06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                          | Result           | Reporting<br>L <b>i</b> mit | Units          | Dilution   | Batch      | Pr <b>e</b> pared | Analyzed          | Method      | Notes |
|----------------------------------|------------------|-----------------------------|----------------|------------|------------|-------------------|-------------------|-------------|-------|
| WM5 LGC U/S (CQF0399-01) Water   | Sampled: 06/11   |                             |                | 06/13/07   |            |                   |                   | •           |       |
| Total Alkalinity                 | 47               | . 5.0                       | mg/L           | 1          | CQ04946    | 06/14/07          | 06/14/07          | EPA 310.1   |       |
| Bicarbonate as CaCO3             | · <b>47</b>      | 5.0                         | II             | ti         | u          | н                 | н                 | . 0         |       |
| Carbonate as CaCO3               | ND               | 5.0                         | Ш              | 11         | II         | n                 | 'n                | u           |       |
| Hydroxide as CaCO3               | ND               | 5.0                         | П              | 11         | a          | Ħ                 | , II              | u           | •     |
| Chloride                         | ND               | 0.50                        | Ш              | II.        | CQ05242    | 06/23/07          | 06/24/07          | EPA 300.0   |       |
| Specific Conductance (EC)        | 90               | . 1.0                       | µmhos/cm       | U          | CQ04954    | 06/14/07          | 06/14/07          | EPA 120.1   |       |
| Hexavalent Chromium              | ND               | 10                          | μg/L           | tt .       | CQ04924    | 06/13/07          | 06/13/07          | EPA 7196A   | HT-1  |
| Hexavalent Chromium, Dissolved   | ND               | 10                          | Ш              | lt.        | CQ04948    | 06/14/07          | 06/14/07          | ū           | HT-I  |
| Methylene Blue Active Substances | ND               | 0.10                        | m <b>g/L</b>   | tł .       | CQ04909    | 06/13/07          | 06/13/07          | EPA 425.1   |       |
| Calcium                          | 9.0              | 1.0                         | ш              | 11         | CQ04898    | 06/13/07          | 06/13/07          | 200.7/2340B |       |
| Magnesium                        | 3.8              | 1.0                         | Ш              | u          | 'u         | u                 | Ħ                 | п           |       |
| Potassium .                      | ND               | 1.0                         | à              | Ħ          | u ·        | u                 | \$1               | u           |       |
| Sodium                           | 3.6              | 1.0                         | Ш              | Ħ          | u          | # .               | <b>\$</b> 1       | tt.         |       |
| Hardness as CaCO3                | 38               | 1.0                         | (I '           | Ħ          | u          | . #1              | **                | * (t        |       |
| pH                               | 7.15             | 0.01                        | pH Units       | Ħ          | CQ04901    | 06/13/07          | 06/1 <b>3</b> /07 | EPA 150.1   | HT-1  |
| Sulfate as SO4                   | ND               | 0.50                        | mg/L           |            | CQ05242    | 06/23/07          | 06/24/07          | EPA 300.0   |       |
| Total Dissolved Solids           | 63               | 10                          | u              | 11         | CQ04904    | 06/13/07          | 06/15/07          | EPA 160.1   |       |
| WM3 DC D/S (CQF0399-02) Water S  | Sampled: 06/11/6 | 07 10:10 R                  | eceived: 06    | 6/13/07 08 | 3:43       |                   |                   |             | •     |
| Total Alkalinity                 | 75               | 5.0                         | mg/L           | 1          | CQ04946    | 06/14/07          | 06/14/07          | EPA 310.1   |       |
| Bicarbonate as CaCO3             | 75               | 5.0                         | (t             | n          | (1         | * 11              | 17                | <b>"</b> .  |       |
| Carbonate as CaCO3               | ND               | 5.0                         | u              | 15         | u          | 17                | 17                | n           |       |
| Hydroxide as CaCO3               | ND               | 5.0                         | . 0            | 16         | <b>\$1</b> | 11                |                   | , II        |       |
| Chloride                         | ND               | <b>0</b> .50                | n n            | 11         | CQ05242    | 06/23/07          | 06/24/07          | EPA 300.0   |       |
| Specific Conductance (EC)        | 140              | 1.0                         | μmhos/cm       | li .       | CQ04954    | 06/14/07          | 06/14/07          | EPA 120.1   |       |
| Hexavalent Chromium              | ND               | 10                          | μg/L           | II .       | CQ04924    | 06/13/07          | 06/13/07          | EPA 7196A   | HT-1  |
| Hexavalent Chromium, Dissolved   | ND               | . 10                        |                | н          | CQ04948    | 06/14/07          | 06/14/07          | **          | HT-1  |
| Methylene Blue Active Substances | ND               | 0.10                        | mg/L           | ú          | CQ04909    | 06/13/07          | 06/13/07          | EPA 425.1   | •     |
| Calcium                          | 14               | 1.0                         | Ð              | **         | CQ04898    | 06/13/0,7         | 06/13/07          | 200.7/2340B |       |
| Magnesium                        | 7.6              | 1.0                         | μ              | "          | (I         | "                 | · R               | 11          |       |
| Potassium                        | ND               | 1.0                         | - 10           | **         | . "        | 17                | 97                | 11          |       |
| Sodium                           | . 3.1            | 1.0                         | It             | *1         | Ħ          | fr f              | . 11              | 11 ·        |       |
| Hardness as CaCO3                | 66               | 1.0                         | n<br>1         | 11         | Ħ          | 1r                | 11                | н .         |       |
| pH                               | 7.44             | 0.01                        | pH Units       | 11         | CQ04901    | 06/13/07          | 06/13/07          | EPA 150.1   | HT-1  |
| Sulfate as SO4                   | 1.3              | 0.50                        | m <b>g/</b> L  | u          | CQ05242    | 06/23/07          | 06/24/07          | EPA 300.0   | •     |
| Total Dissolved Solids           | 94               | 10                          | t <sub>f</sub> | n          | CQ04904    | 06/1 <b>3</b> /07 | 06/15/07          | EPA 160.1   |       |
| WM1 PORTAL (CQF0399-03) Water    | Sampled: 06/1    | 1/07 10:30                  | Received:      | 06/13/07   | 08:43      |                   |                   |             | •     |
| Total Alkalinity                 | 58               | 5.0                         | mg/L           | 1          | CQ04946    | 06/14/07          | 06/14/07          | EPA 310.1   |       |
| Bicarbonate as CaCO3             | 58               | 5.0                         |                | п          | U U        | ti .              | 11                | ti .        |       |

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 ·

Project: Walker Mine

Project Number: PCA 13180

CLS Work Order #: CQF0399

Rancho Cordova CA, 95670-6114

Project Manager: Steve Rosenbaum

COC #: 84179-84180

### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                          | Result          | Reporting<br>Limit | Units       | Dilution   | Batch   | Prepared   | Analyzed       | Method      | Notes |
|----------------------------------|-----------------|--------------------|-------------|------------|---------|------------|----------------|-------------|-------|
| WM1 PORTAL (CQF0399-03) Water    | Sampled: 06/1   | 1/07 10:30         | Received:   | 06/13/07   | 08:43   | -          |                |             |       |
| Carbonate as CaCO3               | ND              | 5.0                | mg/L        | 1          | CQ04946 | 06/14/07   | 06/14/07       | EPA 310.1   |       |
| Hydroxide as CaCO3               | ND              | 5.0                | ŧI          | **         | . "     | Ħ          | 11             | · n         |       |
| Chloride                         | 0.58            | 0.50               | Ħ           | 11         | CQ05242 | 06/23/07   | 06/24/07       | EPA 300.0   |       |
| Specific Conductance (EC)        | 110             | 1.0                | μmhos/cm    | #          | CQ04954 | 06/14/07   | 06/14/07       | EPA 120.1   | •     |
| Hexavalent Chromium              | ND              | 10                 | μg/L        | #          | CQ04924 | 06/13/07   | 06/13/07       | EPA 7196A   | HT-   |
| Hexavalent Chromium, Dissolved   | ND              | 10                 | ш           | 11         | CQ04948 | 06/14/07   | 06/14/07       | ш           | HT-   |
| Methylene Blue Active Substances | ND              | 0.10               | mg/L        | 11         | CQ04909 | 06/13/07   | 06/13/07       | EPA 425.1   |       |
| Calcium                          | 12              | 1.0                | ш           | 11         | CQ04898 | 06/13/07   | 06/13/07       | 200.7/2340B |       |
| Magnesium                        | 5.0             | 1.0                | li.         | 11         | II."    | ti ti      | В .            | 11          |       |
| Potassium                        | ND              | 1.0                | 111         | 11         | II      | . "        | Ŋ              | it          |       |
| Sodium                           | 5.3             | 1.0                | tt          | 11         | ц       | II.        | Ŋ              | H           |       |
| Hardness as CaCO3                | 52              | 1.0                | lt.         | 11         | II      | #          | Ü              | <b>11</b>   |       |
| рН                               | 7.20            | 0.01               | pH Units    | н          | CQ04901 | 06/13/07   | 06/13/07       | EPA 150.1   | HT-   |
| Sulfate as SO4                   | 0.84            | 0.50               | mg/L.       | II         | CQ05242 | 06/23/07   | 06/24/07       | EPA 300.0   |       |
| Total Dissolved Solids           | 97              | 10                 | 17          | н          | CQ04904 | 06/13/07   | 06/15/07       | EPA 160.1   |       |
| WM 2 DC U/S (CQF0399-04) Water   | Sampled: 06/11/ | 07 10:30 F         | Received: 0 | 6/13/07 08 | 8:43    |            |                |             |       |
| Total Alkalinity                 | 79              | 5.0                | mg/L        | 1          | CQ04946 | 06/14/07   | 06/14/07       | EPA 310.1   |       |
| Bicarbonate as CaCO3             | 79              | 5.0                | 11          | . "н .     | 11      | . 11       | u .            | II          |       |
| Carbonate as CaCO3               | ND              | 5.0                | 11 - 1      | 11         | Ħ       | 11         | tt .           | li          |       |
| Hydroxide as CaCO3               | ND              | 5.0                | 11          | 97         | lt      | 11 .       | a .            | ų ·         |       |
| Chloride                         | ND              | 0.50               | П           | **         | CQ05242 | 06/23/07   | 06/24/07       | EPA 300.0   | •     |
| Specific Conductance (EC)        | 140             | 1.0                | μmhos/cm    | 17 .       | CQ04954 | 06/14/07   | 06/14/07       | EPA 120.1   |       |
| Hexavalent Chromium              | ND              | 10                 | μg/L        | 15         | CQ04924 | 06/13/07   | 06/13/07       | EPA 7196A   | HT-   |
| Hexavalent Chromium, Dissolved   | ND              | 10                 | (I          | 17         | CQ04948 | 06/14/07   | 06/14/07       | ш ,         | HT-1  |
| Methylene Blue Active Substances | ND              | 0.10               | mg/L        | **         | CQ04909 | 06/13/07   | 06/13/07       | EPA 425.1   |       |
| Calcium                          | 16              | 1.0                | · tr        | II         | CQ04898 | 06/13/07   | 06/13/07       | 200.7/2340B |       |
| Magnesium                        | 8.4             | 1.0                | 11          | II         | II      | ."         | IP             | ш.          |       |
| Potassium                        | ND              | 1.0                | 19          | II         | ţi.     | H          | įŧ             | _ "         |       |
| Sodium                           | 3.1             | 1.0                | 11          | п.,        | 11      | <b>#</b> ( | II             | II.         |       |
| Hardness as CaCO3                | 76              | 1.0                | 19          | n          | 11      | **         | н              | n           |       |
| μΉ                               | 7.67            | 0.01               | pH Units    | Ħ          | CQ04901 | 06/13/07   | 06/13/07       | EPA 150.1   | HT-1  |
| Sulfate as SO4                   | ND              | 0.50               | mg/L        | 11         | CQ05242 | 06/23/07   | 06/24/07       | EPA 300.0   |       |
| Total Dissolved Solids           | 100             | 10                 | ii          | *          | CQ04904 | 06/13/07   | 06/15/07       | EPA 160.1   |       |
| WM4 DC @ 48" CULVERT (CQF039     | 9-05) Water S   | ampled: 06/        | 11/07 12:0  | 0 Receiv   | -       | 7 08:43    |                |             |       |
| Total Alkalinity                 | 72              | 5.0                | mg/L        | 1          | CQ04946 | 06/14/07   | 06/14/07       | EPA 310.1   |       |
| Bicarbonate as CaCO3             | 72              | 5.0                | _           | · п        | H       | t†         | l <del>)</del> | н           |       |
| Carbonate as CaCO3               | ND              | 5.0                | l?          | 31         | Ħ       | 39         | li             | Ħ           |       |
| Hydroxide as CaCO3               | ND              | 5.0                | п           | n, *       | 11      | 11         | ŋ              | 11          | ·     |

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC #: 84179-84180

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                          | Result    | Reporting<br>Limit | Units                | Dilution   | Batch       | Prepared | Analyzed | Method      | Notes |
|----------------------------------|-----------|--------------------|----------------------|------------|-------------|----------|----------|-------------|-------|
| WM4 DC @ 48" CULVERT (CQF0399-   | 05) Water | Sampled: 06/       | 11/07 1 <b>2</b> :00 | Receiv     | ed: 06/13/0 | 07 08:43 |          |             |       |
| Chloride                         | ND        | 0.50               | mg/L                 | 1          | CQ05242     | 06/23/07 | 06/24/07 | EPA 300.0   |       |
| Specific Conductance (EC)        | 140       | 1.0                | µmhos/cm             | **         | CQ04954     | 06/14/07 | 06/14/07 | EPA 120.1   |       |
| Hexavalent Chromium              | ND        | . 10               | μg/L                 | **         | CQ04924     | 06/13/07 | 06/13/07 | EPA 7196A   | HT-1  |
| Hexavalent Chromium, Dissolved   | ND        | 10                 | ц                    | ft.        | CQ04948     | 06/14/07 | 06/14/07 | le '        | HT-1  |
| Methylene Blue Active Substances | ND        | 0.10               | mg/L                 | i,         | CQ04909     | 06/13/07 | 06/13/07 | EPA 425.1   |       |
| Calcium                          | . 15      | 1.0                | 11                   | н .        | CQ04898     | 06/13/07 | n        | 200.7/2340B |       |
| Magnesium                        | 7.8       | 1.0                | 11                   | "          | 11          |          | 11       | If          |       |
| Potassium                        | ND        | 1.0                | II                   | п          | . 11        | Ħ        | **       | Iŧ          |       |
| Sodium                           | 3.3       | 1.0                | И                    | 0          | *1          | n        | n        | п           |       |
| Hardness as CaCO3                | 70        | 1.0                | Ŋ                    | U          | - 11        | tt.      | "        | 10          |       |
| pH                               | 7.70      | 0.01               | pH Units             | 11         | CQ04901     | 06/13/07 | 06/13/07 | EPA 150.1   | HT-1  |
| Sulfate as SO4                   | 1.2       | 0.50               | mg/L                 | . "        | CQ05242     | 06/23/07 | 06/24/07 | EPA 300.0   | •     |
| Total Dissolved Solids           | 98        | 10                 | 11                   | · n        | CQ04904     | 06/13/07 | 06/15/07 | EPA 160.1   |       |
| WM9 LGC @ BC (CQF0399-06) Water  | Sampled:  | 06/11/07 13:00     | Received             | l: 06/13/0 | 7 08:43     | •        |          | ,           |       |
| Total Alkalinity                 | 60        | 5.0                | mg/L                 | 1          | CQ04946     | 06/14/07 | 06/14/07 | EPA 310.1   |       |
| Bicarbonate as CaCO3             | 60        | 5.0                | tr .                 | 11         | • ((        | O.       | 11       | II.         |       |
| Carbonate as CaCO3               | ND        | . 5.0              | IF.                  | sŧ         | u .         | n        | . "      | 11          |       |
| Hydroxide as CaCO3               | ND        | 5.0                | it.                  | tr         | ti<br>•     | · H      | и        | 11          |       |
| Chloride                         | ND        | 0.50               | rt                   | tř         | CQ05242     | 06/23/07 | 06/24/07 | EPA 300.0   | •     |
| Specific Conductance (EC)        | 120       | 1.0                | μmhos/cm             | 11         | CQ04954     | 06/14/07 | 06/14/07 | EPA 120.1   |       |
| Hexavalent Chromium              | ND        | 10                 | μg/L                 | 11         | CQ04924     | 06/13/07 | 06/13/07 | EPA 7196A   | HT-1  |
| Hexavalent Chromium, Dissolved   | ND        | 10                 | ч                    | 12         | CQ04948     | 06/14/07 | 06/14/07 | я           | HT-1  |
| Methylene Blue Active Substances | ND        | 0.10               | mg/L                 | 10         | CQ04909     | 06/13/07 | 06/13/07 | EPA 425.1   |       |
| Calcium                          | 14        | 1.0                | 58                   | 11         | CQ04898     | 06/13/07 | 06/13/07 | 200.7/2340B |       |
| Magnesium                        | 4.6       | 1.0                | ".                   | 17         | #ř          | It       | ¥        | . #         |       |
| Potassium                        | 1.3       | 1.0                | 18                   | 17         | 11          | (t       | 47       | 19          |       |
| Sodium                           | 4.2       | 1.0                | u                    | 11         | 11          | æ.       | . 17     | 14          |       |
| Hardness as CaCO3                | 55        | 1.0                | . #                  | U          | 1)          | tr       | 11       | n           |       |
| pH .                             | 7.77      | 0.01               | pH Units             | 11         | CQ04901     | 06/13/07 | 06/13/07 | EPA 150.1   | HT-1  |
| Sulfate as SO4                   | 4.4       | 0.50               | mg/L                 | . (1       | CQ05242     | 06/23/07 | 06/24/07 | EPA 300.0   |       |
| Total Dissolved Solids           | 89        | 10                 | II .                 | u          | CQ04904     | 06/13/07 | 06/15/07 | EPA 160.1   |       |
| WM6 USFS DAM (CQF0399-07) Water  | Sampled:  | 06/11/07 13:3      | 0 Received           | l: 06/13/0 | 7 08:43     |          |          | _           |       |
| Total Alkalinity                 | 70        | 5.0                | mg/L                 | 1          | CQ04946     | 06/14/07 | 06/14/07 | EPA 310.1   |       |
| Bicarbonate as CaCO3             | 70        | 5.0                | U                    | Œ          | υ.,         | н        | 11       | 'n          |       |
| Carbonate as CaCO3               | ND        | . 5.0              | . "                  | U          | ıı .        | II       | 11       | н           |       |
| Hydroxide as CaCO3               | ND        | 5.0                | ď                    | tt         | Ħ           | 11       | **       | ti          |       |
| Chloride                         | ND        | 0.50               | п ,•                 | ŧı         | CQ05242     | 06/23/07 | 06/24/07 | EPA 300.0   |       |
| Specific Conductance (EC)        | 140       | 1.0                | μmhos/cm             | N          | CQ04954     | 06/14/07 | 06/14/07 | EPA 120.1   |       |
| - , -                            |           |                    |                      |            | -           |          |          |             | *     |

CA DOHS ELAP Accreditation/Registration Number 1233

Result

76

56

ND

ND

ND

120

ND

ND

WM8 LGC D/S DC (CQF0399-09) Water Sampled: 06/11/07 13:40 Received: 06/13/07 08:43 56

10

5.0

5.0

5.0

5.0

0.50

10

10

mg/L

1.0 µmhos/cm

μg/L

06/27/07 15:43

Notes

CRWQCB - Sacramento

Analyte

Total Dissolved Solids

Bicarbonate as CaCO3

Specific Conductance (EC)

Hexavalent Chromium, Dissolved

Carbonate as CaCO3

Hydroxide as CaCO3

Hexavalent Chromium

Total Alkaliuity

Chloride

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project:

Walker Mine

Dilution

Batch

CQ04904

CQ04946

CQ05242

CQ04954

CQ04924

CQ04948

06/13/07

06/14/07

06/23/07

06/14/07

06/13/07

06/14/07

06/15/07

06/14/07

06/24/07

06/14/07

06/13/07

06/14/07

EPA 160.1

EPA 310.1

EPA 300.0

EPA 120.1

EPA 7196A

Project Number: PCA 13180

COC #: 84179-84180

Analyzed

CLS Work Order #: CQF0399

Method

Project Manager: Steve Rosenbaum

Units

Reporting

Limit

### Conventional Chemistry Parameters by APHA/EPA Methods

Prepared

| -                                 |              |              |            |            |            |           |           |             |     |
|-----------------------------------|--------------|--------------|------------|------------|------------|-----------|-----------|-------------|-----|
| WM6 USFS DAM (CQF0399-07) Water   | Sampled: 06/ | 11/07 13:30  | Received   | : 06/13/   | /07 08:43  |           |           |             |     |
| Hexavalent Chromium               | ND           | 10           | μg/L       | 1          | CQ04924    | 06/13/07  | 06/13/07  | EPA 7196A   | HT- |
| Hexavalent Chromium, Dissolved    | ND           | 10           | H          | **         | CQ04948    | 06/14/07  | 06/14/07  | re .        | HT- |
| Methylene Blue Active Substances  | ND           | 0.10         | mg/L       | 10         | CQ04909    | 06/13/07  | 06/13/07  | EPA 425.1   |     |
| Calcium                           | . 16         | 1.0.         | Ш          | 11         | CQ04898    | 06/13/07  | 06/13/07  | 200.7/2340B |     |
| Magnesium                         | 6.9          | 1.0          | tl         | 16         | II         | #f        | н         | lt          |     |
| Potassium                         | ND           | 1.0          | II .       | 11         | II         | **        | 11        | и .         |     |
| Sodium                            | 3.9          | 1.0          | н          | 10         | . #        |           | 11        | н           |     |
| Hardness as CaCO3                 | 69           | 1.0          | Ħ          | 11         | Ħ          | ##        | μ.        | 0.5         |     |
| pH                                | 7.92         | 0.01         | pH Units   | 18         | CQ04901    | 06/13/07  | 06/13/07  | EPA 150.1   | HT- |
| Sulfate as SO4                    | 3.2          | 0.50         | mg/L       | H          | CQ05242    | 06/23/07  | 06/24/07  | EPA 300.0   |     |
| Total Dissolved Solids            | 98           | 10           | Ħ          | Ħ          | CQ04904    | 06/13/07  | 06/15/07  | EPA 160.1   |     |
| WM7 LGC U/S DC (CQF0399-08) Water | Sampled: 06  | 5/11/07 13:4 | lo Receive | d: 06/1    | 3/07 08:43 |           |           |             | •   |
| Fotal Alkalinity                  | 53           | 5.0          | mg/L       | 1          | CQ04946    | 06/14/07  | 06/14/07  | EPA 310.1   |     |
| Bicarbonate as CaCO3              | 53           | 5.0          | П          | 11         | "          | · D       | u         | **          |     |
| Carbonate as CaCO3                | ND           | 5.0          | Ħ          | " '        | 11         | Ŋ         | - н       | **          |     |
| Hydroxide as CaCO3                | ND           | 5.0          | #1         | 11         | 11,        | IÌ .      | <b>11</b> | **          |     |
| Chloride                          | ND           | 0،50         | P          |            | CQ05242    | 06/23/07  | 06/24/07  | EPA 300.0   |     |
| Specific Conductance (EC)         | 110          | 1.0          | μmhos/cm   | JI         | CQ04954    | 06/14/07  | 06/14/07  | EPA 120.1   |     |
| Hexavalent Chromium               | ND           | 10           | μg/L       | IJ         | CQ04924    | 06/13/07  | 06/13/07  | EPA 7196A   | HT  |
| Hexavalent Chromium, Dissolved    | ND           | 10           | П          | ш          | CQ04948    | 06/14/07  | 06/14/07  |             | HT- |
| Methylene Blue Active Substances  | ND           | 0.10         | mg/L       | "          | CQ04909    | 06/13/07  | 06/13/07  | EPA 425.1   | •   |
| Calcium                           | 14           | 1.0          | If         |            | CQ04898    | 06/13/07  | 06/13/07  | 200.7/2340B |     |
| Magnesium .                       | 4.1          | 1.0          | It         | н          | II         | 11        | л,        | **          |     |
| Potassium                         | 1.4          | 1.0          | R          | н          | · п        | Ħ         | 15        | 11          |     |
| Sodium                            | 4.3          | 1.0          | H          | Iŧ         | II         | н         | 13        | 11          |     |
| Hardness as CaCO3                 | 52           | 1.0          | ш          | <b>f</b> 1 | н          | <b>11</b> | ı,        | n           |     |
| PΗ                                | 7.62         | 0.01         | pH Units   | ¢ŧ         | CQ04901    | 06/13/07  | 06/13/07  | EPA 150.1   | HT  |
| Sulfate as SO4                    | 4.7          | 0.50         | mg/L       |            |            | 06/23/07  | 06/24/07  |             |     |

CA DOHS ELAP Accreditation/Registration Number 1233

HT-1

HT-1

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                           | Result     | Reporting<br>Limit | Units     | Dilution   | Batch      | Prepared       | Analyzed          | Method               | Note |
|-----------------------------------|------------|--------------------|-----------|------------|------------|----------------|-------------------|----------------------|------|
| WM8 LGC D/S DC (CQF0399-09) Water | Sampled: ( | 6/11/07 13:        | 40 Receiv | ed: 06/13/ | 07 08:43   | _ <del>-</del> |                   |                      |      |
| Methylene Blue Active Substances  | ND         | 0.10               | mg/L      | 1          | CQ04909    | 06/13/07       | 06/13/07          | EPA 425.1            |      |
| Calcium                           | 14         | 1.0                | **        | **         | CQ04898    | 06/13/07       | 06/13/07          | 200.7/2340B          |      |
| Magnesium                         | 4.6        | 1.0                | . 44      | **         | H          | II             | Ħ                 | n                    |      |
| Potassium                         | 1.3        | 1.0                | 11        | tt         | н.         | II             | H, ·              | II                   |      |
| Sodium                            | 4.1        | 1.0                | * 11      | II .       | #          | , h            | n                 | n.                   |      |
| Hardness as CaCO3                 | 53         | 1.0                | **        | u          | **         | 11             | II                | it ·                 |      |
| pΗ                                | 7.76       | 0.01               | pH Units  | u .        | CQ04901    | 06/13/07       | 06/1 <b>3</b> /07 | EPA 150.1            | HT-  |
| Sulfate as SO4                    | 4.4        | 0.50               | mg/L      | II         | CQ05242    | 06/23/07       | 06/24/07          | EPA 300.0            |      |
| Total Dissolved Solids            | 76         | 10                 | ti        | u          | CQ04904    | 06/13/07       | 06/15/07          | EPA 160.1.           |      |
| WM11 S. BR WARD CK (CQF0399-10) V | Vater Samı | oled: 06/11/0      | 7 14:00   | Received:  | 06/13/07 0 | 8:43           |                   |                      |      |
| Total Alkalinity                  | 20         | 5.0                | mg/L      | 1          | CQ04946    | 06/14/07       | 06/14/07          | EPA 310.1            |      |
| Bicarbonate as CaCO3              | 20         | 5.0                | u         | ij         | *          | n              | ų                 | **                   |      |
| Carbonate as CaCO3                | ND         | 5.0                | u         | ü          | ₩.         | H              | II                | 11                   |      |
| Hydroxide as CaCO3                | ND         | 5.0                | н '       | ū          | ¥f         | 11             | u                 | II.                  |      |
| Chloride                          | 0.51       | 0.50               | , u       | tı         | CQ05242    | 06/23/07       | 06/24/07          | EPA 300.0            |      |
| Specific Conductance (EC)         | 45 -       | 1.0                | μmhos/cm  | 41         | CQ04954    | 06/14/07       | 06/14/07          | EPA 120.1            |      |
| Hexavalent Chromium               | ND         | 10                 | μg/L      | ŧi         | CQ04924    | 06/13/07       | 06/1 <b>3</b> /07 | EPA 7196A            | HT-  |
| Hexavalent Chromium, Dissolved    | ND         | . 10               | Ħ         | a .        | CQ04948    | 06/14/07       | 06/14/07          | II                   | HT-  |
| Methylene Blue Active Substances  | ND         | 0.10               | mg/L      | . "        | CQ04909    | 06/13/07       | 06/13/07          | EPA 425.1            |      |
| Calcium .                         | 4.4        | 1.0                | ţ1        | . 41       | CQ04898    | 06/13/07       | 06/13/07          | 200.7/ <b>2</b> 340B |      |
| Magnesium                         | 1.5        | 1.0                | **        | 11         | II .       | tt             | n                 | "                    |      |
| Potassium                         | ND         | 1.0                | et        | I)         | 0 ,        | **             | . "               | Ħ                    |      |
| Sodium                            | 2.5        | 1.0                | ŧf        | R          | II         | "              | 11                | tt '                 |      |
| Hardness as CaCO3                 | 17         | 1.0                | Ħ         | P ·        | H          | tf .           | II                | πŧ                   |      |
| pH                                | 6.75       | 0.01               | pH Units  | li.        | CQ04901    | 06/13/07       | 06/13/07          | EPA 150.1            | HT-  |
| Sulfate as SO4                    | 0.63       | 0.50               | mg/L      | II         | CQ05242    | 06/23/07       | 06/24/07          | EPA 300.0            |      |
| Total Dissolved Solids            | 36         | 10                 | 11        | II         | CQ04904    | 06/13/07       | 06/15/07          | · EPA 160.1          |      |
| WM12 M. BR WARD CK (CQF0399-11)   | Water San  | pled: 06/11/       | 07 14:10  | Received:  | 06/13/07   | 08:43          |                   |                      |      |
| Total Alkalinity                  | 17         | 5.0                | mg/L      | 1          | CQ04946    | 06/14/07       | 06/14/07          | EPA 310.1            |      |
| Bicarbonate as CaCO3              | 17         | 5.0                | N         | n          | <b>†</b> ‡ | u              | . 11              | 19                   |      |
| Carbonate as CaCO3                | ND         | 5.0                | , "       | 71         | <b>6</b> 1 | 11             | II                | t <del>t</del>       |      |
| Hydroxide as CaCO3                | ND         | 5.0                | u         | 71         | 11         | u              | H                 | . 11                 |      |
| Chloride                          | ND         | 0.50               | u         | Ħ          | CQ05242    | 06/23/07       | 06/24/07          | EPA 300.0            |      |
| Specific Conductance (EC)         | 35         | 1.0                | μmhos/cm  | 11         | CQ04954    | 06/14/07       | 06/14/07          | EPA 120.1            |      |
| Hexavalent Chromium               | ND         | 10                 | μg/L      | )r         | CQ04924    | 06/13/07       | 06/13/07          | EPA 7196A            | HT-  |
| Hexavalent Chromium, Dissolved    | ND         | 10                 | 13        | n          | CQ04948    | 06/14/07       | 06/14/07          | 19                   | HT-  |
| Methylene Blue Active Substances  | ND         | 0.10               | mg/L      | n          | CQ04909    | 06/13/07       | 06/13/07          | EPA 425.1            | •    |
| Calcium                           | 3.2        | 1.0                | n         | 10         | CQ04898    | 06/13/07       | 06/13/07          | 200.7/2340B          |      |

CA DOHS ELAP Accreditation/Registration Number 1233

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

CLS Work Order #: CQF0399

Project Number: PCA 13180 Project Manager: Steve Rosenbaum

COC#: 84179-84180

### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                          | Result         | Reporting<br>Limit | Units     | Dilution   | Batch       | Prepared   | Analyzed          | Method      | Notes |
|----------------------------------|----------------|--------------------|-----------|------------|-------------|------------|-------------------|-------------|-------|
| WM12 M. BR WARD CK (CQF0399-1    | 1) Water Samp  | oled: 06/11/       | 07 14:10  | Received   | 06/13/07    | 08:43      |                   |             |       |
| Magnesium                        | 1.6            | 1.0                | mg/L      | 1          | CQ04898     | 06/13/07   | 06/13/07          | 200.7/2340B |       |
| Potassium                        | ND .           | 1.0                | 1)        | н          | ti .        | 17         | (1                | . "         |       |
| Sodium                           | 1.3            | 1.0                | . 11      | н          | (I          | H          | . "               | n           |       |
| Hardness as CaCO3                | 15             | 1.0                | **        | н          | U           | I†         | lt.               | 11          |       |
| pH                               | 5.90           | 0.01.              | •         | н          | CQ04901     | 06/13/07   | 06/13/07          | BPA 150.1   | HT-1  |
| Sulfate as SO4                   | 0.51           | 0.50               | mg/L      | +1         | CQ05242     | 06/23/07   | 06/24/07          | EPA 300.0   |       |
| Total Dissolved Solids           | 21             | 10                 | 11        | #1         | CQ04904     | 06/13/07   | 06/1 <i>5</i> /07 | EPA 160.1   |       |
| WM13 NYE CK (CQF0399-12) Water   | Sampled: 06/11 | l/07 14:20         | Received  | : 06/13/07 | 08:43       |            |                   |             |       |
| Total Alkalinity                 | · <b>53</b>    | 5.0                | mg/L      | 1          | CQ04946     | 06/14/07   | 06/14/07          | EPA 310.Į   |       |
| Bicarbonate as CaCO3             | 53             | 5.0                | If        | 11         | И           | ш          | II                | ' . n       |       |
| Carbonate as CaCO3               | ND             | 5.0                | II        | 11         | Ð           | ш          | ti                | · tr        |       |
| Hydroxide as CaCO3               | ND             | 5.0                | II        | 11         | н           | н          | II.               | 10          |       |
| Chloride                         | ND             | 0.50               | 11        | U          | CQ05242     | 06/23/07   | 06/24/07          | EPA 300.0   |       |
| Specific Conductance (EC)        | . 96           | 1.0                | μmhos/cm  |            | CQ04954     | 06/14/07   | 06/14/07          | EPA 120.1   |       |
| Hexavalent Chromium              | ND             | 10                 | μg/L      | (1         | CQ04924     | 06/13/07   | 06/13/07          | EPA 7196A   | HT-1  |
| Hexavalent Chromium, Dissolved   | ND             | 10                 | n         | u          | CQ04948     | 06/14/07   | 06/14/07          | ıt          | HT-1  |
| Methylene Blue Active Substances | ND             | 0.10               | mg/L      | II         | CQ04909     | 06/13/07   | 06/13/07          | BPA 425.1   |       |
| Calcium                          | 11             | 1.0                | "         | H          | CQ04898     | 06/13/07   | 06/13/07          | 200.7/2340B |       |
| Magnesium                        | 4.8            | 1.0                | <b>.</b>  | 11         | 41          | H          | . 20              | **          |       |
| Potassium                        | ND             | 1.0                | и .       | 11         | Ħ           | lt.        | 11                | Ħ           |       |
| Sodium                           | 2.7            | 1.0                | 21        | 11         | ėr –        | II         | 11                | и .         |       |
| Hardness as CaCO3                | 47             | 1.0                | 11        | 1î         | <b>47</b> . | n          | 11                | и           |       |
| pH                               | 7.24           | 0.01               | pH Units  | 13         | CQ04901     | 06/13/07   | 06/13/07          | EPA 150.1   | HT-1  |
| Sulfate as SO4                   | ND             | 0.50               | mg/L      | II         | CQ05242     | . 06/23/07 | .06/24/07         | EPA 300.0   |       |
| Total Dissolved Solids           | 70             | 10                 | ır '      | II         | CQ04904     | 06/13/07   | 06/15/07          | EPA 160.1   | •     |
| WM17 N. BR WARD CK (CQF0399-13   | 3) Water Samp  | led: 06/11/        | 07 14:30  | Received:  | 06/13/07 (  | )8:43      |                   |             |       |
| Total Alkalinity                 | 80             | 5.0                | mg/L      | 1          | CQ04946     | 06/14/07   | 06/14/07          | EPA 310.1   |       |
| Bicarbonate as CaCO3             | 80             | 5.0                | ` +1      | \$7        | 11          | II         | # .               | 11          |       |
| Carbonate as CaCO3               | ND             | 5.0                | . 11      | 19         | 11          | . "        | ď                 | ii ' '      |       |
| Hydroxide as CaCO3               | ND             | 5.0                | 11        | n          | p           | u          | II                | II.         |       |
| Chloride                         | 0.51           | 0.50               | 11        | II         | CQ05242     | 06/23/07   | 06/24/07          | EPA 300.0   |       |
| Specific Conductance (EC)        | 160            | 1.0                | μmhos/cm  | tı         | CQ04954     | 06/14/07   | 06/14/07          | EPA 120.1   |       |
| Hexavalent Chromium              | ND             | 10                 | μg/L      | 17         | CQ04924     | 06/13/07   | 06/13/07          | EPA 7196A   | HT-1  |
| Hexavalent Chromium, Dissolved   | ND             | 10                 | <b>#1</b> | It         | CQ04948     | 06/14/07   | 06/14/07          | tt          | HT-1  |
| Methylene Blue Active Substances | ND             | 0.10               | mg/L      | R          | CQ04909     | 06/13/07   | 06/13/07          | EPA 425.1   |       |
| Calcium                          | 18             | 1.0                | 11        | Œ          | CQ04898     | 06/13/07   | 06/13/07          | 200.7/2340B |       |
| Magnesium                        | 7.7            | 1.0                | ш         | ti         | U ,         | lt.        | 11                | 11          |       |
| Potassium                        | 1.7            | 1.0                | 11        | 11         | u '         |            | H                 | tt          |       |

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114 ·

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                          | Result       | Reporting<br>Limit | Units        | Dilution   | Batch      | Prepared  | Analyzed                                | Method      | Notes |
|----------------------------------|--------------|--------------------|--------------|------------|------------|-----------|-----------------------------------------|-------------|-------|
| WM17 N. BR WARD CK (CQF0399-13   |              |                    |              |            |            | -         | ,                                       |             |       |
|                                  | •            |                    |              |            |            |           |                                         |             |       |
| Sodium                           | 3.8          | 1.0                | mg/L         | 1          | CQ04898    | 06/13/07  | 06/13/07                                | 200,7/2340B | •     |
| Hardness as CaCO3                | 77           | 1.0                |              |            |            |           |                                         |             |       |
| pH                               | 7.81         | 0.01               | •            | ht<br>ri   | CQ04901    | 06/13/07  | 06/13/07                                | EPA 150.1   | HT-I  |
| Sulfate as SO4                   | 0.53         | 0.50               | mg/L         | , 11       | CQ05242    | 06/23/07  | 06/24/07                                | EPA 300.0   | •     |
| Total Dissolved Solids           | 100          | 10                 |              |            | CQ04904    | 06/13/07  | 06/15/07                                | EPA 160.1   |       |
| WM18 N.B. WARD CK (CQF0399-14)   | Water Samp   | led: 06/11/07      | 15:10 R      | eceived: 0 | 6/13/07 08 | :43       |                                         |             |       |
| Total Alkalinity                 | 82           | 5.0                | mg/L         | ĺ          | CQ04946    | 06/14/07  | 06/14/07                                | EPA 310.1   |       |
| Bicarbonate as CaCO3             | 82           | 5.0                | ti           | 11         | **         | 11        | 47                                      | 19          |       |
| Carbonate as CaCO3               | ND           | 5.0                | . , 0        | 11         | le .       | Ħ         | it,                                     | 13          |       |
| Hydroxide as CaCO3               | ND           | 5.0                | 11           | 11         | it it      | 11        | ii.                                     | • и г       |       |
| Chloride                         | 0.51         | 0.50               | II           | 11         | CQ05242    | 06/23/07  | 06/24/07                                | EPA 300.0   |       |
| Specific Conductance (EC)        | 160          | 1.0                | μmhos/cm     | 11         | CQ04954    | 06/14/07  | 06/14/07                                | EPA 120.1   |       |
| Hexavalent Chromium              | ND           | 10                 | $\mu$ g/ $L$ | 111        | CQ04924    | 06/13/07. | 06/13/07                                | EPA 7196A   | HT-1  |
| Hexavalent Chromium, Dissolved   | ND           | 10                 | II           | it ·       | CQ04948    | 06/14/07  | 06/14/07                                | p           | HT-1  |
| Methylene Blue Active Substances | ND           | 0.10               | mg/L         | II         | CQ04909    | 06/13/07  | 06/13/07                                | EPA 425.1   |       |
| Calcium                          | 19           | 1.0                | II           | 11         | CQ04898    | 06/13/07  | 06/13/07                                | 200.7/2340B |       |
| Magnesium                        | 7.6          | 1.0                | . "          | **         | **         | 11        | U                                       | п           |       |
| Potassium                        | 1.9          | 1.0                | 11           | 11         | **         | 11        | <b>ү</b> н                              | n           |       |
| Sodium                           | .4.2         | 1.0                | 0 '          | 11         | ıt.        | Ħ         | ŧI.                                     | Ιţ          |       |
| Hardness as CaCO3                | 78           | 1.0                | <b>H</b> ·   | 47         | 11         | 19        | 11                                      | п           |       |
| $\mathbf{p}\mathbf{H}$           | 7 <b>.91</b> | 0.01               | pH Units     | 17         | CQ04901    | 06/13/07  | 06/13/07                                | EPA 150.1   | HT-I  |
| Sulfate as SO4                   | 0.60         | 0.50               | mg/L         | 47         | CQ05242    | 06/23/07  | 06/24/07                                | EPA 300.0   |       |
| Total Dissolved Solids           | 97           | 10                 | ti           | 17         | CQ04904    | 06/13/07  | 06/15/07                                | EPA 160.1   |       |
| WM16 NYE CK 25N32Y (CQF0399-15   | ) Water Sam  | pled: 06/11/0      | 7 15:40      | Received:  | 06/13/07 0 | 8:43      |                                         |             |       |
| Total Alkalinity .               | 76           | 5.0                | mg/L         | 1          | CQ04946    | 06/14/07  | 06/14/07                                | EPA 310.1   |       |
| Bicarbonate as CaCO3             | 76           | 5.0                | #f           | I.         | п          | I)        | · • • • • • • • • • • • • • • • • • • • | п           |       |
| Carbonate as CaCO3               | ND           | 5.0                | 11           | , 0        |            | ı ı       | #†                                      | p           |       |
| Hydroxide as CaCO3               | ND           | 5.0                | ar .         | D          | . 11       | · " ,     | 41                                      | n           |       |
| Chloride ·                       | ND           | 0.50               | ll.          | n          | CQ05242    | 06/23/07  | 06/24/07                                | EPA 300.0   |       |
| Specific Conductance (EC)        | 140          | 1.0                | μmhos/cm     | II         | CQ04954    | 06/14/07  | 06/14/07                                | EPA 120.1   |       |
| Hexavalent Chromium              | ND           | 10                 | μg/L         | 0          | CQ04924    | 06/13/07  | 06/13/07                                | EPA 7196A   | HT-1  |
| Hexavalent Chromium, Dissolved   | ND           | 10                 | 0            | 11         | CQ04948    | 06/14/07  | 06/14/07                                | 11          | HT-1  |
| Methylene Blue Active Substances | ND           | 0.10               | mg/L         | 11         | CQ04909    | 06/13/07  | 06/13/07                                | EPA 425.1   |       |
| Calcium                          | 16           | 1.0                | "            | 11         | CQ04898    | 06/13/07  | 06/13/07                                | 200.7/2340B |       |
| Magnesium                        | 6.7          | 1.0                | n .          | . 11       | 11         | и         | 11                                      | 11          |       |
| Potassium                        | 1.1          | 1.0                | *1           | . 11       | 'n         | 11        | 11                                      | 0           |       |
| Sodium                           | 3.3          | 1.0                | <b>1</b> 1   | 19         | II         | и         | 1)                                      | u           |       |
| Hardness as CaCO3                | 68           | 1.0                | şi           | 1)         | ıt         | л '       | п                                       | 11          |       |
| Liai uness no cacos              |              | 1.0                |              |            |            |           |                                         |             | ٠.    |

06/27/07 15:43

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 20

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                                                                                                                                                                                                                               | Result                                                                    | Reporting<br>Limit                                                  | Units                                                                                               | Dilution                             | Batch                                                                             | Prepared                                                                       | Analyzed                                                             | Method                                                               | Notes        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------|
| WM16 NYE CK 25N32Y (CQF0399-                                                                                                                                                                                                          | 15).Water Sample                                                          | d: 06/11/0                                                          | 7 15:40                                                                                             | Received:                            | 06/13/07 0                                                                        | 8:43                                                                           |                                                                      |                                                                      |              |
| pH                                                                                                                                                                                                                                    | 7.84                                                                      | 0.01                                                                | pH Units                                                                                            | 1                                    | CQ04901                                                                           | 06/13/07                                                                       | 06/13/07                                                             | EPA 150.1                                                            | HT-1         |
| Sulfate as SO4                                                                                                                                                                                                                        | · ND                                                                      | 0.50                                                                | mg/L                                                                                                | 11                                   | CQ05242                                                                           | 06/23/07                                                                       | 06/24/07                                                             | EPA 300.0                                                            |              |
| Total Dissolved Solids                                                                                                                                                                                                                | 89                                                                        | 10                                                                  | 77                                                                                                  | 11                                   | CQ04904                                                                           | 06/13/07                                                                       | 06/15/07                                                             | EPA 160.1                                                            |              |
| WM15 M. BR WARD CK 25N32Y (C                                                                                                                                                                                                          | CQF0399-16) Water                                                         | Sample                                                              | d: 06/11/0                                                                                          | 7 15:50                              | Received: 0                                                                       | 06/1 <u>3/07</u> 08                                                            | :43                                                                  |                                                                      |              |
| Total Alkalinity                                                                                                                                                                                                                      | 70                                                                        | 5.0                                                                 | mg/L                                                                                                | 1                                    | CQ04946                                                                           | 06/14/07                                                                       | 06/14/07                                                             | EPA 310.1                                                            |              |
| Bicarbonate as CaCO3                                                                                                                                                                                                                  | 70                                                                        | 5.0                                                                 | 11 .                                                                                                | u                                    | * # · · · ·                                                                       | 47                                                                             | н                                                                    |                                                                      | •            |
| Carbonate as CaCO3                                                                                                                                                                                                                    | ND                                                                        | 5.0                                                                 | 11                                                                                                  | п                                    | **                                                                                | If                                                                             | Ħ                                                                    | tr.                                                                  |              |
| Hydroxide as CaCO3                                                                                                                                                                                                                    | ND                                                                        | 5.0                                                                 | **                                                                                                  | , п                                  | **                                                                                | . 11                                                                           | #                                                                    | H                                                                    |              |
| Chloride                                                                                                                                                                                                                              | 0.50                                                                      | 0.50                                                                | **                                                                                                  | п                                    | CQ05242                                                                           | 06/23/07                                                                       | 06/24/07                                                             | EPA 300.0                                                            |              |
| Specific Conductance (EC)                                                                                                                                                                                                             | 130                                                                       | 1.0                                                                 | μmhos/cm                                                                                            | В                                    | CQ04954                                                                           | 06/14/07                                                                       | 06/14/07                                                             | EPA 120.1                                                            |              |
| Hexavalent Chromium                                                                                                                                                                                                                   | ND                                                                        | 10                                                                  | μg/L                                                                                                | . "                                  | CQ04924                                                                           | 06/13/07                                                                       | 06/13/07                                                             | EPA 7196A                                                            | HT-1         |
| Hexavalent Chromium, Dissolved                                                                                                                                                                                                        | ND                                                                        | 10                                                                  | 19                                                                                                  | н .                                  | CQ04948                                                                           | 06/14/07                                                                       | 06/14/07                                                             | **                                                                   | HT-1         |
| Methylene Blue Active Substances                                                                                                                                                                                                      | ND                                                                        | 0.10                                                                | mg/L                                                                                                | 11                                   | CQ04909                                                                           | 06/13/07                                                                       | 06/13/07                                                             | EPA 425.1                                                            |              |
| Calcium                                                                                                                                                                                                                               | 15                                                                        | 1.0                                                                 | u                                                                                                   | 1)                                   | CQ04898                                                                           | 06/13/07                                                                       | 06/13/07                                                             | 200.7/2340B                                                          |              |
| Magnesium                                                                                                                                                                                                                             | 6.2                                                                       | 1.0                                                                 | ш                                                                                                   | **                                   | II                                                                                | u ·                                                                            | **                                                                   | **                                                                   |              |
| Potassium                                                                                                                                                                                                                             | 1.2                                                                       | .1.0                                                                | н                                                                                                   | 11                                   | . 1 "                                                                             | II                                                                             | 11                                                                   | et e                                                                 |              |
| Sodium                                                                                                                                                                                                                                | 3.2                                                                       | 1.0                                                                 | tt                                                                                                  | "                                    | II                                                                                | II                                                                             | I)                                                                   | n                                                                    |              |
| Hardness as CaCO3                                                                                                                                                                                                                     | 63                                                                        | 1.0                                                                 | <b>91</b>                                                                                           | 11                                   | II                                                                                | u                                                                              | 19                                                                   | 11                                                                   |              |
| рН                                                                                                                                                                                                                                    | 7.92                                                                      | 0.01                                                                | pH Units                                                                                            | 11                                   | CQ04901                                                                           | 06/13/07                                                                       | 06/13/07                                                             | EPA 150.1                                                            | HT-1         |
| Sulfate as SO4                                                                                                                                                                                                                        | ND                                                                        | 0.50                                                                | mg/L                                                                                                | . 11                                 | CQ05242                                                                           | 06/23/07                                                                       | 06/24/07                                                             | EPA 300.0                                                            |              |
| Total Dissolved Solids                                                                                                                                                                                                                | 82                                                                        | 10                                                                  | 11                                                                                                  | 11                                   | CQ04904                                                                           | 06/13/07                                                                       | 06/15/07                                                             | EPA 160.1                                                            |              |
|                                                                                                                                                                                                                                       |                                                                           |                                                                     |                                                                                                     |                                      |                                                                                   |                                                                                | 42 .                                                                 |                                                                      |              |
| WM14 S. BR WARD CK 25N32Y (C                                                                                                                                                                                                          | QF0399-17) Water                                                          | Sampled                                                             | I: 06/11/0'                                                                                         | 7 16:00 I                            | keceived: 0                                                                       | 6/13/07 08:                                                                    | 43                                                                   |                                                                      |              |
| <del></del>                                                                                                                                                                                                                           | QF0399-17) Water                                                          | Sampled                                                             | ng/L                                                                                                | 7 16:00 I                            | CQ04946                                                                           | 6/13/07 08:<br>06/14/07                                                        | .06/14/07                                                            | EPA 310.1                                                            | <u> </u>     |
| Total Alkalinity                                                                                                                                                                                                                      |                                                                           |                                                                     |                                                                                                     |                                      | CQ04946                                                                           | <del> </del>                                                                   |                                                                      | EPA 310.1                                                            |              |
| Total Alkalinity<br>Bicarbonate as CaCO3                                                                                                                                                                                              | 92                                                                        | -5.0                                                                | mg/L                                                                                                | 1                                    | CQ04946                                                                           | 06/14/07                                                                       | .06/14/07                                                            |                                                                      |              |
| Total Alkalinity Bicarbonate as CaCO3 Carbonate as CaCO3                                                                                                                                                                              | 92<br>92                                                                  | · 5.0<br>5.0                                                        | mg/L                                                                                                | 1                                    | CQ04946                                                                           | 06/14/07                                                                       | .06/14/07                                                            | II                                                                   |              |
| Total Alkalinity<br>Bicarbonate as CaCO3<br>Carbonate as CaCO3<br>Hydroxide as CaCO3                                                                                                                                                  | 92<br>92<br>ND                                                            | · 5.0<br>5.0<br>5.0                                                 | mg/L<br>"                                                                                           | 1<br>                                | CQ04946                                                                           | 06/14/07                                                                       | .06/14/07<br>n                                                       | II II                                                                |              |
| Total Alkalinity<br>Bicarbonate as CaCO3<br>Carbonate as CaCO3<br>Hydroxide as CaCO3<br>Chloride                                                                                                                                      | 92<br>92<br>ND<br>ND                                                      | 5.0<br>5.0<br>5.0<br>5.0                                            | mg/L<br>"                                                                                           | 1<br>11<br>11<br>11                  | CQ04946                                                                           | 06/14/07                                                                       | 06/14/07<br>ห<br>ห                                                   | H H                                                                  |              |
| Total Alkalinity Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 Chloride Specific Conductance (EC)                                                                                                                        | 92<br>92<br>ND<br>ND<br>0.50                                              | 5.0<br>5.0<br>5.0<br>5.0<br>0.50                                    | mg/L<br>"<br>"<br>"<br>"<br>µmhos/cm                                                                | 1<br>11<br>11<br>11                  | CQ04946<br>""<br>"<br>"<br>CQ05242                                                | 06/14/07 " " " 06/23/07                                                        | 06/14/07<br>"<br>"<br>"<br>06/24/07                                  | "<br>"<br>EPA 300.0                                                  | HT-1         |
| Total Alkalinity Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 Chloride Specific Conductance (EC) Hexavalent Chromium                                                                                                    | 92<br>92<br>ND<br>ND<br>0.50<br>180                                       | 5.0<br>5.0<br>5.0<br>5.0<br>0.50<br>1.0                             | mg/L<br>n                                                                                           | 1<br>11<br>11<br>11                  | CQ04946<br>""<br>"CQ05242<br>CQ04954<br>CQ04924                                   | 06/14/07<br>"<br>"<br>"<br>06/23/07<br>06/14/07                                | 06/14/07<br>"<br>"<br>"<br>06/24/07<br>06/14/07                      | BPA 300.0<br>EPA 120.1                                               | HT-1<br>HT-1 |
| Total Alkalinity Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 Chloride Specific Conductance (EC) Hexavalent Chromium Hexavalent Chromium, Dissolved                                                                     | 92<br>92<br>ND<br>ND<br>0.50<br>180<br>ND                                 | 5.0<br>5.0<br>5.0<br>5.0<br>0.50<br>1.0                             | mg/L<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>" | 1                                    | CQ04946<br>"<br>"<br>"<br>CQ05242<br>CQ04954                                      | 06/14/07<br>"<br>"<br>"<br>06/23/07<br>06/14/07<br>06/13/07<br>06/14/07        | 06/14/07<br>06/24/07<br>06/14/07<br>06/13/07                         | "<br>EPA 300.0<br>EPA 120.1<br>EPA 7196A                             |              |
| Total Alkalinity Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 Chloride Specific Conductance (EC) Hexavalent Chromium, Dissolved Methylene Blue Active Substances                                                        | 92<br>92<br>ND<br>ND<br>0.50<br>180<br>ND                                 | 5.0<br>5.0<br>5.0<br>5.0<br>0.50<br>1.0<br>10                       | mg/L<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>" | 1<br><br><br><br><br>                | CQ04946<br>""<br>"<br>CQ05242<br>CQ04954<br>CQ04924<br>CQ04948                    | 06/14/07<br>"<br>"<br>"<br>06/23/07<br>06/14/07<br>06/13/07<br>06/14/07        | 06/14/07<br>06/24/07<br>06/14/07<br>06/13/07<br>06/14/07             | "<br>EPA 300.0<br>EPA 120.1<br>EPA 7196A                             |              |
| Total Alkalinity Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 Chloride Specific Conductance (EC) Hexavalent Chromium Hexavalent Chromium, Dissolved Methylene Blue Active Substances Calcium                            | 92<br>92<br>ND<br>ND<br>0.50<br>180<br>ND<br>ND                           | 5.0<br>5.0<br>5.0<br>5.0<br>0.50<br>1.0<br>10<br>0.10               | mg/L " "  µmhos/cm µg/L "  mg/L                                                                     | 1<br><br><br><br>                    | CQ04946<br>""<br>"CQ05242<br>CQ04954<br>CQ04924<br>CQ04909                        | 06/14/07<br>"<br>"<br>"<br>06/23/07<br>06/14/07<br>06/13/07                    | 06/14/07<br>06/24/07<br>06/14/07<br>06/13/07<br>06/13/07             | " EPA 300.0 EPA 120.1 EPA 7196A " EPA 425.1                          |              |
| Total Alkalinity Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 Chloride Specific Conductance (EC) Hexavalent Chromium Hexavalent Chromium, Dissolved Methylene Blue Active Substances Calcium Magnesium                  | 92<br>92<br>ND<br>ND<br>0.50<br>180<br>ND<br>ND<br>ND                     | 5.0<br>5.0<br>5.0<br>5.0<br>0.50<br>1.0<br>10<br>10<br>0.10         | mg/L  "  µmhos/cm  µg/L  "  mg/L  "                                                                 | 1<br>1<br>10<br>10<br>10<br>10<br>11 | CQ04946<br>""<br>"CQ05242<br>CQ04954<br>CQ04924<br>CQ04948<br>CQ04909"<br>CQ04898 | 06/14/07<br>"<br>"<br>"<br>06/23/07<br>06/14/07<br>06/13/07<br>06/13/07        | 06/14/07<br>06/24/07<br>06/14/07<br>06/13/07<br>06/13/07<br>06/13/07 | EPA 300.0<br>EPA 120.1<br>EPA 7196A<br>"<br>EPA 425.1<br>200.7/2340B |              |
| Total Alkalinity Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 Chloride Specific Conductance (EC) Hexavalent Chromium Hexavalent Chromium, Dissolved Methylene Blue Active Substances Calcium Magnesium                  | 92<br>92<br>ND<br>ND<br>0.50<br>180<br>ND<br>ND<br>ND<br>ND<br>31<br>2.9  | 5.0<br>5.0<br>5.0<br>5.0<br>0.50<br>1.0<br>10<br>10<br>0.10<br>1.0  | mg/L "  µmhos/cm µg/L " mg/L "                                                                      |                                      | CQ04946 " " CQ05242 CQ04954 CQ04924 CQ04948 CQ04909 CQ04898                       | 06/14/07<br>"<br>"<br>06/23/07<br>06/14/07<br>06/13/07<br>06/13/07<br>06/13/07 | 06/14/07<br>06/24/07<br>06/14/07<br>06/13/07<br>06/13/07<br>06/13/07 | EPA 300.0<br>EPA 120.1<br>EPA 7196A<br>"<br>EPA 425.1<br>200.7/2340B |              |
| Total Alkalinity Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 Chloride Specific Conductance (EC) Hexavalent Chromium Hexavalent Chromium, Dissolved Methylene Blue Active Substances Calcium Magnesium Potassium        | 92<br>92<br>ND<br>ND<br>0.50<br>180<br>ND<br>ND<br>ND<br>ND<br>31<br>2.9  | 5.0<br>5.0<br>5.0<br>0.50<br>1.0<br>10<br>10<br>0.10<br>1.0<br>1.0  | mg/L "  µmhos/cm µg/L " mg/L "                                                                      | 1                                    | CQ04946 "" " " CQ05242 CQ04954 CQ04924 CQ04948 CQ04909 CQ04898                    | 06/14/07<br>"<br>"<br>06/23/07<br>06/14/07<br>06/13/07<br>06/13/07<br>06/13/07 | 06/14/07<br>"<br>"<br>06/24/07<br>06/14/07<br>06/13/07<br>06/13/07   | EPA 300.0<br>EPA 120.1<br>EPA 7196A<br>"<br>EPA 425.1<br>200.7/2340B |              |
| Total Alkalinity Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 Chloride Specific Conductance (EC) Hexavalent Chromium Hexavalent Chromium, Dissolved Methylene Blue Active Substances Calcium Magnesium Potassium Sodium | 92<br>92<br>ND<br>ND<br>0.50<br>180<br>ND<br>ND<br>ND<br>31<br>2.9<br>1.1 | 5.0<br>5.0<br>5.0<br>0.50<br>1.0<br>10<br>0.10<br>1.0<br>1.0<br>1.0 | mg/L "  µmhos/cm µg/L " mg/L "                                                                      |                                      | CQ04946 " " " CQ05242 CQ04954 CQ04924 CQ04948 CQ04909 CQ04898 " "                 | 06/14/07<br>"<br>"<br>06/23/07<br>06/14/07<br>06/13/07<br>06/13/07<br>"<br>"   | 06/14/07<br>06/24/07<br>06/14/07<br>06/13/07<br>06/13/07<br>06/13/07 | EPA 300.0<br>EPA 120.1<br>EPA 7196A<br>"<br>EPA 425.1<br>200.7/2340B |              |

CA DOHS ELAP Accreditation/Registration Number 1233

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC #: 84179-84180

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                           | Result         | Reporting<br>Limit | Units       | Dilution  | Batch           | Prepared            | Analyzed   | Method      | Notes |
|-----------------------------------|----------------|--------------------|-------------|-----------|-----------------|---------------------|------------|-------------|-------|
| WM14 S. BR WARD CK 25N32Y (CQF03  | 99-17) Water   | Sampled            | l: 06/11/07 | 16:00 I   | Received: 0     | 6/13/07 <b>08</b> : | 43         |             |       |
| Total Dissolved Solids            | 110            | 10                 | mg/L        | 1         | <b>C</b> Q04904 | 06/13/07            | 06/15/07   | EPA 160.1   |       |
| WM20 LG CAT FW (CQF0399-18) Water | Sampled: 0     | 6/11/07 17         | :20 Recei   | ved: 06/1 | (3/07 08:43     |                     |            |             |       |
| Total Alkalinity                  | 58             | 5.0                | mg/L        | 1         | <b>C</b> Q04946 | 06/14/07            | 06/14/07   | EPA 310.1   |       |
| Bicarbonate as CaCO3              | <del>5</del> 8 | 5.0                | ļļ.         | II .      | 89              | ` ม                 | U          | tt.         |       |
| Carbonate as CaCO3                | ND             | 5.0                | II .        | IJ        | **              | 11                  | ".         | D           |       |
| Hydroxide as CaCO3                | ND             | 5.0                | 11          | IJ        | at .            | 11                  | n          | D           |       |
| Chloride                          | 0.54           | 0.50               | It          |           | CQ05242         | 06/23/07            | 06/24/07   | EPA 300.0   |       |
| Specific Conductance (EC)         | 120            | 1.0                | μmhos/cm    | II .      | CQ04954         | 06/14/07            | 06/14/07   | EPA 120.1   |       |
| Hexavalent Chromium               | ND             | 10                 | μg/L        | п         | CQ04924         | 06/13/07            | 06/13/07   | EPA 7196A   | HT-I  |
| Hexavalent Chromium, Dissolved    | ND             | · 10               | n ·         | IJ        | CQ04948         | 06/14/07            | 06/14/07   | ii .        | HT-I  |
| Methylene Blue Active Substances  | ND             | 0.10               | mg/L        | n         | CQ04909         | 06/13/07            | 06/13/07   | EPA 425.1   |       |
| Calcium                           | 14             | 1.0                | n           | U         | CQ04898         | 06/13/07            | 06/13/07   | 200.7/2340B |       |
| Magnesium                         | 3.9            | 1.0                | 11          | n         | 11              | ęŧ                  | tt         | II          |       |
| Potassium                         | 1.5            | 1.0                | . 11        | 10        | 17              | 14                  | . 41       | ti          |       |
| Sodium                            | 5.7            | 1.0                | 11          | U         | 11              | 19                  | 11         | **          |       |
| Hardness as CaCO3                 | 52             | 1.0                |             | 16 - 1    | 19              | D                   | 11         | и           | •     |
| Hq                                | 7.81           | 0.01               | pH Units    | . 11      | CQ04901         | 06/13/07            | 06/13/07   | EPA 150.1   | HT-1  |
| Sulfate as SO4                    | 4.8            | 0.50               | mg/L        | я, .      | CQ05242         | 06/23/07            | - 06/24/07 | EPA 300.0   |       |
| Total Dissolved Solids            | 82             | 10                 | 11          | 71        | CQ04904         | 06/13/07            | 06/15/07   | EPA 160.1   |       |

06/27/07 15:43

CRWOCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

| Analyte                        | Result             | Reporting<br>Limit | Units      | Dilution           | Batch       | Prepared   | Analyzeď   | Method     | Note  |
|--------------------------------|--------------------|--------------------|------------|--------------------|-------------|------------|------------|------------|-------|
| WM5 LGC U/S (CQF0399-01) Wa    | ·                  |                    |            |                    |             | - * • Pro- |            | - Internet | 14016 |
| Aluminum                       | 22                 | 20                 | μg/L       | 1                  | CQ04916     | 06/13/07   | 06/14/07   | EPA 200.8  |       |
| Arsenic                        | ND                 | 2.0                | 11         | 1)                 | H           | 17         | 10         | , "        | ,     |
| Copper                         | ND                 | 1.0                | н          | 1)                 | Ħ           | 11         | 10         | . "        | ,     |
| Iron                           | 350                | 50                 | Iŧ         | n                  | ri          | 9          | 16 -       | и          |       |
| Zinc                           | , ND               | 2.0                | . 11       | #                  | 11          | n          | 14         | н          |       |
| Cadmium                        | ND                 | 0.50               | <b>H</b> . | n                  | "           | n .        | 11         | ti         |       |
| WM3 DC D/S (CQF0399-02) Wate   | r Sampled: 06/11/  | 07 10:10 Re        | eceived: ( | 6/13/07 <b>0</b> 8 | 3:43        |            | •          | ,          |       |
| Aluminum                       | ND                 | 20                 | μg/L       | 1                  | CQ04916     | 06/13/07   | 06/14/07   | EPA 200.8  |       |
| Arsenic                        | ND                 | 2.0                | rr         | II                 | * .         | 11         | 11         | n          |       |
| Copper                         | 9.4                | 1.0                | 11         | н                  |             | H          | н          | U          |       |
| Iron                           | 630                | 50                 | II         | 1)                 | **          | 19         | 11         | 11         |       |
| Zinc                           | 4.4                | 2.0                | 11         | 1)                 | · II        | 11         | n          | 11         |       |
| Cadmium .                      | ND                 | 0.50               | 19         | ))                 | **          | 11         | H          | **         |       |
| WM1 PORTAL (CQF0399-03) Wa     | ter Sampled: 06/1  | 1/07 10:30         | Received   | : 06/13/07         | 08:43       |            | ,          | _          |       |
| Aluminum                       | · ND               | · 20               | μg/L       | 1                  | CQ04916     | 06/13/07   | 06/14/07   | EPA 200.8  |       |
| Arsenic                        | 23                 | 2.0                | ū          | Ħ                  | If .        | . п        | n          | n          |       |
| Copper                         | 100                | 1.0                | 11         | , 11               | H           | II         | U          | n .        |       |
| Iron                           | ND                 | 50                 | ш          | ıı                 | н           | II .       | . ,        | ".         |       |
| Zine                           | 36                 | 2.0                | . "        | u                  | н           | 44         | IP         | **         |       |
| Cadmium                        | ND                 | 0.50               | 1)         | П                  | )4          | H          | Ιτ         | , m        |       |
| WM 2 DC U/S (CQF0399-04) Water | er Sampled: 06/11/ | 07 10:30 R         | eceived:   | 06/13/07 0         | 8:43        |            |            |            |       |
| Aluminum                       | ND                 | 20                 | μg/L       | 1                  | CQ04916     | 06/13/07   | 06/14/07   | EPA 200.8  |       |
| Arsenic                        | ND                 | 2.0                | If         | 1)                 | **          | **         | *1         | " 11       |       |
| Copper                         | ND                 | 1.0                | If         | 11                 | 11          | Ħ          | 11         | II .       |       |
| Ir <b>o</b> n                  | ND                 | 50                 | И          | 19                 | r           | **         | 11.        | ц          |       |
| Zinc                           | ND                 | 2.0                | н          | 19                 | u           | Ħ          | n          | н ,        |       |
| Cadmium                        | ND                 | 0.50               | . Ч        | **                 | н           | Ħ          | п          |            |       |
| WM4 DC @ 48" CÚLVERT (CQF      | 0399-05) Water Sa  | impled: 06/1       | 1/07 12:0  | 00 Receiv          | ed: 06/13/0 | 7 08:43    |            | •          |       |
| Aluminum                       | ND                 | 20                 | μg/L       | 1                  | CQ04916     | 06/13/07   | 06/14/07   | EPA 200.8  |       |
| Arsenic                        | ND                 | 2.0                | 10         | \$f                | 11          | 41         | <b>\$1</b> | 'n         |       |
| Copper                         | 13                 | 1.0                | 11         | 1)                 | a           | . 11       | Ħ          | . 11       |       |
| Iron                           | . 360              | 50                 | 11         | 11                 | u           | 11         | Ħ          | Ħ          |       |
| Zinc                           | 3.3                | 2.0                | # .        | . 0                | u           | 19         | h          | н .        |       |
| Cadmium                        | ND                 | 0.50               | . 17       | 1)                 | £\$         | #1         | n          | ıt         |       |
| WM9 LGC @ BC (CQF0399-06) V    | Vater Sampled: 06. | /11/07 13:00       | Receive    | ed: 06/13/0        | 7 08:43     |            |            |            | _     |
| Aluminum                       | ND                 | 20                 | μg/L       | 1                  | CQ04916     | 06/13/07   | 0,6/14/07  | EPA 200.8  |       |
|                                |                    |                    |            |                    |             |            | •          |            |       |

