposium, April 15-17, 2002, Atlanta, GA. Water, Air, and Soil Pollution: Focus 4(1): 143-169. Available at: <u>http://www.bof.fire.ca.gov/pdfs/IceEtAIBMPPaper_pub.pdf</u>
- Ice, G. and E. Shilling. 2007. Nationwide trends in implementation of best management practices (BMPs) for forestry. In: Laenen, A., ed. Proceedings of the American Institute of Hydrology 2007 Annual Meeting and International Conference, "Integrated Watershed Management: Partnerships in Science, Technology, and Planning." April 22-25, 2007, Reno, Nevada. Hydrological Science and Technology 23(1-4): 111-120.

Johnson, R. D. 1993. What does it all mean? Environmental Monitoring and Assessment 26:307-312.

- Keller, G. and J. Sherar. 2003. Low-volume road engineering Best Management Practices field guide. Final Report prepared for the U.S. Agency for International Development (USAID), in cooperation with the USDA Forest Service and Virginia Polytechnic Institute and State University. Available at: http://ntl.bts.gov/lib/24000/24600/24650/Index BMP_Field_Guide.htm
- Keppeler, E.T., P.H. Cafferata, and W.T. Baxter. 2007. State Forest Road 600: a riparian road decommissioning case study in Jackson Demonstration State Forest. California Forestry Note No. 120. California Department of Forestry and Fire Protection. Sacramento, CA. 22 p. Available at: http://www.fs.fed.us/psw/topics/water/caspar/pubs/Rd600DecomNote.pdf
- Klein, R.D. 2003. Erosion and turbidity monitoring report, Sanctuary Forest stream crossing excavations in the upper Mattole River basin, 2002-2003. Final Report prepared for the Sanctuary Forest, Inc., Whitethorn, CA. 34 p. Available at: <u>http://www.fire.ca.gov/CDFBOFDB/pdfs/RKleinSanctSept2003.pdf</u>
- Lee, G. 1997. Pilot monitoring program summary and recommendations for the long-term monitoring program. Final Report prepared by the State Water Resources Control Board. Submitted to the California Department of Forestry under CDF Interagency Agreement No. 8CA27982. Sacramento, CA. 69 p. Available at: <u>http://www.fire.ca.gov/CDFBOFDB/pdfs/6-Lee_1997_PMP-LTMP_Complete.pdf</u>
- MacDonald, L.H., 1994 . Developing a monitoring project. Journal of Soil and Water Conservation 49(3):221-227. Available at: <u>http://www.cnr.colostate.edu/frws/people/faculty/macdonald/publications/Developing%20a%20Monitoring%20Project.pdf</u>
- MacDonald, L.H. 2005. Draft document written titled "Discussion Issues: USFS Best Management Practices Evaluation Program (May 2005 Draft)," prepared for the USFS BMPEP peer review group meeting, USFS-PNW, Corvallis, OR, 17-19 August, 2005. 10 p.

- MacDonald, L.H., D. Coe and S. Litshert. 2004. Assessing cumulative watershed effects in the central Sierra Nevada: hillslope measurements and catchment-scale modeling. P. 149-158 in Murphy, D.D. and P.A. Stine (eds.). Proceedings of the Sierra Science Symposium, 2002, October 7-10, Kings Beach, CA, General Technical Report PSW GTR-193, Albany, CA, Pacific Southwest Experiment Station, Forest Service, US Department of Agriculture. 287 p. Available at: http://www.fs.fed.us/psw/publications/documents/psw_gtr193/psw_gtr193_4_05_MacDonald_Coe_Lit.pdf
- McCashion, J.D., and R.M. Rice. 1983. Erosion on logging roads in northwestern California: How much is avoidable? Journal of Forestry 81(1): 23-26. Available at: http://www.fs.fed.us/psw/publications/rice/McCashion.pdf
- MOU Monitoring Workgroup. 2005. Joint report on monitoring terms and authorities. Final Report dated February 9, 2005. Report available from the California Department of Forestry and Fire Protection, Sacramento, CA. 9 p.
- Pacific Watershed Associates (PWA). 2005. Evaluation of road decommissioning in the Elk River watershed, Humboldt County, California. Final Report prepared for the Pacific Lumber Company, Scotia, CA. Pacific Watershed Associates, Arcata, CA. 29 p.
- Pyles, M.R., A.E. Skaugset, and T. Warhol. 1989. Culvert design and performance on forest roads. Paper presented at the 12th Annual Council on Forest Engineering Meeting, Coeur d'Alene, ID, August 27-30, 1989. p. 82-87.
- Rae, S.P. 1995. Board of Forestry pilot monitoring program: instream component. Unpublished Final Report prepared by the California Department of Fish and Game. Submitted to the California Department of Forestry under Interagency Agreement No. 8CA28103. Sacramento, CA. Volumes I plus Appendices. 98 p. Available at: <u>http://bofdata.fire.ca.gov/board_committees/monitoring_study_group/msg_monitoring_reports/rae_199</u> <u>5_pilot_monitoring_program-_instream_vol_1_.pdf</u>
- Ryder, R. 2004. A repeatable BMP protocol for outcome based monitoring for timber harvest operations. PowerPoint presentation prepared for the California Licensed Foresters Association (CLFA) Annual Conference, March 5, 2004. Sacramento, CA. Available at: <u>http://clfa.org/pdffiles/MonitoringBMPs.pdf</u>
- Ryder, R. and P.J. Edwards. 2005. Development of a repeatable regional protocol for performance-based monitoring of forestry Best Management Practices. Gen. Tech. Rep. NE-335. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 15 p. Available at: http://www.fs.fed.us/ne/newtown_square/publications/technical_reports/pdfs/2005/ne_gtr335.pdf
- Spittler, T.E. 1995. Geologic input for the hillslope component for the pilot monitoring program. Unpublished Final Report prepared by the Department of Conservation, Division of Mines and Geology. Submitted to the California Department of Forestry and Fire Protection under Interagency Agreement No. 8CA38400. Sacramento, CA. 18 p. Available at: http://www.fire.ca.gov/CDFBOFDB/pdfs/PMP-geology.pdf
- Stillwater Sciences. 2002. Review of the Hillslope Monitoring Program report addressing the effectiveness of Forest Practice Rules in preventing sediment input to streams. Unpublished report presented to the State Water Resources Control Board hearing on SB 390, waivers for waste discharge requirements, July 17, 2002, Sacramento, CA. 5 p.
- Tuttle, A.E. 1995. Board of Forestry pilot monitoring program: hillslope component. Unpublished Final Report prepared by Andrea Tuttle and Associates, Arcata, CA. Submitted to the California State Board of Forestry under Contract No. 9CA38120. Sacramento, CA. 29 p. plus Appendix A and B: Hillslope Monitoring Instructions and Forms. Available at: http://www.fire.ca.gov/CDFBOFDB/pdfs/tuttle.pdf

- United States Forest Service (USFS). 2004. Best Management Practices evaluation program: 1992-2002 monitoring results. USDA Forest Service Pacific Southwest Region. November 2004. Vallejo, CA. 76 p. plus Appendices.
- Welsch, D., R. Ryder, and T. Post. 2007. Best management practices (BMP) monitoring manual—field guide: Implementation and effectiveness for protection of water resources. USDA Forest Service, Northeastern Area State and Private Forestry. NA-FR-02-06. Newtown Square, PA. 129 p. Available at: <u>http://www.na.fs.fed.us/pubs/detail.cfm?id=1536</u>
- Wemple, B.C., J.A. Jones, and G.E. Grant. 1996. Channel network extension by logging roads in two basins, Western Cascades, Oregon. Water Resources Bulletin. 32(6): 1195-1207. Available at: <u>http://www.humboldt.edu/~storage/pdfmill/Batch%203/channel.pdf</u>

APPENDICES

APPENDIX A—CALIFORNIA WATERCOURSE CROSSING PROTOCOL

G-1 Enter the code for the state, year, sample type, iteration, and sample crossing number.

Examples: California, 2006, new sample, initial measurement, crossing number 24 would be coded CA 06 N 0 024.

If this same crossing was re-sampled for quality control purposes it would code CA 06 Q 0 024

If this same crossing was re-sampled the first time, the following year, it would code CA 07 R 1 024 $\,$

- G-2 Enter the code for the plan number (x-yy-zzz AAA), where x = Forest Practice District number, yy = year plan was filed, zzz = plan number, and AAA = county abbreviation.
- G-3 Enter the number of whole acres in the harvest area as stated in the plan.
- G-4 Enter the crossing identification number provided in the plan.
- G-5 Enter the code indicating if the crossing was a pre-identified high risk crossing.
 - 1. Yes
 - 2. No
- G-6 Enter the code indicating landowner category
 - 1. Non-industrial private forest landowner
 - 2. Industrial forest landowner
 - 3. Public forest landowner
 - 4. Other Land trust etc
 - 5. Unknown
 - 6. Harvest area is being / has been developed for non forest use.

- G-7 Enter the code that best describes the primary adjacent land use for the crossing.
 - 1. Forest
 - 2. Agriculture
 - 3. Residential/Commercial
 - 4. Other
- G-8 Is there a DFG 1600 agreement.
 - 1. Yes
 - 2. No
 - 3. Unknown
- G-9 Enter one or more codes that describe the plan requirements for the crossing site being evaluated.
 - Standard California Forest Practice Rules including the Threatened and Impaired Watersheds Rule Package (July 1, 2000) where appropriate.
 - 2. Additional mitigation measures assigned during plan review were required and/or the RPF proposed additional measures, which were above and beyond the FPRs.
 - 3. Exceptions, alternatives or in-lieu practices were proposed, which superseded the standard Forest Practice Rules.

Note: The response to this question modifies and pertains directly to the questions regarding Principles and Practices.

- G-10 Is there evidence that the crossing site is actively being used?
 - 1. Yes. (Go to G11)
 - 2. No. (Go to G12)
- G-11 Is the use identified in G-10 associated with active timber operations?
 - 1. Yes.
 - 2. No.

- G-12 Enter the code for the Erosion Hazard Rating (EHR) listed in the plan for the crossing area.
 - 1. Low
 - 2. Moderate
 - 3. High
 - 4. Extreme
- G-13 Enter the code indicating the specific underlying rock type/formation. The standard geologic formation letter symbology is recorded (e.g., Mesozoic granitic rocks = g r).
- G-14 Enter the code indicating the predominant type of landslide under the crossing or approaches. See Appendix B and C for diagrams and descriptions of each geologic feature.
 - 1. No observed landslide
 - 2. Active rockslide
 - 3. Dormant rockslide (translational/rotational)
 - 4. Active debris flow or debris slide
 - 5. Dormant debris flow or debris slide
 - 6. Active earthflow
 - 7. Dormant earthflow
 - 8. Inner gorge
 - 9. Debris slide slope
- G-15 Enter the code for the watercourse class of the channel being evaluated at the crossing site.
 - 1. Class I
 - 2. Class II
 - 3. Class III
 - 4. Class IV
- G-16 Enter the code indicating the water body type being crossed.
 - 1. Perennial.
 - 2. Intermittent.
 - 3. Ephemeral.
- G-17 Enter the GPS latitude of the water crossing being evaluated based on NAD 83. Enter as decimal degrees latitude including the decimal point and six decimal places.

- G-18 Enter the GPS longitude of the water crossing being evaluated based on NAD 83. Enter as decimal degrees longitude including the decimal point and six decimal places.
- G-19 Enter the code indicating whether you are evaluating a haul road or skid.
 - 1. Haul road
 - 2. Skid trail
- G-20 Has the crossing "over wintered" at least one winter period?
 - 1. Yes, go to G-21.
 - 2. No, go to O-265
- G-21 Did the crossing experience a rare or extreme weather event likely to have influenced the crossing during the last winter period?
 - 1. Yes.
 - 2. No.
 - 3. Unknown

Examples may include rain on snow events, severe rainstorms, severe drought, etc,

WATER BODY CROSSING APPROACH AREA A

- AG-22 Enter the WLPZ/ELZ width in whole feet based on the plan or Forest Practice Rules for approach A of the water body being crossed.
- AG-23 Enter the code that describes the current road/skid trail status.
 - 1. New
 - 2. Existing
 - 3. Reconstructed
 - 4. Abandoned
- AG-24 Enter the code indicating the road type.
 - 1. Permanent road
 - 2. Seasonal road
 - 3. Temporary road
 - 4. Skid Trail

Approach Area A-Outside the WLPZ/ELZ

Establish the protocol survey area on Approach Area A by measuring the distance on the road surface equivalent to 3X the WLPZ/ELZ width or 300 feet, whichever is less. Distances are measured from bank full.

If within this distance, there are topographic features or a change in grade that prohibits road drainage from draining to the subject watercourse, the upland boundary of the protocol survey area is established at that point. This change is not applicable for drainage facilities including waterbreaks or rolling dips and the change must be continuous throughout the remainder of the measured distance.

AO-25 Does Approach Area A exit the WLPZ/ELZ within this distance?

- 1. If yes, go to AO26.
- 2. If no, go to AI53

Approach Area A-Outside the WLPZ/ELZ DEFINED

Approach Area A-Outside the WLPZ/ELZ originates at the upland edge of the WLPZ/ELZ and extends inland perpendicular to the bank to the edge of the protocol survey area. When road runoff drains away from the watercourse crossing, the protocol survey area is truncated at that point and further survey beyond that point is not necessary. For this purpose, ignore road drainage facilities such as waterbreaks or rolling dips.

If there is no WLPZ/ELZ, limit the approach area outside the WLPZ/ELZ to 25 feet.

Observe the conditions on the ground within Approach Area A - Outside the WLPZ/ELZ and answer the questions. You may have to follow some indicators such as rills, ruts or gullies into the approach area inside the buffer or into the water body itself to answer the questions.

- AO-26 Enter the code that best describes the road prism inApproach Area A Outside the WLPZ/ELZ
 - 1. Landing adjoining maintained road.
 - 2. Road/trail insloped with no inside ditch.
 - 3. Road/trail insloped with an inside ditch.
 - 4. Road/trail outsloped with no inside ditch.
 - 5. Road/trail outsloped with an inside ditch
 - 6. Road/trail crowned with an inside ditch.
 - 7. Road/trail crowned with no inside ditch
 - 8. Road/trail inverted below general grade of adjoining land (includes through cuts and roads on flat ground).
 - 9. Road/trail bermed with no inside ditch.
 - 10. Road/trail bermed with an inside ditch.
- AO-27 Enter the code that best describes the road construction at Approach Area A Outside the WLPZ/ELZ.
 - 1. Road/trail profile created by cut and fill construction.
 - 2. Road/trail profile created by full bench construction.
 - 3. Road/trail profile created by through fill.
 - 4. Road/trail created by through cut.
 - 5. Road/trail created with no cut or fills (i.e. road on flat ground)

- AO-28 Is the drainage from the road surface of Approach Area A Outside the WLPZ/ELZ diverted off the road prism by a drainage facility before it reaches the crossing?
 - 1. Yes
 - 2. No
 - 3. Not applicable, crossing is higher in elevation than Approach Area A.
- AO-29 Enter the code that best describes predominant improvements used on any portion of the road / trail in Approach Area A-Outside the WLPZ/ELZ
 - 1. Native material construction, no improvement evident.
 - 2. Erosion control methods/improvements added such as Geotextile, pallets, mats, slash, corduroy etc.
 - 3. Permeable surfacing material such as gravel added
 - 4. Non-permeable paving such as asphalt or concrete
 - 5. Other
- AO-30 Enter the percent grade of the road / trail in Approach Area A- WLPZ/ELZ measuring from the upland edge of the WLPZ/ELZ at the crossing.

Enter + for a positive or upgradient and - for a negative or downgradient followed by the percent grade in whole numbers.

Example: a 15% uphill grade as seen from the crossing would code +15. A 17% downhill grade would code -17

- AO-31 Enter the code that best describes any soil movement on Approach Area A-Outside the WLPZ/ELZ
 - 1. Measurable amounts of sediment deposited in the water body or within the bankfull width of the channel. (go to question AO-32)
 - 2. Trace amounts such as films or suspended sediments deposited in the water body or within the bankfull width of the channel. (go to question AO-32)
 - 3. Soil was deposited inside the WLPZ/ELZ, but did not reach the water body or within the bankfull width of the channel. (go to question AO-41)
 - 4. Soil moved in Approach Area A-Outside the WLPZ/ELZ, but did not reach the WLPZ/ELZ. (go to question AI-49)
 - 5. Soil is stabilized for Approach Area A-Outside the WLPZ/ELZ (go to question AO-48)

In cases where the sediment delivery system (AO-32) indicates strongly that measurable volumes of sediment have been deposited in the water body, but have since been washed away, enter "1" for question AO-31 and enter "0" for question AO-35.

Locate the boundaries of the area in question and carefully inspect the road or trail as well as any ditches and adjoining cut or fill slopes. Look for evidence of soil movement such as rills, gullies or other sediment trails. Consider also material moved by machines during construction as well as material pushed by wheels or dragged by logs.

Depending on the time of year it may be necessary to brush away newly fallen leaves to follow the sediment trail. Sediment occurring above or below the various leaf layers will provide clues as to whether the erosion occurred during a prior harvest or is ongoing.

Only one code can be entered. Consider the various problems evident and report on the worst case scenario choosing the answer codes that best describe the situation.
Sediment deposited in the water body from Approach Area-A, Outside the WLPZ/ELZ

- AO-32 Enter the code that best describes the evidence that sediment reached the water body or to within the bankfull width of the channel from Approach Area A-Outside the WLPZ/ELZ.
 - 1. Ditch or rut (wheel, track, log drag, etc). (go to question AO-33)
 - 2. Gully. (go to question AO-33)
 - 3. Rill (go to question AO-35)
 - 4. Sheet flow, sediment deposition trail or alluvial fan. (go to question AO-35)
 - 5. Soil slumping or dropping. (go to question AO-35)
 - Mechanical deposition. Examples include soil pushed into the bankfull channel or onto a bridge by machinery or dragged logs. (go to question AO-35)

Only one code can be entered. Record the worst case scenario.

Read all of the answers and eliminate the ones that do not apply to arrive at the answer that best describes the situation.

Where one erosion form continuously evolves into another (such as when a rill becomes a gully) record the predominant form. Report the evidence consistent with the definitions in Appendix A for terms such as rill, gully, wheel rut etc.

AO-33 Enter the total length in whole feet of the rill, gully, ditch or rut identified in question AO-32.

Where one erosion form continuously evolves into another (such as when a rill becomes a gully) measure and record the total length of the combined forms of erosion. If the rill or gully is branched measure only the length of the main section. For an inside ditch, measure the entire length of the ditch, even if it extends outside of the protocol survey area. Do not add the lengths of the branches. Accurate pacing is acceptable for measurement.

AO-34 Enter the mid point cross sectional area in whole square inches of the rill, gully, ditch or rut identified in question AO-32.

Locate a typical cross section at approximately the halfway point in the combined length of the rill, gully or other formation being reported. Place a straightedge across the top of the eroded zone and measure the width and depth in inches. AO-35 Enter the currently evident volume of sediment deposited in the water body or within the bankfull width of the channel in whole cubic yards by the delivery system identified in question AO-32.

> Look upstream and down and determine by color, texture and location that the sediment deposit originates from the delivery system described in the three previous questions. Probe the deposit in several places to determine the average depth and measure the length and width to determine the volume.

Record the volume in whole yards.

Enter "0" if sediment has been completely flushed away or if reasonably accurate measurement of existing deposit is not possible.

- AO-36 Enter the code that best describes the predominant type of sediment delivered to the water body or to within the bankfull width of the channel by the delivery system identified in question AO-32.
 - 1. Organic material
 - 2. Clay (forms ribbon 1 inch or longer)
 - 3. Silt / loam (feels smooth but will not form ribbon)
 - 4. Sandy (feels gritty)
 - 5. Gravel (0.8 2.5 inches)
 - 6. Cobble & larger (> 2.5 in)
 - 7. Sediment deposited in the water body has washed away; therefore, the type is unknown.

- AO-37 Can sedimentation be expected to occur during the next storm event based on your answers to questions AO-32 through AO-36.
 - 1. Yes.
 - 2. No.
 - 3. Unknown.
- AO-38 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

- AO-39 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.
- AO-40 Enter the code that best describes the specific cause of sediment delivery to the water body or to within the bankfull width of the channel from Approach Area A-Outside the WLPZ/ELZ
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.3. Incorrect maintenance
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - 6. Inappropriate log landing location or harvesting activities.
 - 7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

After answering proceed directly to question AI-49

Sediment deposited inside the WLPZ/ELZ, but not the water body from Approach Area <u>A-Outside the WLPZ/ELZ</u>

AO-41 Enter the distance from the watercourse that the sediment terminated.

Measure horizontal distance in whole feet perpendicular to the bank.

- AO-42 Enter the code that best describes the evidence that sediment reached the WLPZ/ELZ but not the water body nor to within the bankfull width of the channel from Approach Area A-Outside the WLPZ/ELZ
 - 1. Ditch or rut (wheel, track, log drag, etc)
 - 2. Gully
 - 3. Rill
 - 4. Sediment deposition trail, sheet flow, or alluvial fan
 - 5. Soil slumping or dropping
 - 6. Mechanical deposition of soil

Where one erosion feature continuously evolves into another (such as when a rill becomes a gully) record the dominant form.

