Bill Jennings
California Sportfishing Protection Alliance
3536 Rainier Avenue
Stockton, CA 95204
Tel: 209-464-5067
Fax: 209-464-1028
E-mail: deltakeep@aol.com

Mike Jackson
Law Office of Mike Jackson
P.O. Box 207
429 W. Main Street
Quincy, CA 95971
Tel: 530-283-1007
Fax: 530-283-0712
E-mail: mjatty@sbcglobal.net

Andrew Packard
Law Office of Andrew Packard
319 Pleasant Street
Petaluma, CA 94952
Tel: 707-763-7227
Fax: 707-763-9227
E-mail: andrew@packardlawoffices.com

For Petitioner California Sportfishing Protection Alliance

BEFORE THE STATE WATER RESOURCES CONTROL BOARD

In the Matter of Waste Discharge Requirements
For Musco Family Olive Company and the
Studley Company, Wastewater Treatment and Land Disposal Facility; California Regional
Water Quality Control Board – Central Valley
Region, Order No. R5-2010-0025.

PETITION FOR REVIEW

Pursuant to Section 13320 of California Water Code and Section 2050 of Title 23 of the California Code of Regulations (CCR), California Sportfishing Protection Alliance (“CSPA” or “petitioner”) petitions the State Water Resources Control Board (State Board) to review and vacate the final decision of the California Regional Water Quality Control Board for the Central
Valley Region (“Regional Board”) in adopting Waste Discharge Requirements for the Musco Family Olive Company Wastewater Treatment Plant, on 18 March 2010. See Order No. R5-2010-0025. The issues raised in this petition were raised in timely written comments.

1. NAME AND ADDRESS OF THE PETITIONERS:

California Sportfishing Protection Alliance
3536 Rainier Avenue
Stockton, California 95204
Attention: Bill Jennings, Executive Director

2. THE SPECIFIC ACTION OR INACTION OF THE REGIONAL BOARD WHICH THE STATE BOARD IS REQUESTED TO REVIEW AND A COPY OF ANY ORDER OR RESOLUTION OF THE REGIONAL BOARD WHICH IS REFERRED TO IN THE PETITION:

Petitioner seeks review of Order No. R5-2010-0025, Waste Discharge Requirements, for the Musco Family Olive Company and the Studley Company, Wastewater Treatment and Land Disposal Facility. A copy of the adopted Order is attached as Attachment No. 1.

3. THE DATE ON WHICH THE REGIONAL BOARD ACTED OR REFUSED TO ACT OR ON WHICH THE REGIONAL BOARD WAS REQUESTED TO ACT:

18 March 2010

4. A FULL AND COMPLETE STATEMENT OF THE REASONS THE ACTION OR FAILURE TO ACT WAS INAPPROPRIATE OR IMPROPER:

CSPA submitted a detailed comment letter on 15 February 2010. That letter and the following comments set forth in detail the reasons and points and authorities why CSPA believes the Order fails to comport with statutory and regulatory requirements. The specific reasons the adopted Orders are improper are:

A. The waste discharge requirements (WDRs) do not comply with California Code of Regulations (CCR) Title 27, as the discharge is not in compliance with the applicable water quality control plan (Basin Plan).

California Water Code section 13173 defines designated waste as being either of the following:

“(a) Hazardous waste that has been granted a variance from hazardous waste management requirements pursuant to Section 25143 of the Health and Safety Code.
(b) Nonhazardous waste that consists of, or contains, pollutants that, under ambient environmental conditions at a waste management unit, could be released in concentrations exceeding applicable water quality objectives or that could reasonably be expected to affect beneficial uses of the waters of the state as contained in the appropriate state water quality control plan.”

The Basin Plan *Water Quality Objectives for Groundwater* requires groundwater not exceed: 2.2 MPN/100 ml for coliform organisms; the maximum contaminant levels (MCLs) from CCR Title 22 for drinking water; taste or odor producing substances that cause nuisance or adversely affect beneficial uses, and; toxic substances that produce detrimental physiological responses in human, plant, animal or aquatic life associated with designated beneficial uses. The beneficial uses of groundwater, as identified in the Basin Plan, include municipal and domestic supply, agricultural supply, industrial service supply, and industrial process supply.

There is no containment of wastewater in the reservoir or the land application areas to prevent the release under ambient environmental conditions of the minerals and salts represented by either TDS or FDS. In fact, Findings 61 and 62 of the WDRs point to evidence that the pollutants contained in Musco’s wastewater have been released.

Secondary MCLs for total dissolved solids are 500 mg/l (recommended level), 1,000 mg/l (upper level), and 1,500 mg/l (short-term level). Recommended values for salinity to protect agricultural and industrial uses start at levels much lower than the Secondary MCLs. Finding 59 of the WDRs states that “[m]eteoric water is encountered in shallow wells along the central swale upstream of the 84 MG Reservoir and has a TDS range from 670 to 1,800 mg/L.” The Fact Sheet to the WDRs (pp. 5 – 8) provides summary water quality data for 35 wells. For most of the wells, the relationship to the discharge is described in Finding 56. Of these wells, more than a dozen show mean TDS concentrations less than or equal to approximately 1,500 mg/l. Three of these wells are shown to have mean TDS concentrations of less than 800 mg/l. It is evident that groundwater with TDS at approximately 1,000 mg/l is present in the immediately adjacent vicinity of the Musco facility. For the sake of argument, even if FDS (rather than TDS) were the appropriate parameter to use in regulating salinity, Musco’s mean FDS discharge of 2,316 mg/l (Finding 24) is well in excess of both background groundwater quality and the upper and short-term secondary MCLs. In addition, aerial photographs of the Musco site and the fact that Musco has resorted to planting a salt-loving grass on its application areas should provide ample evidence that the water quality of the discharge renders it unfit for most agricultural applications and that the discharge, if allowed to continue, poses an obvious and serious threat to the beneficial use of agricultural supply.

Finding 24 of the WDRs describes the water quality of the discharge to the land application areas as having the following mean values:
Constituent	Units	Mean
BOD | mg/l | 598
TDS | mg/l | 2,986
FDS | mg/l | 2,316
Total Kjeldahl Nitrogen | mg/l | 47
Nitrate Nitrogen | mg/l | 0.18
Total Nitrogen | mg/l | 47
Chloride | mg/l | 355
Sodium | mg/l | 816

The Musco discharge is waste that consists of, or contains, pollutants (namely, salts) that, under ambient environmental conditions, have been and could be released in concentrations exceeding applicable water quality objectives and that are reasonably expected to affect beneficial uses of the waters of the state. The discharge is, therefore, designated waste and must be regulated and managed in accordance with Title 27 of the California Code of Regulations. The WDRs must be revised and re-issued to comply with the California Water Code and Title 27.

Discharges of wastewater may be exempted from CCR Title 27 requirements only if: waste discharge requirements have been issued; the discharge is in compliance with the applicable Basin Plan, and; the wastewater is not hazardous (Section 20090). The Basin Plan contains water quality objectives for groundwater. The Basin Plan Water Quality Objectives for Groundwater requires groundwater not exceed: 2.2 MPN/100 ml for coliform organisms; the maximum contaminant levels (MCLs) from CCR Title 22 for drinking water; taste or odor producing substances that cause nuisance or adversely affect beneficial uses, and; toxic substances that produce detrimental physiological responses in human, plant, animal or aquatic life associated with designated beneficial uses. The Basin Plan also includes the State and Regional Board Antidegradation Policy (Resolution 68-16). The Antidegradation Policy requires the maintenance of high quality waters. In accordance with the Antidegradation Policy changes in water quality are allowed only if the change is consistent with maximum benefit to the people of the state; does not unreasonable affect present and anticipated beneficial uses; does not result in water quality that exceeds water quality objectives, and; best practicable treatment and control of the discharge is provided.

Finding 31.b of Cease and Desist Order No. R5-2007-0139 for Musco states the following:

“Process wastewater storage and application has resulted in increases in groundwater concentrations over time, causing degradation or pollution of the underlying groundwater. Although background groundwater concentrations have not yet been determined, the data clearly shows that the continuing current discharge loading rate to land does not protect water quality. Additional monitoring wells are needed to assess the extent of groundwater impacts.”
Degradation has already occurred. Continued degradation has the potential to unreasonably affect present and anticipated beneficial uses, and threatens to result in water quality that exceeds water quality objectives, at a minimum, by causing TDS or FDS in the groundwater to increase from approximately 1,000 mg/l TDS (upper level secondary MCL) to some value in excess of the 1,500 mg/l TDS short-term level secondary MCL.

The Antidegradation Policy requires that an allowance for any degradation must be shown to be in the interest of the people of the state, must not exceed water quality standards and that the discharger must provide best practicable treatment and control (BPTC) of the discharge. To the contrary, the discharge has caused degradation and possibly pollution of the underlying groundwater and has been the subject of numerous enforcement actions.

Finding 31.b of Cease and Desist Order No. R5-2007-0139 states the following:

“Process wastewater storage and application has resulted in increases in groundwater concentrations over time, causing degradation or pollution of the underlying groundwater. Although background groundwater concentrations have not yet been determined, the data clearly shows that the continuing current discharge loading rate to land does not protect water quality. Additional monitoring wells are needed to assess the extent of groundwater impacts.”

Finding 80 of the WDRs states that the discharge to the storage reservoir has degraded groundwater quality and that the discharge to the land application areas has the potential to degrade groundwater quality. Finding 80 also describes a number of factors upon which degradation due to nitrate is dependent.

Total nitrogen discharged from the facility is characterized as 47 mg/l. Nitrogen will generally convert to nitrate as it migrates to groundwater. The primary drinking water MCL for nitrates is 10 mg/l. The discharge presents a reasonable potential to degrade groundwater conditions by exceeding the primary MCL for nitrate. The storage reservoir was apparently not designed to nitrify and/or denitrify. The removal of nitrogen from wastewater is common practice and can be considered best practicable treatment and control of the discharge.

Finding 88 of the WDRs states the following:

“The process wastewater treatment and reuse facilities associated with the discharge authorized herein are exempt from the requirements of Title 27, Section 20005 et seq. The exemption is based on the following:
a. The wastewater regulated by this Order does not need to be managed according to California Code of Regulations, Title 22, Division 4.5, Chapter 11 as a hazardous waste.

b. Based on extensive technical studies of the wastewater quality, discharge operations, and site-specific geology and hydrogeology, the discharge authorized by this Order will not exceed water quality objectives. This Order ensures that discharges from the LAAs comply with the antidegradation policy. Therefore, the discharge to the LAAs is consistent with the Basin Plan and is exempt from Title 27 pursuant to Section 20090, subdivision (b).

c. Groundwater monitoring demonstrates that discharges from the treatment/storage reservoir have not caused underlying groundwater to exceed Basin Plan objectives. This Order ensures that discharges from the reservoir comply with the antidegradation policy. Therefore, the discharge to the treatment/storage reservoir is consistent with the Basin Plan and is exempt from Title 27 pursuant to Section 20090, subdivision (b).”

The State Water Resources Control Board (State Board) issued a Water Quality Order for the Lodi White Slough Facility, WQO-2009-0005 (Lodi Order) dated 7 July 2009. The Lodi Order includes clarifications on how to apply the Title 27 exemptions. The Lodi Order requires the Discharger to provide evidence showing that the discharge meets applicable preconditions before the Regional Board can make Findings that the discharge is exempt from Title 27. Findings are not adequate if they merely assume that the Discharger will comply with WDRs requiring the Discharger to comply with the Basin Plan. (See Guidance Memo Applying Title 27 Exemptions after the City of Lodi Order, from Lori Okun to Pamela Creedon, dated 28 October 2009) The WDRs must find that the discharge currently complies with the Basin Plan. Without such a Finding, the Regional Board cannot legally make the Finding that the Discharger’s land disposal activities meet the precondition for an exemption. In this case, the discharge still exceeds water quality standards and the WDR is reliant on a “new” technology to be installed and operational before an expansion in flows is allowed (see Finding No. 79). The Discharger does not meet the preconditions of current compliance with the Basin Plan, which is necessary to receive an exemption to CCR Title 27.

In a Response to Comments Regional Board staff writes that: “Staff agrees with the commenter’s interpretation of the Lodi Order. Finding No. 88 has been revised to clarify that the discharge currently complies with the Basin Plan. The only possible exception is for nitrate nitrogen, but the proposed WDRs include a time schedule requiring the Discharger either to demonstrate that the current discharge does not cause an exceedence of nitrate objectives in groundwater or to upgrade the facility. However, it should be noted that compliance with any statute, regulation, or policy is always dependent on a Discharger’s compliance with WDRs, which prescribe conditions of discharge that are specifically selected for that purpose. Therefore, the Title 27 exemption for future discharges correctly relies on the data (not an
assumption) demonstrating that the proposed discharge will meet applicable objectives and comply with the Basin Plan.” Again, as is stated above, the Discharger does not meet the preconditions of current compliance. It is not correct for staff to state that “except for nitrate” a Discharger meets all the required preconditions of Title 27. The requirements of Title 27 apply to all constituents.

B. The WDR does not comply with the requirements of the State and Regional Board’s Antidegradation Policy (Resolution 68-16).

WDR Finding No. 77 correctly states that; “State Water Resources Control Board Resolution No. 68-16 (“Policy with Respect to Maintaining High Quality Waters of the State”) (hereafter Resolution 68-16) prohibits degradation of groundwater unless it has been shown that:

a. The degradation is consistent with the maximum benefit to the people of the State;
b. The degradation will not unreasonably affect present and anticipated future beneficial uses;
c. The degradation does not result in water quality less than that prescribed in state and regional policies, including violation of one or more water quality objectives; and
d. The discharger employs best practicable treatment or control (BPTC) to minimize degradation.”

The Antidegradation Policy discussion ignores the fact that groundwater at the site has been, and currently continues to be, degraded by the wastewater discharge. The wastewater discharge has and continues to degrade designated beneficial uses. For instance, the WDR does not address the economical impacts of allowing California’s critical groundwater resources to be degraded. What percentage of groundwater in the state is actually usable for its designated beneficial uses and what are the impacts of “writing off” another aquifer for a specialty food processor. Are olives available in such limited quantities in California that trading the state’s groundwater quality is necessary? What would be the increased cost of a can of olives if groundwater were not allowed to be degraded? Are there not other olive producers that could fill the void if Musco were required to stop polluting immediately? Are black olives a good trade for polluted groundwater? Are olives a rare and necessary commodity for which California is willing to trade groundwater quality? What are the impacts to the users of groundwater? What are the costs in California for treating groundwater to meet industrial requirements? What are the costs in California for treating groundwater to meet drinking water MCLs? How many people in California have been sick or died from nitrate poisoning? What are the crop yield reductions and the related costs to agriculture and consumers from excessive salt in groundwater? These questions must be answered to evaluate adequately whether degradation from this discharge is consistent with the maximum benefit to the people of the State of California. The WDRs, however, bases its determination that it is consistent with Resolution No. 68-16 on the statements that some groundwater degradation is acceptable because economic prosperity of local
communities is of benefit, that significant degradation of groundwater quality beyond existing degradation is limited, that Musco has engaged in cost-saving measures to reduce water and chemical use and associated wastewater discharges, and that Musco has proposed to try an evaporation-based treatment system. The WDR does not seriously address the best interest of the people of California. The Antidegradation Policy analysis is simply wrong and insufficient.

Finding 31.b of Cease and Desist Order No. R5-2007-0139 states the following:

"Process wastewater storage and application has resulted in increases in groundwater concentrations over time, causing degradation or pollution of the underlying groundwater. Although background groundwater concentrations have not yet been determined, the data clearly shows that the continuing current discharge loading rate to land does not protect water quality. Additional monitoring wells are needed to assess the extent of groundwater impacts."

Finding 80 of the WDRs states that the discharge to the storage reservoir has degraded groundwater quality and that the discharge to the land application areas has the potential to degrade groundwater quality.

Degradation has already occurred. Continued degradation has the potential to unreasonably affect present and anticipated beneficial uses, and threatens to result in water quality that exceeds water quality objectives, at a minimum, by causing TDS or FDS in the groundwater to increase from approximately 1,000 mg/l TDS (upper level secondary MCL) to some value in excess of the 1,500 mg/l TDS short-term level secondary MCL.

Finding 17 of the WDRs state that "[p]rior to use, the Discharger treats the raw water by polymer flocculation, clarification, granulated media filtration and chlorine disinfection. Water supplied to the boiler is also routed through an ion exchange water softening system that is regenerated with sodium chloride." Finding 18 states that "[a]ll wastewater discharged to the LAAs receives treatment in the wastewater treatment/storage reservoir prior to discharge." The treatment provided in the reservoir is not described, but appears to consist only of the aerators referenced in the proposed Monitoring and Reporting Program. It fascinates us to see the level of care and resources expended on processes that generate revenue contrasted with the level of treatment provided for water quality and environmental concerns. Clearly the discharger is aware of and employs water treatment technologies. It has simply chosen not to use them when it comes to protecting water quality and complying with water quality regulations. Musco is certainly not employing best practicable treatment measures.

The Regional Board first issued WDRs for Musco’s Tracy facility in 1986. WDRs Order No. 86-074 regulated the use of Musco’s Class II surface impoundments of designated wastewater: an existing 38.5 acre-feet surface impoundment and two proposed surface impoundments with
capacities of 36.0 acre-feet and 17.8 acre-feet. In 1996, the Regional Board issued revised WDRs Order No. 96-075 regulating the use of the existing 38.5 acre-feet and 32.3 acre-feet surface impoundments and a proposed third surface impoundment. In 2005, the Regional Board issued WDRs Order No. R5-2005-0024 regulating the use of two Class II surface impoundments: Pond A and Pond B, with respective capacities of 38.5 acre-feet and 32.3 acre-feet.

The Regional Board first issued WDRs for land application wastewater at the Musco facility in 1987. WDRs Order No. 87-132 authorized the discharge of approximately 10,000 gallons per day (gpd) to 4.5 acres of land. In 1997, the Regional Board issued revised WDRs Order No. 97-037 to reflect the Discharger’s increased process wastewater flow rate of 200,000 gpd to the land disposal area. The revised WDRs authorized the discharge of 500,000 gpd to 200 acres of land. In 2002, the Regional Board issued WDRs Order No. R5-2002-0148 for the treatment and disposal of a monthly average of 800,000 gpd of olive processing wastewater to 200 acres of land owned by the Discharger.

Note that the original proposal for Musco’s Tracy facility was to control its wastewater discharge via full containment of process wastewater and that the third Class II surface impoundment proposed as recently as 1996 was never constructed. Full containment, as originally proposed, would be an example of best practicable control. While Musco may be working to control the quantity of its discharge, Musco is not employing best practicable control measures.

C. **The WDRs improperly use Fixed Dissolved Solids to regulate salinity.**

Footnote 1 to Finding 23 of the WDRs asserts that “**TDS [total dissolved solids] is not the best salinity indicator when the degradable organic content of the waste is high because dissolved organic matter contributes to the TDS value and overstates the actual salinity. In such cases, FDS is the preferred salinity indicator because the test method does not measure most dissolved organic constituents. EC is often still a good salinity indicator when dissolved organic matter is present in the waste, but some dissolved organic compounds can contribute to EC. Because the Discharger’s wastewater contains high concentrations of dissolved organic matter, this Order uses FDS [fixed dissolved solids] data to the maximum practical extent to characterize and regulate the wastewater discharge.**” First, there is no water quality standard or objective for FDS such as exists for TDS and EC. Second, there is no evidence that dissolved organic matter is not migrating to degrade groundwater quality. Third, FDS levels are not comparable to previous results for TDS and/or EC. The use of FDS appears to solely be a means of restarting the regulatory process, resulting in additional delay. Delay in regulatory actions results in additional profits for the polluting industry but delays protecting groundwater quality. The existing MCLs expressed in terms of EC and/or TDS are applicable water quality standards and must be met, measuring FDS will not provide a means of determining whether the standards are being exceeded.
D. The WDRs fail to determine background groundwater quality and establish protective effluent limitations despite adequate data.

Even if the discharge could somehow be demonstrated not to be designated waste, the WDRs are still not protective of the underlying groundwater and its beneficial uses.

The Fact Sheet to the WDRs provides summary water quality data for 35 wells. Additional wells are mentioned in the table in Finding 56. Of these wells, more than a dozen show mean TDS concentrations less than or equal to approximately 1,500 mg/l. Three of these wells are shown to have mean TDS concentrations of less than 800 mg/l.

Finding 54 states that there are five off-site groundwater monitoring wells and one off-site domestic supply well that are monitored quarterly. The table in Finding 56 shows eight monitoring wells (MW-1, MW-2, MW-2C, MW-14, MW-23, MW-25, MW-27, and MW-29) as having been designated as upgradient wells. Without a map identifying the locations of the monitoring wells with respect to Musco’s processing, storage, and land application areas, it is difficult to evaluate the appropriateness of these designations. By simple arithmetic, however, it appears that at least some of the wells designated as upgradient must be located on-site.

Monitoring wells for this facility were not installed until 2002 (Findings 42 through 44 of Order No. R5-2002-0148). The discharge of process wastewater (and, likely, olive pits, leaves, etc.) commenced approximately five to fifteen years prior to well installation. There is no on-site monitoring well data that can be considered representative of pre-discharge conditions or conditions that are unaffected by the waste discharge. Finding 31.a of Cease and Desist Order No. R5-2007-0139 states the following:

“On-site monitoring well data was not collected prior to the initiation of land discharge; therefore, pre-discharge groundwater quality at the Musco property cannot be established using on-site monitoring wells. Off-site monitoring wells are necessary to determine background groundwater quality and to develop a Water Quality Protection Standard.”

Therefore, the apparent assertion that multiple on-site monitoring wells are considered upgradient and unimpacted by Musco’s discharge is puzzling. In addition, the WDRs fail to mention the “stockwatering well located to the west of the 95-acre field in Assessor’s Parcel Number 251-32-006 in Tracy” referenced in Revised Monitoring and Reporting Program No. R5-2002-0148. Any conclusions based on the assumption that on-site groundwater monitoring data are reflective of upgradient groundwater conditions are suspect, at best.

Findings 64 and 66 of the WDRs present Musco’s opinions as to ambient groundwater quality. The WDRs do not include any Finding on the Regional Board’s position with respect to background groundwater quality. Finding 78 merely points back to the Discharger’s opinion in
Finding 66. Instead, based on Finding 65, it appears that the Regional Board proposes to avoid the issue of background groundwater altogether by relying solely on intra-well data analysis from monitoring wells that were all installed several years after commencement of waste discharge at the Musco site. Most dischargers would likely be delighted to be allowed a few decades in which to approach a level of steady-state degradation and/or pollution to then be used as the reference point above which additional degradation might then be found in violation. This approach effectively rewards Musco for its past transgressions. In addition, the avoidance of any kind of determination of the background groundwater quality seems counter-productive to the development of Musco’s nearly quarter-century delinquent Water Quality Protection Standard for its Class II surface impoundments.

The WDRs, if not revised to comply with the California Water Code and Title 27, must be revised to include effluent limitations based on water quality objectives and background water quality to protect the beneficial uses. The WDRs include attachments identifying soil and stormwater monitoring locations and should be revised to include an attachment identifying groundwater monitoring well locations.

5. **THE MANNER IN WHICH THE PETITIONERS ARE AGGRIEVED.**

CSPA is a non-profit, environmental organization that has a direct interest in reducing pollution to the waters of the Central Valley. CSPA’s members benefit directly from the waters in the form of recreational hiking, photography, fishing, swimming, hunting, bird watching, boating, consumption of drinking water and scientific investigation. Additionally, these waters are an important resource for recreational and commercial fisheries. Central Valley waterways also provide significant wildlife values important to the mission and purpose of the Petitioners. This wildlife value includes critical nesting and feeding grounds for resident water birds, essential habitat for endangered species and other plants and animals, nursery areas for fish and shellfish and their aquatic food organisms, and numerous city and county parks and open space areas. CSPA’s members reside in communities whose economic prosperity depends, in part, upon the quality of water. CSPA has actively promoted the protection of fisheries and water quality throughout California before state and federal agencies, the State Legislature and Congress and regularly participates in administrative and judicial proceedings on behalf of its members to protect, enhance, and restore declining aquatic resources. CSPA member’s health, interests and pocketbooks are directly harmed by the failure of the Regional Board to develop an effective and legally defensible program addressing discharges to waters of the state and nation.

6. **THE SPECIFIC ACTION BY THE STATE OR REGIONAL BOARD WHICH PETITIONER REQUESTS.**

Petitioners seek an Order by the State Board to:
A. Vacate Order No. R5-2010-0025 and remand to the Regional Board with instructions prepare and circulate a new tentative order that comports with regulatory requirements.

B. Alternatively, prepare, circulate and issue a new order that is protective of identified beneficial uses and comports with regulatory requirements.

7. A STATEMENT OF POINTS AND AUTHORITIES IN SUPPORT OF LEGAL ISSUES RAISED IN THE PETITION.

CSPA’s arguments and points of authority are adequately detailed in the above comments and our 15 February 2010 comment letter. Should the State Board have additional questions regarding the issues raised in this petition, CSPA will provide additional briefing on any such questions. The petitioners believe that an evidentiary hearing before the State Board will not be necessary to resolve the issues raised in this petition. However, CSPA welcomes the opportunity to present oral argument and respond to any questions the State Board may have regarding this petition.

8. A STATEMENT THAT THE PETITION HAS BEEN SENT TO THE APPROPRIATE REGIONAL BOARD AND TO THE DISCHARGERS, IF NOT THE PETITIONER.

A true and correct copy of this petition, without attachment, was sent electronically and by First Class Mail to Ms. Pamela Creedon, Executive Officer, Regional Water Quality Control Board, Central Valley Region, 11020 Sun Center Drive #200, Rancho Cordova, CA 95670-6114. A true and correct copy of this petition, without attachment, was sent to the Discharger in care of: Mr. Benjamin Hall, Musco Family Olive Company, 17950 Via Nicolo Road, Tracy, CA 95377.

9. A STATEMENT THAT THE ISSUES RAISED IN THE PETITION WERE PRESENTED TO THE REGIONAL BOARD BEFORE THE REGIONAL BOARD ACTED, OR AN EXPLANATION OF WHY THE PETITIONER COULD NOT RAISE THOSE OBJECTIONS BEFORE THE REGIONAL BOARD.

CSPA presented the issues addressed in this petition to the Regional Board in a 15 February 2010 comment letter that was accepted into the record.