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

| Zinc   2.5   2.0   "   "   "   "   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del></del>                      |              |                |         |              |          |           |             |              | -    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|----------------|---------|--------------|----------|-----------|-------------|--------------|------|
| WMD LGC @ BC (CQF0399-06) Water   Sampled: 06/11/07 13:00   Received: 06/13/07 08:43   Sampled: 06/11/07 13:40   Sampled: 06/13/07 08:43   Sampled: 0  | A1                               | n14          |                | TT      | Dilutina     | Dotah :  | Duoman- d | A a laa d   | N.C. et a. d | NTna |
| Arsenic ND 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |                |         |              |          | Prepared  | Analyzea .  | Method       | Note |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WM9 LGC @ BC (CQF0399-06) Water  | Sampled: 06  | /11/07 13:00   | Receive | ed: 06/13/0  | 7 08:43  |           |             |              |      |
| Control   Cont | Arsenic                          | ND ·         | 2.0            | μg/L    | 1            | CQ04916  | 06/13/07  | 06/14/07    | EPA 200.8    |      |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Copper                           | 16           | 1.0            | ч       | t t          | . 11     |           | п           | . и          |      |
| Marcian   Marc | Iron                             | 440          | 50             | ч       | et .         | 17       | 11        | II          | н            | 1.   |
| Marinum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zinc                             |              | 2.0            | H       | H            | (f       | **        | II          | II           |      |
| Aluminum    ND   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cadmium                          | ND           | 0.50           | . 41    | (f           | 11       | *1        | 11          | II.          |      |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WM6 USFS DAM (CQF0399-07) Water  | Sampled: 06  | 5/11/07 13:30  | Receiv  | ed: 06/13/0  | 7 08:43  |           |             |              |      |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aluminum                         | ND           | 20             | μg/L    | 1            | CQ04916  | 06/13/07  | 06/14/07    | EPA 200.8    |      |
| Pron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arsenic                          |              | 2.0            | tt      |              | . "      | , tr      | , 0         | If .         |      |
| Zine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Copper                           | 78           | 1.0            | 0       | Iŧ           | βŧ       | er .      | II .        | P            |      |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Iron                             | 910          | 50             | Œ       | . #          | į.<br>Į  | ",        | II .        | ч            | •    |
| Marinum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zinc                             | 6.1          | 2.0            | lt      | I)           | II       | 17        | ıı .        | II .         |      |
| Aluminum ND 20 µg/L 1 CQ04916 06/13/07 06/14/07 EPA 200.8 Arsenic ND 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cadmium                          | ND           | 0.50           | ш       | n            | II       | и .       | ti          | ц            |      |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WM7 LGC U/S DC (CQF0399-08) Wate | r Sampled: ( | 06/11/07 13:4  | 0 Recei | lved: 06/13/ | 07 08:43 |           |             |              | •    |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aluminum                         | ND           | 20             | μg/L    | 1            | CQ04916  | 06/13/07  | 06/14/07    | EPA 200.8    |      |
| Tron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arsenic                          | ND           | 2.0            |         | u            | Ħ        |           | a1          | 11           |      |
| Tron   360   50   "   "   "   "   "   "   "   "     Tron   Cadmium   ND   0.50   "   "   "   "   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Copper.                          | ND           | 1.0            |         | II           | Ħ        | Ü         | 91          | II           |      |
| Cadmium   ND   0.50   " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iron                             | 360          | 50             | *1      | II           | #        | . (1      | 11          | II .         |      |
| No   No   No   No   No   No   No   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zinc                             | 2.3          | 2.0            | 11      | , tr         | ##       | ti        | 11          | н            |      |
| Aluminum    ND   20   μg/L   1   CQ04916   06/13/07   06/14/07   EPA 200.8     Arsenic   ND   2.0   " " " " " " " " " " "     Copper   17   1.0   " " " " " " " " " " " "     Iron   460   50   " " " " " " " " " " " "     Cadmium   ND   0.50   " " " " " " " " " " "     WM11 S. BR WARD CK (CQF0399-10) Water   Sampled: 06/11/07 14:00   Received: 06/13/07 08:43    Aluminum   30   20   μg/L   1   CQ04916   06/13/07   06/14/07   EPA 200.8     Arsenic   ND   2.0   " " " " " " " " " " "     Iron   ND   50   " " " " " " " " " " "     Iron   ND   50   " " " " " " " " " " "     Iron   ND   50   " " " " " " " " " " " "     Cadmium   ND   0.50   " " " " " " " " " " " " "     WM12 M. BR WARD CK (CQF0399-11) Water   Sampled: 06/11/07 14:10   Received: 06/13/07 08:43     Aluminum   57   20   μg/L   1   CQ04916   06/13/07   06/14/07   EPA 200.8     Aluminum   57   20   μg/L   1   CQ04916   06/13/07 08:43     Aluminum   57   20   μg/L   1   CQ04916   06/13/07   06/14/07   EPA 200.8     Aluminum   57   20   μg/L   1   CQ04916   06/13/07   06/14/07   EPA 200.8     Aluminum   57   20   μg/L   1   CQ04916   06/13/07   06/14/07   EPA 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cadmium,                         | ND           | 0.50           | 11      | (t           | 97       | (t        | п           | н            |      |
| Arsenic ND 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WM8 LGC D/S DC (CQF0399-09) Wate | r Sampled: ( | 06/11/07 13:4  | 0 Recei | ived: 06/13/ | 07 08:43 |           |             |              |      |
| Arsenic ND 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aluminum                         | ND           | 20             | цg/L    | · 1          | CQ04916  | 06/13/07  | 06/14/07    | EPA 200.8    | -    |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arsenic                          |              |                |         | 18           |          | 11        | н           | п            |      |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Copper                           |              |                | Ħ       | . 10         | P        | n         | u           | п            |      |
| Zinc   3.8   2.0   "   "   "   "   "   "     "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | 460          | 50             | Ħ       | ı,           | 'n       | "         | et .        | Ü            |      |
| WM11 S. BR WARD CK (CQF0399-10) Water Sampled: 06/11/07 14:00 Received: 06/13/07 08:43  Aluminum 30 20 μg/L 1 CQ04916 06/13/07 06/14/07 EPA 200.8  Arsenic ND 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zinc                             | 3.8          | 2.0            | Ħ       | ıt           | u        | "         | ii.         | п            |      |
| Aluminum       30       20       μg/L       1       CQ04916       06/13/07       06/14/07       EPA 200.8         Arsenic       ND       2.0       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cadmium                          | ND           | 0.50           | tt      | n            | Ħ        | 11        | II .        | п            |      |
| Arsenic ND 2.0 " " " " " " " " Copper 3.2 1.0 " " " " " " " " " " " Tron ND 50 " " " " " " " " " " Tron Sinc 6.6 2.0 " " " " " " " " " " " " " Tron ND 0.50 " " " " " " " " " " Tron ND 0.50 " " " " " " " " Tron ND 0.50 " " " " " " " " Tron ND 0.50 " " " " " " " " Tron ND 0.50 " " " " " " " " Tron ND 0.50 " " " " " " " " " " Tron ND 0.50 " " " " " " " " " " " " " Tron ND 0.50 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WM11 S. BR WARD CK (CQF0399-10)  | Water Sam    | pled: 06/11/0' | 7 14:00 | Received:    | 06/13/07 | 8:43      |             | r            |      |
| Arsenic ND 2.0 " " " " " " " " Copper 3.2 1.0 " " " " " " " " " " " Tron ND 50 " " " " " " " " " " Tron Sinc 6.6 2.0 " " " " " " " " " " " " " Tron ND 0.50 " " " " " " " " " " Tron ND 0.50 " " " " " " " " Tron ND 0.50 " " " " " " " " Tron ND 0.50 " " " " " " " " Tron ND 0.50 " " " " " " " " Tron ND 0.50 " " " " " " " " " " Tron ND 0.50 " " " " " " " " " " " " " Tron ND 0.50 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aluminum                         | 30           | 20             | μg/L    | 1            | CQ04916  | 06/13/07  | 06/14/07    | EPA 200.8    | ·    |
| Copper         3.2         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arsenic                          |              |                |         |              | **       | 11        | 91          |              |      |
| Iron         ND         50         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " <td></td> <td></td> <td></td> <td>ŧi</td> <td>II</td> <td>11</td> <td>п</td> <td>by ·</td> <td>, п</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |              |                | ŧi      | II           | 11       | п         | by ·        | , п          |      |
| Zinc 6.6 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Iron                             |              |                | . 11    | (I           | 11       | lt        | <b>91</b> · | 11           |      |
| Cadmium ND 0.50 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zine                             | 6.6          |                | п       | (t           | 17       | . 17      | . 11        | 11           |      |
| Aluminum 57 20 μg/L 1 CQ04916 06/13/07 06/14/07 EPA 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cadmium                          |              | 0.50           | п       | 11           | 11       | 19        | 11          | #1           | ŧ    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WM12 M. BR WARD CK (CQF0399-11   | ) Water San  | pled: 06/11/0  | 7 14:10 | Received     | 06/13/07 | 08:43     |             | •            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aluminum                         | 57           | 20             | μg/L    | 1            | CQ04916  | 06/13/07  | 06/14/07    | EPA 200.8    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arsenic                          | ND           |                |         |              |          |           |             |              |      |

06/27/07 15:43

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine Project Number: PCA 13180

CLS Work Order #: CQF0399

Project Manager: Steve Rosenbaum

COC #: 84179-84180

| Analyte          |                   | Result                     | Reporting<br>Limi |                    | Dilution          | Batch       | Prepared    | Analyzed | Method    | Notes |
|------------------|-------------------|----------------------------|-------------------|--------------------|-------------------|-------------|-------------|----------|-----------|-------|
| WM12 M. BR WARD  | CK (CQF0399-11)   | Water S                    | ampled: 06/1      | 1/07 14:10         | Received          | 06/13/07    | 08:43       |          |           |       |
| Copper           |                   | 4.6                        |                   |                    | 1                 | CQ04916     | 06/13/07    | 06/14/07 | EPA 200.8 |       |
| Iron             | •                 | ND                         |                   | -                  | **                | tf          | 11          | Ħ        | Ħ         |       |
| Zinc             |                   | 3.6                        |                   |                    | "                 | <b>11</b> . | 11          | H        | **        |       |
| Cadmium          |                   | ND                         | 0.50              | ) "                | **                | . "         | 11          | 11       | **        |       |
| WM13 NYE CK (CQ  | F0399-12) Water   | Sampled: 0                 | 6/11/07 14:20     | Receive            | d: 06/13/07       | 08:43       |             |          | * .       |       |
| Aluminum         |                   | ND                         |                   |                    | 1                 | CQ04916     | 06/13/07    | 06/14/07 | EPA 200.8 |       |
| Arsenic          |                   | ND                         |                   |                    | 11                | , n         | n           | i)       | п         |       |
| Copper           |                   | ND                         |                   |                    | II .              | II          | **          | "        | п         | 1     |
| lron .           |                   | ND                         |                   | •                  | ú                 | II.         | **          | II       |           |       |
| Zinc             |                   | ND                         |                   |                    | , #               | H .         | **          | ıı ıı    | it .      |       |
| Cadmium          |                   | ND                         | 0.5               | ) "                |                   | tf          | ".          | II       | Ħ         |       |
| WM17 N. BR WARD  | CK (CQF0399-13)   | Water S                    | ampled: 06/11     | /07 14:30          | Received:         | 06/13/07 (  | 08:43       | ,        |           |       |
| Aluminum         |                   | ND                         |                   |                    | 1                 | CQ04916     | 06/13/07    | 06/14/07 | EPA 200.8 |       |
| Arsenic          |                   | · ND                       | 2,0               | ) "                | Ħ                 | 11          | "           | . "      | "         |       |
| Copper           |                   | ND                         |                   | ) "                | n                 | # '         |             | , "      | "         |       |
| fron             |                   | ND                         |                   | _                  | H                 | ır          | 11          | "        | tt        |       |
| Zinc             |                   | ND                         |                   |                    | 11                | It          | 11          | Ħ        | H         |       |
| Cadmium          |                   | ND                         | 0.50              | י (                | 11                | H           | 11          | . "      | "         |       |
| WM18 N.B. WARD O | CK (CQF0399-14) V | Vater Sar                  | npled: 06/11/0    | 0 <b>7 15:10</b> ] | Received: 0       | 6/13/07 08  | 3:43        |          |           |       |
| Aluminum         |                   | ND                         | 20                | ) μ <b>g/L</b>     | 1                 | CQ04916     | 06/13/07    | 06/14/07 | EPA 200.8 |       |
| Arsenic          | 1                 | ND                         | 2.0               | ) "                | ".                | II          | . "         | н        | · tt - ,  |       |
| Copper           |                   | ND                         | 1.0               | ) "                | Ħ                 | ti          | n           | ū        | И         |       |
| Iron             |                   | ND                         | 5                 | D 4.               | \$1               | a           | . 11        | , It     | ŧı        |       |
| Zinc             | 4                 | ND                         | 2.                | 0 "                | 11                | 11.         | 11          | tt.      | tı        |       |
| Cadmium          |                   | ND                         | 0.5               | 0 "                | 11                | 11          | If          | ,,       | 11        |       |
| WM16 NYE CK 25N  | 32Y (CQF0399-15)  | Water Sa                   | ampled: 06/11     | /07 15:40          | Received:         | 06/13/07 0  | 8:43        |          |           |       |
| Aluminum         |                   | ND                         | 2                 | 0 μg/L             | 1                 | CQ04916     | 06/13/07    | 06/14/07 | EPA 200.8 |       |
| Arsenic          |                   | ND                         | 2.                |                    | Ħ                 | tl          | **          | . "      | et '      |       |
| Copper           | 4                 | ND                         | 1.                | 0 "                | #                 | 67          | 11          | Ħ        | Ħ         |       |
| Iron             |                   | ND                         | 5                 | 0 "                | · ".              | n           | - 17        | #        | 11        |       |
| Zinc             | •                 | ND                         |                   |                    | l1                | ıı ıı       | It          | 11       | . #       |       |
| Cadmium          |                   | ND                         | 0.5               | 0 "                | 11                | u<br>-      | It          | 11       | н         |       |
| WM15 M. BR WARI  | CK 25N32Y (CQI    | 70 <mark>399-</mark> 16) V | Water Samp        | led: 06/11         | /07 1 <u>5:50</u> | Received:   | 06/13/07 08 | 3:43     |           |       |
| Aluminum         |                   | ND                         | 2                 | 0<br>μ <b>g</b> /L | 1                 | CQ04916     | 06/13/07    | 06/14/07 | EPA 200.8 |       |
| Arsenic          |                   | ND                         |                   |                    | **                | "           | ŧ1          | n        | n         | /     |
| Copper           |                   | ND                         |                   |                    | Ħ                 | +1          | n           | u        | 0 .       |       |
| F F = "          |                   | _                          |                   |                    |                   |             |             |          |           |       |

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180 Project Manager: Steve Rosenbaum CLS Work Order #: CQF0399

COC#: 84179-84180

| Analyte                         | Result         | Reporting<br>Limit | Units   | Dilution   | n Batch     | Prepared    | Analyzed | Method    | Notes |
|---------------------------------|----------------|--------------------|---------|------------|-------------|-------------|----------|-----------|-------|
| WM15 M. BR WARD CK 25N32Y (CQ)  | ·              |                    | •       |            | Received: ( |             |          | 17401100  | 11010 |
| Iron                            | ND             | 50                 | μg/L    | 1          | CQ04916     | 06/13/07    | 06/14/07 | EPA 200.8 |       |
| Zinc                            | ND             | 2.0                | "       | Ŋ          | . `•        | . #         | *1       | H         |       |
| Cadmium                         | ND             | 0.50               | **      | p          | 11          | H           | H        | 10        |       |
| WM14 S. BR WARD CK 25N32Y (CQF  | 0399-17) Water | Sampled:           | 06/11/0 | 7 16:00    | Received: 0 | 6/13/07 08: | 43       |           |       |
| Aluminum                        | ND             | 20                 | μg/L    | . 1        | CQ04916     | 06/13/07    | 06/14/07 | EPA 200.8 |       |
| Arsenic ,                       | ND             | 2.0                | *       | 91         | .*          | ř <b>ř</b>  | **       | Ħ         | 4.    |
| Copper                          | 1.6            | 1.0                | **      | 61         | e           | H           | 79       | )†        | •     |
| Iron                            | ND             | 50                 | **      | <b>\$1</b> | . 4         | 11          | **       | H         |       |
| Zinc                            | 5.0            | 2.0                | **      | 11         | **          | Ħ           | n        | H         |       |
| Cadmium .                       | ND             | 0.50               | 11      | . 14       | tt          | tř          | n        | D         |       |
| WM20 LG CAT FW (CQF0399-18) Wat | er Sampled: 06 | /11/07 17:         | 20 Rec  | eived: 06/ | 13/07 08:43 | •           |          |           | •     |
| Aluminum                        | ND             | 20                 | μg/L    | 1          | CQ04916     | 06/13/07    | 06/14/07 | EPA 200.8 | •     |
| Arsenic                         | ND             | 2.0                | 19      | 17         | Đ           | 14          | II       | Ħ         |       |
| Copper                          | 6.9            | 1.0                | н . '   | 17         | 0           | H           | )1       | **        |       |
| Iron                            | 81             | 50                 | *11     | 11         | 0           | 11          | 11       | **        |       |
| Zinc                            | 2.5            | <b>2.</b> 0        | Ð       | 0          | 1)          | и .         | ù        | # '       | *     |
| Cadmium                         | . ND           | 0.50               | n       | 0          | υ,          | п           | Ħ        | 79        | -     |

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC #: 84179-84180

### Metals (Dissolved) by EPA 200 Series Methods

| Analyte                        | Result                | Reporting<br>Limit | Units      | Dilution    | Batch       | Prepared   | Analyzed    | Method    | Note |
|--------------------------------|-----------------------|--------------------|------------|-------------|-------------|------------|-------------|-----------|------|
| WM5 LGC U/S (CQF0399-01) Water | Sampled: 06/1         | 1/07 10:00 I       | Received:  | 06/13/07 (  | 08:43       |            | <del></del> |           |      |
| Aluminum                       | ND                    | 20                 | μg/L       | 1,          | CQ04940     | 06/14/07   | 06/14/07    | EPA 200.8 | _    |
| Arsenic                        | ND                    | 5.0                | 0          | 10          | 17          |            | . •         | п         |      |
| Copper                         | ND                    | 2.0                | 0          | H           | If .        | *          | *1          | H         | •    |
| ron                            | 270                   | 50                 |            | H           | IT          |            | <b>†1</b> . | น้        |      |
| Line                           | 2.4                   | 2.0                | n          | 0           | II          |            | 11          | 47        |      |
| Cadmium                        | ND                    | 0.50               | II         | II          | l1          | 11         | 11          | 11        |      |
| WM3 DC D/S (CQF0399-02) Water  | Sampled: 06/11/       | 07 10:10 Re        | ceived: 0  | 6/13/07 08  | :43         |            |             |           | -    |
| Aluminum                       | , ND ,                | 20                 | μg/L       | 1           | CQ04940     | 06/14/07   | 06/14/07    | EPA 200.8 |      |
| Arsenic ,                      | ND                    | 5.0                | 11         | II          | 11          | . 11       | 11,         | 11 .      |      |
| Copper                         | 5.8                   | 2.0                | . #        | II          | ij          | *1         | II          | **        |      |
| ron                            | 280                   | 50                 | 11         | 11          | if          | 11         | Ħ           | **        |      |
| line                           | 3.5                   | 2.0                | 11         | 11          | 11          | II         | н           | 11        |      |
| Cadmium                        | ND .                  | 0.50               | . 19       | Į <b>i</b>  | lt .        | tı         | <b>11</b>   | 11        |      |
| WM1 PORTAL (CQF0399-03) Water  | Sampled: 06/1         | 1/07 10:30         | Received   | : 06/13/07  | 08:43       |            | •           |           |      |
| luminum                        | · ND                  | 20                 | μg/L       | 1           | CQ04940     | 06/14/07 · | 06/14/07    | EPA 200.8 |      |
| rsenic                         | 22                    | 5.0                | II         | H,          | If          | **         | **          | "         |      |
| Copper                         | 89                    | 2.0                | н          | . 11        | и .         | 11         | **          | 11        |      |
| ron                            | ND                    | 50                 | n          | II          | К           | *1         | **          | 11        |      |
| linc                           | 35                    | 2.0                | 11         | II          | H           | <b>*</b> † | 11          | ш.,       |      |
| Cadmium                        | ŅD                    | 0.50               | li .       | II          | H           | 11         | 1)          | п         |      |
| VM 2 DC U/S (CQF0399-04) Water | Sampled: 06/11        | /07 10:30 R        | eceived: ( | 06/13/07 0  | 8:43        |            |             |           |      |
| Aluminum                       | ND                    | 20                 | μg/L       | 1           | CQ04940     | 06/14/07   | 06/14/07    | EPA 200.8 |      |
| Arsenic                        | ND                    | 5.0                | 11         | #           | N           | II         | 18          | 11        |      |
| Copper                         | ND                    | 2.0                | 10         | n           | 15          | tt         | 10          | II        |      |
| ron                            | ND                    | 50                 | н          | И           | lt.         | 11         | <b>91</b>   | п         |      |
| line                           | ND                    | 2.0                | п          | 11          | II          | 11 "       | 19          |           |      |
| Cadmium                        | ND                    | 0.50               | **         | 11          | li .        | H          | lt .        | - šī      |      |
| WM4 DC @ 48" CULVERT (CQF039   | 9-0 <b>5)</b> Water S | ampled: 06/1       | 1/07 12:0  | 00 Receiv   | ed: 06/13/0 | 07 08:43   |             |           |      |
| Aluminum                       | ND ·                  | 20                 | μg/L       | 1           | CQ04940     | 06/14/07   | 06/14/07    | EPA 200.8 |      |
| Arsenic                        | ND                    | 5.0                | fi         | 11          | IF          | ***        | **          | 11        |      |
| Copper                         | 8.1                   | 2.0                | 11         | II          | Ħ           | 11         | *           | . #       |      |
| ron                            | 190                   | . 50               | n          | п           | fi          | 11         | 11          | 11        |      |
| Zinc .                         | 3.4                   | 2.0                | **         | If          | II          | II         | #1          | 11        |      |
| Cadmium                        | ND                    | 0.50               | 11         | •1          | 11          | II         | 11          | fi        |      |
| WM9 LGC @ BC (CQF0399-06) Wate | er Sampled: 00        | 6/11/07 13:00      | Receive    | ed: 06/13/0 | 7 08:43     |            |             |           |      |
| Aluminum                       | ND                    | 20                 | μg/L       | 1           | CQ04940     | 06/14/07   | 06/14/07    | EPA 200.8 |      |
| -                              |                       |                    |            |             | •           |            |             |           |      |

### CALIFORNIA LABORATORY SERVICES

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC #: 84179-84180

### Metals (Dissolved) by EPA 200 Series Methods

| Analyte                         | Result         | Reporting<br>Limit | Units             | Dilution     | Batch      | Prepared | Analyzed   | Method    | Note         |
|---------------------------------|----------------|--------------------|-------------------|--------------|------------|----------|------------|-----------|--------------|
| WM9 LGC @ BC (CQF0399-06) Wate  | r Sampled: 06  | /11/07 13:00       | Receiv            | ed: 06/13/0  | 7 08:43    | -        |            |           | <u> </u>     |
| Arsenic                         | ND             | 5.0                | μg/L              | 1            | CQ04940    | 06/14/07 | 06/14/07   | EPA 200.8 |              |
| Copper                          | 13             | 2.0                | 11                | " .          | . "        | n        | 11         | te.       |              |
| Iron                            | 340            | 50                 | **                | li .         | · ii - '   |          | n          | R         |              |
| Zinc                            | 2.5            | 2.0                | Ħ                 | 91           | II         | 19       | #          | п         |              |
| Cadmium                         | ND             | 0.50               | н                 | . 9          | t#         | ft       | **         | 11        |              |
| WM6 USFS DAM (CQF0399-07) Wate  | r Sampled: 06  | /11/07 13:30       | Receiv            | /ed: 06/13/0 | 7 08:43    | •        |            |           |              |
| Aluminum                        | ND             | 20                 | μg/L              | 1            | CQ04940    | 06/14/07 | 06/14/07   | EPA 200.8 |              |
| Arsenic                         | ~ ND           | 5.0                | **                | n            | 11         | ır.      | u          | 4         |              |
| Copper                          | 62             | 2.0                | ņ                 | Ħ            | 11         | 11       | II         | 11        |              |
| Iron                            | 700            | 50                 | H                 | El           | 11         |          | It         | tt        |              |
| Zinc                            | 6.3            | 2.0                | 13                | Ħ            | 16-        | 11       | u .        | tt        |              |
| Cadmium                         | ND             | 0.50               | 11                | 11           | 11         | 11       | 19         | tt        |              |
| WM7 LGC U/S DC (CQF0399-08) Wat | ter Sampled: ( | 6/11/07 13:4       | 0 Rece            | ived: 06/13/ | 07 08:43   |          |            |           | •            |
| Aluminum                        | ND             | 20                 | μ <b>g/</b> L     | 1            | CQ04940    | 06/14/07 | 06/14/07   | EPA 200.8 | <del> </del> |
| Arsenic                         | ND             | 5.0                | **                | II           | **         | Ħ        | H          | H         |              |
| Соррег                          | ND             | 2.0                |                   | ' It         | **         | 11       | Ħ          | 11        |              |
| Iron                            | 270            | 50                 | 11                | II           | **         | Ħ        | n          | н         | •            |
| Zinc                            | 2.5            | 2.0                |                   | lt .         | rt .       | u        | It         | H         |              |
| Cadmium ·                       | ND             | 0.50               | n                 | lı           | п          | II       | . и        | u         | ,            |
| WM8 LGC D/S DC (CQF0399-09) Wat | ter Sampled: 0 | 6/11/07 13:4       | 0 Rece            | ived: 06/13/ | 07 08:43   |          |            |           |              |
| Aluminum                        | ND             | 20                 | μg/L              | 1            | CQ04940    | 06/14/07 | 06/14/07   | EPA 200.8 |              |
| Arsenic                         | ND             | 5.0                | , п               | n            | H          | II       | п          | ft        |              |
| Copper                          | 4.8            | 2.0                | п                 | п            | II .       | II .     | п          | n .       |              |
| Iron                            | ND             | 50                 | II                | 11           | ' n        |          | <b>9</b> 1 | * a       |              |
| Zinc                            | ND             | 2.0                | IF.               | 11           | II         | II       | 11         | 11        |              |
| Cadmium                         | ND             | 0.50               | n                 | . 1!         | II         | ш        | "          | şı .      |              |
| WM11 S. BR WARD CK (CQF0399-10  | ) Water Samp   | led: 06/11/07      | 7 14:00           | Received:    | 06/13/07 0 | 8:43     |            |           |              |
| Aluminum                        | ND             | 20                 | <br>μ <b>g/</b> L | 1            | CQ04940    | 06/14/07 | 06/14/07   | EPA 200.8 |              |
| Arsenic                         | ND             | 5.0                | . н               | 17           |            | 11       | 16         | n         | •            |
| Copper                          | 2.3            | 2.0                | n n               | It           | II         | . "      | Ìŧ         | п         |              |
| Iron                            | ND             | 50                 | ų                 | lt.          | II         | п        | lı .       | , ti      |              |
| Zinc                            | 5.3            | 2.0                | n'                | Į!           |            | , III    |            | (I        |              |
| Cadmium                         | ND             | 0.50               | 11                | 11           | tı         | . 0      | n ·        | 11        |              |
| WM12 M. BR WARD CK (CQF0399-1   | 1) Water Sam   |                    | 7 14:10           | Received:    | 06/13/07   | 08:43    |            |           |              |
| Aluminum                        | 28             | 20                 | μg/L              | · 1          | CQ04940    | 06/14/07 | 06/14/07   | EPA 200.8 | •            |
|                                 |                |                    | ,                 |              |            |          |            |           |              |

CA DOHS ELAP Accreditation/Registration Number 1233

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

#### Metals (Dissolved) by EPA 200 Series Methods

| Analyte                                                                                                      | Result                                                  | Reporting<br>Limit                            | Units                | Dilution    | Batch      | Prepared                   | Analyzed                 | Method         | Note |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|----------------------|-------------|------------|----------------------------|--------------------------|----------------|------|
| WM12 M. BR WARD CK (CQF                                                                                      | 0399-11) Water Samj                                     | oled: 06/11/0                                 | 7 14:10              | Received    | : 06/13/07 | 08:43                      |                          |                | ·    |
| Copper                                                                                                       | 3.7                                                     | 2.0                                           | μg/L                 | 1           | CQ04940    | 06/14/07                   | 06/14/07                 | EPA 200.8      | •    |
| Iron                                                                                                         | ND                                                      | 50                                            | · H                  | H           | n          | tt                         | Ħ                        | 10             |      |
| Zinc                                                                                                         | 4,3                                                     | 2.0                                           | н                    | 41          | n          | H                          | tı                       | 10             | •    |
| Cadmium                                                                                                      | ND                                                      | 0.50                                          | ti                   | 11          | H          | ii .                       | tı                       | u              |      |
| WM13 NYE CK (CQF0399-12)                                                                                     | Water Sampled: 06/1:                                    | / <b>07 14:20</b> ]                           | Received             | 1: 06/13/07 | 08:43      | •                          |                          |                |      |
| Aluminum                                                                                                     | ND                                                      | 20                                            | μg/L                 | 1           | CQ04940    | 06/14/07                   | 06/14/07                 | EPA 200.8      |      |
| Arsenic                                                                                                      | ND                                                      | 5.0                                           | n                    | II          | n          | 11                         | . "                      | n              |      |
| Copper                                                                                                       | ND                                                      | 2.0                                           | u                    | ır          | n          | 11                         | tt                       | ıı             |      |
| lron                                                                                                         | ND                                                      | 50                                            | Ħ                    | 18          | n          | . 11                       | , #                      | ľ              |      |
| Zinc                                                                                                         | 2.4                                                     | 2.0                                           | , <sup>N</sup> .     | 11          | n          | n                          | İţ                       | U              |      |
| Cadmium                                                                                                      | , ND                                                    | 0.50                                          | 91                   | IJ          | n          | 11                         | ŧŧ                       | n              |      |
| WM17 N. BR WARD CK (CQF)                                                                                     | 0399-13) Water Samp                                     | led: 06/11/0                                  | 7 14:30              | Received:   | 06/13/07   | 18:43                      |                          |                |      |
| Aluminum                                                                                                     | ND                                                      | . 20                                          | μg/L                 | 1 .         | CQ04940    | 06/14/07                   | 06/14/07                 | EPA 200.8      |      |
| Arsenic                                                                                                      | ND                                                      | 5.0                                           | <b>97</b>            | 19          | (I         | . "                        | 11                       | n ,            |      |
| Copper                                                                                                       | ND                                                      | 2.0                                           | Ħ                    | 11          | ti         | 'n                         | 11                       | ŋ              |      |
| fron                                                                                                         | . ND                                                    | 50                                            | - #                  | 11          | eś         | Ħ                          | 11                       | II             |      |
| Zinc                                                                                                         | 2.1                                                     | 2.0                                           | Ħ                    | 17          | <b>81</b>  | lı                         | 11                       | 11             |      |
| Cadmium                                                                                                      | ND                                                      | 0.50                                          | tt.                  |             | tt .       | 11                         | 11                       | ĮI.            |      |
| WM18 N.B. WARD CK (CQF03                                                                                     | 99-14) Water Sample                                     | d: 06/11/07                                   | 15:10 I              | Received: 0 | 6/13/07 08 | :43                        |                          |                |      |
| Aluminum                                                                                                     | ND                                                      | 20                                            | μg/L                 | 1           | CQ04940    | 06/14/07                   | 06/14/07                 | EPA 200.8      |      |
| Arsenic                                                                                                      | ND                                                      | 5.0                                           | 11                   | j)          | 11         | n                          | tt                       | H              |      |
| Copper                                                                                                       | ·· ND                                                   | 2.0                                           | η,                   | Ŋ           | 11         | . n                        | н                        | п              |      |
| Iron                                                                                                         | ND                                                      | 50                                            | n                    | #           | 1)         | Ħ                          | . 11                     | ıı             |      |
| Zinc                                                                                                         | ND                                                      | 2.0                                           | n                    | *1          | 11         | #1                         | 11                       | п              |      |
| Cadmium                                                                                                      | ND                                                      | 0.50                                          | H                    | 16          | Ħ          | Ħ                          | IJ                       | tt             |      |
| THE AND RESTREETED AND ASSESSMENT ASSESSMENT                                                                 | 1399-15) Water Samn                                     | led: 06/11/07                                 | 7 15:40              | Received:   | 06/13/07 0 | 8:43                       |                          |                |      |
| WIVITO IN YES CIG 25IN32 Y (CQFU                                                                             | opportulation bump                                      |                                               |                      |             |            |                            |                          | DD 4 500 0     |      |
|                                                                                                              | ND                                                      | 20                                            | μg/L                 | 1           | CQ04940    | 06/14/ <b>07</b>           | 06/14/07                 | EPA 200.8      |      |
| Aluminum                                                                                                     |                                                         | 20<br>5.0                                     | μg/L<br>"            | 1           | CQ04940    | 06/14/07/                  | 06/14/0 <b>7</b><br>"    | EPA 200.8      |      |
| Aluminum<br>Arsenic                                                                                          | ND                                                      | _                                             |                      |             | •          |                            |                          |                |      |
| Aluminum<br>Arsenic<br>Copper                                                                                | ND<br>ND                                                | 5.0                                           | 11                   | и           | # .        | IT                         | li                       | . #            | • .  |
| Aluminum<br>Arsenic<br>Copper<br>Iron                                                                        | ND<br>ND<br>ND                                          | 5.0<br>2.0                                    | 11                   | H<br>II     | 11<br>11   | 11                         | li<br>n                  | . #            |      |
| Aluminum<br>Arsenic<br>Copper<br>Iron<br>Zinc                                                                | ND<br>ND<br>ND<br>ND                                    | 5.0<br>2.0<br>50                              | 11<br>11             | H<br>H      | 91<br>47   | 17<br>11                   | n<br>II                  | 14<br>14<br>14 | ٠.   |
| Aluminum<br>Arsenic<br>Copper<br>Iron<br>Zinc<br>Cadmium                                                     | ND<br>ND<br>ND<br>ND<br>ND                              | 5.0<br>2.0<br>50<br>2.0<br>0.50               | 11<br>11<br>11<br>11 | , h         | #          | IT IP IT                   | 11<br>11<br>- 21<br>- 21 | 19<br>29<br>59 | · .  |
| Aluminum<br>Arsenic<br>Copper<br>Iron<br>Zinc<br>Cadmium<br>WM15 M. BR WARD CK 25N3:                         | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>2Y (CQF0399-16) Wat | 5.0<br>2.0<br>50<br>2.0<br>0.50<br>er Sampleo | " " " " 11: 06/11/   | , h         | Received:  | IT II II II II II          | 11<br>11<br>- 21<br>- 21 | 19<br>29<br>59 | · .  |
| WM16 NYE CK 25N32Y (CQF0 Aluminum Arsenic Copper Iron Zinc Cadmium WM15 M. BR WARD CK 25N3: Aluminum Arsenic | ND<br>ND<br>ND<br>ND<br>ND                              | 5.0<br>2.0<br>50<br>2.0<br>0.50               | 11<br>11<br>11<br>11 | 07 15:50    | #          | "<br>"<br>"<br>06/13/07_08 | 11<br>11<br>11           | 11<br>11<br>11 | • .  |

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

CLS Work Order #: CQF0399

Project Manager: Steve Rosenbaum

COC #: 84179-84180

#### Metals (Dissolved) by EPA 200 Series Methods

| Analyte                   | Result               | Reporting<br>Limit | Units        | Dilution    | Batch       | Prepared    | Analyzed | Method    | Notes |
|---------------------------|----------------------|--------------------|--------------|-------------|-------------|-------------|----------|-----------|-------|
| WM15 M. BR WARD CK 25N32  | Y (CQF0399-16) Water | Sampled            | l: 06/11/    | 07 15:50    | Received: ( | 06/13/07 08 | :43      |           |       |
| Iron                      | ND                   | 50                 | μg/L         | 1           | CQ04940     | 06/14/07    | 06/14/07 | EPA 200.8 |       |
| Zinc                      | 3.0                  | 2.0                | 97           | ш           | H           | 11          | i ii     | 17        |       |
| Cadmium                   | ND                   | 0.50               | #            | II .        | 9           | ji.         | . 11     | · #r      |       |
| WM14 S. BR WARD CK 25N32Y | (CQF0399-17) Water   | Sampled            | 06/11/0      | 7 16:00 F   | Received: 0 | 6/13/07 08: | 43       |           |       |
| Aluminum                  | ND                   | 20                 | μg/L         | 1           | CQ04940     | 06/14/07    | 06/14/07 | EPA 200.8 |       |
| Arsenic                   | ND                   | 5.0                | 21           | IJ          | II          | II          | U        | 17        |       |
| Copper .                  | ND .                 | 2.0                | **           | IJ          | ti          | II          | п        | 11        |       |
| Iron                      | ND                   | 50                 | "            | II          | (I          | n           | . 11     | 11        |       |
| Zinc                      | 2.8                  | 2.0                | #            | fr          | *1          | · If        | 1f       | D         |       |
| Cadmium                   | · ND                 | 0.50               | "            | It          | ti          | JI          | If       | 0         |       |
| WM20 LG CAT FW (CQF0399-1 | 8) Water Sampled: 06 | /11/07 17:         | 20 Rec       | eived: 06/1 | 3/07 08:43  |             |          |           |       |
| Aluminum                  | ND                   | 20                 | μg/L         | 1           | CQ04940     | 06/14/07    | 06/14/07 | EPA 200.8 |       |
| Arsenic                   | ND                   | 5.0                | <b>51</b>    | **          | 11          | 17          | **       | ti        |       |
| Copper                    | 5.0                  | 2.0                | 19           | . #         | π           | 17          | 17       | n n       |       |
| Iron                      | 62                   | 50                 | 11           | 11          | tt          | 17          | 11       | , n       |       |
| Zinc                      | 2.5                  | 2.0                | n            | **          | 19          | tr          | 11       | n         |       |
| Cadmium                   | ND                   | 0.50               | , <b>n</b> . | #           | 19          | II          | π.,      | Ħ         | -     |

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

| Analyte                            | Result_ | Reporting<br>Limit                    | Units                                      | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|------------------------------------|---------|---------------------------------------|--------------------------------------------|----------------|------------------|------------|----------------|-------|--------------|-------|
| Batch CQ04898 - 6010A/No Digestion |         | · · · · · · · · · · · · · · · · · · · | •                                          | ,              |                  |            |                |       |              |       |
| Blank (CQ04898-BLK1)               |         |                                       |                                            | Prepared       | & Analyze        | ed: 06/13/ | 07             |       |              | •     |
| Calcium                            | ND      | 1.0                                   | mg/L                                       |                |                  |            |                |       | •            |       |
| Magnesium                          | ND      | 1.0                                   | U                                          |                |                  |            |                |       |              |       |
| Potassium                          | ND      | 1.0                                   | n                                          |                |                  |            |                |       |              |       |
| Sodium                             | ND      | 1.0                                   | 11                                         | •              |                  |            |                |       |              |       |
| Hardness as CaCO3                  | ND      | 1.0                                   | 11                                         |                |                  |            |                |       |              |       |
| LCS (CQ04898-BS1)                  |         |                                       |                                            | Prepared       | & Analyze        | ed: 06/13/ | 07             |       | •            |       |
| Calcium                            | 9.65    | 1.0                                   | mg/L                                       | 10.0           | <u>-</u>         | 96.5       | 80-120         |       |              |       |
| Magnesium                          | 9.40    | 1.0                                   | n                                          | 10.0           |                  | 94.0       | 80-120         |       |              |       |
| Potassium                          | 10.2    | 1.0                                   | n                                          | 10.0           |                  | 102        | 80-120         |       |              |       |
| Sodium                             | 9.58    | 1.0                                   | n                                          | 10.0           | ٠.               | 95.8       | 80-120         | •     |              |       |
| LCS Dup (CQ04898-BSD1)             |         |                                       |                                            | Prepared       | & Analyze        | ed: 06/13/ | 07             |       |              |       |
| Calcium                            | 10.1    | 1.0                                   | mg/L                                       | 10.0           |                  | 101        | 80-120         | 4.58  | 20           |       |
| Magnesium                          | 9.44    | 1.0                                   | n                                          | 10.0           |                  | 94.4       | 80-120         | 0.425 | 20           |       |
| Potassium                          | 9.95    | 1.0                                   |                                            | 10.0           |                  | 99.5       | 80-120         | 1.98  | 20           |       |
| Sodium                             | 9.48    | 1.0                                   | η                                          | 10.0           |                  | 94.8       | 80-120         | 0.976 | 20           |       |
| Matrix Spike (CQ04898-MS1)         | ` So    | urce: CQF03                           | 99-01                                      | Prepared       | & Analyzo        | ed: 06/13/ | 07             |       |              |       |
| Calcium                            | 20.4    | 1.0                                   | mg/L                                       | 10.0           | 9.01             | 114        | 75-125         | •     |              | 1     |
| Magnesium                          | 13.6    | 1.0                                   | и                                          | 10.0           | 3.79             | 98.1       | 75-125         |       |              |       |
| Potassium                          | 10.6    | 1.0                                   | H                                          | 10.0           | ND               | 106        | 75-125         |       |              |       |
| Sodium                             | 13.2    | 1.0                                   | 0                                          | 10.0           | 3.58             | 95.8       | 75-125         |       |              |       |
| Matrix Spike Dup (CQ04898-MSD1)    | So      | arce: CQF03                           | 99-01                                      | Prepared       | & Analyz         | ed: 06/13/ | 07             |       |              |       |
| Calcium                            | 21.3    | 1.0                                   | mg/L                                       | 10.0           | 9.01             | 123        | 75-125         | 4.50  | 25           |       |
| Magnesium                          | 14.6    | 1.0                                   | ų                                          | 10.0           | 3.79             | 108        | 75-125         | 7.09  | 25 .         |       |
| Potassium                          | 11.6    | 1.0                                   | 13                                         | 10.0           | ND .             | 116        | 75-125         | 8.81  | 25           |       |
| Sodium                             | 14.1    | 1.0                                   | $(x_i) \in \mathbf{H}_{i+1}(\mathbb{R}^n)$ | 10.0           | 3.58             | 105        | 75-125         | 6.83  | 25           |       |
|                                    |         |                                       |                                            |                |                  |            |                |       |              |       |

# CALIFORNIA LABORATORY SERVICES

06/27/07 15:43

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

| Analyte                             | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC               | %REC<br>Limits | RPD  | RP <b>D</b><br>Limit | Notes      |
|-------------------------------------|--------|--------------------|-------|----------------|------------------|--------------------|----------------|------|----------------------|------------|
| Batch CQ04904 - General Preparation | ·      |                    |       |                |                  |                    |                |      |                      | . <u> </u> |
| Blank (CQ04904-BLK1)                |        |                    |       | Prepared:      | 06/14/07         | Analyzed           | : 06/15/07     |      |                      |            |
| Total Dissolved Solids              | ND     | 10                 | mg/L  |                |                  |                    |                |      |                      |            |
| Batch CQ04909 - General Preparation | _      |                    |       |                |                  |                    |                |      |                      |            |
| Blank (CQ04909-BLK1)                | i      | ·                  |       | Prepared       | & Analyz         | ed: 06/13/         | 07             |      |                      |            |
| Methylene Blue Active Substances    | ND     | 0.10               | mg/L  |                |                  |                    |                |      |                      |            |
| LCS (CQ04909-BS1)                   |        |                    |       | Prepared       | & Analyz         | ed: 06/13/0        | )7             |      |                      |            |
| Methylene Blue Active Substances    | 0.480  | 0.10               | mg/L  | 0.500          |                  | 96.0               | 80-120         |      |                      |            |
| LCS Dup (CQ04909-BSD1)              |        |                    |       | Prepared       | & Analyz         | ed: 06/13/         | 07             |      |                      |            |
| Methylene Blue Active Substances    | 0.447  | 0.10               | mg/L  | 0.500          |                  | 89.3               | 80-120         | 7.17 | 20                   |            |
| Matrix Spike (CQ04909-MS1)          | So     | urce: CQF03        | 99-01 | Prepared       | & Analyz         | ed: 06/1 <u>3/</u> | 07             |      |                      |            |
| Methylene Blue Active Substances    | 0.477  | 0.10               | mg/L  | 0.500          | ND               | 95.3               | 75-125         |      |                      |            |
| Matrix Spike Dup (CQ04909-MSD1)     | So     | urce: CQF03        | 99-01 | Prepared       | & Analyz         | ed: 06/13/         | 07             |      |                      |            |
| Methylene Blue Active Substances    | 0.462  | 0,10               | mg/L  | 0.500          | ND               | 92.4               | 75-125         | 3.11 | 25                   |            |
| Batch CQ04924 - General Preparation |        | ·                  |       |                |                  |                    |                |      |                      |            |
| Blank (CQ04924-BLK1)                |        |                    |       | Prepared       | & Analyz         | ed: 06/13/         | 07             |      |                      | ·          |
| Hexavalent Chromium                 | ND     | . 10               | μg/L  |                |                  |                    |                |      |                      |            |
| LCS (CQ04924-BS1)                   |        |                    |       | Prepared       | & Analyz         | ed: 06/13/         | 07             |      |                      |            |
| Hexavalent Chromium                 | 258    | 10                 | μg/L  | 250            |                  | 103                | 85-115         | _    |                      |            |

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Project: Walker Mine

Project Number: PCA 13180

CLS Work Order #: CQF0399

Rancho Cordova CA, 95670-6114

Project Manager: Steve Rosenbaum

COC#: 84179-84180

| Analyte                             | Result | Reporting<br>Limit | Units         | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits  | RPD  | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|---------------|----------------|------------------|------------|-----------------|------|--------------|-------|
| Batch CQ04924 - General Preparation |        |                    |               | ,              |                  |            |                 |      |              | , ,   |
| LCS Dup (CQ04924-BSD1)              |        | •                  |               | Prepared       | & Analyz         | ed: 06/13/ | 07              |      |              |       |
| Hexavalent Chromium                 | 265    | 10                 | μg/Ľ          | 250            |                  | 106        | 85-115          | 2.60 | 20           |       |
| Matrix Spike (CQ04924-MS1)          | Sou    | rce: CQF03         | 99-01         | Prepared       | & Analyz         | ed: 06/13/ | 07              |      |              |       |
| Hexavalent Chromium                 | 263    | 10                 | μg/L          | 250            | ND               | 105        | 85-115          |      |              |       |
| Matrix Spike Dup (CQ04924-MSD1)     | Sou    | rce: CQF03         | 99-01         | Prepared       | & Analyz         | ed: 06/13/ | 07              | •    |              |       |
| Hexavalent Chromium                 | 273    | 10                 | μg/L          | 250            | ND               | 109        | 8 <b>5-</b> 115 | 3.80 | 20           |       |
| Batch CQ04946 - General Preparation |        |                    | <u>-</u>      |                |                  |            |                 |      |              |       |
| Blank (CQ04946-BLK1)                |        |                    |               | Prepared       | & Analyz         | ed: 06/14/ | 07              | -    |              |       |
| Total Alkalinity                    | ND     | 5.0                | mg/L          |                |                  |            |                 |      |              |       |
| Bicarbonate as CaCO3                | ND     | 5.0                | 11            |                |                  |            |                 |      |              |       |
| Carbonate as CaCO3                  | ND     | 5.0                | 11            |                |                  |            |                 |      |              |       |
| Hydroxide as CaCO3                  | ИĎ     | 5.0                | II            |                |                  |            |                 |      | •            |       |
| Batch CQ04948 - General Preparation |        | <u>.</u>           |               |                |                  | ,          |                 |      |              |       |
| Blank (CQ04948-BLK1)                |        |                    |               | Prepared       | & Analyz         | ed: 06/14/ | 07              |      |              |       |
| Hexavalent Chromium, Dissolved      | ND     | 10                 | μ <b>g/</b> L |                | -                |            |                 |      |              |       |
| LCS (CQ04948-BS1)                   |        |                    | ,             | Prepared       | & Analyz         | ed: 06/14/ | 07              |      |              |       |
| Hexavalent Chromium, Dissolved      | 264    | 10                 | μ <b>g/</b> L | 250            |                  | 106        | 80-120          |      |              |       |
| LCS Dup (CQ04948-BSD1)              |        |                    |               | Prepared       | & Analyz         | ed: 06/14/ | 07              |      |              |       |
| Hexavalent Chromium, Dissolved      | 251    | 10                 | μ <b>g</b> /L | 250            |                  | 100        | 80-120          | 5.25 | 20           |       |

06/27/07 15:43

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC #: 84179-84180

| Analyte                             | Result | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits      | RPD   | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|----------|----------------|------------------|------------|---------------------|-------|--------------|-------|
| Batch CQ04948 - General Preparation |        |                    |          | <u>.</u>       | _                |            |                     |       |              |       |
| Matrix Spike (CQ04948-MS1)          | So     | urce: CQF03        | 99-01    | Prepared       | & Analyz         | ed: 06/14/ | 07                  | _     |              |       |
| Hexavalent Chromium, Dissolved      | 251    | 10                 | μg/L     | 250            | ND               | 100        | 80~120              |       |              |       |
| Matrix Spike Dup (CQ04948-MSD1)     | So     | urce: CQF03        | 99-01    | Prepared       | & Analyz         | ed: 06/14/ | 07                  |       |              |       |
| Hexavalent Chromium, Dissolved      | 260    | 10                 | μg/L     | 250            | ND               | 104        | 80~120              | 3.53  | 20           |       |
| Batch CQ04954 - General Preparation |        |                    |          |                |                  |            |                     | •     |              |       |
| Blank (CQ04954-BLK1)                |        |                    |          | Prepared       | & Analyz         | ed: 06/14/ | 07                  |       |              |       |
| Specific Conductance (BC)           | ND     | 1.0                | μmhos/cm | 1 .            |                  |            | ·                   |       | •            |       |
| Batch CQ05242 - General Prep        |        |                    |          |                |                  |            |                     | :     |              |       |
| Blank (CQ05242-BLK1)                |        |                    |          | Prepared:      | 06/23/07         | Analyzec   | l: 0 <u>6/24/07</u> |       |              |       |
| Sulfate as SO4                      | ND     | 0.50               | mg/L     |                |                  |            |                     |       |              |       |
| Chloride                            | ND     | 0.50               | ) II     |                |                  |            |                     |       |              |       |
| LCS (CQ05242-BS1)                   |        |                    |          | Prepared:      | 06/23/07         | Analyzed   | l: 06/24/07         |       | _            |       |
| Sulfate as SO4                      | 4.74   | 0.50               | mg/L     | 5.00           |                  | 94.7       | 80-120              |       |              |       |
| Chloride                            | 1.90   | 0.50               | н ,      | 2.00           | 255              | 95.0       | 80-120              |       | •            |       |
| LCS Dup (CQ05242-BSD1)              |        |                    |          | Prepared:      |                  | Analyzed   | 1: 06/24/07         |       |              |       |
| Chloride                            | 1.91   | 0.50               | mg/L     | 2.00           | _                | 95.6       | 80-120              | 0.577 | 20           |       |
| Sulfate as SO4                      | 4.76   | 0.50               | 11       | 5.00           |                  | 95.2       | 80-120              | 0.463 | 20           |       |
| Matrix Spike (CQ05242-MS1)          | So     | urce: CQF03        | 99-01    | Prepared:      | 06/23/07         | Analyzec   | 1: 06/24/07         |       |              |       |
| Chloride                            | 2.07   | 0.50               | mg/L     | 2.00           | 0.469            | 80.1       | 75-125              |       |              |       |
| Sulfate as SO4                      | 4.86   | 0.50               | n        | 5.00           | ND               | 97.3       | 75-125              |       |              |       |

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

| Analyte                         | Result       | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|---------------------------------|--------------|--------------------|----------------|----------------|------------------|----------|----------------|-------|--------------|-------|
| Batch CQ05242 - General Prep    | . · <u> </u> |                    |                | •              |                  |          |                |       |              | ,     |
| Matrix Spike Dup (CQ05242-MSD1) | Sou          | rce: CQF03         | 99 <b>-0</b> 1 | Prepared:      | 06/23/07         | Analyzed | : 06/24/07     |       |              |       |
| Chloride                        | 2.06         | 0.50               | mg/L           | 2.00           | 0.469            | 79.7     | 75-125         | 0.339 | 25           |       |
| Sulfate as SO4                  | 4.86         | 0.50               | 11             | 5.00           | ND               | 97.3     | 75-125         | 0.00  | 25           |       |

Fax: 916-638-4510

06/27/07 15:43

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180
Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

### Metals by EPA 200 Series Methods - Quality Control

| Analyte                    | Result | Reporting<br>Limit | Units      | Spike<br>Level                        | Source<br>Result | %REC     | %REC<br>Limits  | RPD   | RPD<br>Limit | Notes |
|----------------------------|--------|--------------------|------------|---------------------------------------|------------------|----------|-----------------|-------|--------------|-------|
| Batch CQ04916 - EPA 3020A  |        |                    |            | · · · · · · · · · · · · · · · · · · · | •                |          |                 |       |              |       |
| Blank (CQ04916-BLK1)       |        |                    |            | Prepared:                             | 06/13/07         | Analyzed | l: 06/14/07     |       |              |       |
| Aluminum .                 | ND     | 20                 | μg/L       |                                       |                  |          |                 |       |              |       |
| Arsenic                    | ND     | 2.0                | 11         |                                       |                  |          | ,               |       |              |       |
| Copper                     | ND     | 1.0                | 11         | •                                     |                  |          |                 |       |              |       |
| ron .                      | ND     | 50                 | 11         |                                       | ·                |          |                 |       |              | •     |
| Zinc                       | ND     | 2.0                | п          |                                       |                  |          |                 |       |              |       |
| Cadmium                    | ND     | 0.50               | . "        |                                       |                  |          |                 |       |              |       |
| LCS (CQ04916-BS1)          |        |                    |            | Prepared:                             | 06/13/07         | Analyzed | 1: 06/14/07     |       |              |       |
| Aluminum                   | 102    | 20                 | μg/L       | 1 00                                  |                  | 102      | 80-120          |       |              |       |
| Arsenic                    | 111    | 2.0                | ti         | 100                                   |                  | 111      | 80-120          |       |              |       |
| Copper                     | 112    | ∙1.0               | .H.        | 100                                   |                  | 112      | 80-120          |       |              |       |
| íron                       | 102    | 50                 | н          | 100                                   |                  | 102      | 80-120          |       |              |       |
| Zine                       | 105    | 2.0                | н ,        | 100                                   |                  | 105      | 80-120          |       |              |       |
| Cadmium                    | 10.2   | 0.50               | Ħ          | 10.0                                  | •                | 102      | 80-120          |       |              |       |
| LCS Dup (CQ04916-BSD1)     | •      |                    |            | Prepared:                             | 06/13/07         | Analyzed | 1: 06/14/07     |       |              |       |
| Aluminum                   | 99.0   | 20                 | μg/L       | 100                                   | _                | . 99.0   | 80-120          | 3.04  | 20           |       |
| Arsenic                    | 111    | 2.0                | 11         | 100                                   |                  | 111      | 80-120          | 0.207 | 20           |       |
| Copper                     | 111    | 1.0                | 11         | 100                                   |                  | 111      | 80-120          | 0.822 | 20           |       |
| tron .                     | 94.8   | 50                 | 11         | 100                                   |                  | 94.8     | 80-120          | 7.60  | 20           |       |
| Zinc                       | 105    | 2.0                | 11         | 100                                   |                  | 105      | 80-120          | 0.199 | 20           |       |
| Cadmiu <del>m</del>        | 10.0   | 0.50               | 11         | 10.0                                  |                  | 100      | 80-120          | 1.88  | 20           |       |
| Matrix Spike (CQ04916-MS1) | So     | urce: CQF03        | 199-01     | Prepared:                             | 06/13/07         | Analyzed | 1: 06/14/07     |       |              |       |
| Aluminum                   | 116    | 20                 | μg/L       | 100                                   | 21.7             | 94.4     | 75-125          |       | _            |       |
| Arsenic                    | 110    | 2.0                | **         | 100                                   | ND               | 110      | 75-125          |       |              | •     |
| Copper                     | 101    | 1.0                | <b>e</b> 7 | 100                                   | 0.410            | 101      | 75-125          |       |              |       |
| lron .                     | 434    | . 50               | - 17       | 100                                   | 351              | 83.3     | 75-125          |       |              |       |
| Zine                       | 96.8   | 2.0                | 11         | 100                                   | 1.22             | 95.5     | 7 <i>5</i> -125 |       |              |       |
| Cadmium                    | 9.98   | 0.50               | п          | 10.0                                  | ND               | 99.8     | 75-125          |       |              |       |

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

#### Metals by EPA 200 Series Methods - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|----------------|------------------|----------|----------------|-------|--------------|-------|
| Batch CQ04916 - EPA 3020A       |        |                    |       | ·              | ·<br>            |          |                |       | •            |       |
| Matrix Spike Dup (CQ04916-MSD1) | . Sou  | irce: CQF03        | 99-01 | Prepared:      | 06/13/07         | Analyzed | : 06/14/07     |       |              |       |
| Aluminum                        | 117    | 20                 | μg/L  | 100            | 21.7             | 95.1     | 75-125         | 0.567 | /25          |       |
| Arsenic                         | 109    | 2.0                | . 17  | 100            | ND               | 109      | 75-125         | 0.584 | 25           |       |
| Copper                          | . 99.5 | 1.0                | 10    | 100            | 0.410            | 99.1     | 75-125         | 1.77  | 25           |       |
| fron                            | 436    | 50                 | 17    | 100            | 351              | 85.4     | 75-125         | 0,483 | 25           |       |
| Zinc                            | 95.6   | 2.0                | 0 -   | 100            | 1.22             | 94.4     | 75-125         | 1.16  | 25           |       |
| Cadmium                         | 9.84   | 0.50               | 10    | 10.0           | ND               | 98.4     | 75-125         | 1.41  | 25           |       |

### CALIFORNIA LABORATORY SERVICES

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC#: 84179-84180

### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

|                            |        | Reporting         |       | Spik <b>e</b>                 | Source    |             | %REC     |      | RPD   |       |
|----------------------------|--------|-------------------|-------|-------------------------------|-----------|-------------|----------|------|-------|-------|
| Analyte                    | Result | Limit             | Units | Level                         | Result    | %REC        | Limits _ | RPD  | Limit | Notes |
| Batch CQ04940 - EPA 3020A  |        |                   |       |                               |           |             |          | •    |       |       |
| Blank (CQ04940-BLK1)       | ٠      |                   |       | Prepared                      | & Analyze | ed: 06/14/0 | 07       |      |       |       |
| Aluminum                   | ND     | 20                | μg/L  | '                             |           |             |          |      |       |       |
| Arsenic                    | ND     | 5.0               | 10    |                               |           |             |          |      |       |       |
| Copper                     | ND     | 2.0               | 10    | •                             |           |             |          |      |       |       |
| fron                       | ND     | 50                | 19    |                               |           |             | •        |      |       |       |
| Zinc                       | ND     | 2.0               | 11    |                               |           |             |          |      |       |       |
| Cadmium                    | ND     | 0.50              | . 11  |                               |           |             |          |      |       |       |
| LCS (CQ04940-BS1)          |        |                   |       | Prepared                      | & Analyze | d: 06/14/   | 07       |      |       |       |
| Aluminum                   | 104    | . 20              | μg/L  | 100                           | _         | 104         | 80-120   |      |       |       |
| Arsenic                    | . 107  | 5.0               | н     | 100                           |           | 107         | 80-120   |      |       |       |
| Copper .                   | · 107  | 2.0               | н     | 100                           |           | 107         | 80-120   |      |       |       |
| ron                        | 112    | 50                | IF .  | 100                           |           | 112         | 80-120   |      |       |       |
| Zinc                       | 101    | 2.0               | 11    | 100                           |           | 101         | 80-120   |      |       |       |
| Cadmium                    | 9.90   | 0.50              | **    | 10.0                          |           | 99.0        | 80-120   | ,    |       |       |
| LCS Dup (CQ04940-BSD1)     |        |                   |       | Prepared                      | & Analyze | ed: 06/14/  | 07       |      |       |       |
| Aluminum.                  | 100    | 20                | μg/L  | 100                           |           | 100         | 80-120   | 3.79 | 20    |       |
| Arsenic                    | 103    | 5.0               | tř    | 100                           |           | 103         | 80-120   | 3.90 | 20    |       |
| Copper                     | 104    | 2.0               | 10    | 100                           | ·         | 104         | 80-120   | 2.63 | 20    |       |
| Iron                       | 110    | . 50              | 10    | 100                           |           | 110         | 80-120   | 1.94 | 20    |       |
| Zinc                       | 99.2   | 2.0               | 19    | 100                           | ÷         | 99.2        | 80-120   | 1.84 | 20    |       |
| Cadmium                    | 9.57   | 0.50              | n     | 10.0                          |           | 95.7        | 80-120   | 3.39 | 20    |       |
| Matrix Spike (CQ04940-MS1) | So     | ource: CQF0427-06 |       | Prepared & Analyzed: 06/14/07 |           |             | 07       |      |       |       |
| Aluminum                   | 121    | 20                | μg/L  | 100                           | 20.4      | 101         | 75-125   |      |       |       |
| Arsenic                    | 107    | 5.0               | т .   | 100                           | ND        | 107         | 75-125   |      |       |       |
| Copper                     | 105    | 2.0               | 17    | 100                           | 7.48      | 97.9        | 75-125   |      |       |       |
| fron .                     | 151    | 50                | tt    | 100                           | 39.7      | 111         | 75-125   |      |       |       |
| Zinc .                     | 111    | 2.0               | **    | 100                           | 15.7      | 95.4        | 75-125   |      |       |       |
| Cadmium                    | 9.79   | 0.50              | н     | 10.0                          | ND        | 97.9        | 75-125   |      |       |       |

06/27/07 15:43

CRWQCB - Sacramento

Project Number: PCA 13180

Project: Walker Mine

CLS Work Order #: CQF0399

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project Manager: Steve Rosenbaum

COC#: 84179-84180

### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC               | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|----------------|------------------|--------------------|----------------|-------|--------------|-------|
| Batch CQ04940 - EPA 3020A       |        |                    |       |                |                  |                    |                |       |              |       |
| Matrix Spike Dup (CQ04940-MSD1) | Sour   | ce: CQF04          | 27-06 | Prepared       | & Analyze        | d: <b>0</b> 6/14/0 | 07             |       |              |       |
| Aluminum                        | 121    | 20                 | μg/L  | 100            | 20.4             | 101                | 75-125         | 0.380 | 25           |       |
| Arsenic                         | 105    | 5.0                | ti    | . 100          | ND               | 105                | 75-125         | 1.13  | 25           |       |
| Copper                          | 103    | 2.0                | ti    | 100            | 7.48             | 95.3               | 75-125         | 2.52  | 25           |       |
| Iron                            | . 145  | 50                 | n     | 100            | 39.7             | 105                | 75-125         | 3.84  | <b>2</b> 5   |       |
| Zinc                            | 109    | 2.0                | **    | 100            | 15.7             | 93.0               | 75-125         | 2.16  | 25           |       |
| Cadmium                         | 9.82   | 0.50               | **    | 10.0           | ND               | 98.2               | 75-125         | 0.306 | 25           |       |

## CALIFORNIA LABORATORY SERVICES

06/27/07 15:43

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQF0399

COC #: 84179-84180

#### Notes and Definitions

HT-1 The sample was received outside of the EPA recommended holding time.

DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit ND

NR Not Reported

dry Sample results reported on a dry weight basis

Relative Percent Difference RPD

#### CENTRAL VALLEY REGIONAL WATER QUALITY CONTROL BOARD

#### INSPECTION REPORT

23 October 2007

DISCHARGER:

Walker Mine

LOCATION & COUNTY:

Walker Mine, Plumas County

CONTACT(S):

None

INSPECTION DATE:

10 October 2007

**INSPECTED BY:** 

Wendy Wyels, Steve Rosenbaum, and Jeff Huggins

**ACCOMPANIED BY:** 

NA

#### **OBSERVATIONS AND COMMENTS:**

On 31 October 2000, Board staff performed the annual fall inspection of the Walker Mine in Plumas County as specified in the Walker Mine Operations and Maintenance Procedures (June 1997). The weather was cloudy and cool (about 35°F). A light snow had fallen the night before the inspection in the higher elevations and a slight rain fell during part of the inspection. A photo log of the inspection is attached.

#### WALKER MINE TAILINGS SITE

Board staff arrived on site at 10:00am and went first to the Walker Mine tailings site to meet with the representatives of the United States Department of Agriculture Forest Service (USFS), and inspect the progress of the Dolly Creek diversion work being carried out as required by Order No R5-00-028. The tailings site represents a significant source of water pollution into both Dolly Creek and Little Grizzly Creek. Diversion of Dolly Creek off of the tailings is expected to reduce heavy metals contamination in Little Grizzly Creek.

Construction of the diversion channel infrastructure was nearly complete as shown in Photos #2-11. However, the USFS project engineer (George Butler, Plumas National Forest) indicated that a significant amount of subsurface drainage from hillsides surrounding the tailings site is making its way into the tailing site, surfacing in the old Dolly Creek channel, and discharging at the USFS dam location as shown in photos #12-13. This was not entirely anticipated by the USFS and will need to be further assessed in order to reduce metals discharged into Little Grizzly Creek.

#### **PORTAL AREA**

Board staff next went to the Walker Mine Portal area. The portal door at the mine entrance was securely locked. However, there was some evidence of minor vandalism to the portal door, making it hard to open.

Board staff entered the mine access tunnel and downloaded pressure data from the Telog data recorder during the inspection. At the time of the inspection, a current measurement of 7.08 mAmps (133 feet of pressure head) was recorded. The maximum pressure head has continued to fall since the last inspection (11-12 June 2007). At that time a pressure head of

| Approved | : |  |
|----------|---|--|

154 feet was recorded above the mine seal due to water and snowmelt recharging the mine workings.

The old batteries that power the Druck pressure sensor recorder were removed and replaced with recharged batteries during this inspection. All four of the heavy-duty locks on the portal doors were securely locked upon leaving the mine portal.

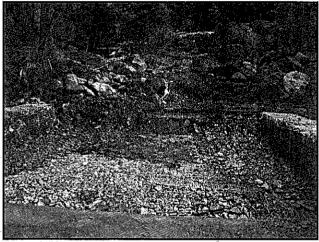
#### WATER QUALITY MONITORING

Surface water samples were taken from 11 of the 25 sampling locations, located in the upper Walker Mine watershed area. Most of the sample locations had sufficient surface water to sample, however water flow in general was low. Laboratory results are pending.

#### SUBSIDENCE AREAS

Staff inspected the diversion channel structures in the area of the Piute orebody workings. There was no water flowing in the diversion channels at the time of the inspection and it appeared that water flow has been minimal for some time.

#### SUMMARY:


A semi annual inspection was made of the Walker Mine site. The Dolly Creek diversion work at the Walker Mine tailings site being performed by the USFS was nearly completed. If significant subsurface water infiltration of the tailings continues, further work may need to be performed to address this problem. Some surface water monitoring of the upper Walker Mine watershed was performed and water pressure measurements on the mine seal were obtained. New batteries were installed for the data logger. Staff will revisit the site in the spring to replace the batteries, inspect the seal, collect water samples from all monitoring points, and further assess runoff into the subsidence areas.

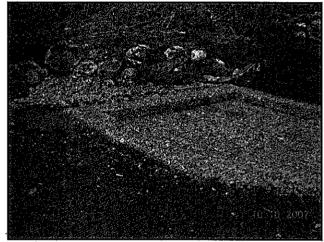
JEFF HUGGINS
Water Resources Control Engineer

Walker Mine 10 October 2007



#1. Walker Mine, Plumas County October 2007.




#2. USFS Dolly Creek diversion work. Inlet structure located above the tailings impoundment.



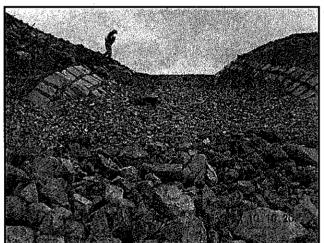
#3. Dolly Creek temporary diversion.



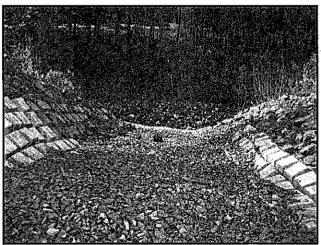
#4. Drop structure above the tailings impoundment.



#5. Stilling basin located at the base of the drop structure.



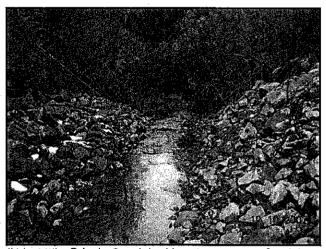

6. Dolly Creek upper diversion channel looking downgradient towards the tailings impoundment.


Walker Mine 10 October 2007



#7. Dolly Creek lower diversion channel looking upgradient towards Walker Mine.




#8. New tailings impoundment outfall structure from Dolly Creek to Little Grizzly Creek looking upgradient.