- AO-43 Enter the code that best describes the predominant type of sediment delivered to the WLPZ/ELZ, but not the water body nor to within the bankfull width of the channel, by the delivery system identified in question AO-42.
 - 1 Organic material
 - 2 Clay (forms ribbon 1 inch or longer)
 - 3 Silt / loam (feels smooth but will not form ribbon)
 - 4 Sandy (feels gritty)
 - 5 Gravel (0.8 2.5 inches)
 - 6 Cobble & larger (> 2.5 inches)

- AO-44 Can sedimentation be expected to occur during the next storm event based on your answers to questions AO-42 and AO-43.
 - 1. Yes.
 - 2. No.
 - 3. Unknown.
- AO-45 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

- AO-46 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.
- AO-47 Enter the code that best describes the specific cause of sediment delivery to the WLPZ/ELZ (but not the water body nor to within the bankfull width of the channel) from Approach Area A-Outside the WLPZ/ELZ.
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance.
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - 6. Inappropriate log landing location or harvesting activities.
 - 7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

After answering proceed directly to question AI-49

Soil stabilized in Approach Area-A, Outside the WLPZ/ELZ

- AO-48 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

After answering question AO-48 and reading the following explanation proceed directly to question AI-49.

Approach Area-A, Inside the WLPZ/ELZ

Approach Area A-Inside the WLPZ/ELZ originates at the outer edge of the stream's bankfull width and extends to the outer edge of the WLPZ/ELZ.

Observe the conditions on the ground within <u>Approach Area A-Inside the WLPZ/ELZ</u> and answer the questions.

Report only those conditions that originate from the approach area inside the buffer. Conditions originating beyond the approach area inside the buffer were reported in the previous section.

- AI-49 Is there a WLPZ/ELZ?
 - 1. Yes, go to AI-50
 - 2. No, go to GC-101
- AI-50 Enter the percent grade of the road / trail in Approach Area A Inside WLPZ/ELZ measuring from the bankful width of the water body at the crossing.

Enter + for a positive or uphill gradient and - for a negative or down hill gradient followed by the percent grade in whole numbers.

Example: a 15% uphill grade as seen from the crossing would code +15. A 17% downhill grade would code -17

- AI-51 Enter the code that best describes improvements used on any portion of the road / trail in Approach Area A-Inside the WLPZ/ELZ
 - 1. Native material construction, no improvement evident.
 - 2. Erosion control methods/improvements added such as geotextile, pallets, mats, slash, corduroy etc.
 - 3. Permeable surfacing material such as gravel added
 - 4. Non-permeable paving such as asphalt or concrete
 - 5. Other

- AI-52 Enter the code that best describes the road prism Approach Area A Inside the WLPZ/ELZ
 - 1. Landing adjoining maintained road.
 - 2. Road insloped with no inside ditch.
 - 3. Road insloped with an inside ditch.
 - 4. Road outsloped with no inside ditch.
 - 5. Road outsloped with an inside ditch
 - 6. Road crowned with an inside ditch.
 - 7. Road crowned with no inside ditch
 - 8. Road inverted below general grade of adjoining land (includes through cuts and roads on flat ground).
 - 9. Road bermed with no inside ditch
 - 10. Road bermed with inside ditch.
- AI-53 Enter the code that best describes the road construction Approach Area A – Inside the WLPZ/ELZ
 - 1. Road/trail profile created by cut and fill construction.
 - 2. Road/trail profile created by full bench construction.
 - 3. Road/trail profile created by through fill.
 - 4. Road/trail created by through cut.
 - 5. Road/trail created with no cut or fills (i.e. flat ground)
- AI-54 Is the drainage from the road surface <u>Approach Area A Inside the</u> <u>WLPZ/ELZ</u> diverted off the road prism by a drainage facility before it reaches the crossing?
 - 1. Yes
 - 2. No
 - 3. Not applicable, crossing is higher in elevation than Approach Area A.

- AI-55 Enter the code that best describes any soil movement on Approach Area A-Inside the WLPZ/ELZ
 - 1. Measurable amounts of sediment deposited in the water body or within the bankfull width of the channel. (go to question AI-56)
 - 2. Trace amounts such as films or suspended sediments deposited in the water body or within the bankfull width of the channel. (go to question AI-56)
 - 3. Soil moved in Approach Area-A, Inside the WLPZ/ELZ, but did not reach the water body nor to within the bankfull width of the channel. (go to question AI-65)
 - 4. Soil is stabilized for Approach Area-A, Inside the WLPZ/ELZ (go to question AI-72)
 - Soil movement occurs in Approach Area-A, Inside the WLPZ/ELZ, but has been recorded elsewhere in the protocol. (go to question AI-74)

In cases where the sediment delivery system (AI-56) indicates strongly that measurable volumes of sediment have been deposited in the water body, but have since been washed away, enter "1" for question AI-55 and enter "0" for question AI-59.

Locate the boundaries of the area in question and carefully inspect the road or trail as well as the ditches and adjoining cut or fill slopes. Look for evidence of soil movement such as rills, gullies or other sediment trails. Consider also material moved by machines during construction as well as material pushed by wheels or dragged by logs.

Depending on the time of year it may be necessary to brush away newly fallen leaves to follow the sediment trail. Sediment occurring above or below the various leaf layers will provide clues as to whether the erosion occurred during a prior harvest or is ongoing.

Only one code can be entered. Consider the various problems evident and report on the worst case scenario choosing the answer codes that best describe the situation.

Sediment deposited in the water body from Approach Area A Inside the WLPZ/ELZ

- AI-56 Enter the code that best describes the evidence that sediment reached the water body or to within the bankfull width of the channel from <u>Approach</u> <u>Area A-Inside the WLPZ/ELZ</u>.
 - 1. Ditch or rut (wheel, track, log drag, etc). (go to question AI-57)
 - 2. Gully (go to question AI-57)
 - 3. Rill (go to question AI-57)
 - 4. Sheet flow, sediment deposition trail or alluvial fan (go to question AI-59)
 - 5. Soil slumping or dropping (go to question AI-59)
 - 6. Mechanical deposition of soil. Examples include soil pushed into the bankfull channel or onto a bridge by machinery or dragged logs. (go to question AI-59)

Only one code can be entered. Record the worst case scenario.

Read all of the answers and eliminate the ones that do not apply to arrive at the answer that best describes the situation.

Where one erosion form evolves into another in a continuous manner such as when a rill becomes a gully, record the predominant form. Report the evidence consistent with the definitions in Appendix A for terms such as rill, gully, wheel rut, etc.

AI-57 Enter the total length in whole feet of the rill, gully, ditch or rut identified in question AI60.

Where one erosion form evolves into another in a continuous manner, such as when a rill becomes a gully, measure and record the total length of the combined forms of erosion. If the rill or gully is branched measure only the length of the main section. For an inside ditch, measure the entire length of the ditch, even if it extends outside of the protocol survey area. Do not add the lengths of the branches. Accurate pacing is acceptable for measurement.

AI-58 Enter the mid point cross sectional area in whole square inches of the rill, gully, ditch or rut identified in question AI-56.

Locate a typical cross section at approximately the halfway point in the combined length of the rill, gully or other formation being reported. Place a straightedge across the top of the eroded zone and measure the width and depth in inches. AI-59 Enter the currently evident volume of sediment deposited in the water body or to within the bankfull width of the channel in whole cubic yards by the delivery system identified in question AI-56.

> Look upstream and down and determine by color, texture and location that the sediment deposit originates from the delivery system described in the three previous questions. Probe the deposit in several places to determine the average depth and measure the length and width to determine the volume.

Record the volume in whole cubic yards.

Enter "0" if sediment has been completely flushed away or if reasonably accurate measurement of existing deposit is not possible.

- AI-60 Enter the code that best describes the predominant type of sediment delivered to the water body or to within the bankfull width of the channel by the delivery system identified in question AI-56.
 - 1. Organic material
 - 2. Clay (forms ribbon 1 inch or longer)
 - 3. Silt / loam (feels smooth but will not form ribbon)
 - 4. Sandy (feels gritty)
 - 5. Gravel (0.8 2.5 inches)
 - 6. Cobble & larger (> 2.5 inches)
 - 7. Sediment deposited in the water body has washed away; therefore, the type is unknown.

- AI-61 Can sedimentation be expected to occur during the next storm event based on your answers to questions AI-56 through AI-60.
 - 1. Yes.
 - 2. No.
 - 3. Unknown.
- AI-62 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

- AI-63 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.
- AI-64 Enter the code that best describes the specific cause of sediment delivery to the water body or to within the bankfull width of the channel from <u>Approach Area A-Inside the WLPZ/ELZ</u>
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - Inappropriate log landing location or harvesting activities.7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

After answering question proceed directly to question AI-73

Soil moved in Approach Area A-WLPZ/ELZ, but did not reach the water body

AI-65 Enter the distance from the watercourse that the sediment terminated.

Measure horizontal distance in whole feet perpendicular to the bank.

- AI-66 Enter the code that best describes the evidence that soil moved, but did not reach the water body nor to within the bankfull width of the channel from within Approach Area A-Inside the WLPZ/ELZ
 - 1. Ditch or rut (wheel, track, log drag, etc)
 - 2. Gully
 - 3. Rill
 - 4. Sediment deposition trail, sheet flow, or alluvial fan
 - 5. Soil slumping or dropping
 - 6. Mechanical deposition of soil

Where one erosion form continuously evolves into another(such as when a rill becomes a gully) record the predominant form.

- AI-67 Enter the code that best describes the predominant type of soil that was moved, but did not reach the water body nor to within the bankfull width of the channel by the delivery system identified in question AI-66.
 - 1. Organic material
 - 2. Clay (forms ribbon 1 inch or longer)
 - 3. Silt / loam (feels smooth but will not form ribbon)
 - 4. Sandy (feels gritty)
 - 5. Gravel (0.8 2.5 inches)
 - 6. Cobble & larger (> 2.5 in)

- AI-68 Can sedimentation be expected to occur during the next storm event based on your answers to questions AI-66 and AI-67.
 - 1. Yes.
 - 2. No.
 - 3. Unknown.
- AI-69 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

- AI-70 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.
- AI-71 Enter the code that best describes the specific cause of soil movement in <u>Approach Area A-Inside the WLPZ/ELZ</u>.
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance.
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - 6. Inappropriate log landing location or harvesting activities.
 - 7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

After answering question proceed directly to question AI-73

Soil stabilized In Approach Area A-Inside the WLPZ/ELZ

- AI-72 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

After answering question AI-72 proceed directly to question AI-73

- AI-73 Enter the code that best describes the preponderant hydrologic soil type in <u>Approach Area A- Inside the WLPZ/ELZ</u>.
 - 1. Type A (sand/gravel feels gritty)
 - 2. Type B/C (loams feels crumbly)
 - 3. Type D (silt, clay, muck smooth, plastic to gelatinous)

When in doubt, sandy loams or clay loams should be recorded as sand or clay as these components are more critical than loam in determining erosion or percolation rates.

Water Drafting - Approach Area-A, Inside the WLPZ/ELZ

- AID-74 Is there a water drafting approach constructed in Approach Area A Inside the WLPZ/ELZ
 - 1. Yes. (If yes, go to AID-75)
 - 2. No. (If no, go to CG76)
- AID-75 Enter the length, in feet, of the water drafting approach constructed in Approach Area A Inside the WLPZ/ELZ
- AID-76 Enter the percent grade of the water drafting approach in Approach Area A Inside the WLPZ/ELZ measuring from the termination point of the approach to the junction at the road.

Enter + for a positive or uphill gradient and - for a negative or down hill gradient followed by the percent grade in whole numbers.

Example: a 15% uphill grade as seen from the crossing would code +15. A 17% downhill grade would code -17

- AID-77 Enter the code that best describes improvements used on any portion of the water drafting approach in Approach Area A-Inside the WLPZ/ELZ
 - 1. Native material construction, no improvement evident.
 - 2. Erosion control methods/improvements added such as geotextile, pallets, mats, slash, corduroy etc.
 - 3. Permeable surfacing material such as gravel added
 - 4. Non-permeable paving such as asphalt or concrete
 - 5. Other

- AID-78 Enter the code that best describes the water drafting approach's construction adjacnt to Approach Area A Inside the WLPZ/ELZ
 - 1. Created by cut and fill construction.
 - 2. Created by full bench construction.
 - 3. Created by through fill.
 - 4. Created by through cut.
 - 5. Created with no cut or fills (i.e. flat ground)
- AID-79 Is there evidence of petroleum or petroleum residue on the water drafting approach adjacent to Approach Area A Inside the WLPZ/ELZ?
 - 1. Yes. (go to AID-80)
 - 2. No. (go to AID-81)
- AID-80 Enter the diameter in feet or decimal fractions of a foot of the area occupied by the petroleum or petroleum residue.
- AID-81 Does runoff from Approach Area A Inside the WLPZ/ELZ flow to or across the water drafting approach.
 - 1. Yes. (go to AID-82)
 - 2. No. (go to AID-83)
- AID-82 Are there sediment deposits on the water drafting approach adjacent to Approach A Inside the WLPZ/ELZ?
 - 1. Yes.
 - 2. No.

- AID-83 Enter the code that best describes any soil movement on the water drafting approach in Approach Area A-Inside the WLPZ/ELZ
 - 1. Measurable amounts of sediment deposited in the water body or within the bankfull width of the channel. (go to question AID-84)
 - 2. Trace amounts such as films or suspended sediments deposited in the water body or within the bankfull width of the channel. (go to question AID-84)
 - 3. Soil moved on the water drafting approach in Approach Area A-Inside the WLPZ/ELZ, but did not reach the water body nor to within the bankfull width of the channel. (go to question AID-93)
 - 4. Soil is stabilized on the water drafting approach in Approach Area A-Inside the WLPZ/ELZ (go to question AID-100)
 - 5. Soil movement occurs on the water drafting approach in Approach Area A-Inside the WLPZ/ELZ, but has been recorded elsewhere in the protocol. (go to question GC-101)

Sediment deposited in the water body from the water drafting approach in Approach Area A-Inside the WLPZ/ELZ

- AID-84 Enter the code that best describes the evidence that sediment reached the water body or to within the bankfull width of the channel from the water drafting approach in Approach Area A-Inside the WLPZ/ELZ.
 - 1. Ditch or rut (wheel, track, log drag, etc). (go to question AID-85)
 - 2. Gully (go to question AID-85)
 - 3. Rill (go to question AID-85)
 - 4. Sheet flow, sediment deposition trail or alluvial fan (go to question AID-87)
 - 5. Soil slumping or dropping (go to question AID-87)
 - Mechanical deposition of soil. Examples include soil pushed into the bankfull channel or onto a bridge by machinery or dragged logs. (go to question AID-87)

Only one code can be entered. Record the worst case scenario.

Read all of the answers and eliminate the ones that do not apply to arrive at the answer that best describes the situation.

Where one erosion form evolves into another in a continuous manner such as when a rill becomes a gully, record the predominant form. Report the evidence consistent with the definitions in Appendix A for terms such as rill, gully, wheel rut, etc. AID-85 Enter the total length in whole feet of the rill, gully, ditch or rut identified in question AID-84.

Where one erosion form evolves into another in a continuous manner, such as when a rill becomes a gully, measure and record the total length of the combined forms of erosion. If the rill or gully is branched measure only the length of the main section. For an inside ditch, measure the entire length of the ditch, even if it extends outside of the protocol survey area. Do not add the lengths of the branches. Accurate pacing is acceptable for measurement.

AID-86 Enter the mid point cross sectional area in whole square inches of the rill, gully, ditch or rut identified in question AID-84.

Locate a typical cross section at approximately the halfway point in the combined length of the rill, gully or other formation being reported. Place a straightedge across the top of the eroded zone and measure the width and depth in inches.

AID-87 Enter the currently evident volume of sediment deposited in the water body or to within the bankfull width of the channel in whole cubic yards by the delivery system identified in question AID-84.

> Look upstream and down and determine by color, texture and location that the sediment deposit originates from the delivery system described in the three previous questions. Probe the deposit in several places to determine the average depth and measure the length and width to determine the volume.

Record the volume in whole cubic yards.

Enter "0" if sediment has been completely flushed away or if reasonably accurate measurement of existing deposit is not possible.

- AID-88 Enter the code that best describes the predominant type of sediment delivered to the water body or to within the bankfull width of the channel by the delivery system identified in question AID-84.
 - 1. Organic material
 - 2. Clay (forms ribbon 1 inch or longer)
 - 3. Silt / loam (feels smooth but will not form ribbon)
 - 4. Sandy (feels gritty)
 - 5. Gravel (0.8 2.5 inches)
 - 6. Cobble & larger (> 2.5 inches)
 - 7. Sediment deposited in the water body has washed away; therefore, the type is unknown.

- AID-89 Can sedimentation be expected to occur during the next storm event based on your answers above?
 - 1. Yes.
 - 2. No.
 - 3. Unknown.
- AID-90 Were principles / practices applied?
 - 1. Yes.
 - 2. No.
- AID-91 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.

- AID-92 Enter the code that best describes the specific cause of sediment delivery to the water body or to within the bankfull width of the channel from the water drafting approach in Approach Area A-Inside the WLPZ/ELZ
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - 6. Inappropriate log landing location or harvesting activities.
 - 7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

After answering question proceed directly to question GC-101

Soil moved on the water drafting approach in Approach Area A-Inside the WLPZ/ELZ, but did not reach the water body

AID-93 Enter the distance from the watercourse that the sediment terminated.

Measure horizontal distance in whole feet perpendicular to the bank.

- AID-94 Enter the code that best describes the evidence that soil moved, but did not reach the water body nor to within the bankfull width of the channel from the water drafting approach in Approach Area A-Inside the WLPZ/ELZ
 - 1. Ditch or rut (wheel, track, log drag, etc)
 - 2. Gully
 - 3. Rill
 - 4. Sediment deposition trail, sheet flow, or alluvial fan
 - 5. Soil slumping or dropping
 - 6. Mechanical deposition of soil

Where one erosion form continuously evolves into another(such as when a rill becomes a gully) record the predominant form.

- AID-95 Enter the code that best describes the predominant type of soil that was moved, but did not reach the water body nor to within the bankfull width of the channel by the delivery system identified in question AI75.21.
 - 1. Organic material
 - 2. Clay (forms ribbon 1 inch or longer)
 - 3. Silt / loam (feels smooth but will not form ribbon)
 - 4. Sandy (feels gritty)
 - 5. Gravel (0.8 2.5 inches)
 - 6. Cobble & larger (> 2.5 in)

- AID-96 Can sedimentation be expected to occur during the next storm event based on your answers to questions?
 - 1. Yes.
 - 2. No.
 - 3. Unknown.
- AID-97 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

- AID-98 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.
- AID-99 Enter the code that best describes the specific cause of soil movement on the water drafting approach in Approach Area A-Inside the WLPZ/ELZ
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance.
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - 6. Inappropriate log landing location or harvesting activities.
 - 7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

After answering question proceed directly to question GC-101

Soil stabilized on the water drafting approach in Approach Area A-Inside the WLPZ/ELZ

- AID-100 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

After answering question AID-100 proceed directly to question GC-101

CROSSING STRUCTURE

- GC-101 Enter the code that describes the current crossing status.
 - 1. New—permanent
 - 2. Pre-existing—permanent
 - 3. New—temporary
 - 4. Pre-existing-temporary
 - 5. Abandoned/removed
- GC-102 Is there evidence that the crossing has been maintained since the last winter period?
 - 1. Yes.
 - 2. No.
- GC-103 Is there perched fill material at the inlet or outlet of the crossing within or immediately adjacent to bankfull.
 - 1. Yes.
 - 2. No.
- GC-104 Enter the active channel bed width in feet (measured at a riffle).
- GC-105 Enter the bankfull channel width in feet (measured at a riffle).
- GC-106 Enter the bankfull depth in feet (measured at a riffle).

- GC-107 Enter the code best describing the entrenchment of the natural watercourse channel above the crossing.
 - 1. Entrenched (Confined)
 - 2. Moderately entrenched (Unconfined)
 - 3. Slightly entrenched (Braided)

- GC-108 Enter the code best describing the average percent grade of the natural watercourse channel above and below the crossing.
 - 1. 0-2%
 - 2. 2-4%
 - 3. 4-10%
 - 4. 10-30%
 - 5. > 30%
- GC-109 Enter the code indicating if a crossing was impacted by a landslide after its construction.
 - 1. Yes.
 - 2. No.