If you have any questions regarding this petition, please contact Bill Jennings at (209) 464-5067 or Michael Jackson at (530) 283-1007.

Dated: 16 April 2010

Respectfully submitted,
CSPA Petition for Review, SWRCB, Musco Family Olive Company WDRs.

Bill Jennings, Executive Director
California Sportfishing Protection Alliance

Attachment No. 1: Order No. R5-2010-0025
NOTICE OF ADOPTION
OF
WASTE DISCHARGE REQUIREMENTS ORDER NO. R5-2010-0025
FOR
MUSCO FAMILY OLIVE COMPANY AND
THE STUDLEY COMPANY
WASTEWATER TREATMENT AND LAND DISPOSAL FACILITY
SAN JOAQUIN COUNTY

Waste Discharge Requirements (WDRs) Order No. R5-2010-0025 for the Musco Family Olive Company wastewater treatment and land disposal facility was adopted by the California Regional Water Quality Control Board, Central Valley Region at its 18 March 2010 meeting. Although the WDRs allow wastewater to be discharged to land, the discharge is a privilege not a right and may be revoked at any time. A copy of the Order must be maintained at the facility and must be accessible to anyone operating the wastewater treatment and disposal system.

Please review your WDRs carefully to ensure you understand all aspects of the discharge requirements. Please note that the Provisions section of the WDRs requires submittal of certain technical reports by specified dates. These submittals include the items listed on the following table.

<table>
<thead>
<tr>
<th>Required Report</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Limitations Compliance Assessment Plan</td>
<td>30 June 2010</td>
</tr>
<tr>
<td>Workplan for Supplemental Evaluation of Nitrogen in Groundwater</td>
<td>30 July 2010</td>
</tr>
<tr>
<td>Sludge Management Plan</td>
<td>30 December 2010</td>
</tr>
<tr>
<td>Supplemental Evaluation of Nitrogen in Groundwater and BPTC Measures Report</td>
<td>30 April 2011</td>
</tr>
<tr>
<td>Conceptual Site Closure Plan</td>
<td>30 March 2012</td>
</tr>
<tr>
<td>Certification that RENEWS is Fully Operational</td>
<td>30 March 2012</td>
</tr>
</tbody>
</table>

1. Certification related to different phase.
2. Certification related to different phase.
Required Report

<table>
<thead>
<tr>
<th>Required Report</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen BPTC Implementation Report</td>
<td>30 October 2012 ³</td>
</tr>
<tr>
<td>Financial Assurance Account Annual Update Report</td>
<td>30 March 2013 and 30 December each year thereafter</td>
</tr>
</tbody>
</table>

1. This due date applies if the preferred alternative would utilize RENEWS; otherwise the report is due by 30 September 2013.
2. If RENEWS is not technically or administratively feasible, a new BPTC evaluation study report is due on this date.
3. If required pursuant to the approved *Supplemental Evaluation of Nitrogen in Groundwater and BPTC Measures Report*.

In addition to technical reports required by the WDRs, the WDRs contain a Monitoring and Reporting Program (MRP), which contains monitoring requirements that you must implement. Please review the MRP closely so that you may establish the appropriate monitoring and reporting schedules and protocols.

To conserve paper and reduce mailing costs, a paper copy of the order has been sent only to the Discharger. Interested parties are advised that the full text of this order is available at: http://www.waterboards.ca.gov/centralvalley/board_decisions/adopted_orders/. Anyone without access to the Internet who needs a paper copy of the order can obtain one by calling Central Valley Water Board staff.

If you have any questions regarding compliance with this permit, please contact Mary Serra at (916) 464-4742 or mserra@waterboards.ca.gov. Likewise, all technical and monitoring reports required under the permit should be directed to Ms. Serra.

Original signed by

KENNETH D. LANDAU
Assistant Executive Officer

Enclosures - Adopted WDRs Order No. R5-2010-0025
Standard Provisions and Reporting Requirements

cc w/o enc.: Gordon Innes, State Water Resources Control Board, Sacramento
Donna Heran, San Joaquin County Environmental Health Department, Stockton
Gary Carlton, Kennedy/Jenks, Rancho Cordova
Meredith Durant, Kennedy/Jenks, San Francisco
Michael Campos, Stoel Rives, Sacramento
Bill Jennings, California Sportfishing Protection Alliance, Stockton
Paul Harpainter, Tracy
Donald Vieira, Stockton
CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD
CENTRAL VALLEY REGION
ORDER NO. R5-2010-0025

WASTE DISCHARGE REQUIREMENTS
FOR
MUSCO FAMILY OLIVE COMPANY AND THE STUDLEY COMPANY
WASTEWATER TREATMENT AND LAND DISPOSAL FACILITY
SAN JOAQUIN COUNTY

The California Regional Water Quality Control Board, Central Valley Region, (hereafter Central Valley Water Board) finds that:

1. Musco Family Olive Company and the Studley Company (hereafter jointly referred to as “Discharger”) submitted a Report of Waste Discharge (RWD), dated 30 March 2009 to apply for revised Waste Discharge Requirements (WDRs) for land discharge of olive processing wastewater. Additional information was submitted on various dates in December 2009.

2. The facility is at 17950 Via Nicolo, Tracy, in Section 34, T2S, R4E, and Section 4 T3S, R4E, MDB&M, as shown on Attachment A, which is attached hereto and made part of this Order by reference. The Studley Company owns the land (Assessor’s Parcel Numbers 209-11-18, 209-11-31, 209-11-32, 251-32-08, and 251-32-09) and Musco Family Olive Company owns and operates the facility.

3. Wastewater generated at the facility is regulated under two separate WDRs:
 a. Order No. R5-2005-0024 regulates two Class II surface impoundments that are regulated under Title 27 of the California Code of Regulations, §20005 et seq., (hereafter Title 27). The Class II surface impoundments are used to store and evaporate concentrated brines that have been determined to be designated waste.
 b. Order No. R5-2002-0148 regulates the treatment, storage, and land application of other wastewater. This Order updates Order No. R5-2002-0148 and only applies to wastewater that is not discharged to the Class II surface impoundments.

4. As set forth in the following findings, the Discharger proposes to continue the discharge of process wastewater to land.

REGULATORY BACKGROUND

5. Musco Family Olive Company processes approximately one-half the total table olive crop in the state. The facility began limited operations in 1983 (receiving and storage only) and full processing operations in 1992. Starting in 1986, wastewater was discharged to the two Class II surface impoundments. Land application of wastewater began on a small scale in about 1988.

6. On 28 February 1997, the Central Valley Water Board approved Resolution No. 97-037 approving an Initial Study and adopting a Negative Declaration to expand the land
disposal areas to 200 acres. On the same date, the Central Valley Water Board adopted WDRs Order No. 97-037 authorizing process wastewater discharges of up to 500,000 gallons per day (gpd) on 200 acres of land application areas (LAAs).

7. In 1999, the Discharger acquired an olive packing facility in Visalia, closed that facility, and transferred the production to Tracy, without first making improvements to its existing wastewater treatment or disposal system. That consolidation lead to an increase in wastewater flow rates and numerous violations of WDRs Order No. 97-037. The Central Valley Water Board responded to the violations with the following enforcement actions, which are described in detail below:
 a. Cleanup and Abatement Order (CAO) No. 5-00-717;
 b. Time Schedule Order (TSO) No. R5-2002-0014;
 c. Time Schedule Order (TSO) No. R5-2002-0014-R01;
 d. Cleanup and Abatement Order No. R5-2002-0149;
 e. Administrative Civil Liability (ACL) Complaint No. R5-2002-0502 in the amount of $150,000 for failure to comply with CAO No. 5-00-717;
 f. ACL Complaint No. R5-2004-0534 in the amount of $493,500 for failure to comply with certain requirements set forth in TSO No. R5-2002-0014-R01;
 g. ACL and Penalty Order No. R5-2007-0138, the Stipulation for Entry of Administrative Civil Liability and Penalty Order to settle ACL Complaint No. R5-2004-0534 (Stipulated Order); and

8. On 17 November 2000 the Executive Officer issued CAO No. 5-00-717, which required the Discharger to prepare technical reports and construct wastewater treatment system improvements to comply with WDRs Order No. 97-037 by 1 November 2001. The Discharger did not comply with the CAO and, therefore, the Central Valley Water Board adopted TSO No. R5-2002-0014 on 25 January 2002. The TSO authorized an interim increase in the flow limits and increased effluent limits for fixed dissolved solids (FDS) from April 2002 through 6 September 2002. Among other requirements, the TSO required control of nuisance odors; installation of groundwater monitoring wells; an evaluation of the domestic wastewater disposal system; construction of process wastewater treatment improvements; and expanded cropping of the wastewater land application areas.

9. On 9 April 2002, the Executive Officer issued ACL Complaint No. R5-2002-0502 in the amount of $150,000, which addressed civil liabilities incurred by the Discharger for failure to comply with CAO No. 5-00-717 from 17 November 2000 through 25 January 2002. The Discharger paid the liability in full.
10. On 6 June 2002, the Central Valley Water Board revised the terms of the TSO by adopting TSO No. R5-2002-0014-R01. The revised TSO authorized another flow increase and an additional month to complete construction of an 84-million gallon wastewater treatment/storage reservoir. On the same day, the Central Valley Water Board issued WDRs Order No. R5-2002-0148 and CAO Order No. R5-2002-0149 to address continuing violations of the WDRs.

WDRs Order No. R5-2002-0148 allowed discharge to the LAAs of up to 800,000 gpd and required the Discharger to submit the following technical reports:

a. A work plan for additional characterization of groundwater;
b. Proposed storm water bypass criteria for the LAAs;
c. A Salinity Source Reduction Plan;
d. An Operations and Maintenance Plan for the wastewater treatment systems and the LAAs;
e. A Waste Assimilative Capacity Report for the LAAs;
f. A Solid Waste Management Plan;
g. A Monitoring Well and Lysimeter Installation Report;
h. A Domestic Wastewater Septic System Improvement Installation Report; and
i. A Background Groundwater Quality and Percolate Quality Report.

CAO No. R5-2002-0149 set forth a schedule for compliance with increasingly stringent effluent salinity limitations as tabulated below.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Effluent Limitation and Compliance Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 September 2002</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>4,700</td>
</tr>
<tr>
<td>Sodium (mg/L)</td>
<td>739</td>
</tr>
</tbody>
</table>

11. On 6 August 2004, the Executive Officer issued ACL Complaint No. R5-2004-0534 in the amount of $493,500 for failure to comply with certain requirements set forth in TSO No. R5-2002-0014-R01 from 25 January 2002 through 31 May 2004. Subsequent to the issuance of the ACL Complaint, the Discharger and the Executive Officer agreed to settle the matter without a formal hearing. The Central Valley Water Board approved ACL and Penalty Order No. R5-2007-0138, the Stipulation for Entry of Administrative Civil Liability and Penalty Order (Stipulated Order) on 26 October 2007. The Stipulated Order required that the Discharger do the following:
a. Pay the $493,500 administrative civil liability in four installments between 15 April 2008 and 15 October 2009.

b. Submit a Site Closure and Maintenance Report by 31 December 2007. The report was to include a short-term maintenance plan for the site to assure that no discharges of waste from the site occur via surface water drainages after the Discharger ceases operations; a plan for the complete closure of the site; a detailed plan for post-closure maintenance and monitoring of the site; and a cost estimate for completing corrective action for all known or reasonably foreseeable releases from the site that pose a threat to water quality. This closure plan is separate from the closure requirements for the Class II surface impoundments regulated under WDRs Order No. R5-2005-0024.

c. Submit a Financial Assurances Report to the Executive Officer within 60 days of approval of the Site Closure and Maintenance Report. This report was to describe proposed mechanisms and a time schedule to obtain financial assurances to ensure that funds are available to implement the approved closure plan and a time schedule for obtaining financial assurances.

d. Within 60 days of approval of the Financial Assurances Report, provide proof that the Discharger has obtained financial assurances consistent with the approved Financial Assurances Report and in accordance with the approved time schedule in the Report.

The Discharger has paid the civil liability in full and timely submitted the required Site Closure and Maintenance Report. The proposed plan for site closure is discussed in later findings.

12. Cease and Desist Order No. R5-2007-0139 was adopted by the Central Valley Water Board on 26 October 2007 to provide interim effluent limits for TDS, FDS, and sodium. Based in part on facility and operational changes proposed by the Discharger, the CDO required the following:

a. Replacement of an unlined pond used as a pumping sump to deliver wastewater to the LAAs (the “million-gallon pond”) with an above-ground tank (the reservoir surge tank, or RST);

b. Characterization of soil contamination at the former million-gallon pond site;

c. A wastewater treatment facility capacity evaluation report;

d. An assessment of the LAAs' capacity to assimilate the applied waste constituents without impacting groundwater quality;

e. A phased supplemental groundwater investigation to determine background groundwater quality and the extent of groundwater degradation;

f. A storm water and tailwater capacity evaluation report;

g. A storm water and tailwater system improvement report;

h. An annual wet season preparation report;

i. An enhanced evaporation pilot scale study evaluation report; and

The Discharger submitted all of the required reports.

PROCESSING OPERATIONS AND WASTE CHARACTER

13. The facility processes and cans olives year round and generates wastewater with high organic strength and high salinity. Processing generally consists of receiving olives, storing them in acetic acid solution, curing in sodium hydroxide (lye), pitting, and canning in a brine solution. Attachment B, which is attached hereto and made part of this Order by reference, is a simplified process schematic.

14. Fresh olives are received at the facility during the harvest period (typically September through early November) each year. Approximately 80 percent of the olives are flumed into storage tanks that contain a solution of acetic acid, calcium chloride and sodium benzoate. The remainder is flumed directly to the processing plant. The stored olives are processed as needed from December through August.

15. The facility has 1,383 olive storage tanks ranging in size from 2,300 gallons to 9,702 gallons for a total of approximately 45,000 tons of storage capacity. Up to 8,000 tons of olives can be processed fresh during the harvest season, for a total harvest capacity of 53,000 tons.

16. The facility can process approximately 1,000 tons of olives per week for a total processing capacity of 52,000 tons per year. Over the past five years, an average of 31,000 tons of olives was processed each year.

17. The Discharger obtains its process water from the nearby California Aqueduct and has been monitoring the process water quality semiannually since December 2007. The character of the raw process water supply based on data presented in the RWD is summarized below.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>No. of Samples</th>
<th>Process Water Supply Analytical Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>umhos/cm</td>
<td>16 ¹</td>
<td>Minimum</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/L</td>
<td>16 ¹</td>
<td>173</td>
</tr>
<tr>
<td>Total alkalinity as CaCO₃</td>
<td>mg/L</td>
<td>16 ¹</td>
<td>104</td>
</tr>
<tr>
<td>Bicarbonate alkalinity as CaCO₃</td>
<td>mg/L</td>
<td>4 ²</td>
<td>58</td>
</tr>
<tr>
<td>Hardness as CaCO₃</td>
<td>mg/L</td>
<td>16 ¹</td>
<td>80</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>16 ¹</td>
<td>52</td>
</tr>
</tbody>
</table>

¹: Data presented in the RWD.
²: Additional data presented in the RWD.
WASTE DISCHARGE REQUIREMENTS ORDER NO. R5-2010-0025
MUSCO FAMILY OLIVE COMPANY AND THE STUDLEY COMPANY
WASTEWATER TREATMENT AND LAND DISPOSAL FACILITY
SAN JOAQUIN COUNTY

Process Water Supply

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>No. of Samples</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>16 ¹</td>
<td>14</td>
<td>79</td>
<td>41</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>16 ¹</td>
<td>10</td>
<td>52</td>
<td>27</td>
</tr>
<tr>
<td>Iron</td>
<td>mg/L</td>
<td>15 ¹</td>
<td><0.005</td>
<td>0.310</td>
<td>0.055³</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>16 ¹</td>
<td>11</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>16 ¹</td>
<td>6</td>
<td>15</td>
<td>11</td>
</tr>
</tbody>
</table>

¹ Includes data from 12 monitoring events completed by the Department of Water Resources at the Harvey Banks pumping plant in 2003 and 2004.
² Includes data from four monitoring events completed by the Discharger in 2007 and 2008.
³ Calculated using one-half of the reporting limit for five non-detect results.

Based on these data, the process water supply exhibits low salinity and moderate hardness. Prior to use, the Discharger treats the raw water by polymer flocculation, clarification, granulated media filtration and chlorine disinfection. Water supplied to the boiler is also routed through an ion exchange water softening system that is regenerated with sodium chloride.

18. The olive brining process generates several liquid waste streams, some of which are discharged to the Class II surface impoundments for disposal. The rest are discharged to the land discharge system. The land discharge system includes the reservoir surge tank (RST), which is used to collect untreated wastewater; an 84-million gallon wastewater treatment and storage reservoir; and the LAAs themselves. All wastewater discharged to the LAAs receives treatment in the wastewater treatment/storage reservoir prior to discharge. The individual liquid waste streams are listed below with their corresponding discharge locations, and are depicted schematically on Attachment B. When capacity is available in the Class II surface impoundments, some waste streams normally discharged to the land discharge system are discharged to the impoundments to minimize the flow and salt loadings on the LAAs.

<table>
<thead>
<tr>
<th>Waste Stream Number ¹</th>
<th>Description</th>
<th>Discharge Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Filter backwash</td>
<td>Land discharge system ²</td>
</tr>
<tr>
<td>2</td>
<td>Pre-rinse water</td>
<td>Land discharge system ²</td>
</tr>
<tr>
<td>3</td>
<td>Neutralization brine</td>
<td>Class II surface impoundments</td>
</tr>
<tr>
<td>4</td>
<td>Neutralization rinse water</td>
<td>Land discharge system ²</td>
</tr>
<tr>
<td>5</td>
<td>Ferrous gluconate</td>
<td>Land discharge system ²</td>
</tr>
<tr>
<td>Waste Stream Number</td>
<td>Description</td>
<td>Discharge Location</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>First ferrous gluconate rinse</td>
<td>Land discharge system (^2)</td>
</tr>
<tr>
<td>7</td>
<td>Second ferrous gluconate rinse</td>
<td>Land discharge system (^2)</td>
</tr>
<tr>
<td>8</td>
<td>Transport water</td>
<td>Land discharge system (^2)</td>
</tr>
<tr>
<td>9</td>
<td>Pitter start tank water</td>
<td>Land discharge system (^2)</td>
</tr>
<tr>
<td>10</td>
<td>Accumulation tank</td>
<td>Land discharge system (^2)</td>
</tr>
<tr>
<td>11</td>
<td>Floatation brine</td>
<td>Class II surface impoundments</td>
</tr>
<tr>
<td>12</td>
<td>Cooker cooling water</td>
<td>Land discharge system (^2)</td>
</tr>
<tr>
<td>13</td>
<td>Boiler blowdown</td>
<td>Class II surface impoundments</td>
</tr>
<tr>
<td>14</td>
<td>Canning floor drains</td>
<td>Land discharge system (^2)</td>
</tr>
<tr>
<td>--</td>
<td>Sanitation</td>
<td>Land discharge system (^2)</td>
</tr>
<tr>
<td>--</td>
<td>Water softener regeneration brine</td>
<td>Class II surface impoundments</td>
</tr>
<tr>
<td>--</td>
<td>Flume water (^3)</td>
<td>Land discharge system (^2)</td>
</tr>
</tbody>
</table>

\(^1\) Corresponds to liquid waste stream numbers on the process schematic (Attachment B).

\(^2\) Waste streams discharged to the land discharge system receive treatment prior to discharge to the LAAs.

\(^3\) Flume water is only generated during the harvest season (September through early November).

The olive storage and processing tanks are outdoors in unroofed areas. Secondary containment berms are used to capture process spills and precipitation that falls on the containment areas, which have a total area of approximately 307,000 square feet (7 acres). Water that collects in the containment areas is directed via drains to sumps equipped with electrical conductivity meters. If the EC is less than 4,800 umhos/cm, the water is pumped to the wastewater treatment/storage reservoir via the RST. Otherwise, it is pumped to the Class II surface impoundments.

19. Wastewater flow rates are variable from month to month depending on production. The following table summarizes average daily flows to the wastewater treatment/storage reservoir from 2003 through 2008. Total annual flows ranged from 100 million gallons (MG) per year to 217 MG per year from 2000 through 2008. These flows account for both process wastewater and low salinity storm water collected in the outdoor processing areas.
2003-2008 Average Daily Wastewater Flow (gpd)

<table>
<thead>
<tr>
<th>Month</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>175,922</td>
<td>402,060</td>
<td>268,547</td>
</tr>
<tr>
<td>February</td>
<td>251,757</td>
<td>491,704</td>
<td>324,654</td>
</tr>
<tr>
<td>March</td>
<td>267,750</td>
<td>511,593</td>
<td>317,374</td>
</tr>
<tr>
<td>April</td>
<td>89,999</td>
<td>577,919</td>
<td>327,372</td>
</tr>
<tr>
<td>May</td>
<td>258,318</td>
<td>656,809</td>
<td>347,786</td>
</tr>
<tr>
<td>June</td>
<td>314,494</td>
<td>761,128</td>
<td>406,607</td>
</tr>
<tr>
<td>July</td>
<td>3,207</td>
<td>792,903</td>
<td>316,017</td>
</tr>
<tr>
<td>August</td>
<td>0</td>
<td>708,722</td>
<td>352,497</td>
</tr>
<tr>
<td>September</td>
<td>27,778</td>
<td>742,870</td>
<td>376,834</td>
</tr>
<tr>
<td>October</td>
<td>423,627</td>
<td>704,632</td>
<td>490,224</td>
</tr>
<tr>
<td>November</td>
<td>249,971</td>
<td>540,849</td>
<td>341,931</td>
</tr>
<tr>
<td>December</td>
<td>80,028</td>
<td>401,522</td>
<td>167,895</td>
</tr>
</tbody>
</table>

Mean of Influent Analytical Results

<table>
<thead>
<tr>
<th>Waste Stream</th>
<th>Percentage of Total Influent Flow</th>
<th>BOD (mg/L)</th>
<th>FDS (mg/L)</th>
<th>Sodium (mg/L)</th>
<th>Chloride (mg/L)</th>
<th>Bicarbonate (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter backwash</td>
<td>4</td>
<td>35</td>
<td>208</td>
<td>35</td>
<td>51</td>
<td>62</td>
</tr>
<tr>
<td>Pre-rinse water</td>
<td>7</td>
<td>3,903</td>
<td>1,046</td>
<td>93</td>
<td>330</td>
<td>0</td>
</tr>
<tr>
<td>Neutralization rinse</td>
<td>7</td>
<td>5,450</td>
<td>5,180</td>
<td>1,477</td>
<td>349</td>
<td>1,090</td>
</tr>
<tr>
<td>Ferrous gluconate</td>
<td>7</td>
<td>2,045</td>
<td>1,824</td>
<td>532</td>
<td>234</td>
<td>467</td>
</tr>
<tr>
<td>1st Ferrous rinse</td>
<td>7</td>
<td>1,171</td>
<td>899</td>
<td>306</td>
<td>150</td>
<td>391</td>
</tr>
<tr>
<td>2nd Ferrous rinse</td>
<td>7</td>
<td>845</td>
<td>526</td>
<td>206</td>
<td>136</td>
<td>234</td>
</tr>
<tr>
<td>Transport water</td>
<td>11</td>
<td>294</td>
<td>285</td>
<td>110</td>
<td>118</td>
<td>141</td>
</tr>
<tr>
<td>Start tank water</td>
<td>--</td>
<td>410</td>
<td>500</td>
<td>208</td>
<td>121</td>
<td>250</td>
</tr>
<tr>
<td>Accumulation tank</td>
<td>14</td>
<td>3,206</td>
<td>728</td>
<td>270</td>
<td>117</td>
<td>300</td>
</tr>
</tbody>
</table>

20. Based on eight sampling events during one week in September 2008, the chemical character and relative flow contribution of the individual process waste streams is summarized below. These waste streams are discharged as individual batches to the RST. Five batches are processed each week, though the size of the batches may vary.
Waste Stream | Percentage of Total Influent Flow | Mean of Influent Analytical Results |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BOD² (mg/L)</td>
</tr>
<tr>
<td>Cooker cooling water</td>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>Canning floor drains</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Sanitation</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Flume water</td>
<td>4, 5</td>
<td>--</td>
</tr>
</tbody>
</table>

1 The estimated total flow excludes flume water, which is only generated during the harvest season.
2 Biochemical oxygen demand.
3 Start tank water flow rate was measured in combination with the transport water flow rate. The two streams together total approximately 11 percent of the total flow to the RST.
4 Waste stream character not provided in RWD.
5 Flume water is only generated during the harvest season.

21. The wastewater collection system consists of floor drains within the processing plant, various collection tanks and sumps, a solids separator, the 200,000-gallon RST and the 84-million gallon, 16-acre, aerated wastewater treatment/storage reservoir. The reservoir was constructed in a natural drainage swale with an earthen dam. The reservoir is shown on Attachment C, which is attached hereto and made part of the Order by reference. Because of the reservoir’s volume and geometry, operation and maintenance of the dam is regulated by the State Department of Water Resources’ Division of Safety of Dams (DSOD).

22. Wastewater treatment consists of carbon dioxide or organic acid neutralization of alkaline rinse waters, solids removal by static 60-mil parabolic screens, and aeration. The wastewater treatment/storage reservoir is equipped with eleven aerators. Lye solutions are reclaimed through the addition of sodium hydroxide in above-ground stainless steel storage tanks. Spent lye solutions are periodically discharged to the Class II surface impoundments.