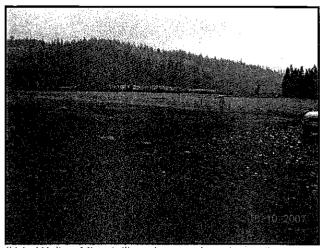
#9. New tailings impoundment outfall structure from Dolly Creek to Little Grizzly Creek.



#10. Little Grizzly Creek looking upstream from the confluence with Dolly Creek.




#11. Little Grizzly Creek looking downstream from the confluence with Dolly Creek.




#12. Existing USFS tailings impoundment dam on Dolly Creek.

Walker Mine 10 October 2007



#13. Looking upgradient at Dolly Creek near the USFS dam.



#14. Walker Mine tailings impoundment near the USFS dam.

### CALIFORNIA LABORATORY SERVICES

3249 Fitzgerald Road Rancho Cordova, CA 95742

October 23, 2007

CLS Work Order #: CQJ0438 COC #: 74121

Steve Rosenbaum CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova, CA 95670-6114

Project Name: Walker Mine

Enclosed are the results of analyses for samples received by the laboratory on 10/11/07 08:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

+ Dissolved Metals + General Minerals COMPOSITE BID Group 7 15 Total Metals <u>8</u> したといる SPECIAL INSTRUCTIONS LOG NO. 74121 (2) PRINT NAME / COMPANY <u>ۃ</u> ☐ YES Need Low ALT. (5) =  $H_2SO_4$ (6) =  $Na_2S_2O_3$ Limit 5 QUOTE # P.O. # GEOTRACKER: **EDF REPORT** ΥAQ TURN AROUND TIME GLOBAL ID: 10 S YAŒ CONDITIONS / COMMENTS: AIR BILL# S YAG RECEIVED BY (SIGN) CLS ID No.: 6010428 YAQ ANALYSIS REQUESTED (1) HCL (2) HNO<sub>3</sub> **PRESERVATIVES**: 10/11/07 0800 Bid Group DATE / TIME OTHER **PRESERVATIVES** CHAIN OF CUSTODY CLS (916) 638-7301 3249 FITZGERALD RD. RANCHO CORDOVA, CA. 95742 TYPE DESTINATION LABORATORY CONTAINER CLIENT JOB NUMBER JEH Huggins RWOLB DATE / TIME / Ö. PRINT NAME / COMPANY Huggins/Steve Rosenbaum OTHER MATRIX Ranche Cordoida.
PROJECT MANAGES STRUE ROSENDAUM 464-463 1530 WM 12 MBWARD CK 545 WMIT NBUMROCK 150 WR 9 160 M BO 1210 Lum & Lacols De 1200 WW. 6 USFS DAM · LGC WI 1330 WW 2 DC W/S 1240 Wm3 DC 0/5 Wan 70 -fee U/S 535 WM13 NYECK 325 WMI PORTAL Bunty PROJECT NAME WATLES MINE Central Valley Regional REPORT TO: FIDX RELINQUISHED BY (SIGN) SUR S SITE LOCATION PLUMAS CLS - Labs SAMPLED BY JEH SUSPECTED CONSTITUENTS 5801 Lo-01-01 TIME NAME AND ADDRESS SHIPPED BY: JOB DESCRIPTION REC'D AT LAB BY: DATE

8A.J

10/23/07 13:11

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine
Project Number: PCA 13180

CLS Work Order #: CQJ0438

Project Manager: Steve Rosenbaum

COC#: 74121

| Analyte                          | Result          | Reporting<br>Limit |               | Diluti <b>o</b> n | Batch   | Prepared | Analyzed        | Method      | Notes |
|----------------------------------|-----------------|--------------------|---------------|-------------------|---------|----------|-----------------|-------------|-------|
| WM 5 LGC U/S (CQJ0438-01) Water  | Sampled: 10/1   | 0/07 10:35         | Received:     | 10/11/07          | 08:00   |          |                 | •.          |       |
| Total Alkalinity                 | 75              | 5.0                | mg/L          | 1                 | CQ08496 | 10/12/07 | 10/12/07        | SM2310B     |       |
| Bicarbonate as CaCO3             | 75              | 5.0                | u             | ц                 | ø       | n        | 14              | и           |       |
| Carbonate as CaCO3               | ND              | . 5.0              | u .           | u                 | Ü       | · II     | lt .            | lı .        |       |
| Hydroxide as CaCO3               | ND              | 5.0                | u             | u .               | I†      | If       | lt              | u           |       |
| Chloride                         | 0.85            | 0.50               | · u           | ш                 | CQ08454 | 10/11/07 | 10/11/07        | EPA.300.0   |       |
| Specific Conductance (EC)        | 140             | 1.0                | μmhos/cm      | ‡1                | CQ08461 | 10/11/07 | 10/11/07        | EPA 120.1   |       |
| Hexavalent Chromium              | ND              | 10                 | μ <b>g/</b> L | n                 | CQ08449 | 10/11/07 | 10/11/07        | EPA 7196A   |       |
| Hexavalent Chromium, Dissolved   | ND .            | 10                 | , 4           | )1                | CQ08450 | 10/11/07 | 10/11/07        | ti          |       |
| Methylene Blue Active Substances | ND              | 0.10               | mg/L          | п ,               | CQ08487 | 10/12/07 | 10/12/07        | SM5540 C    |       |
| Calcium                          | 16              | 1.0                | ŧť            | 71                | CQ08576 | 10/16/07 | 10/16/07        | 200.7/2340B |       |
| Magnesium                        | 6.6             | 1.0                | tı            | · #               | II.     | II       | II.             | ti          | •     |
| Potassium                        | 2.1             | 1.0                | , 11          | (I                | ш.      | 0        | ı)              | II          |       |
| Sodium                           | 4.3             | 1.0                | ų             | ti ,              | 1 0     | 0        | Iţ              | н :         |       |
| pH                               | 7.26            | - 0.01             | pH Units      | n                 | CQ08451 | 10/11/07 | 10/11/07        | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | 0.56            | 0.50               | mg/L          | . "               | CQ08454 | 10/11/07 | 10/11/07        | EPA 300.0   |       |
| Total Dissolved Solids           | 71              | 10                 | U             | D                 | CQ08511 | 10/14/07 | 10/15/07        | SM2540C     |       |
| WM 70 U/S (CQJ0438-02) Water Sa  | mpled: 10/10/07 | 11:45 Rec          | eived: 10/1   | 1/07 08:00        | )       |          |                 |             |       |
| Total Alkalinity                 | . 75            | 5,0                | mg/L          | I .               | CQ08496 | 10/12/07 | 10/12/07        | SM2310B     |       |
| Bicarbonate as CaCO3             | 75              | 5.0                | El            | ti ti             | tu      | II.      | 1(              | 11          | ÷     |
| Carbonate as CaCO3               | ND              | 5.0                | 11            | п                 | s 0     | н        | IL              | 11          |       |
| Hydroxide as CaCO3               | ND              | 5.0                | 11            | 'n                | 11      | u        | Ц               | , h         |       |
| Chloride                         | 0.80            | 0.50               | н             | . 0               | CQ08454 | 10/11/07 | 10/11/07        | EPA 300.0   | •     |
| Specific Conductance (EC)        | 150             | 1.0                | µmhos/cm      | п                 | CQ08461 | 10/11/07 | 10/11/07        | EPA 120.1   |       |
| Hexavalent Chromium              | ND              | 10                 | μg/L          | ti                | CQ08449 | 10/11/07 | 10/11/07        | EPA 7196A   |       |
| Hexavalent Chromium, Dissolved   | ND              | 10                 | 1             | 0                 | CQ08450 | 10/11/07 | 10/11/07        | ıt.         | ٠-    |
| Methylene Blue Active Substances | ND              | 0.10               | mg/L          | ш                 | CO08487 | 10/12/07 | 10/12/07        | SM5540 C    |       |
| Calcium                          | 19              | 1.0                | 11            | η .               | CQ08576 | 10/16/07 | 10/16/07        | 200.7/2340B |       |
| Magnesium                        | 5.5             | 1.0                | 16            | 27                | 0       | ti .     | tı              | ti .        |       |
| Potassium                        | 2.1             | 1.0                | n             | 11                | u .     | . 11     | 11              | u           |       |
| Sodium                           | 5.2             | 1.0                | D             | Ħ                 | ŧŧ      | ħ        | 10              | , п         |       |
| pH                               | 7.19            | 0.01               | pH Units      | . 11              | CQ08451 | 10/11/07 | 10/11/07        | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | 11              | 0.50               | mg/L          | н .               | CQ08454 | 10/11/07 | 10/11/07        | EPA 300.0   |       |
| Total Dissolved Solids           | 86              | 10                 | ır            | и                 | CQ08511 | 10/14/07 | 10/15/07        | SM2540C     |       |
| WM 6 USFS DAM (CQJ0438-03) Wat   |                 | 0/10/07 12:0       | 0 Receive     | d: 10/11/0        |         |          | 4               |             |       |
| Total Alkalinity                 | 73              | 5.0                | mg/L          | · 1               | CQ08496 | 10/12/07 | 10/12/07        | SM2310B     |       |
| Bicarbonate as CaCO3             | 73              | 5.0                |               | ti                | 11 -    | (1       | 10,12,01        | U U         |       |
| Carbonate as CaCO3               | ND              | 5.0                | u             | ı)                | ц       | 9 .      | B               | я           |       |
| Hydroxide as CaCO3               | ND              | 5.0                | u             | п                 | , 11    | μ .      | . · · · · · · · | it .        |       |
| Tryutoxiue as Cacos              | עא              | 3.0                |               | ••                | ••      |          |                 | -4          |       |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC #: 74121

| Analyte .                          | Result     | Reporting<br>Limit | Units        | Dilution                              | Batch     | Prepared | Analyzed   | Method          | Notes |
|------------------------------------|------------|--------------------|--------------|---------------------------------------|-----------|----------|------------|-----------------|-------|
| WM 6 USFS DAM (CQJ0438-03) Water   | Sampled: 1 | 0/10/07 12:0       | 0 Receive    | d: 10/11/0                            | 07 08:00  |          | <u>·</u>   |                 | _     |
| Chloride                           | 0.97       | 0.50               | mg/L         | 1                                     | CQ08454   | 10/11/07 | 10/11/07   | EPA 300.0       |       |
| Specific Conductance (EC)          | 150        | 1.0                | µmhos/cm     | 11                                    | CQ08461   | 10/11/07 | 10/11/07   | EPA 120.1       |       |
| Hexavalent Chromium                | ND         | 10                 | μg/L         | It                                    | CQ08449   | 10/11/07 | 10/11/07   | EPA 7196A       |       |
| Hexavalent Chromium, Dissolved     | ND .       | 10                 | 11           | ı                                     | CQ08450   | 10/11/07 | 10/11/07   | II              |       |
| Methylene Blue Active Substances   | ND         | 0.10               | mg/L         | It                                    | CQ08487   | 10/12/07 | 10/12/07   | SM5540 C        |       |
| Calcium                            | 17         | 1.0                | 91           | It                                    | CQ08576   | 10/16/07 | 10/16/07   | 200.7/2340B     |       |
| Magnesium                          | 6.7        | 1.0                | 11           | п                                     | н         |          | n,         | 11              |       |
| Potassium                          | 2.3        | 1.0                | II           | li .                                  | tl        | 11       | 31 ·       | 11              |       |
| Sodium                             | 4.1        | 1.0                | II           | ii                                    | υ,        | ti       | n ·        | ti              |       |
| pН                                 | 7.66       | 0.01               | pH Units     | 11                                    | CQ08451   | 10/11/07 | 10/11/07   | SM4500-HB       | HT-I  |
| Sulfate as SO4                     | 7.1        | 0.50               | mg/L         | · · · · · · · · · · · · · · · · · · · | CQ08454   | 10/11/07 | 10/11/07   | EPA 300.0       |       |
| Total Dissolved Solids             | 90         | 10                 | Ħ            | 11                                    | CQ08511   | 10/14/07 | 10/15/07   | SM2540C         |       |
| WM 8 LGC D/S DC (CQJ0438-04) Water | Sampled:   | 10/10/07 12:       | 10 Receiv    | /ed: 10/11                            | /07 08:00 |          |            |                 |       |
| Total Alkalinity                   | 70         | 5.0                | mg/L         | 1 .                                   | CQ08496   | 10/12/07 | 10/12/07   | SM2310B         | -     |
| Bicarbonate as CaCO3               | 70         | 5.0                | tı           | n                                     | ıı        | JI .     | ıı         | B               |       |
| Carbonate as CaCO3                 | ND         | 5.0                | n            | 0                                     | SI .      | л        | п          | U               |       |
| Hydroxide as CaCO3                 | ND         | 5.0                | 11           | а                                     | ĮI.       | - p      | n ·        | 11              |       |
| Chloride                           | 0.84       | 0.50               | 11           | n .                                   | CO08454   | 10/11/07 | . 10/11/07 | EPA 300.0       |       |
| Specific Conductance (EC)          | 160        | 1.0                | μmhos/cm     | ú                                     | CQ08461   | 10/11/07 | 10/11/07   | EPA 120.1       |       |
| Hexavalent Chromium                | ND         | 10                 | µg/L         | II                                    | CQ08449   | 10/11/07 | 10/11/07   | EPA 7196A       |       |
| Hexavalent Chromium, Dissolved     | ND         | 10                 | H            | II                                    | CQ08450   | 10/11/07 | 10/11/07   | 11              |       |
| Methylene Blue Active Substances   | ND         | 0.10               | mg/L         | 11                                    | CQ08487   | 10/12/07 | 10/12/07   | SM5540 C        |       |
| Calcium                            | 21         | 1.0                | ш            | 11                                    | CQ08576   | 10/16/07 | 10/16/07   | 200.7/2340B     |       |
| Magnesium                          | 6.0        | 1.0                | . 11         | 18                                    | 11        | II.      | 1)         | П .             |       |
| Potassium                          | 2.3        | 1.0                | 17           | 17                                    | ĮI.       | п        | 11.        | 11              |       |
| Sodium                             | 4.8        | 1.0                | 11           | 11                                    | II        | 71       | 11 .       |                 |       |
| рН                                 | 7.71       | 0.01               | pH Units     | 11                                    | CQ08451   | 10/11/07 | 10/11/07   | SM4500-H B      | HT-I  |
| Sulfate as SO4                     | 13         | 0.50               | mg/L         | ąl.                                   | CQ08454   | 10/11/07 | 10/11/07   | EPA 300.0       |       |
| Total Dissolved Solids             | 100        | 10                 | 1112         | , h                                   | CQ08511   | 10/14/07 | 10/15/07   | SM2540C         |       |
| •                                  |            | /07 12:40 R        | eceived: 1   | 0/11/07 0                             | •         | 10,1110, | 10/15/01   | D.V.25-100      |       |
| Total Alkalinity                   | 70         | 5.0                | mg/L         | 1                                     | CQ08496   | 10/12/07 | 10/12/07   | SM2310B         |       |
| Bicarbonate as CaCO3               | 70<br>70   | 5.0                | , 11<br>Tri- | ,11                                   | II        | 10/12/07 | 10/12/01   | \$1712310D<br># |       |
| Carbonate as CaCO3                 | ND         | 5.0                | ŧI           | ti                                    | II        | 11 .     | ıt         | н               |       |
| Hydroxide as CaCO3                 | ND         | 5.0                | 11           | 11                                    | t)        | 11       | ji         | lt.             |       |
| · ·                                | 1.4        | 0.50               | 11           | 11                                    | CQ08454   | 10/11/07 | 10/11/07   | EPA 300,0       |       |
| Chloride                           |            | •                  |              | ir                                    | -         |          | 10/11/07   | *               |       |
| Specific Conductance (EC)          | 150        | 1.0                | μmhos/cm     | <br>D                                 | CQ08461   | 10/11/07 |            | EPA 120.1       |       |
| Hexavalent Chromium                | ИD         | 10                 | μg/Ľ<br>"    | . "                                   | CQ08449   | 10/11/07 | 10/11/07   | EPA 7196A<br>"  |       |
| Hexavalent Chromium, Dissolved     | ND         | 10                 | . "          | "                                     | CQ08450   | 10/11/07 | 10/11/07   | . "             | 10    |
|                                    |            |                    |              |                                       |           |          |            |                 |       |

# California Laboratory Services

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC #: 74121

|                                    |                | Reporting         | -             | <u> </u>   |          |            |          |                      | _     |
|------------------------------------|----------------|-------------------|---------------|------------|----------|------------|----------|----------------------|-------|
| Analyte                            | Result         | Limit             | Units         | Dilution   | Batch    | Prepared   | Analyzed | Method               | Notes |
| WM 3 DC D/S (CQJ0438-05) Water Sa  | mpled: 10/10/  | 07 <b>12:40</b> R | eceived: 1    | 0/11/07 08 | 3:00     |            |          |                      |       |
| Methylene Blue Active Substances   | ND             | 0.10              | mg/L          | 1          | CQ08487  | 10/12/07   | 10/12/07 | SM5540 C             |       |
| Calcium .                          | 17             | 1.0               | П             | II.        | CQ08576  | 10/16/07   | 10/16/07 | 200.7/2 <b>3</b> 40B |       |
| Magnesium                          | 7.8            | 1.0               | II            | ıı,        | н        | n          | n        | I†                   |       |
| Potassium                          | 1.8            | 1.0               | II.           | U          | " .      | Ц          | #        | t#                   |       |
| Sodium                             | 3.4            | 1.0               | . 11          | н          | II       | II         | Ħ        | IP.                  |       |
| pH                                 | 7.57           | 0.01              | pH Units      | и          | CQ08451  | 10/11/07   | 10/11/07 | SM4500-H B           | HT-F  |
| Sulfate as SO4                     | 3.7            | 0.50              | mg/L          | 11         | CQ08454  | 10/11/07   | 10/11/07 | EPA 300.0            |       |
| Total Dissolved Solids             | 91             | 10                | H             | u          | CQ08511  | 10/14/07   | 10/15/07 | SM2540C              |       |
| WM 1 Portal (CQJ0438-06) Water San | pled: 10/10/07 | 7 13:25 Re        | ceived: 10/   | 11/07 08:0 | 00       |            |          |                      |       |
| Total Alkalinity                   | 62             | 5.0               | mg/L          | 1          | CQ08496  | 10/12/07   | 10/12/07 | SM2310B              |       |
| Bicarbonate as CaCO3               | . 62           | 5.0               | н             | и          | II.      | <u>_</u> " | Ħ        | ' u                  |       |
| Carbonate as CaCO3                 | ND             | 5.0               | II.           | 11         | TT.      | н          | 11       | , n                  |       |
| Hydroxide as CaCO3 .               | ИD             | 5.0               | Ш             | II.        | II       | н          | 11       | II                   |       |
| Chloride                           | 0.66           | 0.50              | II            | 11         | CQ08454  | 10/11/07   | 10/11/07 | EPA 300.0            |       |
| Specific Conductance (EC)          | 120            | 1.0               | µmhos/cm      | 1)         | CQ08461  | 10/11/07   | 10/11/07 | EPA 120.1            |       |
| Hexavalent Chromium                | ND             | 10                | μ <b>g/</b> Լ | u          | CQ08449  | 10/11/07   | 10/11/07 | EPA 7196A            |       |
| Hexavalent Chromium, Dissolved     | ND             | 10                | u             | · U        | CQ08450. | 10/11/07   | 10/11/07 | п                    |       |
| Methylene Blue Active Substances   | ND             | 0.10              | mg/L          | u          | CQ08487  | 10/12/07   | 10/12/07 | SM5540 C             |       |
| Calcium                            | 13             | 1.0               | · u           | II .       | CQ08576  | 10/16/07   | 10/16/07 | 200.7/2340B          |       |
| Magnesium                          | 4.8            | 1.0               | u.            | II         | u ,      | 11         | К        | fi                   |       |
| Potassium                          | ND             | 1.0               | U             | . н        | u        | . "        |          | 11 -                 |       |
| Sodium                             | 5.1            | 1.0               | . H           | H          | u        | †ŧ         | II       | 11                   |       |
| рН                                 | 7.52           | 0.01              | pH Units      | 11         | CQ08451  | 10/11/07   | 10/11/07 | SM4500-H B           | HT-F  |
| Sulfate as SO4                     | 1.2            | 0.50              | mg/L          | 11         | CQ08454  | 10/11/07   | 10/11/07 | EPA 300.0            |       |
| Total Dissolved Solids             | 44             | 10                | if            | Ħ          | CQ08511  | 10/14/07   | 10/15/07 | SM2540C              |       |
| WM 2 DC U/S (CQJ0438-07) Water Sa  | mpled: 10/10/6 | 07 13:30 R        | eceived: 10   | 0/11/07 08 | 00:      |            | **       |                      |       |
| Total Alkalinity                   | 74             | 5.0               | mg/L          | 1          | CQ08496  | 10/12/07   | 10/12/07 | SM2310B              |       |
| Bicarbonate as CaCO3               | 74             | 5.0               | (I            | II         | "        | ч          | И        | II.                  |       |
| Carbonate as CaCO3                 | ND             | 5.0               | ш             | II         | n        | 11         | Ņ        | · h                  |       |
| Hydroxide as CaCO3                 | ND             | 5.0               | Ш             | li         | n        | 11         | Ħ        | II.                  |       |
| Chloride                           | 1.0            | 0.50              | II.           | ıı         | CQ08454  | 10/11/07   | 10/11/07 | EPA 300.0            |       |
| Specific Conductance (EC)          | 140            | - 1.0             | µmhos/cm      | )I         | CQ08461  | 10/11/07   | 10/11/07 | EPA 120.1            |       |
| Hexavalent Chromium                | ND             | 10                | μg/L          | . 11       | CQ08449  | 10/11/07   | 10/11/07 | EPA 7196A            |       |
| Hexavalent Chromium, Dissolved     | ND             | 10                | a             | н          | -        | 10/11/07   | 10/11/07 | ŧ                    |       |
| Methylene Blue Active Substances   | ND             | 0.10              | mg/L          | 11         | CQ08487  | 10/12/07   | 10/12/07 | SM5540 C             |       |
| Calcium                            | 16             | 1.0               | וו            | 11         | CQ08576  | 10/16/07   | 10/16/07 | 200,7/2340B          |       |
| Magnesium                          | 8.1            | 1.0               | Ħ             | 11         | 11       | 11         | ıt .     | 11                   |       |
| trkagitestutii                     | Ų4.X           | ¥1.4              |               |            |          |            |          |                      |       |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC #: 74121

| Analyte                          | Result           | Reporting<br>Limit |             | Dilution            | Batch              | Prepared             | Analyzed | Method                  | Note           |
|----------------------------------|------------------|--------------------|-------------|---------------------|--------------------|----------------------|----------|-------------------------|----------------|
| WM 2 DC U/S (CQJ0438-07) Water   | Sampled: 10/10/0 | 7 13:30 R          | Leceived: 1 | 0/11/07 08          | 3:00               | , <u></u>            |          | <u> </u>                | <del>-</del> ; |
| Sodium                           | 3.1              | 1.0                | mg/L        | 1                   | CQ08576            | 10/16/07             | 10/16/07 | 200.7/2340B             |                |
| pH                               | 7.72             | 0.01               | pH Units    | U                   | CQ08451            | 10/11/07             | 10/11/07 | SM4500-H B              | HT-I           |
| Sulfate as SO4                   | ND               | 0.50               | mg/L        | U                   | CQ08454            | 10/11/07             | 10/11/07 | EPA 300.0               |                |
| Total Dissolved Solids           | 84               | 10                 | 11          | li .                | CQ08511            | 10/14/07             | 10/15/07 | SM2540C                 |                |
| WM 9 LGC At BC (CQJ0438-08) W    | ater Sampled: 10 | /10/07 15:0        | 0 Receive   | e <b>d:</b> 10/11/0 | 7 08:00            |                      |          |                         |                |
| Total Alkalinity                 | 75               | 5.0                | mg/L        | 1                   | CQ08496            | 10/12/07             | 10/12/07 | SM2310B                 |                |
| Bicarbonate as CaCO3             | 75               | 5.0                | 11          | l?                  | н                  | u                    | и.       | u                       |                |
| Carbonate as CaCO3               | ND               | 5.0                | 11 '        | tt                  | ţı                 | U                    | ш ,      | u ·                     |                |
| Hydroxide as CaCO3               | ND               | 5.0                | 11          | · · ·               | Ħ                  | u                    | ĮI.      | u                       |                |
| Chloride                         | 0.83             | 0.50               | lŧ .        | ll.                 | CQ08454            | 10/11/07             | 10/12/07 | EPA 300.0               |                |
| Specific Conductance (EC)        | . 170            | 1.0                | μmhos/cm    | n                   | CQ08461            | 10/11/07             | 10/11/07 | EPA 120.1               |                |
| Hexavalent Chromium              | ND               | 10                 | μg/L        | U                   | CQ08449            | 10/11/07             | 10/11/07 | EPA 7196A               |                |
| Hexavalent Chromium, Dissolved   | ND               | 10                 | ır          | ıt                  | CQ08450            | 10/11/07             | 10/11/07 | i i                     |                |
| Methylene Blue Active Substances | ND               | 0.10               | mg/L        | tr.                 | CQ08487            | 10/12/07             | 10/12/07 | SM5540 C                |                |
| Calcium                          | 21               | 1.0                | ı           | 11                  | CQ08576            | 10/16/07             | 10/16/07 | 200.7/2340B             |                |
| Magnesium                        | 5.8              | 1.0                | IF          | 11                  | H                  | 11                   | #        | 11                      |                |
| Potassium                        | 2.2              | 1.0                | Ħ           | n                   | 11                 | U                    | н        | ti ·                    |                |
| Sodium                           | 5.1              | 1.0                | ti          | 11                  | tt                 | u '                  | п        | 11                      | •              |
| рH                               | 7.82             | 0.01               | pH Units    | 11                  | CQ08451            | 10/11/07             | 10/11/07 | SM4500-H B              | HT-I           |
| Sulfate as SO4                   | 14               | 0.50               | mg/L        | **                  | CO08454            | 10/11/07             | 10/12/07 | EPA 300.0               | 111.7          |
| Total Dissolved Solids           | 97               | 10                 | . 11        | tl                  | CQ08511            | 10/14/07             | 10/15/07 | SM2540C                 |                |
| WM 12 MB Ward CK (CQJ0438-09     | ) Water Sampled  | : 10/10/07 1       | 5:30 Rec    | eived: 10/          |                    |                      |          | UIVESTOO                |                |
| Total Alkalinity                 | 12               | 5.0                | mg/L        | 1                   | CQ08496            | 10/12/07             | 10/12/07 | SM2310B                 | •              |
| Bicarbonate as CaCO3             | 12               | 5.0                | 11          | 11                  | 11                 | H                    | R        | 11                      |                |
| Carbonate as CaCO3               | ND               | 5.0                | Ц           | 11                  | ш                  | ij                   | It       | ŋ                       | ,              |
| Hydroxide as CaCO3               | ND               | 5.0                | ıı          | 11                  | u                  |                      | It       | ,                       |                |
| Chloride                         | 0.55             | 0.50               | в           | п                   | CQ08454            | 10/11/07             | 10/12/07 | EPA 300.0               |                |
| Specific Conductance (EC)        | 24               | 1.0                | μmhos/cm    | u                   | CQ08461            | 10/11/07             | 10/12/07 | EPA 120.1               |                |
| Hexavalent Chromium              | ND               | 10                 | μg/L        | u                   | CQ08449            | 10/11/07             | 10/11/07 | EPA 7196A               |                |
| Hexavalent Chromium, Dissolved   | ND               | 10                 | יי קאן      | n                   | CQ08450            | 10/11/07             | 10/11/07 | EFA /130A               |                |
| Methylene Blue Active Substances | ND               | 0.10               | mg/L        | н                   | CQ08487            | 10/11/07             | 10/11/07 | 53.455.40 C             |                |
| Calcium                          | 2.1              | 1.0                | ពេសក        | ш                   | CQ08487            | 10/12/07             | 10/12/07 | SM5540 C<br>200.7/2340B |                |
| Magnesium                        | ND               | 1.0                | It          | n                   | UQ06370            | 10/10/07             | 10/10/07 | 200.11234013            |                |
| Potassium                        | ND               | 1.0                | 11          | u                   | #                  | ti                   | 11       | ``.<br>• 11             |                |
| Sodium                           | 1.1              | 1.0                | 11          | 11                  | н                  | <br>U                | "        |                         |                |
| pH                               | 6.18             | 0.01               |             | 41                  |                    |                      |          |                         |                |
| pri<br>Sulfate as SO4            | 0.58             | 0.01               | pH Units    |                     | CQ08451            | 10/11/07             | 10/11/07 | SM4500-HB               | HT-I           |
| Total Dissolved Solids           | 0.58<br>ND       | 0.50.<br>10        | mg/L        | n                   | CQ08454<br>CQ08511 | 10/11/07<br>10/14/07 | 10/12/07 | EPA 300.0               |                |
|                                  |                  |                    | 11          | **                  | 1 4 1/10 2 1 1     | 10/14/07             | 10/15/07 | SM2540C                 |                |

10/23/07 13:11

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180
Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC#: 74121

| Analyte                          | Result        | Reporting<br>Limit | Units        | Dilution    | Batch                | Prepared | Analyzed | Method          | Notes |
|----------------------------------|---------------|--------------------|--------------|-------------|----------------------|----------|----------|-----------------|-------|
| WM 13 NYE CK (CQJ0438-10) Water  | Sampled: 10/1 | 0/07 15:35         | Received:    | 10/11/07    | 08:00                | ·        |          |                 | _     |
| Fotal Alkalinity                 | 74            | 5.0                | mg/L         | 1           | CQ08496              | 10/12/07 | 10/12/07 | SM2310B         |       |
| Bicarbonate as CaCO3             | 74            | 5.0                | Ħ            | IP          | , ft                 | **       | , h      | . "             |       |
| Carbonate as CaCO3               | ND            | 5.0                | IP .         | 11          | 11                   | 10       | I)       | I)              | * -   |
| Hydroxide as CaCO3               | ND            | 5.0                | n            | н           | и                    | ri       | II .     | ti              |       |
| Chloride                         | 0.59          | 0.50               | . 0          | it.         | CQ08454              | 10/11/07 | 10/12/07 | EPA 300.0       | •     |
| Specific Conductance (EC)        | 140           | 1.0                | μmhos/cm     | U           | CQ08461              | 10/11/07 | 10/11/07 | EPA 120.1       |       |
| Hexavalent Chromium              | ND            | 10                 | μ <b>g/L</b> | n           | CQ08449              | 10/11/07 | 10/11/07 | EPA 7196A       | •     |
| Hexavalent Chromium, Dissolved   | ND            | 10                 | 11           | n           | CQ08450              | 10/11/07 | 10/11/07 | n               |       |
| Methylene Blue Active Substances | ND            | 0.10               | mg/L         | ti          | CQ08487              | 10/12/07 | 10/12/07 | SM5540 C        |       |
| Calcium                          | 17            | 1.0                | a .          | 11          | CQ08576              | 10/16/07 | 10/16/07 | 200.7/2340B     |       |
| Magnesium                        | 7.0           | 1,0                | It           | I†          | 11                   | If .     | n        | ti              |       |
| Potassium                        | ND -          | 1.0                | H            | tt          | u .                  | 10.1     | 17       | R               |       |
| Sodium                           | 3.1           | 1.0                | II           | 11          | 11                   | P        | 'n       | U               |       |
| pΗ                               | 6.75          | 0.01               | pH Units     | н           | CQ08451              | 10/11/07 | 10/11/07 | SM4500-H B      | HT-I  |
| Sulfate as SO4                   | ND            | 0.50               | mg/L         | It          | CQ08454              | 10/11/07 | 10/12/07 | EPA 300.0       |       |
| Total Dissolved Solids           | 88            | 10                 | It           | n,          | CQ08511              | 10/14/07 | 10/15/07 | SM2540C         |       |
| WM 17 NB Ward CK (CQJ0438-11) W  | ater Sampled: | 10/10/07 1:        | 5:45 Rece    | eived: 10/1 | (1/0 <b>7 08:</b> 00 | )        |          |                 |       |
| Total Alkalinity                 | 85            | 5.0                | mg/L         | 1           | CQ08496              | 10/12/07 | 10/12/07 | SM2310B         |       |
| Bicarbonate as CaCO3             | 85            | 5.0                | 0            | 11          | u                    | 4        | 11       | n.              |       |
| Carbonate as CaCO3               | ND            | , 5.0              | 11           | P           | # `                  | 9        | 0 .      | ŋ               |       |
| Hydroxide as CaCO3               | ND            | 5.0                | . н          | 19          | 17                   | · "      | 0        | U               |       |
| Chloride                         | 0.72          | 0.50               | 11           | از ٠        | CQ08454              | 10/11/07 | 10/12/07 | EPA 300.0       |       |
| Specific Conductance (EC)        | 160           | 1.0                | μmhos/cm     | h           | CQ08461              | 10/11/07 | 10/11/07 | EPA 120.1       |       |
| Hexavalent Chromium              | ND            | 10                 | μg/L         | μ           | CQ08449              | 10/11/07 | 10/11/07 | EPA 7196A       |       |
| Hexavalent Chromium, Dissolved   | ND            | 10                 |              | ' 0         | CQ08450              | 10/11/07 | 10/11/07 | u               |       |
| Methylene Blue Active Substances | ND            | 0.10               | mg/L         | 11          | CQ08487              | 10/12/07 | 10/12/07 | - SM5540 C      |       |
| Calcium                          | 19            | 1.0                | 11           | и           | CQ08576              | 10/16/07 | 10/16/07 | 200.7/2340B     |       |
| Magnesium                        | 7.7           | 1.0                | IF.          | If          | )i                   | IL       | . 11     | В               |       |
| Potassium                        | 1.8           | 1.0                | п            | 11          | II.                  | u        | 19       | q               |       |
| Sodium                           | 3.8           | 1.0                | 11           | It          | `11                  | h        | 11       | <sup>9</sup> II |       |
| pH .                             | 7.96          | 0.01               | pH Units     | ıı          | CQ08451              | 10/11/07 | 10/11/07 | SM4500-H B      | HT-   |
| Sulfate as SO4                   | 0.78          | 0.50               | mg/L         | a           | CQ08454              | 10/11/07 | 10/12/07 | EPA 300.0       | 7.5   |
| Total Dissolved Solids           | 95            | 10                 | 11           | †I          | CQ08511              |          | 10/15/07 | SM2540C         |       |

# California Laboratory Services

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC#: 74121

| Analyte                   |                     |              |                                        | Result     | Reporting<br>Limit    | Units      | Dilution     | Batch        | Dusaanad | A 1 1         |           |   |      |
|---------------------------|---------------------|--------------|----------------------------------------|------------|-----------------------|------------|--------------|--------------|----------|---------------|-----------|---|------|
|                           | 1/ <b>S</b> (CO1043 | 38-01) Water |                                        | _          | /10/07 10:35          |            | _            |              | Prepared | Analyzed      | Method    |   | Note |
| <del> </del>              | 7D (CQ3040          |              |                                        |            |                       |            |              |              |          |               |           |   | •    |
| Aluminum<br>Arsenic       |                     | 04 06        | June 0                                 | 7 49<br>ND | 20                    | μg/L<br>"  | 1            | CQ08455      | 10/11/07 | 10/12/07      | EPA 200.8 |   |      |
|                           | •                   | -, ,         | ND                                     |            | 2.0                   |            |              |              | ı,<br>11 | "             | · "       |   |      |
| Copper                    |                     | DD ,         | ΝУ                                     | ND         | 1.0                   | . "        |              |              | . 16     | "             |           | • |      |
| ron                       |                     |              |                                        | 490        | 50                    | **         |              | . "          | u<br>U   | u u           | U ,       |   |      |
| Zine<br>Cadmium           |                     | •            |                                        | 4.4<br>ND  | 2.0<br>0.50           | **         | . "          |              | "        |               |           |   |      |
|                           | CO 10/29 04         | 1) Water Co  | ······································ |            | 0.30<br>7 11:45 Recei | 4. 10/     | 11/07 00-0   | <br>n        |          |               | ľ         | i |      |
| •                         | ** .                | •            | impieu:                                |            |                       |            | 7.1/07.08:00 |              |          |               | _         | · |      |
| Aluminum                  | Now 1               | ocation      |                                        | ND         | 20                    | μg/L       | 1            | CQ08455      | 10/11/07 | 10/12/07      | EPA 200.8 |   |      |
| Arsenic                   | 1-00- (             |              |                                        | ND         | 2.0                   | 16         | n            | U .          | π .      | 11            | IT        |   |      |
| Copper                    | ,                   |              |                                        | ND         | 1.0                   | 12         | <b>1</b> 1   | И            | , 11     | 1†            | ." ,      |   |      |
| ron                       |                     |              |                                        | 610        | 50                    | 11         | ti .         | ti .         | 10       | ii;           | †I        | • |      |
| Zinc                      |                     |              |                                        | ND         | . 2.0                 | 11         | *1           | ti           | 11       | 1)            | п         |   |      |
| Cadmium                   |                     |              | ٠ .                                    | ND         | 0.50                  |            | *1           | u            | 14       | u ·           | It        |   |      |
| WM 6 USFS I               | DAM (CQJ            | 0438-03) Wa  | ter San                                | npled:     | 10/10/07 12:00        | Receiv     | ed: 10/11/(  | 07 08:00     |          |               |           |   |      |
| Aluminum                  |                     |              |                                        | 22         | 20                    | μg/L       | 1            | CQ08455      | 10/11/07 | 10/12/07      | EPA 200.8 |   |      |
| Arsenic                   |                     | -            |                                        | ND         | 2.0                   | 16         | II           | ı, i         | I†       | . 10          | 11        |   |      |
| Copper                    |                     | 62           | 78                                     | 41         | 1.0                   | 16         | н            | В            | 11 .     | ı,            | It        |   |      |
| lron                      |                     |              | • •                                    | 740        | 50                    | . "        | II           | U            | . 11     | ır            | 11        |   |      |
| Zine '                    |                     |              |                                        | 5.6        | 2.0                   | It         | tı           | u            | 11       | 11            | . •1      |   |      |
| Cadmium                   |                     |              |                                        | ND         | 0.50                  | 1 0        | 11           | I)           | ļŧ       | H             | ti .      |   |      |
| WM 8 LGC I                | )/S DC (CQ          | J0438-04) W  | ater Sa                                | mpled      | : 10/10/07 12:1       | 0 Rece     | ived: 10/11  | /07 08:00    |          | •             | •         |   |      |
| Aluminum                  |                     | 1            |                                        | 41         | 20                    | μg/L       | 1            | CQ08455      | 10/11/07 | 10/12/07      | EPA 200.8 |   |      |
| Arsenic                   |                     |              |                                        | ND         | 2.0                   | " .        | 11           | "            | 11       | n             | 11        |   |      |
| Copper                    |                     | 29           | 17                                     | 16         | 1.0                   | 62         | IJ           | 11           | u        | Ŋ             | ĸ         |   |      |
| lron                      |                     | × 1          | , ,                                    | 630        | 50                    | н          | ·<br>U       | It           | N        | U             | U         |   |      |
| Zinc                      | •                   |              |                                        | 3.9        | 2.0                   | U          | Ħ            | It .         | H        | 11            | u         |   |      |
| Cadmium                   |                     |              |                                        | ND         | 0.50                  | II         | tt           | II.          | IF       | . 11          | и.,       |   |      |
| WM 3 DC D/8               | S (CQJ0438          | -05) Water   | Sample                                 | d: 10/1    | 0/07 12:40 R          | eceived: 1 | 10/11/07 08  | 3:00         |          |               |           |   |      |
| Aluminum                  |                     |              | <u> </u>                               | 66         | 20                    | μg/L       | 1            | CQ08455      | 10/11/07 | 10/12/07      | EPA 200.8 |   |      |
| Arsenic                   | **                  |              |                                        | ND         | 2.0                   | ր<br>Մահ   | 11           | #<br>CG09422 | 10/11/07 | 1 Of 1 Zi O f | DFA 200.0 |   |      |
| Copper                    |                     | 8.0          | 9.4                                    | 33         | · 1.0                 | ti         | п            | 11           | u        | Ц             | ш.,       |   |      |
| tron                      |                     | 7.0          | (, "l                                  | 1000       | 250                   | ti         | 5            | )ı           | и .      | 10/12/07      | 0 -       |   |      |
| Zinc                      |                     |              |                                        | 4.0        | 2.0                   | u          | 1            | 11           | u        | 10/12/07      | n         | 1 |      |
| Cadmium                   |                     |              |                                        | ND         | 0.50                  | п          | er If        | *1           | II       | 10/12/07      | I†        |   |      |
| WM 1 Portal               | (COJ0438-           | 06) Water S  | Sampled                                |            | /07 13:25 Rec         | eived: 10  | )/11/07 08•  | 00           |          |               | •         |   |      |
| <del>-</del> <del>-</del> | (OK00400-1          | - Travel k   | - ampiou                               | • •        | <del></del>           | •          |              |              |          |               | ·         |   |      |
| Aluminum                  |                     |              |                                        | ND         | 20                    | μg/L       | 1            | CQ08455      | 10/11/07 | 10/12/07      | EPA 200.8 | • |      |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180

CLS Work Order #: CQJ0438

Project Manager: Steve Rosenbaum

COC #: 74121

| MM 1 Portal (CQJ0438-06) Water   Sampled: 10/10/07 13:25   Received: 10/11/07 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyte     |                |                    |        | Result    | Reporting<br>Limit     | Units    | Dilution     | Batch      | Prepared | Analyzed | Method      | Note |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|--------------------|--------|-----------|------------------------|----------|--------------|------------|----------|----------|-------------|------|
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WM 1 Portal | (CQJ0438-06)   | Water S.           | ampled | : 10/10/6 | 07 13:25 Rece          | ived: 10 | 0/11/07 08:  | 00         |          | <u> </u> | <del></del> |      |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Arsenic     |                |                    |        |           | 2.0                    | μg/L     | 1            | CQ08455    | 10/11/07 | 10/12/07 | EPA 200.8   |      |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Copper      | •              | 150                | 100    | 91        | 1.0                    | -        | 16           | 'n         | in .     | n .      | tt          |      |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Iron        |                | 10-                |        | ND        | 50                     | It       | H            | ti         | I)       | 11       | ŧı          |      |
| MM 2 DC U/S (CQJ0438-07) Water   Sampled: 10/10/07 13:30   Received: 10/11/07 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zine        |                |                    |        | 29        | 2.0                    | n.       | u            | 1f         | ' 0      | II       | 11          | •    |
| Aluminum    20   20   µg/L   1   CQ08455   10/11/07   10/12/07   EPA 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cadmium     |                | •                  |        | ND        | 0.50                   | t1       | n            | . 11       | U        | )ı       | 16          |      |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WM 2 DC U   | 'S (CQJ0438-0' | 7) Water           | Sample | d: 10/10  | /07 13:30 Re           | ceived:  | 10/11/07 08  | :00        |          |          |             |      |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aluminum    |                |                    |        |           | 20                     | μg/L     | 1            | CQ08455    | 10/11/07 | 10/12/07 | EPA 200.8   |      |
| Tron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arsenic     |                | i                  |        |           | 2.0                    | 11       | . 11         | I)         | 11       | н .      | u           |      |
| Ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Copper      |                | ηD                 | įij    | ) ND      | 1.0                    | ţI       | 11           | Ð          | u        | · ii     | <b>\$</b> 1 |      |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Iron        |                | , •                | •      | 50        | 50                     | ĮI.      | II           | Ħ          | it.      | П        | II.         |      |
| WM 9 LGC At BC (CQJ0438-08) Water   Sampled: 10/10/07 15:00   Received: 10/11/07 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zinc        |                |                    |        | 2.3       | 2.0                    | )ı       | п            | **         | 11       | П        | Ħ           |      |
| Aluminum  Arsenic  Aluminum  Arsenic  Aluminum  Arsenic  Aluminum  Arsenic  Arsenic  Arsenic  Aluminum  Arsenic   Cadmium     |                |                    |        | ND        | 0.50                   | II       | H .          | n          | u u      | u .      |             |      |
| Arsenic  Copper  Diron  South 12  1.0  South 12  1.0  South 13  South 15  So | WM 9 LGC    | At BC (CQJ04   | 38-08) Wat         | er Sa  | mpled: J  | 0/10 <u>/</u> 07 15:00 | Receiv   | /ed: 10/11/0 | 7 08:00    |          |          |             |      |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aluminum    |                | <del>"</del>       |        |           | 20                     | μg/L     | 1            | CQ08455    | 10/11/07 | 10/12/07 | EPA 200.8   |      |
| Symbol   S   | Arsenic     |                |                    |        | ND        | 2.0                    | H        | It           | . н        | It       | 16       | 0           |      |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Copper      |                | 28                 | 16     | 12        | 1.0                    | 11       | 11           | 0 .        | n        | и,       | ıt          |      |
| ND   0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Iron        |                | Ber 8.             |        | 590       | 50                     | n        | 11           | ų.         | 0        | H · ·    | 11          |      |
| MM 12 MB Ward CK (CQJ0438-09) Water   Sampled: 10/10/07 15:30   Received: 10/11/07 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                |                    |        | 3.6       | 2.0                    | ıı       | It           | O.         | н        | 11       | 11          |      |
| Aluminum  Arsenic  ND  2.0  """""""""""""""""""""""""""""""""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cadmium     |                |                    |        | ND        | 0.50                   | , 11     | If           | D          | H        | ţi.      | 11          |      |
| Arsenic  Copper  2, 8 4, 6 3.4 1.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WM 12 MB    | Ward CK (CQ    | J0438-09) <b>V</b> | Vater  | Sample    | d: 10/10/07 15         | :30 Re   | ceived: 10/  | 11/07 08:0 | 0 ′      |          |             |      |
| Copper   2, 5   4,6   3.4   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aluminum    |                |                    |        | 42        | 20                     | μg/L     | 1            | CQ08455    | 10/11/07 | 10/12/07 | EPA 200.8   |      |
| Tron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arsenic     |                |                    |        | ND        | 2.0                    | 31       | *1           | n          | H .      | 14       | п           |      |
| Fron   S6   S0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Copper      |                | 2.8                | 4.6    | 3.4       | · 1.0                  | 11       | 11           | h .        | U        | n        | u           |      |
| Cadmium ND 0.50 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Iron        |                | 010                |        | 56        | 50                     | п        | . 11         | n          | D        | u        | <b>61</b>   |      |
| WM 13 NYE CK (CQJ0438-10) Water Sampled: 10/10/07 15:35 Received: 10/11/07 08:00  Aluminum ND 20 μg/L 1 CQ08455 10/11/07 10/12/07 EPA 200.8  Arsenic ND 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zinc        |                |                    |        |           | 2.0                    | п        | 11           | II         | н        | 11       | 11          |      |
| Aluminum  Arsenic  Arsenic  ND  20 μg/L  1 CQ08455 10/11/07 10/12/07 EPA 200.8  ND  2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cadmium     |                |                    |        | ND        | 0.50                   | II       | n            | н          | 11       | H        | и .         |      |
| Arsenic ND 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WM 13 NYE   | CK (CQJ0438    | 3-10) Water        | Sam    | pled: 10  | /10/07 15:35           | Receive  | d: 10/11/07  | 08:00      |          |          |             |      |
| Copper ND 1.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | <u> </u>       |                    |        |           | 20                     | μg/L     | 1            | CQ08455    | 10/11/07 | 10/12/07 | EPA 200.8   |      |
| Iron ND 50 " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Arsenic     |                |                    |        |           | 2.0                    | Ð        | H            | и          | 11       | :<br>:   | . "         |      |
| Iron ND 50 " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Copper      | •              | Cila               | ИD     | ND        |                        | 1)       | н            | lı .       | 17       | n .      | IF          |      |
| Cadmium         ND         0.50         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Iron        |                | la a               |        |           | 50                     | įI.      | ŧI.          | ı          | I†       | Ħ        | It          |      |
| WM 17 NB Ward CK (CQJ0438-11) Water Sampled: 10/10/07 15:45 Received: 10/11/07 08:00  Aluminum ND 20 μg/L I CQ08455 10/11/07 10/12/07 EPA 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zinc        |                |                    |        | ND        | 2.0                    | 0        | Ħ            | μ          | I†       | Ħ        | 41          |      |
| Aluminum ND 20 μg/L I CQ08455 10/11/07 10/12/07 EPA 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cadmium     |                | ÷                  |        | ND        | 0.50                   | 11       | ti           | 11         | μ        | at ,     | <b>11</b> . |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WM 17 NB V  | Ward CK (CQ)   | J0438-11) V        | Vater  | Sample    | d: 10/10/07 15         | :45 Re   | ceived: 10/  | 11/07 08:0 |          |          |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aluminum    |                |                    |        | ND        | 20                     | րլg/L    | ı            | CQ08455    | 10/11/07 | 10/12/07 | EPA,200.8   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arsenic     |                | •                  |        | ND        | 2.0                    |          |              | ,          | II       |          |             |      |

# California Laboratory Services

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project:

Walker Mine

Project Number: PCA 13180 Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC #: 74121

| Analyte  |              | · .          |      | Result  | Reporting<br>Limit | Units           | Dilution   | Batch       | Prepared | Analyzed | Method                                | Notes |
|----------|--------------|--------------|------|---------|--------------------|-----------------|------------|-------------|----------|----------|---------------------------------------|-------|
| WM 17 NE | 3 Ward CK (C | QJ0438-11) W | ater | Sampled | l: 10/10/07 15     | :45 Rec         | eived: 10/ | 11/07 08:00 | )        |          | · · · · · · · · · · · · · · · · · · · |       |
| Copper   |              | 94           | NΩ   | ND.     | 1.0                | <u></u><br>μg/L | 1          | CQ08455     | 10/11/07 | 10/12/07 | EPA 200.8                             |       |
| Iron     |              |              |      | ND      | 50                 | I†              | tř         | ı:          | 11       | 11       | 11                                    |       |
| Zinc     |              |              |      | 2.2     | 2.0                | ıt              | II         | ıı          | u        | 41       | н                                     |       |
| Cadmium  |              |              |      | ND      | 0.50               | I†              | 11         | 11          | fi       | я        | II                                    |       |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC #: 74121

| Analyte Re                                          | Reporting<br>esult Limit              |                      | Dilution             | Batch                | Prepared                | Analyzed           | Method           | Note     |
|-----------------------------------------------------|---------------------------------------|----------------------|----------------------|----------------------|-------------------------|--------------------|------------------|----------|
| WM 5 LGC U/S (CQJ0438-01) Water Sample              | 1: 10/10/07 10:35                     | Received             | 10/11/07             | 08:00                |                         |                    |                  | <u> </u> |
| Aluminum                                            | ND 20                                 | <br>μg/L             | 1                    | CQ08495              | 10/12/07                | 10/15/07           | EPA 200.8        |          |
| Arsenic                                             | ND 5.0                                | R                    | 11                   | II                   | , п ,                   | н                  | · • •            |          |
| Copper                                              | ND 2.0                                | li .                 | 11                   | II                   | II                      | Ħ                  | ıı '             |          |
| Iron                                                | <b>340</b> 50                         | ш                    | II                   | II                   | Ħ                       | *1                 | ti               |          |
| Zinc                                                | 3.2 2.0                               | li                   | #1                   | a .                  | ti                      | 11                 | 11               |          |
| Cadmium                                             | ND 0.50                               | И                    | It                   | II                   | 11                      | II.                | н                |          |
| WM 70 U/S (CQJ0438-02) Water Sampled: 10            | /10/07 11:45 Reć                      | eived: 10/           | (1/07 08:00          | 0                    |                         |                    |                  |          |
| Aluminum                                            | ND 20                                 | μg/L                 | 1                    | CQ08495              | 10/12/07                | 10/15/07           | EPA 200,8        | ٠        |
| Arsenic                                             | ND 5.0                                | II                   | IT                   | 11                   | 11                      | ŧı                 | н .              |          |
| Copper                                              | ND 2.0                                | ', II                | 17                   | . 17                 | 11                      | 11                 | 11               |          |
| Iron                                                | 400 50                                | II                   | . #                  | 18                   | 11                      | 11                 | ħ                |          |
| Zinc                                                | ND 2.0                                | II                   | IT                   | 11                   | • п                     | 11                 | 11               |          |
| Cadmium                                             | ND 0.50                               | li II                | И                    | 11                   | П                       | . " .              | 11               |          |
| WM 6 USFS DAM (CQJ0438-03) Water Samp               | oled: 10/10/07 12:0                   | 00 Receiv            | ed: 10/11/0          | 7 08:00              |                         |                    |                  |          |
| Aluminum                                            | ND 20                                 | μg/L                 | Ī                    | CQ08495              | 10/12/07                | 10/15/07           | EPA 200.8        |          |
| Arsenic                                             | ND 5.0                                | 11                   | lt                   | Ħ                    | n                       | It                 | 12               | -        |
| Copper                                              | 34 2.0                                | н                    | li                   | †I                   | . "                     | 11                 | Ħ                |          |
| Iron                                                | <b>620</b> 50                         | 11                   | B                    | 11                   | 11*                     | .r                 | 11               |          |
| Zinc                                                | 7.2 2.0                               | . #                  | I#                   | 11                   | n                       | n                  | 11               |          |
| Cadmium                                             | ND 0.50                               | n                    | h                    | 11                   | 11 .                    | II                 | ii .             |          |
| WM 8 LGC D/S DC (CQJ0438-04) Water San              | pled: 10/10/07 12                     | :10 Recei            | ved: 10/11           | /07 08:00            |                         |                    |                  |          |
| Aluminum                                            | ND 20                                 | μg/L                 | 1                    | CQ084951             | 10/12/07                | 10/15/07           | EPA 200.8        |          |
| Arsenic                                             | ND 5.0                                |                      | . 41                 | " 11                 | 11                      | II                 | lt .             |          |
| Copper                                              | 12 2.0                                | Ħ                    | 11                   | u                    | Ħ                       | п                  | II.              |          |
|                                                     | 470 50                                | h                    | 11                   | ti                   | tf ·                    |                    | 11               |          |
| Zinc                                                | 3.3 2.0                               | , H                  | 11                   | ti                   | tt                      | ш                  | Ħ                |          |
| Cadmium                                             | ND 0.50                               | 11                   | . 18                 | ti                   | . 17                    | Ħ                  | и .              |          |
| WM 3 DC D/S (CQJ0438-05) Water Sampled:             | 10/10/07 12:40. I                     | Received: I          | .0/11/07 08          | 3:00                 |                         |                    |                  |          |
|                                                     |                                       |                      | 1                    | CQ08495              | 10/12/07                | 10/15/07           | EPA 200.8        |          |
| Aluminum                                            | 31 20                                 | μg/L                 | 1                    | CCOOLS               | 10/12/07                | 10/13/07           | DI 11 2.00.0     |          |
| ·                                                   | 31 20<br>ND 5.0                       |                      | li<br>T              | 4                    | 10/12/07                | 10/15/07           | DI 11 200,0      |          |
| Aluminum<br>Arsenic<br>Copper                       |                                       | . "                  |                      | ***                  |                         |                    |                  |          |
| Arsenic<br>Copper                                   | ND 5.0                                | · I(                 | lı                   | 11                   | н .                     | 11                 | n                |          |
| Arsenic<br>Copper<br>Iron                           | ND 5.0<br>20 2.0                      | . H                  | lı                   | 11                   | II -<br>II <sub>-</sub> | . a                | n                |          |
| Arsenic<br>Copper<br>Iron<br><b>Zinc</b>            | ND 5.0<br>20 2.0<br>330 50            | 11<br>11<br>11       | lı                   | 4<br>R               | II -<br>II -<br>II      | 11<br>* tt<br>* tt | 1)<br>14<br>11   |          |
| Arsenic<br>Copper<br>Iron<br><b>Zinc</b><br>Cadmium | ND 5.0<br>20 2.0<br>330 50<br>4.2 2.0 | 11<br>11<br>13<br>14 | 14<br>11<br>11<br>11 | 41<br>11<br>17<br>14 | 11 .<br>11 .<br>11      | n<br>. a<br>. u    | n<br>n<br>n<br>n |          |

10/23/07 13:11

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC #: 74121

| Analyte       |                     | Result           | Reporting<br>Limit | Units    | Dilution    | Batch              | Prepared | Analyzed | Method      | Notes |
|---------------|---------------------|------------------|--------------------|----------|-------------|--------------------|----------|----------|-------------|-------|
| WM 1 Portal ( | CQJ0438-06) Water   | Sampled: 10/10/0 | 7 13:25 Rece       | ived: 10 | )/11/07 08: | 00                 |          |          |             |       |
| Arsenic       |                     | 18               | 5.0                | μg/L     | 1           | CQ08495            | 10/12/07 | 10/15/07 | EPA 200.8   |       |
| Copper        |                     | 89               | 2.0                | 11       | ,n ·        | ır ·               | Ħ        | II .     | ú           |       |
| Iron ·        |                     | ND               | 50                 | . 11     | li ,        | "                  | . 11     | ti.      | n           |       |
| Zine          |                     | 28               | 2.0                | IF.      | · [I        | н                  | 11       | 11       | ų           |       |
| Cadmium       | •                   | ND               | 0.50               | ir.      | II          | II                 | lf       | IP       | I†          |       |
| WM 2 DC U/S   | (CQJ0438-07) Water  | Sampled: 10/10   | /07 13:30 Re       | ceived:  | 10/11/07 08 | 3:00               | 40-      |          | a           |       |
| Aluminum      | •                   | ND               | 20                 | μg/L     | 1 .         | CQ08495            | 10/12/07 | 10/15/07 | - EPA 200.8 |       |
| Arsenic       |                     | ND               | 5.0                | П        | n           | 11                 | it       | . #      | li .        |       |
| Copper        |                     | ND               | 2.0                | D        | lı          | 11                 | ч        | п        | u .         |       |
| Iron          |                     | ND               | 50                 | a        | II          | 5 n                | П        | и .      | 11          |       |
| Zinc          | •                   | 2.1              | 2.0                | : 0      | li          | II                 | 11       | . 0      | įl          |       |
| Cadmium       |                     | · ND             | 0.50               | п        | . 11        | u                  | II       | tt ·     | If          |       |
| WM 9 LGC A    | t BC (CQJ0438-08) V | Vater Sampled: 1 | 0/10/07 15:00      | Receiv   | /ed: 10/11/ | 7 08:00            |          |          |             |       |
| Aluminum      |                     | ND               | 20                 | μg/L     | ľ           | CQ08495            | 10/12/07 | 10/15/07 | EPA 200.8   |       |
| Arsenic       |                     | ND               | 5.0                | п        | 11          | u                  | u        | 11       | lt          |       |
| Copper        |                     | 7.9              | 2.0                | H        | 11          | u                  | ħ        | 11       | II ·        |       |
| Iron          |                     | 460              | 50                 | li       | 11          | ut .               | Ħ        | şř       | If          | •     |
| Zinc          |                     | 2.4              | 2.0                | н        | 11          | 11                 | 17       | 11       | ıt .        |       |
| Cadmium       | •                   | ND               | 0.50               | 11       | u           | II                 | n        | III      | 0           |       |
| WM 12 MB W    | ard CK (CQJ0438-09  | 9) Water Sample  | d: 10/10/07 15     | :30 Re   | ceived: 10/ | 11/07 08:0         | 0        |          |             |       |
| Aluminum      | .,                  | 25               | 20                 | μg/L     | 1           | CQ08495            | 10/12/07 | 10/15/07 | EPA 200.8   |       |
| Arsenic       |                     | , ND             | 5.0                | tt       | It          | #1                 | и        | ıı       | It          |       |
| Copper        |                     | 2.8              | 2.0                | 11       | ų           | II.                | n        | и        | п           |       |
| Iron          |                     | 59               | 50                 | IÍ       | 11          | It                 | lı       | U        |             |       |
| Zinc          |                     | 2.1              | 2.0                | I!       | 11          | μ                  | 11       | 11       | П           | A-COM |
| Cadmium       |                     | ND               | 0.50               | u        | IF          | u                  | it.      | It       | 17          |       |
| WM 13 NYE (   | CK (CQJ0438-10) Wa  | ater Sampled: 10 | /10/07 15:35       | Receive  | d: 10/11/07 | <sup>7</sup> 08:00 |          |          | _           |       |
| Aluminum      |                     | ND               | 20                 | μg/L     | I           | CQ08495            | 10/12/07 | 10/15/07 | EPA 200.8   |       |
| Arsenic       |                     | ND               | 5.0                | и.       | <b>†1</b>   | ' . B              | П        | ш        | 11          |       |
| Copper        |                     | ND               | 2.0                | If       | 11          | II                 | II       | u        | 11          |       |
| Iron          | •                   | ND               | 50                 | Iş.      | -1#         | и                  | Ħ        | n        | 11          |       |
| Zinc          |                     | 3.6              | 2.0                | lt.      | B           | 11                 | ħ        | T.       |             | A-CON |
| Cadmium       |                     | ND               | 0.50               | "        | II          | 11                 | п .      | #f       | п           |       |
| WM 17 NB W    | ard CK (CQJ0438-11  | l) Water Sample  | d: 10/10/07 15     | :45 Re   | ceived: 10/ | 11/07 08:0         | 0        | •        |             |       |
| <del></del>   |                     | NID.             | 20                 |          | •           | 0000406            | 10/10/07 | 10/15/07 | DD 4 200 0  |       |
| Aluminum      |                     | · ND             | 20                 | μg/L     | 1           | CQ08495            | 10/12/07 | 10/13/07 | EPA 200.8   |       |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC #: 74121

| Analyte                             | Result   | Reporting<br>Limit | Units         | Dilution    | Batch       | Prepared | Analyzed | Method    | Notes |
|-------------------------------------|----------|--------------------|---------------|-------------|-------------|----------|----------|-----------|-------|
| WM 17 NB Ward CK (CQJ0438-11) Water | Sampled: | 10/10/07 15        | :45 Rec       | eived: 10/1 | (1/07 08:00 | )        |          |           |       |
| Copper                              | ND       | 2.0 ·              | μ <b>g/</b> L | 1           | CQ08495     | 10/12/07 | 10/15/07 | EPA 200.8 |       |
| Iron                                | ND       | 50                 | li .          | 18          | II          | 11       | п        | ti        | *     |
| Zinc                                | ND       | 2.0                | li .          | н           | n           | n        | u        | 11        |       |
| Cadmium                             | ND       | 0.50               | • 11          | h           | II          | #        | 11       |           |       |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC #: 74121

| Analyte                             | Résult | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|------|--------------|-------|
| Batch CQ08449 - General Preparation |        | •                  |       | _              |                  |             |                |      |              |       |
| Blank (CQ08449-BLK1)                |        |                    |       | Prepared       | & Analyz         | ed: 10/11/  | 07             |      |              |       |
| Hexavalent Chromium                 | ND     | 10                 | μg/L  |                |                  |             |                |      |              | QC-2H |
| LCS (CQ08449-BS1)                   |        |                    |       | Prepared       | & Analyz         | ed: 10/11/  | 07             |      |              |       |
| Hexavalent Chromium                 | 280    | 10                 | μg/L  | 250            |                  | 112         | 85-115         |      |              |       |
| LCS Dup (CQ08449-BSD1)              |        |                    |       | Prepared       | & Analyz         | ed: 10/11/  | 07             |      |              |       |
| Hexavalent Chromium                 | 272    | 10                 | μg/L  | 250            | -                | 109         | 85-115         | 2.83 | 20           |       |
| Matrix Spike (CQ08449-MS1)          | Sou    | rce: CQJ04         | 38-01 | Prepared       | & Analyz         | ed: 10/11/  | 07             |      |              |       |
| Hexavalent Chromium                 | 268    | 10                 | μg/L  | 250            | 8.80             | 104         | 85-115         |      |              |       |
| Matrix Spike Dup (CQ08449-MSD1)     | Sou    | irce: CQJ04        | 38-01 | Prepared       | & Analyz         | ed: 10/11/  | 07             |      |              |       |
| Hexavalent Chromium                 | 278    | 10                 | μg/L  | 250            | 8.80             | 108         | 85-115         | 3.66 | 20           |       |
| Batch CQ08450 - General Preparation |        |                    |       |                |                  |             |                |      |              |       |
| Blank (CQ08450-BLK1)                |        |                    |       | Prepared       | & Analyz         | ed: 10/11/  | 07             |      |              |       |
| Hexavalent Chromium, Dissolved      | ND     | 10                 | μg/L  |                |                  |             | ,              |      |              | QC-2H |
| LCS (CQ08450-BS1)                   |        |                    |       | Prepared       | & Analyz         | ed: 10/11/  | 07             |      |              |       |
| Hexavalent Chromium, Dissolved      | 280    | 10                 | μg/L  | 250            |                  | 112         | 80-120         |      | •            |       |
| LCS Dup (CQ08450-BSD1)              |        |                    |       | Prepared       | & Analyz         | red: 10/11/ | 07             |      |              |       |
| Hexavalent Chromium, Dissolved      | 271    | 10                 | μg/L  | 250            |                  | 108         | 80-120         | 3.24 | 20           |       |
| Matrix Spike (CQ08450-MS1)          | Son    | urce: CQJ04        | 38-01 | Prepared       | & Analyz         | zed: 10/11/ | 07             |      |              | -     |
| Hexavalent Chromium, Dissolved      | 284    | 10                 | μg/L  | 250            | ND               | 114         | 80-120         |      |              | · -   |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC #: 74121

| Analyte                             | Result | Leporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|----------|----------------|------------------|------------|----------------|-------|--------------|-------|
| Batch CQ08450 - General Preparation |        | ,                  |          | •              |                  |            |                |       |              | _     |
| Matrix Spike Dup (CQ08450-MSD1)     | Source | : CQJ043           | 38-01    | Prepared .     | & Analyze        | d: 10/11/0 | )7             |       |              |       |
| Hexavalent Chromium, Dissolved      | 281    | 10                 | μg/L     | 250            | ND               | 112        | 80-120         | 1.17  | 20           |       |
| Batch CQ08454 - General Prep        |        |                    |          |                | -                |            |                |       |              |       |
| Blank (CQ08454-BLK1)                |        |                    |          | Prepared       | & Analyze        | d: 10/11/0 | 07             | -     |              |       |
| Sulfate as SO4                      | ND     | 0.50               | mg/L     |                |                  |            |                |       |              |       |
| Chloride                            | ND     | 0.50               | If       |                |                  |            |                |       |              |       |
| LCS (CQ08454-BS1)                   |        |                    |          | Prepared       | & Analyze        | d: 10/11/0 | 07             |       |              |       |
| Chloride                            | 1.87   | 0.50               | mg/L     | 2.00           |                  | 93.3       | 80-120         |       |              | •     |
| Sulfate as SO4                      | 5.18   | 0.50               | It       | 5.00           |                  | 104        | 80-120         |       |              |       |
| LCS Dup (CQ08454-BSD1)              |        | •                  |          | Prepared:      | 10/11/07         | Analyzed   | : 10/12/07     |       |              |       |
| Chloride                            | 1.86   | 0.50               | mg/L     | 2.00           | <u> </u>         | 92.8       | 80-120         | 0.537 | 20           |       |
| Sulfate as SO4                      | 5.12   | 0.50               | I†       | 5.00           |                  | 102        | 80-120         | 1.11  | 20           |       |
| Matrix Spike (CQ08454-MS1)          | Source | : CQJ04            | 38-01    | Prepared       | & Analyzo        | d: 10/11/  | 07             |       |              |       |
| Sulfate as SO4                      | 5.30   | 0.50               | mg/L     | 5.00           | 0.565            | 94.6       | 75-125         | -     |              |       |
| Chloride                            | 2.44   | 0.50               | ŧ        | 2.00           | 0.854            | 79.1       | 75-125         |       |              |       |
| Matrix Spike Dup (CQ08454-MSD1)     | Source | : CQJ04            | 38-01    | Prepared       | & Analyze        | d: 10/11/0 | 07             |       | •            | i     |
| Chloride .                          | 2.48   | 0.50               | mg/L     | 2.00           | 0.854            | 81.1       | 75-125         | 1.63  | 25           | -     |
| Sulfate as SO4                      | 5.39.  | 0.50               | It       | 5.00           | 0.565            | 96.6       | 75-125         | 1.83  | 25           |       |
| Batch CQ08461 - General Preparation |        |                    |          |                |                  |            |                |       |              | •     |
| Blank (CQ08461-BLK1)                |        |                    |          | Prepared       | & Analyz         | ed: 10/11/ | . ———<br>0.7   |       |              |       |
| Specific Conductance (EC)           | ND     | 1.0                | μmhos/cn |                |                  |            |                | · ,   |              |       |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC#: 74121

| Analyte                             | Result   | Rep   | orting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|-------------------------------------|----------|-------|-----------------|-------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Batch CQ08487 - General Preparation | <u> </u> |       |                 |       |                | ·                |             |                |       |              |       |
| Blank (CQ08487-BLK1)                |          |       |                 |       | Prepared &     | & Analyze        | d: 10/12/0  | )7 ,           | _     |              |       |
| Methylene Blue Active Substances    | ND       |       | 0.10            | mg/L  |                | <del>-</del>     | •           |                |       |              |       |
| LCS (CQ08487-BS1)                   |          |       |                 |       | Prepared &     | & Analyze        | d: 10/12/0  | )7             |       |              |       |
| Methylene Blue Active Substances    | 0.460    |       | 0.10            | mg/L  | 0.500          |                  | 92.0        | 80-120         |       | •            |       |
| LCS Dup (CQ08487-BSD1)              |          |       |                 |       | Prepared &     | & Analyze        | d: 10/12/   | 07             |       |              |       |
| Methylene Blue Active Substances    | 0.458    | •     | 0.10            | mg/L  | 0.500          |                  | 91.6        | 80-120         | 0.458 | 20           | 1     |
| Matrix Spike (CQ08487-MS1)          | S        | urce: | CQJ03           | 86-05 | Prepared &     | & Analyze        | d: 10/12/   | 07             |       |              |       |
| Methylene Blue Active Substances    | 0.296    |       | 0.10            | mg/L  | 0.500          | ND               | 59.2        | 75-125         |       |              | QM-5  |
| Matrix Spike Dup (CQ08487-MSD1)     | Sc       | urce: | CQJ03           | 86-05 | Prepared &     | & Analyze        | d: 10/12/0  | )7             |       |              | _     |
| Methylene Blue Active Substances    | 0.314    |       | 0.10            | mg/L  | 0.500          | ND               | 62.9        | 75-125         | 6.00  | 25           | QM-5  |
| Batch CQ08496 - General Preparation |          |       |                 |       |                |                  |             |                |       |              |       |
| Blank (CQ08496-BLK1)                |          |       |                 |       | Prepared &     | & Analyze        | :d: 10/12/0 | )7             |       |              |       |
| Total Alkalinity                    | ND       |       | 5.0             | mg/L  | <u>-</u>       |                  |             |                |       |              |       |
| Bicarbonate as CaCO3                | ND       |       | 5.0             | n     |                |                  |             |                |       |              |       |
| Carbonate as CaCO3                  | ND       |       | 5.0             | n     |                |                  |             |                |       |              |       |
| Hydroxide as CaCO3                  | ND       | •     | 5.0             | H     |                |                  |             |                |       |              |       |
| Batch CQ08511 - General Preparation |          |       |                 |       |                |                  |             |                |       |              |       |
| Blank (CQ08511-BLK1)                |          |       |                 |       | Prepared &     | & Analyze        | d: 10/15/0  | )7             |       |              | 7)    |
| Total Dissolved Solids              | ND       |       | 10              | mg/L  | ·              |                  |             |                |       |              |       |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: COJ0438