- GC-110 Enter the code that best describes the crossing structure.
 - 1. Single-pipe culvert (Go to C-111)
 - This type of culvert may have an overflow pipe and would not qualify as a multiple pipe crossing. The crossing shall be treated as a single pipe crossing.
 - 2. Multiple culverts (Go to C-130)
 - 3. Pipe arch (Go to C-111)
 - 4. Arch bottomless (Go to C-138)
 - 5. Native Surfaced Ford (Go to C-142)
 - 6. Dry Ford rocked outfall (Go to C-144)
 - 7. Wet Ford rocked outfall and surface (Go to C-144)
 - 8. Arizona crossing/vented ford (Go to C-111)
 - 9. Ford with concrete apron (Go to C-144)
 - 10. Temporary crossing (Go to C-151)
 - 11. French drains/burrito crossing (Go to C-160)
 - 12. Bridge closed top (Go to C-147)
 - 13. Bridge open planked top (Go to C-147)
 - 14. Other (Go to C-160)

Culverted Crossing

- C-111 Enter the code that describes the culvert/pipe arch/arch entrance type.
 - 1. Projecting pipe
 - 2. Pipe end mitered
 - 3. Headwall
 - 4. Headwall and wingwalls (concrete and/or rock)
 - 5. Flared metal inlet
 - 6. Not applicable
- C-112 Enter the code describing whether a critical dip was installed at the crossing.
 - 1. A critical dip is installed, and has experienced flow from the crossing, and did erode or down cut
 - 2. A critical dip is installed, has experienced flow from the crossing, and did not erode or down cut
 - 3. A critical dip is installed at the crossing and there is no indication of flow
 - 4. No critical dip was installed (go to C-113)

- C-113 Is there diversion potential at the crossing? Diversion is defined as the ability for the watercourse to be channeled down the road for a distance greater than the WLPZ/ELZ width.
 - 1. There is potential, but no physical evidence for watercourse diversion down the road.
 - 2. There is potential and physical evidence of flow down the road.
 - 3. There is no potential for watercourse diversion due to crossing design or topographical features.
 - 4. Design accommodates for potential of overflow (i.e. significantly oversized culvert installed).
- C-114 Enter the number of pipes present at the crossing site.
- C-115 Enter the diameter, in inches, of the channel pipe present at the crossing site.
- C-116 Enter the code that describes the pipe gradient.
 - 1. Similar to natural channel slope
 - 2. Significantly lower gradient, compared to natural channel slope
 - 3. Significantly higher gradient
- C-117 Enter code indicating the percentage of the pipe inlet area that is currently blocked by wood and/or sediment.
 - 1. 0-10%
 - 2. 11-25%
 - 3. 26-50%
 - 4. >50%
- C-118 Enter the code indicating if there is a trash rack installed.
 - 1. Yes
 - 2. No
- C-119 Enter the code that describes the horizontal alignment of the pipe present.
 - 1. In line with channel
 - 2. Offset from channel
 - 3. Skewed

1. No significant deformation 2. Pipe deformed <10%. 3. Pipe deformed >10%. C-121 Is the pipe length adequate? 1. Yes. 2. No. C-122 Is the fill over the pipe centered on the pipes length? 1. Yes. 2. No. C-123 Is the fill face over steepened on either side of the pipe? 1. Yes. 2. No. C-124 Is the pipe located on a Class I fish bearing watercourse? 1. Yes (go to C-125) 2. No (go to C-160) C-125 Enter the code indicating depth of the residual pool at the inlet in inches. 1. < 6" 2. ≥ 6" C-126 Enter the code indicating if there is streambed substrate throughout the pipe. 1. Yes 2. No

Enter the code that describes the degree of deformation of the pipe.

- C-127 Enter the code indicating if the pipe includes baffles or weirs.
 - 1. Yes

C-120

2. No

- C-128 Enter the code indicating if there is a pool at the outlet.
 - 1. Yes
 - 2. No
- C-129 Enter the code indicating pipe outlet drop in inches.
 - 1. 0-11"
 - 2. 12-24"
 - 3. >24"

After answering C-129, go to C-160

Multiple Pipes

- C-130 Enter the code that describes the culverts entrance types.
 - 1. Projecting pipe
 - 2. Pipe end mitered
 - 3. Headwall
 - 4. Headwall and wingwalls (concrete and/or rock)
 - 5. Flared metal inlet
 - 6. Not applicable
- C-131 Enter the code describing whether a critical dip was installed at the crossing.
 - 1. A critical dip is installed, and has experienced flow from the crossing, and did erode or down cut
 - 2. A critical dip is installed, has experienced flow from the crossing, and did not erode or down cut
 - 3. A critical dip is installed at the crossing and there is no indication of flow
 - 4. No critical dip was installed (go to C-132)

- C-132 Is there diversion potential at the crossing? Diversion is defined as the ability for the watercourse to be channeled down the road for a distance greater than the WLPZ/ELZ width.
 - 1. There is potential, but no physical evidence for watercourse diversion down the road.
 - 2. There is potential and physical evidence of flow down the road.
 - 3. There is no potential for watercourse diversion due to crossing design or topographical features.
 - 4. Design accommodates for potential of overflow (i.e. significantly oversized culvert installed).
- C-133 Enter the number of pipes present at the crossing site.
- C-134 Enter the percentage of the pipe inlet area that is currently blocked by wood and/or sediment (0 to 100%).
- C-135 Enter the code that describes the horizontal alignment of the pipe present.
 - 1. In line with channel
 - 2. Offset from channel
 - 3. Skewed
- C-136 Is there a trash rack associated with the crossing?
 - 1. Yes
 - 2. No.

C-137 Which diagram below most closely resembles the arrangement of the multiple pipes at the crossing location relative to bankfull (vertical, parallel lines)?

After answering C-137, go to C-160

Bottomless Arch Crossing

- C-138 Enter the code that describes the arch entrance type.
 - 1. Projecting pipe
 - 2. Pipe end mitered
 - 3. Headwall
 - 4. Headwall and wingwalls (concrete and/or rock)
 - 5. Flared metal inlet
 - 6. Not applicable
- C-139 Enter the span, in feet, of the arch.
- C-140 Enter the height, in feet, of the arch.

- C-141 Enter the code that describes stream channel stability within the crossing structure.
 - 1. Stable
 - 2. Scouring laterally
 - 3. Down-cutting
 - 4. Aggrading
 - 5. Other

After answering C-141 go to C-160

Native Surfaced Ford Crossing

- C-142 Is the ford constructed to handle the flows experienced at the crossing as evidenced by containment of flow within the constructed width?
 - 1. Yes.
 - 2. No.
- C-143 Enter the code(s) for observed erosion at fords.
 - 1. Road surface channelization >2"
 - 2. Gullied outfall
 - 3. Gullied outfall at edge of armor
 - 4. Gully/surface channelization out of ford (diversion)
 - 5. None or minimal erosion
 - 6. Other

After answering C-143, go to C-160

Wet/Dry Ford Crossings

- C-144 Is the ford constructed to handle the flows experienced at the crossing as evidenced by containment of flow within the constructed width?
 - 1. Yes.
 - 2. No.

- C-145 Enter the code(s) for observed erosion at fords.
 - 1. Road surface channelization >2"
 - 2. Gullied outfall
 - 3. Gullied outfall at edge of armor
 - 4. Gully/surface channelization out of ford (diversion)
 - 5. None or minimal erosion
 - 6. Other
- C-146 Does at least 50% (by volume) of the rock used for the constructed outfall equal or exceed the stable rock sizes observed in the watercourse channel upstream/ downstream of the ford?
 - 1. Yes
 - 2. No
 - 3. Indeterminate

After answering C-146, go to C-160

Bridge Crossings

- C-147 Enter code that describes the predominant bank protection under the bridge.
 - 1. Concrete
 - 2. Rip-rap
 - 3. Steel sheeting
 - 4. Wood/timber
 - 5. Log
 - 6. Concrete filled CMPs
 - 7. None
 - 8. Other
- C-148 Enter the code that describes bridge alignment.
 - 1. Perpendicular to the waterbody.
 - 2. Skewed to the waterbody.
- C-149 Enter the code that describes bridge length.
 - 1. The bridge is long with adequate turning radius.
 - 2. The bridge is short with adequate turning radius.

- C-150 Enter code that describes stream channel stability at the crossing.
 - 1. Stable
 - 2. Scouring laterally
 - 3. Down-cutting
 - 4. Aggrading
 - 5. Other

After answering C-150, go to C-160

Removed or Abandoned Crossings

- C-151 Enter the code that indicates if the crossing has been excavated to form a channel that is similar to the natural watercourse grade and orientation and is wider than the natural channel.
 - 1. Yes.
 - 2. No.
- C-152 Are there erosional processes occurring at the removed or abandoned crossing site?
 - 1. Yes (Go to C120)
 - 2. No (Go to C-160)
- C-153 Are slumps/debris slides present?
 - 1. Yes.
 - 2. No.
- C-154 Is there evidence of channel incision?
 - 1. Yes.
 - 2. No.
- C-155 Is the watercourse headcuting through the crossing location?
 - 1. Yes.
 - 2. No.
- C-156 Was a grade control structure installed?
 - 1. Yes.
 - 2. No.

- C-157 Are there gullies present at the crossing location?
 - 1. Yes.
 - 2. No.
- C-158 Is there surface erosion and rilling at the crossing location?
 - 1. Yes.
 - 2. No.
- C-159 Is there bank erosion at the crossing location?
 - 1. Yes.
 - 2. No.

After answering C-159, go to C-160

- C-160 Enter the code that best describes the structure bottom and stream substrate used
 - 1. Open bottom structure or structure removed
 - 2. Closed bottom structure, natural streambed substrate material is present and continuous on the inside bottom of the structure
 - 3. Closed bottom structure, natural streambed substrate material is not present or not continuous on the inside bottom of the structure
- C-161 Enter the code that best describes the most significant type of bank protection both upstream and downstream.
 - 1. Rip-rap
 - 2. Gabions
 - 3. Wing-walls
 - 4. Vegetation
 - 5. Seeded/Mulched
 - 6. Slash/wood
 - 7. Naturally stable due to substrate
 - 8. None
 - 9. Other

- C-162 Enter the code that best describes the fill face armoring present on the inlet side.
 - 1. Rock armored
 - 2. Partially rock armored around the pipe only
 - 3. Slash armored
 - 4. Not armored but mulched and/or seeded
 - 5. Not armored but supports brush and/or trees
 - 6. Not armored but supports grass and/or forbs
 - 7. Not armored and exposed bare soil
 - 8. Not applicable
- C-163 Enter the code that best describes the fill face armoring present on the outlet side.
 - 1. Rock armored
 - 2. Partially rock armored around the pipe only
 - 3. Slash armored
 - 4. Not armored but mulched and/or seeded
 - 5. Not armored but supports brush and/or trees
 - 6. Not armored but supports grass and/or forbs
 - 7. Not armored and exposed bare soil
 - 8. Not applicable
- C-164 Is the crossing structure opening, or stream channel in the event the structure has been removed, equal to or greater than the pre-structure bankfull channel width?
 - 1. Yes.
 - 2. No.
- C-165 Enter the code indicating if the size of the crossing structure opening meets state requirements at the time of plan approval.
 - 1. Yes.
 - 2. No.
 - 3. Unknown.

- C-166 Enter the code indicating if there is evidence of stream down cutting, scouring, or aggradation within 100 feet downstream of the outlet end of the structure
 - 1. Evidence of scouringand downcutting.
 - 2. Evidence of aggrading or widening.
 - 3. Stable.
- C-167 Enter the code indicating if there is evidence of stream down cutting, scouring, or aggradation within 100 feet upstream of the inlet end of the structure
 - 1. Evidence of scouringand downcutting.
 - 2. Evidence of aggrading or widening.
 - 3. Stable.
- C-168 Enter the code indicating whether the following conditions exist near the crossing (the most prevalent).
 - 1. No significant hazards observed
 - 2. Significant wood accumulations near crossing
 - 3. Significant bedload accumulations threatening crossing
 - 4. Significant wood and sediment accumulations threatening crossing
 - 5. Sizing inadequate (main hazard present)
 - 6. Other (describe)
- C-169 Have modifications been made to the crossing, for purposes such as water drafting, which have impacted the functionality of the crossing?
 - 1. No
 - 2. Yes
 - 3. Yes (1600 agreement)
 - 4. Unknown

- C-170 Enter the code that best describes soil or fill material movement or mechanical deposition of fill material associated with the crossing structure
 - 1. Measurable amounts of sediment deposited in the water body (go to question C-171).
 - 2. Trace amounts such as films or suspended sediments visible in the water body. (go to question C-171)
 - 3. Soil moves, but does not reach the water body. (go to question C-182)
 - 4. Soil stabilized at crossing. (go to question C-185)
 - 5. Soil movement occurs, but has been recorded elsewhere in the protocol. (go to question BG-186)

In cases where the sediment delivery system (C-171) indicates strongly that measurable volumes of sediment have been deposited in the water body, but have since been washed away, enter "1" for question C-171 and enter "0" for question C-176.

Note that the <u>crossing structure</u> includes only that area within the bankfull width of the channel.

Inspect the structure and any associated fill or abutments that are within the bankfull width of the channel.

Look for evidence of soil movement such as rills, gullies or other sediment trails. Consider also material moved by machines during construction as well as material pushed by wheels or dragged by logs. Material on the deck of bridges within the bankfull width of the channel is considered to be deliverable in the water body.

Depending on the time of year it may be necessary to brush away newly fallen leaves to follow the sediment trail. Sediment occurring above or below the various leaf layers will provide clues as to whether the erosion occurred during a prior harvest or is ongoing.

Only one code can be entered. Consider the various problems evident and report on the worst case scenario choosing the answer codes that best describe the situation.
Soil Delivered to the Water Body from the Crossing Structure.

- C-171 Enter the code that best describes the evidence that sediment was delivered to the water body.
 - 1. Ditch or rut (wheel, track, log drag, etc.) (Go to question C-172)
 - 2. Gully. (Go to question C-172)
 - 3. Rill. (Go to question C-172)
 - Sheet flows, soil puddling or deposition trail. (Go to question C-174)
 - 5. Soil slumping, piping, leaching, weeping, falling. (Go to question C-174)
 - 6. Mechanical deposition of soil. Example: Soil pushed into the waterbody or onto temporary crossing structures by machinery or dragged logs. (Go to question C-174)
 - 7. Undercutting of crossing structure (Go to question C-174)
 - 8. Overflow or total washout of the crossing structure (Go to question C-174)

Only one code can be entered. Record the worst case scenario.

Read all of the answers and eliminate the ones that do not apply to arrive at the answer that best describes the situation.

Where one erosion form continuously evolves into another in a continuous manner (such as when a rill becomes a gully) record the predominant form. Report the evidence consistent with the definitions in Appendix A for terms such as rill, gully, wheel rut etc.

C-172 Enter the total length in whole feet of the rill, gully, ditch or rut identified in question C-171.

Where one erosion form evolves into another in a continuous manner, such as when a rill becomes a gully, measure and record the total length of the combined forms of erosion. If the rill or gully is branched measure only the length of the main section. Do not add the lengths of the branches. Accurate pacing is acceptable for measurement. C-173 Enter the mid point cross sectional area in whole square inches of the rill, gully, ditch or rut identified in question C-171.

Locate a typical cross section at approximately the halfway point in the combined length of the rill, gully or other formation being reported. Place a straightedge across the top of the eroded zone and measure the width and depth in inches.

- C-174 Is the erosion occurring on a fill face?
 - 1. Yes (go to C-175)
 - 2. No (go to C-176)
 - 3. Not applicable (go to C-176)
- C-175 Enter the code describing the source of flow causing fill face erosion.
 - 1. The fill face is eroded by overtopping of the crossing by streamflow.
 - 2. The fill face is eroded by accumulated flow from road surfaces.
 - 3. The fill face is eroded by both overtopping and accumulated flow from road surfaces.
 - 4. Over steepened fill faces.
 - 5. Perched fills.
- C-176 Enter the currently evident volume of sediment deposited in the water body width of the channel in whole cubic decimal yards by the delivery system identified in question C-171.

Look upstream and down and determine by color, texture and location that the sediment deposit originates from the delivery system described in the three previous questions. Probe the deposit in several places to determine the average depth and measure the length and width to determine the volume.

Record the volume in whole cubic feet.

Enter "0" if sediment has been completely flushed away or if reasonably accurate measurement of existing deposit is not possible.

- C-177 Enter the code that best describes the predominant type of material delivered to the water body by the delivery system identified in question C136.
 - 1. Organic material
 - 2. Clay (forms ribbon 1 inch or longer)
 - 3. Silt / loam (feels smooth but will not form ribbon)
 - 4. Sandy (feels gritty)
 - 5. Gravel (0.8 2.5 inches)
 - 6. Cobble & larger (> 2.5 in)
 - 7. Sediment deposited in the water body has washed away; therefore, the type is unknown.

- C-178 Is sedimentation expected to continue to occur during the next storm event based on your answers to questions C-171 through C-177?
 - 1. Yes.
 - 2. No.
 - 3. Unknown.
- C-179 Were principles / practices applied?
 - 1. Yes.
 - 2. No.
- C-180 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.

- C-181 Enter the code that best describes the specific cause of soil movement in <u>Approach Area A-Inside the WLPZ/ELZ</u>.
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance.
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - 6. Inappropriate log landing location or harvesting activities.
 - 7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

After answering question C-181 proceed directly to question BG-186

Soil Moves but does not reach the Water Body

- C-182 Were principles / practices applied?
 - 1. Yes.
 - 2. No.
- C-183 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.

- C-184 Enter the code that best describes the specific cause of soil movement in <u>Approach Area A-Inside the WLPZ/ELZ</u>.
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance.
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - 6. Inappropriate log landing location or harvesting activities.
 - 7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

After answering question C-184 proceed directly to question BG-186

Quality Practices and Principles Applied for Crossing Structure

- C-185 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

After answering question C-185 proceed directly to question BG-186

WATER BODY CROSSING APPROACH AREA B

- BG-186 Enter the WLPZ/ELZ width in whole feet based on plan or Forest Practice Rules for approach B of the water body being crossed.
- BG-187 Enter the code that describes the current road/skid trail status.
 - 1. New
 - 2. Existing
 - 3. Reconstructed
 - 4. Abandoned
- BG-188 Enter the code indicating the road type.
 - 1. Permanent road
 - 2. Seasonal road
 - 3. Temporary road
 - 4. Skid Trail

Approach Area B-Outside the WLPZ/ELZ

Establish the protocol survey area on Approach Area A by measuring the distance on the road surface equivalent to 3X the WLPZ/ELZ width or 300 feet, whichever is less. Distances are measured from bank full.

If within this distance, there are topographic features or a change in grade that prohibits road drainage from draining to the subject watercourse, the upland boundary of the protocol survey area is established at that point. This change is not applicable for drainage facilities including waterbreaks or rolling dips and the change must be continuous throughout the remainder of the measured distance.

BO-189 Does Approach Area A exit the WLPZ/ELZ within this distance?

- 1. If yes, go to BO-190.
- 2. If no, go to BI-213

Approach Area B-Outside the WLPZ/ELZ DEFINED

Approach Area B-Outside the WLPZ/ELZ originates at the upland edge of the WLPZ/ELZ and extends inland perpendicular to the bank to the edge of the protocol survey area. When road runoff drains away from the watercourse crossing, the protocol survey area is truncated at that point and further survey beyond that point is not necessary. For this purpose, ignore road drainage facilities such as waterbreaks or rolling dips.

If there is no WLPZ/ELZ, limit the approach area outside the WLPZ/ELZ to 25 feet.

Observe the conditions on the ground within Approach Area B-Outside the WLPZ/ELZ and answer the questions. You may have to follow some indicators such as rills, ruts or gullies into the approach area inside the buffer or into the water body itself to answer the questions.

- BO-190 Enter the code that best describes the road prism Approach Area B Outside the WLPZ/ELZ
 - 1. Landing adjoining maintained road.
 - 2. Road/trail insloped with no inside ditch.
 - 3. Road/trail insloped with an inside ditch.
 - 4. Road/trail outsloped with no inside ditch.
 - 5. Road/trail outsloped with an inside ditch
 - 6. Road/trail crowned with an inside ditch.
 - 7. Road/trail crowned with no inside ditch
 - 8. Road/trail inverted below general grade of adjoining land (includes through cuts and roads on flat ground).
 - 9. Road/trail bermed with no inside ditch.
 - 10. Road/trail bermed with an inside ditch.
- BO-191 Enter the code that best describes the road construction at Approach Area B – Outside the WLPZ/ELZ
 - 1. Road/trail profile created by cut and fill construction.
 - 2. Road/trail profile created by full bench construction.
 - 3. Road/trail profile created by through fill.
 - 4. Road/trail created by through cut.
 - 5. Road/trail created with no cut or fills (i.e. road on flat ground)

- BO-192 Is the drainage from the road surface of Approach Area A Outside the WLPZ/ELZ diverted off the road prism by a drainage facility before it reaches the crossing?
 - 1. Yes
 - 2. No
 - 3. Not applicable, crossing is higher in elevation than Approach Area B.
- BO-193 Enter the code that best describes predominant improvements used on any portion of the road / trail in Approach Area B-Outside the WLPZ/ELZ
 - 1. Native material construction, no improvement evident.
 - 2. Erosion control methods/improvements added such as geotextile, pallets, mats, slash, corduroy etc.
 - 3. Permeable surfacing material such as gravel added
 - 4. Non-permeable paving such as asphalt or concrete
 - 5. Other
- BO-194 Enter the percent grade of the road / trail in Approach Area B- WLPZ/ELZ measuring from the upland edge of the WLPZ/ELZ at the crossing

Enter + for a positive or upgradient and - for a negative or downgradient followed by the percent grade in whole numbers.

Example: a 15% uphill grade as seen from the crossing would code +15. A 17% downhill grade would code -17

- BO-195 Enter the code that best describes any soil movement on Approach Area B-Outside the WLPZ/ELZ
 - Measurable amounts of sediment deposited in the water body or within the bank full width of the channel. (go to question BO-196)
 - 2. Trace amounts such as films or suspended sediments deposited in the water body or within the bank full width of the channel. (go to question BO-196)
 - 3. Sediment was deposited inside the WLPZ/ELZ, but did not reach the water body or within the bank full width of the channel. (go to question BO-205)
 - 4. Soil moved in Approach Area B-Outside the WLPZ/ELZ, but did not reach the WLPZ/ELZ. (go to question BI-213)
 - 5. Soil is stabilized for Approach Area B-Outside the WLPZ/ELZ (go to question BO-212)

In cases where the sediment delivery system (BO-196) indicates strongly that measurable volumes of sediment have been deposited in the water body, but have since been washed away, enter "1" for question BO-195 and enter "0" for question BO-199.