23. Wastewater that is discharged to the wastewater treatment/storage reservoir is characterized by high organic content and elevated salinity 1. Based on laboratory

1 Total dissolved solids (TDS), fixed dissolved solids (FDS) and electrical conductivity (EC) are all valid salinity indicator constituents. However, TDS is not the best salinity indicator when the degradable organic content of the waste is high because dissolved organic matter contributes to the TDS value and overstates the actual salinity. In such cases, FDS is the preferred salinity indicator because the test method does not measure most dissolved organic constituents. EC is often still a good salinity indicator when dissolved organic matter is present in the waste, but some dissolved organic compounds can contribute to EC. Because the Discharger’s wastewater contains high concentrations of dissolved organic matter, this Order uses FDS data to the maximum practical extent to characterize and regulate the wastewater discharge.
analysis of weekly grab samples obtained from the RST in 2008, the character of the raw wastewater discharged into the aerated wastewater treatment/storage reservoir is summarized below.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>mg/L</td>
<td>647</td>
<td>6,500</td>
<td>3,181</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/L</td>
<td>1,140</td>
<td>4,320</td>
<td>2,838</td>
</tr>
<tr>
<td>FDS</td>
<td>mg/L</td>
<td>680</td>
<td>2,380</td>
<td>1,517</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>mg/L</td>
<td>5</td>
<td>128</td>
<td>40</td>
</tr>
<tr>
<td>Nitrate Nitrogen</td>
<td>mg/L</td>
<td><0.1</td>
<td>3.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>mg/L</td>
<td>7</td>
<td>128</td>
<td>41</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>140</td>
<td>510</td>
<td>252</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>89</td>
<td>777</td>
<td>462</td>
</tr>
</tbody>
</table>

1 Estimated as the sum of Total Kjeldahl nitrogen (TKN) and nitrate nitrogen.

24. The character of treated effluent discharged from the wastewater treatment/storage reservoirs to the LAAs is summarized below based on laboratory analysis of weekly grab samples obtained from the wastewater treatment/storage reservoir in 2008.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>mg/L</td>
<td>81</td>
<td>2,100</td>
<td>598</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/L</td>
<td>2,240</td>
<td>4,790</td>
<td>2,986</td>
</tr>
<tr>
<td>FDS</td>
<td>mg/L</td>
<td>1,830</td>
<td>2,930</td>
<td>2,316</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>mg/L</td>
<td>3</td>
<td>235</td>
<td>47</td>
</tr>
<tr>
<td>Nitrate Nitrogen</td>
<td>mg/L</td>
<td><0.1</td>
<td>1.0</td>
<td>0.18</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>mg/L</td>
<td>3</td>
<td>235</td>
<td>47</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>33</td>
<td>500</td>
<td>355</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>417</td>
<td>3,830</td>
<td>816</td>
</tr>
</tbody>
</table>

1 Estimated as the sum of TKN and nitrate nitrogen.
These data indicate that the treatment system currently achieves approximately 81 percent BOD reduction. The approximately 53 percent increase in salinity between the raw wastewater and treated effluent (measured as FDS) is attributable to evapoconcentration within the wastewater treatment/storage reservoir.

25. The RWD requested that the wastewater treatment/storage reservoir operational limits imposed by the current WDRs and CDO be relaxed as follows:
 a. Reduce the minimum dissolved oxygen (DO) concentration from 2.0 to 1.0 mg/L;
 b. Remove the maximum dissolved sulfide concentration of 0.1 mg/L; and
 c. Remove the pH limit of 7.5 to 8.5.

The current reservoir operational limits were imposed to control nuisance odors. However, almost seven years of daily monitoring data indicate no correlation between the concentration of dissolved sulfide in the wastewater treatment/storage reservoir and nuisance odors. Additionally, dissolved sulfide has only occasionally been detected since the reservoir aerators were installed in 2003.

The Discharger has consistently complied with the current DO limit since November 2007. However, between 2003 and November 2007, DO concentrations in the treatment/storage reservoir ranged from 0 to 8.0 mg/L and typically were greater than 1.0 mg/L only for brief periods. During that time, there were no odor complaints. Comparison of historical effluent BOD concentrations and the corresponding reservoir DO concentrations indicate that BOD removal might not be significantly reduced by decreasing the reservoir DO limit to 1.0 mg/L.

Between June 2003 and December 2008, the pH in the treatment/storage reservoir has typically ranged between 6.5 and 9.0. The lowest recorded pH value was 5.5 and the highest was 10.9. The record does not indicate a correlation between pH and odors.

Based on the foregoing, it is appropriate to remove the dissolved sulfide limit and revise the operational limits for DO and pH to the limits that are usually imposed for food processing discharges.

LAND APPLICATION SYSTEM

26. The entire facility consists of 280 acres, of which approximately 80 acres are used for the processing plant. Of the remaining 200 acres, approximately 171 acres are currently used for land application of process wastewater. The remaining 40 acres consist of service roads, environmentally sensitive areas, and approximately 11 acres left fallow due to regulatory constraints. The LAAs are shown on Attachment C and the area of each LAA is provided below.
Land Application Area | Useable Acreage | First Year of Use | Slope
--- | --- | --- | ---
18 North | 18.8 | 1999 | Fairly level
Checks | 11 | 2001 \(^1\) | Level terraces
Evaporation South | 2.2 | 2000 | Moderate
Evaporation West | 3.1 | 2000 | Fairly level
Field 55 East | 21.5 | 1992 | Moderate to steep
Field 55 West | | 1995 | Moderate to steep
Field 95 (1\(^{\text{st}}\), 2\(^{\text{nd}}\), and 3\(^{\text{rd}}\) Swales) | 102 | 1997 | Moderate to steep
Park West | 2.2 | 2000 | Moderate to slight
Pasture | 3.2 | 2000 | Moderate
South Ridge (East and West) | 13.7 | 1999 | Moderate
Spur North | 4.2 | 2000 | Fairly level

\(^1\) This LAA was used only in 2001 and 2002 as discussed below.

The “Checks” LAA was used in only 2001 and 2002, when it functioned as a shallow percolation pond. Because this use caused nuisance odors, WDRs Order No. R5-2002-0148 prohibited further use of this area unless the Discharger demonstrated that off-site odor problems would be prevented. Since then, the Discharger has successfully used wastewater for irrigating the neighboring LAAs without further odor complaints. Therefore, there is no longer a reason to prohibit discharge to the Checks LAA in compliance with the conditions of this Order.

27. Wastewater is applied to the LAAs by sprinkler irrigation. A natural surface water drainage exists in the land application areas (see Attachment C). The Discharger constructed ditches to prevent tailwater from draining into the surface water drainage. Irrigation tailwater is pumped to the wastewater treatment/storage reservoir for recycling. Likewise, all storm water runoff from the LAAs drains to the wastewater treatment/storage reservoir.

28. Attempts to grow fodder crops such as Sudan grass and winter barley were unsuccessful due to the salinity of the waste. In 2004, the Discharger planted a 20-acre experimental plot of NyPa Forage™, a patented clone of *Distichlis spicata*, which is commonly known as salt grass.

29. According to the producer, NyPa Forage™ grows from rhizomes and produces well in waterlogged saline environments, such as salt marshes, where the rooting depth can extend as deep as 36 inches. However, the Discharger states that site-specific observations suggest that NyPa Forage™ grows quickly in the saturated heavy clay soils found at the site. Although little above-ground growth occurs during the winter months,
there is sufficient root and rhizome growth to facilitate the expansion of the crop into relatively bare areas. NyPa species are halophytes (salt lovers) and take up salt with water through the roots. Some of the salt is stored in the plant tissue and some is exuded by the plants’ leaves. The salt crystals can be dislodged by subsequent irrigation and precipitation events.

30. According to the United States Department of Agriculture Natural Resources Conservation Service (NRCS), *Distichlis spicata* is a slow-growing perennial that actively grows in the spring through autumn months, and is dormant during the winter. It is well-adapted to fine-grained soils, is moderately drought tolerant, requires moderate amounts of fertilizer, and will tolerate a minimum soil pH of 6.4. In unsaturated conditions, the roots may extend as little as two inches below the rhizomes\(^2\). The fastest spread reportedly occurs in sandy soils.

31. NyPa Forage™ can be used as feed for ruminants, and the Discharger currently sells the harvested crop for that purpose. The Discharger states that yields can reach 11 tons per acre with balanced fertilization.

32. In the last two years, the Discharger has expanded the NyPa Forage™ cultivation to all of the LAAs. The Discharger states that tail water return and storm water runoff have been greatly reduced on established NyPa fields (especially on the steeper LAAs), and that erosion has been eliminated on fully established fields. A detailed canopy cover evaluation was conducted in November 2008, as described in the Final Report on Assimilative Capacity. Based on the RWD and a site inspection on 16 June 2009, estimated NyPa Forage™ canopy coverage as of June 2009 is summarized below. A second canopy evaluation at the same locations as the 2008 assessment was conducted in December 2009, as discussed below.

<table>
<thead>
<tr>
<th>Land Application Area</th>
<th>Total Area (Acres)</th>
<th>NyPa Coverage (Percent of Optimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 North</td>
<td>18.8</td>
<td>70%</td>
</tr>
<tr>
<td>Checks</td>
<td>11</td>
<td>0%</td>
</tr>
<tr>
<td>Evaporation South</td>
<td>2.2</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Evaporation West</td>
<td>3.1</td>
<td>65%</td>
</tr>
<tr>
<td>Field 55 East</td>
<td>8</td>
<td>40%</td>
</tr>
<tr>
<td>Field 55 West</td>
<td>13.5</td>
<td>70%</td>
</tr>
<tr>
<td>Field 95 Acres</td>
<td>102</td>
<td>Less than 40% (^1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land Application Area</th>
<th>Total Area (Acres)</th>
<th>NyPa Coverage (Percent of Optimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park West</td>
<td>2.2</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Pasture</td>
<td>3.2</td>
<td>65%</td>
</tr>
<tr>
<td>South Ridge East</td>
<td>7.3</td>
<td>Less than 80%</td>
</tr>
<tr>
<td>South Ridge West</td>
<td>6.4</td>
<td>75%</td>
</tr>
<tr>
<td>Spur North</td>
<td>4.2</td>
<td>60%</td>
</tr>
</tbody>
</table>

1 The western half of this LAA (known as the second and third swale areas has less complete coverage that the eastern half (known as the first swale).

33. Based on laboratory testing of NyPa forage harvested from the Discharger’s LAAs in 2008, the total salt content on a dry weight basis was 10.5 to 12.5%, and the sodium and chloride content was 6.2 to 6.5% on a dry weight basis. The Discharger estimates that a fully established NyPa forage crop on 160 acres of LAAs may remove up to 110 tons of salt per year, including 57 tons of sodium and chloride. However, 2006 crop analysis data collected at harvest indicate that approximately 40 percent of the salt taken up by the crop is on the outside of the plant, and is therefore vulnerable to being washed back onto the LAA soil by irrigation and precipitation. Additionally, the Discharger acknowledges that it will be difficult to achieve 100% crop coverage given the crop needs and site-specific conditions. Based on a December 2009 re-evaluation of NyPa coverage, the Discharger estimates that the current canopy cover is 51 percent as a site-wide average. Based on the oldest plantings of NyPa at the site on the 18 North and South Ridge LAAs, the Discharger believes that canopy cover of 80% or more can be achieved.

34. Since adoption of the 2002 WDRs, the Discharger has implemented several process changes, equipment modifications, and modifications to the process wastewater collection system to minimize the volume and reduce the salinity of the wastewater discharged to the LAAs. These changes include:

a. Converting to a closed loop fluming system;

b. Reclaiming and recycling lye solutions and other process streams;

c. Using carbon dioxide to neutralize residual lye in the olives instead of rinsing several times in fresh water;

d. Reducing the concentration of acetic acid used for olive storage solution;

e. Changing the flotation brine solution less frequently; and

f. Housekeeping changes to reduce water use and capture high salinity spillage for discharge to the Class II surface impoundments.

Based on daily flow monitoring and weekly FDS monitoring data provided in the RWD, wastewater volumes and the salinity mass discharged from the processing plant to the treatment/storage reservoir from 2004 through 2009 are summarized below.
As indicated by these data, the average FDS concentration of the raw wastewater has decreased significantly in the last two years, as has the maximum monthly FDS mass. Excluding the data from 2007 and 2009 (when the plant was closed for significant periods), the total annual FDS mass has also decreased since 2004 through 2006 despite relatively constant total annual wastewater volumes.

35. The Discharger submitted a water balance to show the capacity of the LAA treatment, storage and disposal system. The water balance model was based on local historical climate data; site topography; wastewater treatment/storage reservoir geometry; and reasonable estimates of NyPa crop coverage, crop evapotranspiration, and runoff coefficients. Based on the current site-wide average crop coverage of 51 percent, the land discharge system’s hydraulic capacity during the 100-year 365-day precipitation event is summarized in the following table.

<table>
<thead>
<tr>
<th>Site Condition/Capacity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Coverage</td>
<td>51%</td>
</tr>
<tr>
<td>Runoff Coefficient</td>
<td>40%</td>
</tr>
</tbody>
</table>
Site Condition/Capacity

<table>
<thead>
<tr>
<th>Wastewater Flow Capacity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Annual Flow</td>
<td>180 MG</td>
</tr>
<tr>
<td>Annual Average Flow</td>
<td>493,000 gpd</td>
</tr>
<tr>
<td>Peak Month Average Flow</td>
<td>716,000 gpd</td>
</tr>
</tbody>
</table>

1. Measured as the combined flow of wastewater and storm water from the RST to the wastewater treatment/storage reservoir.

It is appropriate to limit flows to the current capacity. However, if the Discharger successfully sustains crop coverage that is significantly greater than current conditions, the flow limits may be increased, subject to further environmental review under the California Environmental Quality Act (if needed) and revision of this Order.

The Discharger has the ability to cease operations as needed to control wastewater flows, and has typically closed the processing plant several days per year for the last several years. Although the water balance model is reasonable and even conservative in some aspects, it did not account for the accumulation of sludge in the wastewater treatment/storage reservoir, and the RWD did not discuss periodic sludge removal as a maintenance practice. Because of the high strength of the waste, sludge accumulation in the wastewater treatment/storage reservoir could potentially impact storage capacity significantly in a relatively short time frame. Therefore, this order requires that the Discharger regularly monitor the effects of sludge accumulation on storage capacity and provide a detailed plan for periodic sludge removal and disposal.

OTHER WASTE STREAMS

36. Residual solids include olive pits, stems, waste olives, and screened solids. The olive pits and stems are sold as biomass and burned at cogeneration plants or pulverized and incorporated into compost. Waste olives are transported offsite for animal feed or offsite land disposal. The Discharger is developing an onsite process to burn the pits to operate a steam generation system which is discussed further below. Residuals from this process will not be discharged onsite.

37. Approximately 200 employees currently work at the facility. Domestic wastewater is discharged to an on-site septic system regulated by the San Joaquin County Environmental Health Department. The septic system, located in the former LAA called “Evaporation North”, was expanded in 2003 to provide capacity for up to 500 employees. Process wastewater is no longer applied to that area and domestic wastewater is not commingled with process wastewater.
SITE SPECIFIC CONDITIONS

38. The site is located on the eastern slope of the Diablo Range. The City of Tracy is approximately five miles northeast of the site. The facility is sited on an alluvial fan that generally slopes to the northeast, and surface elevations at the site range from 540 feet above mean sea level (MSL) to 240 feet MSL. Slopes range from approximately 20 percent in the southern part of the site to nearly flat in the northern portions of the site.

39. The average annual precipitation in the area is 9.90 inches and the 100-year total annual precipitation is 21.32 inches. The reference evapotranspiration rate (ET₀) in the area is approximately 53 inches per year.

40. Local land use is primarily open space, with some neighboring industrial, residential, and agricultural operations. The facility and LAAs are outside the 100-year flood zone.

41. Site soils are predominantly mapped as Calla-Carbona complex and Carbona clay loam by the Natural Resource Conservation Service (NRCS). Carbona complex and Cogna fine sandy loam are also found. Calla-Carbona complex is comprised of 45 percent Calla clay loam and 40 percent Carbona clay loam. The Calla soil is described as very deep and well drained on strongly sloping to moderately steep terrain. The Carbona clay loam is described as very deep, well-drained soils on gently to moderately sloping terrain. Carbona complex soils are described as moderately steep and steep soils that are comprised of 45 percent Carbona clay loam and 40 percent Carbona clay loam containing a sandstone substratum at approximately 57 inches. Both of these soils are deep and well drained. Cogna fine sandy loam is described as very deep, well drained, nearly level soil on alluvial fans.

42. The Discharger has been monitoring concentrations of waste constituents in shallow LAA soils annually since 2002. A total of 18 on-site sampling locations (sampling locations 1 through 10 and 12 through 19) and five background sampling locations (sampling locations A, B, C, 11, and 20) have been monitored at depth intervals ranging from the upper six inches of soil to a one-foot interval five to six feet below the ground surface (bgs). These locations are shown on Attachment D, which is attached hereto and made part of this Order by reference.

As noted above, soil sampling locations A, B, C, 11, and 20 are located outside of the LAAs and are considered background soil sampling locations. The following table summarizes general soil characteristics and historical electrical conductivity monitoring data for the background locations.
The background soil EC results to date vary significantly with location, depth, and time. The spatial and temporal variations in background soil EC are not readily explained by climate, topography, or soil type because all of the background locations experience the same weather, are on moderate slopes of 7 to 10 percent; are outside of natural drainage channels; and the soils are reportedly all predominantly clay. Therefore, it may not be practical to establish a site-specific value for background soil EC.

43. Electrical conductivity is a good indicator of the impact of the discharge on LAA soils because the predominant waste constituents of concern are salinity constituents. The following table provides ranges of soil EC results to date for the 18 soil sampling locations that are within the LAAs (by depth interval).
As shown by the tabulated data, the soil EC results for the LAA samples are also highly variable. Although some temporal trends seem to be present at some of the LAA sampling locations, the data do not conclusively show site-wide increases over time for any of the depth intervals monitored. However, there are significant data gaps in the depth intervals sampled. Specifically, with the exception of one monitoring event in 2007, there are no data for the interval from 7 to 26 inches bgs or from 40 to 60 inches. Additionally, the RWD did not correlate the soil monitoring data with LAA-specific information such as slope, soil type, use history, and historical salinity loadings. Such correlations may help to explain the variability within the data set. However, many natural soils have considerable salinity variability over short distances even when no wastes have been applied to the soils.

44. Based on the spatial and temporal variability of the background soil monitoring data, it may not be possible to use the LAA soil monitoring data to make conclusions about salinity accumulation at each discrete sampling location. However, it may be possible to assess temporal trends by comparing the aggregate LAA data to the aggregate background data for each sampling interval. The following table provides some EC
statistics for the each monitored soil interval based on the aggregated values for the background sampling locations and sampling locations within the LAAs.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Soil Electrical Conductivity Statistic Value (umhos/cm) By Sampling Interval (inches bgs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 to 6 inches</td>
</tr>
<tr>
<td></td>
<td>Background</td>
</tr>
<tr>
<td>Minimum</td>
<td>600</td>
</tr>
<tr>
<td>Maximum</td>
<td>25,400</td>
</tr>
<tr>
<td>Mean</td>
<td>3,600</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>7,600</td>
</tr>
</tbody>
</table>

Based on these statistics:

a. The background EC is similar within each of the three depth intervals. This may indicate that the soil salinity does not naturally vary significantly with depth within the upper six feet of soil.

b. The upper six inches of LAA soil shows significantly higher EC than the background soil on a site-wide basis; and

c. Additional statistical analysis of the differences between the background and LAA soil data sets for the 27- to 39-inch depth interval indicates that there is a statistically significant difference between them, although this interval is impacted with salt to a lesser degree than that found in the upper six inches. These impacts may be localized.

d. The Discharger’s statistical analysis shows that, for the 60- to 72-inch interval depth interval, background and LAA EC results are not statistically different. The apparent differences are associated with statistical outliers.

45. As noted above, electrical conductivity is a good indicator of the impact of the discharge on LAA soils because the predominant inorganic waste constituents are sodium and chloride. However, chloride is conservative (i.e., it does not degrade or readily react with soil minerals) and sodium is not. Therefore, other important salinity indicators for this site are cation exchange capacity (CEC), sodium absorption ratio (SAR), and exchangeable sodium level (ESL).
sodium percentage (ESP). CEC is a measure of a soil’s ability to bind and exchange positively charged ions in soil pore water, many of which are plant nutrients. Soils rich in organic matter and clay typically have a high CEC, whereas sands and gravels typically have very low CEC and do not sustain plant life well. SAR can be used to assess the adverse effects of sodium on a particular soil. It is calculated from concentrations of soil sodium, magnesium and calcium. When the SAR exceeds 12 to 15, soil tilth and permeability are reduced, and plants are less able to absorb soil moisture. Sodic soils are those that have a high ESP, which is a measure of the portion of the cation exchange capacity that is occupied by sodium. Sodic soils are poorly drained and may impact plant growth by sodium toxicity, nutrient deficiencies, and/or high pH. If the ESP is greater than 15%, the soil is considered sodic. Sodicity can be reduced by adding calcium carbonate (lime) or calcium sulfate (gypsum) to the soil. However, this practice requires the addition of water to leach the displaced sodium below the crop root zone, which could result in groundwater degradation unless deep percolation is prevented through controlled operations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean of Soil Analytical Results for Other Salinity Indicators by Sampling Interval (inches bgs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 to 6 inches</td>
</tr>
<tr>
<td></td>
<td>Background LAAs</td>
</tr>
<tr>
<td>CEC (meq/100g)</td>
<td>34 31</td>
</tr>
<tr>
<td>SAR</td>
<td>15 87</td>
</tr>
<tr>
<td>ESP (%)</td>
<td>11 47</td>
</tr>
<tr>
<td>Sodium (meq/L)</td>
<td>28 175</td>
</tr>
<tr>
<td>Chloride (meq/L)</td>
<td>15 91</td>
</tr>
<tr>
<td>Bicarbonate (meq/L)</td>
<td>7 140</td>
</tr>
<tr>
<td>Sulfate (meq/L)</td>
<td>1 19</td>
</tr>
</tbody>
</table>

These statistics indicate that background soils have a relatively high CEC and marginal SAR and ESP. The upper six inches of LAA soils have become very sodic and soils in the 27- to 39-inch depth interval are also showing signs of increased sodicity. At the 60- to 72-inch depth interval, background and LAA soils exhibit similar ESP and SAR. These data are consistent with the conclusions derived from the EC statistics.

The additional statistical analysis provided by the Discharger indicates that the CEC of background and LAA soils are similar for all three depth intervals studied. Because CEC does not vary relative to sodium and ESP measures the portion of CEC that is occupied by sodium, further monitoring of CEC is not needed to evaluate changes in soil salinity.
46. Soil nitrogen monitoring data can be used to assess whether soil within the root zone contains sufficient nutrients to support the crop, and whether excess nitrogen is migrating below the root zone of the crop. The following table summarizes nitrogen statistics for each monitored soil interval based on the aggregated values for the background sampling locations and sampling locations within the LAAs.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>0 to 6 inches</th>
<th>27 to 39 inches</th>
<th>60 to 72 inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>LAAs</td>
<td>Background</td>
<td>LAAs</td>
</tr>
<tr>
<td>Total Nitrogen (Percent) – 2002 through 2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0.100</td>
<td>0.037</td>
<td>0.023</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.297</td>
<td>0.410</td>
<td>0.079</td>
</tr>
<tr>
<td>Mean</td>
<td>0.148</td>
<td>0.143</td>
<td>0.052</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>0.212</td>
<td>0.210</td>
<td>0.067</td>
</tr>
<tr>
<td>Ammonia Nitrogen (mg/Kg) – 2008 only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>1.4</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Maximum</td>
<td>2.7</td>
<td>22.9</td>
<td>0.60</td>
</tr>
<tr>
<td>Mean</td>
<td>1.98</td>
<td>3.12</td>
<td>0.30</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>2.54</td>
<td>5.54</td>
<td>0.52</td>
</tr>
<tr>
<td>Nitrate Nitrogen (mg/Kg) – 2002 through 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Maximum</td>
<td>195</td>
<td>289</td>
<td>178</td>
</tr>
<tr>
<td>Mean</td>
<td>30</td>
<td>56</td>
<td>33</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>89</td>
<td>128</td>
<td>130</td>
</tr>
</tbody>
</table>

These data indicate that the total nitrogen content of LAAs soils is not significantly different than that of background soils for all three depth intervals. As expected, the shallowest soils in the LAAs contain higher levels of nitrate nitrogen than the background sampling locations, and the LAAs appear to be relatively depleted of nitrate nitrogen in the deeper intervals. Data for soil ammonia, which are only available for 2008, suggest that nitrification of ammonia may be slower than expected, but the overall levels when compared to nitrate nitrogen do not appear to be significant. This finding is consistent with conversion of organic nitrogen to ammonia and then nitrate in the shallow soils and adequate denitrification and crop uptake within the crop root zone.
GROUNDBEDWATER CONDITIONS

47. The Site lies in the eastern foothills of the Coast Range Mountains at the western edge of
the alluvial deposits of the San Joaquin Valley. Deposits exposed in the area of the site
include the Miocene to Pliocene Neroly Formation, the Pliocene to early Pleistocene
Tertiary Pliocene sediments (Tps), and older and younger Quaternary alluvium. The
Neroly Formation is a marine to non-marine blue to gray sandstone that is locally pebbly.
The Neroly underlies the site with only minor exposures on the south side of the site. The
top of the Neroly Formation is a blue clay, which is used as a marker bed for the transition
from the Tps to the Neroly Formation, and the Tps conformably overlies the Neroly. The
Tps is exposed across most of the site and consists of fine-grained sands and clayey silts
that alternate with greenish gray clays and minor pebble conglomerates, marl, and sand
of non-marine origin. Overlying the Tertiary sediments is older and younger Quaternary
alluvium consisting of unconsolidated gravels, sands, silts, and clays. Older alluvium is
surfactially exposed in minor amounts in the northern portion of the site as terrace
deposits. The younger alluvium occurs as thin surficial deposits in the central drainage
swale that bisects the site, with lesser amounts in tributary drainages. Sediments at the
site are derived primarily from marine deposits of the Coast Ranges.

48. The Tertiary sediments are complexly folded and regionally dip 25 to 30 degrees to the
northeast. Based on the blue clay at the top of the Neroly Formation, dips on the site
appear to be approximately 20 degrees to the northeast on the south side of the central
drainage swale and approximately 10 degrees to the northeast on the north side of the
central drainage swale.

49. The Midway fault is located approximately 500 feet southwest of the southwestern corner
of the property, and trends northwest/southeast. A lineament parallel to the Midway fault
has been mapped bisecting the site and a series of parallel faults are found further to the
southwest. Structure southwest of the site is fault-blocked anticlines and synclines. The
Midway fault is a normal fault that strikes to the northwest with the down-dropped block
on the southwest side of the fault. The significance of these faults and lineaments is that
they may provide conduits for to the vertical migration of fluids.

50. Fractures are present in outcrop of the Tps and Neroly at and near the site. These
fractures are steeply dipping and occasionally filled with permeable clastic material. The
permeable material may provide a conduit for the vertical migration of fluids.