COC #: 74121

| Analyte                             | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|------|--------------|-------|
| Batch CQ08511 - General Preparation |        |                    |       |                |                  |             |                |      |              |       |
| Duplicate (CQ08511-DUP1)            | So     | arce: CQJ04        | 38-01 | Prepared       | & Analyze        |             | <br>07         |      |              |       |
| Total Dissolved Solids              | 73.0   | . 10               | mg/L  |                | 71.0             |             |                | 2.78 | 20           |       |
| Batch CQ08576 - 6010A/No Digestion  |        | <u>.</u>           |       |                |                  |             |                |      |              |       |
| Blank (CQ08576-BLK1)                |        |                    |       | Prepared       | & Analyz         | ed: 10/16/  | 07             |      |              |       |
| Calcium                             | ND     | 1.0                | mg/L  | _              |                  |             |                | _    |              |       |
| Magnesium                           | ND     | 1.0                | **    |                |                  |             |                |      |              |       |
| Potassium                           | ND     | 1.0                | Ħ     |                |                  | i           |                |      |              |       |
| Sodium                              | ND     | 1.0                | If    |                |                  |             |                |      |              |       |
| Hardness as CaCO3                   | ND     | 1.0                | Ir    | -              |                  |             |                |      |              |       |
| LCS (CQ08576-BS1)_                  |        |                    |       | Prepared a     | & Analyze        | ed: 10/16/  | 07             |      |              |       |
| Calcium                             | 11.4   | 1.0                | mg/L  | 10.0           |                  | 114         | 80-120         |      | _            |       |
| Magnesium                           | 10.5   | 1.0                | H     | 10.0           |                  | 105         | 80-120         |      | 8.           |       |
| Potassium                           | 10.8   | 1.0                | 11    | 10.0           |                  | 108         | 80-120         |      |              |       |
| Sodium :                            | 10.6   | 1.0                | 11    | 10.0           |                  | 106         | 80-120         |      |              |       |
| LCS Dup (CQ08576-BSD1)              |        |                    |       | Prepared       | & Analyze        | ed: 10/16/0 | 07             |      |              |       |
| Calcium                             | 11.6   | 1.0                | mg/L  | 10.0           |                  | 116         | 80-120         | 2.00 | 20           | · .   |
| Magnesium                           | 10.7   | ·1.0               | n     | 10.0           |                  | 107 .       | 80-120         | 1.89 | 20           |       |
| Potassium                           | 11.0   | 1.0                | I†    | 10.0           |                  | 110         | 80-120         | 2.20 | 20           |       |
| Sodium                              | 10.7   | 1.0                | 11    | 10.0           |                  | 107 .       | 80-120         | 1.50 | 20           |       |
| Matrix Spike (CQ08576-MS1)          | Sot    | irce: CQJ04        | 38-01 | Prepared       | & Analyze        | ed: 10/16/  | 07             |      |              |       |
| Calcium                             | 28.0   | 1.0                | mg/L  | 10.0           | 15.8             | 122         | 75-125         | _    |              |       |
| Magnesium                           | 17.4   | 1.0                | 11    | 10.0           | 6.64             | 108         | 75-125         |      |              |       |
| Potassium                           | 13.2   | 1.0                | 1(    | 10.0           | 2.11             | I 11        | 75-125         |      | •            |       |
| Sodium                              | 15.0   | 1.0                | , #1  | 10.0           | 4.30             | 107         | 75-125         |      | •            |       |

10/23/07 13:11

CRWOCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC #: 74121

| Analyte                            | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|------------------------------------|--------|--------------------|-------|----------------|------------------|-----------|----------------|-------|--------------|-------|
| Batch CQ08576 - 6010A/No Digestion |        |                    |       |                |                  | <u>.</u>  |                |       |              |       |
| Matrix Spike Dup (CQ08576-MSD1)    | Sou    | rce: CQJ04         | 38-01 | Prepared       | & Analyze        | d: 10/16/ | 07             |       |              |       |
| Calcium                            | 27.9   | 1.0                | mg/L  | 10.0           | 15.8             | 121       | 75-125         | 0.465 | 25           |       |
| Magnesium                          | 17.8   | 1.0                | If .  | 10.0           | 6.64             | 112       | 75-125         | 2.27  | 25           |       |
| Potassium                          | 13.4   | 1.0                | IP.   | 10.0           | 2.11             | 113       | 75-125         | 2.03  | 25           |       |
| Sodium                             | 15.4   | 1.0                | P     | 10.0           | 4.30             | 111       | 75-125         | 2.96  | 25           |       |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project:

Walker Mine

Project Number: PCA 13180 Project Manager: Steve Rosenbaum CLS Work Order #: CQJ0438

COC #: 74121

#### Metals by EPA 200 Series Methods - Quality Control

| Analyte                    | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|----------------------------|--------|--------------------|-------|----------------|------------------|----------|----------------|-------|--------------|-------|
| Batch CQ08455 - EPA 3020A  |        |                    |       |                |                  |          |                | -     | -            |       |
| Blank (CQ08455-BLK1)       |        |                    |       | Prepared:      | 10/11/07         | Analyzed | l: 10/12/07    |       |              | ,     |
| Aluminum                   | ND     | 20                 | μg/L  |                |                  |          | ,              |       |              |       |
| Arsenic                    | ND     | 2.0                | ı     |                |                  |          | •              |       |              |       |
| Copper                     | ND     | 1.0                | Iş    |                |                  |          |                |       |              |       |
| Iron                       | ND     | 50                 | H     |                |                  |          |                |       |              | •     |
| Zinc                       | ND     | 2.0                | u     |                |                  |          |                |       |              |       |
| Cadmium                    | ND     | 0.50               | μ     |                |                  |          |                |       |              |       |
| LCS (CQ08455-BS1)          |        |                    |       | Prepared:      | 10/11/07         | Analyzed | i: 10/12/07    |       | -            |       |
| Aluminum                   | 104    | 20                 | μg/L  | 100            |                  | 104      | 80-120         |       |              |       |
| Arsenic                    | 102    | 2.0                | ıı    | 100            |                  | 102      | 80-120         | • .   |              |       |
| Copper                     | 97.6   | 1.0                |       | 100            |                  | 97.6     | 80-120         |       |              | •     |
| Iron                       | 96.2   | 50                 | It    | 100            |                  | 96.2     | 80-120         |       |              | ÷     |
| Zinc                       | 100    | 2.0                | Ħ,    | 100            |                  | 100      | 80-120         |       |              |       |
| Cadmium                    | 9.62   | 0.50               | 4)    | 10.0           |                  | 96.2     | 80-120         |       |              |       |
| LCS Dup (CQ08455-BSD1)     | •      |                    |       | Prepared:      | 10/11/07         | Analyzed | 1: 10/12/07    |       | •            |       |
| Aluminum                   | 105    | 20                 | μg/L  | 100            |                  | 105      | 80-120         | 1.10  | 20           | •     |
| Arsenic                    | .101   | 2.0                | lı .  | 100            |                  | 101      | 80-120         | 0.917 | 20           |       |
| Copper                     | 99.0   | 1.0                | п     | 100            |                  | 99.0     | 80-120         | 1.35  | 20           |       |
| Iron                       | 98.3   | 50                 | п     | 100            |                  | 98.3     | 80-120         | 2.10  | 20           |       |
| Zinc                       | 101    | 2.0                | (I    | 100            |                  | 101      | 80-120         | 0.259 | 20           |       |
| Cadmium                    | 9.73   | 0.50               | a     | 10.0           |                  | 97.3     | 80-120         | 1.14  | 20           |       |
| Matrix Spike (CQ08455-MS1) | Soi    | irce: CQJ04        | 38-01 | Prepared:      | 10/11/07         | Analyzed | 1: 10/12/07    | r     |              |       |
| Aluminum                   | 156    | 20                 | μg/L  | 100            | 48.9             | 107      | 75-125         |       |              |       |
| Arsenic                    | 102    | 2.0                | ıı    | 100            | ND               | 102      | 75-125         |       |              |       |
| Copper                     | 93.8   | 1.0                | 16    | 100            | 0.330            | 93.4     | 75-125         |       |              |       |
| Iron                       | 575    | - 50               | a     | 100            | 490              | 84.9     | 75-125         |       |              |       |
| Zinc                       | 98.2   | 2.0                | · II  | 100            | 4.36             | 93.9     | 75-125         |       | •            |       |
| Cadmium                    | 9.77   | .0.50              | п     | 10.0           | ND               | 97.7     | 75-125         |       |              |       |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC #: 74121

#### Metals by EPA 200 Series Methods - Quality Control

|                                 |        | Reporting |       | Spike'    | Source   |          | %REC           |       | RPD   |       |
|---------------------------------|--------|-----------|-------|-----------|----------|----------|----------------|-------|-------|-------|
| Analyte                         | Result | Limit     | Units | Level     | Result   | %REC     | Limits         | RPD,  | Limit | Notes |
| Batch CQ08455 - EPA 3020A       |        |           |       |           | ·.       |          |                |       |       |       |
| Matrix Spike Dup (CQ08455-MSD1) | Sour   | ce: CQJ04 | 38-01 | Prepared: | 10/11/07 | Analyzed | : 10/12/07     |       |       |       |
| Aluminum                        | 157    | 20        | μg/L  | 100       | 48.9     | 108      | 75-125         | 0.615 | 25    |       |
| Arsenic                         | 104    | 2.0       | 19    | 100       | ND       | 104      | 75-125         | 2.42  | 25    |       |
| Copper .                        | 94.2   | 1.0       | I†    | 100       | 0.330    | 93.9     | 75-125         | 0.479 | 25    |       |
| Iron                            | 585    | . 50      | n     | 100       | 490      | 94.7     | 75-125         | 1.68  | 25    | •     |
| Zinc                            | 99.5   | 2.0       | н     | 100       | 4.36     | 95.1     | <b>75</b> -125 | 1.22  | 25 '  |       |
| Cadmium                         | 9.84   | 0.50      | H     | 10.0      | ND       | 98.4     | 75-125         | 0.714 | 25    |       |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project:

Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC#: 74121

### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

| Analyte                    | Result | Reporting<br>Limit | Units         | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits      | RPD         | RPD<br>Limit | Notes |
|----------------------------|--------|--------------------|---------------|----------------|------------------|----------|---------------------|-------------|--------------|-------|
| Batch CQ08495 - EPA 3020A  |        |                    |               | ,              | <u>.</u>         |          |                     |             | ·            |       |
| Blank (CQ08495-BLK1)       |        |                    |               | Prepared:      | 10/12/07         | Analyzed | l: 10/15/07         |             |              | •     |
| Aluminum                   | ND     | 20                 | μg/L          |                |                  |          |                     | · · · · · · |              |       |
| Arsenio                    | ND     | 5.0                | Iŧ            |                |                  | •        |                     |             |              | -     |
| Copper                     | ND     | 2.0                | р             |                |                  |          |                     |             |              | •     |
| ron                        | ND     | 50                 | Ш             | ,              |                  |          |                     |             |              |       |
| Zinç                       | ND     | 2.0                | 11            |                |                  |          |                     |             |              |       |
| Cadmium                    | ND     | 0.50               | Ħ             |                |                  |          |                     |             |              |       |
| LCS (CQ08495-BS1)          |        |                    |               | Prepared:      | 10/12/07         | Analyzed | i: 10/15/07         | ,           |              |       |
| Aluminum                   | 105    | 20                 | μg/L          | 100            |                  | 105      | 80-120              |             |              |       |
| Arsenio                    | 112    | 5.0                | 11            | 100            |                  | 112      | 80-120              |             |              |       |
| Copper                     | 105    | 2.0                | IŤ            | 100            | •                | 105      | 80-120              |             |              |       |
| ron                        | 82.0   | 50                 | II            | 100            |                  | 82.0     | 80-120              |             |              |       |
| Zinc                       | 110    | 2.0                | + <b>81</b> , | 100            |                  | 110      | 80-120              |             |              |       |
| Cadmium                    | 11,2   | 0.50               | ıi.           | 10.0           |                  | 112      | 80-120              |             |              |       |
| LCS Dup (CQ08495-BSD1)     |        |                    |               | Prepared:      | : 10/12/07       | Analyzed | d: 10/15/07         | <i></i>     |              |       |
| Aluminum                   | 107    | 20                 | μg/L          | 100            |                  | 107      | 80-120              | 1.67        | 20           |       |
| Arsenic                    | 112    | 5.0                | н             | 100            |                  | 112      | 80-120              | 0.0714      | 20           |       |
| Copper                     | 106    | 2.0                | 11            | 100            |                  | 106      | 80-120              | 0.917       | 20           |       |
| Îron                       | 94.5   | 50                 | 41            | 100            |                  | 94.5     | 80-120              | 14.2        | 20           |       |
| Zinc                       | 111    | 2.0                | It            | 100            |                  | 111      | 80-120              | 0.724       | 20           |       |
| Cadmium                    | 10.8   | 0.50               | и             | 10.0           |                  | 108      | 80-120              | 3.62        | 20           |       |
| Matrix Spike (CQ08495-MSI) | So     | urce: CQJ04        | 38-01         | Prepared       | : 10/12/07       | Analyze  | d: 10/15/0 <u>3</u> | 7           |              | •     |
| Aluminum                   | -118   | . 20               | μg/L          | 100            | 14.9             | 104      | 75-125              |             |              |       |
| Arsenic -                  | 111    | 5.0                | 11            | 100            | ND               | 111      | 75-125              |             |              |       |
| Copper                     | 100    | 2.0                | н             | 100            | ND               | 100      | 75-125              |             |              |       |
| Iron                       | 422    | 50                 | 11            | 100            | 337              | 85.0     | 75-125              |             |              |       |
| Zinc                       | 107    | 2.0                | ät            | 100            | 3.15             | 103      | 75-125              |             | -            |       |
| Cadmium                    | 11.1   | 0.50               | ' H           | 10.0           | ND               | 111      | 75-125              |             |              |       |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project:

Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC #: 74121

### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Únits         | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|---------------|----------------|------------------|-----------|----------------|-------|--------------|-------|
| Batch CQ08495 - EPA 3020A       |        |                    | ·             |                |                  | ,         |                |       |              |       |
| Matrix Spike Dup (CQ08495-MSD1) | Sour   | ce: CQJ04          | 38-01         | Prepared:      | 10/12/07         | Analyzed: | 10/15/07       | •     |              |       |
| Aluminum                        | 119    | 20                 | μ <b>g</b> /L | 100            | 14.9             | 104       | 75-125         | 0.573 | 25           |       |
| Arsenic                         | 110    | 5.0                | п             | 100            | ND               | 110       | 75-125         | 0.534 | 25           |       |
| Copper                          | 98.6   | 2.0                | п             | 100            | ND               | 98.6      | 75-125         | 1.55  | 25           |       |
| Iron                            | 437    | 50                 | п             | 100            | 337              | 99.4      | 75-125         | 3.33  | 25           |       |
| Zinc                            | 104    | 2.0                | П             | 100            | 3.15             | 101       | 75-125         | 2.13  | 25           | •     |
| Cadmium                         | 10.9   | 0.50               | п             | 10.0           | ND               | 109       | 75-125         | 2.37  | 25           |       |

10/23/07 13:11

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Steve Rosenbaum

CLS Work Order #: CQJ0438

COC#: 74121

#### Notes and Definitions

QM-5 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference: The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QC-2H The recovery of one CCV was greater than the acceptance limit. However, all analytes in the associated samples were ND; therefore a reanalysis was not performed.

HT-F This is a field test method and it is performed in the lab outside holding time.

A-COMa Total value of Zn is 1.81ug/L

A-COM Total value of Zn is 1.77ug/L.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

3249 Fitzgerald Road Rancho Cordova, CA 95742

July 11, 2008

CLS Work Order #: CRF0997 COC #: 74122, 94817

Jeff Huggins CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova, CA 95670-6114

Project Name: Walker Mine

Enclosed are the results of analyses for samples received by the laboratory on 06/25/08 08:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233



Change of Status Work Order # CRF0997

Per client request, Sample CRF0997-04, "WM-1 Portal" was analyzed for Hexavalent Chromium and Hexavalent Chromium Dissolved, in addition to analyses requested on the Chain of Custody.

COMPOSITE: BILD Graup 7 is Total Metals, +DISSONNED Metals + General Minerals FIELD CONDITIONS: Need low defection **№** levels Ger Metals SPECIAL INSTRUCTIONS CLS ID No.; CHEDIAT LOG NO. 74122 PRINT NAME / COMPANY Ē □YES ALT.  $(5) = H_2SO_4$  $(6) = Na_2S_2O_3$ NVOICE TO: QUOTE# P.O. # 14 R G A GEOTRACKER: **EDF REPORT** Ø YAG TURN AROUND TIME GLOBAL ID: 10 CONDITIONS/COMMENTS ê YAŒ AIR BILL# (s) = COLD (4) = NaOH 22 Jan 10 (4) s YAG RECEIVED BY (SIGN) ΥΑα **ANALYSIS REQUESTED** Store S Bid Group PRESERVATIVES: 6-25-08/0800 hrs. derece DATE / TIME OTHER \_ © **PRESERVATIVES** CHAIN OF CUSTODY CLS (916) 638-7301 3249 FITGERALD RD. RANCHO CORDOVA, OA. 95742 Plasta DESTINATION LABORATORY CONTAINER CLIENT JOB NUMBER Jeff Huggins/RWOCB 일 PRINT NAME / COMPANY CahuPayka OTHER MATRIX 3 Dan JOB DESCRIPTION WELL CALLINY MONITORING ري ک Valley Regional Works Brand MBWC Jeff Huggins/Vidor Izeo 16c/ CATUR DOONENM-5. LGC 4/8 92.956 1030 NM-19 - Settling 1225 WM-6- 415FS eticia Valadez IDENTIFICATION 1020 WM-3×12 D STRELOCATION PLANTES COUNTY SAMPLE WM-1-Poct 1245 WM-70a; 1300 WM- 7021 Of Hidgins 1240 WM-70D NM-9' WM-Z WM-d REPORT TO: PROJECT NAME WALKER PLINE 1405 MM-13 FEDX "erdoule, CA RELINQUISHED BY (SIGN) 355 WM-1 2 thanks CLS - Labs 200 1130 100 Q111 TIME NAME AND ADDRESS F Ranche Ce PROJECT MANAGER -- SHIPPED BY: SAMPLED BY DATE ×

8Y7 eticia Valudot Hetals + General Minerals COMPOSITE BIG Group 7 is Total Metals + Dissolved Hetals + General Minerals **Q** Need low defection levels for Metals SPECIAL INSTRUCTIONS Rafe 2/2 LOG NO. 94817 <u>=</u> PRINT NAME / COMPANY ☐ YES ALT INVOICE TO: QUOTE# P.O. # GEOTRACKER: EDF REPORT 10 VACI TURN AROUND TIME GLOBAL ID: ā YAG CONDITIONS / COMMENTS: AIR BILL# (3) = COLD (4) = NaOH CLS ID NO. CREDIAT S YÀŒ RECEIVED BY (SIGN) r YAa ANALYSIS REQUESTED 16-25-68/0000hr. Gray 7 Bid PRESERVATIVES: DATE / TIME OTHER **PRESERVATIVES** CHAIN OF CUSTODY CLS (916) 638-7301 3249 FTZGERALD RD. RANCHO CORDOVA, CA. 95742 2 25.25 17.77 DESTINATION LABORATORY CONTAINER CLIENT JOB NUMBER Teff Huggins/RWOLB õ PRINT NAME / COMPANY MATRIX CRY Board JOB DESCRIPTION WAYER QUALITY MONTBELLING SAMPLED BY JEHT Huggins/Victor IRRO NBWC NBWC Ny Regional Water **IDENTIFICATION** CA 95670 NAME AND ADDRESS Leticia Valade? るとなって Rancho Cordoux CH 436 PROJECT WANNAGEN JEAF Huggins 5-24-081415 WM-13 -24-08 1430 NM- 17 EDX REPORT TO: PROJECT NAME Walker Ming RELINQUISHED BY (SIGN) Hando SITE LOCATION YLLMCS Valley CLS - Labs SUSPECTED CONSTITUENTS TIME SHIPPED BY: PANO. DATE

# California Laboratory Services

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none] Project Manager: Jeff Huggins CLS Work Order #: CRF0997

COC#: 74122, 94817

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Sulfate as SO4         ND         0.50 mg/L         mg/L         " CR05243 06/26/08 06/26/08 06/26/08         EPA 300.0           Total Dissolved Solids         76         10 " " CR05260 06/25/08 08:00         06/26/08 06/27/08 SM2540C           WM-3 DC D/S (CRF0997-02) Water         Sampled: 06/24/08 10:20 Received: 06/25/08 08:00         Total Alkalinity         72         5.0 mg/L         1 CR05267 06/26/08 06/26/08 06/26/08 SM2310B         SM2310B           Bicarbonate as CaCO3         72         5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyte                            | Result         | Reporting<br>Limit | Units             | Dilution     | Batch             | Prepared          | Analyzed | Method      | Note |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|--------------------|-------------------|--------------|-------------------|-------------------|----------|-------------|------|
| Bicarbonate as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WM-5 LGC M/S (CRF0997-01) Water    | Sampled: 06/2  | 24/08 10:00        | Received:         | 06/25/08     | 08:00             |                   | _        | •           |      |
| Carbonate as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Alkalinity                   | 54             | 5.0                | mg/L              | 1            | CR05267           | 06/26/08          | 06/26/08 | SM2310B     |      |
| No.   No. | Bicarbonate as CaCO3               | 54             | 5.0                | i II              | ţI           | I)                | "                 |          | * 4         |      |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbonate as CaCO3                 |                | ,                  | li                |              |                   |                   |          |             |      |
| Specific Conductance (EC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hydroxide as CaCO3                 | ND             |                    | II                | II .         | I)                | n                 | ıl       | h '         |      |
| Methylene Blue Active Substances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | 0.56           |                    |                   | 11           | CR05243           | 06/26/08          | 06/26/08 | EPA 300.0   |      |
| Calcium         12         1.0         " CR05610 07/10/08 07/10/08 07/10/08 200.7/2340B         200.7/2340B           Magnesium         4.7         1.0         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Specific Conductance (EC)          |                |                    | µmhos/cm          | II           | CR05229           | 06/25/08          | 06/25/08 | EPA 120.1   |      |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Methylene Blue Active Substances   | ND             | 0.10               | mg/L              | II           | CR05253           | 06/26/08          | 06/26/08 | SM5540 C    |      |
| Protessium   1.2   1.0   " " " " " " " "   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calcium                            | 12             | 1.0                | ti '              | p            | CR05610           | 07/10/08          | 07/10/08 | 200.7/2340B |      |
| Forestation   1.2   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Magnesium                          | 4.7            | 1.0                | 11                | p            | 11                | 12                | · #      | n           |      |
| Hardness as CaCO3         50         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Potassium                          |                | 1.0                | 11                | u            | *1                | n                 | И        | 11          |      |
| pH         7.17         0.01         pH Units         " CR05214         06/25/08         SM4500-H B         H           Sulfate as SO4         ND         0.50         mg/L         " CR05243         06/26/08         06/26/08         EPA 300.0           Total Dissolved Solids         76         10         " CR05243         06/26/08         06/26/08         EPA 300.0           WM-3 DC D/S (CRF0997-02) Water         Samplet: 06/24/08 10:20         Received: 06/25/08 08:00         06/26/08         06/26/08         SM2310B           Total Alkalinity         72         5.0         mg/L         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sodium                             | 3.7            | 1.0                | If                | н            | ır                | II                | . 17     | Tr.         |      |
| Sulfate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hardness as CaCO3                  | 50             | 1.0                | II                | 11           | IT                | Ü                 | n        | If          |      |
| Total Dissolved Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pH                                 | 7.17           |                    |                   | lt           | CR05214           | 06/25/08          | 06/25/08 | SM4500-H B  | HT-  |
| WM-3 DC D/S (CRF0997-02) Water         Sampled: 06/24/08 10:20         Received: 06/25/08 08:00           Total Alkalinity         72         5.0         mg/L         1         CR05267         06/26/08         06/26/08         SM2310B           Bicarbonate as CaCO3         72         5.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " <td< td=""><td>Sulfate as SO4</td><td>ND</td><td></td><td>mg/L</td><td></td><td>CR05243</td><td>06/26/08</td><td>06/26/08</td><td>EPA 300.0</td><td>•</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sulfate as SO4                     | ND             |                    | mg/L              |              | CR05243           | 06/26/08          | 06/26/08 | EPA 300.0   | •    |
| Total Alkalinity 72 5.0 mg/L 1 CR05267 06/26/08 06/26/08 SM2310B Bicarbonate as CaCO3 72 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Dissolved Solids             | 76             | 10                 | 11                | p            | CR05260           | 06/26/08          | 06/27/08 | SM2540C     |      |
| Bicarbonate as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WM-3 DC D/S (CRF0997-02) Water 8   | Sampled: 06/24 | /08 10:20 F        | Received: 0       | 6/25/08 0    | 8:00              |                   |          |             |      |
| Sicarbonate as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Alkalinity                   |                | 5.0                |                   |              | CR05267           |                   |          | SM2310B     |      |
| Hydroxide as CaCO3 ND 5.0 " " CR05243 06/26/08 06/26/08 EPA 300.0 Chloride 0.56 0.50 " " CR05243 06/26/08 06/26/08 EPA 300.0 Specific Conductance (EC) 140 1.0 μmhos/cm " CR05229 06/25/08 06/25/08 EPA 120.1 Methylene Blue Active Substances ND 0.10 mg/L " CR05253 06/26/08 06/26/08 SM5540 C Calcium 16 1.0 " " CR05610 07/10/08 07/10/08 200.7/2340B Magnesium 8.0 1.0 " " " CR05610 07/10/08 07/10/08 200.7/2340B Magnesium ND 1.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bicarbonate as CaCO3               |                |                    |                   |              | . н               | ••                |          | ti .        |      |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbonate as CaCO3                 |                |                    |                   |              | II                |                   |          | n ·         |      |
| Chordree   Chordree | •                                  | ND             |                    |                   | 11           | 11                | II                | . 11     | н .         |      |
| Methylene Blue Active Substances         ND         0.10         mg/L         " CR05253         06/26/08         06/26/08         SM5540 C           Calcium         16         1.0         " " CR05610         07/10/08         07/10/08         200.7/2340B           Magnesium         8.0         1.0         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | 0.56           |                    |                   | If           | CR05243           | 06/26/08          | 06/26/08 | EPA 300.0   | ·    |
| Calcium         16         1.0         "         "         CR05610         07/10/08         07/10/08         200.7/2340B           Magnesium         8.0         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | 140            | 1.0                | •                 | If           | CR05229           | 06/25/08          | 06/25/08 | EPA 120.1   |      |
| Calcium         1.0         1.0         CROSSIO 07/10/08         07/10/08         200.7/2340B           Magnesium         8.0         1.0         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Methylene Blue Active Substances   | ND             | 0.10               |                   |              | CR05253           | 06/26/08          | 06/26/08 | SM5540 C    |      |
| Potassium  ND  1.0  """""""""""""""""""""""""""""""""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calcium                            | 16             | 1.0                |                   |              |                   |                   | 07/10/08 | 200.7/2340B |      |
| Sodium 3.2 1.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Magnesium                          | 8.0            | 1.0                | и                 | п            | Ή.                | 11                | II       | N           |      |
| Hardness as CaCO3 74 1.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Potassium                          | ND             | 1.0                | II                | *1           | , n               | II                | B        | )†          |      |
| PH 7.32 0.01 pH Units " CR05214 06/25/08 06/25/08 SM4500-H B H Sulfate as SO4 ND 0.50 mg/L " CR05243 06/26/08 06/26/08 EPA 300.0 Total Dissolved Solids 100 10 " " CR05260 06/26/08 06/27/08 SM2540C WM-19 Settling Pond (CRF0997-03) Water Sampled: 06/24/08 10:30 Received: 06/25/08 08:00  Total Alkalinity 28 5.0 mg/L 1 CR05267 06/26/08 06/26/08 SM2310B Bicarbonate as CaCO3 28 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sodium                             | 3.2            | 1.0                |                   |              |                   |                   | ==       | If .        |      |
| Sulfate as SO4 ND 0.50 mg/L " CR05243 06/26/08 06/26/08 EPA 300.0  Total Dissolved Solids 100 10 " " CR05260 06/26/08 06/27/08 SM2540C  WM-19 Settling Pond (CRF0997-03) Water Sampled: 06/24/08 10:30 Received: 06/25/08 08:00  Total Alkalinity 28 5.0 mg/L 1 CR05267 06/26/08 06/26/08 SM2310B  Bicarbonate as CaCO3 28 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hardness as CaCO3                  | 74             | 1.0                | u                 | it           | *1                | <b>11</b>         | rí       | 11          | •    |
| Total Dissolved Solids         100         10         "         "         CR05260         06/26/08         06/27/08         SM2540C           WM-19 Settling Pond (CRF0997-03) Water         Sampled: 06/24/08 10:30         Received: 06/25/08 08:00         SM2540C           Total Alkalinity         28         5.0         mg/L         1         CR05267         06/26/08         06/26/08         SM2310B           Bicarbonate as CaCO3         ND         5.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pH                                 | 7.32           | 0.01               | pH Units          | п            | CR05214           | 06/25/ <b>0</b> 8 | 06/25/08 | SM4500-H B  | HT-  |
| Notal Dissolved Solids         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sulfate as SO4                     | ND             | 0.50               | mg/L              | п            | CR05243           | 06/26/08          | 06/26/08 | EPA 300.0   |      |
| Total Alkalinity         28         5.0 mg/L         1 CR05267 06/26/08 06/26/08 SM2310B           Bicarbonate as CaCO3         28         5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Dissolved Solids             | 100            | 10                 | Iţ                | 11           | CR05260           | 06/26/08          | 06/27/08 | SM2540C     |      |
| Bicarbonate as CaCO3         28         5.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WM-19 Settling Pond (CRF0997-03) W | ater Sampled   | l: 06/24/08 1      | 0:30 Rece         | ived: 06/2   | <b>25/08 08:0</b> | 0                 |          | 4           |      |
| Carbonate as CaCO3 ND 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Alkalinity                   | 28             | 5.0                | mg/L              | 1            | CR05267           | 06/26/08          |          | SM2310B     |      |
| Hydroxide as CaCO3 ND 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bicarbonate as CaCO3               |                | 5.0                |                   |              | -                 |                   |          |             | -    |
| Chloride 0.63 0.50 " " CR05243 06/26/08 06/26/08 EPA 300,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Carbonate as CaCO3                 | ND             | 5.0                | 11                | 11           | ft                | IF .              | II .     | ti          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hydroxide as CaCO3                 | ND             | 5.0                | 17                | 1 <b>?</b> . | н.                | H                 | e e      | tı          |      |
| Specific Conductance (EC) 170 1.0 μmhos/cm " CR05229 06/25/08 06/25/08 EPA 120.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chloride                           | 0.63           | 0.50               | н .               | 17           | CR05243           | 06/26/08          | 06/26/08 | EPA 300,0   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Specific Conductance (EC)          | 170            | 1.0                | µmh <b>o</b> s/cm | n            | CR05229           | 06/25/08          | 06/25/08 | EPA 120.1   | -    |

CA DOHS ELAP Accreditation/Registration Number 1233

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC#: 74122, 94817

| Analyte                              | Result         | Reporting<br>Limit | Units       | Dilution   | Batch       | Prepared | Analyzed  | Method      | Notes |
|--------------------------------------|----------------|--------------------|-------------|------------|-------------|----------|-----------|-------------|-------|
| WM-19 Settling Pond (CRF0997-03) Wat | ter Sampled    | : 06/24/08 10      | ):30 Recei  | ived: 06/2 | 25/08 08:00 |          |           |             |       |
| Methylene Blue Active Substances     | ND             | 0.10               | mg/L        | 1          | CR05253     | 06/26/08 | 06/26/08  | SM5540 C    |       |
| Calcium                              | 22             | 1.0                | 11          | If         | CR05610     | 07/10/08 | 07/10/08  | 200.7/2340B |       |
| Magnesium                            | 5.2            | 1.0                | u           | и          | It          | 11       | n         | tt .        |       |
| Potassium                            | 2.3            | 1.0                | 41          | ŧi         | tt          | , If     | Ħ         | П           |       |
| Sodium                               | 5.2            | 1.0                |             | 91         | tl          | Œ        | Iŧ        | и .         |       |
| Hardness as CaCO3                    | 75             | 1.0                | II.         | 19         | 4           | n        | H         | D.          |       |
| pH                                   | 7.36           | 0.01               | pH Units    | t1         | CR05214     | 06/25/08 | 06/25/08  | SM4500-H B  | HT-F  |
| Sulfate as SO4                       | 49             | 2.5                | mg/L        | 5          | CR05243     | 06/26/08 | 06/27/08  | EPA 300.0   |       |
| Total Dissolved Solids               | 140            | 10                 | ŋ           | 1          | CR05260     | 06/26/08 | 06/27/08  | SM2540C     |       |
| WM-1 Portal (CRF0997-04) Water San   | npled: 06/24/0 | 8 11:00 Re         | ceived: 06/ | 25/08 08:  | :00         |          | •         |             |       |
| Total Alkalinity                     | 59             | 5.0                | mg/L        | 1          | CR05267     | 06/26/08 | 06/26/08  | SM2310B     |       |
| Bicarbonate as CaCO3                 | 59             | 5.0                |             | п          | n           | u        | П         | И           |       |
| Carbonate as CaCO3.                  | ND             | 5.0                | li          | Œ          | II          | ч.       | H         | It          |       |
| Hydroxide as CaCO3                   | ND             | 5.0                | · u         | 111        | u .         | It       | It.       | 91          |       |
| Chloride                             | 0.66           | 0.50               | Ħ           | 11         | CR05243     | 06/26/08 | 06/26/08  | · EPA 300.0 |       |
| Specific Conductance (EC)            | . 110          | 1.0                | μmhos/cm    | "          | CR05229     | 06/25/08 | 06/25/08  | EPA 120.1   |       |
| Hexavalent Chromium                  | ND             | 10                 | μg/L        | ţŧ         | CR05228     | 06/25/08 | 06/25/08  | EPA 7196A   |       |
| Hexavalent Chromium, Dissolved       | ND             | 10                 | If          | ti i       | 10          |          | · '44'. H | H           | •     |
| Methylene Blue Active Substances     | ND             | 0.10               | mg/L        | . #        | CR05253     | 06/26/08 | 06/26/08  | SM5540 C    |       |
| Calcium                              | · 12           | 1.0                | 11          | 41         | CR05610     | 07/10/08 | 07/10/08  | 200.7/2340B |       |
| Magnesium                            | 4.8            | 1.0                | U           | п          | II          | H        |           | It.         |       |
| Potassium                            | ND             | 1.0                | - 11        | 91         | n           | lt .     | 11        | u           |       |
| Sodium                               | 5.3            | 1.0                | II          | It.        | 11          | ű.       | It        | · 11        |       |
| Hardness as CaCO3                    | 49             | 1.0                | IJ          | Ħ          | R           | а        | 11        | If .        |       |
| pH                                   | 7. <b>3</b> 0° | 0.01               | pH Units    | 11         | CR05214     | 06/25/08 | 06/25/08  | SM4500-H B  | HT-F  |
| Sulfate as SO4                       | 1.0            | 0.50               | mg/L        | i It       | CR05243     | 06/26/08 | 06/26/08  | EPA 300.0   |       |
| Total Dissolved Solids               | 100            | 10                 | В           | и          | CR05260     | 06/26/08 | 06/27/08  | SM2540C     |       |
| WM-2 DC M/S (CRF0997-05) Water S     | Sampled: 06/2  | 4/08 11:10         | Received:   | 06/25/08   | 08:00       |          |           | . •         |       |
| Total Alkalinity                     | 77             | 5.0                |             | 1.         | CR05267     | 06/26/08 | 06/26/08  | . SM2310B   | -     |
| Bicarbonate as CaCO3                 | 77             | 5.0                | Ħ           | 11         | "           | 1(       | 21        | и .         |       |
| Carbonate as CaCO3                   | ND             | 5.0                | . If        | If         | 11          | I,       | II        | 15          |       |
| Hydroxide as CaCO3                   | ND             | 5.0                | ti.         | H          | 11          | ч        | H         | 11          |       |
| Chloride                             | 0.57           | 0.50               | . 11        | N          | CR05243     | 06/26/08 | 06/26/08  | EPA 300.0   |       |
| Specific Conductance (EC)            | 140            | 1.0                | μmhos/cm    | It         | CR05229     | 06/25/08 | 06/25/08  | EPA 120.1.  |       |
| Methylene Blue Active Substances     | ND             | 0.10               | mg/L        | <b>u</b> . | CR05253     | 06/26/08 | 06/26/08  | SM5540 C    |       |
| Calcium                              | 15             | 1.0                | _           | II         | CR05610     | 07/10/08 | 07/10/08  | 200.7/2340B |       |
| Magnesium                            | 8.1            | 1.0                | ıı ı        | IP.        | ıţ          | ĸ        | ti        | · II        |       |
| Potassium                            | ND             | 1.0                | ш           | (1         | п           | 11       | · 11      | и           |       |
| , viagorium                          | 1,15           | 2.0                |             |            | •           |          | •         |             |       |

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none] Project Manager: Jeff Huggins CLS Work Order #: CRF0997

COC#: 74122, 94817

| Analyte                          | Result          | Reporting<br>Limit | Units       | Dilution            | Batch     | Prepared | Analyzed       | Method      | Note |
|----------------------------------|-----------------|--------------------|-------------|---------------------|-----------|----------|----------------|-------------|------|
| WM-2 DC M/S (CRF0997-05) Water   | Sampled: 06/24  | /08 11:10          | Received: ( | D6/ <b>25</b> /08 0 | 8:00      |          |                |             | -    |
| Sodium                           | 3.1             | 1.0                | mg/L        | 1                   | CR05610   | 07/10/08 | 07/10/08       | 200.7/2340B |      |
| Hardness as CaCO3                | 71              | 1.0                | 11          | 11 .                | ti        | Ħ        | 11             | 11          |      |
| ρΗ                               | 7.67            | 0.01               | pH Units    | 11                  | CR05214   | 06/25/08 | 06/25/08       | SM4500-H B  | HT-  |
| Sulfate as SO4                   | ND              | 0.50               | mg/L        | 11                  | CR05243   | 06/26/08 | 06/26/08       | EPA 300.0   |      |
| Total Dissolved Solids           | 100             | 10                 | 11          | li                  | CR05260   | 06/26/08 | 06/27/08       | SM2540C     |      |
| WM-4 DC @ 48" (CRF0997-06) Wate  | r Sampled: 06/  | 24/08 11:30        | Received    | I: 06/25/08         | 3 08:00   |          |                |             |      |
| Total Alkalinity                 | 73              | 5.0                | mg/L        | 1                   | CR05267   | 06/26/08 | 06/26/08       | SM2310B     | -    |
| Bicarbonate as CaCO3             | 73              | 5.0                | 11          | It                  | It        | 11       | 11             | 11          |      |
| Carbonate as CaCO3               | ND              | 5.0                | 11          | †I                  | It        | 11       | H              | H           |      |
| Hydroxide as CaCO3               | ND              | 5.0                | 11          | <b>∤I</b>           | II .      | 11       | 11             | n           |      |
| Chloride .                       | 0.55            | 0.50               | . tı        | , a                 | CR05243   | 06/26/08 | 06/26/08       | EPA 300.0   |      |
| Specific Conductance (EC)        | 140             | 1.0                | μmhos/cm    | ù                   | CR05229   | 06/25/08 | 06/25/08       | EPA 120.1   |      |
| Methylene Blue Active Substances | ND              | 0,10               | mg/L        | ţı                  | CR05253   | 06/26/08 | 06/26/08       | SM5540 C    |      |
| Calcium                          | 14              | 1.0                | н           | 'n                  | CR05610   | 07/10/08 | 07/10/08       | 200.7/2340B |      |
| Magnesium                        | 7.5             | 1.0                | · II        | h                   | p         | If       | 11             | "           |      |
| Potassium                        | ND              | 1.0                | н           | tt                  | H         | If       | п              | n           |      |
| Sodium                           | 3.4             | 1.0                | и           | tf                  | 17        | If       | ır             | ))          |      |
| Hardness as CaCO3                | 67              | 1.0                | 11          | rs.                 | H         | ır ,     | ff             | ri          |      |
| нq                               | 7.65            | 0.01               | pH Units    | · N                 | CR05214   | 06/25/08 | 06/25/08       | SM4500-H B  | HT-  |
| Sulfate as SO4                   | 0.54            | 0.50               | mg/L        | ıŧ                  | CR05243   | 06/26/08 | 06/26/08       | EPA 300.0   | ***  |
| Total Dissolved Solids           | 110             | 10                 | 11          |                     | CR05260   | 06/26/08 | 06/27/08       | SM2540C     |      |
| WM-9 LGC @ BC (CRF0997-07) Wat   |                 | 5/24/08 12:0       | 0 Receive   | ed: 06/25/0         |           |          |                |             |      |
| Total Alkalinity                 | 60              | 5.0                | mg/L        | i                   | CR05267   | 06/26/08 | 06/26/08       | SM2310B     |      |
| Bicarbonate as CaCO3             | 60              | . 5.0              | 11          | H.                  | n         | f1       | 1)             | ıı          |      |
| Carbonate as CaCO3               | ND              | 5.0                | 11          | n '                 | tı ,      | 11       | u              | н -         |      |
| Hydroxide as CaCO3               | ND              | 5.0                | ŋ           | 11                  | 11        | 11       | u              | 11          |      |
| Chloride                         | 0.53            | 0.50               | 11          | n                   | ·CR05243  | 06/26/08 | 06/26/08       | EPA 300.0   |      |
| Specific Conductance (EC)        | 130             | 1.0                | umhos/cm    | и,                  | CR05229   | 06/25/08 | 06/25/08       | EPA 120.1   |      |
| Methylene Blue Active Substances | ND              | 0.10               | mg/L        | b                   | CR05253   | 06/26/08 | 06/26/08       | SM5540 C    |      |
| Calcium                          | 14              | 1.0                | 11.65       | tt                  | CR05610   | 07/10/08 | 07/10/08       | 200.7/2340B |      |
| Magnesium                        | 4.7             | 1.0                | II          | ti                  | 17        | IT       | 11 11 11 11 11 | 11          |      |
| Potassium                        | 1,5             | 1.0                | II          | 16                  | n         | ır       | 31             | п           |      |
| Sodium                           | 4.3             | 1.0                | n           | . ц                 | n         | ır       | a a            | ħ           |      |
| Hardness as CaCO3                | 56              | 1.0                | н           | п                   | 1)        | If       | 11             | *1          |      |
| pH                               | 7.76            | 0.01               | pH Units    | 1)                  | CR05214   | 06/25/08 | 06/25/08       |             |      |
| Sulfate as SO4                   | 6.1             | 0.50               | mg/L        | D                   | CR05214   |          |                | SM4500-H B  | HT-  |
| Total Dissolved Solids           | 100             | 0.30               | ug/L        |                     |           | 06/26/08 | 06/26/08       | EPA 300.0   |      |
|                                  |                 |                    |             |                     | CR05260   | 06/26/08 | 06/27/08       | SM2540C     |      |
| WM-6 MSFS Dam (CRF0997-08) Wat   | ter Sampled: 00 | /24/08 12:2        | 5 Keceive   | ea: 06/25/0         | .00:80 BU |          |                |             |      |

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC #: 74122, 94817

### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                          | Result        | Reporting<br>Limit | Units             | Dilution   | Batch    | Prepared | Analyzed | Method          | Notes |
|----------------------------------|---------------|--------------------|-------------------|------------|----------|----------|----------|-----------------|-------|
| WM-6 MSFS Dam (CRF0997-08) Water | Sampled: 0    |                    | Receive           | d: 06/25/0 | 08 08:00 |          |          |                 |       |
| Total Alkalinity                 | 71            | 5.0                | mg/L              | 1          | CR05267  | 06/26/08 | 06/26/08 | SM2310B         |       |
| Bicarbonate as CaCO3             | 71            | 5.0                | 11                | tı         | . 11     | Ð        |          | (I              |       |
| Carbonate as CaCO3               | ND            | 5.0                | **                | n .        | II .     | 0        | #        | †I              | •     |
| Hydroxide as CaCO3               | ND "          | 5.0                | ti                | ti.        | IJ       | U        | 11       | fl fl           |       |
| Chloride                         | 0.57          | 0.50               | ri .              | 0          | CR05243  | 06/26/08 | 06/26/08 | EPA 300.0       |       |
| Specific Conductance (EC)        | 150           | 1.0                | umhos/cm          | I)         | CR05229  | 06/25/08 | 06/25/08 | EPA 120.1       |       |
| Methylene Blue Active Substances | ND            | 0.10               | mg/L              | O          | CR05253  | 06/26/08 | 06/26/08 | SM5540 C        |       |
| Calcium                          | 18            | 1.0                | ti                | B          | CR05610  | 07/10/08 | 07/10/08 | 200.7/2340B     |       |
| Magnesium                        | 6.6           | 1.0                | · ·               | j)         | IJ       | ø        | II       | ,H · ·          |       |
| Potassium                        | 1.3           | 1.0                | ti                | II.        | . н      | U        | II       | 11              |       |
| Sodium                           | 4.2           | 1.0                | *1                | II.        | O        | 1)       | 11       | H*              |       |
| Hardness as CaCO3                | 73            | 1.0                | *1                | It         | 1)       | 0.5      | II       | it <sup>*</sup> |       |
| pH                               | 7.88          | 0.01               | pH Units          | μ          | CR05214  | 06/25/08 | 06/25/08 | SM4500-HB       | HT-F  |
| Sulfate as SO4                   | 7.1           | 0.50               | mg/L              | Ü          | CR05243  | 06/26/08 | 06/26/08 | EPA 300.0       |       |
| Total Dissolved Solids           | 110           | 10                 | 11                | Я          | CR05260  | 06/26/08 | 06/27/08 | SM2540C         |       |
| WM-70B DC (CRF0997-09) Water Sam | pled: 06/24/0 | 8 12:40 Rec        | eived: 06/        | 25/08 08:  | 00       |          |          |                 | :     |
| Total Alkalinity                 | 74            | 5.0                | mg/L              | 1          | CR05267  | 06/26/08 | 06/26/08 | SM2310B         |       |
| Bicarbonate as CaCO3             | 74            | 5.0                | I†                | H          | tt       | H        | , 0      | It              |       |
| Carbonate as CaCO3               | ND            | 5.0                | 11                | Ħ          | n .      | · tt     | D.       | st              |       |
| Hydroxide as CaCO3               | ND            | 5.0                | 11                | Ħ          | н        | 11       | II       | ø .             |       |
| Chloride                         | 0.58          | 0.50               | 11                | )i         | CR05243  | 06/26/08 | 06/27/08 | EPA 300.0       |       |
| Specific Conductance (EC)        | 140           | 1.0                | umh <b>os/c</b> m | н          | CR05229  | 06/25/08 | 06/25/08 | EPA 120.1       |       |
| Methylene Blue Active Substances | ND            | 0.10               | mg/L              | Ð          | CR05253  | 06/26/08 | 06/26/08 | SM5540 C        |       |
| Calcium.                         | 15            | 1.0                | **                | <b>11</b>  | CR05610  | 07/10/08 | 07/10/08 | 200.7/2340B     |       |
| Magnesium                        | 6.8           | 1.0                | 11                | 11         | . #      | Ħ        | 71       | н ,             |       |
| Potassium                        | 1.2           | 1.0                | 10                | 11         | H        | If       | Щ        | fi              |       |
| Sodium                           | 3.8           | 1.0                | 11                | И          | II       | I†       | ıt       | u               |       |
| Hardness as CaCO3                | 65            | 1.0                | 11                | )I         | . 11     | и,       | )7       | Ø               |       |
| pH                               | 7.94          | 0.01               | pH Units          | II         | CR05214  | 06/25/08 | 06/25/08 | SM4500-H B      | HT-F  |
| Sulfate as SO4                   | 0.98          | 0.50               | mg/L              | 11         | CR05243  | 06/26/08 | 06/27/08 | EPA 300.0       |       |
| Total Dissolved Solids           | 92            | . 10               | II                | ii.        | CR05260  | 06/26/08 | 06/27/08 | SM2540C         |       |
| WM-70A LGC/DC (CRF0997-10) Water | Sampled: 0    | 6/24/08 12:45      | Receive           | d: 06/25/  | 08:00    |          |          |                 |       |
| Total Alkalinity                 | 57            | 5.0                | mg/L              | -1         | CR05267  | 06/26/08 | 06/26/08 | SM2310B         |       |
| Bicarbonate as CaCO3             | 57            | 5.0                | 11                | D          | 'n       |          | 14       | 11              |       |
| Carbonate as CaCO3               | ND            | 5.0                | <b>†1</b>         | 11         | 'n       | u u      | n        | n               |       |
| Hydroxide as CaCO3               | ND            | 5.0                | *1                | ш          | II.      | , u      | ıt       | n               |       |
| Chloride                         | 0.54          | 0.50               | ti                | H          | CR05243  | 06/26/08 | 06/27/08 | EPA 300.0       |       |
| Specific Conductance (EC)        | 120           | 1.0                | μmhọs/ <b>c</b> m | н          | CR05229  | 06/25/08 | 06/25/08 | EPA 120.1       |       |

CA DOHS ELAP Accreditation/Registration Number 1233

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC#: 74122, 94817

| Analyte                          | Result       | Reporting<br>Limit | Units      | Dilution   | Batch    | Prepared | Analyzed | Method        | Note |
|----------------------------------|--------------|--------------------|------------|------------|----------|----------|----------|---------------|------|
| WM-70A LGC/DC (CRF0997-10) Water | Sampled: 0   | 5/24/08 12:45      | Receive    | ed: 06/25/ | 08 08:00 |          | :        |               |      |
| Methylene Blue Active Substances | ND           | 0.10               | mg/L       | 1          | CR05253  | 06/26/08 | 06/26/08 | SM5540 C      |      |
| Calcium                          | 14           | 1.0                | Ħ          | 10         | CR05610  | 07/10/08 | 07/10/08 | 200.7/2340B   |      |
| Magnesium                        | 4.3          | 1.0                | Ħ          | 17         |          | lt       | l†       | 11            |      |
| Potassium                        | 1.6          | 1.0                | li         | н          | ıt       | ıt .     | II.      | 1f            |      |
| Sodium                           | 4.4          | 1.0                | , н        | u          | н        | 4        | IF       | 11            |      |
| Hardness as CaCO3                | 52           | 1.0                | H          | II.        | 11       | lt .     | , it     | . 11          |      |
| pH                               | 7.41         | 0.01               | pH Units   | (I         | CR05214  | 06/25/08 | 06/25/08 | SM4500-H B    | HT-1 |
| Sulfate as SO4                   | 4.8          | 0.50               | mg/L       | (I         | CR05243  | 06/26/08 | 06/27/08 | EPA 300.0     |      |
| Total Dissolved Solids           | 84           | 10                 | 11         | u          | CR05260  | 06/26/08 | 06/27/08 | SM2540C       |      |
| WM-11 SBWC (CRF0997-12) Water Sa | mpled: 06/24 | /08 13:55 R        | eceived: 0 | 6/25/08 0  | 8:00     |          |          |               |      |
| Total Alkalinity                 | 23           | 5.0                | mg/L       | 1          | CR05267  | 06/26/08 | 06/26/08 | SM2310B       |      |
| Bicarbonate as CaCO3             | 23           | 5.0                | 71         | tı         | 17       | п        | a        | If .          |      |
| Carbonate as CaCO3               | ND           | 5.0                | 11         | 11         | H        | ıı       | u        | II.           |      |
| Hydroxide as CaCO3               | ND           | 5.0                | u          | ti.        | Ħ        | ti       | If       | n             |      |
| Chloride                         | 0.51         | 0.50               | (I         | O          | CR05243  | 06/26/08 | 06/27/08 | EPA 300.0     | •    |
| Specific Conductance (EC)        | 46           | 1.0                | μmhos/cm   | ıi         | CR05229  | 06/25/08 | 06/25/08 | EPA 120.1     |      |
| Methylene Blue Active Substances | ND           | 0.10               | mg/L       | 11         | CR05253  | 06/26/08 | 06/26/08 | SM5540 C      |      |
| Calcium                          | 4.7          | 1.0                | 11         | II         | CR05610  | 07/10/08 | 07/10/08 | 200.7/2340B   |      |
| Magnesium                        | 1.6          | 1.0                | 11         | » II       | 19       | И        | ь        | ų             |      |
| Potassium                        | ND           | 1.0                | a          | и,         | H        | п        | If       | п             |      |
| Sodium                           | 2.6          | 1.0                | u          | ш          | H        | įl.      |          | п             |      |
| Hardness as CaCO3                | 18           | 1.0                | 19         | (1         | **       |          | ıŧ       | 11            |      |
| pH <sub>.</sub>                  | 6.70         | 0.01               | pH Units   | ш          | CR05214  | 06/25/08 | 06/25/08 | SM4500-H B    | HT-I |
| Sulfate as SO4                   | 0.65         | 0.50               | mg/L       | ш          | CR05243  | 06/26/08 | 06/27/08 | EPA 300.0     | •••• |
| Total Dissolved Solids           | 34           | 10                 | II         | (1         | CR05260  | 06/26/08 | 06/27/08 | SM2540C       |      |
| WM-12 MBWC (CRF0997-13) Water Sa | mpled: 06/2  | 4/08 14:05 I       | Received:  | 06/25/08 ( | 08:00    |          |          |               |      |
| Fotal Alkalinity                 | 14           | 5.0                | mg/L       | 1          | CR05267  | 06/26/08 | 06/26/08 | SM2310B       |      |
| Bicarbonate as CaCO3             | 14           | 5.0                | 11         | п          | II .     | IF.      | ø        | u             |      |
| Carbonate as CaCO3               | ND           | 5.0                | Ħ          | 11         | · u      | it it    | . h      | ıı .          |      |
| Hydroxide as CaCO3               | ND           | 5.0                | ti         | 11         | H        | п        | P.       | \$I           |      |
| Chloride                         | 0.52         | 0.50               | tı ·       | 1(         | CR05243  | 06/26/08 | 06/27/08 | EPA 300.0     | -    |
| Specific Conductance (EC)        | 34           |                    | μmhos/cm   | 11         | CR05229  | 06/25/08 | 06/25/08 | EPA 120.1     |      |
| Methylene Blue Active Substances | ND           | 0.10               | mg/L       | 11         | CR05253  | 06/26/08 | 06/26/08 | SM5540 C      |      |
| Calcium                          | 2.9          | 1.0                | 11         | ti         | CR05610  | 07/10/08 | 07/10/08 | 200.7/2340B   |      |
| Magnesium                        | 1.5          | 1.0                | н          | G          | 11       | "        | 111100   | 200.772540D . |      |
| Potassium                        | ND           | 1.0                | u          | 37         | п        | и        | n        | I†            |      |
| *                                |              | =                  | H          | ıł.        |          |          |          |               |      |
| Sodium                           | 1.2          | 1.0                | ri .       | II.        |          | 11       | 11       |               |      |

07/11/08 09:08

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine Project Number: [none]

CLS Work Order #: CRF0997 COC#: 74122, 94817

Project Manager: Jeff Huggins

| Analyte                          | Result          | Reporting<br>Limit | Units      | Dilution   | Batch   | Prepared | Analyzed   | Method      | Notes |
|----------------------------------|-----------------|--------------------|------------|------------|---------|----------|------------|-------------|-------|
| WM-12 MBWC (CRF0997-13) Water    | Sampled: 06/24  | 4/08 14:05 F       | Received:  | 06/25/08   | 08:00   |          |            |             | · ,   |
| рН                               | 6.10            | 0.01               | pH Units   | 1          | CR05214 | 06/25/08 | 06/25/08   | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | ND              | 0.50               | mg/L       | 19         | CR05243 | 06/26/08 | 06/27/08   | EPA 300.0   | •••   |
| Total Dissolved Solids           | 24              | 10                 | n          | , п        | CR05260 | 06/26/08 | 06/27/08   | SM2540C     | •     |
| WM-13 Nye Creek (CRF0997-14) Wa  | ter Sampled: 06 | 5/24/08 14:15      | Receive    | d: 06/25/0 | 08:00   | •        |            | •           |       |
| Total Alkalinity                 | 53              | 5.0                | mg/L       | 1          | CR05267 | 06/26/08 | 06/26/08   | SM2310B     |       |
| Bicarbonate as CaCO3             | 53              | 5.0                | f†         | II         | ŧı      | 11       | 11         | I†          |       |
| Carbonate as CaCO3               | ND              | 5.0                | n          | ı          | II      | н        | ţi.        | u,          |       |
| Hydroxide as CaCO3               | ND              | 5.0                | IÌ         | п.         | н.      | n        | (1         | 11          |       |
| Chloride                         | ND              | 0.50               | П          | и          | CR05243 | 06/26/08 | 06/27/08   | EPA 300.0   |       |
| Specific Conductance (EC)        | 100             | 1.0 ;              | umhos/cm   | и          | CR05229 | 06/25/08 | 06/25/08   | EPA 120.1   |       |
| Methylene Blue Active Substances | ND              | 0.10               | mg/L       | 11         | CR05253 | 06/26/08 | 06/26/08   | SM5540 C    |       |
| Calcium                          | 10              | 1.0                | II         | п          | CR05610 | 07/10/08 | 07/10/08   | 200.7/2340B |       |
| Magnesium                        | 4.8             | 1.0                | n          | II         | 11      | I)       | ч          | n           |       |
| Potassium                        | ND              | 1,0                |            | Ц          | **      | II.      | 11         | I†          |       |
| Sodium                           | 2.6             | 1.0                | Ħ          | И          | Ħ       | u,       | ŧ1         | It          |       |
| Hardness as CaCO3                | 45              | 1.0                | ti         | п          | · u     | 11       | *1         | п           |       |
| $_{ m pH}$                       | 6.99            |                    | pH Units   | If         | CR05214 | 06/25/08 | 06/25/08   | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | ND              | 0.50               | mg/L       | it .       | CR05243 | 06/26/08 | 06/27/08   | EPA 300.0   | *** 1 |
| Total Dissolved Solids           | 75              | 10                 |            | h          | CR05260 | 06/26/08 | 06/27/08   | SM2540C     |       |
| WM-17 NBWC (CRF0997-15) Water    | Sampled: 06/24  | /08 14:30 R        | eceived; ( | 06/25/08 0 |         |          |            | D171#2 10 0 |       |
| Total Alkalinity                 | 80              | 5.0                | mg/L       | 1          | CR05267 | 06/26/08 | . 06/26/08 | <br>SM2310B |       |
| Bicarbonate as CaCO3             | 80              | 5.0                | . 17       | )I         | u ·     | п        | n          | t <b>t</b>  |       |
| Carbonate as CaCO3               | ND              | 5.0                | l†         | n ·        | 11      | I)       | 11         | 11          |       |
| Hydroxide as CaCO3               | ND              | 5.0                | If         |            | II      | U.       | 11         | 11          |       |
| Chloride                         | 0.63            | 0.50               | II         | 11         | CR05243 | 06/26/08 | 06/27/08   | EPA 300.0   |       |
| Specific Conductance (EC)        | 160             | 1.0 :              | umhos/cm   | 'n         | CR05229 | 06/25/08 | 06/25/08   | EPA 120.1   |       |
| Methylene Blue Active Substances | ND              | 0.10               | mg/L       | 11         | CR05253 | 06/26/08 | 06/26/08   | SM5540 C    |       |
| Calcium                          | 18              | 1.0                | ii .       | II         | CR05610 | 07/10/08 | 07/10/08   | 200.7/2340B |       |
| Magnesium                        | 7.6             | 1.0                | n          | ıt         | ) N     | 11       | It         | 10 .        |       |
| Potassium                        | 1.7             | 1.0                | 11         | lf         | 11      | 11       | ıt         | IT          |       |
| Sodium                           | 3.8             | 1.0                | 71         | и          | n .     | 71       | п          | ŧt.         |       |
| Hardness as CaCO3                | 7 <b>5</b>      | 1.0                | 11         | tž         | 11      | 11       | п          | ıt .        |       |
| pH                               | 7.92            |                    | pH Units   | n          | CR05214 | 06/25/08 | 06/25/08   | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | 0.51            | 0.50               | mg/L       | ŋ          | CR05214 | 06/26/08 | 06/27/08   | -           | ml-r  |
| Total Dissolved Solids           | 110             | 10                 | mg/L       | n          |         |          |            | EPA 300.0   |       |
| TOTAL DISSULACE SOURS            | TTA             | 10                 |            |            | CR05260 | 06/26/08 | 06/27/08   | SM2540C     |       |

07/11/08 09:08

CRWOCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none] Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC#: 74122, 94817

| Analyte                            | Result                     | Reporting<br>Limit | Units         | Dilution     | Batch       | Prepared | Analyzed   | Method     | Note |  |
|------------------------------------|----------------------------|--------------------|---------------|--------------|-------------|----------|------------|------------|------|--|
| WM-5 LGC M/S (CRF0997-01) Water    | er Sampled: 06/24/08 10:00 |                    | Receive       | d: 06/25/08  | 08:00       |          |            |            |      |  |
| Aluminum                           | 25                         | 20                 | μ <b>g/L</b>  | 1            | CR05266     | 06/26/08 | 06/27/08   | EPA 200.8  | ,    |  |
| Arsenic                            | ND                         | 2.0                | H             | "            | , H         | #        | . "        | <b>f</b> I |      |  |
| Copper                             | ND                         | 1.0                | · #           | (1           | ıı          | 0        | 11         | 11         |      |  |
| Iron                               | 440                        | 50                 | ţı            | 11           | II          | 11       | ı ıt       | li .       |      |  |
| Zinc                               | ND                         | 2.0                | Ti.           | †1           | li fi       | j)       | u .        | ıt         |      |  |
| Cadmium                            | ND                         | 0.50               | ŧi.           | 18           | I)          | П.       | 11         | IE         |      |  |
| WM-3 DC D/S (CRF0997-02) Water S   | Sampled: 06/24/            | 08 10:20 R         | teceived:     | 06/25/08 08  | 8:00        |          | _          |            |      |  |
| Aluminum                           | , 26                       | 20                 | μ <b>g/L</b>  | 1 .          | CR05266     | 06/26/08 | 06/27/08   | EPA 200.8  |      |  |
| Arsenic                            | ND                         | 2.0                | 11            | 11           | R           | 10       | 11         | P          |      |  |
| Copper.                            | 3.6                        | 1.0                | Ø             | u            | ti          | н        | a          | n          |      |  |
| Iron                               | 700                        | 50                 | · ti          | II.          | ŧ           | II       | <b>‡</b> I | h          |      |  |
| Zine                               | 3.2                        | 2.0                | 11            | ıs           | 11          | n        | 11         | 11         |      |  |
| Cadmium                            | ND                         | 0.50               | 19            | n            | .#1         | 10       | I)         | 11         |      |  |
| WM-19 Settling Pond (CRF0997-03) W | ater Sampled:              | 06/24/08 1         | 0:30 Re       | ceived: 06/2 | 25/08 08:00 | )        |            |            | •    |  |
| Aluminum                           | 52                         | 20                 | μ <b>g/L</b>  | 1 .          | CR05266     | 06/26/08 | 06/27/08   | EPA 200.8  |      |  |
| Arsenic                            | ND                         | 2.0                | И             | 11           | IJ ·        | tt.      | ti         | п          |      |  |
| Copper                             | 540                        | 5.0                |               | 5            | Ħ           | 11       | н          | 1)         |      |  |
| Iron                               | 390                        | 50                 | u             | 1            | ų           | 11       | н          | II.        |      |  |
| Zine                               | 68                         | 2.0                | 4             | 9            | jt          | 17       | P          | H          |      |  |
| Cadmium                            | 0.50                       | 0.50               | ŧt.           | ħ            | H           | U        | 9          | H          |      |  |
| WM-1 Portal (CRF0997-04) Water Sa  | impled: 06/24/0            | 8 11:00 Re         | eceived: 0    | 6/25/08 08:  | :00         |          |            |            |      |  |
| Aluminum                           | ND                         | 20                 | μg/L          | 1            | CR05266     | 06/26/08 | 06/27/08   | EPA 200.8  |      |  |
| Arsenic                            | 12                         | 2.0                | "             | n            | u ·         | h        | ŋ          | п          | ·    |  |
| Copper                             | 110                        | 1.0                | R             | . 11         | ıt          | 0        | 11         | 11         |      |  |
| Iron                               | ND                         | 50                 | R .           | 11           | į)          | 11       | . 11       | 11 .       |      |  |
| Zinc                               | 25                         | 2.0                | 9             | 'n'          | Ħ           | al .     | It         | ' u        |      |  |
| Cadmium                            | ND                         | 0.50               | 11            | U            | . #         | И        | 11         | II         |      |  |
| WM-2 DC M/S (CRF0997-05) Water     | Sampled: 06/24             | /08 11:10          | Received      | 06/25/08 (   | 08:00       |          |            |            |      |  |
| Aluminum                           | ND                         | 20                 | μ <b>g/</b> L | 1            | CR05266     | 06/26/08 | 06/27/08   | EPA 200.8  |      |  |
| Arsenic                            | ND                         | 2.0                | Tr            | II           | 11          | 41       | D          | 0.         |      |  |
| Copper                             | 1.5                        | 1.0                | n             | 11           | If          | Iŧ       | u '        | n          |      |  |
| Iron                               | ND                         | 50                 | (1            | d            | n           | 11       | 0          | 0 '        |      |  |
| Zinc                               | 6.7                        | 2.0                | n             | ti           | tt          | n '      | 0          | 11         |      |  |
| Cadmium                            | ND                         | 0.50               | tt            | H            | ŢĬ          | ti       | 11         | 11         |      |  |
| WM-4 DC @ 48" (CRF0997-06) Water   |                            |                    |               | ed: 06/25/0  | 8 08:00     |          |            | _          |      |  |
| Aluminum                           | ND                         | 20                 | μg/L          | 1            | CR05266     | 06/26/08 | 06/27/08   | EPA 200.8  |      |  |