Locate the boundaries of the area in question and carefully inspect the road or trail as well as the ditches and adjoining cut or fill slopes.Look for evidence of soil movement such as rills, gullies or other sediment trails. Consider also material moved by machines during construction as well as material pushed by wheels or dragged by logs.

Depending on the time of year it may be necessary to brush away newly fallen leaves to follow the sediment trail. Sediment occurring above or below the various leaf layers will provide clues as to whether the erosion occurred during a prior harvest or is ongoing.

Only one code can be entered. Consider the various problems evident and report on the worst case scenario choosing the answer codes that best describe the situation.

Sediment deposited in the water body from Approach Area-B, Outside the WLPZ/ELZ

- BO-196 Enter the code that best describes the evidence that sediment reached the water body or to within the bankfull width of the channel from <u>Approach</u> <u>Area B-Outside the WLPZ/ELZ</u>
 - 1. Ditch or rut (wheel, track, log drag, etc. (go to question BO-197)
 - 2. Gully (go to question BO-197)
 - 3. Rill (go to question BO-197)
 - 4. Sheet flow, sediment deposition trail or alluvial fan (go to question BO-199)
 - 5. Soil slumping or dropping (go to question BO-199)
 - 6. Mechanical deposition. Examples include soil pushed into the bankfull channel or onto a bridge by machinery or dragged logs. (go to question BO-199)

Only one code can be entered. Record the worst case scenario.

Read all of the answers and eliminate the ones that do not apply to arrive at the answer that best describes the situation.

Where one erosion form continuously evolves into another (such as when a rill becomes a gully), record the predominant form. Report the evidence consistent with the definitions in Appendix A for terms such as rill, gully, wheel rut etc.

BO-197 Enter the total length in whole feet of the rill, gully, ditch or rut identified in question BO-196.

Where one erosion form continuously evolves into another (such as when a rill becomes a gully), measure and record the total length of the combined forms of erosion. If the rill or gully is branched measure only the length of the main section. For an inside ditch, measure the entire length of the ditch, even if it extends outside of the protocol survey area. Do not add the lengths of the branches. Accurate pacing is acceptable for measurement.

BO-198 Enter the mid point cross sectional area, in whole square inches of the rill, gully, ditch or rut identified in question BO-196.

Locate a typical cross section at approximately the halfway point in the combined length of the rill, gully or other formation being reported. Place a straightedge across the top of the eroded zone and measure the width and depth in inches. BO-199 Enter the currently evident volume of sediment deposited in the water body or within the bankfull width in whole cubic yards by the delivery system identified in question BO-196.

> Look upstream and down and determine by color, texture and location that the sediment deposit originates from the delivery system described in the three previous questions. Probe the deposit in several places to determine the average depth and measure the length and width to determine the volume.

Record the volume in whole yards.

Leave zero if sediment has been completely flushed away or if reasonably accurate measurement of existing deposit is not possible.

- BO-200 Enter the code that best describes the preponderant type of sediment delivered to the water body or within the bankfull width of the channel by the delivery system identified in question BO-196.
 - 1. Organic material
 - 2. Clay (forms ribbon 1 inch or longer)
 - 3. Silt / loam (feels smooth but will not form ribbon)
 - 4. Sandy (feels gritty)
 - 5. Gravel (0.8 2.5 inches)
 - 6. Cobble & larger (> 2.5 in)
 - 7. Sediment deposited in the water body has washed away; therefore, the type is unknown.

- BO-201 Can sedimentation be expected to occur during the next storm event based on your answers to questions BO-196 through BO-200?
 - 1. Yes.
 - 2. No.
 - 3. Unknown.
- BO-202 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

- BO-203 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.
- BO-204 Enter the code that best describes the specific cause of sediment delivery to the water body or to within the bankfull width of the channel from Approach Area B-Outside the <u>WLPZ/ELZ</u>
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - Inappropriate log landing location or harvesting activities.7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

Read all of the answers and eliminate the answers that do not apply to arrive at the answer that best describes the situation.

After answering proceed directly to question BI-213.

Sediment deposited inside the WLPZ/ELZ, but not the water body from Approach Area B-Outside the WLPZ/ELZ

BO-205 Enter the distance from the watercourse that the sediment terminated.

Measure horizontal distance in whole feet perpendicular to the bank.

- BO-206 Enter the code that best describes the evidence that sediment reached the WLPZ/ELZ but not the water body nor to within the bankfull width of the channel from Approach Area B-Outside the WLPZ/ELZ
 - 1. Ditch or rut (wheel, track, log drag, etc)
 - 2. Gully
 - 3. Rill
 - 4. Sediment deposition trail, sheet flow, or alluvial fan
 - 5. Soil slumping or dropping
 - 6. Mechanical deposition of soil

Where one erosion feature continuously evolves into another (such as when a rill becomes a gully) record the dominant form.

- BO-207 Enter the code that best describes the preponderant type of sediment delivered to the WLPZ/ELZ but not the water body nor to within the bankfull width of the channel by the delivery system identified in question BO-206.
 - 1. Organic material
 - 2. Clay (forms ribbon 1 inch or longer)
 - 3. Silt / loam (feels smooth but will not form ribbon)
 - 4. Sandy (feels gritty)
 - 5. Gravel (0.8 2.5 inches)
 - 6. Cobble & larger (> 2.5 in)

- BO-208 Can sedimentation be expected to occur during the next storm event based on your answers to questions BO-205 and BO-207.
 - 1. Yes.
 - 2. No.
 - 3. Unknown.
- BO-209 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

- BO-210 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.
- BO-211 Enter the code that best describes the specific cause of sediment delivery to the WLPZ/ELZ, but not the water body nor to within the bankfull width of the channel from Approach Area B-Outside the WLPZ/ELZ
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance.
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - 6. Inappropriate log landing location or harvesting activities.
 - 7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

Read all of the answers and eliminate the answers that do not apply to arrive at the answer that best describes the situation

After answering proceed directly to question BI-213

Soil stabilized in Approach Area-B, Outside the WLPZ/ELZ

- BO-212 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

After answering question BO-212 and reading the following explanation proceed directly to question BI-213

Approach Area B-Inside the WLPZ/ELZ

Approach Area B-Inside the WLPZ/ELZ originates at the outer edge of the stream's bankfull and extends to the outer edge of the WLPZ/ELZ.

Observe the conditions on the ground within <u>Approach Area B-Inside the WLPZ/ELZ</u> and answer the questions.

Report only those conditions that originate from the approach area inside the buffer. Conditions originating beyond the approach area inside the buffer were reported in the previous section.

- BI-213 Is there a WLPZ/ELZ?
 - 1. Yes, go to BI-214.
 - 2. No, go to O-265
- BI-214 Enter the percent grade of the road / trail in Approach Area B Inside WLPZ/ELZ measuring from the bankful width of the water body at the crossing.

Enter + for a positive or uphill gradient and - for a negative or down hill

gradient followed by the percent grade in whole numbers.

Example: a 15% uphill grade as seen from the crossing would code +15. A 17% downhill grade would code -17

- BI-215 Enter the code that best describes improvements used on any portion of the road / trail in Approach Area B-Inside the WLPZ/ELZ
 - 1. Native material construction, no improvement evident.
 - 2. Erosion control methods/improvements added such as Geotextile, pallets, mats, slash, corduroy, etc.
 - 3. Permeable surfacing material such as gravel added
 - 4. Non-permeable paving such as asphalt or concrete
 - 5. Other

- BI-216 Enter the code that best describes the road prism Approach Area B Inside the WLPZ/ELZ
 - 1. Landing adjoining maintained road.
 - 2. Road insloped with no inside ditch.
 - 3. Road insloped with an inside ditch.
 - 4. Road outsloped with no inside ditch.
 - 5. Road outsloped with an inside ditch
 - 6. Road crowned with an inside ditch.
 - 7. Road crowned with no inside ditch
 - 8. Road inverted below general grade of adjoining land (includes through cuts and roads on flat ground).
 - 9. Road bermed with no inside ditch
 - 10. Road bermed with inside ditch.
- BI-217 Enter the code that best describes the road construction Approach Area B – Inside the WLPZ/ELZ
 - 1. Road/trail profile created by cut and fill construction.
 - 2. Road/trail profile created by full bench construction.
 - 3. Road/trail profile created by through fill.
 - 4. Road/trail created by through cut.
 - 5. Road/trail created with no cut or fills (i.e. flat ground)
- BI-218 Is the drainage from the road surface Approach Area B Inside the WLPZ/ELZ diverted off the road prism by a drainage facility before it reaches the crossing by a drainage structure or facility.
 - 1. Yes
 - 2. No
 - 3. Not applicable, crossing is higher in elevation than Approach Area B.

- BI-219 Enter the code that best describes any soil movement on Approach Area B-Inside the WLPZ/ELZ
 - 1. Measurable amounts of sediment deposited in the water body or within the bankfull width of the channel. (go to question BI-220)
 - 2. Trace amounts such as films or suspended sediments deposited in the water body or within the bankfull width of the channel. (go to question BI-220)
 - 3. Soil moved in Approach Area-B, Inside the WLPZ/ELZ, but did not reach the water body or within the bankfull width of the channel. (go to question BI-229)
 - 4. Soil is stabilized for Approach Area-B, Inside the WLPZ/ELZ (go to question BI-236)
 - Soil movement occurs in Approach Area-B, Inside the WLPZ/ELZ, but has been recorded elsewhere in the protocol. (go to question BI-237)

In cases where the sediment delivery system (BI-220) indicates strongly that measurable volumes of sediment have been deposited in the water body, but have since been washed away, enter "1" for question BI-219 and enter "0" for question BI186.

Locate the boundaries of the area in question and carefully inspect the road or trail as well as the ditches and adjoining cut or fill slopes.

Look for evidence of soil movement such as rills, gullies or other sediment trails. Consider also material moved by machines during construction as well as material pushed by wheels or dragged by logs.

Depending on the time of year it may be necessary to brush away newly fallen leaves to follow the sediment trail. Sediment occurring above or below the various leaf layers will provide clues as to whether the erosion occurred during a prior harvest or is ongoing.

Only one code can be entered. Consider the various problems evident and report on the worst case scenario choosing the answer codes that best describe the situation.

Sediment deposited in the water body from Approach Area B Inside the WLPZ/ELZ

- BI-220 Enter the code that best describes the evidence that sediment reached the water body or to within the bankfull width of the channel from <u>Approach</u> <u>Area B-Inside the WLPZ/ELZ</u>
 - 1. Ditch or rut (wheel, track, log drag, etc). (go to question BI-221)
 - 2. Gully. (go to question BI-221)
 - 3. Rill. (go to question BI-221)
 - 4. Sheet flow, sediment deposition trail or alluvial fan. (go to question BI-223)
 - 5. Soil slumping or dropping. (go to question BI-223)
 - 6. Mechanical deposition of soil. Examples include soil pushed into the bankfull channel or onto a bridge by machinery or dragged logs. (go to question BI-223)

Only one code can be entered. Record the worst case scenario.

Read all of the answers and eliminate the ones that do not apply to arrive at the answer that best describes the situation.

Where one erosion form evolves into another in a continuous manner such as when a rill becomes a gully, record the predominant form. Report the evidence consistent with the definitions in Appendix A for terms such as rill, gully, wheel rut etc.

BI-221 Enter the total length in whole feet of the rill, gully, ditch or rut identified in question BI-220.

Where one erosion form evolves into another in a continuous manner, such as when a rill becomes a gully, measure and record the total length of the combined forms of erosion. If the rill or gully is branched measure only the length of the main section. For an inside ditch, measure the entire length of the ditch, even if it extends outside of the protocol survey area. Do not add the lengths of the branches. Accurate pacing is acceptable for measurement.

BI-222 Enter the mid point cross sectional area in whole square inches of the rill, gully, ditch or rut identified in question BI-220.

Locate a typical cross section at approximately the halfway point in the combined length of the rill, gully or other formation being reported. Place a straightedge across the top of the eroded zone and measure the width and depth in inches. BI-223 Enter the currently evident volume of sediment deposited in the water body or within the bankfull width of the channel in whole cubic yards by the delivery system identified in question BI-220.

> Look upstream and down and determine by color, texture and location that the sediment deposit originates from the delivery system described in the three previous questions. Probe the deposit in several places to determine the average depth and measure the length and width to determine the volume.

Record the volume in whole cubic yards.

Enter "0" if sediment has been completely flushed away or if reasonably accurate measurement of existing deposit is not possible.

- BI-224 Enter the code that best describes the predominant type of sediment delivered to the water body or to within the bankfull width of the channel by the delivery system identified in question BI-220.
 - 1. Organic material
 - 2. Clay (forms ribbon 1 inch or longer)
 - 3. Silt / loam (feels smooth but will not form ribbon)
 - 4. Sandy (feels gritty)
 - 5. Gravel (0.8 2.5 inches)
 - 6. Cobble & larger (> 2.5 inches)
 - 7. Sediment deposited in the water body has washed away; therefore, the type is unknown.

- BI-225 Can sedimentation be expected to occur during the next storm event based on your answers to questions BI-220 through BI-224.
 - 1. Yes.
 - 2. No.
 - 3. Unknown.
- BI-226 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

- BI-227 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.
- BI-228 Enter the code that best describes the specific cause of sediment delivery to the water body or to within the bankfull width of the channel from Approach Area B-Inside the WLPZ/ELZ
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - Inappropriate log landing location or harvesting activities.7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

Read all of the answers and eliminate the answers that do not apply to arrive at the answer that best describes the situation.

After answering question proceed directly to question BI-237

Soil Moved In Approach Area B-WLPZ/ELZ, but did not reach the water body

BI-229 Enter the distance from the watercourse that the sediment terminated.

Measure horizontal distance in whole feet perpendicular to the bank.

- BI-230 Enter the code that best describes the evidence that soil moved, but did not reach the water body nor to within the bankfull width of the channel from within Approach Area B-Inside the WLPZ/ELZ
 - 1. Ditch or rut (wheel, track, log drag, etc)
 - 2. Gully
 - 3. Rill
 - 4. Sediment deposition trail, sheet flow, or alluvial fan
 - 5. Soil slumping or dropping
 - 6. Mechanical deposition of soil

Where one erosion form continuously evolves into another (such as when a rill becomes a gully) record the predominant form.

- BI-231 Enter the code that best describes the preponderant type of soil that was moved but did not reach the water body nor to within the bankfull width of the channel by the delivery system identified in question BI-230.
 - 1. Organic material
 - 2. Clay (forms ribbon 1 inch or longer)
 - 3. Silt / loam (feels smooth but will not form ribbon)
 - 4. Sandy (feels gritty)
 - 5. Gravel (0.8 2.5 inches)
 - 6. Cobble & larger (> 2.5 in)

- BI-232 Can sedimentation be expected to occur during the next storm event based on your answers to questions BI-230 and BI-231.
 - 1. Yes.
 - 2. No.
 - 3. Unknown.
- BI-233 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

- BI-234 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.
- BI-235 Enter the code that best describes the specific cause of soil movement that did not reach the water body nor to within the bankfull width of the channel in <u>Approach Area B-Inside the WLPZ/ELZ.</u>
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance.
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - 6. Inappropriate log landing location or harvesting activities.
 - 7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

Read all of the answers and eliminate the answers that do not apply to arrive at the answer that best describes the situation.

After answering question proceed directly to question BI-237

Soil stabilized In Approach Area B-Inside the WLPZ/ELZ

- BI-236 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

After answering question BI-236 proceed directly to question BI-237

- BI-237 Enter the code that best describes the preponderant hydrologic soil type in <u>Approach Area B-WLPZ/ELZ</u>
 - 1. Type A (sand/gravel feels gritty)

- 2. Type B/C (loams feels crumbly)
- 3. Type D (silt, clay, muck smooth, plastic to gelatinous)

When in doubt, sandy loams or clay loams should be recorded as sand or clay as these components are more critical than loam in determining erosion or percolation rates.

Water Drafting - Approach Area-A, Inside the WLPZ/ELZ

- BID-238 Is there a water drafting approach constructed in Approach Area B Inside the WLPZ/ELZ
 - 1. Yes. (If yes, go to BID-239)
 - 2. No. (If no, go to O-265)
- BID-239 Enter the length, in feet, of the water drafting approach constructed in Approach Area B Inside the WLPZ/ELZ
- BID-240 Enter the percent grade of the water drafting approach in Approach Area B Inside the WLPZ/ELZ measuring from the termination point of the approach to the junction at the road.

Enter + for a positive or uphill gradient and - for a negative or down hill gradient followed by the percent grade in whole numbers.

Example: a 15% uphill grade as seen from the crossing would code +15. A 17% downhill grade would code -17

- BID-241 Enter the code that best describes improvements used on any portion of the water drafting approach in Approach Area B-Inside the WLPZ/ELZ
 - 1. Native material construction, no improvement evident.
 - 2. Erosion control methods/improvements added such as geotextile, pallets, mats, slash, corduroy etc.
 - 3. Permeable surfacing material such as gravel added
 - 4. Non-permeable paving such as asphalt or concrete
 - 5. Other

- BID-242 Enter the code that best describes the water drafting approach's construction adjacnt to Approach Area B Inside the WLPZ/ELZ
 - 1. Created by cut and fill construction.
 - 2. Created by full bench construction.
 - 3. Created by through fill.
 - 4. Created by through cut.
 - 5. Created with no cut or fills (i.e. flat ground)
- BID-243 Is there evidence of petroleum or petroleum residue on the water drafting approach adjacent to Approach Area B Inside the WLPZ/ELZ?
 - 1. Yes. (go to BID-244)
 - 2. No. (go to BID-245)
- BID-244 Enter the diameter in feet or decimal fractions of a foot of the area occupied by the petroleum or petroleum residue.
- BID-245 Does runoff from Approach Area B Inside the WLPZ/ELZ flow to or across the water drafting approach.
 - 1. Yes. (go to BID-246)
 - 2. No. (go to BID-247)
- BID-246 Are there sediment deposits on the water drafting approach adjacent to Approach A Inside the WLPZ/ELZ?
 - 1. Yes.
 - 2. No.

- BID-247 Enter the code that best describes any soil movement on the water drafting approach in Approach Area B-Inside the WLPZ/ELZ
 - Measurable amounts of sediment deposited in the water body or within the bankfull width of the channel. (go to question BID-248)
 - 2. Trace amounts such as films or suspended sediments deposited in the water body or within the bankfull width of the channel. (go to question BID-248)
 - 3. Soil moved on the water drafting approach in Approach Area B-Inside the WLPZ/ELZ, but did not reach the water body nor to within the bankfull width of the channel. (go to question BID-257)
 - 4. Soil is stabilized on the water drafting approach in Approach Area B-Inside the WLPZ/ELZ (go to question BID-264)
 - 5. Soil movement occurs on the water drafting approach in Approach Area B-Inside the WLPZ/ELZ, but has been recorded elsewhere in the protocol. (go to question O-265)

Sediment deposited in the water body from the water drafting approach in Approach Area B-Inside the WLPZ/ELZ

- BID-248 Enter the code that best describes the evidence that sediment reached the water body or to within the bankfull width of the channel from the water drafting approach in Approach Area B-Inside the WLPZ/ELZ.
 - 1. Ditch or rut (wheel, track, log drag, etc). (go to question BID-249)
 - 2. Gully (go to question BID-249)
 - 3. Rill (go to question BID-249)
 - 4. Sheet flow, sediment deposition trail or alluvial fan (go to question BID-251)
 - 5. Soil slumping or dropping (go to question BID-251)
 - 6. Mechanical deposition of soil. Examples include soil pushed into the bankfull channel or onto a bridge by machinery or dragged logs. (go to question BID-251)

Only one code can be entered. Record the worst case scenario.

Read all of the answers and eliminate the ones that do not apply to arrive at the answer that best describes the situation.

Where one erosion form evolves into another in a continuous manner such as when a rill becomes a gully, record the predominant form. Report the evidence consistent with the definitions in Appendix A for terms such as rill, gully, wheel rut, etc.

BID-249 Enter the total length in whole feet of the rill, gully, ditch or rut identified in question BID-248.

Where one erosion form evolves into another in a continuous manner, such as when a rill becomes a gully, measure and record the total length of the combined forms of erosion. If the rill or gully is branched measure only the length of the main section. For an inside ditch, measure the entire length of the ditch, even if it extends outside of the protocol survey area. Do not add the lengths of the branches. Accurate pacing is acceptable for measurement. BID-250 Enter the mid point cross sectional area in whole square inches of the rill, gully, ditch or rut identified in question BID-248.

Locate a typical cross section at approximately the halfway point in the combined length of the rill, gully or other formation being reported. Place a straightedge across the top of the eroded zone and measure the width and depth in inches.

BID-251 Enter the currently evident volume of sediment deposited in the water body or to within the bankfull width of the channel in whole cubic yards by the delivery system identified in question BID-248.

> Look upstream and down and determine by color, texture and location that the sediment deposit originates from the delivery system described in the three previous questions. Probe the deposit in several places to determine the average depth and measure the length and width to determine the volume.

Record the volume in whole cubic yards.

Enter "0" if sediment has been completely flushed away or if reasonably accurate measurement of existing deposit is not possible.

- BID-252 Enter the code that best describes the predominant type of sediment delivered to the water body or to within the bankfull width of the channel by the delivery system identified in question BID-248.
 - 1. Organic material
 - 2. Clay (forms ribbon 1 inch or longer)
 - 3. Silt / loam (feels smooth but will not form ribbon)
 - 4. Sandy (feels gritty)
 - 5. Gravel (0.8 2.5 inches)
 - 6. Cobble & larger (> 2.5 inches)
 - 7. Sediment deposited in the water body has washed away; therefore, the type is unknown.