51. There is one onsite supply well that is used for the facility’s domestic water supply. The
well, Musco-1, is screened from 207 to 607 feet below ground surface with a 50-foot
sanitary seal. Groundwater analytical data for five samples collected between 1982 and
1999 from this well are summarized below.
Constituent Units Range Mean
--- --- --- ---
TDS mg/L 1,280 - 1,971 1,513
Sodium mg/L 228 - 477 372
Chloride mg/L 187 - 514 334
Nitrate nitrogen mg/L 3.7 - 5.5 4.4

52. There is one offsite domestic supply well located approximately 200 feet east of the site. This well is screened from 235 to 335 feet below ground surface with a 50-foot sanitary seal. This well appears to be cross-gradient from the site. Groundwater analytical data for this well are summarized below based on quarterly monitoring from 2006 to 2009.

Constituent Units Range Mean
--- --- --- ---
TDS mg/L 1,200 - 1,300 1,275
Sodium mg/L 290 - 353 330
Chloride mg/L 220 - 260 234
Nitrate nitrogen mg/L < 0.4 - < 0.1 --

53. There is an artesian well in the drainage northwest of and adjacent to the site. This well is of unknown construction, but is reported to have been an exploratory petroleum well drilled in the early 1900s to a depth of 1,700 feet. The fact that this well is artesian (i.e., the water level is above the ground surface) and the location is 30 to 40 feet in elevation above the drainage (according to the topographic map for the area) indicates there are upward vertical gradients in the area. Water from the artesian well is reportedly used for stock watering. Analytical data for a groundwater sample collected from this well in December of 2009 are summarized below.

Constituent Units Concentration
--- --- ---
TDS mg/L 2,490
Sodium mg/L 693
Chloride mg/L 485
Sulfate mg/L 960
Nitrate nitrogen mg/L 0.1
54. Known groundwater uses within one mile of the site include stock watering and small domestic supply wells.

55. Findings in CDO No. R5-2007-0139 stated that the geology at the site is complex and that further evaluation of background groundwater quality was needed. Based on review of data available at that time, Finding No. 31 of the CDO concluded that process wastewater storage and application had resulted in increases in groundwater concentrations over time causing degradation or pollution of the underlying groundwater. Evaluation of currently available data has resulted in an updated interpretation of the site’s hydrogeology and groundwater impacts.

56. There are a total of 32 onsite groundwater monitoring wells, eight offsite groundwater monitoring wells, and one offsite domestic supply well that are monitored quarterly. Eleven of the onsite monitoring wells are currently dry and are monitored for the presence of water.

57. Site investigations have identified three water-bearing zones on the site that are referred to as shallow, intermediate, and deep. These zones are discerned by differences in their water chemistry signatures (i.e., Stiff diagrams) and the static groundwater elevations.

58. The table below identifies the monitoring wells onsite and offsite that monitor the shallow, intermediate, and deep groundwater zones. The table also provides well locations and whether each well is upgradient, cross-gradient, mid-gradient, or downgradient of the waste disposal areas (i.e., the wastewater treatment/storage reservoir and the LAAs). These wells are depicted on Attachment E, which is attached hereto and made part of this Order by reference.

<table>
<thead>
<tr>
<th>Well Designation</th>
<th>Shallow zone</th>
<th>“Intermediate” zone</th>
<th>Deep zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgradient</td>
<td>MW-1; MW-14; MW-2C; MW-27</td>
<td>MW-23; MW-29 (2^{nd} encountered groundwater)</td>
<td>MW-2; MW-25</td>
</tr>
<tr>
<td>Cross-gradient</td>
<td>MW-24; MW-28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-Gradient</td>
<td>MW-3; MW-5; MW-6 (dry); MW-13 (dry); MW-13R; MW-15; MW-16; MW-9 (dry); MW-11 (dry); MW-19 (dry)</td>
<td>MW-6R</td>
<td>MW-3C; MW-4; MW-8; MW-9R; MW-13C</td>
</tr>
<tr>
<td>Well Designation</td>
<td>Shallow zone</td>
<td>“Intermediate” zone</td>
<td>Deep zone</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Downgradient</td>
<td>MW-17(t) (dry); MW-10 (dry); SF-1; SF-3; MW-20 (dry); MW-21 (dry); W-2 (dry)</td>
<td>MW-10R; MW-18(t) (dry); MW-12(\downarrow); MW-22</td>
<td>MW-7; MW-26; SF-2</td>
</tr>
</tbody>
</table>

Notes: \(t\) designates transition zone (shallow to deep) wells.
\(\downarrow\) denotes persistent decline in water levels.

In general, the shallow groundwater zone (less than 60 feet bgs) is present in the southern portion of the Site, the intermediate zone (between 60 and 120 feet bgs) is present in the mid to northern portion of the Site, and the deep groundwater zone (greater than 120 feet bgs) is present in the northern portion of the Site.

59. Groundwater elevation data collected from monitoring wells completed at different depths and close to each other indicate downward to neutral vertical gradients at the depths and locations of those wells.

60. Groundwater flow in the deep zone is to the northwest with an approximate gradient of 0.038 feet/foot, groundwater flow in the intermediate zone is to the northeast with an approximate gradient of 0.038 feet/foot, and groundwater flow in the shallow zone is to the northeast with an approximate gradient of 0.036 feet/foot.

61. The Discharger has identified several different types of groundwater beneath the site that range in quality from connate to meteoric. Connate water is water that was trapped within the interstices of a rock at the time of deposition and typically has a high TDS concentration, particularly for sedimentary rocks of marine origin. Meteoric water is precipitation that recently infiltrated into the rock and typically has a low TDS concentration. Data collected by the Discharger indicate that water within the Neroly Formation (i.e., below the blue clay marker bed) is connate with a TDS range from 7,000 to 12,000 mg/L. Meteoric water is encountered in shallow wells along the central swale upstream of the 84 MG Reservoir and has a TDS range from 670 to 1,800 mg/L. Other types of water encountered at the site have a quality between that of the connate and meteoric waters.

62. Groundwater at the site may be a mixture of connate and meteoric water. This is supported by monitoring wells MW-2C and MW-14. Well MW-2C is samples groundwater in the Tps, above the blue clay marker bed, and has the chemical signature of connate groundwater encountered below the blue clay. Well MW-14 is installed near well MW-2C and the central swale where meteoric groundwater occurs. Groundwater from well MW-14 has a geochemical signature that appears to be a mixture of connate and
meteoric groundwaters. Connate waters may be the source of sulfate found in some onsite groundwater monitoring wells.

63. Groundwater encountered in monitoring wells MW-15, MW-16, MW-3, and MW-5 has been impacted by wastewater from the wastewater treatment/storage reservoir. This has been identified by an increase in bicarbonate concentrations that caused a change in Stiff diagram shapes after operation of the reservoir began in December 2002. The increase in bicarbonate was been accompanied by a decrease in chloride resulting in an increase in TDS concentrations except for MW-3 where TDS concentrations did not increase above the pre-reservoir concentrations. An increase in water levels in these wells can be correlated with filling of the wastewater treatment/storage reservoir, providing physical evidence of leakage.

64. Shortly after the wastewater treatment/storage reservoir was first used, water began to seep through the toe drain of the dam and down the central drainage swale. Seepage rates were measured at 1 to 2.5 gallons per minute. In June of 2005, the Discharger began capturing the toe drain seepage and returning it to the wastewater treatment/storage reservoir. Since 2008, bicarbonate and TDS concentrations have been decreasing. As of October 2009, TDS concentrations in wells MW-15 and 16 have recovered to concentrations present before filling of the wastewater treatment/storage reservoir. The TDS concentration detected in the groundwater sample collected during October 2009 from MW-5 (2,360 mg/L) is only slightly above pre-reservoir concentrations (2,200 mg/L) detected in April and June of 2002 and appears to be on a downward trend. Stiff diagram shapes are also changing, indicating reduced influence by wastewater. The increase in TDS downgradient of the wastewater treatment/storage reservoir appears to be a relic of previous operations of the wastewater treatment/storage reservoir and not reflective of current operations. Groundwater elevations in MW-3, MW-5, and MW-16 have been decreasing since 2007.

65. Nitrate concentrations exceeding the MCL have been detected in groundwater samples collected from monitoring wells both onsite and offsite. Analysis of groundwater samples collected from offsite shallow monitoring wells upgradient of the site have detected nitrate as nitrogen at concentrations exceeding the MCL, but less than 20 mg/L.

66. Shallow groundwater monitoring wells MW-1, MW-13R, MW-14 and intermediate zone groundwater monitoring well MW-23 are in or within the potential influence of the 95-acre LAA. Analysis of groundwater samples collected from these wells have detected concentrations of nitrate as nitrogen exceeding concentrations detected in shallow monitoring wells upgradient of other parts of the site. There are no shallow groundwater monitoring wells directly upgradient of the 95-acre LAA. Reported concentrations of nitrate as nitrogen detected in groundwater samples collected in October of 2009 for monitoring wells MW-1, MW-13R, MW-14, and MW-23 were 116, 94, 41, and 34.8 mg/L, respectively. The RWD concludes that the data (because MW-1 is on the upgradient edge of the site) suggest there is a regional source of nitrate entering the site from the southwest. Complexity of the site hydrogeology cannot rule out this conclusion with
available data. Additional data are needed to determine whether a regional source exists. Provision G.1.c of this order requires completion of a Workplan for Supplemental Evaluation of Nitrogen in Groundwater” with part of the purpose of the study being to answer this question.

67. Geochemical analysis of groundwater collected from monitoring wells at the downgradient edge of the site indicates that groundwater at the downgradient edge of the site may not have been significantly impacted by site activities.

68. The RWD presented four methods to estimate a range of ambient groundwater TDS concentrations considered representative of ambient groundwater quality upgradient of the site. Four methods are presented as opposed to the single estimation approach because of the complexity of the groundwater flow regime beneath the site, and the inherent uncertainty provided by any single estimation method. The results presented in the RWD indicate the ambient TDS concentration is between 1,456 mg/l and 2,378 mg/l. The regional groundwater TDS concentration of 2,111 mg/L, based on data collected by the Department of Water Resources prior to operations at the site falls within this range.

69. Because of the hydrogeologic complexity of the site and the natural lateral and vertical variability of groundwater quality, evaluation of site impacts at the downgradient edge of the site should not be based on upgradient groundwater quality. Alternative methods to evaluate site impacts will need to be presented in the Groundwater Limitations Compliance Assessment Plan required by Provision G.1.a of this order. Complexity of the Site hydrogeology suggests that intrawell analysis of data may be appropriate. However, if the supplemental evaluation of nitrogen in groundwater determines that application of effluent to land is causing or contributing to elevated nitrate concentrations in groundwater, intrawell analysis may not be appropriate for wells impacted by site activities.

70. Based upon the available water quality data and several different methods of estimating ambient conditions upgradient of the site, the Discharger believes that an ambient background concentration for TDS of 2,000 mg/L best represents the complex hydrogeology and groundwater quality of the Site.

FACILITY CLOSURE PLAN

71. As noted in Finding No. 11, a Site Closure and Maintenance Report was required pursuant to ACL and Penalty Order No. R5-2007-0138 by 31 December 2007, which the Discharger timely submitted. Stipulated Order No. R5-2007-0138 states, in part:

“Musco Family Olive Company and the Studley Company shall develop and maintain financial assurances according to the following schedule:

a. By 31 December 2007, the Discharger shall submit a Site Closure and Maintenance Report to the Executive Officer for approval that contains:
i. A detailed plan for the short-term maintenance of the site, including an annual cost estimate...

ii. A detailed plan for the complete closure of the site, including an estimate of the cost... [and] at least two alternatives... [one to be selected] by the Executive Officer.

iii. A detailed plan for post-closure maintenance and monitoring of the site, including an estimate of the cost of maintaining the 84 million gallon reservoir to collect the site run-off for the design seasonal precipitation..., ...and the cost of necessary monitoring.

iv. An estimate of the cost of initiating and completing corrective action for all known or reasonably foreseeable releases from the site that pose a threat to water quality."

The report included a brief feasibility study of LAA closure alternatives and identified two proposed closure objectives. The first objective is to effectively address accumulated salt loads within the upper 6 to 18 inches of LAA soil, and the second is to prevent the post-closure release of residual elevated salt concentrations to surface water drainages.

Nine conceptual alternatives were screened, and two were retained for detailed analysis. The first is the “Root Zone Salt Displacement Alternative”, which is the Discharger’s preferred alternative. This alternative would utilize infiltration galleries and low salinity water from the local irrigation district to move accumulated salt below the root zone. The wastewater treatment/storage reservoir would be drained and the effluent would be applied to the LAAs during the first year of the 3-year final closure project. No other closure activities for the reservoir were envisioned. The infiltration galleries would be designed and operated to displace residual salt to a target depth of 18 inches bgs using approximately 4 inches of water during each of three leaching events. Following these efforts, no further operation, maintenance and monitoring (OM&M) was envisioned, and the study assumed that no runoff controls would be required. Capital costs for the Root Zone Salt Displacement Alternative were estimated to be $500,000 each year for three years. There would be no OM&M cost, therefore the total cost would be approximately $1.5 million.

The second site closure alternative, which was selected for detailed analysis by the Executive Officer, would consist of excavation and offsite disposal of the upper six inches of LAA soil (approximately 130,000 cubic yards). Conceptually, the soil would be used as alternative daily cover at a Class II landfill. This alternative included runoff control and erosion control at the regraded LAAs. The wastewater treatment/storage reservoir would be drained and the effluent would be applied to the LAAs before the surface soil is removed. This alternative included three years of post-closure operation, maintenance, and monitoring, including storm water and groundwater monitoring; runoff controls; and regular inspection/repair. Capital costs for the Excavation and Offsite Disposal Alternative were estimated to be $6.8 million. The OM&M cost was estimated at
$240,000 each year for three years. Therefore, the total cost would be approximately $7.5 million.

Although the Site Closure and Maintenance Report contains the required information, it did not adequately address site conditions. This is due in part to the fact that additional soil and groundwater data have been obtained since its submittal. The following concerns must be addressed before the Executive Officer approves the closure plan:

1. Sludge and salt left in the reservoir would pose an ongoing but unspecified threat to groundwater and surface water quality.

2. Accumulated sludge would be left in the reservoir. It would tend to dry out and rewetted by rain each subsequent year indefinitely, posing a threat of nuisance conditions.

3. The runoff diversion ditches around the reservoir, if not maintained, could fail. This could cause the dam to be overtopped, releasing sediment, sludge, and saline water to surface waters (possibly with accompanying flood damage). If the Division of Safety of Dams requires that the reservoir dam must be notched or removed upon decommissioning, any impounded residuals could be washed downstream during rainfall.

4. With regard to Root Zone Salt Displacement Alternative:
 a. The report did not include a conceptual design for the infiltration galleries. The capital cost estimate appears to be low given variable site conditions such as soil porosity and slope.
 b. This alternative is not proven, possibly cannot be proven, and may not be technically feasible (especially without long-term monitoring, which is not proposed). An unstated assumption is that it will be possible to reliably move the salt to 18 inches below ground surface and keep it there indefinitely even with wetter than normal years that are part of the natural climate pattern.

5. With regard to the Excavation and Offsite Disposal Alternative:
 a. The assumption that only six inches of soil would need to be removed does not fit well with the soil monitoring data, which show that some areas (not well-defined) exhibit salt impacts at depths of 27 to 39 inches. Closure may not require removal of all soils that have increased salinities from waste disposal, but the level of salts that can be left on site without and adverse impact on surface or groundwater quality has not been determined. Therefore the depth of soil that would need to be removed during site closure is unclear.
 b. An unstated assumption is that the existing soil salinity impacts will not move deeper during subsequent years of operation as more salt continues to be added.

There is not sufficient information at this time to select the final closure alternative, and a more detailed conceptual design is needed to refine the scope of work and closure cost estimates before the amount of required financial assurance can be determined. This
Order requires that the Discharger address the concerns noted above, and provide a conceptual closure plan with a detailed cost estimate, and provide financial assurance for the closure option based on the detailed cost estimate contained in the approved conceptual closure plan.

It is essential that the Discharger establish and begin contributing to a financial assurance account so that the Central Valley Water Board can be assured that adequate closure funds will be in place within a reasonable time. However, the Discharger needs additional time to make financial arrangements to begin funding the financial assurances. Therefore, this Order requires that the Discharger establish a financial assurance mechanism and begin making contributions within 24 months of adoption of this Order (by March 2012).

BASIN PLAN, BENEFICIAL USES, AND REGULATORY CONSIDERATIONS

73. Local surface water drainage is to the Sacramento San Joaquin Delta. The Basin Plan designates the beneficial uses of the Sacramento San Joaquin Delta as municipal and domestic supply, irrigation, stock watering, industrial process and service supply, contact recreation, other non-contact recreation, warm and cold freshwater habitat, warm and cold migration, warm water spawning, and navigation. Surface water drainage from the site flows via an unnamed intermittent stream which typically terminates by infiltration within a low-lying area between the California Aqueduct and the recently developed Safeway distribution facility (see Attachment E). Surface water flow to the San Joaquin River would occur only during major flood events in the drainage area upstream of Musco.

74. The Basin Plan designates the beneficial uses of underlying groundwater as domestic supply, agricultural supply, industrial service supply, and industrial process supply.

75. The Basin Plan establishes narrative water quality objectives for chemical constituents, tastes and odors, and toxicity in groundwater. It also sets forth numeric objectives for pH and total coliform organisms.

76. The Basin Plan’s narrative water quality objective for chemical constituents, at a minimum, requires waters designated as domestic or municipal supply to meet the maximum contaminant levels (MCLs) specified in Title 22. However, the Basin Plan objectives do not require improvement over naturally occurring background concentrations. In cases where the natural background concentration of a particular constituent exceeds an applicable water quality objective, the natural background
concentration will be considered to comply with the objective. Therefore, the naturally-occurring background TDS concentrations described in Findings 68 and 70 serve as water quality objectives. Small areas of higher-quality groundwater may exist on and near the site. In any areas where groundwater has naturally-occurring TDS of less than 1,000 mg/L, the groundwater objective is 1,000 mg/L, based on the upper MCL in Table 64449-B in California Code of Regulations, title 22, section 64449. Attainment of a more stringent groundwater objective is neither reasonable nor feasible due to the predominance of poor-quality groundwater at the site. The Basin Plan also recognizes that the Central Valley Water Board may apply limits more stringent than MCLs to ensure that waters do not contain chemical constituents in concentrations that adversely affect beneficial uses.

77. The narrative toxicity objective requires that groundwater be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life associated with designated beneficial uses. Quantifying a narrative water quality objective requires a site-specific evaluation of those constituents that have the potential to impact water quality and beneficial uses.

SPECIAL CONSIDERATIONS FOR FOOD PROCESSING WASTE

78. Excessive application of food processing wastewater to land application areas can create objectionable odors, soil conditions that are harmful to crops, and degradation of underlying groundwater by overloading the shallow soil profile and causing waste constituents (organic carbon, nitrate, other salts, and metals) to percolate below the root zone. Ordinarily, it is reasonable to expect some attenuation of various waste constituents that percolate below the root zone within the vadose (unsaturated) zone. Specifically, excess nitrogen can be mineralized and denitrified by soil microorganisms, organic constituents (measured as both BOD and volatile dissolved solids) can be oxidized, and some salinity species will undergo cation exchange with clay minerals, effectively immobilizing them.

79. Loading of BOD should be limited to prevent nuisance conditions. The maximum BOD loading rate that can be applied to land without creating nuisance conditions can vary significantly depending on the operation of the land application system. Pollution Abatement in the Fruit and Vegetable Industry, published by the United States Environmental Protection Agency (US EPA Publication No. 625/3-77-0007) (hereafter Pollution Abatement), cites BOD loading rates in the range of 36 lbs/acre-day to 600 lbs/acre-day but indicates the loading rates can be even higher under certain seasonal and soil/crop conditions.

80. Acidic soil conditions can be detrimental to land treatment system function, and may also cause groundwater degradation. If the buffering capacity of the soil is exceeded and soil pH decreases below 5, naturally occurring metals (including iron and manganese) may dissolve and degrade underlying groundwater. Pollution Abatement recommends that water applied to crops have a pH within 6.4 to 8.4 to protect crops from damage by food.
processing wastewater. Near neutral pH may also be required to maintain adequate active microbial populations in the soil. The pH of wastewater discharged to the LAAs has occasionally been outside the recommended range. However, there have been no apparent effects on the NyPa crop or groundwater quality.

ANTI-DEGRADATION ANALYSIS

81. State Water Resources Control Board Resolution No. 68-16 ("Policy with Respect to Maintaining High Quality Waters of the State") (hereafter Resolution 68-16) prohibits degradation of high quality groundwater unless it has been shown that:
 a. The degradation is consistent with the maximum benefit to the people of the State;
 b. The degradation will not unreasonably affect present and anticipated future beneficial uses;
 c. The degradation does not result in water quality less than that prescribed in state and regional policies, including violation of one or more water quality objectives; and
 d. The discharger employs best practicable treatment and control (BPTC) to minimize degradation.

82. The olive processing facility has discharged wastewater at the site since 1986, when the first WDRs were issued. There are no site-specific data with which to evaluate shallow groundwater quality at the site prior to that date. Although the site is hydrogeologically complex, evaluation of local and areal groundwater conditions determined that the background groundwater TDS concentration is 2000 mg/L, as discussed in Finding No. 70. Thus, groundwater might not be "high quality" for salinity. Assuming that it is, the discharge complies with Resolution 68-16, as discussed in the following findings.

83. Since adoption of the previous WDRs, the Discharger has implemented the following treatment and control measures to control or prevent water quality degradation:
 a. The Discharger has undertaken a long-term water conservation program. For the three-year period ending in August 2002 the average water use was 5,062 gallons per ton of olives processed. For the three-year period ending in August 2009 the average water use was less than 4,000 gallons per ton of olives processed. The Discharger states that 4,000 gallons per ton is a sustainable water usage rate for the facility.
 b. The Discharger has also undertaken a long-term chemical source reduction/control program. From 2004 through 2007, the yearly average FDS concentration of wastewater discharged from the processing plant ranged from 1,900 to 2,100 mg/L. In 2008 and 2009, the yearly average FDS concentration was 1,450 mg/L. During the same period, the annual salt mass discharged to the reservoir (measured as FDS)
declined from over 1,300 tons per year to 880 tons in 2008\(^4\), which is approximately a 32% reduction.

c. The Discharger has planted a salt-loving perennial crop at the LAAs and has made efforts to increase the crop coverage to the maximum sustainable coverage considering the soil and water needs of the crop as well as the need to minimize leaching. The crop is periodically harvested for use as fodder, thereby removing some salt from the site.

84. The Discharger has also completed pilot-scale treatment studies and a feasibility study to evaluate other methods of treatment and control for salinity. This work was described in the RWD and is summarized below,

a. Between 2003 and 2005, the Discharger conducted a pilot study to evaluate the feasibility of using a two-stage reverse osmosis (RO) system to remove dissolved solids from the process wastewater. Wastewater was pre-treated with a membrane bioreactor (MBR) system and then routed to a two-stage RO unit. The MBR achieved very high BOD removal despite problems with fouling attributed to higher-than-expected organic strength in the raw wastewater. Despite the high level of BOD reduction, the MBR effluent caused frequent RO membrane fouling because it exhibited high chemical oxygen demand (COD). Some of the MBR effluent was transported off-site for further treatment using hydrogen peroxide, ultraviolet light and ozone, but it was not effective in reducing the frequency of RO membrane fouling. The study concluded that anaerobic treatment would likely be more effective as a means of pretreatment, but it would come at a higher capital cost than an MBR system.

b. Between 2007 and 2009, the Discharger performed a pilot study to evaluate the potential for using heat energy from olive pits, the harvested crop, and or other fuels to evaporate selected high-salinity wastewater to generate electricity. The Discharger constructed a demonstration-scale plant (called the “Renewable Energy/Wastewater System” or RENEWS), which is capable of treating up to 6,000 gallons of waste water per day. The demonstration-scale RENEWS unit successfully reduced the FDS of one of the Discharger’s waste streams to below 100 mg/L. The concentrated brine from the RENEWS system could be discharged to the Class II surface impoundments or transported to a permitted offsite disposal facility. The low salinity condensate could be discharged to the effluent treatment/storage reservoir or otherwise recycled onsite.

c. The feasibility study included in the RWD also included an evaluation of using additional Class II surface impoundments to evaporate wastewater.

\(^4\) The total FDS mass discharged to the LAAs in 2007 and 2009 was substantially lower than 2008, but the processing plant was closed for extended periods during both of those years. Therefore, the annual FDS mass loading rate for those two years is not considered to be sustainable without impacting production unless additional treatment or source control is implemented.
The feasibility study provided incremental treatment and cost curves for various mass removal scenarios within each alternative. The following table summarizes the economic analysis of these alternatives at a consistent FDS removal level of 400 tons per year. This mass removal rate was selected from the incremental treatment and cost curves to compare the three alternatives because it is the expected removal achieved by RENEWS at 60,000 gpd (approximately 22 MG per year). An FDS removal level of 400 tons per year is approximately equivalent to a 38 percent reduction of the FDS mass loading allowed by this Order.

<table>
<thead>
<tr>
<th>Feasibility Factor</th>
<th>Reverse Osmosis</th>
<th>RENEWS</th>
<th>Class II Surface Impoundments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tons of FDS Removed per Year</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Resultant FDS Concentration¹</td>
<td>1,400</td>
<td>1,300</td>
<td>1,700</td>
</tr>
<tr>
<td>Volume Treated per Year</td>
<td>20 MG</td>
<td>22 MG</td>
<td>22 MG</td>
</tr>
<tr>
<td>Capital Cost</td>
<td>$3 million</td>
<td>$4 million</td>
<td>$30 million</td>
</tr>
<tr>
<td>Annual O&M Cost</td>
<td>$400,000</td>
<td>-$250,000²</td>
<td>Minimal³</td>
</tr>
<tr>
<td>30-Year Net Present Cost</td>
<td>$12 million</td>
<td>$0²</td>
<td>$30 million</td>
</tr>
<tr>
<td>Cost per Ton of FDS Removed</td>
<td>$1,000</td>
<td>-$200²</td>
<td>$2,000</td>
</tr>
<tr>
<td>Land Area Required</td>
<td>Minimal</td>
<td>Minimal</td>
<td>25 acres</td>
</tr>
</tbody>
</table>

¹ The resultant FDS concentration discharged to the reservoir and LAAs would not be constant due to differences in the volume treated and the volume of treated wastewater discharged to the reservoir.