# California Laboratory Services

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC#: 74122, 94817

| Analyte                            | Result         | Reporting<br>Limit | Units    | Dilution     | Batch     | Prepared | Analyzed | Method    | Note |
|------------------------------------|----------------|--------------------|----------|--------------|-----------|----------|----------|-----------|------|
| WM-4 DC @ 48" (CRF0997-06) Water   | Sampled: 06/   | 24/08 11:30        | Receive  | d: 06/25/08  | 08:00     |          |          | _         |      |
| Arsenic                            | ND             | 2.0                | μg/L     | 1            | CR05266   | 06/26/08 | 06/27/08 | EPA 200.8 |      |
| Copper                             | 9.2            | 1,0                | ti       | 11           | I+        | ч        | st       | ır        |      |
| Iron                               | 260            | 50                 | 11       | 1f           | li        | 11       | n '      | . р       |      |
| Zinc                               | 3.0            | . 2.0              | и        | If           | II        | 11       | II .     | u         |      |
| Cadmium                            | ND             | 0.50               | tt       | H            | II        | ű.       | II       | u u       | •    |
| WM-9 LGC @ BC (CRF0997-07) Water   | Sampled: 06    | 6/24/08 12:00      | Receiv   | /ed: 06/25/( | 8 08:00   |          | ·<br>    |           | _    |
| Aluminum                           | ND             | 20                 | μg/L     | 1            | CR05266   | 06/26/08 | 06/27/08 | EPA 200.8 |      |
| Arsenic                            | ND             | 2.0                | IT       | **           | Ħ         | II       | a        | 11        |      |
| Copper                             | 8.7            | 1.0                | Ħ        | 11 .         | 11        | tt.      | 11       | II        |      |
| Iron                               | 540            | 50                 | +1       | 12           | 11        | ft       | 11       | II        |      |
| Zinc                               | 2.9            | 2.0                | . 11     | II.          | tt        | 11       | D        | . R       |      |
| Cadmium                            | ·· ND          | 0.50               | If .     | n            | . 11      | И        | 0        | . 16      |      |
| WM-6 MSFS Dam (CRF0997-08) Water   | Sampled: 00    | 5/24/08 12:25      | Receiv   | /ed: 06/25/( | 00:80 8   |          |          | _         |      |
| Aluminum                           | , ND           | 20                 | μg/L     | 1            | CR05266   | 06/26/08 | 06/27/08 | EPA 200.8 |      |
| Arsenic                            | ND             | 2.0                | п        | ' π          | , ń       | u        | Į†       | ч         |      |
| Copper                             | 71             | 1.0                | II       | 11           | II        |          | n        | If        |      |
| Iron                               | 1900           | 50                 | II.      | IP.          | н         |          | н        | n         |      |
| Zinc                               | 11             | 2.0                | ¢1       | 11           | 91        | 10       | . 11     | . 11      |      |
| Cadmium                            | ND             | 0.50               | ti       | II           | 1(        | 11       | . 11     | n         |      |
| WM-70B DC (CRF0997-09) Water Sai   | mpled: 06/24/0 | 8 12:40 Red        | eived: 0 | 6/25/08 08:  | 00        |          |          |           |      |
| Aluminum                           | 52             | 20                 | μg/L     | 1            | CR05266   | 06/26/08 | 06/27/08 | EPA 200.8 | -    |
| Arsenic                            | ND             | 2.0                | п        | lt ,         | ū         | 10       | 11       | H         |      |
| Copper                             | 13             | 1.0                | ħ        | В            | u         | n        | и        | ų.        |      |
| Iron                               | 260            | 50                 | 11       | п            | *1        | ti       | H        | #1        |      |
| Zine                               | 3.9            | 2.0                | If       | ŧ            | 4         | Ħ        | łŧ       | 11        |      |
| Cadmium                            | , ND           | 0.50               | li .     | e e          | D .       | **       | 0        | 11 .      |      |
| WM-70A LGC/DC (CRF0997-10) Water   | r Sampled: 0   | 6/24/08 12:4:      | 5 Recei  | ved: 06/25/  | 08 08:00  | •        |          |           |      |
| Aluminum                           | ND             | 20                 | μg/L     | 1            | CR05266   | 06/26/08 | 06/27/08 | EPA 200.8 |      |
| Arsenic                            | ND             | 2.0                | И        | . 17         | 11        | 71       | ır .     | Ir        |      |
| Copper                             | ND             | 1.0                | . 11     | (1           | . 15      | 11       | If       | It        |      |
| Iron                               | 550            | 50                 | G.       | 11           | li .      | . 15     |          | 11        |      |
| Zinc                               | 2.4            | 2.0                | 1)       | It           | • н       | II       | . 14     | ţI        |      |
| Cadmium                            | ND             | 0.50               | ħ        | (1           | 1)        | П        | (1       | n         |      |
| WM-70D NSFS Div (CRF0997-11) Water | er Sampled:    | 06/24/08 13:0      | 0 Rece   | ived: 06/25  | /08 08:00 |          |          |           |      |
| Aluminum                           | ND             | . 20               | μg/L     | 1            | CR05266   | 06/26/08 | 06/27/08 | EPA 200.8 |      |
| Arsenic                            | ŃD             | 2.0                | н        | ft.          | 18        | 41       | n .      |           |      |

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC #: 74122, 94817

| Analyte                            | Result         | Reporting<br>Limit | Units        | Dilution    | Batch     | Prepared | Analyzed | Method    | Note     |
|------------------------------------|----------------|--------------------|--------------|-------------|-----------|----------|----------|-----------|----------|
| WM-70D NSFS Div (CRF0997-11) Water | r Sampled: 00  | 5/24/08 13:0       | 0 Receiv     | ved: 06/25  | /08 08:00 | :        |          |           |          |
| Copper                             | 16             | 1.0                | μg/L         | 1           | CR05266   | 06/26/08 | 06/27/08 | EPA 200.8 | _        |
| (ron                               | 390            | 50                 | 11           | 1)          | n         | ,n       | ıt       | I†        |          |
| Zine                               | 4.8            | 2.0                | *1           | 11          | υ .       | II       | ıt       | It        |          |
| Cadmium                            | ND             | 0.50               | ti.          | 11          | B         | H        | ir       | и         |          |
| WM-11 SBWC (CRF0997-12) Water Sa   | ampled: 06/24/ | 08 13:55 R         | eceived:     | 06/25/08 0  | 8:00      |          |          |           |          |
| Aluminum                           | 44             | 20                 | μg/L         | 1           | CR05266   | 06/26/08 | 06/27/08 | EPA 200.8 |          |
| Arsenic                            | ND             | 2.0                | lt .         | н           | 11        | ţi.      | я        | 11        |          |
| Copper                             | 3.4            | 1.0                | II .         | ıt          | ti        | u        | n        | tı        |          |
| ron                                | ND             | 50                 | u            | ıt          | n         | U .      | н        | Ħ         |          |
| Zine                               | 11             | 2.0                | u            | 11          | II        | II.      | н        | . н       |          |
| Cadmium                            | ND             | 0.50               | Ħ            | 11          | lt .      | 11       | It       | п         |          |
| WM-12 MBWC (CRF0997-13) Water S    | Sampled: 06/24 | 08 14:05 F         | leceived:    | 06/25/08    | 08:00     |          |          |           |          |
| Muminum                            | 29             | 20                 | μg/L         | 1           | CR05266   | 06/26/08 | 06/27/08 | EPA 200.8 |          |
| Arsenic                            | ND             | 2.0                | н            | 13          | II        | 11       | Ħ        | r it.     |          |
| Copper                             | 4.0            | 1.0                | u            | ц           | Ц         | tt       |          | ıt ıt     | •        |
| ron                                | ND             | 50                 | If           | n           | i ii      | ħ        | n ·      | Ħ         |          |
| Zinc                               | 2.5            | 2.0                | ıt           | ţi.         | И         | n        | tı       | n         |          |
| Cadmium                            | ND             | 0.50               | п            | IF          | 11        | п        | IJ       |           | *.*      |
| WM-13 Nye Creek (CRF0997-14) Water | Sampled: 06/   | 24/08 14:15        | Receive      | ed: 06/25/0 | 08:00     |          |          | ı.        |          |
| Muminum                            | ND             | 20                 | μg/L         | 1           | CR05266   | 06/26/08 | 06/27/08 | EPA 200.8 | <u> </u> |
| rsenic                             | ND             | 2.0                | U            | ţı          | U         | u        | ŧI       | 0 '       | •        |
| Copper                             | 1.5            | 1.0                | ly.          | 15          | U         | н        | n        | ır        |          |
| ron                                | ND             | 50                 | U            | R           | ц         | tj       | п        | If ,      |          |
| Line                               | 2.0            | . 2.0              | If           | R           | ц         | W        | ú        | . 14      |          |
| Cadmium                            | ND             | 0.50               | ıı           | II          | II        | tt       | ú        | ıt        |          |
| VM-17 NBWC (CRF0997-15) Water Sa   | ampled: 06/24/ | 08 14:30 R         | eceived:     | 06/25/08 0  | 8:00      |          |          |           |          |
| Alumi <b>nu</b> m                  | ND             | 20                 | <u>μ</u> g/L | 1           | CR05266   | 06/26/08 | 06/27/08 | EPA 200.8 |          |
| Arsenic                            | ND             | 2.0                | 11           | 17          | 11        | H        | II       | n         |          |
| Copper                             | ND             | 1.0                | 1r           | i†          | 11        | и        | H        | 11        |          |
| ron                                | ND             | 50                 | 11           | IT.         | 11        | n        | Ħ        | H         |          |
| Zinc                               | ND             | 2.0                | ft           | ıt.         | ti        | II       | ff       | Ħ         |          |
| Cadmium                            | ND             | 0.50               | *1           | ır          |           | 11       | u        |           |          |

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC#: 74122, 94817

| Analyte                          | Result           | Reporting<br>Limit | Units       | Dilution   | Batch           | Prepared | Analyzed     | Method    | Note        |
|----------------------------------|------------------|--------------------|-------------|------------|-----------------|----------|--------------|-----------|-------------|
| WM-5 LGC M/S (CRF0997-01) Wate   | r Sampled: 06/   | 24/08 10:00        | Received    | : 06/25/08 | 08:00           |          | <del>-</del> |           |             |
| Aluminum                         | . ND             | 20                 | <br>μg/L    | 1          | CR05293         | 06/27/08 | 06/30/08     | EPA 200.8 |             |
| Arsenic                          | ND               | 5.0                | 11          | 11         | ti ·            | n        | l)           | ti        |             |
| Cooper                           | ND               | 2.0                | 11          | II         | **              | И        | II           | 31        |             |
| Iron ·                           | 260              | 100                | 11          | 2          | "1              | R        | п            | 11        |             |
| Zinc                             | 2.4              | 2.0                | ti          | l          | tl              | H        | U            | A)        |             |
| Cadmium                          | ND               | 0.50               | <b>\$</b> 1 | 11         | н               | p        | IP           | 11        |             |
| WM-3 DC D/S (CRF0997-02) Water   | Sampled: 06/24   | /08 10:20 F        | Received: 0 | 6/25/08 0  | 8:00            |          |              |           |             |
| Aluminum                         | ND               | 20                 | <br>μg/L    | 1          | CR05293         | 06/27/08 | 06/30/08     | EPA 200.8 |             |
| Arsenic                          | ND               | 5.0                | . 41        | Ħ          | 'n              | и        | U            | 11        |             |
| Copper                           | ND               | 2.0                | н .         | 11         | 11              | 11       | H .          | ti        |             |
| (ron                             | 260              | 100                | н           | 2          | li .            | 11       | . 13         | H         |             |
| Zinc                             | 3.1              | 2.0                | Ÿ.          | 1          | lı .            | tr       | 10           | 44        |             |
| Cadmium                          | ND               | 0.50               | 11          | tı         | II              | Ħ        | 11           | II.       |             |
| WM-19 Settling Pond (CRF0997-03) | Water Sampled    | : 06/24/08 1       | 0:30 Rece   | ived: 06/2 | 25/08 08:00     | )        |              | i         |             |
| Aluminum                         | ND               | . 20               | μg/L        | 1          | <b>C</b> R05293 | 06/27/08 | 06/30/08     | EPA 200.8 |             |
| Arsenic                          | ND               | 5.0                | ţl          | ŧı         | Ħ               | NJ.      |              | R         |             |
| Copper                           | 200              | 2.0                | ti          | SI .       | ti .            | ß        | Œ            | U         |             |
| (ron                             | ND               | 50                 | tı          | H          | "               | . 15     | ' п          | u         |             |
| Zinc                             | 63               | 2,0                | N           | 11         | · tı            | II       | "            | ti        |             |
| Cadmium                          | ND               | 0,50               | ėl          | . 11       | tr              | li       | 'n           | п         |             |
| WM-1 Portal (CRF0997-04) Water   | Sampled: 06/24/0 | 8 11:00 Re         | ceived: 06  | /25/08 08: | :00             |          |              |           |             |
| Aluminum                         | ND               | 20                 | μg/L ·      | 1          | CR.05293        | 06/27/08 | 06/30/08     | EPA 200.8 |             |
| Arsenic                          | 14               | 5.0                | II          | t)         | P               | 0        | 4            | II        |             |
| Copper                           | 92               | 2.0                | в .         | Į1         | It              | п        | и            | п         |             |
| Iron                             | ND               | 50                 | 11          | н .        | lt .            | , II     | п            | 11        |             |
| Zinc                             | 28               | 2.0                | ш           | . 10       | t <sub>t</sub>  | u .      | lr           | Ħ         |             |
| Cadmium ·                        | ND               | 0.50               | n           | 19         | ĮI              | D.       | n            | 11        |             |
| WM-2 DC M/S (CRF0997-05) Water   | Sampled: 06/24   | I/08 11:10 I       | Received: ( | 06/25/08 0 | 8:00            |          |              |           |             |
| Aluminum                         | ND               | 20                 | μg/L        | 1          | CR05293         | 06/27/08 | 06/30/08     | EPA 200.8 |             |
| Arsenic                          | ND               | 5.0                | ı, D        | ft .       | ti              | ч        | н            | 11        |             |
| Copper                           | ND               | 2.0                | U           | 11         | ù               | н        | · tı         | 11        |             |
| Iron                             | ND               | 50                 | u           | ្ន         | Ü               | 11       | n            | 11        |             |
| Zine                             | 2.6              | 2.0                | п           | ŧı         | , a             | **       | 11           | ti        |             |
| Cadmium                          | ND               | 0.50               | d           | H          | ū               | 11       | 11           | п         |             |
| WM-4 DC @ 48" (CRF0997-06) Wate  | er Sampled: 06   |                    | Received    | I: 06/25/0 | 8 08:00         |          |              |           |             |
| Aluminum                         | ND.              | 20                 | μg/L        |            | CR05293         | 06/27/08 | 06/30/08     | EPA 200.8 | <del></del> |
| ÷                                |                  |                    | . 3 –       | -          |                 |          |              |           |             |

07/11/08 09:08

CRWOCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC #: 74122, 94817

| Analyte ,                         | Result         | Reporting<br>Limit | Units         | Dilution    | Batch              | Prepared | Analyzed | Method    | Notes |
|-----------------------------------|----------------|--------------------|---------------|-------------|--------------------|----------|----------|-----------|-------|
| WM-4 DC @ 48" (CRF0997-06) Water  | Sampled: 06/   | 24/08 11:30        | Receive       | d: 06/25/0  | 8 08:00            |          |          |           |       |
| Arsenic                           | ND             | 5.0                | μg/L          | 1           | CR05293            | 06/27/08 | 06/30/08 | EPA 200.8 |       |
| Copper                            | 7.7            | 2.0                | 11            | tí .        | 11                 | tt       | 11       | #1        |       |
| Iron                              | 160            | 50                 | 11            | 11 /        | 10                 | К        | 11       | H.        |       |
| Zinc                              | 3.0            | 2.0                | 41            | . 11        | 19                 | K        | 11       | 11        |       |
| Cadmium                           | ND             | 0.50               | п             | II          | H                  | tt       | If       | п         |       |
| WM-9 LGC @ BC (CRF0997-07) Water  | Sampled: 06    | 5/24/08 12:00      | Receiv        | /ed: 06/25/ | 08 08:00           |          |          |           |       |
| Aluminum                          | ND             | 20                 | μ <b>g/</b> L | 1           | CR05293            | 06/27/08 | 06/30/08 | EPA 200.8 |       |
| Arsenic                           | ND             | 5.0                | П             | It          | ţ1                 | tt       | 11       | 11        |       |
| Copper                            | 6.0            | 2.0                | II            | It          | . 11               | и        | n ·      | li .      |       |
| Iron                              | 310            | 100                | u             | 2           | 11                 | tt       | n        | H         |       |
| Zine                              | 2.5            | 2.0                | Ħ             | 1           | H                  | ıt       | rt       | I†        |       |
| Cadmium                           | ND             | 0.50               | N             | 11          | II                 | , R      | 11       | n         |       |
| WM-6 MSFS Dam (CRF0997-08) Water  | Sampled: 06    | 6/24/08 12:25      | Receiv        | ed: 06/25/  | 08 <b>08:0</b> 0   |          |          |           |       |
| Aluminum                          | ND             | 20                 | μg/L          | 1           | CR05293            | 06/27/08 | 06/30/08 | EPA 200.8 |       |
| Arsenic                           | ND             | 5.0                | R             | tř          | ti .               | ti       | If       | . и       |       |
| Copper                            | 33             | 2.0                | If            | ų           | 11                 | И        | It       | İt        |       |
| Iron                              | 660            | 250                | 0             | 5           | 11                 | н        | 17       | 11        |       |
| Zinc                              | 5.7            | 2.0                | : n           | · 'I        | ti                 | ĮI       | , D      | Ir        |       |
| Cadmium                           | ND             | 0,50               | ŧ             | II          | Į                  | it       | 11       | l†        |       |
| WM-70B DC (CRF0997-09) Water San  | npled: 06/24/0 | 8 12:40 Rec        | eived: 0      | 6/25/08 08  | :00                |          |          | ٠         | •     |
| Aluminum                          | ND             | 20                 | μg/L          | 1           | CR05293            | 06/27/08 | 06/30/08 | EPA 200.8 |       |
| Arsenic                           | ND             | 5.0                | 11            | (1          | 11                 | Ħ        | If       | ŧi        |       |
| Copper                            | 10             | 2.0                | . 0           | u ·         | q                  | *1       | н        | н         |       |
| Iron                              | 140            | 50                 | . 11          | li II       | ч                  | 14       | и        | It        |       |
| Zinc                              | 2.5            | 2.0                | 41            | п           | 11                 | н        | 11       | ш         |       |
| Cadmium                           | ND             | 0.50               | II            | 18          | li.                | - II     | 11       | ŧI.       |       |
| WM-70A LGC/DC (CRF0997-10) Water  |                | 6/24/08 12:45      | Recei         | ved: 06/25  | / <b>08 08:0</b> 0 |          |          |           |       |
| Aluminum                          | ND             | 20                 | μg/L          | 1           | CR05293            | 06/27/08 | 06/30/08 | EPA 200.8 |       |
| Arsenic                           | ND             | 5.0                | 11            | 11          | 11                 | . 11     | р .      | lt .      |       |
| Copper                            | ND             | 2.0                | It            | 1.0         | 11                 | 13       | п        | 16        | •     |
| Iron                              | 340            | 100                | 11            | 2           | п                  | n        | Ħ        | 16        |       |
| Zinc                              | ND             | 2.0                | ÎII           | i           | Iř                 | II       | †I       | u         |       |
| Cadmium                           | ND             | 0.50               | . "           | D           | t!                 | II       | ti       | п         |       |
| WM-70D NSFS Div (CRF0997-11) Wate |                | 06/24/08 13:0      | 0 Rece        | ived: 06/2  | 5/08 08:00         |          |          |           |       |
| Aluminum                          | ND             | 20                 | μg/L          | 1           | CR05293            | 06/27/08 | 06/30/08 | EPA 200.8 |       |
| Arsenic                           | ND             | 5.0                | 11            | н           | li                 | li li    | 11       | "         |       |
| FILOUIIV                          | 1112           | 5.0                |               |             |                    |          |          |           |       |

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project:

Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC#: 74122, 94817

| Analyte                     | Result              | Reporting<br>Limit | Units     | Dilution    | Batch                     | Prepared | Analyzed         | Method    | Note |
|-----------------------------|---------------------|--------------------|-----------|-------------|---------------------------|----------|------------------|-----------|------|
| WM-70D NSFS Div (CRF0997-1  | l) Water Sampled: ( | 6/24/08 13:0       | 0 Recei   | ved: 06/25/ | /0 <b>8</b> 0 <b>8:00</b> |          | = ,              |           |      |
| Copper                      | 14                  | 2.0                | μg/L      | 1           | CR05293                   | 06/27/08 | 06/30/08         | EPA 200.8 |      |
| fron                        | 270                 | 100                | II        | 2           | If                        | в.       | 11               | n .       |      |
| Zinc                        | 4.7                 | 2.0                |           | 1           | II.                       | н.       | 11               | 11        |      |
| Cadmium                     | ND                  | 0.50               | п .       | u           | II                        | 11       | и .              | 16        |      |
| WM-11 SBWC (CRF0997-12) W   | ater Sampled: 06/24 | /08 13:55 R        | eceived:  | 06/25/08 0  | 8:00                      |          |                  |           |      |
| Aluminum                    | · ND                | 20                 | μg/L      | 1           | CR05293                   | 06/27/08 | 06/30/08         | EPA 200.8 |      |
| Arsenic                     | ND                  | 5.0                | ti        | li          | H                         | It       | 71               | Ħ         |      |
| Copper                      | 2.8                 | 2.0                | 11        | II          | н                         | II*      | n .              | †1        |      |
| ron                         | ND ·                | 50                 | 10        | n .         | D                         | 19       | 11"              | 11        |      |
| Zinc                        | 13                  | 2.0                | n         | 11          | ţı                        | 11       | ıt               | It        |      |
| Cadmium                     | ND                  | 0.50               | II        | Įį          | 4                         | Ħ        | н                | n         |      |
| WM-12 MBWC (CRF0997-13) V   | Vater Sampled: 06/2 | 4/08 14:05 J       | Received  | : 06/25/08  | 08:00                     | •        |                  | _         |      |
| Aluminum                    | ND                  | 20                 | μg/L      | 1           | CR05293                   | 06/27/08 | 06/30/08         | EPA 200.8 |      |
| Arsenic                     | ND                  | 5.0                | P         | 11          | H                         | D        | II.              | lt.       |      |
| Copper                      | 3.8                 | 2.0                | D         | 11          | tł                        | 11       | II               | n         |      |
| Iron                        | ND                  | 50                 | n         | 11          | u                         | ti       | н                | II        |      |
| Zinc                        | 3.4                 | .2.0               | II .      | 1f          | , n                       | ¥ .      | 11               | . n       |      |
| Cadmium                     | ND                  | 0.50               | ši        | If          | н                         | 11       | IF               | . и       |      |
| WM-13 Nye Creek (CRF0997-14 | ) Water Sampled: 0  | 6/24/08 14:15      | Receiv    | ed: 06/25/  | 08:00                     |          |                  |           |      |
| Aluminum                    | ND .                | 20                 | <br>μg/L  | . 1         | CR05293                   | 06/27/08 | 06/30/08         | EPA 200.8 |      |
| Arsenic                     | ND                  | 5.0                | lı        | If          | ţI                        | If       | 'lt              | 11        |      |
| Copper                      | ND                  | 2.0                | II        | 11          | 11                        | D        | I <del>?</del> . | II        |      |
| ron                         | ND                  | 50                 | ti        | 0           | 4                         | n n      | . "              | н         |      |
| Zinc                        | ND                  | · 2.0              | . "       | 11          | ıt                        | n        | 11               | D         |      |
| Cadmium                     | ND                  | 0.50               | Ħ         | 15          | н ,                       | ا د      | ` 11             | I)        |      |
| WM-17 NBWC (CRF0997-15) W   | /ater Sampled: 06/2 | 4/08 14:30 I       | Received: | 06/25/08 (  | 08:00                     |          |                  | •         |      |
| Aluminum                    | ND                  | 20                 | μg/L      | 1           | CR05293                   | 06/27/08 | 06/30/08         | EPA 200.8 |      |
| Arsenic                     | ND                  | 5.0                | ł         | 11          | It                        | ţī.      | n                | п         |      |
| Copper                      | ND                  | 2.0                | Ił        | p .         | 11                        | 11       | 11               | ıt        |      |
| Iron                        | ND                  | 50                 | 17        | 17          | 11.                       | II       | 11               | II .      |      |
| Zinc                        | ND                  | 2.0                | 0         | IJ          | Ш                         | It       | 11               | B         |      |
| Cadmium                     | ND                  | 0.50               |           | ii          | łt                        | lt .     | 11               | н         |      |

07/11/08 09:08

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]
Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC #: 74122, 94817

### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

| Analyte                             | Result | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|----------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Batch CR05228 - General Preparation |        |                    |          |                |                  |             |                |       |              |       |
| Blank (CR05228-BLK1)                |        |                    |          | Prepared       | & Analyz         | ed: 06/25/  | 08             |       |              |       |
| Hexavalent Chromium                 | ND     | 10                 | μg/L     | •              |                  |             |                |       |              |       |
| lexavalent Chromium, Dissolved      | ND     | 10                 | 11       |                |                  |             |                |       |              |       |
| LCS (CR05228-BS1)                   |        |                    |          | Prepared       | & Analyz         | ed: 06/25/  | 08             |       |              |       |
| lexavalent Chromium                 | 262    | . 10               | μg/L     | 250            |                  | 105         | 85-115         |       |              |       |
| lexavalent Chromium, Dissolved      | 262    | 10 ,               | а        | 250            |                  | 105         | 80-120         |       | •            |       |
| LCS Dup (CR05228-BSD1)              |        |                    |          | Prepared       | & Analyz         | ed: 06/25/  | 08             | •     |              |       |
| lexavalent Chromium                 | 263    | 10                 | μg/L     | 250            |                  | 105         | 85-115         | 0.457 | 20           |       |
| lexavalent Chromium, Dissolved      | 263    | 10                 | n ,      | 250            |                  | 105         | 80-120         | 0.457 | 20           |       |
| Watrix Spike (CR05228-MS1)          | So     | urce: CRF09        | 97-04    | Prepared       | & Analyz         | ed: 06/25/  | 08             |       |              |       |
| lexavalent Chromium                 | 256    | 10                 | μg/L     | 250            | ND               | 102         | 85-115         |       |              |       |
| lexavalent Chromium, Dissolved      | 256    | 10                 | П        | 250            | ND               | 102         | 80-120         |       |              |       |
| Matrix Spike Dup (CR05228-MSD1)     | So     | urce: CRF09        | 97-04    | Prepared       | & Analyz         | ed: 06/25/  | 08             |       |              |       |
| lexavalent Chromium                 | 271    | 10                 | μg/L,    | 250            | ND               | 108         | 85-115         | 5.62  | 20           |       |
| lexavalent Chromium, Dissolved      | 271    | 10                 | ţĬ       | 250            | ND               | 108         | 80-120         | 5.62  | 20           | -     |
| Batch CR05229 - General Preparation |        |                    |          |                |                  |             |                |       |              |       |
| Blank (CR05229-BLK1)                |        |                    |          | Prepared       | & Analyz         | ed: 06/25/  | ′08            |       |              |       |
| Specific Conductance (EC)           | ND     | 1.0                | μmhos/cr |                |                  |             |                |       |              |       |
| Batch CR05243 - General Prep        |        |                    |          |                | <u> </u>         |             |                |       |              |       |
| Blank (CR05243-BLK1)                |        |                    |          | Prepared       | l & Analyz       | zed: 06/26/ | /08            |       |              |       |
| Chloride                            | ND     | 0.50               | mg/L     |                |                  |             |                |       |              |       |
| Sulfate as SO4                      | ND     | 0.50               | H        |                |                  |             |                |       |              |       |

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project:

Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC#: 74122, 94817

### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result | Reporting<br>Limit | Units         | Spike<br>Level | Source<br>Result | %REC               | %REC<br>Limits                        | RPD   | RPD<br>Limit | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|---------------|----------------|------------------|--------------------|---------------------------------------|-------|--------------|-------|
| Batch CR05243 - General Prep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                    |               | •              |                  |                    |                                       |       |              |       |
| LCS (CR05243-BS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                    |               | Prepared       | & Analyza        | d: <b>0</b> 6/26/0 | 08                                    |       |              |       |
| Sulfate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.94   | 0.50               | mg/L          | 5.00           |                  | 98.7               | 80-120                                |       |              |       |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.97   | 0.50               | Ħ             | 2.00           |                  | 98.7               | 80-120                                |       |              |       |
| LCS Dup (CR05243-BSD1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |               | Prepared       | & Analyze        | ed: 06/26/0        | 08                                    |       |              |       |
| Sulfate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.02   | 0.50               | mg/L          | 5.00           |                  | 100                | 80-120                                | 1.67  | 20           |       |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.01   | 0.50               | lí            | 2.00           |                  | 101                | 80-120                                | 1.86  | . 20         |       |
| Matrix Spike (CR05243-MS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | So     | urce: CRF09        | <b>9</b> 7-01 | Prepared       | & Analyza        | ed: 06/26/0        | 08                                    |       | •            |       |
| Sulfate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.17   | 0.50               | mg/L          | 5.00           | 0.288            | 97:7               | 75-125                                |       |              |       |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.26   | 0.50               | R             | 2.00           | 0.559            | 84.9               | 75-125                                |       |              |       |
| Matrix Spike Dup (CR05243-MSD1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | So     | urce: CRF09        | 97-01         | Prepared       | & Analyzo        | ed: 06/26/0        | 08                                    |       |              |       |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.28   | 0.50               | mg/L          | 2.00           | 0.559            | 86.2               | 75-125                                | 1.06  | 25           | _     |
| Sulfate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.21   | 0.50               | n             | 5.00           | 0.288            | 98.4               | 75-125                                | 0.751 | 25           |       |
| Batch CR05253 - General Preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                    |               |                | ٠                |                    |                                       |       | •            |       |
| Blank (CR05253-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                    |               | Prepared       | & Analyz         | ed: 06/26/         | 08                                    |       |              |       |
| Methylene Blue Active Substances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND -   | 0.10               | mg/L          |                |                  |                    | · · · · · · · · · · · · · · · · · · · |       |              |       |
| LCS (CR05253-BS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                    |               | Prepared       | & Analyza        | ed: 06/26/0        | 08                                    |       |              |       |
| Methylene Blue Active Substances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.445  | 0.10               | mg/L          | 0.500          | -                | 89.0               | 80-120                                |       |              |       |
| LCS Dup (CR05253-BSD1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |               | Prepared       | & Analyz         | ed: 06/26/0        | 08                                    |       |              | •     |
| Methylene Blue Active Substances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.461  | 0.10               | mg/L          | 0.500          |                  | 92.1               | 80-120                                | 3.45  | 20           |       |
| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |        |                    | a <b>-</b>    |                |                  | 1.00000            |                                       |       |              |       |
| Matrix Spike (CR05253-MS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | So     | urce: CRF09:       | 97-01         | Prepared       | & Analyz         | ea: 06/26/1        | 08                                    |       |              |       |

CA-DOHS-ELAP-Accreditation/Registration-Number 1233

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none] Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC#: 74122, 94817

### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

| Analyte                             | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes        |
|-------------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-------|--------------|--------------|
| Batch CR05253 - General Preparation |        |                    |       |                |                  |             |                |       |              |              |
| Matrix Spike Dup (CR05253-MSD1)     | So     | urce: CRF09        | 97-01 | Prepared       | & Analyz         | ed: 06/26/  | <br>08         |       |              | •            |
| Methylene Blue Active Substances    | 0.482  | 0,10               | mg/L  | 0.500          | ND               | 96.4        | 75-125         | 4.04  | 25           | <u> </u>     |
| Batch CR05260 - General Preparation |        |                    |       |                |                  |             |                |       |              |              |
| Blank (CR05260-BLK1)                |        |                    |       | Prepared:      | 06/26/08         | Analyzed    | : 06/27/08     |       |              |              |
| Total Dissolved Solids              | ND     | 10                 | mg/L  | <u> </u>       |                  | <del></del> |                |       |              |              |
| Duplicate (CR05260-DUP1)            | So     | urce: CRF10        | 09-04 | Prepared:      | 06/26/08         | Analyzed    | : 06/27/08     |       |              |              |
| Total Dissolved Solids              | 282    | 10                 | mg/L  |                | 285              |             | 00/2//00       | 1.06  | 20           |              |
| Batch CR05267 - General Preparation |        |                    |       |                |                  |             |                |       |              |              |
| Blank (CR05267-BLK1)                |        |                    |       | Prepared       | & Anaivze        |             | <br>08         |       |              |              |
| Total Alkalinity                    | ND     | 5.0                | mg/L  |                |                  |             |                |       |              |              |
| Bicarbonate as CaCO3                | ND     | 5.0                | 11    |                |                  |             |                |       |              |              |
| Carbonate as CaCO3                  | ND     | 5.0                | ŧ     | •              |                  |             |                |       |              | •            |
| Hydroxide as CaCO3                  | ND     | 5.0                | ti    |                |                  |             |                |       |              | •            |
| Duplicate (CR05267-DUP1)            | Son    | rce: CRF09         | 97-01 | . Prepared     | & Analyz         | ed: 06/26/0 | 08             | •     |              | •            |
| Total Alkalinity                    | 53.4   | 5.0                | mg/L  |                | 54.0             |             |                | 1.12  | 20           |              |
| Bicarbonate as CaCO3                | 53.4   | 5.0                |       |                | 54.0             |             |                | 1.12  | 20           |              |
| Carbonate as CaCO3                  | ND     | 5.0                | IF.   | •              | ND               |             |                | ***** | 20           |              |
| Hydroxide as CaCO3                  | ND     | 5.0                | If    |                | ND               |             | ,              |       | 20           |              |
| Batch CR05610 - 6010A/No Digestion  |        | _                  |       |                | •                |             |                |       |              |              |
| Blank (CR05610-BLK1)                |        |                    |       | Prepared       | & Analyze        | ed: 07/10/0 | 08             |       |              |              |
| Calcium                             | ND     | 1.0                | mg/L  | -              |                  |             |                | -     |              | <del>-</del> |
| Magnesium                           | ND     | 1.0                | ħ     |                |                  |             |                |       |              |              |
| Potassium                           | ND     | 1.0                | 11    |                |                  |             |                |       | _            |              |
| Sodium                              | ND     | 1,0                | Iŧ    |                |                  |             |                |       |              |              |
| Hardness as CaCO3                   | ND     | 1.0                | 13    |                |                  |             |                |       |              |              |

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC #: 74122, 94817

### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

| Analyte                            | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC               | %REC<br>Limits | RPD   | RPD<br>Limit | Notes       |
|------------------------------------|--------|--------------------|-------|----------------|------------------|--------------------|----------------|-------|--------------|-------------|
| Batch CR05610 - 6010A/No Digestion |        |                    |       |                |                  |                    |                |       |              |             |
| LCS (CR05610-BS1)                  |        |                    |       | Prepared       | & Analyz         | ed: <b>07</b> /10/ | 08             |       |              |             |
| Calcium                            | 11.0   | 1.0                | mg/L  | 10.0           | <del>-</del>     | 110                | 80-120         |       |              |             |
| Magnesium                          | 10.6   | 1.0                | 11    | 10.0           |                  | 106                | 80-120         |       |              |             |
| Potassium                          | 11.0   | 1.0                | 11    | 10.0           |                  | 110                | 80-120         |       |              |             |
| Sodium                             | 10.6   | 1.0                | , A   | 10.0           |                  | 106                | 80-120         |       |              |             |
| LCS Dup (CR05610-BSD1)             |        |                    |       | Prepared       | & Analyze        | ed: 07/10/         | 08             |       |              |             |
| Calcium                            | 11.6   | 1.0                | mg/L  | 10.0           | -                | 116                | 80-120         | 4.78  | 20           | <del></del> |
| Magnesium                          | 11.1   | 1.0                | 11    | 10.0           |                  | 111                | 80-120         | 4.61  | 20           |             |
| Potassium                          | 11,5   | 1.0                | 11    | 10.0           |                  | 115                | 80-120         | 4.46  | 20           |             |
| Sodium                             | 11.0   | 1.0                | н     | 10.0           |                  | 110                | 80-120         | 3.99  | 20           |             |
| Matrix Spike (CR05610-MS1)         | Son    | urce: CRF09        | 97-01 | Prepared       | & Analyze        | ed: 07/10/         | 08             |       |              |             |
| Calcium                            | 23.2   | 1.0                | mg/L  | 10.0           | 12.3             | 110                | 75-125         |       |              |             |
| Magnesium                          | 15.2   | 1.0                | н     | 10.0           | 4.67             | 105                | 75-125         |       |              | ز           |
| Potassium                          | 12.1   | 1.0                | ir    | 10.0           | 1.18             | 109                | 75-125         |       |              |             |
| Sodium                             | 14.1   | 1.0                | ir    | 10.0           | 3.73             | 104                | 75-125         |       |              |             |
| Matrix Spike Dup (CR05610-MSD1)    | Sou    | irce: CRF09        | 97-01 | Prepared       | & Analyze        | d: 07/10/          | 08             |       |              |             |
| Calcium .                          | 23.1   | 1.0                | mg/L  | 10.0           | 12.3             | 108                | 75-125         | 0.562 | 25           |             |
| Magnesium                          | 15.3   | 1.0                | н     | 10.0           | 4.67             | 106                | 75-125         | 0.656 | 25           |             |
| Potassium                          | 12.4   | 1.0                | n     | 10.0           | 1.18             | 112                | 75-125         | 2.54  | 25           |             |
| Sodium                             | 14.4   | 1.0                | 11    | 10.0           | 3.73             | 106                | 75-125         | 1.68  | 25           |             |

07/11/08 09:08

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none] Project Manager: Jeff Huggins CLS Work Order #: CRF0997

COC#: 74122, 94817

### Metals by EPA 200 Series Methods - Quality Control

| Result | Limit                                                                                                                                                    | Units                                                                                                                                                                                         | Level                                                                                                                                                                                                                                       | Result                                                                                                                                                                                                                                                                                                                                                                       | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A TPS  |                                                                                                                                                          |                                                                                                                                                                                               | Prepared:                                                                                                                                                                                                                                   | 06/26/08                                                                                                                                                                                                                                                                                                                                                                     | Arialyzed                                                                                                                                                                                                                                                                                                                                                                                                                                           | : 06/27/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND     | . 20                                                                                                                                                     | μg/L                                                                                                                                                                                          |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND     | 2.0                                                                                                                                                      | 11                                                                                                                                                                                            |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND     | 1.0                                                                                                                                                      | 11                                                                                                                                                                                            |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND     | 50                                                                                                                                                       | ŧI                                                                                                                                                                                            |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND     | 2.0                                                                                                                                                      | 711                                                                                                                                                                                           |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND     | 0.50                                                                                                                                                     | ļi.                                                                                                                                                                                           |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                                                                                                          |                                                                                                                                                                                               | Prepared:                                                                                                                                                                                                                                   | 06/26/08                                                                                                                                                                                                                                                                                                                                                                     | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 06/27/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 97.0   | 20                                                                                                                                                       | μg/L                                                                                                                                                                                          | 100                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              | 97.0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 92.0   | 2.0                                                                                                                                                      | 11                                                                                                                                                                                            | 100                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              | 92.0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 104    | 1.0                                                                                                                                                      | 11                                                                                                                                                                                            | 100                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 91.5   | 50                                                                                                                                                       | 11                                                                                                                                                                                            | 100                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              | 91.5                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 105    | 2.0                                                                                                                                                      | Ħ                                                                                                                                                                                             | 100                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10.2   | 0.50                                                                                                                                                     | U                                                                                                                                                                                             | 10.0                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                              | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                                                                                                          |                                                                                                                                                                                               | Prepared:                                                                                                                                                                                                                                   | 06/26/08                                                                                                                                                                                                                                                                                                                                                                     | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 06/27/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 93.9   | 20                                                                                                                                                       | μg/L                                                                                                                                                                                          | 100                                                                                                                                                                                                                                         | ,                                                                                                                                                                                                                                                                                                                                                                            | 93.9                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 92.7   | 2.0                                                                                                                                                      | IT                                                                                                                                                                                            | 100                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              | 92.7                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 94.9   | 1.0                                                                                                                                                      | H,                                                                                                                                                                                            | 100                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              | 94.9                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 74.8   | 50                                                                                                                                                       | ŋ                                                                                                                                                                                             | 100                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              | 74.8                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QM-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 95.3   | 2.0                                                                                                                                                      | 11                                                                                                                                                                                            | 100                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              | 95.3                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9.61   | 0.50                                                                                                                                                     | 11                                                                                                                                                                                            | 10.0                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                              | 96.1                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sou    | rce: CRF09                                                                                                                                               | 97-15                                                                                                                                                                                         | Prepared:                                                                                                                                                                                                                                   | 06/26/08                                                                                                                                                                                                                                                                                                                                                                     | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 06/27/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 100    | 20                                                                                                                                                       | μg/L                                                                                                                                                                                          | 100                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 104    | 2.0                                                                                                                                                      | 11                                                                                                                                                                                            | 100                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                           | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 98.4   | 1.0                                                                                                                                                      | u                                                                                                                                                                                             | 100                                                                                                                                                                                                                                         | 0.510                                                                                                                                                                                                                                                                                                                                                                        | 97.9                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 80.6   | 50                                                                                                                                                       | п                                                                                                                                                                                             | 100                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                           | 80.6                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 103    | 2.0                                                                                                                                                      | 11                                                                                                                                                                                            | 100                                                                                                                                                                                                                                         | 1.34                                                                                                                                                                                                                                                                                                                                                                         | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10.6   | 0.50                                                                                                                                                     | 'n                                                                                                                                                                                            | 10.0                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                           | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | ND<br>ND<br>ND<br>97.0<br>92.0<br>104<br>91.5<br>105<br>10.2<br>93.9<br>92.7<br>94.9<br>74.8<br>95.3<br>9.61<br>Sou<br>100<br>104<br>98.4<br>80.6<br>103 | ND 1.0 ND 50 ND 2.0 ND 0.50  97.0 20 92.0 2.0 104 1.0 91.5 50 105 2.0 10.2 0.50  93.9 20 92.7 2.0 94.9 1.0 74.8 50 95.3 2.0 9.61 0.50  Source: CRF09  100 20 104 2.0 98.4 1.0 80.6 50 103 2.0 | ND 1.0 " ND 50 " ND 2.0 " ND 0.50 "  97.0 20 μg/L 92.0 2.0 " 104 1.0 " 91.5 50 " 105 2.0 " 10.2 0.50 "  93.9 20 μg/L 92.7 2.0 " 94.9 1.0 " 74.8 50 " 95.3 2.0 " 96.1 0.50 "  Source: CRF0997-15  100 20 μg/L 104 2.0 " 98.4 1.0 " 80.6 50 " | ND 1.0 " ND 50 " ND 2.0 " ND 0.50 "  Prepared:  97.0 20 μg/L 100 92.0 2.0 " 100 104 1.0 " 100 91.5 50 " 100 105 2.0 " 100 10.2 0.50 " 10.0  Prepared:  93.9 20 μg/L 100 92.7 2.0 " 100 94.9 1.0 " 100 94.9 1.0 " 100 74.8 50 " 100 95.3 2.0 " 100 96.1 0.50 " 10.0  Source: CRF0997-15 Prepared:  100 20 μg/L 100 98.4 1.0 " 100 98.4 1.0 " 100 98.4 1.0 " 100 80.6 50 " 100 | ND 1.0 " ND 50 " ND 2.0 " ND 0.50 "  Prepared: 06/26/08  97.0 20 μg/L 100  92.0 2.0 " 100  104 1.0 " 100  91.5 50 " 100  105 2.0 " 100  10.2 0.50 " 10.0  Prepared: 06/26/08  93.9 20 μg/L 100  92.7 2.0 " 100  94.9 1.0 " 100  94.9 1.0 " 100  74.8 50 " 100  95.3 2.0 " 100  95.3 2.0 " 100  961 0.50 " 10.0  Source: CRF0997-15 Prepared: 06/26/08  100 20 μg/L 100 ND  104 2.0 " 100 ND  98.4 1.0 " 100 ND  98.4 1.0 " 100 ND  103 2.0 " 100 ND | ND 1.0 " ND 50 " ND 2.0 " ND 0.50 "  Prepared: 06/26/08 Analyzed 97.0 20 μg/L 100 97.0 92.0 104 1.0 " 100 104 91.5 50 " 100 91.5 105 2.0 " 100 105 10.2 0.50 " 10.0 102 Prepared: 06/26/08 Analyzed 93.9 20 μg/L 100 93.9 92.7 2.0 " 100 92.7 94.9 1.0 " 100 94.9 74.8 50 " 100 94.9 74.8 50 " 100 94.9 74.8 50 " 100 94.9 74.8 50 " 100 95.3 9.61 0.50 " 10.0 95.3 9.61 0.50 " 10.0 96.1 Prepared: 06/26/08 Analyzed 100 20 μg/L 100 ND 100 104 98.4 1.0 " 100 ND 104 98.4 1.0 " 100 ND 104 98.4 1.0 " 100 ND 104 98.6 50 " 100 ND 80.6 103 2.0 " 100 ND 80.6 100 ND 80.6 100 ND 80.6 100 ND 80.6 100 ND 80.6 100 ND 80.6 100 ND 80.6 | ND 1.0 " ND 50 " ND 2.0 " ND 0.50 "  Prepared: 06/26/08 Analyzed: 06/27/08  97.0 20 μg/L 100 97.0 80-120  92.0 2.0 " 100 92.0 80-120  104 1.0 " 100 104 80-120  91.5 50 " 100 91.5 80-120  105 2.0 " 100 105 80-120  102 80-120  102 0.50 " 10.0 102 80-120  Prepared: 06/26/08 Analyzed: 06/27/08  93.9 20 μg/L 100 93.9 80-120  92.7 2.0 " 100 93.9 80-120  94.9 1.0 " 100 92.7 80-120  94.9 1.0 " 100 94.9 80-120  94.9 1.0 " 100 94.9 80-120  95.3 2.0 " 100 94.9 80-120  95.3 2.0 " 100 95.3 80-120  95.3 2.0 " 100 95.3 80-120  96.1 0.50 " 10.0 96.1 80-120  Source: CRF0997-15 Prepared: 06/26/08 Analyzed: 06/27/08  100 20 μg/L 100 ND 100 75-125  104 2.0 " 100 ND 104 75-125  98.4 1.0 " 100 ND 104 75-125  80.6 50 " 100 ND 80.6 75-125  103 2.0 " 100 ND 80.6 75-125 | ND 1.0 " ND 50 " ND 2.0 " ND 0.50 "  Prepared: 06/26/08 Analyzed: 06/27/08  97.0 20 μg/L 100 97.0 80-120  92.0 2.0 " 100 92.0 80-120  104 1.0 " 100 104 80-120  91.5 50 " 100 91.5 80-120  105 2.0 " 100 105 80-120  102 0.50 " 10.0 105 80-120  Prepared: 06/26/08 Analyzed: 06/27/08  93.9 20 μg/L 100 93.9 80-120 3.21  92.7 2.0 " 100 92.7 80-120 0.791  94.9 1.0 " 100 94.9 80-120 9.40  74.8 50 " 100 94.9 80-120 20.1  95.3 2.0 " 100 95.3 80-120 20.1  95.3 2.0 " 100 95.3 80-120 9.41  9.61 0.50 " 10.0 96.1 80-120 6.25  Source: CRF0997-15 Prepared: 06/26/08 Analyzed: 06/27/08  100 20 μg/L 100 ND 100 75-125  104 2.0 " 100 ND 100 75-125  98.4 1.0 " 100 ND 104 75-125  98.4 1.0 " 100 ND 104 75-125  98.4 1.0 " 100 ND 104 75-125  80.6 50 " 100 ND 80.6 75-125  103 2.0 " 100 ND 80.6 75-125 | ND 1.0 " ND 50 " ND 2.0 " ND 0.50 "  Prepared: 06/26/08 Analyzed: 06/27/08  97.0 20 μg/L 100 97.0 80-120  92.0 2.0 " 100 92.0 80-120  104 1.0 " 100 91.5 80-120  105 2.0 " 100 105 80-120  10.2 0.50 " 10.0 102 80-120  Prepared: 06/26/08 Analyzed: 06/27/08  93.9 20 μg/L 100 93.9 80-120 3.21 20  92.7 2.0 " 100 93.9 80-120 0.791 20  94.9 1.0 " 100 92.7 80-120 0.791 20  94.9 1.0 " 100 94.9 80-120 9.40 20  74.8 50 " 100 94.9 80-120 9.40 20  74.8 50 " 100 95.3 80-120 20.1 20  95.3 2.0 " 100 95.3 80-120 9.41 20  96.1 0.50 " 10.0 96.1 80-120 6.25 20  Source: CRF0997-15 Prepared: 06/26/08 Analyzed: 06/27/08  100 20 μg/L 100 ND 100 75-125  104 2.0 " 100 ND 104 75-125  98.4 1.0 " 100 ND 104 75-125  98.4 1.0 " 100 ND 104 75-125  80.6 50 " 100 ND 80.6 75-125  103 2.0 " 100 ND 80.6 75-125 |

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC #: 74122, 94817

### Metals by EPA 200 Series Methods - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RP <b>D</b> | RP <b>D</b><br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|----------------|------------------|----------|----------------|-------------|----------------------|-------|
| Batch CR05266 - EPA 3020A       |        |                    |       |                |                  |          |                |             |                      | -     |
| Matrix Spike Dup (CR05266-MSD1) | Sou    | rce: CRF09         | 97-15 | Prepared:      | 06/26/08         | Analyzed | : 06/27/08     |             |                      |       |
| Aluminum                        | 104    | 20                 | μg/L  | 100            | ND               | 104      | 75-125         | 4.32        | 25                   |       |
| Arsenic                         | 108    | 2.0                | u .   | 100            | ND               | 108      | 75-125         | 4.01        | 25                   | ~     |
| Copper                          | 100    | 1.0                | at.   | 100            | 0.510            | 99.8     | 75-125         | 1.95        | 25                   |       |
| Iron                            | . 85.8 | 50                 | et .  | 100            | ND               | 85.8     | 75-125         | 6.23        | 25                   |       |
| Zinc                            | 104    | 2.0                | 41    | 100            | 1.34             | 102      | 75-125         | 0.367       | 25                   |       |
| Cadmium                         | 10.9   | 0.50               | 11:   | 10.0           | ND               | 109      | 75-125         | 3.06        | 25                   |       |

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none] Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC #: 74122, 94817

### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

| Analyte                    | -          | Result | Reporting<br>Limit | Units      | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits       | RPD    | RPD<br>Limit | Notes      |
|----------------------------|------------|--------|--------------------|------------|----------------|------------------|----------|----------------------|--------|--------------|------------|
| Batch CR05293 - EPA 3020A  | . <u>.</u> |        |                    |            |                |                  |          |                      |        |              |            |
| Blank (CR05293-BLK1)       |            |        |                    |            | Prepared:      | 06/27/08         | Analyzed | l: 06/30/08          |        |              |            |
| Aluminum                   |            | ND     | 20                 | μg/L       |                |                  |          |                      |        | <del>.</del> |            |
| Arsenic ·                  |            | ND     | . 5.0              | #1         |                |                  |          | •                    |        | •            |            |
| Copper                     |            | ND.    | 2.0                | . 41       |                |                  |          |                      |        |              |            |
| Iron                       |            | ND     | 50                 | - 11       |                |                  |          |                      |        |              | •          |
| Zinc                       | *          | ND     | 2.0                | •          |                |                  |          |                      |        |              |            |
| Cadmium                    |            | ND     | 0.50               | <b>3</b> 1 |                |                  |          |                      |        |              |            |
| LCS (CR05293-BS1)          |            |        |                    |            | Prepared:      | 06/27/08         | Analyzed | l: 06/30/08          |        |              |            |
| Aluminum                   |            | 96.4   | 20                 | μg/L       | 100            |                  | 96.4     | 80-120               |        |              | -          |
| Arsenic                    |            | 110    | 5.0                | и          | 100            |                  | 110      | 80-120               |        |              |            |
| Copper                     |            | 111    | 2.0                | II.        | 100            |                  | 111      | 80-120               |        |              |            |
| Iron                       |            | 105    | 50                 | II.        | 100            | ·                | 105      | 80-120               |        |              |            |
| Zino                       |            | 113    | 2.0                | II.        | 100            |                  | 113      | 80-120               |        |              | ,          |
| Cadmium                    |            | 10.5   | 0.50               | , IT       | 10.0           |                  | 105      | 80-120               |        |              |            |
| LCS Dup (CR05293-BSD1)     |            |        | •                  |            | Prepared:      | 06/27/08         | Analyzed | 1: 06/30/08          |        |              |            |
| Aluminum                   |            | 89.3   | 20                 | μg/L       | 100            |                  | 89.3     | 80-120               | 7.57   | 20           | The Walter |
| Arsenic                    |            | . 105  | 5,0                | H          | 100            |                  | 105      | 80-120               | 4.47   | 20           |            |
| Copper                     |            | 107    | 2.0                | **         | 100            |                  | 107      | <b>80-</b> 120       | 3.61   | 20           |            |
| Iron                       |            | 100    | - 50               | 31         | 100            |                  | .100     | 80-120               | 4.54   | 20           |            |
| Zinc                       |            | 107    | 2.0                | 31         | 100            |                  | 107      | 80-120               | 5.08   | 20           |            |
| Cadmium                    |            | 10.5   | 0.50               | п          | 10.0           | •                | 105      | 80-120               | 0.0949 | 20           |            |
| Matrix Spike (CR05293-MS1) |            | Son    | urce: CRF10        | 88-01      | Prepared       | : 06/27/08       | Analyzed | 1: 06/30/08          |        |              |            |
| Aluminum                   | -          | 190    | 20                 | μg/L       | 100            | 97.2             | 92.8     | 75-125               |        |              |            |
| Arsenic                    | . •        | 111    | 5.0                | R          | 100            | ND               | 111      | 75-125               |        |              |            |
| Copper ~                   |            | 123    | 2.0                | 14         | 100            | 16.1             | 107      | 75-12 <sup>′</sup> 5 |        |              |            |
| Iron                       |            | 1820   | 50                 | n          | 100            | 1760             | 55.8     | 7,5-12 <b>5</b>      |        |              | QM-4X      |
| Zinc                       |            | 127    | 2.0                | n          | 100            | 19.3             | 108      | <b>75</b> -125       |        |              | -          |
| Cadmium                    | •          | 10.6   | 0.50               | Ü          | 10.0           | ND               | 106      | 75-125               |        |              |            |

07/11/08 09:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC #: 74122, 94817

### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|----------------|------------------|-----------|----------------|-------|--------------|-------|
| Batch CR05293 - EPA 3020A       | ,      |                    |       | <u> </u>       |                  |           |                |       |              | ř     |
| Matrix Spike Dup (CR05293-MSD1) | Sour   | ce: CRF10          | 88-01 | Prepared:      | 06/27/08         | Analyzed: | 06/30/08       |       |              |       |
| Aluminum                        | 185    | 20                 | μg/L  | 100            | 97.2             | 88.2      | 75-125         | 2.49  | . 25         |       |
| Arsenic ·                       | 108    | 5.0                | Ц     | 100            | ND               | 108       | 75-125         | 2.92  | 25           |       |
| Copper                          | 123    | 2.0                | u     | 100            | 16.1             | 107       | 75-125         | 0.212 | 25           |       |
| Iron                            | 1830   | 50                 | 'n    | 100            | 1760             | 65.4      | 75-125         | 0.524 | 25           | QM-43 |
| Zinc                            | 126    | 2.0                | n     | 100            | 19.3             | 106       | 75-125         | 1.37  | 25           |       |
| Cadmium                         | 10.6   | 0.50               | ij    | 10.0           | ND               | 106       | 75-125         | 0.567 | 25           |       |

07/11/08 09:08

CRWOCB - Sacramento

Project: Walker Mine

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CRF0997

COC #: 74122, 94817

#### Notes and Definitions

QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

The spike recovery was outside acceptance limits for the LCS or LCSD. The batch was accepted based on acceptable MS/MSD QM-1 recoveries & RPD's.

HT-F This is a field test method and it is performed in the lab outside holding time.

DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit ND

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

3249 Fitzgerald Road Rancho Cordova CA 95742

November 21, 2008

CLS Work Order #: CRK0319 COC #: 94810,13

Jeff Huggins CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova, CA 95670-6114

Project Name: Walker Mine

Enclosed are the results of analyses for samples received by the laboratory on 11-10-08 09:40. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

C4-.0001-0.0057PM 2 70 - 0.000 pm Al - 0.020 pm SPECIAL INSTRUCTIONS LOG NO. 94810 Fe - 0.050 mm 9 A5-0.005 pm Notes this is one bottle only PRINT NAME / COMPANY ≅ 8 YES of Lower סיוניים()מי ALT. People INVOICE TO: QUOTE # # 02 # 02 GEOTRACKER: **EDF REPORT** ΛVQ Sitz F TURN AROUND TIME. GLOBAL ID: FIELD CONDITIONS: 5 YAQ がんので CONDITIONS / COMMENTS: CLS ID No.; CRK 0319 AIR BILL# (3) = COLD (4) = NaOH COMPOSITE S YAG RECEIVED BY (SIGN) t YAG んつごかずるく ANALYSIS REQUESTED (1) HCL (2) HNO<sub>3</sub> TERS HUGGINS/RUDGEB 11-7-00/2100HRS 2008 DATE / TIME (5) OTHER CLS (916) 638-7301 3249 FIZGERALD RD. RANCHO CORDOVA, CA. 95742 CHAIN OF CUSTODY DESTINATION LABORATORY Sample for Fall CLIENT JOB NUMBER ö PRINT NAME / COMPANY OTHER DATS/TIME: Water MATRIX UPS Browns Cabin C. Color Je J about D ton ら Water Book Water Quality Maring Lation IDENTIFICATION SAMPLE -48" eticia Valadez 4000 MATICA Velley Regional REPORT TO: FEDX MMTC WM-19 RELINQUISHED BY (SIGN) いーズラ WM-R WM-Z NIT-13 0925 WM-2 1-1-1M 17:22 hd W/W-C 6-1/JM |-WM DAT HURSINS SON Z STELOCATION VILMES PROJECT NAME NOULE 30000 PROJECT MANAGER TEFF CLS - Labs SUSPECTED CONSTITUENTS 865 1045 01-7-68 08-10 6650 1135 SHIPPED BY: NAME AND ADDRESS SAMPLED BY TECTO AT LAB BY: 82-1-1 DATE

K

detection innot Sectioner 14- 0.00-0-005 PPM <u>8</u> Place we the following LOG NO. 94813 SPECIAL INSTRUCTIONS Fn-0.002 Pm F-0,050 PM A1-0,02007m AS-0.005ppm : E PRINT NAME / COMPANY 뜽 YES ALT. INVOICE TO: QUOTE# PO. # GEOTRACKER **EDF REPORT** YAG TURN AROUND TIME GLOBAL ID: FIELD CONDITIONS: S YAG CONDITIONS / COMMENTS: AIR BILL# CLS ID No.; CR KOZIA (3) = COLD (4) = NaOH COMPOSITE S YAG RECEIVED BY (SIGN) t YAG ANALYSIS REQUESTED (1) HCL (2) HNO<sub>3</sub> 2100 HR PRESERVATIVES: 06:6 DATE / TIME かったの Hogins/RWACB 11-7-081 OTHER CHAIN OF CUSTODY CLS (916) 638-7301 3249 FITZGERALD RD. RANCHO CORDOVA, CA. 95742 TYPE DESTINATION LABORATORY 3-01-CONTAINER CLIENT JOB NUMBER 9 1000 DO PRINT NAME / COMPANY OTHER DATE / TIME Water V Water cut les Wite Water reel wher MATRIX UPS OM " TY PHONE# 4-4639 Montheras aller Regional Worke Boarc NEW RYOWM-12-MBWC 92720 1350 WM-13-Nyer SAMPLE DENTIFICATION NAME AND ADDRESS RETICIA VOLLA LOCA Ī 16 AL-YN WM-17 REPORT TO: FEDX 1330 WM-11 RELINQUISHED BY (SIGN) WM-1230 WM-Son OFF HURGIE cidesta er Mine SITE LOCATION ) | LANCES CLS - Labs SUSPECTED CONSTITUENTS 0161 1460 1205 TIME SHIPPED BY: JOB DESCRIPTION REC'D AT LAB BY: Rankho 30-1-11 DATE

**TAB** 

11-21-08 08:03

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180 Project Manager: Jeff Huggins CLS Work Order #: CRK0319

COC #: 94810.13

| Analyte                          | Result           | Reporting<br>Limit | Units       | Dilution   | a Batch | Prepared | Analyzed | Method      | Notes |
|----------------------------------|------------------|--------------------|-------------|------------|---------|----------|----------|-------------|-------|
| WM-1 Portal (CRK0319-01) Water   | Sampled: 11-07-0 | 8 09:15 R          | eceived: 11 | -10-08 0   | 9:40    |          |          |             |       |
| Total Alkalinity                 | 64               | 5.0                | ıng/L       | 1          | CR09496 | 11-11-08 | 11-11-08 | SM2310B     |       |
| Bicarbonate as CaCO3             | 64               | 5.0                | 0           | Iŧ         | В       | И        | ĮĮ.      |             |       |
| Carbonate as CaCO3               | ND               | 5.0                | 0           | В          | II      | п        | 11       | п,          |       |
| Hydroxide as CaCO3               | ND               | 5.0                | ti .        | n          | Ð       | II       | P        | и .         |       |
| Chloride                         | 0.65             | 0.50               | 11          | n          | CR09470 | 11-11-08 | 11-11-08 | EPA 300.0   |       |
| Specific Conductance (EC)        | 110              | . 1.0              | μmhos/cm    | D          | CR09457 | 11-10-08 | 11-10-08 | EPA 120.1   |       |
| Hexavalent Chromium              | ND               | 10                 | μg/Ľ        | u          | CR09454 | 11-10-08 | 11-10-08 | EPA 7196A   | HT-1  |
| Hexavalent Chromium, Dissolved   | ND               | 10                 | и.          | n          | tt      | ri       | н        | h           | HT-1  |
| Methylene Blue Active Substances | ND               | 0.10               | mg/L        | Ħ          | CR09493 | 11-11-08 | 11-11-08 | SM5540 C    | HT-1  |
| Calcium                          | 11               | 1.0                | ìr          | 77         | CR09505 | 11-11-08 | 11-12-08 | 200.7/2340B |       |
| Magnesium                        | 4.6              | 1.0                | )r          | 11         | ŧI      | ti       | 11       | n           |       |
| Potassium                        | ND               | 1.0                | IF          | T <b>t</b> | ţi.     | Ħ        | . 4      | n           |       |
| Sodium                           | 5.3              | 1.0                | ıt          | 11         | a       | . и      | . "      | tl          |       |
| Hardness as CaCO3                | 46               | 1.0                | 16          | tt         | ii      | D        | ĮI       | ti .        |       |
| Hq                               | 7.51             | 0.01               | pH Units    | 16         | CR09453 | 11-10-08 | 11-10-08 | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | 1.1              | 0.50               | mg/L        | B          | CR09470 | 11-11-08 | 11-11-08 | EPA 300.0   |       |
| Total Dissolved Solids           | 86               | 10                 | u           | u          | CR09491 | 11-11-08 | 11-13-08 | SM2540C     |       |
| WM-5 LGC/U/S (CRK0319-02) Wate   | r Sampled: 11-0  | 7-08 08:40         | Received    | : 11-10-0  | 8 09:40 |          | i        |             |       |
| Total Alkalinity                 | . 56             | 5.0                | mg/L        | 1          | CR09496 | 11-11-08 | 11-11-08 | SM2310B     |       |
| Bicarbonate as CaCO3             | 56               | 5.0                | 17          | н          | n       | Ħ        | 11       | 19          |       |
| Carbonate as CaCO3               | ND               | 5.0                | n           | 10         | ti      | )I       | ţI       | ij          |       |
| Hydroxide as CaCO3               | ND               | 5.0                | u           | ti         | te      | . 0      | Ħ        | ţ1          |       |
| Chloride                         | 2.3              | 0.50               | ţI          |            | CR09470 | 11-11-08 | 11-11-08 | EPA 300.0   |       |
| Specific Conductance (EC)        | 120              | 1.0                | μmhos/cm    | u          | CR09457 | 11-10-08 | 11-10-08 | EPA 120.1   |       |
| Methylene Blue Active Substances | ND               | 0.10               | mg/L        | . "        | CR09493 | 11-11-08 | 11-11-08 | SM5540 C    | HT-1  |
| Calcium                          | 11               | . 1.0              | 11          | п          | CR09505 | 11-11-08 | 11-12-08 | 200.7/2340B |       |
| Magnesium                        | 5.3              | 1.0                | 10          | Ħ          | ìr      | · n      | 11       | lı          | -     |
| Potassium                        | 1.8              | 1.0                | n n         | ıt         | υ .     | 11       | it :     | и           |       |
| Sodium                           | 4.2              | 1.0                | u           | 11         | п       | . 11     | p        | t;          |       |
| Hardness as CaCO3                | 49               | 1.0                | , 11        | Ŋ          | η .     | tt       | it       | n           |       |
| pH                               | 7.28             | 0.01               | pH Units    | 11         | CR09453 | 11-10-08 | 11-10-08 | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | ND               | 0.50               | mg/L        | Л          | CR09470 | 11-11-08 | 11-11-08 | EPA 300,0   | ^     |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Jeff Huggins

CLS Work Order #: CRK0319

COC #: 94810,13

| Analyte                          | Result         | Reporting<br>Limit | Units     | Dilution | Batch     | Prepared | Analyzed   | <b>M</b> ethod | Notes  |
|----------------------------------|----------------|--------------------|-----------|----------|-----------|----------|------------|----------------|--------|
| WM-5 LGC/U/S (CRK0319-02) Water  |                |                    |           |          |           |          | ,          |                | 110100 |
| Total Dissolved Solids           | . 92           | 10                 | mg/L      |          | CR09491   | 11-11-08 | 11-13-08   | SM2540C        |        |
|                                  | Sampled: 11-07 |                    |           |          |           | 11-11-00 | 11-13-00   |                |        |
|                                  | - :            |                    | *** *     |          |           |          |            | 0) (0) (0)     | •      |
| Total Alkalinity                 | 59             | 5.0                | mg/L<br>" | . 1      | CR09496   | 11-11-08 | 11-11-08   | SM2310B        |        |
| Bicarbonate as CaCO3             | 59             | 5.0<br>5.0         | ."<br>H   | "        | <br>11    | .,       | "          |                |        |
| Carbonate as CaCO3               | ND<br>ND       | 5.0                | r<br>It   | ,ii      | <br>11    | n        |            | a a            |        |
| Hydroxide as CaCO3 Chloride      |                | 0.50               | 11        | 71       | CD 00 450 |          | 11 11 00   | TDA 200 0      |        |
|                                  | 1.1            |                    |           |          | CR09470   | 11-11-08 | 11-11-08   | EPA 300.0      |        |
| Specific Conductance (EC)        | 130<br>ND      |                    | μmhos/cm  | "        | CR09457   | 11-10-08 | 11-10-08   | EPA 120.1      | TTT 1  |
| Methylene Blue Active Substances |                | 0.10               | mg/L      | ,,       | CR09493   | 11-11-08 | 11-11-08   | SM5540 C       | HT-1   |
| Calcium                          | 14             | 1.0                | "         | . "      | CR09505   | 11-11-08 | 11-12-08   | 200.7/2340B    |        |
| Magnesium                        | 7.0            | 1.0                | "<br>It   | . "      | "         | u<br>u   | "          |                |        |
| Potassium                        | 1.2            | 1.0                |           |          |           | R R      | 11         |                |        |
| Sodium                           | 3.5            | 1.0                | 11        | 11       | "         | ıı       |            |                |        |
| Hardness as CaCO3                | 63             | 1.0                | 11        | ti       | - 11      | -        | ti         |                |        |
| pH                               | 7.56           | 0.01               |           | ţI       | CR09453   | 11-10-08 | 11-10-08   | SM4500-HB      | HT-F   |
| Sulfate as SO4                   | 5.0            | 0.50               | mg/L      | H        | CR09470   | 11-11-08 | 11-11-08   | EPA 300.0      |        |
| Total Dissolved Solids           | 97             | 10                 | 11        | 11       | CR09491   | 11-11-08 | 11-13-08   | SM2540C        |        |
| WM-2 DC-U/S (CRK0319-04) Water   | Sampled: 11-07 | -08 09:25          | Received: | 11-10-08 | 09:40     |          |            |                |        |
| Total Alkalinity                 | 73             | 5.0                | mg/L      | 1        | CR09496   | 11-11-08 | 11-11-08   | SM2310B        |        |
| Bicarbonate as CaCO3             | 73             | 5.0                | н         | Iŧ       | 8 .       | H-       | Ü          | le ·           |        |
| Carbonate as CaCO3               | ND             | 5.0                | Ħ         | н        | Ħ         | It       | п          | ly .           |        |
| Hydroxide as CaCO3               | ND             | 5.0                | n         | IJ       | #1        | If       | 'n         | į4             |        |
| Chloride                         | 0.79           | 0.50               | If        | ti       | CR09470   | 11-11-08 | 11-11-08   | EPA 300.0      |        |
| Specific Conductance (EC)        | . 140          | 1.0                | µmhos/cm  | ð        | CR09457   | 11-10-08 | 11-10-08   | EPA 120.1      |        |
| Methylene Blue Active Substances | ND             | 0.10               | mg/L      | 11       | CR09493   | 11-11-08 | 11-11-08   | SM5540 C       | HT-1   |
| Calcium                          | 14             | 1.0                | . It      | ti       | CR09505   | 1111-08  | 11-12-08   | 200.7/2340B    |        |
| Magnesium                        | 7.9            | 1.0                | If        | Ħ        | И         | . 0      | u          | 11             |        |
| Potassium                        | 1.1            | 1.0                |           | it       | If        | 11       | · u        | 11             |        |
| Sodium                           | 3.1            | 1.0                | u         | 11       | ıı        | p ·      | n          | 71             |        |
| Hardness as CaCO3                | 68             | 1.0                | u·        | ir       | If        | II       | 11         | ħ              |        |
| pH                               | 7.68           | 0.01               | pH Units  | ır       | CR09453   | 11-10-08 | 11-10-08   | SM4500-H B     | HT-F   |
| Sulfate as SO4                   | · ND           | 0,50               | mg/L      | 11       | CR09470   | 11-11-08 | . 11-11-08 | EPA 300.0      |        |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Jeff Huggins