- BID-253 Can sedimentation be expected to occur during the next storm event based on your answers above?
 - 1. Yes.
 - 2. No.
 - 3. Unknown.
- BID-254 Were principles / practices applied?
 - 1. Yes.
 - 2. No.
- BID-255 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.
- BID-256 Enter the code that best describes the specific cause of sediment delivery to the water body or to within the bankfull width of the channel from the water drafting approach in Approach Area B-Inside the WLPZ/ELZ
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - 6. Inappropriate log landing location or harvesting activities.
 - 7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

Read all of the answers and eliminate the answers that do not apply to arrive at the answer that best describes the situation.

After answering question proceed directly to question O-265

Soil moved on the water drafting approach in Approach Area B-Inside the WLPZ/ELZ, but did not reach the water body

BID-257 Enter the distance from the watercourse that the sediment terminated.

Measure horizontal distance in whole feet perpendicular to the bank.

- BID-258 Enter the code that best describes the evidence that soil moved, but did not reach the water body nor to within the bankfull width of the channel from the water drafting approach in Approach Area B-Inside the WLPZ/ELZ
 - 1. Ditch or rut (wheel, track, log drag, etc)
 - 2. Gully
 - 3. Rill
 - 4. Sediment deposition trail, sheet flow, or alluvial fan
 - 5. Soil slumping or dropping
 - 6. Mechanical deposition of soil

Where one erosion form continuously evolves into another(such as when a rill becomes a gully) record the predominant form.

- BID-259 Enter the code that best describes the predominant type of soil that was moved, but did not reach the water body nor to within the bankfull width of the channel by the delivery system identified in question BI199.21.
 - 1. Organic material
 - 2. Clay (forms ribbon 1 inch or longer)
 - 3. Silt / loam (feels smooth but will not form ribbon)
 - 4. Sandy (feels gritty)
 - 5. Gravel (0.8 2.5 inches)
 - 6. Cobble & larger (> 2.5 in)

- BID-260 Can sedimentation be expected to occur during the next storm event based on your answers to questions.
 - 1. Yes.
 - 2. No.
 - 3. Unknown.

- BID-261 Were principles / practices applied?
 - 1. Yes.
 - 2. No.
- BID-262 Were measures employed that were over and above the requirements of the plan and/or Rules?
 - 1. Yes.
 - 2. No.
- BID-263 Enter the code that best describes the specific cause of soil movement on the water drafting approach in Approach Area B-Inside the WLPZ/ELZ
 - 1. Inappropriate timing of the operation with respect to soil and weather conditions
 - 2. Inappropriate location or design.
 - 3. Incorrect maintenance.
 - 4. No or inadequate maintenance.
 - 5. Failure to add reinforcements.
 - 6. Inappropriate log landing location or harvesting activities.
 - 7. Human activities or natural events unrelated to timber harvesting.
 - 8. Erosion from public roads.
 - 9. Activities related to timber operations, unrelated to crossing installation or maintenance.
 - 10. Principles and practices inadequately or incompletely applied.
 - 11. All feasible and reasonable measures were employed, but soil still moved.

Read all of the answers and eliminate the answers that do not apply to arrive at the answer that best describes the situation.

After answering question proceed directly to question O-265

Soil stabilized on the water drafting approach in Approach Area B-Inside the WLPZ/ELZ

- BID-264 Were principles / practices applied?
 - 1. Yes.
 - 2. No.

After answering, go to O-265

Overall Crossing and Approaches Evaluation

- O-265 Enter the code indicating the approximate volume of sediment delivered to the watercourse based on volume of voids and/or measurable sediment deposits observed at the crossing and approaches.
 - 1. No observed sediment.
 - 2. Trace to 1 cubic yard
 - 3. 1-10 cubic yards
 - 4. 11-50 cubic yards
 - 5. 51-100 cubic yards
 - 6. 101-500 cubic yards
 - 7. 501-1000 cubic yards
 - 8. Greater than 1000 cubic yards

After answering, go to O-266

Overall Subjective Crossing and Approaches Evaluations

O-266 Enter the appropriate rating for the crossing, utilizing the matrix provided below.

	Performing properly, no sign. sediment delivery problems	Performing properly, sediment is still being delivered	Performing properly, no sediment delivery, but there is potential	Not performing properly, sign. sediment delivery problems
Properly designed and constructed Properly designed, not properly constructed Not properly designed, constructed to design	1	2	3	4
	5	6	7	8
	9	10	11	12

O-267 Enter the appropriate rating for Approach A, utilizing the matrix provided below.

	Performing properly, no sign. sediment delivery problems	Performing properly, sediment is still being delivered	Performing properly, no sediment delivery, but there is potential	Not performing properly, sign. sediment delivery problems
Properly designed and constructed Properly designed, not properly constructed Not properly designed, constructed to design	1	2	3	4
	5	6	7	8
	9	10	11	12

O-268 Enter the appropriate rating for Approach B, utilizing the matrix provided below.

	Performing properly, no sign. sediment delivery problems	Performing properly, sediment is still being delivered	Performing properly, no sediment delivery, but there is potential	Not performing properly, sign. sediment delivery problems
Properly designed and constructed Properly designed, not properly constructed Not properly designed, constructed to design	1	2	3	4
	5	6	7	8
	9	10	11	12

- O-269 Based on team consensus, what is the overall letter grade (i.e. A, B, C, D, and F) assigned for the approaches.
- O-270 Based on team consensus, what is the overall letter grade (i.e. A, B, C, D, and F) assigned for the crossing?

END

APPENDIX B

Interagency Mitigation Monitoring Program

Protocol Field Guide

September 2007

Table of Contents

Field Equipment	
Field Procedures	3
Crossing Structure Number	3
Protocol Survey Area	4
Approaches to Stream Crossings	7
Approach Area Inside the WLPZ/ELZ	
Approach Area Outside the WLPZ/ELZ	
Crossing Structure	
Water Drafting - Approach	
Photography	14
Sketch Drawing of Crossing	
Monitoring Tips	17
Appendix A—Definitions	
Appendix B—Reference for Question G-14	
Appendix C—Reference for Question G-14	

Field Equipment

The Protocol is based on measurable evidence. The following equipment or equivalent is often necessary to answering the questions and making the measurements:

Required:

Data Sheets Writing utensil GPS unit set to read latitude and longitude in decimal degrees based on NAD 84 Clinometer with % scale Measuring tape (100' or longer) Measuring tape (15' to 30') Digital camera Harvest plan Latest copy of the FPRs Spare tire

Optional:

Pocket PC or similar device with minimum 256 Mb memory chip Protocol database software Laser Range Finder Second vehicle

Field Procedures

The purpose of the Field Procedures segment of this publication is to clearly define the sampling area and the variables that are to be collected from within it. All questions within the protocol, unless otherwise noted, are designed to be objective and repeatable. This portion of the field guide should be taken to the field for reference if questions arise regarding the designation of the sample area or how a specific question is to be researched and answered.

Crossing Sample Number

A unique sampling number shall be assigned to each crossing and each subsequent remeasurement of a crossing, if applicable. The crossing number is composed of the following information:

State - Select the two letter state code from the drop down menuCA

Year - Enter the last two digits of the sample year. (2003 = 03).

- Type Select the type code from the drop down menu
 - N = new sample
 - R = remeasure of a previous sample
 - Q = quality control sample
Iteration - Enter the iteration of the resample where:

- 0 = intial measurement
- 1 = first remeasurement
- 2 = second remeasurement etc.
- Number Enter the sample crossing number. This number should not change for a given crossing location.

For example, a California crossing, evaluated in 2006, that is a new sample crossing, and is the 24th crossing evaluated in 2006 would be coded CA06N0024.

If this same sample crossing were re-sampled for quality control purposes it would code CA06Q0024.

If this same sample crossing were being re-sampled the first time for long term impact or other purposes the following year it would code CA07R1024.

Protocol Survey Area

Stream crossings will be evaluated by examining the crossing itself as well as the approaches to the crossing on both sides of the stream and both inside and outside of the WLPZ/ELZ.

The protocol survey area is the outer boundary of the approaches that will be considered for evaluation in this protocol. Establish the protocol survey on both sides of the watercourse by measuring the distance on the road surface equivalent to three (3) times the WLPZ/ELZ width or 300 feet, whichever is less. This distance is measured from bank full.

Figure 1. Typical Protocol Survey Area, see discussion under the <u>Approaches to stream</u> <u>crossings</u> heading for a-typical approach discussions.

The protocol survey area is then divided into five (5) parts for purposes of describing features and their locations relative to the watercourse. These descriptive areas are as follows:

- Approach Area A -Outside the WLPZ/ELZ
- Approach Area A-Inside the WLPZ/ELZ
- Crossing Structure
- Approach Area B-Outside the WLPZ/ELZ
- Approach Area B-Inside the WLPZ/ELZ

The approaches, designated A and B, need to be identified in a consistent manner to facilitate resampling for quality control. Therefore, approach Area A will be the approach on the left bank as the investigator faces downstream.

Figure 2. Typical Protocol Survey Area including approach areas A and B inside and outside the WLPZ/ELZ. Approach area A is always on the left looking downstream and B is always on the right; therefore the watercourse in the figure is flowing to the right.

Figure 3. Approach area A inside and outside the WLPZ/ELZ. Approach area A is always on the left looking downstream.

Figure 4. Approach area A and B inside and outside the WLPZ/ELZ. Approach area A is always on the left looking downstream and B is always on the right.

Approach A and B, the crossing and any water drafting approaches which extend beyond the approaches themselves will be evaluated. These seven areas will be referred to as follows throughout the monitoring procedure:

- Approach Area A -Outside the WLPZ/ELZ
- Approach Area A-Inside the WLPZ/ELZ
- Water Drafting Approach Area-A, Inside the WLPZ/ELZ
- Crossing Structure
- Approach Area B-Outside the WLPZ/ELZ
- Approach Area B-Inside the WLPZ/ELZ
- Water Drafting Approach Area-B, Inside the WLPZ/ELZ

Figure 5. Typical Protocol Survey Area including approach areas A and B inside and outside the WLPZ/ELZ as well as water drafting approaches. Approach area A is always on the left looking downstream and B is always on the right; therefore the watercourse in the figure is flowing to the right.

Approaches to Stream Crossings

As indicated above, there are two approaches ("A" and "B") for each crossing location. Each of these approaches will be evaluated in the protocol. Also indicated above, the limits of the crossings are determined by measuring the distance, from bankfull, on the road surface, equivalent to three (3) times the WLPZ/ELZ width or 300 feet, whichever is less.

If within this distance, there are topographic features or a change in grade that prohibits road drainage from draining to the subject watercourse, the upland boundary of the protocol survey area is established at that point. This change is not applicable for drainage facilities including waterbreaks or rolling dips and the change must be continuous throughout the remainder of the measured distance.

Figure 6. Graphical examples that result in a change in grade that prohibits road drainage from draining to the subject watercourse resulting in, the upland boundary of the protocol survey area being established at that point less than what is described above.

Figure 7. Graphical example that results in a change in topography that prohibits road drainage from draining to the subject watercourse resulting in, the upland boundary of the protocol survey area being established at that point less than what is described above.

Another situation, pertaining to adjacent watercourse crossings may occur relative to approach A and B resulting in modification to the standard three (3) times the WLPZ/ELZ width or 300 feet, whichever is less rule. The scenarios and solutions are:

1. Where two crossings are located very close to one another (e.g., a road crosses two forks/branches of a stream upstream of their confluence) and if both stream crossings are to be included, then it is appropriate to split the distance in half. For example, if there is 100 ft between crossings, use 50 ft for each approach.

- Figure 8. Example of where two crossings are located very close to one another and both are subjected to the protocol.
 - 2. Where two crossings are located very close to one another (e.g., a road crosses two forks/branches of a stream upstream of their confluence) and only one crossing is to be included, then it is appropriate to use the normal procedure, but stop at the second stream. For example, if there is 100 ft between crossings, use 100 ft for each approach if the study area is greater than 100 feet.

Figure 9. Example of where two crossings are located very close to one another and southern crossings is not subjected to the protocol.

Situations may also arise where two road may merge or one road may split on one approach or within the protocol survey area. In these cases, the road exhibiting the greatest amount of soil movement shall be evaluated utilizing the protocol. The fact that the road splits or merges with another should be documented on a sketch or with photographs.

Approach Area Inside the WLPZ/ELZ

The approach area inside the WLPZ/ELZ originates at the outer edge of the stream's bankfull width and extends to the outer edge of the WLPZ/ELZ as flagged on the ground or stated in the plan. The entire road segment between the bankfull edge of the channel and the upland edge of the WLPZ/ELZ comprises the approach area inside the zone. *Instances Where Approach Does Not Leave WLPZ For Long Distances*

If the approach does not exit the WLPZ/ELZ for a lineal distance greater than three times the WLPZ/ELZ width, the maximum distance for evaluation shall be three times the buffer filter strip width or 300 feet, whichever is less. Distances are measured from bank full. There will be no responses to the questions pertaining to the approach outside of the WLPZ/ELZ as one does not exist within the protocol survey area.

Figure 10. Graphical depiction of a road that does not exist the WLPZ within three (3) times the WLPZ width or 300 feet as measured from bankfull.

No Approach Inside Buffer/Filter Strip (Class III Watercourses).

Class III watercourses (14 CCR 916.5, 936.5, 956.5) with "Low" EHR (14 CCR 912.5, 932.5, 952.7) and side slopes less than 30% may not have a WLPZ or ELZ pursuant to 14 CCR 916.4, 936.4, 956.4(c)(1). In these cases, there will be no approach inside the WLPZ/ELZ for the sampled crossing.

Approach Area Outside the WLPZ/ELZ

The approach area outside the WLPZ/ELZ originates at the upland edge of the WLPZ/ELZ and extends inland perpendicular to the bank to a point where road runoff drains away from the watercourse crossing. This excludes road drainage facilities (eg. waterbreaks or rolling dips).

The approach area outside the WLPZ/ELZ is limited to upland edge of the protocol survey area discussed above. Also as indicated above, if the approach does not exit the WLPZ/ELZ for a lineal distance greater than three times the WLPZ/ELZ width, the sampled crossing does not have an approach outside the WLPZ/ELZ and no data will be collected for that area.

Class III watercourses (14 CCR 916.5, 936.5, 956.5) with "Low" EHR (14 CCR 912.5, 932.5, 952.7) and side slopes less than 30% may not have a WLPZ or ELZ pursuant to 14 CCR 916.4, 936.4, 956.4(c)(1). Where there is no WLPZ or ELZ, default to 25 feet as measured from bankfull.

Crossing Structure

The crossing structure includes only those parts of the structure that are within the bankfull width of the channel. Structures or parts thereof that are outside the bankfull width of the channel must be considered part of the approaches for the purposes of the protocol.

Figure 11. The ends of the bridge pictured above are outside of the crossing area as illustrated by the lines.

Figure 12. The fill material from the hinge points to the dashed lines is considered part of the approach. The crossing itself is only the area between the dashed lines.

Water Drafting - Approach

Constructed water drafting approaches at watercourse crossings are common place. These constructed features are usually designed to allow a water truck to leave the roadway and pull or back onto a short spur where it is parked to facilitate water drafting activities. These water drafting approaches may be dirt pads or rocked.

Theoretically, there could be up to four of these at any one crossing location. However, usually there is only one and on rare occasion two. If there is more than one per approach area (i.e. "A" or "B") than determine which one is contributing the greatest amount of sediment and answer the protocol questions for that one water drafting site within the particular approach being evaluated. This being said, there could be two separate water drafting approaches evaluated if one occurred in approach area A and one in B.

Figure 13. A water drafting approach on approach area A, inside the WLPZ/ELZ.

Photography

- 1. Record the date and time directly on photo with the camera software.
- 2. On the photograph field form (Figure 14), record the following information:
 - THP number
 - Crossing number
 - GPS location
 - Date
 - Photographer's name
 - Brief narrative text describing each individual image (one line maximum)
 - Distance and bearing to effectiveness problem area (if necessary)
 - Where and What to Photograph
- 3. Photographs to take for each crossing:
 - View of crossing looking in the upstream direction (outlet end).
 - View of crossing looking in the downstream direction (inlet end).
 - View from approach A side.
 - View from approach B side.

- 4. Photograph noteworthy features (i.e., where there is evidence of significant problems with Forest Practice Rule implementation or effectiveness, such as fill slope failure, sediment deposition related to the crossing, etc.). A sketch diagram showing view location for the photo shall be included for these additional photo(s) [see sketch drawing protocols below and use 8.5 inch x 11 inch grid paper (page 4)].
- 5. Where multiple visits to a crossing site are likely and there is a significant effectiveness problem, record the approximate distance and bearing to midpoint of the effectiveness problem area, so that subsequent photographs can be taken from approximately the same location.

CAL FIRE — Calif	ornia Department of Fish and	Game Reqi	onal Water Quality Control B	pards California Geological Survey		
Page Of Date	Protocol No. (enter code G1)	Plan No	Crossing No	Photographer:		
Participants	GPS Location Latitu	ude N	GPS Location Longitude W	Crossing Type (enter code GC-110)		
Dverall Letter Grade For Cross A = Excellent, B = Good C = F	ing (enter code O-269) Fair, D = Poor F = Fail	D-269) Overall Letter Grade For Approaches (enter code 0-270) A = Excellent, B = Good, C = Fair D = Poor, F = Fail				
NA	RRATIVE DESCRIP		PHOTOGRAPHS / S	KETCHES		
		STREAM TO	WARDS CROSSING OU	TLET		
Insart Picture Here	Notes	Notes				
	DISTANCE PHOTO FIL	AND BEARING E NO.	FROM CROSSING MIDPOIN	T (FEET):		
	VIEW LOOKING DOW	VNSTREAM	TOWARDS CROSSING	INLET		
Insart Pietura Hara	Notes	Notes				
	DISTANCE PHOTO FIL	AND BEARING E NO.	FROM CROSSING MIDPOIN	T (FEET):		
	VIEW	FROM APPI	ROACH A SIDE			
Inpart Pietura Har) Notes					
	DISTANCE PHOTO FIL	DISTANCE AND BEARING FROM CROSSING MIDPOINT (FEET): PHOTO FILE NO.				
	VIEW	FROM APPI	ROACH B SIDE			
Insart Ficiura Har	Notes					
	DISTANCE PHOTO FIL	AND BEARING .E NO.	FROM CROSSING MIDPOIN	T (FEET):		
	MISCEI	LLANEOUS	PHOTOGRAPHS			
insart Hotura Har	ON Notes					
	DISTANCE PHOTO FIL	DISTANCE AND BEARING FROM CROSSING MIDPOINT (FEET): PHOTO FILE NO.				

IMMP PHOTOGRAPHIC REPORT

Figure 14. Blank photograph field form.

Sketch Drawing of Crossings

No sketch is necessary if no significant problem deemed by the review team members.

If the team members identify a significant problem with the crossing, then a sketch shall be drawn to illustrate the nature of the problem. The nature of the problem may be different for each agency and the sketch should capture the aspects of the problem for each agency (for example fish passage versus sediment delivery).

Sketch should be at a scale that includes the entire crossing and associated erosion features (if present).

Scale, north arrow, date, THP number should be indicated on the sketch.

At a minimum the sketch should include enough information to be able to construct cross sections through the problem area. This may include:

- Top of cut banks, bottom of cut banks, cut bank gradient or angle.
- Top of fill slope, bottom of fill slope, fill slope angle or gradient.
- Natural slope gradient.
- Road width, culvert diameter, channel width, rock sizes, dimensions of erosion features.

If necessary a sketch cross section that illustrates the problem area should also be drawn in the field. The cross section should match the sketch map scale with no vertical exaggeration.

Monitoring Tips

1) Layout of the Crossing feature before beginning to answer questions.

Using the diagrams, in this manual, lay out the crossing feature site by locating the boundaries of the:

- bankfull channel
- protocol survey area
- location where WLPZ/ELZ crosses the road
- approach area outside the WLPZ/ELZ
- beginning and end of the crossing structure

This will greatly simplify the assessment process.

2) Stay true to the Questions

Report only what can actually be seen at the time you are on the site. Do not speculate as to what may be or might have been unless asked to do so by the individual question being answered.

3) Dealing with an issue in multiple approach areas.

When evaluating on the ground conditions and choosing which condition to report, always report on the most severe problem. However, if a given problem crosses through

several areas, follow it through to its conclusion. Then report it in the area in which it is first discovered.

Example:

A rut extending from Approach Area A-Outside the WLPZ/ELZ through Approach Area A-Inside the WLPZ/ELZ to the stream would only be reported in answer to the questions in Approach Area A-Outside the WLPZ/ELZ. To report the same rut again in approach Area A-Inside the WLPZ/ELZ would be reporting the same rut twice. Therefore, only different problems would be reported in Approach Area A-Inside the WLPZ/ELZ.

The objective is to prevent double reporting of a given problem.

APPENDIX A - DEFINITIONS

Many of the terms used in this protocol have generally accepted definitions. However, in many cases, the forestry community recognizes a number of definitions for these terms. To facilitate consistency in monitoring while meeting the reporting needs of the participating state agencies, the following definitions will be used for the purposes of this protocol.

Aggrading means a stream channel in which the streambed is rising in elevation due to the deposition of sediment and other natural materials.