² For this alternative the annual O&M cost is negative because of the energy savings that would be achieved by generating steam power on-site. Over a 30-year planning horizon, this energy cost savings is expected to pay for the treatment system.

³ The economic analysis provided in the RWD assumed no O&M costs for this alternative. This is a conservative assumption, because O&M costs would increase the net present cost and cost per ton of FDS removed.

Based on this analysis, the RENEWS technology is the most economically feasible alternative to further reduce the mass of salt discharged to the reservoir and LAAs. Although the incremental treatment and cost curves are not linear, the cost ranking of alternatives indicated by the tabulated data remains the same over a wide range of FDS removal scenarios.

In December 2009 the Discharger contracted with a vendor to build a RENEWS unit capable of treating 60,000 gallons per day. The Discharger has obtained the required Authority to Construct from the San Joaquin Valley Air Pollution Control District (SJVAPCD), and the full scale RENEWS system is expected to be fully operational in July 2010 pending receipt of a Permit to Operate from the SJVAPCD.
However, the Discharger has not committed to a time schedule for completion of the 60,000-gpd RENEWS system. This Order requires the Discharger to begin full scale operation of the 60,000 gpd RENEWS system or demonstrate that the full scale system is infeasible within two years of adoption of this Order.

The unlined wastewater treatment/storage reservoir does not incorporate any specific measures to reduce the potential for groundwater degradation. However, based on the finding that the wastewater treatment/storage reservoir has not caused unreasonable groundwater degradation or exceedance of a water quality objective (Finding Nos. 61 through 64), additional measures such as pond lining are not required at this time. However, this Order requires that the Discharger continue groundwater monitoring and re-evaluate groundwater quality annually. The groundwater limitations of this Order do not allow statistically significant increases in concentrations of waste constituents in groundwater. If groundwater monitoring data show that the discharge has violated the groundwater limitations of this Order, this Order may be reopened to add additional requirements that address the violations.

86. Constituents of concern that have the potential to degrade groundwater include salts (primarily FDS, sodium, and chloride) and nitrogen, as discussed below:

 a. The discharge to the wastewater treatment/storage reservoir has degraded groundwater quality and the discharge to the LAAs has the potential to degrade groundwater quality. This Order imposes concentration- and mass-based effluent salinity limits that do not allow a significant increase over the recently achieved sustainable levels cited above and will prevent degradation that exceeds water quality objectives. The Current WDRs and CDO regulate salinity primarily in terms of TDS. However, as noted in Finding No. 23, FDS is a better salinity indicator for this facility. The following table summarizes past and proposed salinity limits in terms of FDS. The comparison is based on a facility-specific TDS:FDS ratio of 1.92, which was provided in the RWD and FDS:sodium and FDS:chloride ratios calculated from the 2008 effluent monitoring data presented in Finding No. 23.

<table>
<thead>
<tr>
<th>Regulatory Measure</th>
<th>Limit Type</th>
<th>TDS (mg/L)</th>
<th>Sodium (mg/L)</th>
<th>Chloride (mg/L)</th>
<th>FDS (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997 WDRs (Order No. 97-037)</td>
<td>Annual</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>1,260 1</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>1,340 1</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WDRs Order No. R5-2002-0148</td>
<td>Maximum</td>
<td>2,047</td>
<td>597</td>
<td>601</td>
<td>1,090 2</td>
</tr>
</tbody>
</table>
The FDS limits of this Order are more stringent than those imposed by the CDO and should result in a significant decrease in the chloride concentration of the waste discharged to the LAAs. This Order does not impose separate effluent limits for sodium and chloride because FDS measures the overall salinity and the concentration of individual salinity constituents is expected to be relatively constant. However, based on the estimated equivalent sodium concentration, the FDS of this Order limits might allow a slight increase in the sodium concentration over that allowed by the CDO. The Discharger will be able to immediately comply with the FDS limits without further treatment or source control. As noted above, this Order does not allow statistically significant increases in concentrations of waste constituents in groundwater.

b. For nitrogen, the potential for unreasonable degradation depends not only on the quality of the treated effluent, but the ability of the vadose zone below the wastewater treatment/storage reservoir and LAAs to provide an environment conducive to nitrification and denitrification to convert the effluent nitrogen to nitrate and the nitrate to nitrogen gas before it reaches the water table. The NyPa grass grown at the LAAs should remove most of the nitrogen in the applied wastewater if the Discharger continues the current level of wastewater treatment and maintains adequate crop coverage. Given the soil type and depth to groundwater at the LAAs, subsequent denitrification in the vadose zone is expected to prevent unreasonable groundwater degradation at the LAAs. This Order requires that the Discharger continue to treat the wastewater and maintain adequate crop cover at the LAAs.

87. This Order does not allow any increase in the volume of waste or the mass of waste constituents discharged.

88. The previous WDRs allowed an increase in the discharge to 800,000 gpd as a monthly average flow conditioned on:
a. Measurement of tailwater returned to the treatment/storage reservoir;
b. Measurement of storm runoff water returned to treatment/storage reservoir; and
c. Cessation of discharge into any reservoir or pond that has less than two feet of freeboard.

This Order imposes lower effluent flow limits based on the hydraulic capacity of the existing system, with which the Discharger can comply.

89. This Order is consistent with the Basin Plan and Resolution No. 68-16. With the possible exception of nitrates for discharges to the LAAs, the Discharger is not degrading the quality of groundwater. Recent improvements to the operation and management of the LAAs should prevent groundwater degradation resulting from nitrogen applied to the LAAs, however additional studies regarding the LAA discharge are needed to verify this. The Basin Plan and Resolution No. 68-16 allow some groundwater degradation because economic prosperity of local communities and associated industry is of benefit to the people of California. In addition to providing local jobs (see Finding 37), the facility processes approximately one-half of the state's total table olive crop. This Order establishes terms and conditions of discharge to ensure that the discharge does not unreasonably affect present and anticipated uses of groundwater and includes groundwater limitations that apply water quality objectives established in the Basin Plan to protect beneficial uses. This Order also establishes effluent limitations that are protective of the beneficial uses of the underlying groundwater and requires periodic re-evaluation of groundwater quality. As discussed in Finding No. 79, the Discharger has implemented certain best practicable treatment and control measures to minimize degradation and plans to further minimize potential degradation by operating a 60,000-gpd RENEWS system and increasing the LAA area to include the 11-acre “Checks” area, which has not been used since 2002. Although the Discharger has not yet demonstrated that discharges to the LAAs meet the water quality objective for nitrate as nitrogen, this Order includes a time schedule requiring the Discharger to demonstrate compliance by 30 October 2012. This Order is therefore consistent with Resolution 68-16, even assuming the ground water is “high quality” for salinity and nitrate, because this Order will result in BPTC necessary to prevent pollution or nuisance.

OTHER REGULATORY CONSIDERATIONS

90. The State Water Board adopted Order No. 97-03-DWQ (NPDES General Permit No. CAS000001) specifying waste discharge requirements for discharges of storm water associated with industrial activities, and requiring submittal of a Notice of Intent by all affected industrial dischargers. The Discharger has obtained coverage under Order No. 97-03-DWQ.

91. Section 13267(b) of the California Water Code provides that: “In conducting an investigation specified in subdivision (a), the regional board may require that any person who has discharged, discharges, or is suspected of having discharged or discharging, or
The technical reports required by this Order and the attached “Monitoring and Reporting Program No. R5-2010-0025” are necessary to assure compliance with these waste discharge requirements. The Discharger owns and operates the facility that discharges the waste subject to this Order.

92. The California Department of Water Resources sets standards for the construction and destruction of groundwater wells (hereafter DWR Well Standards), as described in California Well Standards Bulletin 74-90 (June 1991) and Water Well Standards: State of California Bulletin 94-81 (December 1981). These standards, and any more stringent standards adopted by the State or county pursuant to CWC Section 13801, apply to all monitoring wells.

93. On 28 February 1997, the Central Valley Water Board adopted a Negative Declaration for this project. The Negative Declaration described a discharge of 500,000 gpd to 200 acres of cropland, and wastewater constituent concentrations as follows: TDS 1,280 mg/L, sodium 456 mg/L, chloride 228 mg/L, BOD 2,000 mg/L, nitrogen 1 mg/L, and electrical conductivity 2,500 umhos/cm. On 5 April 2001, the San Joaquin County Community Development Department adopted a Negative Declaration for construction of the treatment/storage reservoir. The discharge described in these WDRs is consistent with the Negative Declarations described above because:

a. This Order does not authorize expansion of the wastewater treatment/storage reservoir or land application areas.

b. This Order limits the discharge flow to an equivalent daily flow of no more than 482,000 gpd as a yearly average, which is no more than the highest yearly average flow since 2002, and which is less than the flow limitation in the current WDRs (Order No. R5-2002-0148).

c. This Order limits the annual FDS loading rate to the LAAs to a loading rate equivalent to the loading rate envisioned in the 1997 Negative Declaration for the irrigation disposal areas.

Therefore, the action to revise waste discharge requirements for this existing facility is exempt from the provisions of the California Environmental Quality Act (CEQA), in accordance with Title 14, California Code of Regulations (CCR), section 15301.
94. CWC Section 13173 defines designated waste as either:
 a. Hazardous waste that has been granted a variance from hazardous waste management requirements pursuant to Section 25143 of the Health and Safety Code.
 b. Non-hazardous waste that consists of, or contains, pollutants that, under ambient environmental conditions at a waste management unit, could be released in concentrations exceeding applicable water quality objectives or could reasonably be expected to affect beneficial uses of the waters of the State contained in the appropriate water quality control plan.

95. Unless exempt, release of designated waste is subject to full containment pursuant to the requirements of Title 27, CCR, Section 20005 et seq. (hereafter Title 27). Title 27 Section 20090(b) exempts discharges of designated waste to land from Title 27 containment standards and other Title 27 requirements provided the following conditions are met:
 a. The applicable regional water board has issued WDRs, or waived such issuance;
 b. The discharge is in compliance with the applicable basin plan; and
 c. The waste is not hazardous waste and need not be managed according to Title 22, CCR, Division 4.5, Chapter 11, as a hazardous waste.

96. Some of the process wastewater treatment and reuse facilities associated with the discharge authorized herein are exempt from the requirements of Title 27, Section 20005 et seq. as discussed below:
 a. The wastewater regulated by this Order does not need to be managed according to California Code of Regulations, Title 22, Division 4.5, Chapter 11 as a hazardous waste.
 b. Prior operations were not sufficiently protective of groundwater quality. However, the Discharger has demonstrated in the last two years that the discharge can be managed to prevent exceedance of water quality objectives, with the possible exception of nitrate, as described in Findings 65 through 69. Based on extensive technical studies of the wastewater quality, discharge operations, and site-specific geology and hydrogeology, the discharge authorized by this Order has not caused exceedance of water quality objectives, with the possible exception of nitrates. Compliance with this Order will ensure that discharges from the LAAs continue to comply with the antidegradation policy. Since the Discharger has not adequately demonstrated that the current discharges to the LAAs comply with groundwater quality objective for nitrate as nitrogen, the Board cannot determine whether these discharges are exempt from Title 27 pursuant to Section 20090, subdivision (b). This Order therefore includes a time schedule requiring the Discharger to demonstrate compliance with section 20090, subdivision (b). No additional interim measures are necessary. Immediate Title 27 compliance would require elimination of the discharge to the LAAs. Prohibiting such discharges is premature without the additional information the
Discharger must provide through the additional evaluation of nitrogen in groundwater that this Order requires, particularly since the time schedule is short relative to historic land uses, and discharges during this time are unlikely to significantly worsen existing groundwater conditions, and the Discharger's success at establishing the NyPa grass should reduce any nitrogen movement downward through the soil column.

c. Groundwater monitoring demonstrates that discharges from the treatment/storage reservoir have caused limited degradation, but have not caused underlying groundwater to exceed Basin Plan objectives. Compliance with this Order will ensure that discharges from the reservoir continue to comply with the antidegradation policy. Therefore, the discharge to the treatment/storage reservoir is consistent with the Basin Plan and is exempt from Title 27 pursuant to Section 20090, subdivision (b).

97. State regulations that prescribe procedures for detecting and characterizing the impact of waste constituents from waste management units on groundwater are found in Title 27. Although the wastewater treatment/storage reservoir and possibly the LAAs are exempt from Title 27, the data analysis methods of Title 27 are appropriate for determining whether the discharge complies with the terms for protection of groundwater specified in this Order.

98. Pursuant to California Water Code Section 13263(g), discharge is a privilege, not a right, and adoption of this Order does not create a vested right to continue the discharge.

PUBLIC NOTICE

99. All of the above and the supplemental information and details in the attached Information Sheet, which is incorporated by reference herein, were considered in establishing the following conditions of discharge.

100. The Discharger and interested agencies and persons have been notified of the intent to prescribe waste discharge requirements for this discharge, and they have been provided an opportunity for a public hearing and an opportunity to submit their written views and recommendations.

101. All comments pertaining to the discharge were heard and considered in a public meeting.

IT IS HEREBY ORDERED that WDRs Order No. R5-2002-0148 and Cleanup and Abatement Order No. 5-00-717 are rescinded and, pursuant to Section 13263 and 13267 of the California Water Code, Musco Family Olive Company and the Studley Company, their agents, successors, and assigns, in order to meet the provisions contained in Division 7 of the California Water Code and regulations adopted thereunder, shall comply with the following:
A. Discharge Prohibitions

1. Discharge of wastes to surface waters or surface water drainage courses is prohibited.

2. Discharge of reservoir seepage, wastewater, irrigation tailwater, or storm water runoff from any of the designated land application areas to any off-site area or drainage course is prohibited.

3. Bypassing the wastewater screen system or the wastewater treatment/storage reservoir is prohibited.

4. Discharge of domestic wastewater to the process wastewater treatment system or land application areas is prohibited.

5. Discharge of any of the following wastewater streams to the process wastewater treatment system or land application areas is prohibited:
 a. Neutralization brine;
 b. Flotation brine;
 c. Boiler blowdown;
 d. Water softener regeneration brine;
 e. Water accumulated within the outdoor secondary containment systems described in Finding No. 18 if the electrical conductivity of that water is greater than 4,800 umhos/cm.

6. Discharge of process wastewater to areas other than the designated LAAs described in Finding No. 32 is prohibited.

7. Discharge of process wastewater to any LAA not having a fully functional tailwater/runoff control system is prohibited.

8. Grazing of animals on the land application areas is prohibited unless the Executive Officer approves a Land Management Plan pursuant to Provision G.2.

9. Discharge of process wastewater to land overlying septic system leach lines or seepage pits is prohibited.

10. Discharge of waste classified as hazardous, as defined in Sections 2521(a) of Title 23, CCR, Section 2510, et seq., (hereafter Chapter 15), or which exceeds the effluent limitations of this Order, is prohibited.
B. Discharge Specifications

1. The flow of process wastewater and storm water from the processing facility to the wastewater treatment/storage reservoir shall not exceed the following limits:

<table>
<thead>
<tr>
<th>Flow Measurement</th>
<th>Flow Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Annual Flow ¹</td>
<td>180 MG</td>
</tr>
<tr>
<td>Monthly Average Flow ²</td>
<td>0.716 mgd</td>
</tr>
</tbody>
</table>

¹ As determined by the total influent flow to the treatment/storage reservoir for the calendar year.
² As determined by the total influent flow to the treatment/storage reservoir for the calendar month divided by the number of days in that month.

2. Neither the treatment nor the discharge shall cause a nuisance or condition of pollution as defined by California Water Code section 13050.

3. No waste constituent shall be released or discharged, or placed where it will be released or discharged, in a concentration or in a mass that causes violation of the Groundwater Limitations of this Order.

4. The Discharger shall continue to collect any water seepage from the toe drain of the wastewater treatment/storage reservoir and return it to the reservoir.

5. Nuisance odors originating at this facility shall not be perceivable beyond the limits of the property owned by the Discharger.

6. As a means of discerning compliance with Discharge Specification No. B.5, the wastewater from 1 to 2 feet below the surface of the wastewater treatment/storage reservoir shall maintain the following at all times:
 a. A dissolved oxygen concentration greater than 1.0 mg/L; and
 b. A pH value between 6.0 and 10.5.

7. The wastewater treatment/storage reservoir shall be managed to prevent breeding of mosquitoes. In particular:
 a. An erosion control program shall assure that small coves and irregularities are not created around the perimeter of the water surface.
 b. Weeds shall be minimized through control of water depth, harvesting, or herbicides.
 c. Dead algae, vegetation, and debris shall not accumulate on the water surface.
8. The wastewater treatment/storage reservoir and the land application system shall have sufficient capacity to accommodate allowable wastewater flow, design seasonal precipitation, and seasonal ancillary inflow and infiltration during the wet season. Design seasonal precipitation shall be based on total annual precipitation using a return of 100 years, distributed monthly in accordance with historical rainfall patterns.

9. Freeboard in the treatment/storage reservoir shall never be less than two feet as measured vertically from the water surface to the lowest possible point of overflow.

10. On or about 1 November each year, available wastewater treatment/storage reservoir storage capacity shall at least equal the volume necessary to comply with Discharge Specification Nos. B.8 and B.9.

11. The Discharger shall monitor sludge accumulation in the wastewater treatment/storage reservoir at least every five years beginning in 2012, and shall periodically remove sludge as necessary to maintain adequate storage capacity. Specifically, if the estimated volume of sludge in the reservoir exceeds five percent of the permitted reservoir capacity, the Discharger shall complete sludge cleanout within 12 months after the date of the estimate.

12. The Discharger shall operate all systems and equipment to maximize treatment of wastewater and optimize the quality of the discharge.

13. The Discharger’s wastewater treatment system and land application system shall be designed, constructed, operated, and maintained to prevent inundation or washout due to floods with a 100-year return frequency.

C. Effluent Limitations

1. The FDS concentration of wastewater discharged from the reservoir surge tank (RST) to the wastewater treatment/storage reservoir shall not exceed 2,000 mg/L as a monthly average. Compliance with this requirement shall be determined using the arithmetic mean of all effluent FDS monitoring data for the calendar month.

2. The mass of FDS discharged from the RST to the wastewater treatment/storage reservoir shall not exceed an annual total of 1,055 tons. Compliance with this requirement shall be determined using the following formula:

\[M = \sum_{i=1}^{n} C_i V_i \]

Where \(M = \) total annual FDS mass;
\(C_i = \) arithmetic mean of FDS monitoring results for calendar month \(i; \)
\[V_i = \text{total effluent flow to the RST for calendar month } i; \]
\[i = \text{the number of the month (i.e., January = 1, February = 2, etc.); and} \]
\[n = 12. \]

3. The maximum total nitrogen loading to the LAAs shall not exceed the agronomic rate for the crop grown, or cause or contribute to groundwater exceeding 45 mg/L for nitrate as NO₃ or 10 mg/L for nitrate+nitrite (sum as nitrogen).

4. The maximum BOD₅ mass loading to each LAA shall not exceed any of the following:
 a. 300 lbs/acre on any single day;
 b. 100 lbs/acre/day as a 7-day average;
 c. The maximum loading rate that ensures that the discharge will not create a nuisance.

D. Land Application Area Specifications

1. The discharge shall be distributed uniformly on the LAAs described in Finding No. 32 in compliance with the Discharge Specifications.

2. Direct or windblown spray of wastewater shall be confined to the LAAs.

3. Spray irrigation is prohibited when the wind speed exceeds 30 mph, or any wind speed that causes wastewater or aerosols to be blown outside of the property boundary.

4. Crops shall be grown on the LAAs. Crops shall be selected based on nutrient uptake capacity, tolerance to soil salinity and moisture conditions, and consumptive use of water and irrigation requirements. Cropping activities shall be sufficient to take up all the nitrogen applied. For NyPa forage, the Discharger shall maintain at least 51 percent coverage as a site-wide, area-weighted average (i.e., based on the percent crop coverage in each LAA and the acreage of individual LAAs). Crops shall be harvested and removed from the land application areas at least once per year prior to the winter rainy season.

5. The Discharger shall use soil moisture monitoring and soil sampling to determine soil fertility status and shall take the necessary steps to maintain fertility.

6. Irrigation of the LAAs shall not be performed under the following circumstances:
 a. Within 24 hours prior to a storm with a probability of precipitation greater than or equal to 30 percent for Tracy, as forecasted by the National Oceanic and Atmospheric Administration (www.noaa.gov);
b. During a precipitation event;
c. Within 24 hours after a precipitation event of 0.1 inches or greater as measured at California Irrigation Management System (CIMIS) Station No. 167 or other approved precipitation measurement station; or
d. When the ground is saturated.

7. Hydraulic loading of wastewater and supplemental irrigation water (if used) shall be at reasonable agronomic rates designed to minimize the percolation of process wastewater and irrigation water below the root zone (i.e., deep percolation) and to minimize runoff.

8. The discharge of process wastewater, including runoff, spray or droplets from the irrigation system, shall not occur outside the boundaries of the land application areas.

9. Wastewater conveyance lines shall be clearly marked as such. Wastewater controllers, valves, etc. shall be posted with advisory signs; all equipment shall be of a type, or secured in such a manner, that permits operation by authorized personnel only.

10. No physical connection shall exist between wastewater piping and any domestic water supply or industrial supply well without an air gap or approved reduced pressure device.

11. The land application areas shall be managed to prevent breeding of mosquitoes. More specifically:
 a. All applied irrigation water must infiltrate completely within 24 hours.
 b. Ditches shall be maintained free of emergent, marginal, and floating vegetation.
 c. Low pressure pipelines, unpressurized pipelines, and ditches that are accessible to mosquitoes shall not be used to store wastewater.

12. Discharges to the land application areas shall be managed to minimize both erosion and runoff from the land application area.

13. There shall be no standing water in the land application areas 24 hours after wastewater is applied, except during periods of heavy rains sustained over two or more consecutive days.

14. The perimeter of the land application areas shall be bermed or graded to prevent ponding along public roads or other public areas.

15. The effect of the wastewater discharge on the soil pH shall not exceed the buffering capacity of the soil profile.
16. Application or impoundment of process wastewater shall not occur within 50 feet of any residential property boundary or occupied commercial building, unless it is demonstrated to the satisfaction of the Executive Officer that a shorter distance is justified.

E. Solids Disposal:

1. Sludge and other solids shall be removed from wastewater treatment equipment, sumps, etc. as needed to ensure optimal plant operation and adequate hydraulic capacity and shall be disposed of in a manner that is consistent with Title 27, Division 2, Subdivision 1 of the CCR and approved by the Executive Officer.

2. Treatment and storage of solids and sludge (including olive pits) shall be conducted in a manner that precludes infiltration of waste constituents into soils in a mass or concentration that will violate groundwater limitations.

3. Any storage of process wastewater solids or sludge (including olive pits) on the Discharger’s property shall be temporary, controlled, and contained in a manner that minimizes leachate formation and precludes infiltration of waste constituents into soils.

4. Storage and disposal of domestic wastewater sludge (septage) shall comply with existing Federal, State, and local laws and regulations, including permitting requirements and technical standards. Sludge and other solids shall be removed from septic tanks as needed to ensure optimal operation and adequate hydraulic capacity. A duly authorized carrier shall haul sludge, septage, and domestic wastewater.

5. Any proposed change in solids use or disposal practice from a previously approved practice shall be reported to the Executive Officer at least 90 days in advance of the change.

F. Groundwater Limitations:

1. The discharge shall not cause a statistically significant increase in the concentration of the following constituents in any of the compliance monitoring wells specified in Monitoring and Reporting Program No. R5-2010-0025 or subsequent revision thereto:
 a. Total dissolved solids;
 b. Ammonia nitrogen
 c. Nitrate nitrogen
 d. Iron;
e. Manganese;
f. Sodium;
g. Chloride;
h. Sulfate;
i. Total alkalinity; and
j. Total hardness.

1 If it is determined that the discharge to the LAAs has impacted groundwater quality for nitrogen compounds, new Groundwater Limitations for Ammonia Nitrogen and Nitrate Nitrogen will need to be established.

Compliance with this requirement shall be determined annually using an approved statistical analysis method based on all historical groundwater monitoring data and subsequent groundwater monitoring data obtained pursuant to Monitoring and Reporting Program No. R5-2010-0025.

2. The discharge shall not cause groundwater to exhibit a pH of less than 6.5 or greater than 8.4 pH units.

3. The discharge shall not impart taste, odor, chemical constituents, toxicity, or color that creates nuisance or impairs any beneficial use.

G. Provisions:

1. All of the following reports shall be submitted pursuant to Section 13267 of the California Water Code and shall be prepared by a registered professional as described by Provision G.5.

a. By 30 June 2010, the Discharger shall submit a Groundwater Limitations Compliance Assessment Plan. The plan shall consist of identification of all groundwater zones that could be affected by a release from the site; identification of all proposed groundwater quality monitoring points; specific details of the proposed annual groundwater quality evaluation methods; and proposed concentration limits for each constituent listed in Groundwater Limitation F.1. The plan shall include a workplan for replacement of dry monitoring wells and any new monitoring wells that are needed to determine compliance with the groundwater limitations of this Order.
b. By 30 July 2010, the Discharger shall submit a Workplan for Supplemental Evaluation of Nitrogen in Groundwater. The workplan shall describe existing site conditions and the known distribution of nitrogen in groundwater and provide a detailed scope of work for assessing the nature and extent of nitrogen in groundwater at the site and in background wells, and the potential for preferential waste constituent migration pathways within the LAAs and on-site tailwater drainages. The primary purpose of the study is to identify whether past operational practices have caused exceedance of water quality objectives; the mechanism(s) that caused the pollution; whether current treatment and control practices are adequate to prevent continued pollution, and whether a regional source(s) of nitrate is entering the Site from the southwest. The workplan shall describe all proposed investigative methods including, but not limited to, additional groundwater sampling locations (whether temporary or permanent), analytical testing, and data analysis.

c. By 30 December 2010, the Discharger shall submit a Sludge Management Plan. The plan shall describe in detail a method for periodic estimation of the volume and dry mass of sludge contained in the wastewater treatment/storage reservoir and a feasibility analysis of options for removing and disposing of the sludge before the accumulated sludge volume exceeds five percent of the permitted reservoir capacity (84 MG). The report shall include the recommended frequency of, and procedure for, periodic assessment of the stored sludge volume as required by Monitoring and Reporting Program No. R5-2010-0025. The minimum frequency for the periodic assessment shall be every five years beginning in 2012.

d. By 30 April 2011, the Discharger shall submit a Supplemental Evaluation of Nitrogen in Groundwater and BPTC Measures Report. The report shall describe the investigation results and evaluate the following:

i. Whether past operational practices have caused exceedance of water quality objectives,

ii. The mechanism(s) that caused the pollution,

iii. Whether current treatment and control practices are adequate to prevent continued pollution, and

iv. Whether there is a regional source(s) of nitrate entering the Site from the southwest and responsible for nitrate concentrations detected in groundwater onsite.