CLS Work Order #: CRK0319

COC #: 94810,13

| Analyte                          | Result           | Reporting<br>Limit | Units             | Dilution          | Batch     | Prepared | Analyzed | Method      | Notes |
|----------------------------------|------------------|--------------------|-------------------|-------------------|-----------|----------|----------|-------------|-------|
| WM-2 DC-U/S (CRK0319-04) Water   | Sampled: 11-07   | -08 09:25          | Received:         | 11-10-08          | 09:40     |          |          |             |       |
| Total Dissolved Solids           | 110              | 10                 | mg/L              | 1                 | CR09491   | 11-11-08 | 11-13-08 | SM2540C     |       |
| WM-19 Pond (CRK0319-05) Water    | Sampled: 11-07-0 | )8 10:45 R         | eceived: 13       | <b>(-10-08</b> 0: | 9:40      |          |          |             |       |
| Total Alkalinity                 | 29               | 5.0                | mg/L              | 1                 | CR09496   | 11-11-08 | 11-11-08 | SM2310B     |       |
| Bicarbonate as CaCO3             | 29               | 5.0                | 11                | . 4               | ħ         | n        | *        | я           |       |
| Carbonate as CaCO3               | ND               | 5.0                | 11                | - 0               | II        | 11       | υ.       | **          |       |
| Hydroxide as CaCO3               | · ND             | 5.0                | 11                | ti                | u         | 11       | h        | 11          |       |
| Chloride                         | 0.76             | 0.50               | 11                | Ħ                 | CR09470   | 11-11-08 | 11-11-08 | EPA 300.0   |       |
| Specific Conductance (EC)        | 200              | 1.0                | μmhos/cm          | , H               | CR09457   | 11-10-08 | 11-10-08 | EPA 120.1   |       |
| Methylene Blue Active Substances | ND               | ·0.10              | mg/L .            | Ħ                 | CR09493   | 11-11-08 | 11-11-08 | SM5540 C    | HT-1  |
| Calcium                          | 23               | 1.0                | 14                |                   | CR09505   | 11-11-08 | 11-12-08 | 200.7/2340B | •     |
| Magnesium                        | 5.9              | 1.0                | 19                |                   | II.       | n        | lt*      | ¥ .         |       |
| Potassium                        | 2.7              | 1.0                | IT                | . " 19            | IF        | ft.      | ir .     | II.         |       |
| Sodium                           | 7.0              | 1.0                | ıt                | r                 | · n       | ıı       | 11       | ir -        |       |
| Hardness as CaCO3                | 82               | 1.0                | n                 | . 11              | n         | lt       | II       | tt.         |       |
| pН                               | 7.19             | 0.01               | pH Units          | ų                 | CR09453   | 11-10-08 | 11-10-08 | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | 69               | 2.5                | mg/L              | . 5               | CR09470   | 11-11-08 | 11-12-08 | EPA 300.0   |       |
| Total Dissolved Solids           | 160              | 10                 | 11                | 1                 | CR09491   | 11-11-08 | 11-13-08 | SM2540C     |       |
| WM-4 48" Culvert (CRK0319-06) W: | ater Sampled: 1  | 1-07-08 11:0       | 00 Receiv         | ed: 11-10         | -08 09:40 |          |          |             |       |
| Total Alkalinity                 | 61               | . 5.0              | mg/L              | 1                 | CR09496   | 11-11-08 | 11-11-08 | SM2310B     |       |
| Bicarbonate as CaCO3             | 61               | 5.0                | n                 | 11                | 17        | Ħ        | 11       | și și       |       |
| Carbonate as CaCO3               | ND               | 5.0                | lt                | 11                | ۳         | , и      | . 11     | 1f          |       |
| Hydroxide as CaCO3               | ND               | 5.0                | n .               |                   | 19        | W        | ŧı       | le .        |       |
| Chloride                         | 1.1              | 0.50               | 4                 | u                 | CR09470   | 11-11-08 | 11-11-08 | EPA 300.0   |       |
| Specific Conductance (EC)        | 130              | 1.0                | μ <b>m</b> hos/cm | ŗi                | CR09457   | 11-10-08 | 11-10-08 | EPA 120.1   |       |
| Methylene Blue Active Substances | ND               | 0.10               | mg/L              | 71                | CR09493   | 11-11-08 | 11-11-08 | SM5540 C    | HT-1  |
| Calcium                          | 13               | 1.0                | N                 | и.                | CR09505   | 11-11-08 | 11-12-08 | 200.7/2340B |       |
| Magnesium                        | 6.9              | 1.0                | Ħ                 | 19                |           | !!       | н        | 11          |       |
| Potassium                        | 1.2              | 1.0                | В                 | 10                |           | , If     | n        | n .         |       |
| Sodium                           | 3.6              | 1.0                | u                 | Ħ                 | Ħ         | ٠        | , n      | li .        |       |
| Hardness as CaCO3                | 60               | 1.0                | a                 | n                 | Ħ         | 11       | U        | H           |       |
| pН                               | 7.69             | 0.01               | pH Units          | . ,               | CR09453   | 11-10-08 | 11-10-08 | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | 5.0              | 0.50               | mg/L              | <sup>11</sup> .   | CR09470   | 11-11-08 | 11-11-08 | EPA 300.0   |       |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Jeff Huggins

CLS Work Order #: CRK0319

COC#: 94810,13

| Calcium         16         1.0         "         "         CR09505         11-11-08         11-12-08         2007/2340B           Magnesium         5.6         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analyte                             | Result      | Reporting<br>Limit | Units     | Dilution  | Batch       | Prepared | Analyzed | Method      | Notes  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|--------------------|-----------|-----------|-------------|----------|----------|-------------|--------|
| WM-9 Browns Cabin (CRK0319-07) Water         Sampled: 11-07-08 11:20         Received: 11-10-08 09:40           Total Alkalinity         61         5.0         mg/L         1         CR09496         11-11-08         11-11-08         SM2310B           Bicarbonate as CaCO3         ND         5.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WM-4 48" Culvert (CRK0319-06) Water | Sampled: 1  | 1-07-08 11:0       | 00 Receiv | ed: 11-10 | -08 09:40   | _        |          |             |        |
| Total Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Dissolved Solids              | 100         | 10                 | mg/L      | 1         | CR09491     | 11-11-08 | 11-13-08 | SM2540C     |        |
| Bicarbonate as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WM-9 Browns Cabin (CRK0319-07) Wat  | er Sampled  | : 11-07-08 1       | 1:20 Rec  | eived: 11 | -10-08 09:4 | 0        |          | •           |        |
| Second case CacCo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Alkalinity                    | 61          | 5.0                | mg/L      | 1         | CR09496     | 11-11-08 | 11-11-08 | SM2310B     |        |
| Hydroxide as CaCO3         ND         5.0         """" CR09470         11-11-08         I1-11-08         EPA 300.0           Chloride         1.1         0.50         """ CR09470         11-11-08         I1-11-08         EPA 300.0           Specific Conductance (EC)         140         1.0         µmhos/om         "CR09437         11-11-08         I1-11-08         EPA 120.1           Methylene Blue Active Substances         ND         0.10         mg/L         "CR09437         11-11-08         11-11-08         SM5540 C           Calcium         16         1.0         """ CR09493         11-11-08         11-11-08         SM5540 C           Potassium         5.6         1.0         """ "" CR09505         11-11-08         11-12-08         200.7/2340B           Magnesium         4.7         1.0         """ "" "" "" "" "" "" "" "" "" "" "" ""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bicarbonate as CaCO3                | 61          | 5.0                | H         | 11        | H .         | Ü        | 11       | 11          |        |
| Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S   | Carbonate as CaCO3                  | ND          | 5.0                | H         | 11        | It          | Ü        | ď        | e           |        |
| Specific Conductance (EC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hydroxide as CaCO3                  | ND          | 5.0                | 11        | IL        | II          | 0        | . 11     | lt .        |        |
| Methylene Blue Active Substances         ND         0.10 mg/L         " CR09493 11-11-08         11-11-08         SM5540 C           Calcium         16         1.0 " " CR09505         11-11-08         11-12-08         200.7/2340B           Magnesium         5.6         1.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chloride                            | 1.1         | 0.50               | , M       | 11        | CR09470     | 11-11-08 | 11-11-08 | EPA 300.0   |        |
| Calcium         16         1.0         "         "         CR09505         11-11-08         11-12-08         200.7/2340B           Magnesium         5.6         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Specific Conductance (EC)           | 140         | 1.0                | μmhos/cm  | i,        | CR09457     | 11-10-08 | 11-10-08 | EPA 120.1   |        |
| Magnesium         5.6         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Methylene Blue Active Substances    | ND          | 0.10               | mg/L      | II        | CR09493     | 11-11-08 | 11-11-08 | SM5540 C    | HT-1   |
| Potassium   2.0   1.0   "   "   "   "   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calcium                             | 16          | 1.0                | it        | IJ        | CR09505     | 11-11-08 | 11-12-08 | 200.7/2340B |        |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Magnesium                           | 5.6         | 1.0                | n         | 11        | 0           | 11       | It       | 0           | •      |
| Hardness as CaCO3 63 1.0 " " CR09453 11-10-08 I1-10-08 SM4500-H B  Sulfate as SO4 12 0.50 mg/L " CR09470 11-11-08 I1-11-08 EPA 300.0  Total Dissolved Solids 110 10 " " CR09491 11-11-08 I1-11-08 SM2540C  WM-8 LGC Below DC (CRK0319-08) Water Sampled: 11-07-08 11:35 Received: 11-10-08 09:40  Total Alkalinity 62 5.0 mg/L 1 CR09496 11-11-08 11-11-08 SM2310B  Bicarbonate as CaCO3 62 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Potassium                           | 2.0         | 1.0                | n         | μ         | e e         | 11       | H .      | . 0         |        |
| pH 7.76 0.01 pH Units " CR09453 11-10-08 SM4500-H B  Sulfate as SO4 12 0.50 mg/L " CR09470 11-11-08 11-10-08 SM4500-H B  Sulfate as SO4 110 10 " " CR09491 11-11-08 11-10-08 SM2540C  WM-8 LGC Below DC (CRK0319-08) Water Sampled: 11-07-08 11:35 Received: 11-10-08 09:40  Total Alkalinity 62 5.0 mg/L 1 CR09496 11-11-08 11-10-08 SM2310B  Bicarbonate as CaCO3 62 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sodium                              | 4.7         | 1.0                | 11        | 19        | 11          | 11       | 10       | 13          | •      |
| Sulfate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hardness as CaCO3                   | 63          | 1.0                | n         | 19        | ,           | 1(       | IÌ       | 11          |        |
| Sulfate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                   | 7.76        | 0.01               | pH Units  | н         | CR09453     | 11-10-08 | 11-10-08 | SM4500-H B  | HT-F   |
| Total Dissolved Solids  110  10  " " CR09491 11-11-08 11-3-08 SM2540C  WM-8 LGC Below DC (CRK0319-08) Water Sampled: 11-07-08 11:35 Received: 11-10-08 09:40  Total Alkalinity  62  5.0 mg/L  1 CR09496 11-11-08 11-11-08 SM2310B  Bicarbonate as CaCO3  62  5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sulfate as SO4                      | 12          | 0.50               | , -       | n ,       | CR09470     | 11-11-08 | 11-11-08 | EPA 300.0   |        |
| Total Alkalinity         62         5.0 mg/L         1 CR09496         11-11-08         11-11-08         SM2310B           Bicarbonate as CaCO3         62         5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Dissolved Solids              | •           |                    | -         | 11        | CR09491     | 11-11-08 | 11-13-08 | SM2540C     |        |
| Bicarbonate as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WM-8 LGC Below DC (CRK0319-08) W    | ater Sample | d: 11-07-08        | 11:35 Re  | ceived: 1 | 1-10-08 09: | :40      |          |             |        |
| Carbonate as CaCO3 ND 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Alkalinity                    | 62          | 5.0                | mg/L      | 1         | CR09496     | 11-11-08 | 11-11-08 | SM2310B     |        |
| Carbonate as CaCO3       ND       5.0       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       " <td>Bicarbonate as CaCO3</td> <td>62</td> <td>5.0</td> <td>11</td> <td>If</td> <td>н</td> <td>D</td> <td>р</td> <td>#</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bicarbonate as CaCO3                | 62          | 5.0                | 11        | If        | н           | D        | р        | #           |        |
| Algorithms as CaCO3       IAD       3.0         Chloride       1.1       0.50       " CR09470       11-11-08       11-11-08       EPA 300.0         Specific Conductance (EC)       150       1.0 μmhos/cm       " CR09457       11-10-08       11-10-08       EPA 120.1         Methylene Blue Active Substances       ND       0.10 mg/L       " CR09493       11-11-08       11-11-08       SM5540 C         Calcium       15       1.0 " " CR09505       11-11-08       11-12-08       200.7/2340B         Magnesium       5.8       1.0 " " " " " " " " "       " " " "         Potassium       2.2       1.0 " " " " " " " " " " "         Sodium       4.5       1.0 " " " " " " " " " " " " "         Hardness as CaCO3       62       1.0 " " " " " " " " " " " " " " " "         pH       7.67       0.01 pH Units       " CR09453       11-10-08       11-10-08       SM4500-H B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbonate as CaCO3                  | ND          | 5.0                | , It      | 11        | . #         | ()       | H        | *1          |        |
| Chloride       1.1       0.50       " CR09470       11-11-08       11-11-08       EPA 300.0         Specific Conductance (EC)       150       1.0 μmhos/cm       " CR09457       11-10-08       11-10-08       EPA 120.1         Methylene Blue Active Substances       ND       0.10 mg/L       " CR09493       11-11-08       11-11-08       SM5540 C         Calcium       15       1.0 " " CR09505       11-11-08       11-12-08       200.7/2340B         Magnesium       5.8       1.0 " " " " " " " " " " "       " " " " " "         Potassium       2.2       1.0 " " " " " " " " " " " " " " "         Sodium       4.5       1.0 " " " " " " " " " " " " " " " " "         Hardness as CaCO3       62       1.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hydroxide as CaCO3                  | ND          | 5.0                | 11        | It        | It          | IJ       | II       | . 11        |        |
| Methylene Blue Active Substances         ND         0.10 mg/L         " CR09493 11-11-08 11-11-08 SM5540 C           Calcium         15         1.0 " " CR09505 11-11-08 11-12-08 200.7/2340B           Magnesium         5.8         1.0 " " " " " " " " "           Potassium         2.2         1.0 " " " " " " " " " "           Sodium         4.5         1.0 " " " " " " " " " " " "           Hardness as CaCO3         62         1.0 " " " " " " " " " " " " "           pH         7.67         0.01 pH Units         CR09453         11-10-08         SM4500-H B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                   | 1.1         | 0.50               | 11        | U         | CR09470     | 11-11-08 | 11-11-08 | EPA 300.0   |        |
| Methylene Blue Active Substances         ND         0.10 mg/L         " CR09493 11-11-08 11-11-08 SM5540 C           Calcium         15         1.0 " " CR09505 11-11-08 11-12-08 200.7/2340B           Magnesium         5.8         1.0 " " " " " " " " "           Potassium         2.2         1.0 " " " " " " " " " " "           Sodium         4.5         1.0 " " " " " " " " " " " " "           Hardness as CaCO3         62         1.0 " " " " " " " " " " " " " "           pH         7.67         0.01 pH Units         CR09453 11-10-08 11-10-08 SM4500-H B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Specific Conductance (EC)           | 150         | 1.0                | μmhos/cm  | ŧı        | CR09457     | 11-10-08 | 11-10-08 | EPA 120.1   |        |
| Calcium         15         1.0         " CR09505         11-11-08         11-12-08         200.7/2340B           Magnesium         5.8         1.0         " " " " " " " " "         " " " " " " "           Potassium         2.2         1.0         " " " " " " " " " " " "         " " " " " " " " " " " " " " "           Sodium         4.5         1.0         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                   | ND          | 0.10               | mg/L      | ti        | CR09493     | 11-11-08 | 11-11-08 | SM5540 C    | HT-    |
| Magnesium         5.8         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · ·                                 | 15          | 1.0                | n         | . #1      | CR09505     | 11-11-08 | 11-12-08 | 200.7/2340B |        |
| Potassium  2.2 1.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |             | 1.0                | 11        | н         |             | R        | ti       | 4           |        |
| Sodium         4.5         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                   |             |                    | 11        | и.        | ll.         | R        | ţI       | Ħ           |        |
| Hardness as CaCO3 62 1.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |             |                    | H         | It        | D           | п        | Ħ        | II          |        |
| pH 7.67 0.01 pH Units " CR09453 11-10-08 11-10-08 SM4500-H B .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |             |                    | 11        | Į.        | u .         | 11       | Ħ        | it          | 4      |
| par viol par, once par, once it is to be in the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of th |                                     |             |                    | nH Unite  | 11        | CR09453     | 11-10-08 | 11-10-08 | SM4500-H B  | . HT-1 |
| Sulfata as SOM 17 0.50 mg/L 2 CD00470 11-11-02 11-11-02 EPA 10111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sulfate as SO4                      | 12          | 0.50               | mg/L      | 31        | CR09470     | 11-11-08 | 11-10-08 | EPA 300.0   |        |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Jeff Huggins

CLS Work Order #: CRK0319

COC #: 94810,13

| Analyte                           | Result      | Reporting<br>Limit | Units           | Dilution            | Batch               | Prepared          | Analyzed | Method      | Notes |
|-----------------------------------|-------------|--------------------|-----------------|---------------------|---------------------|-------------------|----------|-------------|-------|
| WM-8 LGC Below DC (CRK0319-08) Wa | ater Sample | d: 11-07-08        | 11:35 Re        | ceived: 1           | 1-10-08 09:         | 40                |          |             |       |
| Total Dissolved Solids            | 110         | 10                 | mg/L            | 1                   | CR09491             | 11-11-08          | 11-13-08 | SM2540C     |       |
| WM-7 LGC Above DC (CRK0319-09) W  | ater Sample | ed: 11-07-08       | 11:45 Re        | ceived: 1           | 1-10-08 <u>09</u> : | :40               |          |             |       |
| Total Alkalinity                  | 62          | 5.0                | mg/L            | . 1                 | CR09496             | 11-11-08          | 11-11-08 | SM2310B     |       |
| Bicarbonate as CaCO3              | 62          | 5.0                | P .             | п                   | 0 1                 | Ħ                 | 14       | 11          |       |
| Carbonate as CaCO3                | ND          | 5.0                | n               |                     | 11                  | . 0               | 11       | ŧŧ          |       |
| Hydroxide as CaCO3                | ND          | 5.0                | U               | q                   | 11                  | Ħ                 | If       | 17          |       |
| Chloride                          | 1.1         | 0.50               | II.             | . #                 | CR09470             | 11-11-08          | 11-11-08 | EPA 300.0   |       |
| Specific Conductance (EC)         | 140         | 1.0                | μmhos/cm        | u                   | CR09457             | 11-10-08          | 11-10-08 | EPA 120.1   |       |
| Methylene Blue Active Substances  | ND          | 0.10               | mg/L            | 12                  | CR09493             | 11-11-08          | 11-11-08 | SM5540 C    | HT-1  |
| Calcium                           | 16          | 1.0                | 11              | **                  | CR09505             | 11-11-08          | 11-12-08 | 200.7/2340B |       |
| Magnesium                         | 5.5         | 1.0                | \$1             | IJ                  | U                   | 11                | ħ        | , ii        |       |
| Potassium                         | 2.0         | 1.0                | 11 -            | n                   | "                   | If                | **       | ŋ           |       |
| Sodium                            | 4.6         | 1.0                | n .             | , "                 | n .                 | , u,              | . 11     | . B         |       |
| Hardness as CaCO3                 | 63          | 1.0                | )t <sup>*</sup> | ų.                  | tı                  | R                 | 11       | 3)          |       |
| pH                                | 7.60        | 0.01               | pH Units        | u                   | CR09453             | 11-10-08          | 11-10-08 | SM4500-H B  | HT-I  |
| Sulfate as SO4                    | 12          | 0.50               | mg/L            | - <sub>11</sub> •   | CR09470             | 11-11-08          | 11-11-08 | EPA 300.0   |       |
| Total Dissolved Solids            | 110         | 10                 | 14              | H                   | CR09491             | 11-11-08          | 11-13-08 | SM2540C     |       |
| WM-6 USFS Dam (CRK0319-10) Water  | Sampled: 11 | 1-07-08 11:5       | 0 Receive       | ed: 11 <b>-10</b> - | -08 09:40           |                   |          |             |       |
| Total Alkalinity                  | 69          | 5.0                | mg/L            | 1                   | CR09496             | 11-11-08          | 11-11-08 | SM2310B     | -     |
| Bicarbonate as CaCO3              | 69          | 5.0                | 11              | 0                   | n                   | " ,               | u        | 11          |       |
| Carbonate as CaCO3                | ND          | 5.0                | †I              | \$I                 | 0                   | P                 | Ħ        | n .         |       |
| Hydroxide as CaCO3                | ND          | 5.0                | ti              | 11                  | ¢ı                  | 17                | iF .     | . 11        |       |
| Chloride                          | 1.0         | 0.50               | n               | И                   | CR09470             | 11-11-08          | 11-11-08 | EPA 300.0   |       |
| Specific Conductance (EC)         | 160         | 1.0                | μmhos/cm        | В                   | CR09457             | 11-10-08          | 11-10-08 | EPA 120.1   |       |
| Methylene Blue Active Substances  | ND          | 0.10               | mg/L            | В                   | CR09493             | 11-11 <b>-</b> 08 | 11-11-08 | SM5540 C    | HT-   |
| Calcium                           | 17          | 1.0                | 0               | tl                  | CR09505             | 11-11-08          | 11-12-08 | 200.7/2340B |       |
| Magnesium                         | 6.5         | 1.0                | ti              | 11                  | il ·                | )I                | · . 11   | ıt          |       |
| Potassium                         | 2.4         | 1.0                | et .            | 11                  | ıt                  | 11                | 11       | n           |       |
| Sodium                            | 4.6         | 1.0                | h               | п                   | IS                  | ıı                | ii ii    | Ħ ,         | 4     |
| Hardness as CaCO3                 | 68          | 1.0                | 17              | n                   | 0                   | u                 | , #f     | 11          |       |
| pH                                | 7.62        | 0.01               | pH Units        | 1)                  | CR09453             | 11-10-08          | 11-10-08 | SM4500-H B  | НТ-   |
| Sulfate as SO4                    | 13          | 0.50               | •               | !!                  | CR09470             | 11-11-08          | 11-11-08 | EPA 300.0   |       |
| •                                 | •           |                    | _               |                     |                     |                   |          |             |       |

11-21-08 08:03

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180 Project Manager: Jeff Huggins

CLS Work Order #: CRK0319

COC #: 94810,13

|                                  |                       | ~ .                |            |          |           | -        |          |              | -     |
|----------------------------------|-----------------------|--------------------|------------|----------|-----------|----------|----------|--------------|-------|
| Analyte                          | Result                | Reporting<br>Limit | Units      | Dilution | Batch     | Prepared | Analyzed | Method       | Notes |
| WM-6 USFS Dam (CRK0319-10) V     | Vater Sampled: 11-0   | 7-08 11:50         | Receive    | d: 11-10 | -08 09:40 |          |          |              |       |
| Total Dissolved Solids           | 100                   | 10                 | mg/L       | 1        | CR09491   | 11-11-08 | 11-13-08 | SM2540C      |       |
| WM-7B (CRK0319-11) Water Sa      | mpled: 11-07-08 12:05 | Receive            | d: 11-10-0 | 8 09:40  |           |          |          |              |       |
| Total Alkalinity                 | 63                    | 5.0                | mg/L       | , 1      | CR09496   | 11-11-08 | 11-11-08 | SM2310B      |       |
| Bicarbonate as CaCO3             | 63                    | 5.0                | le .       | If       | Ħ         | . n      | lt       | <b>4</b> 1 . |       |
| Carbonate as CaCO3               | ND                    | 5.0                | 17         | lf .     | U.        | 11       | H        | u            |       |
| Hydroxide as CaCO3               | ND                    | 5.0                | If         | If       | H         | 11       | , to     | ti           |       |
| Chloride                         | 1.2                   | 0.50               | н          | P        | CR09470   | 11-11-08 | 11-11-08 | EPA 300.0    |       |
| Specific Conductance (EC)        | 140                   | 1.0                | μmhos/cm   | lt.      | CR09457   | 11-10-08 | 11-10-08 | EPA 120.1    |       |
| Methylene Blue Active Substances | ND                    | 0.10               | mg/L       | 11       | CR09493   | 11-11-08 | 11-11-08 | SM5540 C     | HT-1  |
| Calcium                          | 13                    | 1.0                | и ,        | it       | CR09505   | 11-11-08 | 11-12-08 | 200.7/2340B  |       |
| Magnesium                        | 6.4                   | 1.0                | н          | 11       | *1        | lt .     | 11       | fr           | . •   |
| Potassium                        | 1.6                   | 1.0                | u          | 11       | и .       | ir .     | , p      | tı           |       |
| Sodium                           | 4.0                   | 1.0                | 11         | 11       | te de     | ·        | в        | u            |       |
| Hardness as CaCO3                | 58                    | 1.0                | tt         | 11       | 11        | B        | 11       | 11           |       |
| Нq                               | 7.93                  | 0.01               | pH Units   | Ħ        | CR09453   | 11-10-08 | 11-10-08 | SM4500-H B   | HT-1  |
| Sulfate as SO4                   | 6.1                   | 0.50               | mg/L       | Ħ        | CR09470   | 11-11-08 | 11-11-08 | EPA 300.0    |       |
| Total Dissolved Solids           | 97                    | 10                 | и          | *1       | CR09491   | 11-11-08 | 11-13-08 | SM2540C      |       |
| WM-7C (CRK0319-12) Water Sa      | mpled: 11-07-08 12:10 | Receive            | d: 11-10-0 | 8 09:40  | *         |          |          |              |       |
| Total Alkalinity                 | 63                    | 5.0                | mg/L       | 1        | CR09496   | 11-11-08 | 11-11-08 | SM2310B      |       |
| Bicarbonate as CaCO3             | 63                    | 5.0                | 'n         | ij       | a         | H,       | If       | n .          |       |
| Carbonate as CaCO3               | ND                    | 5,0                | n .        | и        | Ħ         | #        | tl .     | ß            |       |
| Hydroxide as CaCO3               | ND                    | 5.0                | Ħ          | . "      | в         | 111      |          | u            |       |
| Chloride                         | 1.0                   | 0.50               | H          | ti .     | CR09470   | 11-11-08 | 11-11-08 | EPA 300.0    |       |
| Specific Conductance (EC)        | 140                   | 1.0                | umhos/em   | н        | CR09457   | 11-10-08 | 11-10-08 | EPA 120.1    |       |
| Methylene Blue Active Substances | ND                    | 0.10               | mg/L       | 61       | CR09493   | 11-11-08 | 11-11-08 | SM5540 C     | HT-   |
| Calcium                          | 18                    | 1.0                | 11         | - 11     | CR09658   | 11-17-08 | 11-18-08 | 200.7/2340B  |       |
| Magnesium                        | 5.1                   | 1.0                | 11         | 11       | ti .      | ęi       | . 10     | Ħ            |       |
| Potassium                        | 1.9                   | 1.0                | 11         | 11       | #1        | · ·      | 17       | . 11         | •     |
| Sodium                           | 4.7                   | 1.0                | n          | u        | и.        | lŧ.      | 11       | li           | •     |
| Hardness as CaCO3                | 65                    | 1.0                | **         | 11       | lt.       | 19       | 11       | p            |       |
| pH                               | 7.31                  | 0.01               | pH Units   | tı       | CR09453   | 11-10-08 | 11-10-08 | SM4500-H B   | HT-   |
| Sulfate as SO4                   | 9.1                   | 0.50               | mg/L       | \$1      | CR09470   | 11-11-08 | 11-11-08 | EPA 300.0    |       |
| Dullate as DOT                   | 7.1                   | 0.50               | III P      |          | CAMPTIO   | 11-11-00 | 11-11-00 |              |       |

11-21-08 08:03

CRWOCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Jeff Huggins

CLS Work Order #: CRK0319

COC #: 94810,13

| Analyte                          | Result                | Reporting<br>Limit | Units       | Dilution   | Batch   | Prepared | Analyzed          | Method         | Notes  |
|----------------------------------|-----------------------|--------------------|-------------|------------|---------|----------|-------------------|----------------|--------|
| WM-7C (CRK0319-12) Water         | Sampled: 11-07-08 12: | 10 Receive         | ed: 11-10-0 | 08 09:40   |         |          |                   |                |        |
| Total Dissolved Solids           | 110                   | 10                 | mg/L        | 1          | CR09491 | 11-11-08 | 11-13-08          | SM2540C        |        |
| WM-7A (CRK0319-13) Water         | Sampled: 11-07-08 12: | 30. Receive        | ed: 11-10-( | 8 09:40    |         |          |                   | ·              |        |
| Total Alkalinity                 | 65                    | 5.0                | mg/L        | 1          | CR09496 | 11-11-08 | 11-11-08          | SM2310B        | · ·    |
| Bicarbonate as CaCO3             | 65                    | 5.0                | \$ <b>¢</b> | Ħ          | IF      | u        | <b>11</b>         | it s           |        |
| Carbonate as CaCO3               | ND                    | 5.0                | H           | <b>†1</b>  | 11      | 11       | н                 | u u            |        |
| Hydroxide as CaCO3               | ND                    | 5.0                | IF          | n          | 11      | 11       | H .               | #              |        |
| Chloride                         | 1.1                   | 0.50               | i ir        | *1         | CR09470 | 11-11-08 | 11-11-08          | EPA 300.0      |        |
| Specific Conductance (EC)        | 140                   | 1.0                | μmhos/cm    | . H        | CR09457 | 11-10-08 | 11-10-08          | EPA 120.1      |        |
| Methylene Blue Active Substances | s ND                  | 0.10               | mg/L        | ţi         | CR09493 | 11-11-08 | 11-11 <b>-</b> 08 | SM5540 C       | HT-I   |
| Calcium                          | 14                    | 1.0                | 11          | · •        | CR09658 | 11-17-08 | 11-18-08          | 200.7/2340B    |        |
| Magnesium                        | 6.6                   | 1.0                | 11          | †I         | n       | 11       | 11                | 9              |        |
| Potassium                        | 1.3                   | 1.0                | , If        | ч          | 11 .    | n        | 11                | 11             |        |
| Sodium                           | 3.9                   | 1.0                | . It        | 11         |         | ti       | n                 | 11             |        |
| Hardness as CaCO3                | 62                    | 1.0                | 11          | Ħ          | 17      | ħ        | tr                | n              |        |
| рН                               | 7,90                  | 0.01               | pH Units    | R          | CR09453 | 11-10-08 | 11-10-08          | SM4500-H B     | HT-I   |
| Sulfate as SO4                   | 5.8                   | 0,50               | mg/L        | ır         | CR09470 | 11-11-08 | 11-11-08          | EPA 300.0      |        |
| Total Dissolved Solids           | 99                    | 10                 | 11          | If         | CR09491 | 11-11-08 | 11-13-08          | SM2540C        |        |
| WM-12 MBWC (CRK0319-14)          | Water Sampled: 11-0   | 7-08 13:40         | Received    | : 11-10-08 | 8 09:40 |          |                   |                |        |
| Total Alkalinity                 | 13                    | 5.0                | mg/L        | 1          | CR09496 | 11-11-08 | 11-11-08          | SM2310B        |        |
| Bicarbonate as CaCO3             | 13                    | 5.0                | et          | . 11       | 11      | n        | 'n                | n              |        |
| Carbonate as CaCO3               | ND                    | 5.0                | Ħ           | н          | 41      | li       | н                 | Ħ              |        |
| Hydroxide as CaCO3               | ND                    | 5.0                | lf.         | и .        | Ħ       | u        | н                 | n .            | -      |
| Chloride                         | 0.87                  | . 0.50             | н           | N          | CR09470 | 11-11-08 | 11-11-08          | EPA 300.0      |        |
| Specific Conductance (EC)        | 32                    | 1.0                | μmhos/cm    | e.         | CR09457 | 11-10-08 | 11-10-08          | EPA 120.1      |        |
| Methylene Blue Active Substance  | s ND                  | 0.10               | mg/L        | 11         | CR09493 | 11-11-08 | 11-11-08          | SM5540 C       | HT-    |
| Calcium                          | 2.8                   | 1.0                | . 41        | n          | CR09658 | 11-17-08 | 11-18-08          | 200.7/2340B    |        |
| Magnesium                        | 1.2                   | 1.0                | *1          |            | И       | ji       | ĸ                 | ıt             |        |
| Potassium                        | . ND                  | 1.0                | 11.         | в          | H       | μ        | li .              | I <del>)</del> |        |
| Sodium                           | 1.3                   | 1.0                | 11          | н          | IJ      | lr .     | u                 | P              |        |
| Hardness as CaCO3                | 12                    | 1.0                | u           | . "        | n       | IP .     | 11                | IŁ             | -      |
|                                  |                       | 2.0                |             |            |         |          |                   | 0) 64600 II D  | TITE Y |
| рH                               | <b>6.</b> 40          | 0.01               | pH Units    | ę)         | CR09453 | 11-10-08 | 11-10-08          | SM4500-H B     | HT-1   |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project Manager: Jeff Huggins

Project: Walker Mine

Project Number: PCA 13180

CLS Work Order #: CRK0319

COC #: 94810,13

### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                            | Result         | Reporting<br>Limit | Units     | Dilution  | Batch         | Prepared | Analyzed | Method      | Notes |
|------------------------------------|----------------|--------------------|-----------|-----------|---------------|----------|----------|-------------|-------|
| WM-12 MBWC (CRK0319-14) Water      | Sampled: 11-0  | 7-08 13:40         | Received: | 11-10-08  | <b>09:4</b> 0 |          |          | _           |       |
| Total Dissolved Solids             | 19             | 10                 | mg/L      | 1         | CR09491       | 11-11-08 | 11-13-08 | SM2540C     | _     |
| WM-13 Nye Creek (CRK0319-15) Water | Sampled: 11    | -07-08, 13:5       | 0 Receive | ed: 11-10 | -08 09:40     |          |          |             |       |
| Total Alkalinity                   | 60             | 5.0                | mg/L      | 1         | CR09496       | 11-11-08 | 11-11-08 | SM2310B     |       |
| Bicarbonate as CaCO3               | 60             | 5.0                | 19        | 19        | . 11          | If       | 11       | 11          |       |
| Carbonate as CaCO3                 | ND             | 5.0                | . 16      | 11        | ij            | p ·      | 11       | 11          |       |
| Hydroxide as CaCO3                 | ND             | 5.0                | н .       | IF .      | H             | μ .      | 11       | Н .         |       |
| Chloride                           | 1.2            | 0.50               | I†        | . 14      | CR09470       | 11-11-08 | 11-11-08 | EPA 300.0   | •     |
| Specific Conductance (EC)          | 120            | 1.0                | μmhos/cm  | Iţ        | CR09457       | 11-10-08 | 11-10-08 | EPA 120.1   | •     |
| Methylene Blue Active Substances   | ND             | 0.10               | mg/L      | ıt .      | CR09493       | 11-11-08 | 11-11-08 | SM5540 C    | HT-1  |
| Calcium                            | , 13           | 1.0                | It        | Iţ        | CR09658       | 11-17-08 | 11-18-08 | 200.7/2340B |       |
| Magnesium                          | 6.1            | 1.0                | If        | π         | . 11          | ı)       | 11       | II.         |       |
| Potassium                          | ND             | 1.0                | It        | II.       | п             | 19       | H        | ıi.         |       |
| Sodium                             | 2.9            | 1.0                | II        | В         | u             | a ·      | II       | 9           |       |
| Hardness as CaCO3                  | 59             | 1.0                | , If      | ij        | Ħ             | ıt       | н        | *1          |       |
| рĦ                                 | 6.78           | 0.01               | pH Units  | 0         | CR09453       | 11-10-08 | 11-10-08 | SM4500-H B  | HT-F  |
| Sulfate as SO4                     | ND             | 0.50               | mg/L      | û         | CR09470       | 11-11-08 | 11-11-08 | EPA 300.0   |       |
| Total Dissolved Solids             | 78             | 10                 | n         | . 0       | CR09491       | 11-11-08 | 11-13-08 | SM2540C     |       |
| WM-17 NBWC (CRK0319-16) Water      | Sampled: 11-07 | -08 14:00          | Received: | 11-10-08  | 09:40         |          |          | ·           |       |
| Total Alkalinity                   |                | 5.0                | mg/L      | 1 .       | CR09496       | 11-11-08 | 11-11-08 | SM2310B     |       |
| Bicarbonate as CaCO3               | 79             | 5.0                | μ         | . н       | 19            | н        | tl .     | 11          |       |
| Carbonate as CaCO3                 | ND .           | 5.0                | It        | If        | 10            | li       | u        | 11          |       |
| Hydroxide as CaCO3                 | ND             | 5:0                | lt        | H         | H             | Jt       | ø        | a .         |       |
| Chloride                           | 0.73           | 0.50               | 14        | It        | CR09470       | 11-11-08 | 11-11-08 | EPA 300.0   |       |
| Specific Conductance (EC)          | 150            | 1.0                | μmhos/cm  | j†        | CR09457       | 11-10-08 | 11-10-08 | EPA 120.1   |       |
| Methylene Blue Active Substances   | ND             | 0.10               | mg/L      | ıt        | CR09493       | 11-11-08 | 11-11-08 | SM5540 C    | HT-1  |
| Calcium                            | . 18           | 1.0                | 11        | н         | CR09658       | 11-17-08 | 11-18-08 | 200.7/2340B |       |
| Magnesium                          | 7 <b>.</b> 5   | 1.0                | ţi        | , "       | Ħ             | 0        | Iŧ       | ıı ,        |       |
| Potassium                          | 1.8            | 1.0                | ti        | . 11      | tr            | а        | 11       | II.         | ٠     |
| Sodium                             | 3.7            | 1.0                | 11        | *1        | B             | **       | n        | n           |       |
| Hardness as CaCO3                  | 76             | 1.0                | 11        | 11        | lı .          | ft       | 11       | η,          |       |
| рН                                 | 7.92           | 0.01               | pH Units  | 11        | CR09453       | 11-10-08 | 11-10-08 | SM4500-H B  | HT-F  |
| Sulfate as SO4                     | 0.62           | 0.50               | mg/L      | н.        | CR09470       | 11-11-08 |          | EPA 300.0   |       |

CA DOHS ELAP Accreditation/Registration Number 1233

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Jeff Huggins

CLS Work Order#: CRK0319

COC#: 94810,13

| Analyte                       | Result         | Reporting<br>Limit | Units    | Dilution   | Batch           | Prepared | Analyzed | Method  | Notes |
|-------------------------------|----------------|--------------------|----------|------------|-----------------|----------|----------|---------|-------|
| WM-17 NBWC (CRK0319-16) Water | Sampled: 11-07 | 08 14:00           | Received | : 11-10-08 | 09:40           | •        |          |         | 6.2   |
| Total Dissolved Solids        | 110            | 10,                | mg/L     | 1          | <b>C</b> R09491 | 11-11-08 | 11-13-08 | SM2540C |       |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180 Project Manager: Jeff Huggins CLS Work Order #: CRK0319

COC#: 94810,13

#### Metals by EPA 200 Series Methods

|                                |                  |                    | •              |                    |          |          |           |           |       |
|--------------------------------|------------------|--------------------|----------------|--------------------|----------|----------|-----------|-----------|-------|
| Analyte                        | Result           | Reporting<br>Limit | Units          | Dilution           | Batch    | Prepared | Analyzed  | Method    | Notes |
| WM-1 Portal (CRK0319-01) Water | Sampled: 11-07-0 | 8 09:15 Re         | ccived: 1      | 1-10-08 0          | 9:40     |          | <u></u> _ |           |       |
| Aluminum                       | ND               | 20                 | . μg/L         | 1 ·                | .CR09497 | 11-11-08 | 11-12-08  | EPA 200.8 | QC-2H |
| Arsenic                        | . 10             | 2.0                | π              | łi                 |          | 11       | 10        | . 4       |       |
| Copper                         | 97               | 1.0                | R              | 41                 | It       | 11       | 15        | • п       |       |
| iron                           | ND               | 50                 | 14             | II                 | n,       | n        | 97        |           | QC-2I |
| Zinc                           | 23               | 2.0                | n .            | lı .               | Ir       | 11       | IJ        | II        |       |
| Cadmium                        | ND               | 0.50               | 10             | п                  |          | n        | n         | II        |       |
| WM-5 LGC/U/S (CRK0319-02) Wate | er Sampled: 11-0 | 7-08 08:40         | Receive        | d: <b>11-10-</b> 0 | 8 09:40  |          |           |           | •     |
| Aluminum                       | 1000             | : 200              | μg/L           | 10                 | CR09497  | 11-11-08 | 11-12-08  | EPA 200.8 |       |
| Arsenic                        | ND               | . 2.0              | l1             | 1                  | П        | n-       | ıt        | · II      |       |
| Copper                         | ND               | 1.0                | n              | 11                 | п .      | 10       | I†        | lt.       |       |
| Iron                           | 990              | 500                | I <del>!</del> | 10                 | It       | И        | 16        | If        |       |
| Zinc                           | 3.0              | 2.0                | ır             | I                  | 14,      | II.      | 11        | lt .      |       |
| Cadmium                        | ND               | 0.50               | lt .           | ŧI                 | , н      | Iţ       | li        | 11        |       |
| WM-3 DC-D/S (CRK0319-03) Water | Sampled: 11-07   | -08 08:53 F        | Received:      | 11-10-08           | 09:40    |          |           |           |       |
| Aluminum                       | . 190            | 100                | μg/L           | 5                  | CR09497  | 11-11-08 | 11-12-08  | EPA 200.8 |       |
| Arsenic                        | ND               | 2.0                | n              | 1                  |          | It       | ti        | ı,        |       |
| Copper                         | 71               | 1.0                | . 11           | H                  | 11       | , it     | . 11      | p         |       |
| fron '                         | 500              | 250                | 11             | 5                  | 11       | и .      | - 11      | *         |       |
| Zinc                           | 9.3              | 2.0                | . 11           | 1                  | 11       |          | . #       | 11        |       |
| Cadmium                        | ND               | 0.50               | n .            | Ħ                  | 11       | 11       | 11        | **        |       |
| WM-2 DC-U/S (CRK0319-04) Water | Sampled: 11-07   | -08 09:25 I        | Received:      | 11-10-08           | 09:40    |          |           |           | •     |
| Aluminum                       | ND               | 20                 | μg/L           | 1                  | CR09497  | 11-11-08 | 11-12-08  | EPA 200.8 | QC-2F |
| Arsenic .                      | · ND             | 2.0                | It.            | 11                 | n        | 19       | н .       | 11        |       |
| Copper                         | . ND             | 1.0                | n              | 11                 | Ħ        | 19       | и .       | И         |       |
| iron                           | ND               | 50                 | n              | . н                | 11       | 19       | li        | II        | QC-2F |
| Zinc                           | ND               | 2.0                | . 11           | H                  | 11       | п        | u,        | IF        |       |
| Cadmium                        | ND               | 0.50               | H              | 11                 | If       | u        | и         | It        |       |
| WM-19 Pond (CRK0319-05) Water  | Sampled: 11-07-0 | 8 10:45 R          | eceived: 1     | 11-10-08 0         | 9:40     | · .      | ·         | ·         |       |
| Aluminum                       | 280              | 200                | μg/L           | 10                 | CR09497  | 11-11-08 | 11-12-08  | EPA 200.8 |       |
| Arsenic                        | ND               | 2.0                | 11             | 1                  | и        | B        | It        | 11        |       |
| Copper                         | 1400             | 10                 | n              | 10                 | 17       | п        | i+        | Ħ         |       |
| Iron                           | <b>540</b> ·     | 500                | 11             | B                  | u        | ıl       | H:        | 11        |       |
|                                |                  |                    |                |                    |          |          |           |           |       |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180

Project Manager: Jeff Huggins

CLS Work Order#: CRK0319

COC#: 94810,13

### Metals by EPA 200 Series Methods

| Analyte                                | Result      | Reporting<br>Limit | Units    | Dilution    | Batch              | Prepared | Analyzed        | Method    | Notes    |
|----------------------------------------|-------------|--------------------|----------|-------------|--------------------|----------|-----------------|-----------|----------|
| WM-19 Pond (CRK0319-05) Water Sample   | d: 11-07-08 | 10:45 Rec          | eived: 1 | 11-10-08 0  | 9:40               |          |                 | •         |          |
| Zinc                                   | 98          | 2.0                | μg/L     | 1           | CR09497            | , ju     | 11-12-08        | EPA 200.8 |          |
| Cadmium ·                              | 0.64        | 0.50               | 19       | п.          | н                  | и        | и               | 11        |          |
| WM-4 48" Culvert (CRK0319-06) Water Sa | mpled: 11-0 | 7-08 11:00         | Recei    | ived: 11-10 | -08 09:40          |          |                 |           |          |
| Aluminum                               | 160         | 40                 | μg/L     | 2           | CR09497            | 11-11-08 | 11-12-08        | EPA 200.8 |          |
| Arsenic                                | ND          | 2.0                | 14       | 1           | 11                 | 17       | II              | ħ         |          |
| Copper                                 | 54          | 1.0                | 16       | ¥           | IF                 | tt.      | 11              | Ħ         |          |
| Iron                                   | 390         | 100                | 10       | 2           | If                 | ı        | +1              | II        |          |
| Zinc .                                 | 7.2         | 2.0                | 11       | 1.          | it d               | , it     | · e             | 11        |          |
| Cadmium                                | ND          | 0.50               | H        | п           | tı                 | 11       | n               | 11        | •        |
| WM-9 Browns Cabin (CRK0319-07) Water   | Sampled: 1  | 1-07-08 11:        | 20 Re    | ceived: 11  | -10-08 <b>0</b> 9: | 10       |                 |           |          |
| Aluminum                               | 150         | 100                | μg/L     | 5           | CR09497            | 11-11-08 | 11-12-08        | EPA 200.8 | <u> </u> |
| Arsenic                                | ND          | 2.0                | It       | . 1         | 11                 | 11       | ŧŧ              | 11        |          |
| Copper                                 | 14          | 1.0                | If       | U           | ıt                 | o ·      | ir .            | 19        |          |
| Iron                                   | 690         | 250                | It       | 5           | If                 | n        | D.              | ŧI ·      |          |
| Zinc                                   | 2.7         | 2.0                | IF       | 1           | 11                 | Ð        | 19              | II        |          |
| Cadmium                                | ND          | 0.50               | ıt       | u           | It                 | п        | 11              | 11        |          |
| WM-8 LGC Below DC (CRK0319-08) Water   | Sampled:    | 11-07-08 1         | 1:35 R   | leceived: 1 | 1-10-08 09         | :40      | •               |           |          |
| Aluminum                               | 170         | 100                | μg/L     | 5           | CR09497            | 11-11-08 | 11-12-08        | EPA 200.8 |          |
| Arsenic                                | ND          | 2.0                | ų        | 1           | , II               | n .      | II              | II        |          |
| Copper                                 | 13          | 1.0                | u .      | . #         | u .                | . 11     | tt              | 13        | •        |
| Iron                                   | 750         | 250                | ji.      | 5           | ŧi                 | li       | и .             | †I        |          |
| Zinc                                   | 3,2         | 2.0                | H.       | 1           | H                  | Iŧ       | 11              | 11        |          |
| Cadmium                                | ND          | 0.50               | 11       | ti ti       | ŧ                  | ıı       | II              | 11        |          |
| WM-7 LGC Above DC (CRK0319-09) Water   | Sampled:    | 11-07-08 1         | 1:45 R   | Received: 1 | 1-10-08 09         | :40      | •               |           |          |
| Aluminum                               | 200         | 100                | μg/L     | 5           | CR09497            | 11-11-08 | 11-12-08        | EPA 200.8 |          |
| Arsenic                                | ND          | 2.0                | 11       | 1           | и .                |          | tt <sup>°</sup> | "         |          |
| Copper                                 | 10          | 1.0                | В        | я           | IF.                | Iţ       | 11              | ti .      |          |
| Iron                                   | 770         | 250                | 11       | . 5         | If                 | 17       | 10              | 11        | •        |
| Zinc .                                 | 2.4         | 2.0                | , 11     | 1           | If                 | ,<br>II  | ir ,            | li        |          |
| Cadmium                                | ND          | 0.50               | 11       | If          | 11                 | li       | **              | , п       |          |
| WM-6 USFS Dam (CRK0319-10) Water Sal   | npled: 11-0 | 7-08 11:50         | Receiv   | ved: 11-10- | -08 09:40          | •        |                 |           | •        |

CA DOHS ELAP Accreditation/Registration Number 1233

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180 Project Manager: Jeff Huggins CLS Work Order #: CRK0319

COC#: 94810,13

### Metals by EPA 200 Series Methods

| Analyte                          | Result            | Reporting<br>Limit | Units            | Dilution    | Batch    | Prepared              | Analyzed  | Method    | Notes |
|----------------------------------|-------------------|--------------------|------------------|-------------|----------|-----------------------|-----------|-----------|-------|
| WM-6 USFS Dam (CRK0319-10) Water | Sampled: 11-0'    | 7-08 11:50         | Receiv           | ed: 11-10-  | 08 09:40 |                       |           |           |       |
| Aluminum                         | ND                | 20                 | μg/L             | 1 .         | CR09497  | 11-11-08              | 11-12-08  | EPA 200.8 | QC-2H |
| Arsenic                          | ND .              | 2.0                | 11               | 11          | 14       |                       | fi .      | If        |       |
| Copper                           | 37                | 1.0                | 91               | 91          | II.      | H                     | żŧ        | Ц         |       |
| Iron                             | 500               | 250                | 97               | 5           | . 0      | 11                    | 16        | Ц         |       |
| Zinc                             | 7.1               | 2.0                | #1               | 1           | u ·      | i II                  | <b>11</b> | ĸ         |       |
| Cadmium                          | ND                | 0.50               | 11               | <b>11</b>   | п        | U.                    | 11        | lg        | ,     |
| WM-7B (CRK0319-11) Water Sampled | i: 11-07-08 12:05 | Received           | l: 11-10-        | 08 09:40    |          |                       |           |           |       |
| Aluminum                         | 140               | 100                | μg/L             | 5           | CR09497  | 11-11-08              | 11-12-08  | EPA 200.8 |       |
| Arsenic                          | ND                | 2.0                | ,9               | 1           | *1       | , ti                  | Ħ         | n         |       |
| Copper                           | 40                | 1.0                | И                | Ħ           | n        | II                    | п         | U         |       |
| Iron                             | <b>78</b> 0       | 250                | 11               | 5           | 11       | u .                   | 19        | 0 .       |       |
| Zinc                             | 4.5               | 2.0                | 11               | 1           | *1       | II                    | If        | l?        |       |
| Cadmium                          | ND                | 0.50               | 11               | Ц           | U        | II                    | II        | II.       |       |
| WM-7C (CRK0319-12) Water Sampled | l: 11-07-08 12:10 | Received           | <b>l:</b> 11-10- | 08 09:40    |          |                       |           |           |       |
| Aluminum .                       | 320               | 200                | μg/L             | 10          | CR09497  | 11-11-08              | 11-12-08  | EPA 200.8 |       |
| Arsenic                          | ND                | 2.0                | Ħ                | 1           | П        | 11                    | 11        | ø .       |       |
| Copper                           | ND                | 1.0                | <b>f1</b>        | It          | Ц        | H                     | H         | 11        | •     |
| Iron                             | 1000              | 500                | Ħ                | 10          | 17       | "                     | · n       | 11        |       |
| Zinc                             | 2.4               | 2.0                | 11               | 1           | ı        | 91                    | *1        | 11        |       |
| Cadmium                          | ND                | 0.50               | н.               | u           | u'       | . 11                  | II        | N         |       |
| WM-7A (CRK0319-13) Water Sampled | l: 11-07-08 12:30 | Received           | l: 11-10-        | 08 09:40    |          |                       |           |           |       |
| Aluminum                         | 120               | 100                | μg/L             | 5           | CR09497  | 11-11-08 <sup>,</sup> | 11-12-08  | EPA 200.8 |       |
| Arsenic                          | ND                | 2.0                | 11               | 1 .         | ţi       | II .                  | 11        | 18        |       |
| Copper                           | 53                | 1.0                | 11               | It.         | И        | . 41                  | U         | Iŧ.       |       |
| Iron                             | 660               | 250                | 11               | 5           | D        | Ħ                     | II .      | n         |       |
| Zinc                             | 8.6               | 2.0                | 11               | 1           | п        | я .                   | U         | li        |       |
| Cadmium                          | ND                | 0.50               | 11               | Ħ           | l)       | 11                    | 'n        | u         |       |
| WM-12 MBWC (CRK0319-14) Water    | Sampled: 11-07-0  | 0 <b>8 13:4</b> 0  | Received         | i: 11-10-08 | 8 09:40  |                       |           |           |       |
| Aluminum                         | 72                | 20                 | μg/L             | . 1         | CR09497  | 11-11-08              | 11-12-08  | EPA 200.8 |       |
| Arsenic                          | : ND              | 2.0                | Щ                | п           | ti       | и .                   | . 0       | . "       |       |
| Copper                           | 5.8               | 1.0                | 11               | u           | it       | ш                     | . *#      | **        |       |
|                                  |                   |                    |                  |             |          |                       |           |           |       |

11-21-08 08:03

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine
Project Number: PCA 13180

CLS Work Order#: CRK0319

COC#: 94810,13

### Metals by EPA 200 Series Methods

Project Manager: Jeff Huggins

| Analyte                          | Result        | Reporting<br>Limit | Units    | Dilution   | ı Batch | Prepared | Analyzed | Method                                | Notes |
|----------------------------------|---------------|--------------------|----------|------------|---------|----------|----------|---------------------------------------|-------|
| WM-12 MBWC (CRK0319-14) Water    | Sampled: 11-0 | 7-08 13:40         | Received | 1: 11-10-0 | 8 09:40 |          |          |                                       |       |
| Zine                             | 2.5           | 2.0                | μg/L     | 1          | CR09497 | 11       | 11-12-08 | EPA 200.8                             |       |
| Cadmium                          | ND            | 0.50               | ti       | 11         | H       | tl       | n        | (1                                    |       |
| WM-13 Nye Creek (CRK0319-15) Wat | er Sampled: 1 | 1-07-08 13:5       | 0 Recei  | ved: 11-10 | 09:40   |          |          | <u> </u>                              |       |
| Aluminum                         | ND            | 20                 | μg/L     | 1          | CR09497 | 11-11-08 | 11-12-08 | EPA 200.8                             |       |
| Arsenic                          | ND            | 2.0                | 11       | . н        | li li   | II       | n        | н                                     | •     |
| Copper                           | ND            | 1.0                | n        | ij         | II      | İt       | Ħ        | п                                     |       |
| Iron                             | ND            | 50                 | 11       | Ir         | ŧı      | . п      | ij       | 11                                    | QC-2H |
| Zine                             | 2.2           | 2,0                | li .     | · u        | ŧı      | ıŗ       | п        | fi fi                                 |       |
| Cadmium                          | ND            | 0.50               | tt       | Ħ          | 16      | It       | , n      |                                       |       |
| WM-17 NBWC (CRK0319-16) Water    | Sampled: 11-0 | 7-08 14:00         | Received | : 11-10-08 | 09:40   |          | ·        | · · · · · · · · · · · · · · · · · · · |       |
| Aluminum                         | ND            | 20                 | μg/L     | 1          | CR09497 | 11-11-08 | 11-12-08 | EPA 200.8                             |       |
| Arsenic                          | ND            | 2.0                | İT       | n          | н .     | li       | If       | u                                     |       |
| Copper .                         | ND            | 1.0                | IŢ.      | ır         | П       | Ħ        | If       | н ·                                   |       |
| Iron                             | ND            | 50                 | п        | Ir         | , я     | ıı       | II       | II .                                  | QC-2H |
| Zinc                             | 2.3           | 2.0                | п        | 0          | II      | n        | 11       | I#                                    |       |
| Cadmium                          | ND            | 0.50               | 71       | 11         | И       | и,       | 11       | þ                                     |       |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Jeff Huggins

CLS Work Order #: CRK0319

COC#: 94810,13

| Analyte                        | Result          | Reporting<br>Limit   | Units        | Dilution       | Batch      | Prepared | Analyzed | Method    | Note |
|--------------------------------|-----------------|----------------------|--------------|----------------|------------|----------|----------|-----------|------|
| WM-1 Portal (CRK0319-01) Water | Sampled: 11-07- | 08 09:15 Re          | eceived: 1   | 11-10-08 09    | 9:40       |          |          |           |      |
| Aluminum .                     | ND              | - 20                 | μg/L         | 1              | CR09478    | 11-11-08 | 11-12-08 | EPA 200.8 |      |
| Arsenic                        | 11              | 5.0                  | n .          | 11             | n          | ŧı       | n        | "         |      |
| Copper                         | 91              | 2.0                  | at           | <sup>#</sup> . | η          | IJ       | ŧi       | B         |      |
| Iron                           | ND              | 50                   | • 41         | n              | ìr         | n        | n        | tł.       |      |
| Zinc _                         | 22              | 2.0                  | . 11         | ii             | а.         | и        | n        | 11        |      |
| Cadmium                        | ND              | 0.50                 | H            | j)             | b          | , li     | tt       | s)        |      |
| WM-5 LGC/U/S (CRK0319-02) Wat  | er Sampled: 11- | 07-08 08:40          | Receive      | d: 11-10-08    | 8 09:40    |          |          |           |      |
| Aluminum                       | 390             | 100                  | μg/L         | 5              | CR09478    | 11-11-08 | 11-12-08 | EPA 200.8 |      |
| Arsenic                        | ND              | 5.0                  | 11           | 1              | <b>"</b> . | H        | b        | ,         |      |
| Copper                         | ND              | 2.0                  | Ħ            | W              | 11         | η        | n .      | **        |      |
| Iron                           | 400             | 250                  | 1†           | 5              | tt .       | H        | 11       | n         |      |
| Zinc                           | 3.1             | 2.0                  | 11           | 1              | 11         | H        | · n      | •         |      |
| Cadmium                        | ND              | 0,50                 | 11           | l)             | 11         | И        | R        | n         |      |
| WM-3 DC-D/S (CRK0319-03) Water | Sampled: 11-07  | 7-08 08:53 I         | Received:    | : 11-10-08     | 09:40      |          |          |           |      |
| Aluminum                       | 110             | 20                   | μg/L         | 1              | CR09478    | 11-11-08 | 11-12-08 | EPA 200.8 |      |
| Arsenic                        | ND              | 5.0                  | 11           | 11             | n          | n        | . 11     | it        |      |
| Copper                         | 50              | 2.0                  | 11           | ŋ              | IF         | n        | lt       | ш         |      |
| Iron                           | 290             | 100                  | n            | 2              | if         | η        | ır       | и         |      |
| Zinc                           | 8.2             | 2.0                  | n            | 1              | ρ          | н        | ۳.       | H         |      |
| Cadmium-                       | ND              | 0.50                 | Ħ            | a)             | 11         | il       | ti .     | 11        | *    |
| WM-2 DC-U/S (CRK0319-04) Water | Sampled: 11-07  | 7-08 09: <b>25</b> 1 | Received:    | : 11-10-08     | 09:40      | -        | •        |           |      |
| Aluminum                       | ND              | 20                   | <u>μ</u> g/L | 1              | CR09478    | 11-11-08 | 11-12-08 | EPA 200.8 |      |
| Arsenic                        | ND              | 5.0                  | 17           | l;             | n          | )†       | ĸ        | b         |      |
| Copper                         | ND              | 2.0                  | , <b>n</b>   | ħ              | n          | H        | 16       | н         |      |
| Iron                           | ND              | 50                   | b            | n              | n          | lı .     | . #1     | . "       |      |
| Zinc                           | 2.6             | 2,0                  | D            | , if           | 11         | u ,      | · u      | · It      |      |
| Cadmium                        | ND              | 0.50                 | , "          | li             | ŧ          | 9        | n        | lt        |      |
| WM-19 Pond (CRK0319-05) Water  | Sampled: 11-07- | 08 10:45 R           | eceived:     | 11-10-08 0     | 9:40       |          |          |           |      |
| Aluminum                       | ND              | 20                   | μg/L         | 1              | CR09478    | 11-11-08 | 11-12-08 | EPA 200.8 |      |
| Arsenic                        | ND              | 5.0                  | þi           | b              | n          | 17       | H        | lt .      |      |
| Copper                         | 790             | 10                   | h            | . 5            | н          | lø       | . "      | lt.       |      |
| Iron                           | ND              | 50                   | n            | 1              | p          | h        | *1       | l?        |      |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180 Project Manager: Jeff Huggins CLS Work Order#: CRK0319

COC#: 94810,13

|                                     | n., v          | Reporting             | YY '4.    | Dilusian    | Match             | D        | Amalaumad | Mothed    | Notes |
|-------------------------------------|----------------|-----------------------|-----------|-------------|-------------------|----------|-----------|-----------|-------|
| Analyte                             | Result         | Limit                 | Units     | Dilution    |                   | Prepared | Analyzed  | Method    | Note: |
| WM-19 Pond (CRK0319-05) Water Sa    | mpled: 11-07-0 | 8 10:45 Rec           | eived: 1  | 11-10-08 0  | 9:40              |          |           | •         |       |
| Zinc                                | 91             | 2.0                   | μg/L      | 1           | CR09478           | 9        | 11-12-08  | EPA 200.8 |       |
| Cadmium                             | 0.57           | 0.50                  | ft        | . 4         | H                 | 11       | H         | . 9       |       |
| WM-4 48" Culvert (CRK0319-06) Water | Sampled: 11    | L-07-08 <b>11:</b> 00 | Recei     | ved: 11-10  | -08 09:40         |          |           |           |       |
| Aluminum                            | 93             | 20                    | μg/L      | 1           | CR09478           | 11-11-08 | 11-12-08  | EPA 200.8 |       |
| Arsenic                             | ND             | 5.0                   | 19        | . "         | If                | •        | 0         | ţį        |       |
| Copper                              | 40             | 2.0                   | It        | (1          | D .               | ff       | 9         | u         |       |
| Iron                                | 280            | 100                   | 19        | 2           | 11                | . "      | Ħ         | u         |       |
| Zinc                                | 7.1            | 2,0                   | 17        | 1           | 19 .              | 0        | . "       | 11        |       |
| Cadmium                             | ND             | 0.50                  | 19        | 11          | ff                | tr       | "         | 11        |       |
| WM-9 Browns Cabin (CRK0319-07) Wa   | ter Sampled:   | 11-07-08 11           | 20 Re     | ceived: 11  | -10-08 09:4       | 10       |           |           |       |
| Aluminum                            | 93             | 20                    | μg/L      | 1           | CR09478           | 11-11-08 | 11-12-08  | EPA 200.8 |       |
| Arsenic                             | ND             | 5.0                   | If.       | ш           | II                | 11       | ti        | "         |       |
| Copper                              | 12             | 2,0                   | ı         | 11          | U                 | u        | ti        | tı        |       |
| Iron                                | <b>52</b> 0    | 250                   | 19        | 5           | 0                 | И        | . 16      | tt        |       |
| Zinc                                | 3.6            | 2.0                   | u         | 1           | tt.               | u ,      | **        | n         |       |
| Cadmium                             | ND             | 0.50                  | n         |             | п                 | jr -     | #1        | Ħ         |       |
| WM-8 LGC Below DC (CRK0319-08) W    | ater Sample    | 1: 11-07-08 1         | 1:35 R    | eceived: 1  | <b>1-10-08</b> 09 | :40      | •         |           |       |
| Aluminum                            | 100            | 20                    | μg/L      | 1           | CR09478           | 11-11-08 | 11-12-08  | EPA 200.8 |       |
| Arsenic                             | ND             | 5.0                   | . 11      | 1)          | 'sı               | li,      | lf        | ħ.        |       |
| Copper                              | 9.3            | 2.0                   | đ         | O           | II .              | ø        | R         | 11        |       |
| Iron                                | 560            | 250                   | и.        | 5           | lt                | lt .     | n         | 11        |       |
| Zinc                                | 2.9            | 2.0                   | It        | 1           | 11                | . 0      | ч         | 11        | •     |
| Cadmium                             | ND             | 0.50                  | 0         | ŧi          | ti.               | 11       | . u       |           |       |
| WM-7 LGC Above DC (CRK0319-09) W    | ater Sample    | d: 11-07-08 1         | 1:45 R    | leceived: 1 | 1-10-08 09        | :40      |           |           |       |
| Aluminum                            | 110            | 20                    | –<br>μg/L | 1           | CR09478           | 11-11-08 | 11-12-08  | EPA 200.8 |       |
| Arsenic                             | ND             | 5.0                   | . "       | , 11        | 11                | и        | **        | u         |       |
| Copper                              | 8.2            | 2.0                   |           | 10          | 11                | ч        | 11        | II        |       |
| Iron                                | 560            | 250                   | u         | . 5         | 11                | fr       | R ·       | *         |       |
| Zinc                                | 3.5            | 2.0                   | je .      | 1           | If                | lt .     | IT        | it.       |       |
| Cadmium                             | ND             | 0.50                  | n         | 11          | H .               | 11       | lt.       | ı         |       |
| WM-6 USFS Dam (CRK0319-10) Water    | Sampled: 11    | -07-08 11:50          | Receiv    | /ed: 11-10- | -08 09:40         |          |           |           |       |

11-21-08 08:03

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180 Project Manager: Jeff Huggins CLS Work Order #: CRK0319

COC#: 94810,13

| Analyte                    | Result                 | Reporting<br>Limit | Units     | Dilution           | Batch    | Prepared | Analyzed | Method    | Note:    |
|----------------------------|------------------------|--------------------|-----------|--------------------|----------|----------|----------|-----------|----------|
| WM-6 USFS Dam (CRK0319-10) | ) Water Sampled: 11-   | 07-08 11:50        | Receiv    | red: 11-10-        | 08 09:40 |          |          |           |          |
| Aluminum                   | ND                     | 20                 | μg/L      | 1                  | CR09478  | 11-11-08 | 11-12-08 | EPA 200.8 |          |
| Arsenic                    | ND                     | 5.0                | **        | lo                 | н        | n .      | II       | н         |          |
| Copper                     | 30                     | 2.0                | tr        | p                  | п        |          | ŋ        | 11        |          |
| Iron ·                     | 370                    | 100                | ** ;      | 2                  | п        | II .     | 11       | п         | 1        |
| Zinc                       | 6.7                    | 2.0                | **        | 1                  | п        | u        | n        | п         |          |
| Cadmium                    | ND                     | 0.50               | **        | lı                 | 11       | ď        | lj -     |           |          |
| WM-7B (CRK0319-11) Water   | Sampled: 11-07-08 12:0 | 5 Received         | l: 11-10- | -08 09:40          |          |          |          |           |          |
| Aluminum                   | 71                     | 20 .               | μg/L      | . 1                | CR09478  | 11-11-08 | 11-12-08 | EPA 200.8 |          |
| Arsenic                    | ND                     | 5.0                | 11        | u                  | Ħ        | #        | Ħ        | lf .      |          |
| Copper                     | 34                     | 2.0                | 11        | tt                 | *1       | п        | II.      | i)        |          |
| Iron                       | 460                    | 250                | 11        | 5                  | , 41     | и        | и,       | ii,       |          |
| Zine                       | 5.1                    | 2.0                | 11        | 1                  | 11       | II       | , p      | 11        |          |
| Cadmium                    | ND                     | 0.50               | Ų         | ŧ                  | 11       | If .     | ıı       | Ħ         |          |
| WM-7C (CRK0319-12) Water   | Sampled: 11-07-08 12:  | 10 Received        | l: 11-10- | -08 0 <b>9:</b> 40 |          |          |          | 1         |          |
| Aluminum                   | 160                    | 20                 | μg/L      | 1                  | CR09478  | 11-11-08 | 11-12-08 | EPA 200.8 | •        |
| Arsenic                    | ND                     | 5.0                | H         | H.                 | ĸ        | н        | er .     | II        |          |
| Copper                     | ND                     | 2.0                | 81        |                    | u        | т.       | #        | It        |          |
| Iron                       | 580                    | 250                | II        | 5                  | . "      | n        | IY       | li .      | ÷        |
| Zinc                       | 3.2                    | 2.0                | 11        | 1                  | н .      | #1       | II,      | . "       |          |
| Cadmium                    | ND                     | 0.50               | 11        | 11                 | II .     | 11       | ıı       | . "       |          |
| WM-7A (CRK0319-13) Water   | Sampled: 11-07-08 12:  | 30 Received        | l: 11-10  | -08 09:40          |          |          |          |           | <u> </u> |
| Aluminum                   | 73                     | 20                 | μg/L      | 1                  | CR09478  | 11-11-08 | 11-12-08 | EPA 200.8 |          |
| Arsenic                    | ND                     | 5.0                | 11        | n                  | н        | u        | н .      | *1        |          |
| Copper                     | 43                     | 2.0                | 11        | 11                 | ti       | ŧi       | Ħ        | st .      |          |
| Iron ·                     | 540                    | 250                | u         | 5                  | 11       | , B      |          | 11        |          |
| Zinc                       | . 7.3                  | 2.0                | Đ         | 1                  | 17       | n        | It       | It        |          |
| Cadmium                    | ND                     | 0.50               | Ħ         | . 16               | . 19     | n        | 11       | . "       |          |
| WM-12 MBWC (CRK0319-14) V  | Water Sampled: 11-0'   | 7-08 13:40         | Receive   | d: 11-10-08        | 8 09:40  |          |          |           | • •      |
| Aluminum                   | 47                     | 20                 | μg/L      | 1                  | CR09478  | 11-11-08 | 11-12-08 | EPA 200.8 |          |
| Arsenic                    | ND                     | 5.0                | 11        | 11                 | 98       | #1       | II       | ii .      |          |
|                            |                        |                    |           |                    |          |          |          | 11        |          |
| Copper                     | 5.2                    | 2.0                | 17        | п                  | H        | 11       | a        | . "       |          |