Aggradation refers to the accumulation of sediments on a surface which thereby raise its level.

- **Approach A** The haul road or skid trail approach on the left side of the stream crossing when looking down stream. The portion inside the WLPZ/ELZ is evaluated separately from the portion inside the WLPZ/ELZ.
- **Approach B** The haul road or skid trail approach on the right side of the stream crossing when looking down stream. The portion inside the WLPZ/ELZ is evaluated separately from the portion inside the WLPZ/ELZ.
- **Approach A/B Inside the WLPZ/ELZ** originates at the outer edge of the stream's bankfull width and extends to the outer edge of the WLPZ/ELZ.
- **Approach A/B Outside the WLPZ/ELZ** originates at the upland edge of the WLPZ/ELZ and extends inland perpendicular to the bank to a point where road runoff drains away from

the watercourse crossing. This approach is limited to the area that is outside of the WLPZ/ELZ and is within the protocol survey area. For Class III watercourses with no protection zone, limit the approach to 25 feet.

Arch, bottomless

Arizona Crossing/Vented Ford

Bankfull Width References 14 CCR 895.1.

Bridge, Closed Top A bridge with a continuous surface structure that would prevent soil and related debris from falling through the surface structure into the water below.

Bridge, Open Planked Top A bridge with a discontinuous surface structure that would permit soil and related debris to fall through into the water body below.

Critical Dip A dip in the road, usually installed in the crossing fill, which would prevent diversion of the stream course down the road should the crossing structure become obstructed.

Crossing Structure The crossing structure refers to the structural components of the crossing device such as culverts, timbers, poles and manufactured portions of abutments.

Crossing structures composed primarily of smaller culverts covered with fill material are defined as extending the bankfull width of the water body and include fill material and rip rap within this length, but not beyond.

Crossing structures composed of manufactured materials such as very large, bottomless culverts, timber, metal or concrete spans and timber, concrete or laid up stone abutments are defined as extending the bankfull width of the water body and include any fill material with the bankfull width but not beyond.

Fill material, rip rap and manufactured portions of bridges and abutments outside the bankfull width of the water body are considered part of the approaches

- **Crossing Structure, Open Bottom** A bottomless crossing structure such as a bridge or an arch culvert which leaves the natural stream bottom intact and available to the stream biota.
- **Crossing Structure, Closed Bottom** A crossing structure such as a culvert of metal, concrete, wood or other material which covers the natural stream bottom.
- **Crowned** A crowned road surface is one which slopes gently away from the centerline of the road and drains to both sides of the crown. The inside half of the road drains inward to the cutbank and ditch, while the outside half drains out across the fillslope.
- **Current road/skid trail status** refers to what the road was designated as or proposed as within the current plan.
 - **New** the road being evaluated was proposed for construction in the plan referenced in question G-2 of the protocol.
 - **Existing** the road was identified as either a seasonal or perment road in the plan referenced in question G-2 of the protocol.
 - **Reconstructed** through forensic evidence observed on the ground or as detailed in the plan referenced in question G-2 of the protocol activities occurred on the road that is consistent with "Reconstructed Road" as defined pursuant to 14 CCR 895.1.

Abandoned – Means that proactive measures have been applied to effectively remove the road from the permanent road network.

- **Cut and Fill** A method of road construction in which a road is built by cutting into the hillside and spreading the soild materials in low spotes and as sidecast along the rout.
- **DFG 1600 agreement** equates to any type of streambed alteration agreement made between the California Department of Fish and Game and the timberland owner. This agreement may be programmatic or specific depending on the Fish and Game code section utilized.
- **Ditch** A long narrow drainage depression, usually at the side of a trail or roadway, either excavated or formed by erosion.

Erosion Hazard Rating (EHR) References 14 CCR 895.1.

Ephemeral streams flow only for very short durations following rain or snow melt events.

Ford, Concrete Apron This type of ford is constructed of concrete slaps or prefabricated concrete slabs which form the running surface.

- **Ford, Dry** This type of ford crossing is one that is not proposed within the plan as being wet at the time of use. As such, there is no road surfacing utilized at the crossing location. This ford resembles a native surfaced ford crossing with the exception that it has a rocked outfall.
- **Ford, Native Surface** This type of ford crossing is commonly utilized in Class III watercourses that are proposed for use when water is not present. Commonly language in the plan will require that the crossing be "dipped" upon completion of use.

Ford, Wet Regardless of plan specification, if the crossing has a rocked running surface and a rock armored outfall, it qualifies as a wet ford crossing for purposes of this protocol.

Full Bench Road A road construction technique in which the bench cut width is the same as the road width, and no full is used in construction.

Gully An erosion channel cut into the soil along a line of water flow with a minimum depth of 6 inches and a minimum length of 12 feet. The length requirement does not apply if the gully terminates in a water body before reaching twelve feet in length. Gully erosion produces channels larger than rills. (Schwab et al. Soil and Water Engineering 1993 and Soil Survey Manual, USDA 1993).

- **Human Activities** For protocol purposes, any human activity unrelated to the timber harvesting operation. Generally refers to recreational activities such as ATV, mountain bike, horseback riding etc but also includes use of roads for residential access or other non-harvest related activities.
- **Hydrologic Soil Type** A set of classes pertaining to the relative infiltration rate of soil under conditions of maximum yearly wetness. Generally expressed as Group A = Gravel/Sand, Group B/C = Loams, Group D = Silts/Mucks.
- **Insloped Road** A road surface that is sloped in toward the cutbank. Insloped roads usually have an inboard ditch that collect runoff from the road surface and cutbank.
- **Intermittent** During dry periods the stream may cease to flow entirely or may be reduced to a series of separate pools.

- Land, Industrial Forest Land owned by individuals or businesses such as sawmills, paper companies, involved in processing logs and roundwood into primary forest products such as lumber and paper.
- Land, Non Industrial Private Forest Land owned by private individuals or groups not directly associated with primary forest industries. The timberland owner owns less than 2,500 acres.
- Land, Public Forest Land owned and managed by a town, county, or state agency or entity.
- **Leaching/Weeping** A form of sedimentation usually associated with a culvert or bridge abutment. Usually occurring where water flows along the outside of a culvert or through gravel, large fill or openings in bridge abutments washing out fine fill and eventually larger material.
- Logging Road See 14 CCR 895.1
- Maintenance Reference 14 CCR 1050(a)
- **Mechanical Deposition** Soil or fill material pushed into the stream channel by machinery which is beyond the design.
- **Mulch** Material placed or spread on the surface of the ground to protect it from raindrop, rill and gully erosion. Mulches include wood chips, straw, wood fiber and a variety of other natural and synthetic materials.
- **Other Land Use** Land uses unrelated to forestry such as recreation, sports, residential, agriculture, mining, etc.
- **Outsloped** A road surface that is sloped out away from the cutbank toward the road's fill slope. Outsloped roads may or may not have an inboard ditch.
- Perennial A stream with flowing water nearly year-round during a typical year.
- **Petroleum or Petroleum Residue** means oil staining or pooling of oil. It may also include grease, transmission fluid or hydraulic fluid.

Pipe Arch

Piping Erosion of fill material as from a bridge abutment or around a culvert as a result of water flowing through the abutment or outside the culvert and carrying entrained soil particles resulting in tunnels or "pipes" through the fill material potentially resulting in collapse and further erosion of the fill material. (Survey Manual, USDA 1993)

Pond or lake See 14 CCR 895.1

- **Principles/Practices** Rules, plan design, and/or added plan mitigations and implementation. The principles and pracices should not be judgemental or what based on what would be reasonable/feasible, but instead should be based on what was stated in the plan or provided for by the all rules applicable to the approaches or crossing being evaluated.
- **Protocol Survey Area** is the area subject to evaluation by this protocol. It size is dependent on the prescribed WLPZ/ELZ width and is measured from bankfull. It is determined and measured as a distance on the road surface equivalent to three (3) times the WLPZ/ELZ width or 300 feet, whichever is less, on each side of the watercourse crossing.
- **Quality Control** Activities or data recorded for the purpose of assuring accuracy and consistency of the monitoring process.
- **Rill** An erosion channel cut into the soil along a line of water flow often resembling a braided stream pattern with a minimum depth of 1 inch, a minimum length of 12 feet, and a depth change of at least 25% over the 12 foot length. The length requirement does not apply if the rill terminates in a water body before reaching twelve feet in length. Rill erosion is the detachment and transport of soil by a concentrated flow of water. Rill erosion is the predominate form of erosion under most conditions (Schwab et al. Soil and Water Engineering 1993) (Packer P.E. 1967 "Criteria for designing and locating logging roads to control sediment" Forest Science Vol. 13No 1.). A rill becomes a gully when the depth exceeds 6 inches. (See: Gully)

Road/Trail Inverted Below General Grade of Adjoining Land is a term used in the protocol to describe the road prism within the approaches. It usually occurs in flat topography through continued use and grading of the road.

Road/trail profile created by cut and fill construction.

Road/trail profile created by full bench construction.

Road/trail created by through cut.

Road/trail profile created by through fill.

Road type refers to the road classification, which is required to be mapped in a THP pursuant to 14 CCR 1034(x)(4)

Permanent road – References 14 CCR 895.1 Seasonal road – References 14 CCR 895.1 Temporary road – References 14 CCR 895.1 Skid Trail – References "tractor road" per 14 CCR 895.1

Rut Elongated depressions in a trail or roadway caused by dragged logs or wheels or tracks of harvesting machinery and often exacerbated by erosion from uncontrolled runoff waters. Continuous ruts with lengths equal to or greater than the lesser of one wheel circumference or 12 feet will be recorded for this protocol. Ruts ending within the bankfull channel width of the stream will be recorded regardless of length.

Sedimentation, Deposit to a water body Soil or fill material, not specified in the design, that is considered to have entered the water body when it has been deposited within the bankfull width of the stream channel or below the normal high water level of lakes or within the boundaries of wetlands whether or not water is present at the time of sampling.

Sedimentation, Measurable Amounts A soil or fill material deposit which is observable below the bankfull elevation of the channel at the time of sampling, and attributable to the logging operation and when measured would round to 1 cubic yard or more.

Examples include, but are not limited to deposits associated with a terminating rill or gully or a mechanical addition.

- **Sedimentation, Trace amounts** A soil or fill material deposit which is observable below the bankfull elevation of the channel at the time of sampling and attributable to the logging operation, but insufficient in volume to be readily measurable or if measured would round to less than 1 cubic yard.
- **Sheet Erosion** Sheet erosion is the more or less uniform removal of thin layers of soil from an area without the development of conspicuous water channels. It is often characterized by exceedingly numerous, tiny erosion channels and or soil, pedestals as the general soil layer is washed away. Sheet flow must cover a contiguous area of two square feet and be continuous for a minimum of 12 feet in length to be recorded. Sheet flow terminating

within the bankfull channel need not meet the length requirement. See also Pedestals (Soil Survey Manual, USDA 1993)

- **Skid Trail** A cleared trail used by skidders or forwarders to drag or carry logs or other roundwood from the stump to the landing area where they are transferred onto trucks for further transportation over haul roads. Also see tractor road under 14 CCR 895.1.
- **Slope length** is slope distance measured in whole feet along the centerline of the haul road or skid trail between the beginning and ending points indicated in the various protocol questions.

Stream Channel see watercourse pursuant to 14 CCR 895.1.

Temporary (Temp.) crossing A crossing that is intended for use during the current timber operation. These crossings are designed to facilitate the anticipated flow of water during the period of use.

Type include:

- Humboldt A drainage structure made out of logs laid in and parallel to a stream channel and then covered with soil.
- Spittler A drainage structure made out of logs, which are cabled together, and laid in and parallel to a stream channel. A pipe is first installed, and then bundles of logs are placed around the pipe. Fabric, then straw is placed on top of the logs followed by soil to make the running surface.
- Temporary Culvert with Log and Rock Fill On perennial streams, low gradient with continuous flow, temporary modified Spittler type crossing have been utilized. Pipes are placed across the active channel, logs are then used to fill the voids, followed by a rock cap. Each bundle of logs used in the fill are cabled together to facilitate removal.

Temporary Culvert with Rock Fill – On perennial streams, low gradient streams, temporary rock fill with the incorporation of numerous small diameter pipes may be used.

- **Through-cut** A road cut through a hillslope or, more commonly, a ridge, in which there is a cutbank on both sides of the road.
- **Through-fill** A road which is entirely composed of fill material and is commonly elevated above the surrounding area.
- Weather: Extreme Events Examples of extreme weather events include, but are not limited to: high intensity rainfall or rain on snow events.
- Water Drafting Approach means a pad or spur road constructed adjacent to the watercourse, so that the water truck can pull into or back off of the road surface to facilitate water drafting activities.

APPENDIX B – REFERENCE FOR G-14

LANDSIDE TYPE DEFINITIONS

ROCK SLIDE: A slide involving bedrock in which much of the original structure is preserved. Strength of the rock is usually controlled by zones of weakness such as bedding planes or joints. Movement occurs primarily by sliding on a narrow zone of weakness as an intact block. Typically these landslides move downslope on one or several shear surfaces, called slide planes. The failure surface(s) may be curved or planar.

diagram by J. Appleby, R. Kilbourne, and T. Spittler after Varnes, 1978

EARTH FLOW: A landslide composed of fine grained soil, consisting of surficial deposits and deeply weathered, disrupted bedrock. The material strength is low through much of the slide mass, and movement occurs on many discontinuous shear surfaces throughout the landslide mass. Although the landslide may have a main slide plane at the base, many internal slide planes disrupt the landslide mass leading to movement that resembles the flow of a viscous liquid. diagram by J. Appleby, and R. Kilbourne, after Varnes,

DEBRIS FLOW: A landslide in which a mass of coarse-grained soil flows downslope as a slurry. Material involved is commonly a loose combination of surficial deposits, rock fragments, and vegetation. High pore water pressures, typically following intense rain, cause the soil and weathered rock to rapidly lose strength and flow downslope.

diagram by J. Appleby, and R. Kilbourne, after Varnes,

DEBRIS SLIDE: A slide of coarse grained soil, commonly consisting of a loose combination of surficial deposits, rock fragments, and vegetation. Strength of the material is low, but there may be a very low strength zone at the base of the soil or within the weathered bedrock. Debris slides typically move initially as shallow intact slabs of soil and vegetation, but break up after a short distance into rock and soil falls and flows.

diagram by J. Appleby, and R. Kilbourne, after Varnes, 1978

DEBRIS SLIDE SLOPE: Debris slides and debris flows are commonly found on a landform called a DEBRIS SLIDE SLOPE, which represents the coalesced scars of numerous landslides that are too small to depict on a geologic map. These landforms are generally very steep, and have developed in areas of weak bedrock mantled with loose, thin soils and covered with sparse vegetation.

diagram by J. Appleby, and R. Kilbourne, after Varnes,

INNER GORGE: A landform formed by coalescing scars originating from mass wasting and erosional processes caused by active stream erosion. The landform is identified as that area of stream bank situated immediately adjacent to the stream, having a slope generally of over 65% and being situated below the first break in slope above the channel.

diagram by J. Appleby, and R. Kilbourne, after Varnes,

APPENDIX C – REFERENCE FOR G-14

DEFINITION OF LANDSLIDE ACTIVITY

(diagrams from Wieczorek, 1984)

Active or Historic: The landslide appears to be currently moving or movements have been recorded in the past. Fresh cracks, disrupted vegetation or displaced or damaged man-made features indicate recent activity. Water may be ponded in depressions created by rotation of the slide mass or blockage of stream drainage.

<u>Dormant-young</u>: The landforms related to the landslide are relatively fresh, but there is no record of historic movement. Cracks in the slide mass are generally absent or greatly eroded; scarps may be prominent but are slightly rounded. Depressions or ponds may be partly filled in with sediment, but still show phreatophytic vegetation.

<u>Dormant-mature</u>: The landforms related to the landslide have been smoothed by erosion and revegetated. The main scarp is rounded, the toe area has been eroded and some new drainages established within the slide area. Benches and hummocky topography on the slopes are subdued and commonly obscured by dense, relatively uniform vegetation.

<u>Dormant-old</u>: The landforms related to the landslide have been greatly eroded, including significant gullies or canyons cut into the landslide mass by small streams. Original headscarp, benches and hummocky topography are now mostly rounded and subtle. Closed depressions or ponds now filled in. Vegetation has recovered and mostly matches the vegetation outside the slide boundaries.

Monitoring Results of Alternative Watercourse and Lake Protection Zones in the Etna Creek Watershed in interior, Northern California.

Stuart Farber Timber Products Company PO Box 766 Yreka CA 96097

Jenny Whitaker 34975 SE 107th Street Snoqualmie WA 98065

Abstract

Based on the scientific literature, previously existing stream water, channel and riparian habitat data collected along Etna Creek an alternative WLPZ was proposed for timber harvesting. Stream temperature, air temperature, relative humidity and surface erosion monitoring was supported by California Department of Fish and Game (DFG) and by the North Coast Regional Water Quality Control Board (NCRWQCB). Timber harvesting occurred during the summer of 2007 and the first post harvest water year was 2008. The harvesting of trees from the outer zone of the Class I alternative WLPZ resulted in a reduction of canopy closure from 72% to 53% for the thinning unit and from 67% to 53% for the clearcut unit. Reductions in canopy closure resulted in Class I riparian air temperatures and humidity in the inner zones of the alternative WLPZ's remained relatively unchanged following timber harvest, while the outer zone, along one reach, air temperature increased 1.0C and humidity decreased 9.0%. MWAT water temperature remained relatively unchanged from the Class I alternative WLPZ timber harvest. The harvesting of trees from the Class II alternative WLPZ resulted in a reduction of outer zone canopy closure from 70% to 62%. Class II stream reductions in canopy closure resulted in inner zone air temperatures increased 1.1C and humidity decreased 4.6%. Outer zone air temperatures increased 1.5C and humidity decreased 5.0%. MWAT water temperature remained relatively unchanged from the Class II alternative WLPZ timber harvest. Sediment transported to the WLPZ from roads, skid trails or harvest units was stopped by strategic placement of waterbars and slash over all skids trails and landings, effectively stopping erosion from continuing to route to wetted zones.

1.0 Introduction

The Etna Creek watershed flows directly into the Scott River, a tributary of the Klamath River. Etna Creek is currently known to support anadromous salmonids including chinook and coho salmon at the confluence with the Scott River and steelhead trout are known to occur in reaches of Etna Creek. Currently, based on opportunistic electro-shocking of upper Etna Creek by the DFG, only steelhead trout are known to occupy the upper reaches of the watershed in our study area. Consequently, the monitoring of this alternative WLPZ's occurred in an anadromous watershed.

Direct observation or correlation studies have established relationships between riparian habitat conditions and stream channels and forest management activities. Generalized curves have been developed that describe these relationships and the distances at which riparian habitat provide key functions for stream channel habitats including riparian shade (Spence et al, 1996; FEMAT 1993). In general, observational studies have found that riparian shade could potentially influence streams equal to one site-potential tree height (Beschta et al. 1987). Yet, cause-and-effect studies like the Alsea Watershed Studies in Oregon have found that effective riparian shade buffers from partially harvested riparian habitats occurs between 25 feet to 100 feet from the stream channel (Brown 1971)) and was verified in an additional cause-and-effect study (Brown 1972). Unfortunately, the cause-and-effect relationships between riparian and stream channel habitats, including riparian shade, and current forest management activities in California is relatively poorly understood.

As part of the Etna Creek THP (2-05-098-SIS6), Timber Products Company (Company) summarized regional literature, existing stream water temperature data and watershed level riparian conditions to better understand both historic and existing riparian habitats and stream water temperatures in the Etna Creek watershed. A watershed level assessment of historic and existing riparian habitats found, based on 2001 aerial photography, a total of 49% of the reaches had over 70% canopy closure and another 35% of the reaches had between 40% and 70% canopy closure. Prior to this current THP, the assessment also identified a total of 10,500 feet of Class I riparian habitat and 20,400 feet of Class II riparian habitat that had been previously modified by timber harvest. While significant modifications of riparian habitat had occurred between 1997 and 2002 (Appendix A), MWAT water temperatures downstream of these modifications in Etna Creek remained relatively unchanged (Appendix A).

The three alternative Waltz's for this study were designed to maintain all riparian zone functions including riparian shade, nutrients, filtration of sediments, large wood debris delivery to stream channels and stream bank stabilization. Riparian zone functions specifically monitored as part of the alternative WLPZ's included water temperatures, riparian air and humidity, riparian shade and riparian zone filtration of sediments.

2.0 Study Design – Public Agency Recommendations

During the review of the proposed alternative WLPZ's the NCRWQCB and DFG provided comments, suggestions and recommendations regarding the monitoring of the alternative WLPZ's. In general, both the NCRWQCB and DFG were supportive of the proposed alternative WLPZ's and monitoring and provided specific recommendations to be included into the study design (Appendix B):

- (1) Measure pre harvest and post harvest alternative WLPZ canopy closure from the entire alternative WLPZ to document the actual canopy closure reduction from the proposed timber harvest plan units.
- (2) Collect summer stream temperatures down stream and upstream of proposed timber harvest plan units.
- (3) Conduct a field survey for sediment transported to or through the alternative WLPZ after first winter after operations. Document whether sediment was being transported to the Class I or II stream channel or alternative WLPZ and if so identify the source of the sediment.
- (4) If possible, collect baseline (pre harvest) microclimate data (ambient air temperature) to measure response in the alternative WLPZ to the response in stream water temperatures, if any.