If the study indicates that additional treatment/control practices are needed to stop or prevent any exceedance of water quality objectives, the report shall also

5 Nitrogen includes total Kjeldahl nitrogen, ammonia nitrogen, and nitrate nitrogen.
includes a feasibility analysis of alternative treatment and control methods to ensure compliance with the Basin Plan; selection of the preferred treatment/control measures; and a schedule for full implementation of those measures. The schedule for full implementation shall not extend beyond 30 October 2012.

e. The Discharger shall submit a Conceptual Site Closure Plan in accordance with the following schedule:

If the preferred site closure alternative utilizes RENEWS: by 30 March 2012.

If the Discharger determines that the RENEWS alternative is not feasible for site closure, the Discharger shall submit the Conceptual Site Closure Plan by 30 September 2013. The plan shall address the issues identified in Finding No. 71 and provide the following for both the Root Zone Salt Displacement and Excavation and Offsite Disposal alternatives:

i. A detailed description of the predesign work that will be required to support final design of the alternative;

ii. A detailed conceptual design based on currently available information about site conditions (including conceptual drawings for grading, and any other site work required);

iii. A description of anticipated permitting activities (e.g., CEQA, dam decommissioning);

iv. A detailed post-closure monitoring plan designed to demonstrate the long-term effectiveness of closure;

v. A detailed cost estimate for capital and annual post-closure monitoring and maintenance costs that includes documentation of specific materials and work required, estimated units of each material/work item, estimated unit cost, and extended cost; and

vi. An engineering economic analysis that determines, based on the cost estimates and reasonable annual cost escalation, the amount of financial assurances that must be in place by 30 December 2021.

f. By 30 March 2012, the Discharger shall (i) begin funding the financial assurance mechanism based on an approved Conceptual Site Closure Plan, or if no Conceptual Site Closure Plan has been approved, assuming closure costs of $1.5 million, and (ii) submit a Financial Assurance Report. The report shall document and describe in detail the financial assurances in the form of an irrevocable fund or other mechanism(s) that the Discharger has created, with the Central Valley Water Board named as beneficiary, to ensure that funds are available to complete site closure. The Discharger shall create financial assurance instrument(s) such that the closure project is fully funded by 30 July 2022, allowing for reasonable inflation, in equal annual deposits. The
Discharger may use a Financial Means Test or similar method for providing financial assurances if approved by the Executive Officer.

If the Executive Officer subsequently approves a Conceptual Site Closure Plan and the cost and scope of the approved closure project differs from the above estimate, the Discharger shall submit a revised Financial Assurance Report within 120 days of approval of the Conceptual Site Closure Plan.

g. By 30 March 2012, the Discharger shall either: certify in writing that the 60,000-gpd RENEWS system has been constructed and is fully operational; or submit an Infeasibility Report detailing the Discharger's efforts to design, permit, construct, and/or sustainably operate the system, and a demonstration that it is not technically or administratively feasible to do so. If the Discharger concludes that it is not feasible to implement the RENEWS technology, the Discharger shall include in this report a new evaluation of BPTC alternatives for wastewater treatment and disposal.

h. By 30 October 2012, if required pursuant to the approved Supplemental Evaluation of Nitrogen in Groundwater and BPTC Measures Report, the Discharger shall submit a Nitrogen BPTC Implementation Report that documents completion of all treatment facilities and structural controls, and full implementation of all operational controls required pursuant to the approved Supplemental Evaluation of Nitrogen in Groundwater and BPTC Measures Report.

i. By 30 March 2013 and by 30 December each subsequent year, the Discharger shall submit a Financial Assurance Account Annual Update Report that demonstrates that the Discharger has increased the total amount of financial assurance in accordance with Provision G.1.f above.

2. If the Discharger proposes to graze livestock on the LAAs, the Discharger shall submit a Land Management Plan that describes in detail the structural controls and/or operational practices that will be used to prevent crop damage, soil erosion and sedimentation, decreases in crop salt uptake, net decreases in nitrogen removal, and increases in subsurface salt movement associated with the presence of livestock. The plan shall also propose additional monitoring necessary to confirm that the structural controls and operational practices are effective.

3. If the Annual Monitoring Report submitted pursuant to Monitoring and Reporting Program No. R5-2010-0025 shows any exceedance of the Groundwater Limitations of this Order, the Discharger shall submit a specific, detailed plan and schedule to come into compliance with the Groundwater Limitations, or a detailed evaluation that demonstrates that the Groundwater Limitations should be revised, within 180 days of the due date of the Annual Monitoring Report.
4. **At least 180 days prior** to any sludge removal and disposal, the Discharger shall submit a *Sludge Cleanout and Disposal Plan*. The plan shall include a detailed plan for sludge removal and disposal. The plan shall specifically describe the phasing of the project, measures to be used to control runoff or percolate from the sludge if it will be dried or temporarily stored on-site, and a schedule that shows how all sludge will be removed from the site for disposal prior to the onset of the next rainy season (1 October). The plan shall specify the proposed method of sludge disposal.

5. All technical reports required herein that involve planning, investigation, evaluation, or design, or other work requiring interpretation and proper application of engineering or geologic sciences, shall be prepared by or under the direction of persons registered to practice in California pursuant to California Business and Professions Code sections 6735, 7835, and 7835.1. To demonstrate compliance with Sections 415 and 3065 of Title 16, CCR, all technical reports must contain a statement of the qualifications of the responsible registered professional(s). As required by these laws, completed technical reports must bear the signature(s) and seal(s) of the registered professional(s) in a manner such that all work can be clearly attributed to the professional responsible for the work.

6. The Discharger shall comply with the Monitoring and Reporting Program No. R5-2010-0025, which is part of this Order, and any revisions thereto as ordered by the Executive Officer. The Discharger shall maintain the groundwater monitoring system as shown on Attachment D, and shall replace any monitoring wells at any location from which representative samples cannot be collected for three consecutive quarters or more.

7. The Discharger shall comply with the "Standard Provisions and Reporting Requirements for Waste Discharge Requirements", dated 1 March 1991, which are attached hereto and made part of this Order by reference. This attachment and its individual paragraphs are commonly referenced as "Standard Provision(s)."

8. The Discharger shall submit to the Central Valley Water Board on or before each compliance report due date, the specified document or, if appropriate, a written report detailing compliance or noncompliance with the specific schedule date and task. If noncompliance is being reported, then the Discharge shall state the reasons for such noncompliance and provide an estimate of the date when the Discharger will be in compliance. The Discharger shall notify the Central Valley Water Board in writing when it returns to compliance with the time schedule.

9. The Discharger shall use the best practicable cost effective control technique(s) currently available to comply with discharge limits specified in this order.

10. As described in the Standard Provisions and Reporting Requirements, the Discharger shall report promptly to the Central Valley Water Board any material change or proposed change in the character, location, or volume of the discharge.
11. The Discharger shall report to the Central Valley Water Board any toxic chemical release data it reports to the State Emergency Response Commission within 15 days of reporting the data to the Commission pursuant to section 313 of the “Emergency Planning and Community Right to Know Act of 1986.”

12. In the event of any change in control or ownership of the facility, the Discharger must notify the succeeding owner or operator of the existence of this Order by letter, a copy of which shall be immediately forwarded to the Central Valley Water Board. To assume operation as Discharger under this Order, the succeeding owner or operator must apply in writing to the Executive Officer requesting transfer of the Order. The request must contain the requesting entity’s full legal name, the state of incorporation if a corporation, the name and address and telephone number of the persons responsible for contact with the Central Valley Water Board, and a statement. The statement shall comply with the signatory paragraph of Standard Provision B.3 and state that the new owner or operator assumes full responsibility for compliance with this Order. Failure to submit the request shall be considered a discharge without requirements, a violation of the California Water Code. Transfer shall be approved or disapproved by the Executive Officer.

13. The Discharger shall comply with all conditions of this Order, including timely submittal of technical and monitoring reports as directed by the Executive Officer. Violations may result in enforcement action, including Central Valley Water Board or court orders requiring corrective action or imposing civil monetary liability, or in revision or rescission of this Order.

14. The Discharger shall maintain a copy of a current Operation and Maintenance Plan (O&M Plan) at the facility for reference by operating personnel who shall be familiar with its contents. The O&M Plan shall discuss all aspects of managing the discharge operation to comply with the terms and conditions of this Order and how to make field adjustments as necessary to preclude nuisance conditions. The O&M Plan shall also include the current cropping plan for each processing season.

15. A copy of this Order shall be kept at the discharge facility for reference by operating personnel. Key operating personnel shall be familiar with its contents.

16. The Discharger is ultimately responsible for the effectiveness of its treatment and control measures in assuring compliance with groundwater limitations, and is liable for remediation of any impact on groundwater not authorized herein. Failure to properly operate and maintain best practicable treatment and control, or failure of such measures to perform effectively, shall be grounds to rescind this Order, reclassify the waste and designated, and require compliance with Title 27 prescribed waste containment standards or initiate enforcement, as appropriate.

17. The Central Valley Water Board will review this Order periodically and may revise requirements when necessary.
I, PAMELA C. CREEDON, Executive Officer, do hereby certify the foregoing is a full, true, and correct copy of an Order adopted by the California Regional Water Quality Control Board, Central Valley Region, on 18 March 2010.

Original signed by
Kenneth D. Landau for

PAMELA C. CREEDON, Executive Officer

AMENDED 3/24/2010
SITE LOCATION MAP
MUSCO FAMILY OLIVE COMPANY
SAN JOAQUIN COUNTY
ORDER NO. R5-2010-0025

Drawing Reference: USGS 7.5’ topographic map, Tracy quad.

Approx. Scale: 1" = 1 mile
ATTACHMENT B

Drawing Reference:
Report of Waste Discharge,
Kennedy/Jenks Consultants,
March 2009

PROCESS SCHEMATIC
MUSCO FAMILY OLIVE COMPANY
SAN JOAQUIN COUNTY
ORDER NO. R5-2010-0025

LEGEND:
6 Waste stream number
ATTACHMENT C

Drawing Reference:

SITE PLAN AND STORM WATER MONITORING LOCATIONS
MUSCO FAMILY OLIVE COMPANY SAN JOAQUIN COUNTY

ORDER NO. R5-2010-0025

LEGEND:
- Pipe or Culvert
- Mudbox (not to scale)
- NPOES Stormwater Monitoring Location
- LAA Stormwater Monitoring Location
- Land Application Area
SITE PLAN AND SOIL SAMPLING LOCATIONS
MUSCO FAMILY OLIVE COMPANY
SAN JOAQUIN COUNTY
ORDER NO. R5-2010-0025

LEGEND:
- Pipe or Culvert
- Mudbox (not to scale)
- LAA Soil Sampling Location
- Background Soil Sampling Location
- Land Application Area

Drawing Reference:
MONITORING WELL LOCATION MAP
MUSCO FAMILY OLIVE COMPANY
SAN JOAQUIN COUNTY
ORDER NO. R5-2010-0025
SOIL MOISTURE MONITORING LOCATIONS
MUSCO FAMILY OLIVE COMPANY
SAN JOAQUIN COUNTY
ORDER NO. R5-2010-0025

Legend:
○ Moisture Sensor Location
Note: Locations 4 and 11 do not exist

Drawing Reference:

Approx. Scale: 1" = 1,500 feet
This Monitoring and Reporting Program (MRP) describes requirements for monitoring influent wastewater, the wastewater treatment/storage reservoir, effluent wastewater, the land application areas (LAAs), the industrial process water supply, groundwater, and surface water. This MRP is issued pursuant to California Water Code Section 13267. The Discharger shall not implement any changes to this MRP unless and until a revised MRP is issued by the Executive Officer.

Specific sampling locations shall be approved by Central Valley Water Board staff prior to sampling activities. All samples shall be representative of the volume and nature of the discharge or the material sampled, as applicable. The time, date, and location of each grab sample shall be recorded on the sample container and chain of custody form.

Field test instruments (such as those used to measure pH and dissolved oxygen) may be used provided that:

1. The operator is trained in proper use and maintenance of the instruments;
2. At a minimum, the instruments are field-calibrated at least at the manufacturer’s recommended frequency;
3. The instruments are serviced and/or calibrated by the manufacturer at the recommended frequency; and
4. Field calibration reports are submitted as described in the “Reporting” section of the MRP.

INFLUENT WASTEWATER MONITORING

The Discharger shall monitor influent wastewater in accordance with the following. Samples shall be representative of the influent to the wastewater treatment/storage reservoir. Influent samples shall be collected downstream of the screen and prior to discharge to the wastewater treatment/storage reservoir. The Discharger shall use its existing continuous recording devices to monitor influent flow rate, pH, and electrical conductivity. Otherwise, grab samples collected from a pipeline or sump will be considered representative. Influent monitoring shall include, at a minimum, the following:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Sample Type</th>
<th>Sampling Frequency</th>
<th>Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influent flow</td>
<td>gpd</td>
<td>Meter Observation</td>
<td>Continuous</td>
<td>Monthly</td>
</tr>
</tbody>
</table>
Constituent Units Sample Type Sampling Frequency Reporting Frequency

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Sample Type</th>
<th>Sampling Frequency</th>
<th>Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Conductivity</td>
<td>umhos/cm</td>
<td>Meter Observation</td>
<td>Continuous 2</td>
<td>Monthly</td>
</tr>
<tr>
<td>BOD$_5$ 3</td>
<td>mg/L, lbs/day</td>
<td>Grab</td>
<td>Weekly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>Grab</td>
<td>Weekly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Fixed Dissolved Solids</td>
<td>mg/L</td>
<td>Grab</td>
<td>Weekly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>Grab</td>
<td>Weekly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>Grab</td>
<td>Weekly</td>
<td>Monthly</td>
</tr>
</tbody>
</table>

1. Flow of process wastewater and storm water from the facility (does not include tailwater return flows or storm water from the land application area).
2. Report daily minimum, maximum, and mean.
3. 5-day, 20 °C biochemical oxygen demand.

WASTEWATER TREATMENT/STORAGE RESERVOIR MONITORING

Samples shall be collected from the wastewater treatment/storage reservoir whenever water is present. Samples shall be collected from an established sampling station as far as practical from the pond inlet, and in an area which will provide a sample representative of the wastewater in the pond. Samples for dissolved oxygen and pH shall be collected at a depth of 1 to 2 feet below the pond surface. Pond monitoring shall include at least the following:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Sampling Frequency</th>
<th>Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeboard 1</td>
<td>feet</td>
<td>Measurement</td>
<td>Weekly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>Grab</td>
<td>Daily 2</td>
<td>Monthly</td>
</tr>
<tr>
<td>pH</td>
<td>s.u.</td>
<td>Grab</td>
<td>Daily 2</td>
<td>Monthly</td>
</tr>
<tr>
<td>Aerator Operations Status 3</td>
<td>--</td>
<td>Observation</td>
<td>Daily</td>
<td>Monthly</td>
</tr>
<tr>
<td>Reservoir Condition 4</td>
<td>--</td>
<td>Observation</td>
<td>Daily 2</td>
<td>Monthly</td>
</tr>
</tbody>
</table>

1. To be measured from the water surface vertically to the lowest possible point of overflow.
2. This parameter shall be monitored daily for five days in each calendar week.
3. Aerator status monitoring shall include daily observation of the number of aerators in operation, the time period during which each aerator was operated, and the total hours of operation for each aerator.
4. Pond condition monitoring shall include determination of dam condition, storm water diversion ditches, wastewater overflows, and odor conditions (none, slight, moderate, strong).
EFUENT WASTEWATER MONITORING

Effluent wastewater samples shall be collected from the wastewater treatment/storage reservoir, from the approximate depth and location from which wastewater is discharged for land application or from a discharge pipe that conveys treated wastewater to the LAA irrigation system. Samples shall be collected and analyzed at the following frequencies during periods of land application. Effluent monitoring shall include at least the following:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Sample Type</th>
<th>Sampling Frequency</th>
<th>Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Conductivity</td>
<td>umhos/cm</td>
<td>Grab</td>
<td>Daily(^1)</td>
<td>Monthly</td>
</tr>
<tr>
<td>PH</td>
<td>s.u.</td>
<td>Grab</td>
<td>Daily(^1)</td>
<td>Monthly</td>
</tr>
<tr>
<td>BOD(_5)</td>
<td>mg/L</td>
<td>Grab</td>
<td>Weekly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Nitrate Nitrogen</td>
<td>mg/L</td>
<td>Grab</td>
<td>Weekly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>mg/L</td>
<td>Grab</td>
<td>Weekly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Fixed Dissolved Solids</td>
<td>mg/L</td>
<td>Grab</td>
<td>Weekly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Chloride, Dissolved</td>
<td>mg/L</td>
<td>Grab</td>
<td>Weekly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Sodium, Dissolved</td>
<td>mg/L</td>
<td>Grab</td>
<td>Weekly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Iron, Dissolved</td>
<td>mg/L</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Bicarbonate, Dissolved</td>
<td>mg/L</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Sulfate (as SO(_4))(_2)</td>
<td>Dissolved</td>
<td>mg/L</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>General Minerals(^2)</td>
<td>mg/L</td>
<td>Grab</td>
<td>Quarterly</td>
<td>Quarterly</td>
</tr>
</tbody>
</table>

\(^1\) This parameter shall be monitored daily for five days in each calendar week.

\(^2\) Including carbonate, calcium, manganese, magnesium, potassium, boron, and cation/anion balance.

LAND APPLICATION AREA MONITORING

Application of wastewater to each of the land application areas shall be monitored in accordance with the following. The Discharger shall maintain a sufficient number of flow meters to continuously monitor the flow of wastewater to each of the land application areas. All meters shall be calibrated annually in accordance with Standard Provision C.4.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Sample Type</th>
<th>Sampling Frequency</th>
<th>Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td>inches</td>
<td>Measured(^1)</td>
<td>Daily</td>
<td>Monthly</td>
</tr>
<tr>
<td>Flow to Land Application Area</td>
<td>gpd</td>
<td>Metered/Calculated</td>
<td>Daily</td>
<td>Monthly</td>
</tr>
</tbody>
</table>

\(^1\) This parameter shall be monitored daily for five days in each calendar week.
Constituent Units Sample Type

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Sample Type</th>
<th>Sampling Frequency</th>
<th>Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Area</td>
<td>acres</td>
<td>Measured</td>
<td>Daily</td>
<td>Monthly</td>
</tr>
<tr>
<td>Crop Cover Status</td>
<td>percent coverage</td>
<td>Calculated</td>
<td>Quarterly</td>
<td>Quarterly</td>
</tr>
<tr>
<td>BOD₅ Loading Rate</td>
<td>lbs/acre/day</td>
<td>Calculated ³</td>
<td>Daily</td>
<td>Monthly</td>
</tr>
<tr>
<td>Hydraulic Loading Rate</td>
<td>inches/month</td>
<td>Calculated</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Total Nitrogen Loading Rate</td>
<td>lbs/acre/month</td>
<td>Calculated ⁴</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
</tbody>
</table>

1. As measured and reported at California Irrigation Management Information System (CIMIS) Station No. 167 or other approved station.
2. Results shall be reported in the Monthly Monitoring Report submitted for the last month of the calendar quarter.
3. BOD₅ loading shall be calculated for each LAA using the daily applied volume of wastewater, estimated daily application area, daily tailwater return flow, and the most recent results of effluent and tailwater BOD₅.
4. Total nitrogen loading rates shall be calculated for each LAA as a flow-weighted mass using the daily applied volume of wastewater, estimated daily application area, daily tailwater return flow, and the most recent results of effluent and tailwater total nitrogen.

In addition, the Discharger shall maintain a daily log of discharges to the land application area. Notations shall record which area is receiving wastewater, observations of ponding water, saturated soil, odors, insects, or other potential nuisance conditions. The notations shall also document any corrective actions taken.

The Discharger shall record and submit, as part of the monthly self-monitoring reports, information describing what soil amendments, including fertilizer, were applied to the land application areas, why the amendment was applied, the quantity of amendment used (total pounds applied and pounds per acre, and a description of the area over which it was used (i.e., field names, acreage).

PROCESS WATER SUPPLY MONITORING

A sampling station shall be established where a representative sample of the process water supply can be obtained. If the water supply is from more than one source, the monitoring report shall report the constituent results as a flow-weighted average and include copies of supporting calculations. Water supply monitoring shall include at least the following:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Sample Type</th>
<th>Sampling Frequency</th>
<th>Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Solids</td>
<td>mg/L</td>
<td>Grab</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Fixed Dissolved Solids</td>
<td>mg/L</td>
<td>Grab</td>
<td>Annually</td>
<td>Annually</td>
</tr>
</tbody>
</table>
GROUNDWATER MONITORING

Effective immediately, the Discharger shall monitor all groundwater monitoring wells listed in Waste Discharge Requirements Order No. R5-2010-0025. Effective during the first quarter following the Executive Officer’s approval of the *Groundwater Limitations Compliance Assessment Plan*, the Discharger shall monitor all wells identified as background and compliance monitoring wells in the approved *Groundwater Limitations Compliance Assessment Plan*. Prior to completion of any new or replacement groundwater monitoring wells, the Discharger shall submit plans and specifications to the Central Valley Water Board for review and approval. Once installed, all new or replacement wells shall be added to the list of background and compliance monitoring wells.

In addition, as long as the property owners grant access, samples shall be collected from the domestic well located at 26933 South Hansen Road, Tracy, and the stock watering well located to the west of the 95-acre field in Assessor’s Parcel Number 251-32-006 in Tracy. Samples from this well shall be collected upstream of any water treatment equipment.

Prior to sampling or purging of a well, equilibrated groundwater elevations shall be measured to the nearest 0.01 foot from a reference point surveyed to the nearest 0.01 foot in elevation. Groundwater depths shall be measured in all wells on the same day. Prior to collection of a groundwater sample, each shall be purged at least three well volumes until pH and electrical conductivity have stabilized, and a sample representative of the water-bearing zone can be collected. Groundwater sample collection shall be coordinated with that required by WDRs Order No. R5-2005-0024, and subsequent revisions thereto, and shall take place on the same dates. Sample collection shall follow standard U.S. EPA protocols. Groundwater monitoring shall include, at a minimum, the following:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Sample Type</th>
<th>Sampling Frequency</th>
<th>Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth to Groundwater ²</td>
<td>0.01 ft</td>
<td>Measurement</td>
<td>Quarterly/Semi-Annually</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Groundwater Elevation ²</td>
<td>0.01 ft</td>
<td>Calculated</td>
<td>Quarterly/Semi-Annually</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Gradient ²</td>
<td>ft/ft</td>
<td>Calculated</td>
<td>Quarterly/Semi-Annually</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Gradient Direction ²</td>
<td>degrees</td>
<td>Calculated</td>
<td>Quarterly/Semi-Annually</td>
<td>Quarterly</td>
</tr>
<tr>
<td>pH</td>
<td>s.u.</td>
<td>Grab</td>
<td>Quarterly/Semi-Annually</td>
<td>Quarterly</td>
</tr>
</tbody>
</table>

1 Including chloride, sulfate, bicarbonate, carbonate, calcium, iron, manganese, magnesium, potassium, sodium, boron, nitrate nitrogen, alkalinity series, hardness, and cation/anion balance.
Monitors and reporting program no. R5-2010-0025 - 6 - Musco Family Olive Company and the Studley Company Wastewater Treatment and Land Disposal Facility San Joaquin County

Constituent Units Sample Type Sampling Frequency Reporting Frequency
Total Dissolved Solids mg/L Grab Quarterly/Semi-Annually Quarterly
Ammonia nitrogen mg/L Grab Quarterly/Semi-Annually Quarterly
Nitrate nitrogen mg/L Grab Quarterly/Semi-Annually Quarterly
BOD mg/L Grab Quarterly/Semi-Annually Quarterly
General Minerals \(^3\) mg/L Grab Quarterly/Semi-Annually Quarterly

1. Onsite wells shall be sampled quarterly, and offsite wells shall be sampled semiannually during the second and fourth calendar quarters.
2. Not required for stock watering, K-1, and Hansen Road wells. For these wells, measurement of at least depth to groundwater is required unless well head construction or the well owner prohibits it.
3. Includes chloride, sulfate, bicarbonate, carbonate, calcium, iron, manganese, magnesium, potassium, sodium, boron, and cation/anion balance.

Surface water monitoring

Surface water samples shall be collected from sampling locations SW-1, SW-2, SW-3, and SW-4 as shown on Attachment C and analyzed in accordance with the following:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Sample Type</th>
<th>Sampling Frequency (^1,2)</th>
<th>Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Dissolved Solids</td>
<td>mg/L</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>BOD(_5)</td>
<td>mg/L</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>umhos/cm</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>pH</td>
<td>s.u.</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Ammonia nitrogen</td>
<td>mg/L</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Nitrate nitrogen</td>
<td>mg/L</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Total Alkalinity</td>
<td>mg/L</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Chloride, Dissolved</td>
<td>mg/L</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Iron, Dissolved</td>
<td>mg/L</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Sodium, Dissolved</td>
<td>mg/L</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Sulfate (as SO(_4))</td>
<td>mg/L</td>
<td>Grab</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
</tbody>
</table>

\(^1\) Samples shall be collected within three days after the first significant rainfall after 1 September each year.
\(^2\) Samples shall be collected monthly from December through April when flowing water is present.
LAND APPLICATION AREA SOILS MONITORING

The Discharger shall collect and analyze representative soil samples at the background and LAA soil monitoring locations shown on Attachment D in accordance with the following. Samples shall be collected and composited to create a sample representative of the following intervals at each sampling location: 0 to 6 inches bgs, 19 to 30 inches bgs, and 46 to 60 inches bgs. Sampling shall be performed annually in September and analytical methods using saturated paste extract shall be employed to be consistent with analysis of historical samples.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Sampling Frequency</th>
<th>Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicarbonate</td>
<td>mg/L</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Carbonate</td>
<td>mg/L</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Iron, dissolved</td>
<td>mg/L</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Sulfate (as SO₄)</td>
<td>mg/L</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Sodium Adsorption Ratio</td>
<td>unitless</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>umhos/cm</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>pH</td>
<td>s.u.</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Exchangeable Sodium Percentage</td>
<td>%</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Nitrate nitrogen</td>
<td>mg/L</td>
<td>Annually</td>
<td>Annually</td>
</tr>
<tr>
<td>Total Kjeldahl nitrogen</td>
<td>mg/L</td>
<td>Annually</td>
<td>Annually</td>
</tr>
</tbody>
</table>

SOIL MOISTURE MONITORING

The Discharger shall monitor soil moisture at the soil moisture monitoring locations depicted on Attachment F, which is attached hereto and forms part of this Order. Moisture measurements shall be obtained quarterly at 4-inch increments from the ground surface to a depth of five feet. Soil moisture monitoring results shall be aggregated at 12-inch intervals for each sampling location. All monthly soil moisture monitoring results shall be reported as inches of water and percent saturation in the Annual Monitoring Report.
REPORTING

In reporting monitoring data, the Discharger shall arrange the data in tabular form so that the date, sample type (e.g., effluent, soil, etc.), and reported analytical result for each sample are readily discernible. The data shall be summarized in such a manner to clearly illustrate compliance with waste discharge requirements and spatial or temporal trends, as applicable. The results of any monitoring done more frequently than required by the Monitoring and Reporting Program, shall be reported in the next scheduled monitoring report.