11-21-08 08:03

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine Project Number: PCA 13180

CLS Work Order #: CRK0319

Project Manager: Jeff Huggins COC#: 94810,13

| Analyte                          | Result         | Reporting<br>Limit | Units    | Dilution    | ı Batch   | Prepared | Analyzed | Method    | Notes |
|----------------------------------|----------------|--------------------|----------|-------------|-----------|----------|----------|-----------|-------|
| WM-12 MBWC (CRK0319-14) Water    | Sampled: 11-0  | 7-08 13:40         | Received | d: 11-10-08 | 8 09:40   |          |          |           |       |
| Zinc                             | 3.7            | 2.0                | μg/L     | 1           | CR09478   | u        | 11-12-08 | EPA 200.8 |       |
| Cadmium                          | ND             | 0.50               | H        | "           | )I        | и        | 11       | 11        |       |
| WM-13 Nye Creek (CRK0319-15) Wat | er Sampled: 11 | 1-07-08 13:5       | 0 Recei  | ved: 11-10  | -08 09:40 |          |          |           |       |
| Aluminum                         | ND             | 20                 | μg/L     | 1           | CR09478   | 11-11-08 | 11-12-08 | EPA 200.8 |       |
| Arsenic                          | ND             | 5.0                | ir       | н           | 'n        | ii       | . 9      | n         |       |
| Copper                           | ND             | 2.0                | , in     | . н         | n         | II       | 11       | 9         |       |
| Iron ,                           | ND             | 50                 | )1       | n .         | 11        | II .     | 11       | 11        |       |
| Zinc                             | 3.2            | 2.0                | H        | n           | н         | II       | 9        | 11        |       |
| Cadmium                          | ND             | 0.50               | H        | н           | n·        | 11       | )1       | li        |       |
| WM-17 NBWC (CRK0319-16) Water    | Sampled: 11-07 | 7-08 14:00         | Received | : 11-10-08  | 09:40     |          | _        |           |       |
| Aluminum                         | ND             | 20                 | μg/L     | 1           | CR09478   | 11-11-08 | 11-12-08 | EPA 200.8 |       |
| Arsenic '                        | ND -           | 5.0                | )r       | п           | · If      | If       | 11       | IF        |       |
| Copper                           | ND             | 2.0                | tt       | D           |           | If       | H        | . п       | •     |
| Iron                             | ND             | 50                 | 11       | . "         | н         | . "      | ti       | ı         |       |
| Zinc                             | 2.1            | 2.0                | II       | ij          | . "       | If       | si       | 1)        |       |
| Cadmium                          | ND             | 0.50               | n        | Ŋ           | 11        | , it `   | 11       | l)        |       |

11-21-08 08:03

CRWQCB - Sacramento

Project: Walker Mine

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project Number: PCA 13180 Project Manager: Jeff Huggins CLS Work Order#: CRK0319

COC #: 94810,13

### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

| Analyte                             | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD        | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|-----------|----------------|------------------|------------|----------------|------------|--------------|-------|
| Batch CR09454 - General Preparation | ,      |                    |           |                | •                |            |                |            |              |       |
| Blank (CR09454-BLK1)                |        |                    |           | Prepared       | & Analyz         | ed: 11-10- | 08             | •          |              | -     |
| Hexavalent Chromium                 | ND     | 10                 | μg/L      |                |                  |            |                |            |              |       |
| Hexavalent Chromium, Dissolved      | ND     | 10                 | Iŧ.       |                |                  |            |                |            |              |       |
| LCS (CR09454-BS1)                   |        |                    |           | Prepared       | & Analyz         | ed: 11-10- | 08             |            |              |       |
| Hexavalent Chromium                 | 275    | 10                 | μg/L      | 250            |                  | 110        | 85-115         |            |              |       |
| Hexavalent Chromium, Dissolved      | 275    | 10                 | ie        | 250            |                  | 110        | 80-120         |            |              |       |
| LCS Dup (CR09454-BSD1)              |        | •                  |           | Prepared       | & Analyz         | ed: 11-10- | 08             |            |              |       |
| Hexavalent Chromium                 | 285    | 10                 | μg/L      | 250            |                  | 114        | 85-115         | 3          | 20           |       |
| Hexavalent Chromium, Dissolved      | 285    | 10                 | 19        | 250            |                  | 114        | 80-120         | 3          | 20           |       |
| Matrix Spike (CR09454-MS1)          | So     | urce: CRK03        | 19-01     | Prepared       | & Analyz         | ed: 11-10- | 08             |            |              | •     |
| Hexavalent Chromium                 | 274    | 10                 | μg/L      | 250            | ND               | 110        | 85-115         |            |              |       |
| Hexavalent Chromium, Dissolved      | 274    | 10                 | 11        | 250            | ND               | 110        | 80-120         |            |              |       |
| Matrix Spike Dup (CR09454-MSD1)     | So     | urce: CRK03        | 19-01     | Prepared       | & Analyz         | ed: 11-10- | 08             |            |              |       |
| Hexavalent Chromium                 | 274    | 10                 | μg/L      | 250            | ND               | 110        | 85-115         | 0          | 20           |       |
| Hexavalent Chromium, Dissolved      | 274    | 10                 | 11        | · 250          | ND               | 110        | 80-120         | 0          | 20           | ·     |
| Batch CR09457 - General Preparation |        |                    |           | •              |                  |            |                |            |              |       |
| Blank (CR09457-BLK1)                | •      |                    |           | Prepared       | & Analyz         | ed: 11-10- | 08             |            |              |       |
| Specific Conductance (EC)           | ND     | 1.0                | ımhos/cır | -              |                  |            |                | _          |              |       |
| Batch CR09470 - General Prep        |        |                    | •         |                |                  |            |                |            |              |       |
| Blank (CR09470-BLK1)                |        | •                  |           | Prepared       | & Analyz         | ed: 11-11- | 08             | - <u> </u> |              |       |
| Sulfate as SO4                      | ND     | 0.50               | mg/L      |                | •                |            |                |            |              |       |
| Chloride                            | ND     | 0.50               | 11        |                |                  |            |                |            | •            |       |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Jeff Huggins

CLS Work Order#: CRK0319

COC#: 94810,13

### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

| Analyte                             | Result | Reporting<br>Limit | Units | Spike<br>Level                | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit        | Notes |
|-------------------------------------|--------|--------------------|-------|-------------------------------|------------------|------------|----------------|-----|---------------------|-------|
| Batch CR09470 - General Prep        |        |                    |       |                               |                  |            |                |     |                     | -     |
| LCS (CR09470-BS1)                   |        |                    |       | Prepared                      | & Analyz         | ed: 11-11- | 08             |     | ·                   |       |
| Sulfate as SO4                      | 5.28   | 0.50               | mg/L  | 5.00                          | •                | 106        | 80-120         |     |                     |       |
| Chloride                            | 1.97   | 0.50               | и     | 2.00                          |                  | 99         | 80-120         |     |                     |       |
| LCS Dup (CR09470-BSD1)              |        |                    |       | Prepared                      | & Analyz         | ed: 11-11- | 08             |     |                     |       |
| Chloride                            | 1.97   | 0.50               | mg/L  | 2.00                          |                  | . 99       | 80-120         | 0.2 | 20                  |       |
| Sulfate as SO4                      | 5.18   | 0.50               | Jt    | 5.00                          |                  | 104        | 80-120         | 2   | 20                  |       |
| Matrix Spike (CR09470-MS1)          | So     | urce: CRK03        | 22-01 | Prepared                      | & Analyz         | ed: 11-11- | 08             |     |                     | -     |
| Chloride                            | 48.5   | 0.50 ·             | mg/L  | 2.00                          | 48.9             | NR         | 75-125         |     |                     | QM-4X |
| Sulfate as SO4                      | 43.5   | 0.50               | 11    | 5.00                          | 39.7             | 75         | 75-125         |     |                     |       |
| Matrix Spike Dup (CR09470-MSD1)     | So     | urce: CRK03        | 22-01 | Prepared & Analyzed: 11-11-08 |                  |            |                |     |                     |       |
| Chloride                            | 48.4   | 0:50               | mg/L  | 2.00                          | 48.9             | NR         | 75-125         | 0.2 | 25                  | QM-4X |
| Sulfate as SO4                      | 43.7   | 0.50               | lt.   | 5.00                          | 39.7             | 80         | 75-125         | 0.6 | 25                  |       |
| Batch CR09491 - General Preparation |        |                    |       |                               |                  |            |                |     |                     |       |
| Blank (CR09491-BLK1)                |        |                    | •     | Prepared:                     | 11-11-08         | Analyzeo   | l: 11-13-08    |     |                     |       |
| Total Dissolved Solids              | ND     | 10                 | mg/L  | Taki zlasta i                 |                  | *          | -15 - 42 5     |     | 6.17 (L. 18.4)<br>2 | A 187 |
| Duplicate (CR09491-DUP1)            | So     | urce: CRK03        | 26-03 | Prepared:                     | 11-11-08         | Analyzed   | i: 11-13-08    | }   |                     |       |
| Total Dissolved Solids              | 566    | . 10               | mg/L  |                               | 566              | •          |                | 0   | 20                  |       |
| Batch CR09493 - General Preparation |        | ·                  |       |                               | · .              |            |                |     |                     | •     |
|                                     |        |                    |       |                               |                  |            |                |     |                     |       |
| Blank (CR09493-BLK1)                |        |                    |       | Prepared                      | & Analyza        | ed: 11-11- | 08             |     |                     |       |

11-21-08 08:03

CRWOCB - Sacramento

Project: Walker Mine

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project Number: PCA 13180 Project Manager: Jeff Huggins CLS Work Order#: CRK0319

COC #: 94810,13

### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

| Analyte                             | Result   | Reporting<br>Limit | Units        | Spike<br>Lev <b>e</b> l | Source<br>Result | %REC                | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------------|----------|--------------------|--------------|-------------------------|------------------|---------------------|----------------|-----|--------------|-------|
| Batch CR09493 - General Preparation | ·        |                    | _            |                         |                  |                     |                |     | · .          |       |
| LCS (CR09493-BS1)                   |          |                    |              | Prepared 4              | & Analyze        | ed: 11-11-          | 08             |     |              |       |
| Methylene Blue Active Substances    | 0.489    | 0.10               | mg/L         | 0.500                   |                  | 98                  | 80-120         | • . |              |       |
| LCS Dup (CR09493-BSD1)              | -        |                    |              | Prepared o              | & Analyz         | ed: 11-11-          | 08             |     | •            |       |
| Methylene Blue Active Substances    | 0.498    | 0.10               | mg/L         | 0.500                   |                  | 100                 | 80-120         | 2   | 20           |       |
| Matrix Spike (CR09493-MS1)          | So       | urce: CRK03        | 33-01        | Prepared a              | & Analyze        | ed: 11-11-          | 08             |     |              |       |
| Methylene Blue Active Substances    | 0.503    | 0.10               | mg/L         | 0.500                   | ND               | 101                 | 75-125         |     |              |       |
| Matrix Spike Dup (CR09493-MSD1)     | So       | urce: CRK03        | 33-01        | Prepared a              | & Analyze        | ed: 11-11-          | 08             |     | •            |       |
| Methylene Blue Active Substances    | 0.499    | 0.10               | mg/L         | 0.500                   | ND               | 100                 | 75-125         | 0.8 | 25           |       |
| Batch CR09496 - General Preparation |          |                    | ÷            |                         |                  |                     |                |     |              |       |
| Blank (CR09496-BLK1)                |          |                    |              | Prepared a              | & Analyze        | ed: 11-11-          | 08             |     |              |       |
| Total Alkalinity                    | ND       | 5.0                | mg/L         |                         |                  |                     |                |     | ,            |       |
| Bicarbonate as CaCO3                | ND       | 5.0                | B            |                         |                  |                     |                |     |              |       |
| Carbonate as CaCO3                  | ND       | 5.0                | п            |                         |                  |                     |                |     |              |       |
| Hydroxide as CaCO3                  | ND       | 5.0                | ti           |                         |                  |                     |                |     |              |       |
| Duplicate (CR09496-DUP1)            | So       | urce: CRK03        | 19-08        | Prepared                | & Analyz         | ed: 11- <u>1</u> 1- | 08             |     |              |       |
| Total Alkalinity                    | 62.2     | 5.0                | mg/L         |                         | 61.8             |                     |                | 0.6 | 20           |       |
| Bicarbonate as CaCO3                | 62.2     | 5.0                | 11           |                         | 61.8             |                     | •              | 0.6 | 20           |       |
| Carbonate as CaCO3                  | ND.      | 5.0                | ıl           |                         | ND               |                     |                |     | 20           |       |
| Hydroxide as CaCO3                  | ND       | 5.0                | It           |                         | ND               |                     |                |     | 20           |       |
| Batch CR09505 - 6010A/No Digestion  | <u> </u> |                    |              |                         |                  |                     |                |     |              |       |
| Blank (CR09505-BLK1)                |          |                    |              | Prepared:               | 11-11-08         | Analyze             | d: 11-12-0     | 8   |              |       |
| Calcium                             | ND       | 1.0                | m <b>g/L</b> |                         |                  |                     |                |     |              |       |
| Magnesium                           | ND       | 1.0                | 11           |                         |                  |                     |                |     |              |       |
| Potassium                           | ND       | 1.0                | п            |                         |                  |                     |                |     |              | •     |
| Sodium                              | ND       | 1.0                | 17           |                         |                  |                     |                |     |              |       |
| Hardness as CaCO3                   | ND       | 1.0                | 11           |                         |                  |                     |                |     |              |       |

Fax: 916-638-4510

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180

Project Manager: Jeff Huggins

CLS Work Order #: CRK0319

COC#: 94810,13

### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

| Analyte                            | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %RÉC     | %REC<br>Limits       | RPD | RPD<br>Limit | Notes |
|------------------------------------|--------|--------------------|-------|----------------|------------------|----------|----------------------|-----|--------------|-------|
| Batch CR09505 - 6010A/No Digestion |        |                    |       |                |                  |          |                      |     | _            |       |
| LCS (CR09505-BS1)                  |        | _                  |       | Prepared:      | 11-11-08         | Analyze  | 1: 11-12-08          | }   |              | ·     |
| Calcium .                          | 9.36   | 1.0                | mg/L  | 10.0           |                  | 94       | 80-120               |     |              |       |
| Magnesium                          | 9.11   | 1.0                | a     | 10.0           |                  | 91       | 80-120               |     |              |       |
| Potassium                          | 9.35   | 1.0                | и.    | 10.0           |                  | 93,      | 80-120               |     |              |       |
| Sodium                             | 9.28   | 1.0                | tı    | 10.0           |                  | 93       | 80-120               |     |              |       |
| LCS Dup (CR09505-BSD1)             |        |                    |       | Prepared:      | 11-11-08         | Analyzed | 1: 11-12-08          | 3   |              |       |
| Calcium                            | 9.49   | 1.0                | mg/L  | 10.0           |                  | 95       | 80-120               | I   | 20           |       |
| Magnesium                          | 9.24   | 1.0                | II .  | 10.0           |                  | 92       | 80-120               | I   | 20           |       |
| Potassium                          | 9.55   | 1.0                | H     | 10.0           |                  | 96       | 80-120               | 2   | .20          |       |
| Sodium                             | 9.41   | 1.0                | ır    | 10.0           | •                | 94       | 80-120               | 1   | 20           |       |
| Matrix Spike (CR09505-MS1)         | Sou    | urce: CRK02        | 37-01 | Prepared:      | 11-11-08         | Analyzed | 1: 11-12-08          | }   |              |       |
| Calcium                            | 198    | 1.0                | mg/L  | 10.0           | 198              | 1        | 75-125               |     |              | QM-43 |
| Magnesium                          | 69.5   | 1.0                | 19    | 10.0           | 63.7             | 58       | 75-125               |     |              | QM-42 |
| Potassium                          | 12.3   | 1.0                | 19    | 10.0           | 3.21             | 90       | 75-125               | •   |              |       |
| Sodium                             | 89.8   | 1.0                | n     | 10.0           | 85.2             | 47       | 75-125               |     |              | QM-43 |
| Matrix Spike Dup (CR09505-MSD1)    | So     | urce: CRK02        | 37-01 | Prepared:      | 11-11-08         | Analyze  | d: 11-12- <b>0</b> 8 | 3   |              |       |
| Calcium                            | 202    | 1.0                | mg/L  | .10.0          | 198              | 42       | 75 <b>-125</b>       | 2   | 25           | QM-47 |
| Magnesium                          | 71.5   | 1.0                | . "   | 10.0           | 63.7             | 78       | 75-125               | . 3 | 25           |       |
| Potassium                          | 13.0   | 1.0                | H     | 10.0           | 3.21             | 98       | 75-125               | 6   | 25           |       |
| Sodium                             | 93.2   | 1.0                | n     | 10.0           | 85.2             | 81       | 75-125               | 4   | 25           |       |
| Batch CR09658 - 6010A/No Digestion |        |                    |       |                |                  | ,        | •                    |     |              |       |
| Blank (CR09658-BLK1)               |        |                    |       | Prepared:      | 11-17-08         | Analyze  | d: 11-18-08          | }   |              |       |
| Calcium                            | ND     | 1.0                | mg/L  |                |                  |          |                      |     |              |       |
| Magnesium                          | ND     | 1.0                | и.    |                |                  |          |                      |     |              |       |
| Potassium                          | ND     | 1.0                | 14    | •              | •                |          |                      |     |              |       |
| Sodium                             | ND     | 1.0                | п     | •              |                  | ,        |                      |     |              |       |
| Hardness as CaCO3                  | ND     | 1.0                | . н   |                |                  |          |                      |     |              |       |
|                                    |        |                    |       |                |                  |          |                      |     |              |       |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Jeff Huggins

CLS Work Order #: CRK0319

COC#: 94810,13

|                                    |        | Report   | ing          |       | Spike     | Source   |          | %REC                 |     | RPD   | į     |
|------------------------------------|--------|----------|--------------|-------|-----------|----------|----------|----------------------|-----|-------|-------|
| Analyte                            | Result | Li       | mit          | Units | Level     | Result   | %REC     | Limits               | RPD | Limit | Notes |
| Batch CR09658 - 6010A/No Digestion | 1      |          |              |       |           |          |          |                      |     |       |       |
| LCS (CR09658-BS1)                  |        |          |              |       | Prepared: | 11-17-08 | Analyzed | i: 11-18-08          |     |       |       |
| Catoium                            | 9.18   |          | 1.0          | mg/L  | 10.0      |          | 92       | 80-120               |     |       |       |
| Magnesium                          | 8.85   |          | 1.0          | It    | 10.0      |          | 88       | 80-120               |     |       |       |
| Potassium                          | 9.30   |          | 1.0          | It    | 10.0      |          | 93       | 80-120               |     | •     |       |
| Sodium                             | 9.09   |          | 1.0          | IF    | 10.0      |          | 91       | 80-120               |     |       |       |
| LCS Dup (CR09658-BSD1)             |        |          |              |       | Prepared: | 11-17-08 | Analyzed | i: 11-18-08          |     |       |       |
| Calcium                            | 9.25   |          | 1.0          | mg/L  | 10.0      |          | 93       | 80-120               | 0.8 | 20    |       |
| Magnesium                          | 8.90   |          | 1.0          | 11    | 10.0      |          | 89       | 80-120               | 0.6 | 20    |       |
| Potassium                          | 9.47   |          | 1.0          | н     | 10.0      |          | 95       | 80-120               | 2   | · 20  |       |
| Sodium                             | 9.17   |          | 0.1          | II    | 10.0      |          | 92       | 80-120               | 0.9 | 20    |       |
| Matrix Spike (CR09658-MS1)         | So     | urce: CR | <b>K</b> 032 | 25-01 | Prepared: | 11-17-08 | Analyzed | l: 11-18-08          |     |       |       |
| Calcium                            | 82.0   |          | 1.0          | mg/L  | 10.0      | 74.9     | - 70     | 75-125               |     |       | QM-4X |
| Magnesium                          | 172    |          | 1.0          | ıı    | 10.0      | 170      | 20       | 75-125               |     |       | QM-4X |
| Potassium                          | 42.3   |          | 1.0          | If    | 10.0      | 35.0     | 73       | 75-125               |     |       | QM-7  |
| Sodium                             | 127    |          | 1.0          | II    | 10.0      | 122      | 48       | 75-125               |     |       | QM-4X |
| Matrix Spike Dup (CR09658-MSD1)    | So     | urce: CR | K03          | 25-01 | Prepared: | 11-17-08 | Analyzed | i: 11-18 <b>-</b> 08 |     |       |       |
| Calcium                            | 81.0   |          | 1.0          | mg/L  | 10.0      | 74.9     | 61       | 75-125               | 1   | 25    | QM-4X |
| Magnesium                          | 170    |          | 1.0          | . 19  | 10.0      | 170      | 0        | 75-125               | 1   | 25    | QM-4X |
| Potassium                          | 41.7   |          | 1.0          | 19    | 10.0      | 35.0     | 67       | 75-125               | 1   | 25    | QM-7  |
| Sodium                             | · 126  |          | 1.0          | b     | 10.0      | 122      | 34       | 75-125               | 1   | 25    | QM-4X |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

CLS Work Order #: CRK0319

Project Manager: Jeff Huggins

COC#: 94810,13

#### Metals by EPA 200 Series Methods - Quality Control

| Analyte                    | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits  | RPD | RPD<br>Limit | Notes        |
|----------------------------|--------|--------------------|-------|----------------|------------------|----------|-----------------|-----|--------------|--------------|
| Batch CR09497 - EPA 3020A  |        |                    |       |                |                  |          |                 |     | •            |              |
| Blank (CR09497-BLK1)       |        |                    |       | Prepared:      | 11-11-08         | Analyzed | l: 11-12-08     |     |              |              |
| Aluminum                   | ND     | 20                 | μg/L  |                |                  |          |                 |     |              | <del>-</del> |
| Arsenic                    | ND     | 2.0                | , H   |                |                  |          |                 |     |              |              |
| Copper                     | ND     | 1.0                | н     |                |                  |          |                 |     |              |              |
| Iron                       | ND     | 50                 | Ħ     |                |                  |          |                 |     |              |              |
| Zinc                       | ND     | 2.0                | Ħ     |                |                  |          |                 |     |              |              |
| Cadmium                    | ND     | 0.50               | н     |                | •                |          | ÷               |     |              |              |
| LCS (CR09497-BS1)          |        |                    |       | Prepared:      | 11-11-08         | Analyzed | !: 11-12-08     |     |              |              |
| Aluminum                   | 106    | 20                 | μg/L  | 100            |                  | 106      | 80-120          |     |              |              |
| Arsenio .                  | 104    | 2.0                | 11    | 100            |                  | 104      | 80-120          |     |              |              |
| Copper                     | 102    | 1.0                | . #   | 100            |                  | 102      | 80-120          |     |              |              |
| Iron                       | 89.1   | 50                 | Ħ     | 100            |                  | 89       | 80-120          |     |              | •            |
| Zino                       | 102    | <b>2</b> .0        | Ħ     | 100            |                  | 102      | 80-120          |     |              |              |
| Cadmium                    | 10.5   | 0.50               | 11    | 10.0           |                  | 105      | 80-120          |     |              |              |
| LCS Dup (CR09497-BSD1)     |        |                    |       | Prepared:      | 11-11-08         | Analyzed | i: 11-12-08     |     |              |              |
| Aluminum                   | 110    | 20                 | μg/L  | · 100          |                  | 110      | 80-120          | 3   | 20           |              |
| Arsenic .                  | 104    | 2.0                | ч     | 100            | •                | 104      | 80-120          | 0.5 | 20           |              |
| Copper                     | 104    | -1.0               | 18    | 100            |                  | 104      | 80-120          | 2   | 20           |              |
| Iron                       | 100    | 50                 | 15    | 100            |                  | 100      | 80-120          | 12  | 20           |              |
| Zine                       | 106    | 2.0                | 10    | 100            |                  | 106      | 80-1 <b>2</b> 0 | 4   | 20           |              |
| Cadmium                    | 10.9   | 0.50               | H     | 10.0           |                  | 109      | 80-120          | 4   | 20           |              |
| Matrix Spike (CR09497-MS1) | So     | urce: CRK03        | 19-01 | Prepared:      | 11-11-08         | Analyzed | i: 11-12-08     |     |              |              |
| Aluminum                   | . 113  | 20                 | μg/L  | 100            | ND               | 113      | 75-125          |     | _            |              |
| Arsenio                    | 116    | 2.0                | 11    | 100            | 10.3             | 105      | 75-125          |     | *            |              |
| Copper                     | 196    | 1.0                | 0     | 100            | 97.4             | 99       | 75-125          |     |              |              |
| Iron                       | 146    | 50                 | n     | 100            | ND               | 146      | 75-125          |     |              | QM-          |
| Zinc                       | 121    | 2,0                | п     | 100            | 22.7             | 99       | 75-125 -        |     |              | •            |
| Cadmium                    | 10.8   | 0.50               | и .   | 10.0           | ND               | 108      | 75-125          |     | •            |              |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180

CLS Work Order #: CRK0319

Project Manager: Jeff Huggins

COC#: 94810,13

#### Metals by EPA 200 Series Methods - Quality Control

|                                 |        | Reporting  |               | Spike     | Source   |          | %REC        |     | RPD   |       |
|---------------------------------|--------|------------|---------------|-----------|----------|----------|-------------|-----|-------|-------|
| Analyte                         | Result | Limit      | Units         | Level     | Result   | %REC     | Limits      | RPD | Limit | Notes |
| Batch CR09497 - EPA 3020A       |        |            |               |           |          |          |             | •   |       | •     |
| Matrix Spike Dup (CR09497-MSD1) | Sour   | rce: CRK03 | 319-01        | Prepared: | 11-11-08 | Analyzed | l: 11-12-08 | }   |       | 1     |
| Aluminum                        | 111    | 20         | μ <b>g</b> /Ľ | 100       | ND       | 111      | 75-125      | 2   | 25    |       |
| Arsenic                         | 113    | 2.0        | п             | 100       | 10.3     | 103      | 75-125      | 2   | 25    |       |
| Copper ·                        | 192    | 1.0        | B             | 100       | 97.4     | 94       | 75-125      | 2   | 25    |       |
| Iron                            | 178    | 50         | I†            | 100       | ND       | 178      | 75-125      | 19  | 25    | QM-   |
| Zinc                            | · 116  | 2.0        | It            | , 100     | 22,7     | 93       | 75-125      | 5   | 25    |       |
| Cadmium                         | 10.5   | 0.50       | It            | 10.0      | ND       | 105      | 75-125      | 3   | 25    |       |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: PCA 13180

Project Manager: Jeff Huggins

CLS Work Order #: CRK0319

COC#: 94810,13

#### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

| Analyte                    | Result    | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits       | RPD . | RPD<br>Limit | Notes |
|----------------------------|-----------|--------------------|-------|----------------|------------------|----------|----------------------|-------|--------------|-------|
| Batch CR09478 - EPA 3020A  | · · · · · |                    |       | •              | ·<br>            |          |                      |       |              |       |
| Blank (CR09478-BLK1)       |           |                    | -     | Prepared:      | 11-11-08         | Analyzed | : 11-12-08           |       | •            |       |
| Aluminum                   | ND        | 20                 | μg/L  |                |                  |          |                      |       |              |       |
| Arsenic                    | ND        | 5.0                | II.   |                |                  |          |                      |       |              |       |
| Copper                     | ND        | 2.0                | ц     |                |                  |          |                      |       |              |       |
| Iron                       | ND        | 50                 | п     |                |                  |          |                      |       | •            |       |
| Zinc                       | ND        | 2.0                | 17    |                |                  |          |                      |       |              |       |
| Cadmium                    | ND        | 0.50               | 0     |                |                  |          |                      |       |              | •     |
| LCS (CR09478-BS1)          |           |                    |       | Prepared:      | 11-11-08         | Analyzed | i: 11-1 <b>2-</b> 08 |       |              |       |
| Aluminum                   | 113       | 20.                | μg/L  | 100            |                  | 113      | 80-120               |       |              | ,     |
| Arsenic                    | 107       | 5.0                | It.   | 100            |                  | 107      | 80-120               |       |              | •     |
| Copper                     | 109       | 2.0                | . #   | 100            |                  | 109      | 80-120               |       |              |       |
| Iron                       | 129       | <b>5</b> 0         | W     | 100            |                  | 129      | 80-120               | ,     |              | QM-   |
| Zinc                       | 104       | 2.0                | h '   | 100            |                  | 104      | 80-120               |       |              |       |
| Cadmium                    | 11.0      | 0.50               | ы     | 10.0           |                  | 110      | 80-120               |       |              |       |
| LCS Dup (CR09478-BSD1)     |           |                    |       | Prepared:      | 11-11-08         | Analyzed | l: 11-12-08          |       |              |       |
| Aluminum                   | 109       | 20                 | μg/L  | 100            |                  | · · 109  | 80-120               | 4     | 20           |       |
| Arsenic                    | 106       | 5.0                | lt.   | 100            |                  | 106      | 80-120               | 1     | 20           |       |
| Copper.                    | 107       | 2.0                | μ     | 100            |                  | 107      | 80-120               | 2     | · 20         |       |
|                            | 114       | 50                 | 10    | 100            |                  | 114      | 80-120               | 13    | 20           |       |
| Zinc                       | 105       | 2.0                | n     | 100            |                  | 105      | 80-120               | 0.06  | 20           |       |
| Cadmium                    | 10.8      | 0.50               | II    | 10.0           |                  | 801      | 80-120               | 1     | 20           | •     |
| Matrix Spike (CR09478-MS1) | So        | urce: CRK03        | 19-16 | Prepared:      | 11-11-08         | Analyzed | l: 11 <b>-</b> 12-08 |       |              |       |
| Aluminum                   | 105       | . 20               | μg/L  | 100            | ND               | 105      | 75-125               |       |              |       |
| Arsenic                    | 109       | 5.0                | 10    | 100            | ND               | 109      | . 75-125             |       |              |       |
| Copper                     | 104       | 2.0                | 11    | 100            | ND               | 104      | 75-125               |       |              |       |
| Iron                       | 97.1      | 50                 | п     | 001            | ND               | 97       | 75-125               |       |              | * .   |
| Zinc                       | 110       | 2.0                | n     | 100            | <b>2</b> .10     | 108      | 75-125               |       |              |       |
| Cadmium                    | 11.2      | 0.50               | D     | 10.0           | ND               | 112      | 75-125               |       |              |       |

11-21-08 08:03

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: PCA 13180 Project Manager: Jeff Huggins CLS Work Order#: CRK0319

COC #: 94810,13

### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|----------------|------------------|----------|----------------|-----|--------------|-------|
| Batch CR09478 - EPA 3020A       |        | _                  |       |                |                  | _        |                |     |              |       |
| Matrix Spike Dup (CR09478-MSD1) | Sou    | rce: CRK03         | 19-16 | Prepared:      | 11-11-08         | Analyzed | I: 11-12-08    | i   |              |       |
| Aluminum                        | 108    | 20                 | μg/L  | 100            | ND               | 108      | 75-125         | 2   | 25           |       |
| Arsenic                         | 108    | 5.0                | 11    | 100            | ND               | 108      | 75-125         | 0.6 | 25           |       |
| Copper                          | 101    | 2.0                | 19    | .100           | ND               | 101      | 75-125         | 3   | 25           |       |
| Iron                            | 98.0   | 50                 | п     | 100            | ND               | 98       | 75-125         | . 1 | 25           |       |
| Zinc                            | 104    | 2.0                | Ħ     | . 100          | 2.10             | 102      | 75-125         | 5   | 25           |       |
| Cadmium                         | 10.9   | 0.50               | 11    | 10.0           | ND               | 109      | 75-125         | 3   | 25           |       |

11-21-08 08:03

CRWOCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Projecti

Project: Walker Mine

Project Number: PCA 13180
Project Manager: Jeff Huggins

CLS Work Order #: CRK0319

COC #: 94810,13

#### Notes and Definitions

QM-7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS/LCSD recovery.

QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

QM-1 The spike recovery was outside acceptance limits for the LCS or LCSD. The batch was accepted based on acceptable MS/MSD recoveries & RPD's.

QC-2H The recovery of one CCV was greater than the acceptance limit. However, all analytes in the associated samples were ND; therefore a reanalysis was not performed.

HT-F This is a field test method and it is performed in the lab outside holding time.

HT-1 The sample was received outside of the EPA recommended holding time

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

3249 Fitzgerald Road Rancho Cordova, CA 95742

July 09, 2009

CLS Work Order #: CSF0869 COC #: 94811,83105

Jeff Huggins CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova, CA 95670-6114

Project Name: Walker Mine

Enclosed are the results of analyses for samples received by the laboratory on 06/19/09 08:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

if it be say Need law detection (14-0-00-005-49) 9 CHOOL of defection SPECIAL INSTRUCTIONS 94811 PRINT NAME / COMPANY Heare ruse the ☐ YES ALT. LOG NO. (5) =  $H_2SO_4$ (6) =  $Ne_2S_2O_3$ QUOTE # P.O. # GEOTRACKER  $Q_{\overline{g}}$ くてとしてが or YAG **EDF REPORT** TURN AROUND TIME GLOBAL ID: TELD CONDITIONS: 8 YA□ CONDITIONS / COMMENTS: Person Car ote: Fr WM-I AIR BILL# (3) = COLD (4) = NaOH COMPOSITE S YACI RECEIVED BY (SIGN) CLS ID No.: CATOK r YACI ANALYSIS REQUESTED \$ \$ \$ B. COar DATE / TIME 6/19/09 OTHER CHAIN OF CUSTODY Plaster CLS (916) 638-7301 3249 FIZGERALD RD. RANCHO CORDOVA, CA. 95742 DESTINATION LABORATORY CONTAINER CLIENT JOB NUMBER Jef Hragins-RwacB Š PRINT NAME / COMPANY Ç OTHER MATRIX 1 Safer Delan ASIO WM-40 49"CLING DC-Upskeam OC-Downstraey Regional Water Brand 160/11/5 JOB DESCRIPTION COLLECTED / MONITORING Brawns Eff Huggins/Rob Hell 06956 でいる SAMPLE eticia Naladez CUNTY PROJECT NAME , WEAT KEY MINE 6-16-09 9:45 NAM-5 CA FEDX REPORT TO: 12:20 WM-9 iogo WM-2 M-MW STICO インス一の正 RELINQUISHED BY (SIGN) 3:2 W. M. 15:30 WM-1 3,05 WM Strike NX 5:00 WM erdove. SITE LOCATION PLUMAS ( tragia & CLS - Labs TIME SHIPPED BY: NAME AND ADDRESS Rancho SAMPLED BY DATE

**8** inity of Metal Neel (and cletech SPECIAL INSTRUCTIONS CLS ID No.; 15/08/0 LOG NO. 83105 PRINT NAME / COMPANY ë ☐ YES ALT INVOICE TO: QUOTE # PO.# GEOTRACKER **EDF REPORT** YAQ **TURN AROUND TIME** 01 GLOBAL ID: FIELD CONDITIONS 5 YAG CONDITIONS / COMMENTS AIR BILL# (3) = COLD (4) = NaOH COMPOSITE s YAO RECEIVED BY (SIGN) ŗ YAG ANALYSIS, REQUESTED PRESERVATIVES: DATE / TIME 50-61-9 OTHER CHAIN OF CUSTODY CLS (916) 638-7301 3249 FIZGERALD RD. RANCHO CORDOVA, GA. 95742 Plestic DESTINATION LABORATORY CONTAINER CLIENT JOB NUMBER JEH Huggins RWACB 2 PRINT NAME / COMPANY OTHER 9 DATE ATINE MATRIX Water UPS るでして アラウンタバーウ MRW NBVBC となって 17:40-MM-12 PLISO WM-IR REPORT TO: FEDX 14:20 WM-1 RELINQUISHED BY (SIGN) 15:0 NM-1 Lumes CLS - Labs SUSPECTED CONSTITUENTS TIME \* SHIPPED BY: SITE LOCATION () NAME AND ADDRESS 6-18-S Joseph Cont DATE

841

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC #: 94811,83105

| Analyte                             | Result       | Reporting<br>Limit | Units    | Dilution   | Batch       | Prepared | Analyzed   | Method      | Note |
|-------------------------------------|--------------|--------------------|----------|------------|-------------|----------|------------|-------------|------|
| WM-5 (LGC/MIS) (CSF0869-01) Water   | Sampled: 06/ | 18/09 09:45        | Receive  | d: 06/19/0 | 9 08:00     |          |            |             |      |
| Total Alkalinity                    | . 44         | 5.0                | mg/L     | 1          | CS04589     | 06/19/09 | 06/19/09   | SM2310B     |      |
| Bicarbonate as CaCO3                | 44           | 5.0                | u        | 11         | 1t*         | II       | 11         | u           | •    |
| Carbonate as CaCO3                  | ND           | 5.0                | 11       | 11         | u           | ıt .     | ıt         |             |      |
| Hydroxide as CaCO3                  | ND           | 5.0                | II       | п          | 11          | 37       | 17         | R           |      |
| Chloride                            | 0.76         | 0.50               | • 4      |            | CS04624     | 06/22/09 | 06/22/09   | EPA 300.0   |      |
| Specific Conductance (EC)           | 82           | 1.0                | ımhos/cm |            | CS04605     | 06/22/09 | 06/22/09   | EPA 120.1   |      |
| Methylene Blue Active Substances    | ND           | 0.10               | mg/L     | ш          | CS04588     | 06/19/09 | 06/19/09   | SM5540 C    |      |
| Calcium                             | 7.3          | 1.0                | 11       | B          | CS04674     | 06/27/09 | 06/27/09   | 200.7/2340B |      |
| Magnesium                           | 2.7          | 1.0                | It       | Jt .       | ıt          | п -      | π          | u           |      |
| Potassium                           | ND           | 1.0                | If       | 11         | и.          | μ        | II         | a           |      |
| Sodium ·                            | 3.0          | 1.0                | н        | n          | 11          | u        | ır         | · u         |      |
| Hardness as CaCO3                   | 30           | 1.0                | u        | п          | D           | u        | ĮI         | B           |      |
| H                                   | 7.01         | 0.01               | pH Units | l†         | CS04566     | 06/19/09 | 06/19/09   | SM4500-H B  | HT-F |
| Sulfate as SO4                      | , ND         | 0.50               | mg/L     | ıl         | CS04624     | 06/22/09 | 06/22/09   | EPA 300.0   |      |
| Total Dissolved Solids              | 68           | 10                 | II.      | et .       | CS04623     | 06/22/09 | 06/23/09   | SM2540C     |      |
| WM-3 (DC-Downstream) (CSF0869-02) V | Vater Sampl  | ed: 06/18/09       | 10:00 R  | leceived:  | 06/19/09 08 | 8:00     |            |             |      |
| Total Alkalinity                    | 61 .         | 5.0                | mg/L     | 1          | C\$04589    | 06/19/09 | 06/19/09   | SM2310B     |      |
| Bicarbonate as CaCO3                | 61           | 5.0                | fI       | п          | n .         | H        | If         | n ,         |      |
| Carbonate as CaCO3                  | ND           | 5.0                | u .      | If         | ır .        | 11       | и          | ıı          |      |
| Hydroxide as CaCO3                  | ND           | 5.0                | 0        | п          | R           | u        | , n        | II          |      |
| Chloride                            | 0.77         | 0.50               | If       | ji         | CS04624     | 06/22/09 | 06/22/09   | EPA 300.0   |      |
| Specific Conductance (EC)           | 120          | 1.0 µ              | ımhos/cm | ii         | CS04605     | 06/22/09 | 06/22/09   | EPA 120.1   |      |
| Methylene Blue Active Substances    | ND           | 0.10               | mg/L     | li .       | CS04588     | 06/19/09 | 06/19/09   | SM5540 C    |      |
| Calcium                             | 11           | 1.0                | н        | п          | CS04674     | 06/27/09 | 06/27/09   | 200.7/2340B |      |
| Magnesium                           | 5.4          | 1.0                | п        | п          | п           | It       | ш          | D           |      |
| Potassium                           | ND           | 1.0                | п        | u          | If          | 11       | Įś         | II          |      |
| Sodium                              | 2.5          | 1.0                | 11       | u          | 11          | п        | п :        | u           | . ,  |
| Hardness as CaCO3                   | 49           | 1.0                | н        | i†         | ш           | 11       | и.         | n           |      |
| эΗ                                  | 7.23         | 0.01               | pH Units | ır         | CS04566     | 06/19/09 | 06/19/09   | SM4500-H B  | HT-F |
| Sulfate as SO4                      | 1.4          | 0.50               | mg/L     |            | C\$04624    | 06/22/09 | . 06/22/09 | EPA 300.0   |      |
| Total Dissolved Solids              | 91           | 10                 | 11       |            | CS04623     | 06/22/09 | 06/23/09   | SM2540C     |      |
|                                     |              |                    |          |            |             |          |            |             |      |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC#: 94811,83105

| Analyte                          | Result          | Reporting<br>Limit | •           | Dilution   | n Batch     | Prepared | Analyzed | Method      | Note: |
|----------------------------------|-----------------|--------------------|-------------|------------|-------------|----------|----------|-------------|-------|
| WM-1 (Portal) (CSF0869-03) Water | Sampled: 06/18/ | 09 10:30 I         | Received: 0 | 6/19/09 0  | 8:00        |          |          |             | •     |
| Total Alkalinity                 | 57              | 5.0                | mg/L        | 1.         | CS04589     | 06/19/09 | 06/19/09 | SM2310B     |       |
| Bicarbonate as CaCO3             | 57              | 5.0                | 11          | 19         | ĮI.         | ŋ        | II.      | II          |       |
| Carbonate as CaCO3               | ND              | 5.0                | 11          | 19         | II          | If       | n ·      | ш.          |       |
| Hydroxide as CaCO3               | ND              | 5,0                | 11          | И          | 11          | It.      | If       | . 0         |       |
| Chloride                         | 0.89            | 0.50               | . 10        | h          | CS04624     | 06/22/09 | 06/22/09 | EPA 300.0   |       |
| Specific Conductance (EC)        | 110             | 1,0                | μmhos/cm    | II.        | C\$04605    | 06/22/09 | 06/22/09 | EPA 120.1   |       |
| Hexavalent Chromium              | ND              | 10                 | μg/L        | U          | C\$04578    | 06/19/09 | 06/19/09 | EPA 7196A   |       |
| Hexavalent Chromium, Dissolved   | ND              | 10                 | И .         | B          | 11          | II       | It       | 11          |       |
| Methylene Blue Active Substances | ND              | 0.10               | mg/L        | п -        | CS04588     | 06/19/09 | 06/19/09 | SM5540 C    |       |
| Calcium                          | 10              | 1.0                | tj          | 11         | CS04674     | 06/27/09 | 06/27/09 | 200.7/2340B |       |
| Magnesium                        | 3.9             | 1.0                | u '         | 11         | (I          | lt .     | If       | ŋ .         |       |
| Potassium ·                      | , ND            | 1.0                | · AI        | и          | . 0         | И        | n        | II.         |       |
| Sodium                           | 4.5             | 1.0                | D           | fI         | u,          | . 4      | ч        | II          |       |
| Hardness as CaCO3                | 41              | 1.0                | ' н         | 11         | II          | II.      | ч        | 11          |       |
| pH                               | 7.33            | 0.01               | pH Units    | If         | CS04566     | 06/19/09 | 06/19/09 | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | 1.1             | 0.50               | mg/L        | . 11       | CS04624     | 06/22/09 | 06/22/09 | EPA 300.0   |       |
| Total Dissolved Solids           | 96              | 10                 | , II        | 11         | CS04623     | 06/22/09 | 06/23/09 | SM2540C     |       |
| WM-2 (DC-Upstream) (CSF0869-04)  | Water Sampled   | : 06/18/09 1       | 0:45 Rec    | elved: 06. | /19/09 08:0 | 0 -      |          | •           |       |
| Total Alkalinity                 | 70              | 5.0                | mg/L        | 1          | CS04589     | 06/19/09 | 06/19/09 | SM2310B     |       |
| Bicarbonate as CaCO3             | 70              | 5.0                | Π           | 11         | 11          | . п      | II.      | II          | •     |
| Carbonate as CaCO3               | ND              | 5.0                | 11          | н          | ш           | ıı       | D        | П           |       |
| Hydroxide as CaCO3               | ND              | 5.0                | 9           | п          | и           | II       | II       | П           |       |
| Chloride                         | 0.83            | 0.50               | . #         | и.         | CS04624     | 06/22/09 | 06/22/09 | EPA 300.0   |       |
| Specific Conductance (EC)        | 140             | 1.0                | μmhos/em    | - U        | CS04605     | 06/22/09 | 06/22/09 | EPA 120.1   |       |
| Methylene Blue Active Substances | ND              | 0.10               | mg/L        | D          | CS04588     | 06/19/09 | 06/19/09 | SM5540 C    |       |
| Calcium                          | 12              | 1.0                | n           | D          | CS04674     | 06/27/09 | 06/27/09 | 200.7/2340B |       |
| Magnesium                        | 6.2             | 1.0                | R           | n          | It          | п        | 1)       | . 4         |       |
| Potassium                        | ND              | 1.0                | B           | н          | В           | D        | n ,      | н           | •     |
| Sodium                           | 2.5             | 1.0                | и           | h          | li .        | R        | u.       | И           |       |
| Hardness as CaCO3                | 56              | 1.0                | 11          | u          | u           | lt .     | 11       | Ħ           |       |
| рН                               | 7.59            | 0.01               | pH Units    | 11         | CS04566     | 06/19/09 | 06/19/09 | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | ND              | 0.50               | mg/L        | 11         | CS04624     | 06/22/09 | 06/22/09 | EPA 300.0   |       |
| Total Dissolved Solids           | 100             | 10                 |             | 41.        | CS04623     | 06/22/09 | 06/23/09 | SM2540C     |       |

07/09/09 08:08

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]
Project Manager: Jeff Huggins

CLS Work Order #: CSF0869

COC #: 94811,83105

### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                              | Result       | Reporting<br>Limit  | Units     | Dilution  | Batch              | Prepared   | Analyzed  | Method      | Notes    |
|--------------------------------------|--------------|---------------------|-----------|-----------|--------------------|------------|-----------|-------------|----------|
| WM-4 @ 48' Culvert (CSF0869-05) Wate | r Sampled: ( | 06/18/09 12         | :00 Recei | ved: 06/1 | <b>9</b> /09 08:00 |            | E         | <u> </u>    |          |
| Total Alkalinity                     | 65           | 5.0                 | mg/L      | 1         | CS04589            | 06/19/09   | 06/19/09  | SM2310B     |          |
| Bicarbonate as CaCO3                 | 65           | 5.0                 | н .       | )I        | R                  | D          | 0         | 01          |          |
| Carbonate as CaCO3                   | ND           | 5.0                 | ļi.       | И         | I)                 | u          | ' e       | 11          |          |
| Hydroxide as CaCO3                   | ND           | 5.0                 | и.        | п         | I)                 | Œ          | . 0       | 11          |          |
| Chloride                             | 0.78         | 0.50                | H         | Ħ         | CS04624            | 06/22/09   | 06/22/09  | EPA 300.0   | •        |
| Specific Conductance (EC)            | 120          | 1.0                 | µmhos/cm  | 17        | CS04605            | 06/22/09   | 06/22/09  | EPA 120.1   |          |
| Methylene Blue Active Substances     | ND           | 0.10                | mg/L      | 0         | CS04588            | 06/19/09   | 06/19/09  | SM5540 C    |          |
| Calcium                              | 11           | 1.0                 | н         | ti .      | CS04674            | 06/27/09   | 06/27/09  | 200.7/2340B |          |
| Magnesium                            | 5.2          | 1.0                 | 0         | 11        | μ                  | . 0        | ' n       | 0 .         |          |
| Potassium                            | ND           | 1.0                 | 61        | Ħ         | IÌ                 | η          | Ð         | u           |          |
| Sodium                               | 2.6          | 1.0                 | 11        | ti        | U                  | 31         | 21        | . 11        |          |
| Hardness as CaCO3                    | 50           | 1.0                 | 11        | п         | 11                 | Ħ          | H         | *61         |          |
| рН                                   | 7.66         | 0.01                | pH Units  | lı        | C\$04566           | 06/19/09   | 06/19/09  | SM4500-H B  | HT-F     |
| Sulfate as SO4                       | 1.5          | 0.50                | mg/L      | (t        | CS04624            | 06/22/09   | 06/22/09  | EPA 300.0   |          |
| Total Dissolved Solids               | 89           | 10                  | 1)        | n         | CS04623            | 06/22/09   | 06/23/09  | SM2540C     |          |
| WM-9 (Brown's Cabin) (CSF0869-06) Wa | ·            | d: <b>06/18/</b> 09 | 12:20 Re  | ceived: 0 | 6/19/09 08:        | 00         | •         |             | .*       |
| Total Alkalinity                     | 50           | 5.0                 | mg/L      | . 1       | CS04589            | 06/19/09   | 06/19/09  | SM2310B     |          |
| Bicarbonate as CaCO3                 | 50           | 5.0                 | 11        | и         | li li              | п          | II        | n           |          |
| Carbonate as CaCO3                   | ND           | 5.0                 | н         | ıı        | п                  |            | (F        | и           |          |
| Hydroxide as CaCO3                   | · ND         | 5.0                 | II.       | 11        | в -                | n -        | ņ         | u<br>S      | •        |
| Chloride                             | 0.76         | 0.50                | (I        | æ         | CS04624            | 06/22/09   | 06/22/09  | EPA 300.0   |          |
| Specific Conductance (EC)            | 100          | 1.0                 | μmhos/cm  | #1        | CS04605            | 06/22/09   | 06/22/09  | EPA 120.1   | •        |
| Methylene Blue Active Substances     | ND           | 0.10                | mg/L      | ıt        | CS04588            | 06/19/09   | 06/19/09  | SM5540 C    |          |
| Calcium                              | 10           | 1.0                 | . "       | В.        | CS04674            | 06/27/09   | 06/27/09  | 200.7/2340B |          |
| Magnesium                            | 3.1          | 1.0                 | 0         | 11        | tt                 | 11         | , it      | n           |          |
| Potassium                            | ND           | 1.0                 | D         | n         | п                  | . 1        | D         | Ð           |          |
| Sodium                               | 3.1          | 1.0                 | · h       | 11        | 11                 | 11         |           | . 11        | <i>'</i> |
| Hardness as CaCO3                    | 38           | 1.0                 | п .       | и         | , «                | п          | þt        | n           |          |
|                                      | 7.79         | 0.01                | pH Units  | и         | CS04566            | 06/19/09   | 06/19/09  | SM4500-H B  | НТ-Г     |
| pH<br>Sulfate as SO4                 | 3.7          | 0.51                | mg/L      | R         | CS04624            | 06/22/09   | 06/22/09  | EPA 300.0   |          |
| Sulfate as SO4                       |              | 10                  | α<br>πε\π | şı        | CS04623            | 06/22/09   | 06/23/09  | SM2540C     |          |
| Total Dissolved Solids               | 81           |                     |           | •         |                    | UUI 221U 9 | 0012,3103 | 5.7.25.100  | •        |
| WM-6 (MSFS Dam) (CSF0869-07) Water   | · Sampled: 0 | 6/18/09 13:         | U5 Receiv | /ed: 06/1 | 9/09 08:00         |            |           |             |          |

CA DOHS ELAP Accreditation/Registration Number 1233

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC #: 94811,83105

| Analyte                              | Result      | Reporting<br>Limit | Units             | Dilution  | Batch       | Prepared     | Analyzed | Method      | Note |
|--------------------------------------|-------------|--------------------|-------------------|-----------|-------------|--------------|----------|-------------|------|
| WM-6 (MSFS Dam) (CSF0869-07) Water   | Sampled: 06 | 5/18/09 13:        | 05 Receiv         | ed: 06/19 | 9/09 08:00  |              |          |             |      |
| Total Alkalinity                     | 60          | 5.0                | mg/L              | 1         | CS04589     | 06/19/09     | 06/19/09 | SM2310B     |      |
| Bicarbonate as CaCO3                 | 60          | 5.0                | п .               | Ħ         | it .        | 11           | n .      | Ir          |      |
| Carbonate as CaCO3                   | ND          | 5.0                | II                | u         | 11          | ıı           | · "'     | п .         |      |
| Hydroxide as CaCO3                   | ND          | 5.0                | 11                | u         |             | II .         | IP       | u           | •    |
| Chloride                             | 0.78        | 0.50               | II                | . п       | CS04624     | 06/22/09     | 06/22/09 | EPA 300.0   |      |
| Specific Conductance (EC)            | 150         | 1.0                | μmhos/cm          | ı,        | CS04605     | 06/22/09     | 06/22/09 | EPA 120.1   |      |
| Methylene Blue Active Substances     | ND          | 0.10               | mg/L              | и :       | CS04588     | 06/19/09     | 06/19/09 | SM5540 C    |      |
| Calcium                              | 15          | , 1.0              | <b>\$1</b>        | μ         | CS04674     | 06/27/09     | 06/27/09 | 200.7/2340B |      |
| Magnesium                            | 4.2         | 1.0                | 'n                | a         | н           | If           | и        | ú           |      |
| Potassium                            | 1.1         | 1.0                | I)                | 17.       | n ·         | . 11         | II       | П           |      |
| Sodium                               | 3.2         | 1.0                | \$1               | , tı      | lı          | ıl           | . н      | 11          |      |
| Hardness as CaCO3                    | 56          | 1.0                | u                 | , H       | 11          | Ш            | 11       | И           |      |
| Η̈́q                                 | 7.76        | 0.01               | pH Units          | tı        | CS04566     | 06/19/09     | 06/19/09 | SM4500-H B  | НТ-Р |
| Sulfate as SO4                       | 17          | 0.50               | mg/L              | n         | CS04624     | 06/22/09     | 06/22/09 | EPA 300.0   |      |
| Total Dissolved Solids               | 110         | 10                 | 11                | ŧı        | CS04623     | 06/22/09     | 06/23/09 | SM2540C     |      |
| WM-7 (LGC above DC) (CSF0869-08) Wat | ter Sampled | : 06/18/09         | 13:00 Re          | ceived: 0 | 6/19/09 08: | :00          |          |             |      |
| Total Alkalinity                     | 47          | 5.0                | mg/L              | 1         | CS04589     | 06/19/09     | 06/19/09 | SM2310B     |      |
| Bicarbonate as CaCO3                 | 47          | 5.0                | u .               | ıt        | n           | . 11         | II .     | ч           |      |
| Carbonate as CaCO3                   | ND          | 5.0                |                   | Ħ         | It.         | ц            |          | п           |      |
| Hydroxide as CaCO3                   | ND          | 5.0                | 11                | 11        | 11          | II           | ,1       |             |      |
| Chloride                             | 0.76        | 0.50               | H                 | п         | CS04624     | 06/22/09     | 06/22/09 | EPA 300.0   |      |
| Specific Conductance (EC)            | . 99        | 1.0                | μmh <b>o</b> s/cm | n         | CS04605     | 06/22/09     | 06/22/09 | EPA 120.1   | 1    |
| Methylene Blue Active Substances     | ND          | 0.10               | mg/L              | ŧł        | CS04588     | 06/19/09     | 06/19/09 | SM5540 C    |      |
| Calcium                              | 9.4         | 1.0                | u .               | 0         | CS04674     | 06/27/09     | 06/27/09 | 200.7/2340B |      |
| Magnesium                            | 3.0         | 1.0                | l <b>i</b>        | В         | н           | , u          | ŧi       | l4          |      |
| Potassium                            | ND          | 1.0                | li .              | Ħ         | 17          | ı,           | p ·      | п           |      |
| Sodium                               | 3.0         | 1.0                | 0                 | Ħ         | 11          | p ·          | ı, `     | я.          |      |
| Hardness as CaCO3                    | 36          | 1.0                | u                 | п         | b           | ц            | · u      | D           |      |
| рН                                   | 7.68        | 0.01               | pH Units          | n         | CS04566     | 06/19/09 -   | 06/19/09 | SM4500-H B  | HT-F |
| Sulfate as SO4                       | 2.8         | 0.50               | mg/L              |           | CS04624     | 06/22/09     | 06/22/09 | EPA 300.0   | •    |
| Total Dissoived Solids               | 75          | 10                 | 11                |           | CS04623     | 06/22/09     | 06/23/09 | SM2540C     |      |
| WM-7A (DC above new MSFS Realignmen  |             |                    | Sampled           |           |             | eceived: 06/ |          |             |      |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project:

Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC #: 94811,83105

### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                          | Result            | Reporting<br>Limit | Units              | Dilution   | Batch   | Prepared      | Analyzed     | Method      |   | Notes |
|----------------------------------|-------------------|--------------------|--------------------|------------|---------|---------------|--------------|-------------|---|-------|
| WM-7A (DC above new MSFS Reali   |                   | 9) Water           | Sampled            | .: 06/18/0 | 9 12:25 | Received: 06  | /19/09 08:00 |             | - |       |
| Total Alkalinity                 | 65                | 5.0                | mg/L               | i          | CS04589 | 06/19/09      | 06/19/09     | SM2310B     |   |       |
| Bicarbonate as CaCO3             | 65                | 5.0                | н                  | u          | В       | 11            | и            | ĮI.         |   |       |
| Carbonate as CaCO3               | ND                | 5.0                | 41                 | u          | 11      | ,<br>H        | n            | II          |   |       |
| Hydroxide as CaCO3               | ND                | 5.0                | <b>1</b> 1         | 11         | Ħ       | n             | 11           | II .        |   |       |
| Chloride                         | 0.79              | 0.50               | II                 | п          | CS04624 | 06/22/09      | 06/22/09     | EPA 300.0   |   |       |
| Specific Conductance (EC)        | 120               | 1.0                | μmhos/cm           | и .        | CS04605 | 06/22/09      | 06/22/09     | EPA 120.1   |   |       |
| Methylene Blue Active Substances | ND                | 0.10               | mg/L               | п          | CS04588 | 3 06/19/09    | 06/19/09     | SM5540 C    |   |       |
| Calcium                          | 11                | 1.0                | ų                  | к          | CS04674 | 06/27/09      | 06/27/09     | 200.7/2340B |   |       |
| Magnesium                        | 4.8               | 1.0                | 11                 | п          | μĺ      | и .           | . It         | · ii        |   |       |
| Potassium                        | ND                | . 1.0              | u ,                | u          | a .     | H             | II.          | D .         |   |       |
| Sodium                           | 2.7               | 1.0                | ır                 | u          | 11      | . 16          | 11           | Ħ           |   |       |
| Hardness as CaCO3                | 47                | 1.0                | η.                 | fi         | 11      | 11            | п            | , II        |   |       |
| Н                                | 8.02              | 0.01               | pH Units           | п          | CS04566 | 06/19/09      | 06/19/09     | SM4500-H B  |   | HT-F  |
| Sulfate as SO4                   | 1.6               | 0.50               | mg/L               | н          | CS04624 | 06/22/09      | 06/22/09     | EPA 300.0   |   |       |
| Total Dissolved Solids           | 89                | 10                 | н                  | ч          | CS04623 | 06/22/09      | 06/23/09     | SM2540C     |   |       |
| WM-7B (DC Realignment above LG   | C) (CSF0869-10) W | ater Sam           | p <b>led:</b> 06/1 | 8/09 13:4  | 0 Recei | ved: 06/19/09 | 08:00        |             |   |       |
| Total Alkalinity                 | 60                | 5.0                | mg/L               | 1          | CS04589 | 06/19/09      | 06/19/09     | SM2310B     |   | _     |
| Bicarbonate as CaCO3             | 60                | 5.0                | 11                 | lr.        | 15      | H.            | b            | n           |   |       |
| Carbonate as CaCO3               | ND .              | 5.0                | n                  | ш .        | n       | U             | n            | 11          |   |       |
| Hydroxide as CaCO3               | ND.               | 5.0                | . "                | u          | 11      | fi .          | <b>\$1</b>   | П           |   |       |
| Chloride                         | 0.78              | 0.50               | ų                  | IT         | CS04624 | 06/22/09      | 06/22/09     | EPA 300.0   |   |       |
| Specific Conductance (EC)        | 120               | . 1.0              | μmhos/em           | n          | CS04605 | 06/22/09      | 06/22/09     | EPA 120.1   |   |       |
| Methylene Blue Active Substances | ND                | 0.10               | mg/L               |            | CS0458  | 8 06/19/09    | 06/19/09     | SM5540 C    |   |       |
| Calcium                          | 11                | 1.0                | II .               | Ħ          | CS04674 | 06/27/09      | 06/27/09     | 200,7/2340B |   |       |
| Magnesium                        | 4.7               | 1.0                | n ·                | ti .       | ıı.     | i j           | 11           | . 17        |   |       |
| Potassium                        | ND                | 1,0                | ш,                 | n          | ΙŢ      | , 11          | 11 .         | 11          |   |       |
| Sodium                           | 2.7               | 1.0                | ıı                 | 11         | ıı      | и.            | п            | п .         |   |       |
| Hardness as CaCO3                | 46                | 1.0                | u                  | n          | n       | ıı            | п            | u           |   |       |
| рН                               | 8.06              | 0.01               | pH Units           | ıı         | CS04566 | 06/19/09      | 06/19/09     | SM4500-H B  |   | HT-F  |
| Sulfate as SO4                   | 1.7               | 0.50               | mg/L               | 11         | CS04624 |               | 06/22/09     | EPA 300.0   |   |       |
| Total Dissolved Solids           | 82                | 10                 | "                  |            | CS04623 |               | 06/23/09     | SM2540C     |   |       |
| WM-7C (LGC above DC Realignme    |                   | • -                | 1                  | 10/00 12-  |         |               |              |             |   |       |

CA DOHS ELAP Accreditation/Registration Number 1233.