3.0 Methods: Summarized Monitoring Plan in the Etna Creek Watershed

Monitoring methods of the alternative WLPZ's in the Etna Creek watershed incorporates the results of timber harvest plan, the watershed level channel and riparian assessment, comments and suggestions provided by the NCRWQCB and DFG (Appendix B). Based on the scientific information and the suggestions and recommendations provided by the cooperators, the most appropriate study design was a before-after design for Class I WLPZ and before-after-control design for the Class II WLPZ's. As the name suggests, the before-after and before-after-control designs are the simple monitoring of the environment before a known disturbance and after a disturbance. These designs also can identify cause-and-effect relationships by measuring which components may adversely impact the environment and estimate the magnitude of the change (Smith 2002). In analysis, any difference found between the before and after results and in comparison to the controls is attributed to the disturbance. However, this design may be limited due to annual variation in environmental conditions like air temperatures, snow melt, stream flows or stochastic events like floods, debris torrents or wildland fires (Smith 2002).

The alternative WLPZ's were designed to maintain all riparian functions, specifically maintaining existing stream water temperatures. Also, within the outer zone an Equipment Limitation Zone was implemented to maintain understory vegetation, down logs, rocks and forest floor litter to potentially filter sediments before being delivered to the stream channel. The alternative WLPZ's included three different protection zones:

Alternative	Adjacent	WLPZ	WLPZ
WLPZ	Silviculture	width	canopy closure
Class I	Selection	0 to 50 ft	100% retention of existing canopy closure
	Unit #8	50 to 150 ft	Maintain 50% canopy closure
Class I	Clearcut	0 to 75 ft	100% retention of existing canopy closure
	Unit #12	75 to 150 ft	Maintain 50% canopy closure
Class II	All	0 to 25 ft	Maintain 70% canopy closure
	Silviculture	25 up to 100 ft	Maintain 50% canopy closure

Table 1 Proposed alternative WLPZ's
3.1 Stream Water Temperature and Riparian Air Temperature and Humidity

As described in Appendix B and C, the before-and-after design included two Class I stream reaches and the beforeafter-control design included four Class II stream reaches with four control reaches. At all these reaches stream water temperature, air temperature and humidity were collected. For the Class I alternative WLPZ, site TEC2 was located immediately down stream and TEC2B was upstream of the selection silviculture Unit #8 (Figure 1). And Site TEC6 was located immediately down stream and TEC7 upstream of the clearcut silviculture Unit #12. For the Class II alternative WLPZ, sites A2, C2, D2 and G2 were treatment sites where the alternative WLPZ was harvested and sites B2, E2, F2 and H2 served as Class II controls (Figure 1).

Water temperatures were measured continuously every one hour interval with electronic recording instruments, which is suitable to detect stream temperature peaks (Lewis et al. 2000). The goal of the field season was to begin on May 15th and end on October 1st. Each instrument was calibrated following calibration protocols (FFFC 1996; USGS 1978). Instruments used in this study were calibrated for accuracy using an EPA certified NIST traceable thermometer, ASTM# 6016. The manufacturer's specifications for accuracy of the instruments, Onset Hobo Temp H8, is stated as +/-0.2 C at 0C. Additional information collected for each stream water temperature site were those recommended by FFFC (1996) and the USGS (1978). Information collected included date and time of instrument deployment, location name, serial number of instrument, unique location number and personnel. In addition, descriptive information collected for each monitoring site included elevation, tributary basin area, distance to watershed divide and stream summer low flow. And in case of potential equipment malfunction, instantaneous water and air temperatures were recorded on the day of deployment in the field to help identify malfunction.

Figure 1 Alternative WLPZ monitoring sites along Etna Creek 2006 to 2010

3.2 Canopy Closure, Basal area and Trees within alternative WLPZ

Pre harvest and post harvest alternative WLPZ canopy closure, basal area and number of trees were measured to document both the pre and post treatment conditions. At every 100 feet of stream channel a systematic transect perpendicular to each survey plot was measured (Berbach et al. 1999, Zwienicki and Newton 1999). Distances were collected a cloth tape (Caldwell et al. 1991). Canopy closure, basal area and number of trees were measured within the stream channel, at the mid-point of the inner zone and mid-point of the outer zone. Canopy closure refers to the total canopy overhead that was measured by both a densiometer and siting tube (CWHR 1988). Basal area and the number of trees were measured within a 1/50th acre fixed plot centered at the mid-point of the inner zone and mid-point of the outer zone.

3.3 Sediment Transported to or through the alternative WLPZ

In general, filtration of sediment from overland flow can occur by physical barriers that trap sediment such as ground vegetation and down woody debris and can occur at distances equal to one site-potential tree height (FEMAT 1993). However, local watershed or channel conditions including geomorphic characteristics such as slope, soil type and vegetative structure and cover can influence effectiveness of filtration of sediment. This study proposed retaining all vegetation and conifer and hardwoods trees, down logs, rocks and forest floor litter for filtration within 50 or 70 feet of the stream channel, and 50% canopy closure for the remaining zone width and an Equipment Limitation Zone to maintain understory vegetation, down logs, rocks and forest floor litter to also potentially filter sediments.

We conducted a field survey of pre harvest and post harvest of the alternative WLPZ to document sediment transported to or through the alternative WLPZ. Post harvest assessments were conducted following the 1st winter period and 2nd winter as operations were completed. The primary focus of this field survey was to measure sediment transported from overland flow, more concentrated sediment sources like skid trails, road relief culverts, road relief rolling dips, road culvert crossings and small landslides. If any sediment was found to be transported to or through the alternative WLPZ, the key metrics measured were:

Sediment Erosion Metric	Measurement Method
Date	Pre-harvest, Post-harvest, 1 st winter, 2 nd winter
Туре	Rill, Gully, Channel, Landslide
Size (Volume)	Length x Width x Depth (Cloth tape)
Location	Channel Zone, WLPZ, SOZ, Harvest Unit, Skid Trail, Road
Road Feature Type (if appropriate)	Road related features would be inventoried using our standard quantitative road inventory methods.
Initiation Point	Channel Zone, WLPZ, SOZ, Harvest Unit, Skid Trail, Road
Delivery Point	Wetted Stream Channel, Channel Zone, WLPZ, SOZ, Harvest Unit
Effective Mitigation Measures (if any)	Make qualitative notes regarding waterbars, vegetation, duff layer, coarse soils, topography

Table 2 Sediment Transport field survey information collected

4.0 **Preliminary Results**

4.1 **Operations**

On May 10, 2006, monitoring of an alternative WLPZ in Etna Creek was proposed by the Company. On June 5, 2006 the NCRWQCB received an application for coverage for the Etna Creek THP under the General Waste Discharge Requirements (WDR). On July 27, 2006 the Etna Creek THP was enrolled and WDID #1A205138SIS was assigned.

Road maintenance operations began on August 8, 2006 and was completed on August 23, 2006. Tractor based timber harvesting operations began on June 1, 2007. Yarder based timber harvesting operations began on June 25, 2007. All timber harvesting operations were completed August 9, 2007. A final timber operations work completion and stocking report was completed and approved by the CDF on June 2, 2008. An application for termination of coverage under the General Waste Discharge Requirements (WDR) for the Etna Creek THP was submitted on July 10, 2009, and a completed Notice of Termination Report was completed by the NCRWQCB staff on March 4, 2010.

Based on the actual timber harvesting schedule and peak of water temperature in 2007 between July 4th and 10th in lower elevations and July 27th and August 2nd at higher elevations, stream, air and humidity recordings in <u>2006 were</u> considered pre-treatment and 2007, 2008 and 2009 were considered post-treatment.

4.2 Results: Watershed Level Stream Water Temperatures

Stream water temperatures have been collected at one location in the upper Etna Creek watershed since 1998. Since Etna Creek is a very popular for recreational swimming and fishing, over the years equipment has been lost to curious recreationists. While equipment was lost in 1997, 2003 and 2007 at monitoring site TEC2, watershed level monitoring has been completed 10 out of 13 years between 1997 and 2009 (Figure 2 and Appendix D).

During the 13 years of watershed level monitoring three separate THP's have been completed. Following timber harvesting in 1997and 2004 downstream water temperatures remained relatively unchanged. And in this current study pre harvest MWAT temperatures downstream of the alternative WLPZ (Unit #8) was 16.8 C. Following timber harvest MWAT temperatures decreased to 14.8 C and 16.4 in 2008 and 2009, respectively (Figure 2 and Appendix E).

Figure 2 Lower Etna Creek (TEC2) (Downstream of Harvest)

4.3 Results: Reach Level Stream Water Temperatures

At the reach level, two separate Class I alternative WLPZ reaches, Unit #8 and Unit #12, were measured. Relative to a control upstream of the alternative WLPZ adjacent to the thinning unit (Unit #8), downstream MWAT temperatures were 0.5 C higher pre harvest. MWAT temperatures were 0.1C higher post harvest in 2008 and 0.6 C lower post harvest in 2009 (Figure 3, Table 3 and Appendix E).

At monitoring site TEC6 which was located downstream of the alternative WLPZ adjacent to the clearcut unit (Unit #12), pre harvest MWAT temperature was 14.6 C. MWAT temperatures decreased to 13.9 C, 12.8 C and 14.1 C following harvest in 2007, 2008 and 2009, respectively. Relative to a control upstream of Unit #12, downstream MWAT temperatures was 0.3 C higher pre harvest. MWAT temperatures were 0.2C higher post harvest in 2007, 2008 and 2009, Eleventer Eleventer and Appendix E

Table 3	Etna	Creek	Class	I	Streams
---------	------	-------	-------	---	---------

Stream Monitoring Location	Monitoring Station Name	Monitoring Year	MWAT (C)	MWAT Relative to Base Year (C)	MWAT Treatment Relative to Control (C)
Downstream of Thinning	TEC2	2006	16.8		0.5
(Treatment)		2007^{A}			
		2008	14.8	- 2.0	0.1
		2009	16.4	- 0.4	- 0.6
Upstream of Thinning	TEC2B	2006	16.3		
(Control)		2007 ^A			
		2008	14.7	- 1.6	
		2009	17.0	0.7	
Downstream of Clearcut	TEC6	2006	14.6		0.3
(Treatment)		2007	13.9	- 0.7	0.2
		2008	12.8	- 1.8	0.2
		2009	14.1	- 0.5	0.2
Upstream of Clearcut	TEC7	2006	14.3		
(Control)		2007	13.7	- 0.6	
		2008	12.6	- 1.7	
		2009	13.9	- 0.4	

Figure 3 Reach Level above and below harvest

At the reach level, for Class II streams, all four of the treatment and control locations were measured 1 year pre harvest and 3 years post harvest (Table 4 and Appendix F). Mean MWAT water temperatures for treatment sites decreased 0.5 C during the study from 13.6 C to 13.1 C. Mean MWAT water temperatures for control sites decreased 0.7 C during the study from 14.0 C to 13.3 C. Relative to controls, mean MWAT water temperatures in Class II streams remained relatively unchanged increasing 0.2 C during the study period.

Stream Monitoring Location	Pre or Post Harvest (years)	MWAT Mean Range (C)	MWAT Mean (C)	MMAT Mean Range (C)	MMAT Mean (C)
Treatment (A2,C2,D2,G2)	Pre (1 year) Post (3 years)	12.7 to 14.2 12.0 to 13.9	13.6 <u>13.1</u> -0.5	13.7 to 16.0 13.2 to 15.3	14.8 <u>14.4</u> -0.4
Control (B2,E2,F2,H2)	Pre (1 year) Post (3 years)	12.9 to 15.8 12.4 to 14.6	14.0 <u>13.3</u> -0.7	13.3 to 17.1 13.2 to 16.5	15.2 <u>14.6</u> -0.6

Table 4Etna Creek Class II mean temperatures

4.4 Reach Level Air Temperature and Humidity

Air temperature and humidity were collected within both Class I alternative WLPZ's. Adjacent to the thinning, Unit #8, Hobo units functioned well although some data was not retrievable from Hobo units for the outer zone relative humidity (Table 4 and Appendix E). Relative to a control, adjacent to the thinning unit the alternative WLPZ air temperature was relatively unchanged, -0.5 C for the inner zone and 0.3 C for the outer zone. And relative to the control, relative humidity increased 5.3% in the inner zone and decreased 1.4% in the outer zone.

Adjacent to the clearcut, Unit #12, Hobo units functioned well although again some data was not retrievable from Hobo units for the inner zone relative humidity (Table 4 and Appendix E). Relative to a control, adjacent to the clearcut unit the alternative WLPZ air temperature was relatively unchanged, -0.3 C for the inner zone and increased 1.0 C for the outer zone. Relative to the upstream control, relative humidity decreased 9.0% in the outer zone. Since all air temperature and humidity data was not retrievable for all years, creating inconsistencies in sample size and sample years, these results should be viewed with some caution.

7/6/10

Stream Monitoring Location	Pre or Post Harvest (years)	Inner Zone Mean Air (C)	Outer Zone Mean Air (C)	Inner Zone Mean RH (%)	Outer Zone Mean RH (%)
Downstream of Thinning (Treatment TEC2)	Pre (1 year) Post (3 years) Change	22.2 <u>21.6</u> -0.6	22.7 <u>22.5</u> -0.2	70.7 <u>51.8</u> -18.9	68.1 <u>51.0</u> -17.1
Upstream of Thinning (Control TEC2B)	Pre (1 year) Post (3 years) Change	21.0 <u>20.9</u> -0.1	22.3 <u>21.8</u> -0.5	72.7 <u>48.5</u> -24.2	66.7 <u>51.0</u> -15.7
Thinning Treatment relative to Control		-0.5 C	0.3 C	5.3 %	-1.4 %
Downstream of Clearcut (Treatment TEC6)	Pre (1 year) Post (3 years) Change	19.2 <u>17.8</u> -1.4	19.9 <u>19.1</u> -0.8	80.0 <u>64.9</u> -15.1	76.2 <u>60.9</u> -15.3
Upstream of Thinning (Control TEC7)	Pre (1 year) Post (3 years) Change	18.7 <u>17.6</u> -1.1	19.6 <u>17.8</u> -1.8	nd <u>74.5</u> nd	76.0 <u>69.7</u> -6.3
relative to Control		-0.3 C	1.0 C	nd	-9.0 %

Table 4 Etna Creek Class I air temperatures and humidity (See Appendix E)

Air temperature and humidity were collected within 4 treatment Class II alternative WLPZ's and 4 control WLPZ's. Hobo units functioned very well within all Class II stream WLPZ's with no unit malfunctions. Mean pre harvest air temperature was 1.6 C and 2.4 C greater in the outer zone than the inner zone for the treatment and control sites, respectively. Mean pre harvest humidity was 7.0% and 13.2% lower in the outer zone than the inner zone for treatment and control sites, respectively. During the study the mean treatment alternative WLPZ air temperature decreased -0.7 C for the inner zone and -0.2 C for the outer zone. However, relative to the 4 control sites, air temperature increased 1.1C for the inner zone and 1.5 C for the outer zone.

Mean treatment alternative WLPZ humidity decreased 15.7% in the inner zone and 14.1% in the outer zone. And, relative to the 4 control sites, humidity decreased 4.6% in the inner zone and 5.0% in the outer zone during the study.

Table 5

Etna Creek Class II air temperatures and humidity (See Appendix F)

Stream Monitoring Location	Pre or Post Harvest (years)	Inner Zone Mean Air (n=4)(C)	Outer Zone Mean Air (n=2)(C)	Inner Zone Mean RH (n=4)(%)	Outer Zone Mean RH (n=2)(%)
Treatment (A2,C2,D2,G2)	Pre (1 year) Post (3 years) Change	21.5 <u>20.9</u> -0.7	23.1 <u>22.9</u> -0.2	69.8 <u>54.1</u> -15.7	62.8 <u>48.7</u> -14.1
Control (B2,E2,F2,H2)	Pre (1 year) Post (3 years) Change	21.2 <u>19.4</u> -1.8	23.6 <u>22.0</u> -1.6	69.6 <u>58.5</u> -11.2	56.4 <u>47.2</u> -9.1
Treatment relative to Control		1.1 C	1.5 C	-4.6 %	-5.0 %

4.5 Canopy Closure within alternative WLPZ

Pre and post harvest field surveys were completed for 6,100 feet of Class I stream channel and alternative WLPZ. A total of 61 survey plots (Table 6) along the stream channels were measured. Class I canopy closure measurements with a siting tube consistently measured lower canopy closure than a densiometer. Pre harvest Class I siting tube measurements ranged from 6% to 16% lower, inner zone ranged from 1% to 6% lower and outer zone ranged from 11% to 17% lower (Table 6).

During timber harvest, for the thinning unit the alternative WLPZ siting tube based canopy closure in the outer zone was reduced from 72% to 53% and for the clearcut unit the alternative WLPZ site tube based canopy closure in the outer zone was reduced from 67% to 53%.

Table 6 Pre and Post Harvest Canopy Closure for CLASS I Alternative WLPZ

WLPZ Cane	opy Closure	Number of Plots (n)	Number of Measure Ments	Pre Harvest Mean (%)	Pre Harvest Range (%)	Post Harvest Mean (%)	Post Harvest Range (%)
Class I (TEC2)							
Stream Channel	(Densiometer)	51	204	74%	40 - 97%		
Inner Zone	(Densiometer)	51	204	84%	33 - 98%		
Outer Zone	(Densiometer)	51	204	83%	65 - 95%	73%	34 - 98%
Class I (TEC2)							
Stream Channel	(Siting tube)	51	204	58%	0 - 100%		
Inner Zone	(Siting tube)	51	204	78%	11 - 100%		
Outer Zone	(Siting tube)	51	204	72%	0 - 100%	53%	0 - 100%
Class I (TEC6)							
Stream Channel	(Densiometer)	10	90	67%	35 - 94%		
Inner Zone	(Densiometer)	10	90	87%	41-100%		
Outer Zone	(Densiometer)	10	90	84%	63 - 94%	53%	0 - 100%
Class I (TEC6)							
Stream Channel	(Siting tube)	10	90	61%	44 - 78%		
Inner Zone	(Siting tube)	10	90	86%	33 - 100%		
Outer Zone	(Siting tube)	10	90	67%	0 - 100%	53%	0 - 100%
	- /						

* TEC2 is the selection unit and TEC6 is the clearcut unit.

Pre and post harvest field surveys were completed for 10,980 feet of Class II stream channel and alternative WLPZ. A total of 124 Class II survey plots (Table 7) along the stream channels were measured. Class II canopy closure measurements with a siting tube consistently measured lower canopy closure than a densiometer. Pre harvest Class II in channel siting tube measurements ranged from 13% to 19% lower, inner zone was 13% lower and outer zone was 13% lower (Table 7).

During timber harvest, as measured with a siting tube, mean alternative WLPZ siting tube based canopy closure in the outer zone was reduced within four treatment reaches from 70% to 62% or an average of 8%.

WLPZ Can	opy Closure	Number of Plots (n)	Number of Measure Ments	Pre Harvest Mean (%)	Pre Harvest Range (%)	Post Harvest Mean (%)	Post Harvest Range (%)
Class II (Contr	ol 3,400ft)						
Stream Channel	(Densiometer)	38	152	84%	55 - 98%		
Inner Zone	(Densiometer)						
Outer Zone	(Densiometer)						
Class II (Contr	ol)						
Stream Channel	(Siting tube)	38	342	65%	22 - 100%		
Inner Zone	(Siting tube)						
Outer Zone	(Siting tube)						
Class II (Treat	ment 7,580ft)						
Stream Channel	(Densiometer)	86	344	87%	47 - 100%		
Inner Zone	(Densiometer)	86	344	88%	55-100%	81%	0 - 95%
Outer Zone	(Densiometer)	86	344	83%	19 - 100%	75%	0-89%
Class II (Treat	ment)						
Stream Channel	(Siting tube)	86	774	74%	11 - 100%		
Inner Zone	(Siting tube)	86	774	75%	11 - 100%	74%	0 - 100%
Outer Zone	(Siting tube)	86	774	70%	0 - 100%	62%	0 - 100%

Table 7 Pre and Post Harvest Canopy Closure for CLASS II Alternative WLPZ

4.6 Sediment Transported to and through the WLPZ

Sediment erosion surveys were conducted, both pre and post harvest, to determine whether sediment was being transported to and through the Class I and II alternative WLPZ's. All existing and historic sediment erosion sources were recorded within the Class I and II stream channel zone, alternative WLPZ, and harvest units immediately adjacent to the alternative WLPZ. Pre harvest sediment erosion surveys started on May 10, 2006. A total of 6,100 lineal feet of Class I and 7,580 feet of Class II stream channel were surveyed (Table 8). Post harvest sediment erosion surveys started on April 15, 2008 following the first winter after operations.

Post harvest sediment erosion surveys found that all 3 erosion sites located along the Class I thinning unit were effectively stopped. The county road ditch was previously gullying through the thinning harvest unit and alternative WLPZ. Strategic placement of waterbars and slash over all skids trails effectively stopped erosion from continuing to route to the wetted zone of Etna Creek. At one of the erosion sites along reach EC2, erosion from the county road ditch and spoils pile was previously gullying through the thinning harvest unit and alternative WLPZ. Again, strategic placement of waterbars and slash over all skids trails effectively stopped erosion from continuing to route to the wetted zone of Etna Creek (Table 8).

Of the five original sediment erosion sites found along Class II treatment streams during pre harvest surveys, two sites had strategic placement of waterbars and slash over all skids trails effectively stopping erosion from continuing to route to the Class II wetted zone. The remaining three sites are in-channel features located within either the channel or wetted zone and no mitigation was proposed for these sites.