With the exception of flow, all constituents monitored on a continuous basis shall be reported as daily maximums, daily minimums, and daily averages; flow shall be reported as the total volume discharged per day for each day of discharge.

As required by the California Business and Professions Code Sections 6735, 7835, and 7835.1, all Groundwater Monitoring Reports shall be prepared under the direct supervision of a California Registered Engineer or Geologist and signed by the registered professional.

A. Monthly Monitoring Reports

Monthly reports shall be submitted to the Central Valley Water Board on the 1st day of the second month following sampling (i.e. the January Report is due by 1 March). At a minimum, the reports shall include the following. Monitoring data shall be presented in tabular format.

1. Results of influent wastewater, wastewater ponds, effluent wastewater, land application areas, and surface water monitoring.
2. A map of all LAAs showing field names.
3. The location of each meter used to record flow, pH, and electrical conductivity.
4. Calibration records for all meters used to obtain monitoring data.
5. Calculation of the following:
 a. The monthly average FDS concentration of effluent discharged to the wastewater treatment/storage reservoir;
 b. The total volume of effluent discharged to the wastewater treatment/storage reservoir for the month;
 c. The average daily flow of effluent discharged to the wastewater treatment/storage reservoir;
 d. The mass of FDS discharged to the wastewater treatment/storage reservoir for the month; and
 e. The cumulative FDS mass discharged to the wastewater treatment/storage reservoir to date for the calendar year.
6. A comparison of monitoring data to the limitations in WDRs; an explanation of any violation of those requirements; and a specific plan to correct the conditions that caused the violations if such conditions have not already been corrected. This comparison shall include certification of compliance with all discharge prohibitions and specifications.

7. If requested by staff, copies of laboratory analytical reports.

B. Quarterly Monitoring Reports

The Discharger shall establish a quarterly sampling schedule for groundwater monitoring such that samples are obtained approximately every three months. Quarterly monitoring reports shall be submitted to the Central Valley Water Board by the 1st day of the second month after the quarter (i.e., the January-March quarterly report is due by May 1st). The Quarterly Monitoring Report shall verify that the Discharger has performed the required groundwater sampling and analysis for the calendar quarter in compliance with the WDRs, this MRP, and the Standard Provisions and Reporting Requirements. The report shall include a list of the monitoring wells sampled, the dates of sampling, the name of the analytical laboratory, a list of the analyses requested, the date(s) that the samples were received by the laboratory, and documentation showing that the samples were received in good condition and within the required sample holding times.

C. Annual Monitoring Report

An Annual Monitoring Report shall be prepared for each calendar year and shall be submitted to the Central Valley Water Board by 1 February each year. The Annual Monitoring Report shall include the following:

1. The results of groundwater monitoring for all four quarters of the calendar year, including at least:

a. A narrative description of all preparatory, monitoring, sampling, and analytical testing activities for each monitoring event. The narrative shall be sufficiently detailed to verify compliance with the WDR, this MRP, and the Standard Provisions and Reporting Requirements. The narrative shall be supported by field logs for each well documenting depth to groundwater; parameters measured before, during, and after purging; method of purging; calculation of casing volume; and total volume of water purged.

b. Calculation of groundwater elevations and determination of groundwater flow direction and gradient on the date of each quarterly monitoring event; comparison of previous flow direction and gradient data; and discussion of seasonal trends if any.
c. A scaled map showing relevant structures and features of the facility, the locations of monitoring wells and any other sampling stations, and groundwater elevation contours referenced to mean sea level datum for each quarterly monitoring event.

d. A narrative discussion of the analytical results for all groundwater locations monitored including spatial and temporal trends, with reference to summary data tables, graphs, and appended analytical reports (as applicable).

e. A statistical evaluation of monitoring data relative to the groundwater limitations and an explanation of any exceedance of those limitations.

f. Summary data tables of historical and current water table elevations and analytical results.

g. Copies of laboratory analytical report(s) for groundwater monitoring.

3. The results of all water supply monitoring.

4. The results of all surface water monitoring.

5. A discussion of monitoring of the Class II surface impoundments for excess capacity available to divert higher salinity wastewater from the treatment/storage reservoir to the Class II surface impoundments. Include documentation of periodic assessment of whether the impoundments had excess capacity, the waste streams that were diverted to the surface impoundments, and the estimated volume diverted.

6. Calculation of the average daily flow for each month (mgd) and the total annual flow (MG) to demonstrate compliance with the flow limits.

7. Calculation of the monthly average FDS concentration (mg/L) and the total annual FDS mass to demonstrate compliance with the effluent limits.

8. The results of land application soils monitoring, including a map depicting sample locations and an updated statistical evaluation of salinity trends over time with depth for each LAA.

9. The results of monthly soil moisture monitoring, and analysis and interpretation of that data with respect to maximizing crop health while minimizing percolation below the crop root zone.

10. An estimate of the sludge volume in the wastewater treatment/storage reservoir and, if needed to comply with the WDRs, a summary plan and schedule for sludge removal.
11. A discussion of compliance and the corrective action taken, as well as any planned or proposed actions needed to bring the discharge into full compliance with the waste discharge requirements.

12. An annual report, prepared by a Certified Crop Advisor or Certified Agronomist, detailing the effect of the application of the wastewater on crops, the health of the crops grown at the LAAs, and the potential for increased soil salinity and the resulting impacts to future crop growth. The report shall present the estimated crop coverage for each LAA as of the end of the year, describe the crop conditions throughout the year, and contain recommendations regarding actions necessary to improve the crop health and crop coverage for the following year. The report shall discuss the use of any soil amendments or supplemental fertilizers and the anticipated effects on nitrogen, phosphorus, potassium, chloride, iron, sodium, and sulfate concentrations and mobility within the soil column.

13. A discussion of any data gaps and potential deficiencies/redundancies in the monitoring system or reporting program.

15. If requested by staff, tabular summaries of all data collected during the year.

A letter transmitting all reports required by this Monitoring and Reporting Program shall accompany each report. The letter shall include a discussion of all violations during the reporting period, and actions taken or planned for correcting violations, such as operation or facility modifications. If the Discharger has previously submitted a report describing corrective actions and/or a time schedule for implementing the corrective action, reference to the previous correspondence will be satisfactory. The transmittal letter shall contain the penalty of perjury statement by the Discharger, or the Discharger’s authorized agent, as described in the Standard Provisions General Reporting Requirements Section B.3.

The Discharger shall implement the above monitoring program as of 18 March 2010.

Original signed by
Kenneth D. Landau for

PAMELA C. CREEDON, Executive Officer

(date)

AMENDED 3/24/2010
Background
Musco Family Olive Company owns and operates an olive processing facility that processes approximately one-half of the state’s total table olive crop. The facility began operations in 1983. The facility processes and cans olives year round and generates wastewater with high organic strength and high salinity. Processing generally consists of receiving olives, storage in acetic acid solution, curing in sodium hydroxide (lye), pitting, and canning in a brine solution. Process wastewater generated at the facility is regulated under two separate WDRs:

a. Order No. R5-2005-0024 regulates two Class II surface impoundments that are regulated under Title 27 of the California Code of Regulations, §20005 et seq., (hereafter Title 27). The Class II surface impoundments are used to store and evaporate concentrated brines that have been determined to be designated waste.

b. Order No. R5-2002-0148 regulates the treatment, storage, and land application of other wastewater. This Order updates Order No. R5-2002-0148 and only applies to wastewater that is not discharged to the Class II surface impoundments.

The Central Valley Water Board has issued the following enforcement orders to the Discharger for various violations since 1999:

- Cleanup and Abatement Order (CAO) No. 5-00-717;
- Time Schedule Order (TSO) No. R5-2002-0014;
- Time Schedule Order (TSO) No. R5-2002-0014-R01;
- Cleanup and Abatement Order No. R5-2002-0149;
- Administrative Civil Liability (ACL) Complaint No. R5-2002-0502 in the amount of $150,000 for failure to comply with CAO No. 5-00-717,
- ACL Complaint No. R5-2004-0534 in the amount of $493,500 for failure to comply with certain requirements set forth in TSO No. R5-2002-0014-R01
- ACL and Penalty Order No. R5-2007-0138, the Stipulation for Entry of Administrative Civil Liability and Penalty Order to settle ACL Complaint No. R5-2004-0534 (Stipulated Order); and

The Discharger has paid the civil liabilities in full and timely submitted the required Site Closure and Maintenance Report. In addition, the Discharger submitted all of the reports required by the CDO. This Order rescinds the 2000 CAO.

Waste Character, Flows, and Discharge Operations
The Discharger proposes to continue the discharge of treated process wastewater to designated land application areas (LAAs). The olive brining process generates several liquid waste streams, some of which are discharged to the Class II surface impoundments for
disposal. The rest are discharged to the reservoir surge tank (RST), which is used as a pumping sump to convey the non-designated wastewater an 84-million gallon effluent treatment/storage reservoir. Following treatment to reduce biochemical oxygen demand (BOD), the effluent is discharged to the LAAs to irrigate crops. When capacity is available in the Class II surface impoundments, some waste streams normally discharged to the wastewater treatment/storage reservoir and the LAAs are routed to the Class II surface impoundments to minimize the flow and salt loadings on the LAAs.

The olive storage and processing tanks are outdoors in unroofed areas. Secondary containment berms are used to capture process spills and precipitation that falls on the containment areas and direct them to sumps equipped with electrical conductivity meters. If the electrical conductivity (EC) is less than 4,800 umhos/cm, the water is pumped to the wastewater treatment/storage reservoir. Otherwise, it is pumped to the Class II surface impoundments.

Wastewater flow rates are variable from month to month depending on production. Total annual flows ranged from 100 million gallons (MG) per year to 217 MG per year from 2000 through 2008. These flows account for both process wastewater and low salinity storm water collected in the outdoor processing areas.

The entire facility consists of 280 acres, of which approximately 80 acres are used for the processing plant. Of the remaining 200 acres, approximately 160 acres are currently used for land application of process wastewater, and another 11-acre former LAA is available for future use. Wastewater is applied to the LAAs by sprinkler irrigation. Irrigation tailwater is pumped to the effluent treatment/storage reservoir for recycling. Likewise, all storm water runoff from the LAAs drains to the treatment/storage reservoir.

Attempts to grow fodder crops such as Sudan grass and winter barley were unsuccessful due to the salinity of the waste. In 2004, the Discharger planted a 20-acre experimental plot of NyPa Forage™, a patented clone of Distichlis spicata, which is commonly known as salt grass. In the last two years, the Discharger has expanded the NyPa Forage™ cultivation to all of the LAAs.

Since adoption of the current WDRs, the Discharger has implemented several process changes, equipment modifications, and modifications to the process wastewater collection system to minimize the volume and reduce the salinity of the wastewater discharged to the LAAs. These changes include:

- Converting to a closed loop fluming system;
- Reclaiming and recycling lye solutions and other process streams;
- Using carbon dioxide to neutralize residual lye in the olives instead of rinsing several times in fresh water;
- Reducing the concentration of acetic acid used for olive storage solution;
Changing the floatation brine solution less frequently; and
Housekeeping changes to reduce water use and capture high salinity spillage for discharge to the Class II surface impoundments.

The average fixed dissolved solids (FDS) concentration of the raw wastewater has decreased significantly in the last two years, as has the maximum monthly FDS mass. Excluding the data from 2007 and 2009 (when the plant was closed for significant periods), the total annual FDS mass has also decreased since 2004 through 2006 despite relatively constant total annual wastewater volumes.

Residual solids include olive pits, stems, waste olives, and screened solids. The olive pits and stems are sold as biomass and burned at cogeneration plants or pulverized and incorporated into compost. Waste olives are transported offsite for animal feed or offsite land disposal. The Discharger is developing an onsite process to burn pits to generate energy for the processing plant and further concentrate certain waste streams for discharge to the Class II surface impoundments. Residuals from this process, such as ash, will not be discharged onsite.

Soil Conditions
The facility is sited on an alluvial fan that generally slopes to the northeast. Slopes range from approximately 20 percent to nearly flat. Site soils are predominantly very deep and well drained clay and clay loam. Due to the high salinity of the wastewater, the Discharger has been monitoring concentrations of waste constituents in shallow LAA soils since 2002. A total of 18 on-site sampling locations and five background sampling locations have been monitored at specific depth intervals. The background soil EC results to date vary significantly with location, depth, and time. The spatial and temporal variations in background soil EC are not readily explained by climate, topography, or soil type. The soil EC results for the LAA samples are also highly variable. Although some temporal trends seem to be present at some of the LAA sampling locations, the data do not conclusively show site-wide increases over time for any of the depth intervals monitored. Based on the spatial and temporal variability of the background soil monitoring data, it may not be possible to use the LAA soil monitoring data to make conclusions about salinity accumulation at each discrete sampling location. However, it may be possible to assess temporal trends by comparing the aggregate LAA data to the aggregate background data for each sampling interval. Based on a simplified statistical analysis of the historical soil monitoring data:

- The background EC is similar within each of the three depth intervals. This may indicate that the soil salinity does not naturally vary significantly with depth within the upper six feet of soil.
- The upper six inches of LAA soil shows significantly higher EC than the background soil on a site-wide basis; and
- The 27- to 39-inch interval shows some signs of salinity impacts although this interval is impacted with salt to a lesser degree than that found in the upper six inches. These impacts may be localized.
For the 60- to 72-inch interval depth interval, background and LAA EC results are not statistically different.

Soil monitoring data for other salinity indicators indicate that background soils have a relatively high cation exchange capacity (CEC) and marginal sodium absorption ratio (SAR) and exchangeable sodium percentage (ESP). The upper six inches of LAA soils have become very sodic and soils in the 27- to 39-inch depth interval are also showing signs of increased sodicity. These data are consistent with the conclusions derived from the EC statistics.

Likewise, the soil monitoring data indicate that the total nitrogen content of LAA soils is not significantly different than that of background soils for all three depth intervals. The shallowest soils in the LAAs contain higher levels of nitrate nitrogen than the background sampling locations, but the LAAs appear to be relatively depleted of nitrate nitrogen in the deeper intervals. The data suggest that nitrification of ammonia may be slower than expected, but the overall levels when compared to nitrate nitrogen do not appear to be significant.

This Order requires that the Discharger continue to monitor soil moisture and waste constituent concentrations in soil, and to evaluate changes over time annually. This Order also requires that the Discharger have an approved closure plan and for the LAAs and wastewater treatment storage reservoir to ensure that residual waste constituents in soil do not pose a threat to surface water or groundwater quality following closure of the facility. Although the Discharger submitted the Site Closure and Maintenance Report required by ACL and Penalty Order No. R5-2007-0138, it did not adequately address site conditions, due in part to the fact that additional soil and groundwater data have been obtained since its submittal. This Order identifies specific concerns that must be addressed before the Executive Officer approves the closure plan. This Order also requires that the Discharger establish financial assurances for closure of the LAAs and wastewater treatment storage reservoir by 30 March 2012 and ensure that those assurances are fully funded by 30 July 2022.

Groundwater Conditions
The site geology and hydrogeology are complex. There are 37 onsite groundwater monitoring wells, five offsite groundwater monitoring wells, and one offsite domestic supply well that are monitored. Eleven of the onsite monitoring wells are currently dry and are monitored for the presence of water. Studies completed by the Discharger have identified three water-bearing zones on the site (shallow, intermediate, and deep). Groundwater in each of these zones exhibits a distinct chemical signature and different groundwater elevation. In general, the shallow groundwater zone is less than 60 feet below ground surface (bgs) in the southern portion of the site; the intermediate zone is between 60 and 120 feet bgs in the mid- to northern portion of the site; and the deep groundwater zone (greater than 120 feet bgs) is present in the northern portion of the site. Groundwater flow in the shallow zone is typically to the northeast; flow in the intermediate zone is to the northeast; and flow in the deep zone is to the northwest. Based on water elevation data indicate a downward to neutral vertical gradient.

The Discharger's studies have identified several different types of groundwater beneath the site that range in quality from connate (naturally saline waters originating from ancient sea
water) to meteoric (newer, fresh water from precipitation that recharges the aquifer). The connate waters may be the source of sulfate found in some onsite groundwater monitoring wells. Based on increases in bicarbonate concentrations after operation of the wastewater treatment/storage reservoir began in December of 2002, monitoring wells MW-15, MW-16, MW-3, and MW-5 have been impacted by wastewater from the wastewater treatment/storage reservoir. The increase in bicarbonate has been accompanied by a decrease in chloride, resulting in little change to total dissolved solids (TDS) concentrations in the shallow groundwater. The water table in these wells increased after the reservoir was first filled, providing physical evidence of seepage. However, groundwater at the downgradient edge of the facility does not appear to have been significantly impacted by site activities, including use of the LAAs for wastewater irrigation.

Based upon the available water quality data and several different methods of estimating ambient conditions upgradient of the site, the ambient background concentration for TDS is approximately 2,000 mg/L. Historical groundwater monitoring data for key waste constituents are summarized in the following table, and the well locations are depicted on Attachment E.