Post harvest sediment erosion surveys along the Class II reaches found two new erosion sites (Table 8). One, ECC2 a road surface erosion site where strategic placement of a berm and rolling dip effectively routed erosion away from the WLPZ and over the forest floor. Two, ECA2 a landing failure occurred where less than 0.5 cuyd was routed to the Class III WLPZ. No sediment was routed to the Class II ECA2 reach. Existing ground vegetation, trees and topography limited routing of the landing failure and no further erosion has occurred.

In summary, the alternative WLPZ and adjacent harvest units did not initiate any new large landslides or surface erosion. The alternative WLPZ's effectively stopped pre-existing sources of sediment from road, skid trails and harvest units. Existing roads generated two new relatively small sediment sources. Results indicate that sediment being transported to the alternative WLPZ or initiated within the alternative WLPZ was effectively trapped prior to entering the channel zone or stream wetted zone.

Table 8 Pre harvest erosion survey started on 5/10/06 and post harvest started on 4/15/08

Erosion Survey Reach	Description	Initiation Location	Initiation Source	Delivery Zone	Delivery Distance	Erosion (cuyds)	Post harvest condition
	Pre Harvest Survey						
EC2(t)	County road culvert	HU	R	CZ	395	59.8	No erosion
EC2(t)	County road spoils pile	R	R	WZ	1993	36.6	No erosion
EC2(t)	County road culvert	HU	R	WZ	345	40.8	No erosion
EC6(t)	No erosion found						NC
ECA2(t)	No erosion found						NC
ECC2(t)	County road ditch line	CZ	R	CZ	30	0.1	NC
ECC2(t)	County road erosion routed	CZ	R	WZ	34	2.5	No erosion
ECD2(t)	Historic in-channel failure	CZ	CZ	WZ	3	7.1	NC
ECG2(t)	Pre-existing gully	WZ	HU	CZ	46	0.6	NC
ECG2(t)	Pre-existing gully	WZ	SK	WZ	112	1.2	No erosion
ECB2(c)	No erosion found						NC
ECE2(c)	Historic in-channel failure	WLPZ	WLPZ	WZ	0	303.3	NC
ECH2(c)	Rill and gully	WLPZ	WLPZ	WLPZ	37	0.1	NC
ECF2(c)	Historic in-channel failure	WLPZ	WLPZ	WZ	30	133.3	NC
	Post Harvest Survey	New Sites					
ECC2(t)	Road surface erosion	R	R	WLPZ	70	< 0.5	Routed away
ECA2(t)	Landing failure	R	R	WLPZ	60	<0.5	from channel No further erosion

CZ = Channel Zone WZ = Wetted Zone WLPZi = WLPZ Inner zone WLPZo = WLPZ Outer zone WLPZe = WLPZ edge with unit R = Road SK = Skid trail HU = Harvest Unit (t) = treatment reach (c)=control reach NC=No Change

5.0 Summary of Results

- (1) The harvesting of trees from the outer zone of the Class I alternative WLPZ resulted in a reduction of canopy closure from 72% to 53% for the thinning unit and from 67% to 53% for the clearcut unit.
- (2) Both watershed level and reach level Class I MWAT water temperatures remained relatively unchanged following alternative WLPZ timber harvest.
- (3) Reach level Class II MWAT water temperatures remained relatively unchanged following alternative WLPZ timber harvest.
- (4) Class I riparian air temperatures and humidity in the inner zones of the alternative WLPZ's remained relatively unchanged following timber harvest, while the outer zone, along one reach air temperature increased 1.0C and humidity decreased 9.0%.
- (5) Following timber harvest Class II riparian inner zone air temperatures increased 1.1C and humidity decreased 4.6%. Outer zone air temperatures increased 1.5C and humidity decreased 5.0%.
- (6) Sediment transported to the WLPZ from roads, skid trails or harvest units was stopped by strategic placement of waterbars and slash over all skids trails and landings, effectively stopping erosion from continuing to route to wetted zones.

6.0 Limitations of Results

It should be noted that this investigation has identified some preliminary cause-and-effect relationships between riparian and stream channel habitats and current forest management activities in California. And these results have been measured during, the most acute potential impacts from timber harvesting. However, due to the relatively short study period and limited sample size, one sample reach, generalization of the results should be limited to stream channels with similar geomorphic and ecological conditions and timber harvests with similar silvicultural prescriptions.

7.0 References

- Berbach, M. and P. Cafferata, T.Robards, B. Valentine. 1999. Forest Canopy Measurements in Watercourse and Lake Protection Zones: A Literature Review. California Department of Forestry and Fire Protection PO Box 944246 Sacramento CA 94344-2460 Final Report June 1999 22p.
- Bestcha, R.L. and R.E. Bilby, G.W. Brown, L.B. Holtby, T.D. Hofstra. 1987 Stream temperature and aquatic habitat: fisheries and forestry interactions. Pg 191-232 University of Washington. College of Forest Research, Seattle, WA.
- Brown G.W. and G.W. Swank and J. Rothacher 1971 Water temperatures in the Steamboat drainage. USDA Forest Service Research Paper PNW-119. Portland OR 17pp.
- Brown, G.W. 1972 The Alsea Watershed Study. Vol XXXII In: Pacific Logging Congress 1972 Loggers Handbook.
- Caldwell, J.E and K. Doughty, K. Sullivan. 1991 Evaluation of downstream temperature effects of Type 4/5 waters. Timber/Fish/Wildlife Report No. WQ5-91-004. T/F/W CMER Water Quality Steering Committee. 1007 South Washington M.S. EL-03 Olympia WA 98504. 71 p.
- Fish, Forest and Farms Community. 1996. Aquatic Field Protocols adopted by the F.F.F.C. Technical Committee.
- Forest Ecosystem Management: An Ecologocial, Economic and Social Assessment (FEMAT). 1993 J.W. Thomas Team Leader. U.S. Department of Agriculture, U.S. Department of Interior, Environmental Protection Agency, U.S. Department of Commerce.
- Lewis, T.E. and D.W. Lamphear, D.R. McCanne, A.S. Webb, J.P. Krieter, W.D. Conroy 2000. Regional Assessment of Stream Temperatures Across Northern California and their Relationship to Various Landscape-Level and Site-Specific Attributes. Forest Science Project. Humboldt State University Foundation. Arcata CA 420 pp.
- Smith, E.P. 2002 BACI Design, In Encyclopedia of Environmetrics, Edited by A.H. El-Shaarawi, W.W. Piegorsch. Vol. 1, pp 141-148, John Wiley & Sons, 2002.
- Spence, B.C. and G.A. Lomnicky, R.M. Hughes, R.P. Novitzki 1996 An Ecosystem Approach to Salmonid Conservation. Report to NOAA Fisheries. Management Technology. 355 pp.
- U.S. Geological Service 1978 Techniques of Water-Resource investigations of the U.S.G.S. Technical Guide, Chapter D1 1978.
- Zwieniecki, M.A. and M. Newton 1999. Influence of streamside cover and stream features on temperatures trends in forested streams of western Oregon. Western Journal of Applied Forestry. Volume 14, Number 2. April 1999. 106-113 p.

Monitoring Site #	Elevation (meter) (feet)	Monitoring Type	Monitoring Years	Stream Class	Control or Treatment
TEC2	1024 m (3,410 ft)	Stream Water WLPZ Air < 50ft WLPZ Air < 150ft	1997 to 2009	Class I	Baseline and Treatment
TEC2B	1117 m (3,720 ft)	Stream Water WLPZ Air < 50ft WLPZ Air < 150ft	2006 to 2009	Class I	Control
TEC4	1201 m (4,000 ft)	Stream Water	1997 to 2009	Class I	Control
TEC5	1321 m (4,400 ft)	Stream Water	2006 to 2009	Class I	Control
TEC6	1405 m (4,680 ft)	Stream Water WLPZ Air < 50ft WLPZ Air < 150ft	2006 to 2009	Class I	Treatment
TEC7	1429 m (4,760 ft)	Stream Water WLPZ Air < 50ft WLPZ Air < 150ft	2006 to 2009	Class I	Control
TECA2	1099 m (3,660 ft)	Stream Water WLPZ Air < 25ft WLPZ Air < 100ft	2006 to 2009	Class II	Treatment
TECB2	1093 m (3,640 ft)	Stream Water WLPZ Air < 25ft WLPZ Air < 100ft	2006 to 2009	Class II	Control
TECC2	1087 m (3,620 ft)	Stream Water WLPZ Air < 25ft	2006 to 2009	Class II	Treatment
TECD2	1137 m (3,787 ft)	Stream Water WLPZ Air < 25ft WLPZ Air < 100ft	2006 to 2009	Class II	Treatment
TECE2	1165 m (3,880 ft)	Stream Water WLPZ Air < 25ft WLPZ Air < 100ft	2006 to 2009	Class II	Control
TECF2	1315 m (4,380 ft)	Stream Water WLPZ Air < 25ft	2006 to 2009	Class II	Control
TECG2	1597 m (5,320 ft)	Stream Water WLPZ Air < 25ft	2006 to 2009	Class II	Treatment
TECH2	1634 m (5.440 ft)	Stream Water WLPZ Air < 25ft	2006 to 2009	Class II	Control

Appendix C: Class I Water Temperature Monitoring Sites (See Water Quality Map)

Calendar Year	Sampling Period	7-day MWAT Period	Diurnal Fluctuation C	MMAT ¹ C° and F°	MWAT ¹ C ^o and F ^o
1996	No Data				
1997	Dewatered				
1998	5/14 to 11/26	8/9 to 8/15	2.2	16.4 (61.8F)	15.4 (60.0F)
1999	5/21 to 11/18	7/30 to 8/5	3.5	15.2 (59.7F)	13.5 (56.6F)
2000	5/25 to 10/31	8/2 to 8/8	2.7	17.1 (63.1F)	16.1 (61.3F)
2001	7/17 to 10/9	8/3 to 8/9	3.0	16.7 (62.4F)	15.6 (60.4F)
2002	6/19 to 10/9	7/12 to 7/18	3.7	17.8 (64.4F)	16.0 (61.1F)
2003	Hobo Stolen				
2004	6/2 to 9/22	7/23 to 7/29	3.1	17.6 (64.0F)	16.1 (61.3F)
2005	6/9 to 10/29	8/6 to 8/12	2.4	16.8 (62.6F)	15.6 (60.4F)
2006	5/24 to 11/1	7/21 to 7/27	3.4	18.3 (65.3F)	16.8 (62.6F)
2007	Hobo Lost				
2008	5/29 to 10/2	8/12 to 8/18	3.1	16.0 (61.1F)	14.8 (58.9F)
2009	5/29 to 10/12	7/27 to 8/2	2.6	17.5 (63.9F)	16.4 (61.8F)

Appendix D: Etna Creek (TEC2) (Downstream of Harvest)

1 MWAT is the Maximum Weekly Average Temperature, MMAT = Maximum Weekly Maximum Temperature

Appendix E:	Etna	Creek	Class I	water	temperatures
--------------------	------	-------	----------------	-------	--------------

Calendar	Sampling	7-day MWAT	Diurnal	MMAT	MWAT
Year	Period	Period	Fluctuation		
(Class I Stream)					
TEC2					
1EC2 2006	5/24 to $11/1$	7/21 to $7/27$	3 /	18.3	16.8
2000 2007 ^B	5/24 10 11/1	//21 to //27	5.4	16.5	10.8
2007	5/29 to 10/2	8/12 to 8/18	3.1	16.0	14.8
2009	5/29 to $10/12$	$\frac{7}{27}$ to $\frac{8}{2}$	2.6	17.5	16.4
2009	5/2/ 10/10/12	1121 10 012	2.0	17.0	10.1
TEC2B					
2006	5/24 to 11/1	7/21 to 7/27	3.8	18.3	16.3
2007 ^B					
2008	5/29 to 10/2	8/13 to 8/19	3.1	16.0	14.7
2009	5/29 to 10/12	7/27 to 8/2	3.1	18.7	17.0
TEC4					
2006	5/24 to 11/1	7/21 to 7/27	4.2	16.8	14.6
2007	5/22 to 11/5	7/25 to 7/31	3.4	15.2	13.4
2008	5/29 to 10/21	8/12 to 8/18	3.9	14.9	12.9
2009	5/29 to 10/12	7/26 to 8/1	3.0	15.2	13.6
TEOF					
TECS	5/04 + 11/1		2.2	16.0	14.6
2006	5/24 to $11/1$	7/21 to $7/27$	2.3	16.0	14.0
2007	5/22 to $11/5$	$\frac{1}{6}$ to $\frac{1}{12}$	2.6	15.2	13.5
2008	5/29 to 10/21	7/9 to $7/15$	2.3	13.7	12.6
2009	5/29 to 10/12	//26 to 8/1	2.9	14.1	13.2
TEC6					
2006	5/24 to $11/1$	7/21 to $7/27$	27	15.6	14.6
2000	5/24 to $11/1$	7/21 to $7/21$	2.7	14.5	13.0
2007	5/29 to 10/21	$\frac{7}{23}$ to $\frac{7}{31}$	27	14.5	12.8
2008	5/29 to $10/21$	$\frac{7}{26}$ to $\frac{8}{10}$	3.0	14.1	12.0
2007	5/29 10 10/12	7/2010 0/1	5.0	14.9	17.1
TEC7					
2006	5/24 to 11/1	7/21 to 7/27	3.1	16.0	14.3
2007	5/22 to 11/5	7/25 to 7/31	2.6	15.2	13.7
2008	5/29 to 10/21	8/12 to 8/18	3.1	14.1	12.6
2009	5/29 to 10/12	7/27 to 8/2	2.6	15.2	13.9
A = dewatered or	$\mathbf{B} = \mathbf{Unit} \ \mathbf{lost} \ \mathbf{or}$				
partially dewatered	stolen				

Calendar Year (Class I streams)	Sampling Period	Inner Zone Mean Air (C)	Outer Zone Mean Air (C)	Inner Zone Mean RH (%)	Outer Zone Mean RH (%)
(Class I stream)					
TEC2					
2006	5/24 to 11/1	22.2	22.7	70.7	68.1
2007 ^B	nd water	21.7	22.3	51.5	50.1
2008	5/29 to 10/2	21.3	21.8	54.5	52.8
2009	5/29 to 10/12	23.7	23.3	49.4	50.0
TEC2B					
2006	5/24 to 11/1	21.0	22.3	72.7	66.7
2007 ^B	nd water	20.8	21.4	48.4	51.0
2008	5/29 to 10/2	20.2	21.0	48.9	nd
2009	5/29 to 10/12	21.7	22.9	48.2	nd
TEC6					
2006	5/24 to 11/1	19.2	19.9	80.0	76.2
2007	5/22 to 11/5	17.9	18.5	63.2	61.2
2008	5/29 to 10/21	17.3	19.0	66.6	58.5
2009	5/29 to 10/12	18.1	19.9	nd	63.1
TEC7					
2006	5/24 to 11/1	18.7	19.6	nd	76.0
2007	5/22 to 11/5	17.0	17.4	nd	69.6
2008	5/29 to 10/21	17.6	17.8	nd	66.0
2009	5/29 to 10/12	18.2	18.3	74.5	73.6
A = dewatered or partially dewatered	B = Water unit lost or stolen	nd=no data			

Appendix E: Etna Creek Class I air temperatures and humidity

Appendix F: Etna Creek Class II water temperatures

	7-day					
Calendar	Sampling	MWAT	Diurnal	MMAT	MWAT	
Year	Period	Period	Change	(C)	(C)	
(Class II Stream)			(C)			
TECA2						
2006						
2007	5/24 to 11/1	7/21 to 7/27	2.3	15.2	14.2	
2008	5/22 to 11/5	7/4 to 7/10	3.4	15.2	13.8	
2009	5/29 to 10/21	8/11 to 8/17	3.6	15.2	13.6	
	5/29 to 10/12	7/26 to 8/1	2.7	15.6	14.3	
TECB2						
2006						
2007	5/24 to 11/1	7/21 to 7/27	2.3	14.5	13.5	
2008	5/22 to $11/5$	7/4 to $7/10$	3.1	14.1	12.8	
2009	5/29 to $10/21$	8/11 to 8/17	2.7	14.1	13.0	
,	5/29 to $10/12$	7/26 to $8/1$	2.3	14.8	13.6	
TECC2						
2006						
2007	5/24 to 11/1	7/21 to 7/27	1.9	13.7	12.7	
2008	5/22 to $11/5$	7/27 to $8/2$	3.1	14.5	12.9	
2009	5/29 to $10/21$	8/12 to 8/18	3.5	14.5	12.7	
,	5/29 to $10/12$	7/26 to $8/1$	3.1	14.9	13.4	
TECD2	0,2, 00 10,12	// _ 0 to 0/1	011	1.10	1011	
2006						
2007	5/24 to 11/1	7/21 to 7/27	19	14 3	13.6	
2008	5/22 to $11/5$	7/27 to $8/2$	19	14.5	13.5	
2009	5/29 to $10/21$	8/12 to 8/18	3.4	15.2	13.4	
2009	5/29 to $10/21$	7/26 to $8/1$	16	14.5	13.8	
TECE2	5/2/ 10/12	1120 10 011	110	11.0	15.0	
2006						
2007	5/24 to 11/1	7/21 to 7/27	3.0	17 1	15.8	
2008	5/22 to $11/5$	7/5 to $7/11$	3.5	16.8	15.0	
2009	5/29 to $10/21$	8/12 to 8/18	3.8	16.4	14.5	
	5/29 to $10/12$	8/11 to 8/17	5.0	16.4	14.4	
TECF2	0,2, 00 10,12	0,11,00,0,11,	010	1011	1	
2006						
2007	5/24 to 11/1	7/21 to 7/27	1.5	13.3	12.9	
2008	5/22 to $11/5$	7/27 to $8/2$	1.5	12.9	12.3	
2009	5/29 to $10/21$	8/14 to 8/20	1.9	12.9	11.9	
	5/29 to $10/12$	7/26 to $8/1$	1.9	13.7	13.0	
TECG2						
2006^{A}						
2007	5/24 to 11/1	7/19 to 7/25	3.4	16.0	13.9	
2008	5/22 to 11/5	7/27 to 8/2	3.1	13.3	12.3	
2009	5/29 to 10/21	8/12 to 8/18	3.1	12.9	11.6	
	5/29 to 10/12	7/26 to 8/1	3.1	13.3	12.0	
TECH2						
2006						
2007	5/24 to 11/1	7/21 to 7/27	4.6	16.0	13.8	
2008	5/22 to 11/5	7/27 to 8/2	3.8	15.2	13.0	
2009	5/29 to 10/21	8/12 to 8/18	3.9	13.7	12.0	
	5/29 to 10/12	7/26 to 8/1	3.5	14.9	13.2	
A = dewatered or						
partially dewatered						

Appendix F: Etna Creek Class II air temperatures and humidity

Calendar Year	Sampling Period	Inner Zone Mean Air	Outer Zone Mean Air	Inner Zone Mean RH	Outer Zone Mean RH
(Class II streams)		(C)	(C)	(%)	(%)
TECA2					
2006	5/24 to 11/1	22.2	23.3	68.6	61.2
2007	5/22 to 11/5	21.8	23.2	64.7	57.0
2008	5/29 to 10/21	21.0	22.3	51.4	46.9
2009	5/29 to 10/12	23.1	24.2	47.3	43.5
TECB2					
2006	5/24 to 11/1	22.9	24.8	62.4	50.1
2007	5/22 to 11/5	20.6	23.7	74.6	51.1
2008	5/29 to 10/21	20.5	23.7	56.9	38.1
2009	5/29 to 10/12	21.5	24.8	58.7	37.2
TECC2					
2006	5/24 to 11/1	21.5	nd	74.3	nd
2007	5/22 to 11/5	17.9	nd	54.9	nd
2008	5/29 to 10/21	20.0	nd	58.1	nd
2009	5/29 to 10/12	22.0	nd	56.2	nd
TECD2					
2006	5/24 to 11/1	21.8	22.8	71.9	64.4
2007	5/22 to 11/5	21.3	22.1	52.8	48.7
2008	5/29 to 10/21	20.6	21.8	54.9	49.2
2009	5/29 to 10/12	22.6	23.6	51.6	47.0
TECE2					
2006	5/24 to 11/1	21.5	22.4	71.8	62.6
2007	5/22 to 11/5	19.9	21.0	73.8	67.4
2008	5/29 to 10/21	18.2	21.4	44.9	45.5
2009	5/29 to 10/12	16.6	17.2	50.0	44.1
TECF2					
2006	5/24 to 11/1	20.3	nd	73.9	nd
2007	5/22 to 11/5	19.1	nd	62.9	nd
2008	5/29 to 10/21	18.2	nd	65.7	nd
2009	5/29 to 10/12	20.6	nd	57.4	nd
TECG2					
2006	5/24 to 11/1	20.5	nd	64.4	nd
2007	5/22 to 11/5	19.2	nd	52.2	nd
2008	5/29 to 10/21	20.1	nd	47.2	nd
2009	5/29 to 10/12	20.6	nd	57.4	nd
TECH2					
2006	5/24 to 11/1	20.0	nd	70.4	nd
2007	5/22 to 11/5	18.2	nd	55.4	nd
2008	5/29 to 10/21	18.9	nd	51.5	nd
2009	5/29 to 10/12	20.6	nd	49.6	nd
nd=no data collected					

Appendix A: Etna Creek THP

Appendix B: Etna Creek Monitoring Plan