<table>
<thead>
<tr>
<th>Well ID/First Sampling Date</th>
<th>Statistic (s.u.)</th>
<th>pH</th>
<th>Na (mg/L)</th>
<th>Fe (ug/L)</th>
<th>SO4 (mg/L)</th>
<th>Cl (mg/L)</th>
<th>HCO3 (mg/L)</th>
<th>Alk. (mg/L)</th>
<th>NH3 (mg/L)</th>
<th>NO3 N (mg/L)</th>
<th>BOD (mg/L)</th>
<th>TDS (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1 Min. 7.85 240 510 45 67 300 <0.2 11.00 <2 692</td>
<td></td>
</tr>
<tr>
<td>4/10/2002 Max. 9.07 1,100 3,130 91 580 470 3.30 139.7 3 27.00 1,920</td>
<td></td>
</tr>
<tr>
<td>Mean 8.09 445 1,900 61 395 368 0.90 89.76 12.10 1,529</td>
<td></td>
</tr>
<tr>
<td>MW-2 Min. 7.18 580 150 440 130 <10 0.10 <0.1 <1 330</td>
<td></td>
</tr>
<tr>
<td>4/11/2002 Max. 7.70 3,280 1,620 3,970 5,400 160 0.72 3.40 3.20 13,600</td>
<td></td>
</tr>
<tr>
<td>Mean 7.45 2,279 589 2,461 3,768 106 0.28 1.44 2.45 9,836</td>
<td></td>
</tr>
<tr>
<td>MW-2C Min. 6.80 1,630 1,310 1,100 2,710 50 <0.1 28.67 <2 6,080</td>
<td></td>
</tr>
<tr>
<td>6/23/2008 Max. 7.81 2,430 6,530 1,400 3,000 600 5.74 42.66 9.77 8,220</td>
<td></td>
</tr>
<tr>
<td>Mean 7.55 1,874 3,154 1,231 2,833 307 1.31 32.98 5.19 6,728</td>
<td></td>
</tr>
<tr>
<td>MW-3 Min. 6.97 150 1,300 140 72 690 <0.2 0.91 <2 2,400</td>
<td></td>
</tr>
<tr>
<td>4/10/2002 Max. 8.08 1,800 29,30 0 260 1,100 1,530 2.30 77.00 7.70 3,170</td>
<td></td>
</tr>
<tr>
<td>Mean 7.24 735 8,969 197 860 1,109 0.58 13.67 3.83 2,804</td>
<td></td>
</tr>
<tr>
<td>MW-3C Min. 7.00 325 50 290 310 340 <0.2 8.13 <2 1,330</td>
<td></td>
</tr>
<tr>
<td>6/19/2008 Max. 7.90 392 110 370 410 385 0.90 13.09 5.10 1,510</td>
<td></td>
</tr>
<tr>
<td>Mean 7.68 353 76 329 365 350 0.54 10.90 5.10 1,398</td>
<td></td>
</tr>
<tr>
<td>MW-4 Min. 7.06 100 50 280 77 100 <0.2 2.55 <1 1,200</td>
<td></td>
</tr>
<tr>
<td>4/11/2002 Max. 8.29 626 240 470 2,220 410 1.80 3.80 75.00 1,900</td>
<td></td>
</tr>
<tr>
<td>Well ID/First Sampling Date</td>
<td>Statistic</td>
<td>pH</td>
<td>Na (mg/L)</td>
<td>Fe (mg/L)</td>
<td>SO4 (mg/L)</td>
<td>Cl (mg/L)</td>
<td>HCO3 (mg/L)</td>
<td>Alk. (mg/L)</td>
<td>NH3 (mg/L)</td>
<td>NO3 N (mg/L)</td>
<td>BOD (mg/L)</td>
<td>TDS (mg/L)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------</td>
<td>----</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>MW-5 4/11/2002</td>
<td>Min.</td>
<td>7.00</td>
<td>490</td>
<td>1,200</td>
<td>260</td>
<td>400</td>
<td>780</td>
<td><0.2</td>
<td><0.1</td>
<td><2</td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>8.79</td>
<td>1,600</td>
<td>3,250</td>
<td>510</td>
<td>740</td>
<td>1,700</td>
<td>1.30</td>
<td>0.84</td>
<td>65.00</td>
<td>4,100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>7.32</td>
<td>658</td>
<td>2,190</td>
<td>355</td>
<td>564</td>
<td>1,246</td>
<td>0.45</td>
<td>0.39</td>
<td>28.10</td>
<td>2,551</td>
<td></td>
</tr>
<tr>
<td>MW-6R 6/12/2007</td>
<td>Min.</td>
<td>7.25</td>
<td>421</td>
<td>2,080</td>
<td>550</td>
<td>650</td>
<td><0.2</td>
<td>0.2</td>
<td>10.40</td>
<td><2</td>
<td>1,630</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>8.01</td>
<td>606</td>
<td>3,500</td>
<td>71</td>
<td>800</td>
<td>600</td>
<td>0.60</td>
<td>17.50</td>
<td><3.9</td>
<td>1,890</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>7.57</td>
<td>553</td>
<td>2,810</td>
<td>49</td>
<td>600</td>
<td>749</td>
<td>0.37</td>
<td>0.15</td>
<td>15.09</td>
<td>1,749</td>
<td></td>
</tr>
<tr>
<td>MW-7 4/12/2002</td>
<td>Min.</td>
<td>7.34</td>
<td>46</td>
<td>290</td>
<td>90</td>
<td>330</td>
<td>190</td>
<td><0.2</td>
<td>3.30</td>
<td><0.84</td>
<td>1,950</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>8.02</td>
<td>600</td>
<td>1,830</td>
<td>1,300</td>
<td>540</td>
<td>320</td>
<td>0.40</td>
<td>8.80</td>
<td>4.20</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>7.70</td>
<td>475</td>
<td>856</td>
<td>878</td>
<td>408</td>
<td>235</td>
<td>0.23</td>
<td>7.87</td>
<td>4.20</td>
<td>2,164</td>
<td></td>
</tr>
<tr>
<td>MW-8 4/12/2002</td>
<td>Min.</td>
<td>7.39</td>
<td>67</td>
<td>1</td>
<td>350</td>
<td>130</td>
<td>230</td>
<td><0.2</td>
<td>5.20</td>
<td><2</td>
<td>1,280</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>7.90</td>
<td>616</td>
<td>350</td>
<td>490</td>
<td>320</td>
<td>280</td>
<td>1.60</td>
<td>18.00</td>
<td>4.40</td>
<td>1,500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>7.61</td>
<td>285</td>
<td>113</td>
<td>403</td>
<td>276</td>
<td>248</td>
<td>0.37</td>
<td>14.12</td>
<td>3.25</td>
<td>1,341</td>
<td></td>
</tr>
<tr>
<td>MW-9R 6/11/2007</td>
<td>Min.</td>
<td>7.40</td>
<td>360</td>
<td>420</td>
<td>500</td>
<td>220</td>
<td>340</td>
<td><0.2</td>
<td>6.70</td>
<td><0.84</td>
<td>1,480</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>8.59</td>
<td>505</td>
<td>4,250</td>
<td>600</td>
<td>270</td>
<td>690</td>
<td>0.80</td>
<td>9.95</td>
<td>1.70</td>
<td>1,590</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>7.88</td>
<td>452</td>
<td>1,627</td>
<td>559</td>
<td>239</td>
<td>407</td>
<td>0.50</td>
<td>8.74</td>
<td>1.70</td>
<td>1,537</td>
<td></td>
</tr>
<tr>
<td>MW-10R 6/11/2007</td>
<td>Min.</td>
<td>7.30</td>
<td>412</td>
<td>1,390</td>
<td>212</td>
<td>420</td>
<td>230</td>
<td><0.2</td>
<td>6.61</td>
<td><0.84</td>
<td>1,440</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>8.91</td>
<td>540</td>
<td>9,720</td>
<td>280</td>
<td>490</td>
<td>780</td>
<td>1.20</td>
<td>14.50</td>
<td>0.00</td>
<td>1,550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>7.81</td>
<td>484</td>
<td>3,531</td>
<td>243</td>
<td>449</td>
<td>531</td>
<td>0.50</td>
<td>7.98</td>
<td>--</td>
<td>1,509</td>
<td></td>
</tr>
<tr>
<td>MW-11 4/11/2002</td>
<td></td>
<td>Well not sampled since 2003 (dry)</td>
</tr>
<tr>
<td>MW-12 4/11/2002</td>
<td>Min.</td>
<td>7.46</td>
<td>369</td>
<td>210</td>
<td>630</td>
<td>510</td>
<td>140</td>
<td><0.2</td>
<td>14.00</td>
<td><1.8</td>
<td>2,060</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>8.48</td>
<td>680</td>
<td>3,230</td>
<td>960</td>
<td>730</td>
<td>2,900</td>
<td>1.40</td>
<td>47.00</td>
<td>4.60</td>
<td>3,100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>7.81</td>
<td>542</td>
<td>1,524</td>
<td>804</td>
<td>600</td>
<td>465</td>
<td>0.49</td>
<td>30.22</td>
<td>3.73</td>
<td>2,353</td>
<td></td>
</tr>
<tr>
<td>MW-13R 6/12/2007</td>
<td>Min.</td>
<td>7.30</td>
<td>444</td>
<td>2,250</td>
<td>23</td>
<td>800</td>
<td>290</td>
<td><0.2</td>
<td>48.00</td>
<td><0.84</td>
<td>1,980</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>8.20</td>
<td>810</td>
<td>5,300</td>
<td>80</td>
<td>1,360</td>
<td>390</td>
<td>1.50</td>
<td>135.0</td>
<td>0</td>
<td>3.90</td>
<td>3,020</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>7.75</td>
<td>617</td>
<td>3,787</td>
<td>38</td>
<td>983</td>
<td>319</td>
<td>0.53</td>
<td>93.88</td>
<td>3.90</td>
<td>2,296</td>
<td></td>
</tr>
<tr>
<td>MW-13C 5/21/2008</td>
<td>Min.</td>
<td>7.40</td>
<td>555</td>
<td>60</td>
<td>580</td>
<td>570</td>
<td>200</td>
<td><0.2</td>
<td>0.02</td>
<td><2</td>
<td>2,300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>7.90</td>
<td>694</td>
<td>120</td>
<td>1,310</td>
<td>760</td>
<td>430</td>
<td>1.00</td>
<td>15.30</td>
<td><2</td>
<td>2,430</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>7.69</td>
<td>613</td>
<td>84</td>
<td>744</td>
<td>685</td>
<td>376</td>
<td>0.55</td>
<td>11.43</td>
<td><2</td>
<td>2,379</td>
<td></td>
</tr>
<tr>
<td>Well ID/First Sampling Date</td>
<td>Statistic</td>
<td>pH (s.u.)</td>
<td>Na (mg/L)</td>
<td>Fe (mg/L)</td>
<td>SO4 (mg/L)</td>
<td>Cl (mg/L)</td>
<td>HCO3 (mg/L)</td>
<td>Alk. (mg/L)</td>
<td>NH3 (mg/L)</td>
<td>NO3 N (mg/L)</td>
<td>BOD (mg/L)</td>
<td>TDS (mg/L)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>MW-14 Min. 11/18/2002</td>
<td></td>
<td>7.13</td>
<td>140</td>
<td>1,870</td>
<td>360</td>
<td>640</td>
<td>210</td>
<td><0.2</td>
<td>34.80</td>
<td><2</td>
<td>2,300</td>
<td></td>
</tr>
<tr>
<td>MW-14 Max. 11/18/2002</td>
<td></td>
<td>8.56</td>
<td>968</td>
<td>5,560</td>
<td>670</td>
<td>1,120</td>
<td>710</td>
<td>1.80</td>
<td>83.00</td>
<td>87.00</td>
<td>3,430</td>
<td></td>
</tr>
<tr>
<td>MW-14 Mean 11/18/2002</td>
<td></td>
<td>7.57</td>
<td>706</td>
<td>3,309</td>
<td>520</td>
<td>942</td>
<td>401</td>
<td>0.46</td>
<td>59.04</td>
<td>50.30</td>
<td>2,916</td>
<td></td>
</tr>
<tr>
<td>MW-15 Min. 11/19/2002</td>
<td></td>
<td>7.30</td>
<td>319</td>
<td>1,340</td>
<td>35</td>
<td>154</td>
<td>530</td>
<td><0.2</td>
<td>6.10</td>
<td><1.3</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>MW-15 Max. 11/19/2002</td>
<td></td>
<td>8.52</td>
<td>588</td>
<td>4,950</td>
<td>280</td>
<td>500</td>
<td>1,200</td>
<td>1.00</td>
<td>25.51</td>
<td>22.00</td>
<td>1,960</td>
<td></td>
</tr>
<tr>
<td>MW-15 Mean 11/19/2002</td>
<td></td>
<td>7.73</td>
<td>415</td>
<td>2,615</td>
<td>120</td>
<td>327</td>
<td>754</td>
<td>0.39</td>
<td>15.35</td>
<td>8.75</td>
<td>1,361</td>
<td></td>
</tr>
<tr>
<td>MW-16 Min. 11/18/2002</td>
<td></td>
<td>6.90</td>
<td>360</td>
<td>750</td>
<td>260</td>
<td>350</td>
<td>710</td>
<td><0.2</td>
<td>0.29</td>
<td><0.2</td>
<td>2,100</td>
<td></td>
</tr>
<tr>
<td>MW-16 Max. 11/18/2002</td>
<td></td>
<td>8.29</td>
<td>770</td>
<td>4,000</td>
<td>470</td>
<td>690</td>
<td>1,900</td>
<td>1.20</td>
<td>18.00</td>
<td>4.40</td>
<td>2,800</td>
<td></td>
</tr>
<tr>
<td>MW-16 Mean 11/18/2002</td>
<td></td>
<td>7.25</td>
<td>611</td>
<td>1,617</td>
<td>378</td>
<td>510</td>
<td>1,327</td>
<td>0.40</td>
<td>5.25</td>
<td>4.40</td>
<td>2,552</td>
<td></td>
</tr>
<tr>
<td>MW-17 Min. 6/17/2005</td>
<td></td>
<td>7.20</td>
<td>458</td>
<td>270</td>
<td>130</td>
<td>260</td>
<td>340</td>
<td><0.2</td>
<td>6.48</td>
<td><1.6</td>
<td>1,900</td>
<td></td>
</tr>
<tr>
<td>MW-17 Max. 6/17/2005</td>
<td></td>
<td>8.41</td>
<td>769</td>
<td>2,160</td>
<td>310</td>
<td>810</td>
<td>900</td>
<td>0.50</td>
<td>31.00</td>
<td>8.60</td>
<td>2,120</td>
<td></td>
</tr>
<tr>
<td>MW-17 Mean 6/17/2005</td>
<td></td>
<td>7.65</td>
<td>613</td>
<td>1,095</td>
<td>228</td>
<td>639</td>
<td>702</td>
<td>0.50</td>
<td>17.60</td>
<td>8.60</td>
<td>2,018</td>
<td></td>
</tr>
<tr>
<td>MW-18 Min. 6/17/2005</td>
<td></td>
<td>7.20</td>
<td>480</td>
<td>4,860</td>
<td>260</td>
<td>490</td>
<td>280</td>
<td><0.2</td>
<td>6.00</td>
<td><1.6</td>
<td>1,600</td>
<td></td>
</tr>
<tr>
<td>MW-18 Max. 6/17/2005</td>
<td></td>
<td>8.81</td>
<td>695</td>
<td>8,100</td>
<td>658</td>
<td>680</td>
<td>1,070</td>
<td>0.35</td>
<td>9.60</td>
<td>2.30</td>
<td>1,980</td>
<td></td>
</tr>
<tr>
<td>MW-18 Mean 6/17/2005</td>
<td></td>
<td>7.76</td>
<td>559</td>
<td>6,433</td>
<td>322</td>
<td>571</td>
<td>662</td>
<td>0.29</td>
<td>7.95</td>
<td>1.85</td>
<td>1,822</td>
<td></td>
</tr>
<tr>
<td>MW-22 Min. 11/16/2006</td>
<td></td>
<td>7.29</td>
<td>318</td>
<td>580</td>
<td>310</td>
<td>300</td>
<td>190</td>
<td><0.2</td>
<td>17.00</td>
<td><1.6</td>
<td>1,390</td>
<td></td>
</tr>
<tr>
<td>MW-22 Max. 11/16/2006</td>
<td></td>
<td>9.00</td>
<td>491</td>
<td>3,580</td>
<td>560</td>
<td>520</td>
<td>930</td>
<td><0.2</td>
<td>41.60</td>
<td>32.00</td>
<td>1,720</td>
<td></td>
</tr>
<tr>
<td>MW-22 Mean 11/16/2006</td>
<td></td>
<td>7.88</td>
<td>414</td>
<td>1,706</td>
<td>421</td>
<td>389</td>
<td>315</td>
<td><0.2</td>
<td>24.34</td>
<td>32.00</td>
<td>1,545</td>
<td></td>
</tr>
<tr>
<td>MW-23 Min. 6/12/2007</td>
<td></td>
<td>7.50</td>
<td>437</td>
<td>630</td>
<td>380</td>
<td>320</td>
<td>410</td>
<td><0.2</td>
<td>20.99</td>
<td><1.3</td>
<td>1,790</td>
<td></td>
</tr>
<tr>
<td>MW-23 Max. 6/12/2007</td>
<td></td>
<td>8.78</td>
<td>630</td>
<td>4,310</td>
<td>450</td>
<td>370</td>
<td>470</td>
<td>0.40</td>
<td>72.46</td>
<td><2</td>
<td>1,960</td>
<td></td>
</tr>
<tr>
<td>MW-23 Mean 6/12/2007</td>
<td></td>
<td>7.97</td>
<td>543</td>
<td>1,760</td>
<td>418</td>
<td>352</td>
<td>441</td>
<td>0.25</td>
<td>41.34</td>
<td><2</td>
<td>1,835</td>
<td></td>
</tr>
<tr>
<td>MW-24 Min. 6/12/2007</td>
<td></td>
<td>6.70</td>
<td>160</td>
<td>930</td>
<td>111</td>
<td>80</td>
<td>250</td>
<td><0.2</td>
<td>14.67</td>
<td><0.84</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>MW-24 Mean 6/12/2007</td>
<td></td>
<td>7.99</td>
<td>192</td>
<td>1,848</td>
<td>118</td>
<td>88</td>
<td>285</td>
<td>0.88</td>
<td>15.83</td>
<td><2</td>
<td>639</td>
<td></td>
</tr>
<tr>
<td>MW-25 Min. 6/12/2007</td>
<td></td>
<td>7.20</td>
<td>1,200</td>
<td>210</td>
<td>1,450</td>
<td>2,700</td>
<td>60</td>
<td>0.20</td>
<td><0.1</td>
<td><0.1</td>
<td>4,400</td>
<td></td>
</tr>
<tr>
<td>MW-25 Max. 6/12/2007</td>
<td></td>
<td>8.11</td>
<td>2,240</td>
<td>1,380</td>
<td>2,750</td>
<td>3,790</td>
<td>110</td>
<td>0.30</td>
<td>0.29</td>
<td>1.80</td>
<td>9,390</td>
<td></td>
</tr>
<tr>
<td>MW-25 Mean 6/12/2007</td>
<td></td>
<td>7.65</td>
<td>1,810</td>
<td>727</td>
<td>1,930</td>
<td>3,482</td>
<td>78</td>
<td>0.24</td>
<td>0.21</td>
<td>1.80</td>
<td>7,972</td>
<td></td>
</tr>
<tr>
<td>MW-26 Min. 5/14/2008</td>
<td></td>
<td>7.50</td>
<td>281</td>
<td>570</td>
<td>129</td>
<td>374</td>
<td>160</td>
<td><0.2</td>
<td>16.30</td>
<td><2</td>
<td>1,140</td>
<td></td>
</tr>
<tr>
<td>MW-26 Max. 5/14/2008</td>
<td></td>
<td>8.00</td>
<td>353</td>
<td>6,720</td>
<td>213</td>
<td>450</td>
<td>600</td>
<td>1.10</td>
<td>21.22</td>
<td>3.10</td>
<td>1,350</td>
<td></td>
</tr>
<tr>
<td>MW-26 Mean 5/14/2008</td>
<td></td>
<td>7.72</td>
<td>305</td>
<td>1,882</td>
<td>151</td>
<td>403</td>
<td>293</td>
<td>0.55</td>
<td>18.35</td>
<td>3.10</td>
<td>1,195</td>
<td></td>
</tr>
</tbody>
</table>
The olive processing facility has discharged wastewater at the site since 1983, when the first WDRs were issued. There are no site-specific data with which to evaluate shallow groundwater quality at the site prior to that date. Although the site is hydrogeologically...
complex, evaluation of local and areal groundwater conditions determined that the background groundwater TDS concentration is 2000 mg/L.

Basin Plan, Beneficial Uses, and Water Quality Objectives

Local surface water drainage is to the Sacramento San Joaquin Delta. The *Water Quality Control Plan for the Sacramento River and San Joaquin River Basins, Fourth Edition* (hereafter Basin Plan) designates beneficial uses, establishes water quality objectives, contains implementation plans and policies for protecting waters of the basin, and incorporates by reference plans and policies adopted by the State Water Resources Control Board. The Basin Plan establishes narrative water quality objectives for chemical constituents, tastes and odors, and toxicity in groundwater. It also sets forth numeric objectives for pH and total coliform organisms.

Antidegradation Analysis

State Water Resources Control Board Resolution No. 68-16 (“Policy with Respect to Maintaining High Quality Waters of the State”) (hereafter Resolution 68-16) prohibits degradation of high quality groundwater unless it has been shown that:

- The degradation is consistent with the maximum benefit to the people of the State;
- The degradation will not unreasonably affect present and anticipated future beneficial uses;
- The degradation does not result in water quality less than that prescribed in state and regional policies, including violation of one or more water quality objectives; and
- The discharger employs best practicable treatment and control (BPTC) to minimize degradation.

Since adoption of the previous WDRs, the Discharger has implemented the following treatment and control measures to control or prevent water quality degradation:

- A long-term water conservation program has reduced the facility’s average water use from approximately 5,100 to 4,000 gallons per ton of olives processed.
- A long-term chemical source reduction/control program has reduced the yearly average FDS concentration of wastewater approximately 2,000 mg/L to 1,450 mg/L. Additionally, the annual FDS mass discharged to the reservoir declined from over 1,300 to 880 tons per year. However, some of this reduction is attributed to crop failures in 2007 and 2008, and the Discharger believes that 1,050 tons per year is a sustainable annual mass loading at full production.
- The Discharger has planted a salt-loving perennial crop at the LAAs and has made efforts to increase the crop coverage to the maximum sustainable coverage. The crop is periodically harvested for use as fodder, thereby removing some salt from the LAAs.

The Discharger has also completed pilot-scale treatment studies and a feasibility study to evaluate other methods of treatment and control for salinity. The alternatives included two-stage reverse osmosis (RO); the “Renewable Energy/Wastewater System” or RENEWS (which
uses heat energy to evaporate high-salinity wastewater and generate electricity); and additional Class II surface impoundments to evaporate wastewater.

The following table summarizes the economic analysis of these alternatives at a consistent FDS removal level of 400 tons per year. This mass removal rate is equivalent to the expected removal achieved by RENEWS at 60,000 gpd (approximately 22 MG per year). An FDS removal level of 400 tons per year is approximately equivalent to a 38 percent reduction of the FDS mass loading allowed by this Order.

<table>
<thead>
<tr>
<th>Feasibility Factor</th>
<th>Reverse Osmosis</th>
<th>RENEWS</th>
<th>Class II Surface Impoundments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tons of FDS Removed per Year</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Resultant FDS Concentration¹</td>
<td>1,400</td>
<td>1,300</td>
<td>1,700</td>
</tr>
<tr>
<td>Volume Treated per Year</td>
<td>20 MG</td>
<td>22 MG</td>
<td>22 MG</td>
</tr>
<tr>
<td>Capital Cost</td>
<td>$3 million</td>
<td>$4 million</td>
<td>$30 million</td>
</tr>
<tr>
<td>Annual O&M Cost</td>
<td>$400,000</td>
<td>-$250,000²</td>
<td>Minimal³</td>
</tr>
<tr>
<td>30-Year Net Present Cost</td>
<td>$12 million</td>
<td>$0²</td>
<td>$30 million</td>
</tr>
<tr>
<td>Cost per Ton of FDS Removed</td>
<td>$1,000</td>
<td>-$200²</td>
<td>$2,000</td>
</tr>
<tr>
<td>Land Area Required</td>
<td>Minimal</td>
<td>Minimal</td>
<td>25 acres</td>
</tr>
</tbody>
</table>

¹ The resultant FDS concentration discharged to the reservoir and LAAs would not be constant due to differences in the volume treated and the volume of treated wastewater discharged to the reservoir.

² For this alternative the annual O&M cost is negative because of the energy savings that would be achieved by generating steam power on-site. Over a 30-year planning horizon, this energy cost savings is expected to pay for the treatment system.

³ The economic analysis provided in the RWD assumed no O&M costs for this alternative. This is a conservative assumption, because O&M costs would increase the net present cost and cost per ton of FDS removed.

Based on this analysis, the RENEWS technology is the most economically feasible alternative to further reduce the mass of salt discharged to the reservoir and LAAs. The Discharger also completed a pilot study of the RENEWS system. The demonstration-scale RENEWS unit successfully reduced the FDS of one of the Discharger’s waste streams to below 100 mg/L. The Discharger will build a 60,000-gpd RENEWS unit, which is expected to be operational in July 2010.

However, the Discharger has not committed to a time schedule for completion of the 60,000-gpd RENEWS system. This Order requires the Discharger to begin operation of the 60,000 gpd RENEWS system or demonstrate that it is infeasible within two years of adoption of this Order.
Additionally, the unlined wastewater treatment/storage reservoir does not incorporate any specific measures to reduce the potential for groundwater degradation. Based on the finding that the wastewater treatment/storage reservoir has not caused unreasonable groundwater degradation or exceedance of a water quality objective, additional measures such as pond lining are not required at this time. However, this Order requires that the Discharger continue groundwater monitoring and re-evaluate groundwater quality annually. The groundwater limitations of this Order do not allow statistically significant increases in concentrations of waste constituents in groundwater. If groundwater monitoring data show that the discharge has violated the groundwater limitations of this Order, this Order may be reopened to add additional requirements that address the violations.

Constituents of concern that have the potential to degrade groundwater include salts (primarily FDS, sodium, and chloride) and nitrogen. The discharge to the wastewater treatment/storage reservoir has degraded groundwater quality and the discharge to the LAAs has the potential to degrade groundwater quality. This Order imposes concentration- and mass-based effluent salinity limits that do not allow a significant increase over the recently achieved sustainable levels cited above and will prevent degradation that exceeds water quality objectives. The FDS limits of this Order are more stringent than those imposed by the CDO and should result in a significant decrease in the chloride concentration of the waste discharged to the LAAs. This Order does not impose separate effluent limits for sodium and chloride because FDS measures the overall salinity and the concentration of individual salinity constituents is expected to be relatively constant. The Discharger will be able to immediately comply with the FDS limits without further treatment or source control.

Groundwater monitoring data includes nitrate concentrations that cannot be fully explained at this time, and may indicate that the past discharges of wastewater to the LAAs has caused significant degradation due to nitrogen. The Discharger has significantly improved operation and management of the LAAs during the past few years. NyPa grass grown at the LAAs should remove most of the nitrogen in the applied wastewater if the Discharger continues the current level of wastewater treatment and maintains adequate crop coverage. Given the soil type and depth to groundwater at the LAAs, subsequent denitrification in the vadose zone is expected to prevent unreasonable groundwater degradation at the LAAs. This Order requires that the Discharger continue to treat the wastewater and maintain adequate crop cover at the LAAs.

This Order does not allow any increase in the volume of waste or the mass of waste constituents discharged. It imposes lower effluent flow limits based on the hydraulic capacity of the existing system, with which the Discharger can comply. This Order is consistent with the Basin Plan and Resolution No. 68-16, which allows some groundwater degradation because economic prosperity of local communities and associated industry is of benefit to the people of California.

This Order establishes terms and conditions of discharge to ensure that the discharge does not unreasonably affect present and anticipated uses of groundwater and includes groundwater limitations that apply water quality objectives established in the Basin Plan to
ORDER NO. R5-2010-0025
MUSCO FAMILY OLIVE COMPANY AND THE STUDLEY COMPANY
WASTEWATER TREATMENT AND LAND DISPOSAL FACILITY
SAN JOAQUIN COUNTY

protect beneficial uses. This Order also establishes effluent limitations that are protective of the beneficial uses of the underlying groundwater and requires periodic re-evaluation of groundwater quality. The Discharger has implemented certain best practicable treatment and control measures to minimize degradation and plans to further minimize potential degradation by operating a 60,000-gpd RENEWS system and increasing the LAA area to include the 11-acre “Checks” area, which has not been used since 2002.

Title 27
The process wastewater treatment and reuse facilities associated with the discharge authorized in this Order may be exempt from the requirements of Title 27 based on the following:

a. The wastewater regulated by this Order is not a hazardous waste.
b. Based on extensive technical studies of the wastewater quality, discharge operations, and site-specific geology and hydrogeology, the discharge authorized by this Order will not cause exceedance of water quality objectives. This Order ensures that discharges from the LAAs comply with the antidegradation policy. Therefore, the discharge to the LAAs is consistent with the Basin Plan and is exempt from Title 27 pursuant to Section 20090, subdivision (b).
c. Groundwater monitoring demonstrates that discharges from the treatment/storage reservoir have not caused underlying groundwater to exceed Basin Plan objectives. This Order ensures that discharges from the reservoir comply with the antidegradation policy. Therefore, the discharge to the treatment/storage reservoir is consistent with the Basin Plan and is exempt from Title 27 pursuant to Section 20090, subdivision (b).

As described in the Order’s findings, additional information is necessary to determine whether the discharge is causing an exceedance of the water quality objective for nitrate. Therefore, the Order includes a time schedule requiring the Discharger to provide the additional evidence necessary to evaluate Title 27 compliance.

California Environmental Quality Act
The Central Valley Water Board adopted a Negative Declaration for this project in 1997. The Negative Declaration described a discharge of 500,000 gpd to 200 acres of cropland at certain waste constituent concentrations. Subsequently, the San Joaquin County Community Development Department adopted a Negative Declaration for construction of the treatment/storage reservoir in 2001. The discharge authorized by this Order is consistent with the Negative Declarations because this Order:

a. Does not authorize expansion of the wastewater treatment/storage reservoir or land application areas.
b. Limits the discharge flow to an equivalent daily flow of no more than 482,000 gpd as a yearly average.
c. Limits the annual FDS loading rate to the LAAs to a loading rate equivalent to the loading rate envisioned in the 1997 Negative Declaration.
Effluent Limitations
As discussed above, the salinity effluent limitations of this Order were developed based on recently achieved sustainable salinity reductions and are consistent with the 1997 CEQA document. Effluent limitations for nitrogen and BOD are consistent with those typically imposed on other discharges of food processing wastewater to protect groundwater quality and prevent nuisance conditions, and the Discharger will be able to immediately comply with these limits:

- The FDS concentration of wastewater discharged from the RST to the wastewater treatment/storage reservoir shall not exceed 2,000 mg/L as a monthly average.
- The mass of FDS discharged from the RST to the wastewater treatment/storage reservoir shall not exceed an annual total of 1,055 tons.
- The maximum total nitrogen loading to the LAAs shall not exceed the agronomic rate for the crop grown.
- The maximum BOD\textsubscript{5} mass loading to each LAA shall not exceed any of the following:
 - 300 lbs/acre on any single day;
 - 100 lbs/acre/day as a 7-day average; and
 - The maximum loading rate that ensures that the discharge will not create a nuisance.

Groundwater Limitations
As discussed above, groundwater beneath the LAAs has not been degraded by the discharge, and groundwater beneath the wastewater treatment storage reservoir has been degraded but the degradation has not cause exceedance of a water quality objective. Additionally, the Discharger has implemented certain best practicable treatment and control measures and plans additional measures in the near future. Therefore, the groundwater limitations of this Order specify that the discharge shall not cause a statistically significant increase in the concentration of the following constituents in groundwater:

- Total dissolved solids;
- Ammonia nitrogen
- Nitrate nitrogen
- Iron;
- Manganese;
- Sodium;
- Chloride;
- Sulfate;
- Total alkalinity; and
- Total hardness.

Additionally, the groundwater limitations implement the numeric water quality objectives for pH and the narrative water quality objectives for chemical constituents, tastes, odors, and toxicity, and do not allow impacts to beneficial uses of groundwater.
Other Requirements
The Provisions require that the Discharger submit the following technical reports:

- A *Groundwater Limitations Compliance Assessment Plan* that specifies the proposed means and methods for the required annual groundwater quality evaluation.

- A *Financial Assurance Report* that documents the financial assurance instrument(s) that the Discharger has created to ensure that funds are available to complete site closure by 30 July 2022.

- A *Financial Assurance Account Annual Update Report* that demonstrates that the Discharger has increased the total amount of financial assurance each year as required.

- A *Sludge Management Plan* that describes periodic evaluation of the impact of sludge accumulation on reservoir storage capacity and a *Sludge Cleanout and Disposal Plan* due prior to any sludge disposal work.

- A *Conceptual Site Closure Plan* that addresses the issues identified the WDRs and provides a more detailed analysis of the Root Zone Salt Displacement and Excavation and Offsite Disposal alternatives, or, if feasible, incorporating the RENEWS system into the site closure.

- A *Supplemental Evaluation of Nitrogen in Groundwater and BPTC Measures Report* that includes a feasibility analysis of alternative treatment and control methods to ensure compliance with the Basin Plan; selection of the preferred treatment/control measures; and a schedule for full implementation of those measures.

- Certification of completion of the 60,000-gpd RENEWS or an *Infeasibility Report* demonstrating that it is not technically or administratively feasible to do so.

- A *Nitrogen BPTC Implementation Report* that documents completion of all treatment, operational and structural controls required pursuant to the approved Supplemental Evaluation of Nitrogen in Groundwater and BPTC Measures Report.

- A *Land Management Plan*, which is only required if the Discharger proposes to graze livestock on the LAAs.

- If there is any exceedance of the Groundwater Limitations, a plan and schedule to come into compliance with the Groundwater Limitations, or a detailed evaluation that demonstrates that the Groundwater Limitations should be revised.

AMENDED 3/24/2010