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC#: 94811,83105

| Analyte                                                             | Result            | Reporting<br>Limit   |             | Dilution   | Batch                         | Prepared                         | Analyzed                         | Method                             | Note |
|---------------------------------------------------------------------|-------------------|----------------------|-------------|------------|-------------------------------|----------------------------------|----------------------------------|------------------------------------|------|
| WM-7C (LGC above DC Realignmen                                      | t) (CSF0869-11) W | ater Sau             | npled: 06/1 | 8/09 13:4  | 5 Receive                     | ed: 06/19/09                     | 08:00                            |                                    |      |
| Total Alkalinity                                                    | 50                | 5.0                  | mg/L        | 1          | CS04589                       | 06/19/09                         | 06/19/09                         | SM2310B                            |      |
| Bicarbonate as CaCO3                                                | 50                | 5.0                  | I)          | U          | n                             | n                                | n                                | в                                  | F    |
| Carbonate as CaCO3                                                  | ND                | 5.0                  | n           |            | ji.                           | И                                | II                               | и                                  |      |
| Hydroxide as CaCO3                                                  | ND                | 5.0                  | . H         | R          | II                            | 21                               | μ                                | и.                                 |      |
| Chloride                                                            | 0.74              | 0.50                 | 71          | п          | CS04624                       | 06/22/09                         | 06/22/09                         | EPA 300.0                          |      |
| Specific Conductance (EC)                                           | 99                | 1.0                  | µmhos/cm    | Ħ          | CS04605                       | 06/22/09                         | 06/22/09                         | EPA 120.1                          |      |
| Methylene Blue Active Substances                                    | ND                | 0.10                 | ing/L       | ļi         | CS04588                       | 06/19/09                         | 06/19/09                         | SM5540 C                           |      |
| Calcium                                                             | 8.9               | 1.0                  | н           | н          | CS04674                       | 06/27/09                         | 06/27/09                         | 200.7/2340B                        |      |
| Magnesium                                                           | 2.8               | 1.0                  | If          | II .       | . "                           | к                                | . 11                             | н                                  |      |
| Potassium                                                           | ND                | 1.0                  | R,          | 11         | 11                            | 16                               | . 41                             | . н                                |      |
| Sodium                                                              | 3.1               | 1.0                  | fI          | II         | n                             | 11                               | В                                | H.                                 |      |
| Hardness as CaCO3                                                   | 33                | 1.0                  | 11 .        | It         | lt                            | 0                                | 11                               | Jt .                               |      |
| pH                                                                  | 7.37              | 0.01                 | pH Units    | п          | CS04566                       | 06/19/09                         | 06/19/09                         | SM4500-H B                         | HT-I |
| Sulfate as SO4                                                      | 2.4               | 0.50                 | mg/L        | 11         | CS04624                       | 06/22/09                         | 06/22/09                         | EPA 300.0                          |      |
| Total Dissolved Solids                                              | <b>7</b> 9        | 10                   | 11          | u          | CS04623                       | 06/22/09                         | 06/23/09                         | SM2540C                            |      |
| WM-8 (LGC below DC) (CSF0869-12                                     | ) Water Samples   | d: 06/18/ <b>0</b> 9 | 14:00 Re    | ceived: 00 | 5/19/09 08:                   | :00                              | ,                                |                                    |      |
| Total Alkalinity                                                    | 50                | 5.0                  | mg/L        | 1          | CS04589                       | 06/19/09                         | 06/19/09                         | SM2310B                            |      |
| Bicarbonate as CaCO3                                                | 50                | 5.0                  | b           | U          | n                             | . "                              | 11                               | 11                                 |      |
| Carbonate as CaCO3                                                  | ND                | 5.0                  | 10          | ır         | u                             | U                                | , 11                             | n ·.                               |      |
| Hydroxide as CaCO3                                                  | ND                | 5.0                  | IÌ          | If         | u                             | b                                | 11                               | ti i                               | ,    |
| Chloride                                                            | 0.76              | 0.50                 | ρ.          | 17         | CS04624                       | 06/22/09                         | 06/22/09                         | EPA 300.0                          | •    |
| Specific Conductance (EC)                                           | 100               | 1.0                  | μmhos/em    | н          | CS04605                       | 06/22/09                         | 06/22/09                         | EPA 120.1                          |      |
| Methylene Blue Active Substances                                    | ND                | 0.10                 | mg/L        | И          | CS04588                       | 06/19/09                         | 06/19/09                         | SM5540 C                           |      |
| Calcium .                                                           | 9.6               | 1.0                  | н           | ti.        | CS04674                       | 06/27/09                         | 06/27/09                         | 200.7/2340B                        |      |
| Magnesium                                                           | 3.1               | 1.0                  | 11          | 12         | II                            | u                                | 11                               | g .                                |      |
| Potassium                                                           | ND                | 1.0                  | 11          | 11         | n                             | 11                               | ıı                               | н                                  |      |
| Sodium                                                              | 3.0               | 1.0                  | 11          | 'n         | II                            |                                  | н                                | •                                  |      |
|                                                                     |                   | 1.0                  | ŧi          | н          | И                             | U                                | н                                | jl.                                |      |
|                                                                     | 36 .              | 1.0                  |             |            |                               |                                  |                                  |                                    |      |
| Hardness as CaCO3                                                   | 36<br>7.73        |                      | pH Units    | n          | CS04566                       | 06/19/09                         | 06/19/09                         | SM4500-H B                         | HT-F |
| Hardness as CaCO3<br>pH                                             | 7.73              | 0.01                 | pH Units    |            | CS04566<br>CS04624            |                                  |                                  |                                    | HT-F |
| Hardness as CaCO3<br>pH<br>Sulfate as SO4<br>Total Dissolved Solids |                   |                      |             | h          | CS04566<br>CS04624<br>CS04623 | 06/19/09<br>06/22/09<br>06/22/09 | 06/19/09<br>06/22/09<br>06/23/09 | SM4500-H B<br>EPA 300.0<br>SM2540C | HT-F |

07/09/09 08:08

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CSF0869

COC#: 94811,83105

| Analyte                            | Result         | Reporting<br>Limit | Units     | Dilution   | Batch            | Prepared | Analyzed    | Method      | Notes |
|------------------------------------|----------------|--------------------|-----------|------------|------------------|----------|-------------|-------------|-------|
| WM-11 (SBWC) (CSF0869-13) Water    | Sampled: 06/18 | /09 14:30          | Received: | 06/19/09   | 08:00            | •        | <del></del> |             |       |
| Total Alkalinity                   | 18             | 5.0                | mg/L      | 1          | C\$04589         | 06/19/09 | 06/19/09    | SM2310B     |       |
| Bicarbonate as CaCO3               | 18             | 5.0                | jt -      |            | D                | II.      | . "         | ŧi.         |       |
| Carbonate as CaCO3                 | ND             | 5.0                | n ·       | II         | . 0              | D        | 11          | н           |       |
| Hydroxide as CaCO3                 | ND             | 5.0                | И         | tr         | U                | н        | 11          | li          |       |
| Chloride                           | 0.70           | 0.50               | . "       | ır         | CS04624          | 06/22/09 | 06/22/09    | EPA 300.0   |       |
| Specific Conductance (EC)          | 39             | 1.0                | μmhos/cm  | Iŧ         | C\$04605         | 06/22/09 | 06/22/09    | EPA 120.1   |       |
| Methylene Blue Active Substances   | ND             | 0.10               | mg/L      | U          | CS04588          | 06/19/09 | 06/19/09    | SM5540 C    |       |
| Calcium                            | 3.2            | 1.0                | ıt        | 11         | <b>C</b> \$04674 | 06/27/09 | 06/27/09    | 200.7/2340B |       |
| Magnesium                          | 1.0            | 1.0                | , н       | . "        | n,               | . 6      | U           | 11          |       |
| Potassium                          | ND             | 1.0                | И         | U          | . "              | н        | n           | · n         |       |
| Sodium                             | 1.8            | 1.0                | #1        | ŋ          | II.              | п        | u           | ħ           |       |
| Hardness as CaCO3                  | 12             | 1.0                | . н       | Q          | II.              | p        | (1          | π,          |       |
| pH                                 | 6.82           | 0.01               | pH Units  | lt.        | CS04566          | 06/19/09 | 06/19/09    | \$M4500-H B | HT-F  |
| Sulfate as SO4                     | ND             | 0.50               | mg/L      | G.         | CS04624          | 06/22/09 | 06/22/09    | EPA 300.0   |       |
| Total Dissolved Solids             | 59             | 10                 | н         | ij         | <b>C</b> \$04623 | 06/22/09 | 06/23/09    | SM2540C     |       |
| WM-12 (MBWC) (CSF0869-14) Water    | Sampled: 06/1  | 8/09 14:40         | Received  | : 06/19/09 | 9 08:00          |          |             |             |       |
| Total Alkalinity                   | 21             | 5.0                | mg/L      | 1          | C\$04589         | 06/19/09 | 06/19/09    | SM2310B     |       |
| Bicarbonate as CaCO3               | 21             | 5.0                | . 11      | н          | 9                | Ð        | U           | ją          | ÷     |
| Carbonate as CaCO3                 | ND             | 5.0                | **        | п          | II.              | μ        | U           | 11 .        | •     |
| Hydroxide as CaCO3                 | ND             | 5.0                | . в       | И          | u                | и.       | D           | 10.1        |       |
| Chloride                           | 0.72           | 0.50               | #1        | n ·        | CS04624          | 06/22/09 | 06/22/09    | EPA 300.0   |       |
| Specific Conductance (EC)          | 38             | 1.0                | μmhos/cm  | 1)         | C\$04605         | 06/22/09 | 06/22/09    | EPA 120.1   |       |
| Methylene Blue Active Substances   | ND             | 0.10               | mg/L      | n          | C\$04588         | 06/19/09 | 06/19/09    | SM5540 C    |       |
| Calcium                            | 3.2            | 1.0                | 'n        | B          | C\$04674         | 06/27/09 | 06/27/09    | 200.7/2340B |       |
| Magnesium                          | 1.5            | 1.0                | IF        | 11         | n                | II.      | u ·         | 0           |       |
| Potassium                          | ND             | 1.0                | D         | e.         | b                | IT       | )1          |             |       |
| Sodium                             | 1.2            | 1.0                | n         | e,         | . 0              | H        | 11          | 0           |       |
| Hardness as CaCO3                  | 14             | 1.0                | n         | tt         | . "              | U        | It          | П           |       |
| pH                                 | 6.22           | 0.01               | pH Units  | н          | CS04566          | 06/19/09 | 06/19/09    | SM4500-H B  | HT-F  |
| Sulfate as SO4                     | ND             | 0.50               | mg/L      | Ħ          | CS04624          | 06/22/09 | 06/22/09    | EPA 300.0   |       |
| Total Dissolved Solids             | 30             | 10                 | 11        | и          | CS04623          | 06/22/09 | 06/23/09    | SM2540C     |       |
| WM-13 (Nye Crk) (CSF0869-15) Water | Sampled: 06/1  | 18/09 14:50        | ) Receive | d: 06/19/0 | 9 08:00          |          |             |             |       |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project:

Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC#: 94811,83105

|                                    | Pogult        | Reporting<br>Limit | Units        | Dilution                    | Batch      | Prepared  | Analyzed  | Method      | Notes |
|------------------------------------|---------------|--------------------|--------------|-----------------------------|------------|-----------|-----------|-------------|-------|
| Analyte                            | Result        |                    |              |                             |            |           |           |             |       |
| WM-13 (Nye Crk) (CSF0869-15) Water | Sampled: 06/  |                    |              |                             |            |           |           | SM2310B     |       |
| Total Alkalinity                   | 38            | 5.0                | mg/L         | 1                           | CS04589    | 06/19/09  | 06/19/09  | 210173100   |       |
| Bicarbonate as CaCO3               | 38            | 5.0                | II           | П                           |            |           | "<br>II   | ı.<br>Il    |       |
| Carbonate as CaCO3                 | ND            | 5.0                | Ħ            | , 11                        | 11         | U .       |           |             |       |
| Hydroxide as CaCO3                 | ND            | 5.0                | H .          | Ш                           |            | "         | 0.6/0=100 | EPA 300.0   | ÷     |
| Chloride                           | 0.73          | 0.50               | . 41         | 51                          | C\$04624   | 06/22/09  | 06/22/09  |             |       |
| Specific Conductance (EC)          | 74            |                    | μmhos/cm     | . "                         | CS04605    | 06/22/09  | 06/22/09  | EPA 120.1   |       |
| Methylene Blue Active Substances   | ND            | 0.10               | mg/L         |                             | CS04588    | 06/19/09  | 06/19/09  | SM5540 C    |       |
| Calcium                            | 7.0           | 1.0                | .#           | 11                          | CS04674    | 06/27/09  | 06/27/09  | 200.7/2340B |       |
| Magnesium                          | 2.8           | 1.0                | II           | 17                          | 11         | . 11      | d         |             |       |
| Potassium                          | ND            | 1.0                | 11           | n                           | ti .       | 1f        | 41        | ,           |       |
| Sodium                             | 1.8           | 1.0                | H            | Ħ                           | п          | IF.       | Ħ         | "           |       |
| Hardness as CaCO3                  | 29            | 1.0                | n            | n                           | Ħ          | Ħ         | И         | ri<br>—     |       |
| pH                                 | 7.20          | 0.01               | pH Units     | п                           | CS04566    | 06/19/09  | 06/19/09  | SM4500-H B  | HT-F  |
| Sulfate as SO4                     | ND            | 0.50               | ${\sf mg/L}$ | Ħ                           | C\$04624   | 06/22/09  | 06/22/09  | EPA 300.0   |       |
| Total Dissolved Solids             | 29            | 10                 | n            | Π                           | CS04623    | 06/22/09  | 06/23/09  | SM2540C     |       |
| WM-17 (NBWC) (CSF0869-16) Water    | Sampled: 06/1 | 8/09 15:00         | Received     | : <b>0</b> 6/1 <b>9</b> /09 | 08:00      |           |           |             |       |
| Total Alkalinity                   | 77            | 5.0                | mg/L         | 1                           | CS04589~   | 06/19/09  | 06/19/09  | SM2310B     | •     |
| Bicarbonate as CaCO3               | 77            | 5.0                | . 10         | 16                          | tt         | 11        | P         | Ħ           |       |
| Carbonate as CaCO3                 | ND            | 5.0                | ш            | Ц                           | It         | lį        | U         | . "         |       |
| Hydroxide as CaCO3                 | ND ·          | 5.0                | ti           | . 11                        | · u        | 17        | lf        | , il        |       |
| Chloride                           | 0.84          | 0.50               | 11           |                             | C\$04624   | 06/22/09  | 06/22/09  | EPA 300.0   |       |
| Specific Conductance (EC)          | 160           | 1.0                | μmhos/cm     | H                           | CS04605    | 06/22/09  | 06/22/09  | EPA 120.1   |       |
| Methylene Blue Active Substances   | ND            | 0.10               | mg/L         | 0                           | CS04588    | 06/19/09. | 06/19/09  | SM5540 C    |       |
| Calcium                            | 14            | 1.0                | н            | 11                          | CS04674    | 06/27/09  | 06/27/09  | 200.7/2340B |       |
| Magnesium                          | 5.8           | 1.0                | н            | п                           | Į <b>I</b> | II .      | 17        | i. n        |       |
| Potassium                          | 1.3           | 1.0                | į‡.          | U                           | II         | н .       | U .       | și.         | •     |
| Sodium                             | 3.1           | 1,0                | it           |                             | ш          | 16        | t+        | H .         |       |
| Hardness as CaCO3                  | 59            | 1.0                | u            | n                           | μ          | 11        | п '       | ll '        |       |
|                                    | 7.95          | 0.01               |              | 13                          | CS04566    | 06/19/09  | 06/19/09  | SM4500-H B  | HT-F  |
| pH<br>Sulfate as SO4               | ND            | 0.50               | -            | 11                          | CS04624    | 06/22/09  | 06/22/09  | EPA 300.0   |       |
| Sulfate as SO4                     | 110           | 10                 |              | н                           | CS04623    | 06/22/09  | 06/23/09  | SM2540C     | ٠,    |
| Total Dissolved Solids             | 110           | 10                 |              |                             |            |           |           |             |       |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC #: 94811,83105

#### Metals by EPA 200 Series Methods

| Analyte WM-5 (LGC/MIS) (CSF0869-01) Water Aluminum Arsenic Copper Iron Zinc Cadmium WM-3 (DC-Downstream) (CSF0869-02) W | Result  Sampled: 29 ND ND ND 370 ND ND ND | Reporting<br>Limit<br>06/18/09 09:45<br>20<br>2.0<br>1.0<br>100 | Units Recei |              |                  | Prepared 06/23/09 | Analyzed | Method    | Note |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|-------------|--------------|------------------|-------------------|----------|-----------|------|
| Aluminum<br>Arsenic<br>Copper<br>Iron<br>Zinc<br>Cadmium                                                                | 29<br>ND<br>ND<br>370<br>ND               | 20<br>2.0<br>1.0                                                | μg/L        | 1            | <u>_</u>         | 06/23/00          |          |           |      |
| Arsenic<br>Copper<br>Iron<br>Zinc<br>Cadmium                                                                            | ND<br>ND<br><b>370</b><br>ND              | 2.0<br>1.0                                                      | n           |              | CS04678          | 06/23/00          |          |           |      |
| Copper<br>Iron<br>Zinc<br>Cadmium                                                                                       | ND<br>370<br>ND                           | 1.0                                                             |             | tı           |                  | 00/23/03          | 06/23/09 | EPA 200.8 |      |
| Iron<br>Zine<br>Cadmium                                                                                                 | <b>370</b><br>ND                          |                                                                 | 11          |              | ti .             | 11                | , u      | n         |      |
| Zinc<br>Cadmium                                                                                                         | ND                                        | 100                                                             |             | ·            | ti.              | н                 | u        | 11        |      |
| Cadmium                                                                                                                 |                                           |                                                                 | п           | . 2          | 0                |                   | 11:      | u         |      |
|                                                                                                                         | MID                                       | 2.0                                                             | (1          | 1            | 11               | 11                | 11       | Ö         |      |
| WM-3 (DC-Downstream) (CSE0869-02) W                                                                                     | מא                                        | 0.50                                                            | 11          | . 1)         | it               | п                 | И        | ti        |      |
| Tria-b (bc-bo matically (correct) Tr                                                                                    | ater San                                  | pled: 06/18/09                                                  | 10:00       | Received:    | 06/19/09 0       | 8:00              |          |           |      |
| Aluminum                                                                                                                | 34                                        | 20                                                              | <br>μg/L    | 1            | CS <b>0</b> 4678 | 06/23/09          | 06/23/09 | EPA 200.8 |      |
| Arsenic                                                                                                                 | ND                                        | 2,0                                                             | t           | )r           | n                | н.                | t)       | u         |      |
| Copper                                                                                                                  | 13                                        | 1.0                                                             | . 11        | 11           | If               | u                 | 0 '      | . "       |      |
| Iron .                                                                                                                  | 260                                       | 100                                                             | n           | . 2          | μ .              | H .               | D        | . It      |      |
| Zine .                                                                                                                  | 4.9                                       | 2.0                                                             | н           | 1            | ti               |                   | н        | If        |      |
| Cadmium                                                                                                                 | ND                                        | 0.50                                                            | 11          | n            | u                | ir ·              | 0        | и.        |      |
| WM-1 (Portal) (CSF0869-03) Water San                                                                                    | pled: 06/13                               | 8/09 10:30 Re                                                   | ceived:     | 06/19/09 08  | 3:00             |                   |          |           |      |
| Aluminum                                                                                                                | ND                                        | 20                                                              | μg/L        | 1            | CS04678          | 06/23/09          | 06/23/09 | EPA 200.8 |      |
| Arsenic                                                                                                                 | 14                                        | * 2.0                                                           | D           | 1 H . at     | . "              | II                | 11       | u         |      |
| Copper                                                                                                                  | 98                                        | 1.0                                                             | D           | п            | и                | ŧŧ                | n        | Ø         |      |
| Iron                                                                                                                    | ND                                        | 50                                                              | 17          | n            | ri               | ¥I                | 17       | n ,       | •    |
| Ziné                                                                                                                    | 26                                        | 2.0                                                             | 11          | h            | et               | u ·               | Ш        | . II      |      |
| Cadmium                                                                                                                 | ND                                        | 0.50                                                            | ú           | n            | , ir             | n ·               | и        | и .       |      |
| WM-2 (DC-Upstream) (CSF0869-04) Wate                                                                                    | er Sample                                 | ed: 06/18/09 10:                                                | 45 Re       | eceived: 06/ | 19/09 08:0       | 0                 |          |           |      |
| Aluminum .                                                                                                              | ND                                        | 20                                                              | μg/L        | 1            | CS04678          | 06/23/09          | 06/23/09 | EPA 200.8 |      |
| Ars <b>e</b> nic                                                                                                        | ND                                        | 2.0                                                             | п           | Iŧ           | If               | n                 | 0        | U         |      |
| Copper                                                                                                                  | ND                                        | 1.0                                                             | 11          | u            | ĸ                | 11                | II       | и         |      |
| Iron                                                                                                                    | ND                                        | 50                                                              | tt          | H            | н                | U                 | П        | Ħ .       |      |
| Zinc                                                                                                                    | ND                                        | 2.0                                                             | 16          | Ħ            | u                | tr.               | ji       | (I        |      |
| Cadmium                                                                                                                 | ND                                        | 0.50                                                            | ar .        | ţI           | . H              | ц                 | n        | ' н       |      |
| WM-4 @ 48' Culvert (CSF0869-05) Water                                                                                   | Sampled                                   | : 06/1 <mark>8/09 12:0</mark>                                   | 0 Rec       | eived: 06/19 | 0/09 08:00       | •                 |          |           |      |
| Aluminum                                                                                                                | 22                                        | 20                                                              | μg/L        | 1            | CS04678          | 06/23/09          | 06/23/09 | EPA 200.8 | •    |
| Arsenic                                                                                                                 | ND                                        | 2.0                                                             | u           | Ħ            | ii               | lt .              | 19       | н         |      |
| Copper                                                                                                                  | 18                                        | 1.0                                                             | a           | 11           | )I               | II                | ø        | 11        |      |
| Iron                                                                                                                    | 130                                       | 50                                                              | 11          | (I           | 11               | #1                | u        | 41        |      |

CA DOHS ELAP Accreditation/Registration Number 1233

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

CLS Work Order#: CSF0869

COC #: 94811,83105

### Project Manager: Jeff Huggins Metals by EPA 200 Series Methods

| WM-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyte                                |               | Result             | Reporting<br>Limit | Units     | Dilution            | Batch       | Prepared     | Analyzed      | Method    | Note           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|--------------------|--------------------|-----------|---------------------|-------------|--------------|---------------|-----------|----------------|
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WM-4 @ 48 <sup>t</sup> Culvert (CSF086 | 59-05) Water  | Sampled:           | 06/18/09 12:       | 00 Rec    | eived: 06/1         | 9/09 08:00  |              |               |           |                |
| Sampled: 16/18/09   12:20   Received: 16/19/09   18:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zine                                   |               | 4.0                | 2.0                | μg/L      | 1                   | CS04678     | u -          | 06/23/09      | EPA 200.8 | · <del>-</del> |
| Aluminum    21   20   pg/L   1   CS04678   06/23/09   06/23/09   PPA 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cadmium                                |               | ND                 | 0.50               | н .       | • 11                | 11          | u            | . и           | 11        |                |
| Arsenic   ND   2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WM-9 (Brown's Cabin) (CSF              | 0869-06) Wate | er Sample          | d: 06/18/09 1      | 2:20 R    | eceived: 06         | 5/19/09 08: | 00           |               |           |                |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aluminum                               |               | 21                 | 20                 | μg/L      | 1                   | CS04678     | 06/23/09     | 06/23/09      | EPA 200.8 |                |
| Tron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arsenic                                | .:            | ND                 | 2.0                | п         | 11                  | 11          | 0            | H             | (I        |                |
| ND   2.0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Copper                                 |               | 10                 | 1.0                | U         | . 11                | . 11        | n .          | u             | tt        |                |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [ron                                   |               | 360                | 100                | в.        | 2                   | H           | II           | n ,           | a         | •              |
| MM-6 (MSFS Dam) (CSF0869-07) Water   Sampled: 06/18/09 13:05   Received: 06/19/09 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zinc                                   |               | ND                 | 2.0                | et        | 1                   | п           | u            |               | a         |                |
| Aluminum    ND   20   µg/L   1   C804678   06/23/09   06/23/09   EPA 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cadmium                                |               | ND                 | 0.50               | If        | n                   | ц           | U            | H             |           |                |
| Arsenic ND 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WM-6 (MSFS Dam) (CSF0869               | 9-07) Water   | Sampled: 0         | 6/18/09 13:0       | 5 Rece    | ived: <b>0</b> 6/19 | /09 08:00   |              |               |           |                |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aluminum                               |               | ND                 | 20                 | µg/L      | 1                   | CS04678     | 06/23/09     | 06/23/09      | EPA 200.8 |                |
| Tron   680   250   5   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Arsenic                                |               | ND                 | 2.0                | U         | ø                   | и,          | II           | п             | 11        |                |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Copper                                 |               | 100                | 1.0                | ø         | 11                  | It          | . п          | 11            | · N       |                |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Iron ·                                 |               | 680                | 250                | U         | 5                   | Pt          | (I           |               | . 11      |                |
| Marconic   ND   20   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zinc                                   |               | 13                 | 2.0                | σ         | 1                   | It          | Ħ            | 11            | . 44      |                |
| Aluminum ND 20 µg/L 1 CS04678 06/23/09 06/23/09 EPA 200.8  Arsenic ND 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cadınium                               |               | ND                 | 0.50               | . U       | 11                  | If          | 11           | . "           | 11        |                |
| Arsenic ND 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WM-7 (LGC above DC) (CSF               | 0869-08) Wat  | er Sample          | ed: 06/18/09 I     | (3:00 F   | Received: 0         | 6/19/09 08  | :00          |               |           |                |
| Copper   3.4   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aluminum                               |               | ND                 | 20                 | μg/L      | t                   | CS04678     | 06/23/09     | 06/23/09      | EPA 200.8 |                |
| Iron   360   100   "   2   "   "   "   "   "   "     Table   Cadmium   ND   0.50   "   "   "   "   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arsenic                                |               | ND                 | 2.0                | Ħ         | 11                  | u           | u            | II            | JI.       |                |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Copper                                 |               | 3.4                | 1.0                | 'n        | ш                   | U           | #            | n             | н         |                |
| Cadmium ND 0.50 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |               | 360                | 100                | rı        | 2                   | . 0         |              | 0 - 2         | h .       |                |
| Cadmium         ND         0.30           WM-7A (DC above new MSFS Realignment) (CSF0869-09) Water         Sampled: 06/18/09 12:25         Received: 06/19/09 08:00           Aluminum         ND         20         μg/L         1         CS04678         06/23/09         06/23/09         EPA 200.8           Arsenic         ND         2.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " | Zinc                                   |               | ND                 | 2.0                | 11        | 1                   | 11.         | 14           | 11            | Iŧ        |                |
| Aluminum ND 20 µg/L 1 C804678 06/23/09 06/23/09 EPA 200.8  Arsenic ND 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cadmium .                              |               | ND                 | 0.50               | 11        | И                   | 11          | · 16         | п             | 1f        |                |
| Arsenic ND 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WM-7A (DC above new MSF)               | S Realignmen  | t) (CSF0869        | 9-09) Water        | Sampl     | ed: 06/18/0         | 9 12:25 F   | Received: 00 | 5/19/09 08:00 |           |                |
| Arsenic         ND         2.0           Copper         26         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                         | Aluminum                               |               | ND                 | 20                 | μg/L      | 1                   | CS04678     | 06/23/09     | 06/23/09      | EPA 200.8 |                |
| Copper         26         1.0           Iron         230         100         2         " " " " "           Zinc         3.6         2.0         1         " " " " " " " "           Cadmium         ND         0.50         " " " " " " " " " " " "           WM-7B (DC Realignment above LGC) (CSF0869-10) Water         Sampled: 06/18/09 13:40         Received: 06/19/09 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arsenic ·                              |               | ND                 | 2.0                | И         | И                   | U           | 11           | И             | ' и       |                |
| Zinc 3.6 2.0 " 1 " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Copper                                 | •             | 26                 | . 1.0              | ø         | . 0                 | μ           | 0 .          | . "           | u         |                |
| Cadmium ND 0.50 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Iron                                   |               | 230                | 100                | ø         | 2                   | ij          | u            | . 11          | u         | •              |
| Cadmium         ND         0.50         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |               | 3.6                | 2.0                | ti        | 1                   | ц           | u            | . н           | įį        |                |
| WM-7B (DC Realignment above LGC) (CSF0869-10) Water Sampled: 06/18/09 13:40 Received: 06/19/09 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |               |                    |                    | e e       | . 11                | ,<br>n      | 0            | и             | В         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | ve LGC) (CS   | F0869-10) <b>V</b> | Water Sam          | pled: 06. | /18/09 13:4         | 0 Receive   | ed: 06/19/09 | 9 08:00       |           |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | • •           | 35                 | 20                 | <br>μg/L  | 1                   | CS04678     | 06/23/09     | 06/23/09      | EPA 200.8 |                |

CA DOHS BLAP Accreditation/Registration Number 1233

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC#: 94811,83105

### Metals by EPA 200 Series Methods

| Analyte                    | . Re<br>Result             | porting<br>Limit | Units     | Dilution     | Batch      | Prepared     | Analyzed     | Method    | Not         |
|----------------------------|----------------------------|------------------|-----------|--------------|------------|--------------|--------------|-----------|-------------|
| WM-7B (DC Realignment abov |                            |                  |           |              |            | ed: 06/19/09 |              |           |             |
| Arsenic                    | ND                         | 2.0              | μg/L      | 1            | CS04678    | 11           | 06/23/09     | EPA 200.8 | <del></del> |
| Copper                     | 22                         | 1.0              | i d       | II           | n          | 11           | 11           | · II      |             |
| Iron                       | 180                        | .50              | п         | 11           | п          | U            | l‡           | ai .      |             |
| Zinc                       | 9.3                        | 2.0              | II        | п            | B          | U            | 'n           | II .      |             |
| Cadmium                    | ND                         | 0.50             | и,        | п            | Jt .       | h            | ij           | h         |             |
| WM-7C (LGC above DC Realig | gnment) (CSF0869-11) Water | r Sam            | pled: 06/ | 18/09 13:45  | Receive    | ed: 06/19/09 | 08:00        |           |             |
| Aluminum                   | ND                         | 20               | μg/L      | 1            | CS04678    | 06/23/09     | 06/23/09     | EPA 200.8 |             |
| Arsenic                    | ND                         | 2.0              | Pr .      | It           | U          | H            | tt           | It        | ٠           |
| Copper                     | ND                         | 1.0              | ti        | 11           | P ·        | н .          | ti.          | П         |             |
| Iron                       | 440                        | 250              | If        | 5            | u ·        | IJ           | It           | tį        |             |
| Zinc                       | ND                         | 2.0              | It        | 1            | II .       | · - II       | ;I           | D         |             |
| Cadmium                    | ND                         | 0.50             | jt        | IJ           | н          | H            | и,           | Ü         |             |
| WM-8 (LGC below DC) (CSF0  | 869-12) Water Sampled: 06  | /18/09           | 14:00 R   | eceived: 06  | /19/09 08: | :00          |              |           |             |
| Aluminum                   | ND                         | 20               | μg/L      | 1            | CS04678    | 06/23/09     | 06/23/09     | EPA 200.8 |             |
| Arsenic                    | ND                         | 2.0              | P         | ti           | a          | 11           | , D          | И         |             |
| Copper                     | 9.9                        | 1.0              | и         | IJ           | D          | . 11         | It           | Ħ .       | •           |
| lron .                     | 380                        | 100              | ii .      | 2            | И          | j†           | П            | D         |             |
| Zinc                       | 2.8                        | 2.0              | ti        | 1            | и .        | II           | II           | н         |             |
| Cadmium                    | . ND                       | 0.50             | II.       | н            | H          | II           | u            | u         |             |
| WM-11 (SBWC) (CSF0869-13)  | Water Sampled: 06/18/09    | [4:30]           | Received  | : 06/19/09 0 | 8:00       |              |              |           |             |
| Aluminum                   | 22                         | 20               | μg/L      | 1 0          | \$04678    | 06/23/09     | 06/23/09     | EPA 200.8 |             |
| Arsenic                    | ND                         | 2.0              | 11        | It           | n          | II           | 41           | u         |             |
| Copper                     | 3.7                        | 1.0              | п         |              | 11         | u            | ti           | u         |             |
| ron                        | ND                         | 50               | И         | ıı           | "          | . н          | II           | II        |             |
| Zine .                     | 2.8                        | 2.0              | n         | . 11         | ĮĮ.        | u            | It.          | U         |             |
| Cadmium                    | ND                         | 0.50             | II .      | 11           | lı         | II .         | 4            | . 11      |             |
| WM-12 (MBWC) (CSF0869-14)  | Water Sampled: 06/18/09    | 14:40            | Received  | l: 06/19/09  | 08:00      |              |              |           |             |
| Aluminum                   | 25                         | . 20             | μg/L      | 1 C          | S04678     | 06/23/09     | 06/23/09     | EPA 200.8 |             |
| Arsenic                    | ND                         | 2.0              | at        | ıı           | R          | 11           | IJ           | II        | •           |
| Copper                     | 5.6                        | 1.0              | †I        | µ .          | 11         | 9            | п            | II .      |             |
|                            |                            |                  | 11        |              | n          |              | <b>4</b> 1 , | ·         |             |
| ron                        | ND                         | 50               |           | 'n           |            | II .         | 44 .         | · 11      |             |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC #: 94811,83105

#### Metals by EPA 200 Series Methods

| Analyte                            | Result        | Reporting<br>Limit | Units    | Dilution    | Batch   | Prepared          | Analyzed | Method    | Notes |
|------------------------------------|---------------|--------------------|----------|-------------|---------|-------------------|----------|-----------|-------|
| WM-12 (MBWC) (CSF0869-14) Water    | Sampled: 06/1 | 8/09 14:40         | Receive  | d: 06/19/09 | 08:00   |                   |          |           |       |
| Cadmium                            | ND            | 0.50               | μg/L     | 1           | CS04678 | и                 | 06/23/09 | EPA 200.8 |       |
| WM-13 (Nye Crk) (CSF0869-15) Water | Sampled: 06/  | 18/09 14:50        | Receive  | ed: 06/19/0 | 9 08:00 |                   |          |           |       |
| Aluminum                           | ND            | 20                 | μg/L     | . 1         | CS04678 | 06/23/09          | 06/23/09 | EPA 200.8 |       |
| Arsenic                            | ND            | 2.0                | 9        | 11          | 11      | h                 | Ŋ        | u         |       |
| Copper                             | ND            | 1.0                | Œ        | 9           | и       | 11                | н :      | æt        |       |
| Iron                               | ND            | 50                 | : 0      | 0           | u       | n                 | . 0      | u(        |       |
| Zinc                               | ND            | 2.0                | it .     | lt .        | u       | ti                | 0 .      | ч         |       |
| Cadmium                            | ND            | 0.50               | н        | , и         | t:      | n                 | 1r       | și        |       |
| WM-17 (NBWC) (CSF0869-16) Water    | Sampled: 06/1 | 8/09 15:00         | Received | 1: 06/19/09 | 08:00   |                   |          |           |       |
| Aluminum                           | ИD            | 20                 | μg/L     | 1           | CS04678 | 06/23/ <b>0</b> 9 | 06/23/09 | EPA 200.8 |       |
| Arsenic                            | ND            | 2.0                | Н        |             | Ħ       | H                 | 11       | 7(        |       |
| Copper                             | ND ·          | 1.0                | IJ       | ď           | и       | It                | 11       | н         |       |
| Iron                               | ND            | 50                 | II       | II          | · tt    | tt .              | ıt       | Ħ         |       |
| Zinc                               | · ND          | 2.0                | II.      | (t          | n .     | 11                | п        | н         |       |
| Cadmium                            | ND            | 0.50               | II       | ıt          | н       | B                 | п        | Ħ         |       |

07/09/09 08:08

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

CLS Work Order#: CSF0869

Project Manager: Jeff Huggins

COC #: 94811,83105

#### Metals (Dissolved) by EPA 200 Series Methods

| Analyte                             | Result        | Reporting<br>Limit | Units   | Dilution      | Batch       | Prepared | Analyzed | Method    | Notes |
|-------------------------------------|---------------|--------------------|---------|---------------|-------------|----------|----------|-----------|-------|
| WM-5 (LGC/MIS) (CSF0869-01) Water   | Sampled: 06   | /18/09 09:45       | Recei   | ved: 06/19/0  | 9 08:00     |          |          |           |       |
| Aluminum                            | ND            | 20                 | μg/L    | 1             | CS04693     | 06/24/09 | 06/24/09 | EPA 200.8 |       |
| Arsenic                             | ND            | 5.0                | h       | II            | <b>\$1</b>  | ni -     | М        | . 11      |       |
| Copper                              | ND            | 2.0                | II      | H             | , <b>11</b> | 11       | It       | Ħ         |       |
| Iron                                | ND            | 50                 | p       | ŧI            | li          | п,       | н .      | ' II      | •     |
| Zinc                                | ND            | 2.0                | II      | a             | II          | II       | II.      | If        |       |
| Cadmium                             | ND            | 0.50               | п       | d             | н           | n .      | ıı       | If        |       |
| WM-3 (DC-Downstream) (CSF0869-02)   | Water Samp    | led: 06/18/09      | 10:00   | Received:     | 6/19/09 0   | 8:00     |          |           |       |
| Aluminum                            | ND            | 20                 | μg/L    | 1             | CS04693     | 06/24/09 | 06/24/09 | EPA 200.8 |       |
| Arsenic                             | ND            | 5.0                | ĮI.     | 17            | 11          | 17       | H        | ħ         |       |
| Copper                              | 8.8           | 2.0                | ti      | 17            | li          | H        | It       | 11        |       |
| Iron                                | 100           | 50                 | H       | п             | II          | lı       | . 0      | If        |       |
| Zinc                                | 6.1           | 2.0                | li.     | · 11          | n           | II       | 11       | 11        |       |
| Cadmlum                             | ND            | 0.50               | IJ      | II            | I)          | . 11     | И        | II        |       |
|                                     | mpled: 06/18/ | 09 10:30 Re        | ceived: | 06/19/09 08   | :00         |          |          | ·         | -\$   |
| Aluminum                            | ND            | 20                 | μg/L    | 1             | CS04693     | 06/24/09 | 06/24/09 | EPA 200.8 |       |
| Arsenic                             | 13            | 5.0                | . 41    | 11            | If          | . н      | IJ       | D .       |       |
| Copper                              | 84            | ) <b>2.0</b>       | It      | n             | 11          | ti       | 11       | Đ         |       |
| Iron                                | 53            | 50                 | * H     | ıt.           | Ħ           | It       | 11       | n         |       |
| Zinc                                | 23            | 2.0                | u       | n n           | н           | u.       | It       | II        |       |
| Cadmium                             | ND            | 0.50               | 11      | II            | 11          | ון       | и.       | • H       |       |
| WM-2 (DC-Upstream) (CSF0869-04) Wa  | iter Sampled  | l: 06/18/09 10     | :45 R   | ecelved: 06/  | 19/09 08:0  | 00       |          |           |       |
| Aluminum                            | ND            | 20                 | μg/L    |               | CS04693     | 06/24/09 | 06/24/09 | EPA 200.8 |       |
| Arsenic                             | ND            | 5.0                | ıı.     | н .           | 11          | N        | n .      | .01       |       |
| Copper                              | ND            | . 2.0              | n - 1   | n             | 11          | It       | ` n      | 11        |       |
| Iron                                | ND            | 50                 | 11      | n             | н           | 11       | . 11     | tl        |       |
| Zinc                                | ND            | 2.0                | 38      | 11            | II          | п        | ji       | ll        | •     |
| Cadmium                             | ND            | 0.50               | II      | R .           | 17          | н        | . 11     | n         |       |
| WM-4 @ 48' Culvert (CSF0869-05) Wat | er Sampled:   | 06/18/09 12:       | 00 Re   | ceived: 06/19 | 9/09 08:00  | )        | ,        | -         |       |
| Aluminum                            | ND            | 20                 | μg/L    | 1             | CS04693     | 06/24/09 | 06/24/09 | EPA 200.8 |       |
| Arsenic                             | ND            | 5.0                | 0       | и             | D           | II       | D.       | n         |       |
| Copper                              | 14            | 2.0                | u       | , 14          | , 41        | и        | u        | Ħ         |       |
| Iron                                | 130           | 50                 | *1      | 11            | H           | и        | 11       | II.       |       |
| AI VII                              | 200           |                    | •       |               |             |          |          |           |       |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC#: 94811,83105

#### Metals (Dissolved) by EPA 200 Series Methods

| MM-4 @ 48' Culvert (CSF0869-05) Water   Sampled: 06/18/09 12:00   Received: 06/19/09 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analyte                               | Result      | Reporting<br>Limit     | Units    | Dilution     | Batch      | Prepared     | Analyzed      | Method    | Note |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|------------------------|----------|--------------|------------|--------------|---------------|-----------|------|
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WM-4 @ 48' Culvert (CSF0869-05) Water | Sampled:    | 06/18/09 12:           | 00 Rec   | eived: 06/19 | 9/09 08:00 | )            | 1.            |           | ·    |
| MWH-9 (Brown's Cabin) (CSF0869-06) Water   Sampled: 06/18/09 12:20   Received: 06/19/09 08:00   Security   Sampled: 06/18/09   12:20   Received: 06/19/09 08:00   Security   Sampled: 06/18/09   12:20   Received: 06/19/09 08:00   Security   Sampled: 06/18/09   12:20   Security   Sampled: 06/18/09   06/24/09   O6/24/09     | Zinc                                  | 3.2         | 2.0                    | μg/L     | 1            | CS04693    | j)           | 06/24/09      | EPA 200.8 | -    |
| Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Alu | Cadmium                               | ND          | 0.50                   | H        | п            | t†         | U            | . "           | II        |      |
| Arsenic ND 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WM-9 (Brown's Cabin) (CSF0869-06) Wat | er Sample   | ed: 0 <b>6/18/09</b> 1 | 12:20 R  | Received: 06 | /19/09 08: | :00          |               |           |      |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aluminum                              | ND          | 20                     | μġ/L     | 1            | CS04693    | 06/24/09     | 06/24/09      | EPA 200.8 |      |
| Tiron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arsenic                               | ND          | 5.0                    | ų        | Ħ            | 11         | II           | п .           | И         |      |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Copper                                | 7.1         | 2.0                    | lf       | н            | п          | В            | Ħ             | n         |      |
| Cadmium         ND         0.50         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Iron                                  | 250         | 100                    | . н      | 2            | U          | 14           | ti .          | 11        |      |
| MM-6 (MSFS Dam) (CSF0869-07) Water   Sampled: 06/18/09 13:05   Received: 06/19/09 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zinc                                  | ND          | . 2.0                  | 11       | 1            | ч          | n ·          | U             | 10        |      |
| Aluminum ND 20 µg/L ! CS04693 06/24/09 06/24/09 EPA 200.8 Arsenic ND 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cadmium                               | ND          | 0.50                   | 11       | 12           | 11         | If           | U             | u         |      |
| Arsenic ND 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WM-6 (MSFS Dam) (CSF0869-07) Water    | Sampled: 0  | 6/18/09 13:0           | 5 Rece   | ived: 06/19  | /09 08:00  |              |               |           |      |
| Copper 38 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aluminum                              | ND          | 20                     | μg/L     | 1            | CS04693    | 06/24/09     | 06/24/09      | EPA 200.8 |      |
| Tron   180   50   " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arsenic                               | ND          | 5.0                    | , ¥I     | ti           | (t         | tι           | u             | п         |      |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Copper                                | 38          | 2.0                    | #        | ŧı           | 0          | u            | u             | u .       |      |
| Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode   Mode      | Iron                                  | 180         | 50                     | n        | u            | u          | u            | II            | U .       |      |
| WM-7 (LGC above DC) (CSF0869-08) Water   Sampled: 06/18/09 13:00   Received: 06/19/09 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zinc                                  | 9.2         | 2.0                    | u        | 4            | u          | п            | II            | . u ,     | •    |
| Aluminum ND 20 μg/L 1 CS04693 06/24/09 06/24/09 EPA 200.8 Arsenic ND 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cadmium                               | ND          | 0.50                   | n,       | u            | 11         | u ·          | В             | II.       | •    |
| Arsenic         ND         5.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " <th< td=""><td>WM-7 (LGC above DC) (CSF0869-08) Wat</td><td>er Sample</td><td>ed: 06/18/09</td><td>13:00 F</td><td>Received: 06</td><td>5/19/09 08</td><td>:00</td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WM-7 (LGC above DC) (CSF0869-08) Wat  | er Sample   | ed: 06/18/09           | 13:00 F  | Received: 06 | 5/19/09 08 | :00          |               |           |      |
| Copper 2.9 2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aluminum                              | ND          | 20                     | μg/L     | . 1          | CS04693    | 06/24/09     | 06/24/09      | EPA 200.8 |      |
| Iron   260   100   "   2   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arsenic                               | ND          | 5.0                    | 11       | n,           |            |              | н             | u         |      |
| Zinc   2.6   2.0   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Copper                                | 2.9         | 2.0                    | 11       | If           | 11         | . 11         | iţ            | u         |      |
| Cadmium   ND   0.50   "   "   "   "   "   "   "   "   WM-7A (DC above new MSFS Realignment) (CSF0869-09) Water   Sampled: 06/18/09 12:25   Received: 06/19/09 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Iron                                  | <b>26</b> 0 | 100                    | u        | 2            | ŧr         | Ti.          | b .           | 11        | •    |
| WM-7A (DC above new MSFS Realignment) (CSF0869-09) Water Sampled: 06/18/09 12:25 Received: 06/19/09 08:00  Aluminum ND 20 μg/L 1 CS04693 06/24/09 06/24/09 EPA 200.8  Arsenic ND 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zinc                                  | 2.6         | 2.0                    | н        | 1            | #1         | ıı           | н             | II.       |      |
| Aluminum ND 20 μg/L 1 CS04693 06/24/09 06/24/09 EPA 200.8  Arsenic ND 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cadmium                               | ND          | 0.50                   | 11       | . 11         | u          | . "          | Ħ             | n ,       |      |
| Arsenic ND 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WM-7A (DC above new MSFS Realignmen   | t) (CSF0869 | 9-09) Water            | Sampl    | ed: 06/18/09 | ) 12:25 F  | Received: 06 | 5/19/09 08:00 |           |      |
| Arsenic ND 5.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aluminum                              | ND          | 20                     | μg/L     | 1            | CS04693    | 06/24/09     | 06/24/09      | EPA 200.8 |      |
| Iron         180         50         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " </td <td>Arsenic</td> <td>ND</td> <td>5.0</td> <td>п</td> <td>II</td> <td>U</td> <td>Ħ</td> <td>Ħ</td> <td>. "</td> <td>•</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Arsenic                               | ND          | 5.0                    | п        | II           | U          | Ħ            | Ħ             | . "       | •    |
| Iron         180         50         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " </td <td>Copper</td> <td>22</td> <td>2.0</td> <td>II</td> <td>11</td> <td>U</td> <td>и</td> <td>11</td> <td>R .</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Copper                                | 22          | 2.0                    | II       | 11           | U          | и            | 11            | R .       |      |
| Cadmium         ND         0.50         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 180         | 50                     | Ц        | , п          | 11         | Ħ            | 11            | u         |      |
| WM-7B (DC Realignment above LGC) (CSF0869-10) Water Sampled: 06/18/09 13:40 Received: 06/19/09 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zinc                                  | 4,3         | 2.0                    | II       | μ            | u          | tı           | U             | UF        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cadmium                               | ND          |                        | lj       | 11           | It         | τi           | u             | I§        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WM-7B (DC Realignment above LGC) (CS  | F0869-10) V | Vater Sam              | pled: 06 | /18/09 13:40 | ) Receive  | ed: 06/19/09 | 08:00         |           | •    |
| CIRCUITABLE TADA LA PERO T. CONTRACT AND DESTANDA DESTANDA DE LA PERO T. CONTRACT AND DESTANDA DE LA PERO T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aluminum                              | ND          | . 20                   | μg/L     | 1            | CS04693    | 06/24/09     | 06/24/09      | EPA 200.8 |      |

CA DOHS ELAP Accreditation/Registration Number 1233

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC #: 94811,83105

### Metals (Dissolved) by EPA 200 Series Methods

|                                    | <del></del>    |                    |               | · · · · · · · · · · · · · · · · · · · |            |              |          |                                         |         |
|------------------------------------|----------------|--------------------|---------------|---------------------------------------|------------|--------------|----------|-----------------------------------------|---------|
| Analyte                            | Result         | Reporting<br>Limit | Units         | Dilution                              | Batch      | Prepared     | Analyzed | Method                                  | . Note: |
| WM-7B (DC Realignment above LGC) ( | CSF0869-10) V  | Vater Sam          | pled: 06/     | 18/09 13:40                           | Receive    | ed: 06/19/09 | 08:00    |                                         |         |
| Arsenic                            | ND             | 5.0                | μg/L          | 1                                     | CS04693    | 11           | 06/24/09 | EPA 200.8                               |         |
| Copper                             | 18             | 2.0                | u             | Ц                                     | If         | u            | н        | II                                      |         |
| Iron                               | 120            | 50                 | IJ            | ' n                                   | μ          | p            | и.       | u .                                     |         |
| Zine                               | 2.6            | 2.0                | ĸ             | n                                     | ji .       | †1           | · u      | li .                                    |         |
| Cadmium                            | ND             | 0.50               | ıı            | It                                    | . и        | ji           | и .      | n                                       |         |
| WM-7C (LGC above DC Realignment) ( | CSF0869-11) V  | Vater Sam          | pled: 06/1    | 18/09 13:45                           | Receive    | ed: 06/19/09 | 08:00    |                                         |         |
| Aluminum                           | ND             | 20                 | μg/L          | 1                                     | CS04693    | 06/24/09     | 06/24/09 | EPA 200.8                               |         |
| Arsenic                            | ND             | 5.0                | υ.            | Iŧ                                    | ij         | n ,          | ù        | IJ                                      |         |
| Copper                             | ND             | 2.0                | It            | li                                    | II         | . "          | ij       | h                                       |         |
| Iron                               | 300            | 100                | lt .          | 2                                     | u          | и.           | tı       | 11                                      |         |
| Zinc                               | ND             | 2.0                | II '          | 1                                     | и          | η            | ıt       | · • • • • • • • • • • • • • • • • • • • |         |
| Cadmium                            | ND             | 0.50               | II            | И                                     | It         | 11           | II       | 6)                                      |         |
| WM-8 (LGC below DC) (CSF0869-12) W | ater Sample    | d: 06/18/09        | 14:00 R       | eceived: 06                           | /19/09 08: | :00          |          |                                         |         |
| Aluminum                           | ND .           | 20                 | μg/L          | 1                                     | CS04693.   | 06/24/09     | 06/24/09 | EPA 200.8                               |         |
| Arsenic                            | ND             | 5.0                | ti            | (1                                    | II         | В            | lt ,     | 0                                       |         |
| Copper                             | 6.1            | 2.0                | ti            | IJ                                    | ч и .      | , u          | н        | lī                                      | *,      |
| Iron                               | 230            | 100                | It            | 2                                     | IJ         | 11           | μ .      | . "                                     |         |
| Zinc                               | ND             | 2.0                | II            | 1                                     | It         | ti           | II       | Ħ                                       |         |
| Cadmium .                          | ND             | 0.50               | II            | 11                                    | и .        | ti           | Ŋ        | 41                                      |         |
| WM-11 (SBWC) (CSF0869-13) Water S  | Sampled: 06/18 | 3/09 14:30         | Received:     | 06/19/09 0                            | 8:00       | •            |          |                                         |         |
| Aluminum                           | ND             | 20                 | μg/L          | l                                     | CS04693    | 06/24/09     | 06/24/09 | EPA 200.8                               |         |
| Arsenic                            | ND             | 5.0                | û             | n .                                   | Ц          | I)           | Ħ        | If                                      |         |
| Copper                             | 3.5            | 2.0                | u .           | ч                                     | н          | lt .         | . 0      | lı '                                    |         |
| Iron                               | ND             | 50                 | 11            | u                                     | Ħ          | It           | H        | R                                       |         |
| Zine                               | 3.5            | 2.0                | п             | , 0                                   | п          | П            | ŋ        | 14                                      |         |
| Cadmium                            | ND             | 0.50               | U             | ır .                                  | 11         | n            | ' łı     | #1                                      |         |
| WM-12 (MBWC) (CSF0869-14) Water    | Sampled: 06/1  | 8/09 14:40         | Received      | : 06/19/09                            | 08:00      |              |          |                                         |         |
| Aluminum                           | ND ·           | 20                 | μ <b>g</b> /L | 1                                     | CS04693    | 06/24/09     | 06/24/09 | EPA 200.8                               |         |
| Arsenic                            | ND             | 5.0                | I†            | ŀ                                     | 9.         | 41 +         | . "      | . 0                                     |         |
| Copper                             | 4.9            | 2.0                | н             | It.                                   | II.        | ji .         | н        | 11                                      |         |
| Iron                               | ND             | 50                 | 11            | Iř                                    | jt.        | н            | 11       | 9 0                                     |         |
|                                    |                |                    |               |                                       |            |              |          |                                         |         |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC#: 94811,83105

### Metals (Dissolved) by EPA 200 Series Methods

| Analyte                            | Result        | Reporting<br>Limit | Units    | Dilution             | Batch   | Prepared | Analyzed  | Method    | Notes |
|------------------------------------|---------------|--------------------|----------|----------------------|---------|----------|-----------|-----------|-------|
| WM-12 (MBWC) (CSF0869-14) Water    | Sampled: 06/  | 18/09 14:40        | Receive  | d: 06/19/ <b>0</b> 9 | 08:00   |          |           |           |       |
| Cadmium                            | ND            | 0.50               | μg/L     | 1                    | CS04693 | <b>u</b> | 06/24/09  | EPA 200.8 |       |
| WM-13 (Nye Crk) (CSF0869-15) Water | Sampled: 06   | 18/09 14:50        | Receive  | ed: 06/19/0          | 9 08:00 |          |           |           |       |
| Aluminum                           | ND            | - 20               | μg/L     | 1                    | CS04693 | 06/24/09 | 06/24/09  | EPA 200.8 |       |
| Arsenic                            | ND            | 5.0                | H        | li                   | II      | 10       | II        | 11        | 2     |
| Copper                             | ND            | 2.0                | Ħ        | II                   | И       | 11       | n'        | , p       |       |
| Iron                               | ND            | 50                 | п        | 11                   | 11      | U        | И         | Ħ         |       |
| Zinc                               | ND            | 2.0                | , 11     | 11                   | ıı      | D        | u         | н         |       |
| Cadmium                            | ND            | 0.50               | tı       | 11                   | ji      | 11       | ıı        | н .       |       |
| WM-17 (NBWC) (CSF0869-16) Water    | Sampled: 06/1 | 8/09 15:00         | Received | 1: 06/19/ <b>09</b>  | 08:00   |          |           |           |       |
| Aluminum                           | ND            | 20                 | μg/L     | i                    | CS04693 | 06/24/09 | 0.6/24/09 | EPA 200.8 |       |
| Arsenic                            | ND            | 5,0                | u        | и                    | 0       | a        | n         | II        | •     |
| Copper                             | ND            | 2.0                | И        | П                    | ħ       | g O      | n         | • 0       |       |
| Iron                               | ND            | 50                 | и        | u                    | 11      | 0 .      | Ħ         | U         |       |
| Zinc                               | ND            | 2.0                | u        | и                    | li      | ţi       | u         | IJ        |       |
| Cadmium                            | ND            | 0.50               | II       | п                    | h       | 11       | If        | a         |       |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project:

Walker Mine

Project Number: [none]

CLS Work Order#: CSF0869

Project Manager: Jeff Huggins

COC#: 94811,83105

| Analyte                             | Result | Reporting<br>Limit | Units         | Spike<br>Level | Source<br>Result | %REC_              | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|---------------|----------------|------------------|--------------------|----------------|-------|--------------|-------|
| Batch CS04578 - General Preparation |        |                    |               |                |                  | _                  |                | · · · |              |       |
| Blank (CS04578-BLK1)                |        | _                  |               | Prepared       | & Analyz         | ed: <b>0</b> 6/19/ | 09             |       |              | •     |
| Hexavalent Chromium                 | ND     | 10                 | μg/L          | ,              |                  |                    |                | -     |              | _     |
| Hexavalent Chromium, Dissolved      | ND     | 10                 | B             |                |                  |                    |                |       |              |       |
| LCS (CS04578-BS1)                   |        |                    |               | Prepared       | & Analyz         | ed: <b>0</b> 6/19/ | 09             |       |              |       |
| Hexavalent Chromium                 | 273    | 10                 | μg/L          | 250            |                  | 109                | 85-115         |       |              |       |
| Hexavalent Chromium, Dissolved      | 273    | 10                 | n n           | 250            |                  | 109                | 80-120         |       |              |       |
| LCS Dup (CS04578-BSD1)              |        |                    |               | Prepared       | & Analyz         | ed: 06/19/         | 09             |       |              |       |
| Hexavalent Chromium                 | 266    | 10                 | μg/L          | 250            |                  | 106                | 85-115         | 3     | 20           | _     |
| Hexavalent Chromium, Dissolved      | 266    | 10                 | н             | 250            |                  | 106                | 80-120         | 3     | 20           |       |
| Matrix Spike (CS04578-MS1)          | Sou    | irce: CSF084       | <b>48-</b> 01 | Prepared       | & Analyz         | ed: 06/19/0        | 09             |       |              |       |
| Hexavalent Chromium                 | 206    | 10                 | μg/L          | 250            | ND               | 82                 | 85-115         |       |              | QM-7  |
| Hexavalent Chromium, Dissolved      | 206    | 10                 | E1            | 250            | ND               | 82                 | 80-120         |       |              |       |
| Matrix Spike Dup (CS04578-MSD1)     | Sou    | ırce: CSF084       | 18-01         | Prepared       | & Anaiyz         | ed: 06/19/0        | 09             |       |              |       |
| Hexavalent Chromium                 | 206    | 10                 | μg/L          | 250            | ND               | 82                 | 85-115         | 0     | 20           | QM-7  |
| Hexavalent Chromium, Dissolved      | 206    | 10                 | n             | 250            | ND               | 82                 | 80-120         | 0     | 20           |       |
| Batch CS04588 - General Preparation | _      | •                  |               |                |                  |                    |                |       | •            |       |
| Blank (CS04588-BLK1)                |        |                    |               | Prepared a     | & Analyz         | ed: 06/19/0        | )9             | -     |              |       |
| Methylene Blue Active Substances    | ND     | 0.10               | mg/L          |                |                  |                    |                |       |              |       |
| LCS (CS04588-BS1)                   |        |                    |               | Prepared       | & Analyz         | ed: 06/19/0        | )9             |       |              |       |
| Methylene Blue Active Substances    | 0.576  | 0.10               | mg/L          | 0.500          |                  | 115                | 80-120         |       |              |       |
|                                     |        |                    |               |                |                  |                    |                |       |              |       |

07/09/09 08:08

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Walker Mine Project:

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC#: 94811,83105

| Analyte                                                  | Result | Reporting<br>Limit | Units       | Spike<br>Level | Source<br>Result | %REC               | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|----------------------------------------------------------|--------|--------------------|-------------|----------------|------------------|--------------------|----------------|-----|--------------|-------|
| Batch CS04588 - General Preparation                      | • •    |                    |             |                |                  |                    |                |     |              | -     |
| LCS Dup (CS04588-BSD1)                                   |        |                    |             | Prepared       | & Analyza        | ed: 06/19/         | 09             |     |              |       |
| Methylene Blue Active Substances                         | 0.563  | 0.10               | mg/L        | 0.500          |                  | 113                | 80-120         | 2   | 20           | -     |
| Matrix Spike (CS04588-MS1)                               | So     | urce: CSF086       | 69-01       | Prepared       | & Analyze        | ed: 06/19/         | 09             |     |              |       |
| Methylene Blue Active Substances                         | 0.582  | 0.10               | mg/L        | 0.500          | ND               | 116                | 75-125         |     |              |       |
| Matrix Spike Dup (CS04588-MSD1)                          | So     | urce: CSF08        | 59-01       | Prepared       | & Analyza        | ed: 06/19/         | 09             |     |              |       |
| Methylene Blue Active Substances                         | 0.603  | 0.10               | mg/L        | 0.500          | ND               | 121                | 75-125         | 3   | 25           |       |
| Batch CS04589 - General Preparation Blank (CS04589-BLK1) |        |                    | <del></del> | Prepared       | & Analyz         | ed: 06/19/         | <br>09         |     |              | ,     |
| Total Alkalinity                                         | ND     | 5.0                | mg/L        |                | <u>,,</u>        |                    |                |     | ·            |       |
| Bicarbonate as CaCO3                                     | ND     | 5.0                | 11          |                |                  |                    |                |     |              |       |
| Carbonate as CaCO3                                       | ND     | 5.0                | и           |                |                  |                    |                |     | ٠.           |       |
| Hydroxide as CaCO3                                       | ND     | 5.0                | )ī          |                |                  |                    |                |     |              |       |
| Duplicate (CS04589-DUP1)                                 | So     | urce: CSF08        | 17-01       | Prepared       | & Analyz         | ed: 06/19/         | 09             |     |              |       |
| Total Alkalinity                                         | 44.2   | 5.0                | mg/L        |                | 46.6             |                    |                | 5   | 20           |       |
| Bicarbonate as CaCO3                                     | 44.2   | 5.0                | И           |                | 46.6             |                    |                | 5   | 20           |       |
| Carbonate as CaCO3                                       | ND     | 5.0                | it          |                | ND               |                    |                |     | 20           |       |
| Hydroxide as CaCO3                                       | ИD     | 5.0                | η           | 4              | ИD               |                    |                |     | 20           |       |
| Batch CS04605 - General Preparation                      |        |                    | •           |                |                  |                    | <u> </u>       |     | <u>.</u>     |       |
| Blank (CS04605-BLK1)                                     |        |                    |             | Prepared       | & Analyz         | ed: <u>06/22</u> / | 09             |     |              |       |
| Specific Conductance (EC)                                | ND     | 1.0                | μmhos/cr    | n              |                  |                    |                |     |              |       |

07/09/09 08:08

CRWQCB - Sacramento

Project: Walker Mine

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project Number: [none]
Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC #: 94811,83105

| Analyte                             | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-----|--------------|-------|
| Batch CS04623 - General Preparation |        |                    |       |                | •                |             |                |     |              |       |
| Blank (CS04623-BLK1)                |        |                    |       | Prepared:      | 06/22/09         | Analyzed    | l: 06/23/09    |     | _            |       |
| Total Dissolved Solids              | ND     | 10                 | mg/L  | ,              |                  |             |                |     | _            |       |
| Duplicate (CS04623-DUP1)            | So     | urce: CSF089       | 8-02  | Prepared:      | 06/22/09         | Analyzed    | : 06/23/09     |     |              |       |
| Total Dissolved Solids              | 992    | 10                 | mg/L  |                | 996              |             | -,             | 0.4 | 20           |       |
| Batch CS04624 - General Prep        |        |                    | •     |                |                  |             | •              |     | <u>.</u>     |       |
| Blank (CS04624-BLK1)                |        |                    |       | Prepared       | & Analyz         | ed: 06/22/0 | 09             |     |              |       |
| Chloride                            | ND     | 0.50               | mg/L  | _              |                  |             |                |     | _            |       |
| Sulfate as SO4                      | ND     | 0.50               | u     |                |                  |             |                |     |              |       |
| LCS (CS04624-BS1)                   |        |                    |       | Prepared       | & Analyz         | ed: 06/22/0 | )9             |     |              |       |
| Chloride                            | 2.00   | 0.50               | mg/L  | 2.00           |                  | 100         | 80-120         | _   |              |       |
| Sulfate as SO4                      | 5.05   | 0.50               | If    | 5.00           |                  | 101         | 80-120         |     |              |       |
| LCS Dup (CS04624-BSD1)              |        |                    |       | Prepared       | & Analyz         | ed: 06/22/0 | )9             |     |              |       |
| Sulfate as SO4                      | 5.09   | 0.50               | mg/L  | 5.00           |                  | 102         | 80-120         | 0.8 | 20           |       |
| Chloride                            | 2.01   | 0.50               | ŧI.   | 2.00           |                  | 101         | 80-120         | 0.6 | 20           |       |
| Matrix Spike (CS04624-MS1)          | Son    | arce: CSF086       | 9-01  | Prepared       | & Analyza        | d: 06/22/0  | )9             |     |              |       |
| Sulfate as SO4                      | 5.15   | 0.50               | mg/L  | 5.00           | 0.290            | 97          | 75-125         |     |              |       |
| Chloride                            | 2.22   | 0.50               | Ħ     | 2.00           | 0.762            | 73          | 75-125         |     |              | QM-5  |
| Matrix Spike Dup (CS04624-MSD1)     | Soc    | urce: CSF086       | 9-01  | Prepared       | & Analyz         | ed: 06/22/0 | )9             |     |              |       |
| Chloride                            | 2.39   | 0.50               | mg/L  | 2.00           | 0.762            | 81          | 75-125         | 7   | 25           |       |
| Sulfate as SO4                      | 5.80   | 0.50               | II    | 5.00           | 0.290            | 110         | 75-125         | 12  | 25           |       |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project:

Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CSF0869

COC #: 94811,83105

| Analyte                            | Result | Reporting<br>Limit                           | Units | Spike<br>Level                       | Source<br>Result | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %REC Limits | RPD | RPD<br>Limit | Notes                         |
|------------------------------------|--------|----------------------------------------------|-------|--------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|--------------|-------------------------------|
| Batch CS04674 - 6010A/No Digestion |        |                                              |       |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |              |                               |
| Blank (CS04674-BLK1)               |        |                                              | _     | Prepared:                            | 06/23/09         | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : 06/27/09  |     |              |                               |
| Calcium                            | ND     | . I.O                                        | mg/L  | ·                                    |                  | TO THE TOTAL PROPERTY OF THE PARTY            |     |              |                               |
| Magnesium                          | ND     | 1.0                                          | 11    |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |              |                               |
| otassium                           | ND     | 1.0                                          | tı    |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |              |                               |
| Sodium                             | ND     | 1.0                                          | ш     |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |              |                               |
| Iardness as CaCO3                  | ND     | 1.0                                          | II.   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |              | ·                             |
| CS (CS04674-BS1)                   |        | <u>.                                    </u> |       | Prepared:                            | 06/23/09         | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 06/27/09    | ζ.  |              |                               |
| Calcium                            | 8.72   | 1.0                                          | mg/L  | 10.0                                 |                  | 87 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120      |     |              |                               |
| Magnesium                          | 8.20   | 1.0                                          | 0 .   | 10.0                                 |                  | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80-120      |     |              |                               |
| otassium                           | 9.15   | 1.0                                          | 11    | 10.0                                 |                  | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80-120      |     |              |                               |
| odium                              | 8.90   | 1.0                                          | 41    | 10.0                                 |                  | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80-120      |     |              |                               |
| CS Dup (CS04674-BSD1)              |        |                                              |       | Prepared:                            | 06/23/09         | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06/27/09    |     |              |                               |
| Calcium                            | 9.05   | 1,0                                          | mg/L· | 10.0                                 |                  | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80-120      | 4   | 20           | May - Pytoged 1788 (per 1544) |
| /agnesium                          | 8.48   | 1.0                                          | И     | 10.0                                 |                  | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80-120      | 3   | 20           |                               |
| otassium                           | 9.36   | 1.0                                          | II    | 10.0                                 |                  | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80-120      | 2   | 20           |                               |
| odium                              | 9.14   | 1.0                                          | 11    | 10.0                                 |                  | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80-120      | 3   | 20           |                               |
| Iatrix Spike (CS04674-MS1)         | Sou    | rce: CSF086                                  | 9-01  | Prepared: 06/23/09 Analyzed: 06/27/0 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |              |                               |
| Calcium                            | 17.4   | 1.0                                          | mg/L  | 10.0                                 | 7.35             | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75-125      |     |              |                               |
| 1agnesium                          | 11.7   | 1.0                                          | ц     | 10.0                                 | 2.74             | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75-125      |     |              |                               |
| otassium                           | 10.5   | 0.1                                          |       | 10.0                                 | ND               | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75-125      |     |              |                               |
| odium                              | 12.6   | 1.0                                          | It    | 10.0                                 | 3.05             | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75-125      |     |              |                               |
| 1atrix Spike Dup (CS04674-MSD1)    | Sou    | rce: CSF086                                  | 9-01  | Prepared:                            | 06/23/09         | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06/27/09    |     |              |                               |
| Calcium                            | 17.8   | 1.0                                          | mg/L  | 10.0                                 | 7.35             | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75-125      | 2   | 25           | -                             |
| 1agnesium                          | 12.0   | 1.0                                          | u     | 10.0                                 | 2.74             | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75-125      | 3   | 25           |                               |
| otassium                           | 10.7   | 1.0                                          | , H   | 10.0                                 | ND               | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75-125      | 3   | 25           |                               |
| odium                              | 12.8   | 1.0                                          | 71    | 10.0                                 | 3.05             | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75-125      | 1 . | 25           |                               |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC #: 94811,83105

### Metals by EPA 200 Series Methods - Quality Control

| Amelia                     | Result | Reporting<br>Limit | Units  | Spike<br>Level | Source<br>Result | %REC       | %REC            | RPD | RPD          | Maria |
|----------------------------|--------|--------------------|--------|----------------|------------------|------------|-----------------|-----|--------------|-------|
| Analyte                    |        |                    | UIIIIS | TeAct          | Kesuit           | 70ICEC     | Limits          |     | <u>Limit</u> | Notes |
| Batch CS04678 - EPA 3020A  |        |                    |        |                | · .              |            |                 | _   |              |       |
| Blank (CS04678-BLK1)       |        |                    |        | Prepared       | & Analyze        | d: 06/23/0 | 09              |     |              | _     |
| Aluminum                   | ND     | 20                 | μg/L   |                |                  |            | •               |     |              |       |
| Arsenic                    | ND     | 2.0                | и      |                |                  |            |                 |     |              |       |
| Copper                     | ND     | · 1.0              | ıı     |                |                  |            |                 |     |              |       |
| Iron                       | ND     | 50                 | II     |                |                  |            |                 |     |              |       |
| Zinc                       | · ND   | 2.0                | 41     |                |                  |            |                 |     |              |       |
| Cadmium                    | ND     | 0.50               | II     |                |                  |            |                 |     |              |       |
| LCS (CS04678-BS1)          |        |                    |        | Prepared       | & Analyze        | d: 06/23/  | 09              |     |              |       |
| Aluminum                   | 100    | 20                 | μg/L   | 100            |                  | 100        | 80-120          |     |              |       |
| Arsenic                    | 103    | 2.0                | . 0    | 100            |                  | 103        | 80-120          |     |              |       |
| Copper                     | 102    | 1.0                | 11 '   | 100            | •                | 102        | 80-120          |     |              |       |
| ron                        | 102    | 50                 | u      | 100            |                  | 102        | 80-120          |     |              |       |
| Zinc                       | 103    | 2.0                | 17     | 100            |                  | 103        | 80-120          |     |              |       |
| Cadmium                    | 10.3   | 0.50               | D      | 10.0           |                  | 103        | 80-120          |     |              | •     |
| LCS Dup (CS04678-BSD1)     |        |                    |        | Prepared       | & Analyze        | d: 06/23/0 | )9              |     |              | •     |
| Aluminum                   | 101    | 20                 | μg/L   | 100            | ·-               | 101        | 80-120          | 0.4 | 20           |       |
| Arsenic                    | 105    | 2.0                | Ħ<br>: | 100            |                  | 105        | 80-120          | 2   | 20           |       |
| Copper                     | 103    | 1.0                | 71     | 100            |                  | 103        | 80-120          | 0.7 | 20           |       |
| ron                        | 91.8.  | 50                 |        | 100 .          |                  | 92         | 80-120          | 10  | 20           |       |
| Zinc                       | 102    | 2.0                | u      | 100            |                  | 102        | 80-120          | 0.3 | 20           |       |
| Cadmium                    | 10.5   | 0.50               | ŧı     | 10.0           | -                | 105        | 80-120          | 2   | 20           |       |
| Matrix Spike (CS04678-MS1) | Sot    | irce: CSF086       | 59-01  | Prepared       | & Analyze        | d: 06/23/0 | 9               |     |              |       |
| Aluminum                   | 123    | 20                 | μg/L   | 100            | 29.2             | 94         | 75-125          |     |              | ,     |
| Arsenic                    | . 105  | 2.0                |        | 100            | ND .             | 105        | 75-125          |     |              |       |
| Copper                     | 100    | 1.0                | u      | 100            | 0.780            | 99         | 75 <b>-</b> 125 |     |              |       |
| ron                        | 465    | 50                 |        | 100            | 373              | 91         | 75-125          | •   |              |       |
| Zinc                       | 101    | 2.0                |        | 100            | 1.77             | 99         | 75-125          |     |              |       |
| Cadmium                    | 10.4   | 0.50               | l)     | 10.0           | ND               | 104        | 7 <b>5</b> -125 |     |              |       |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order #: CSF0869

COC #: 94811,83105

#### Metals by EPA 200 Series Methods - Quality Control

| Analyte                         | Result             | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits  | RPD  | RPD<br>Limit | Notes |
|---------------------------------|--------------------|--------------------|-------|----------------|------------------|------------|-----------------|------|--------------|-------|
| Batch CS04678 - EPA 3020A       |                    | _                  |       |                |                  |            |                 | ·    |              |       |
| Matrix Spike (CS04678-MS2)      | So                 | urce: CSF080       | 59-10 | Prepared       | & Analyze        | ed: 06/23/ | 09              |      |              |       |
| Aluminum                        | 125                | 20                 | μg/L  | 100            | 35.2             | 90         | 75-125          |      |              | ,     |
| Arsenic                         | 103                | 2.0                | **    | 100            | ND               | 103        | 75-125          |      |              |       |
| Copper                          | 117                | 1.0                | **    | . 100          | 22.2             | 95         | 75-125          |      |              | •     |
| Iron                            | 263                | 50                 | ш     | 100            | 177              | 86         | 75-125          | •    |              |       |
| Zinc                            | 98.6               | 2.0                | Ħ     | 100            | 9.34             | 89         | 75-125          |      |              |       |
| Cadmium                         | 10.2               | 0.50               |       | 10.0           | ND               | 102        | 75-125          |      |              |       |
| Matrix Spike Dup (CS04678-MSD1) | Source: CSF0869-01 |                    |       | Prepared       |                  |            |                 |      |              |       |
| Aluminum .                      | 123                | 20                 | μg/L  | 100            | 29.2             | 94         | 7 <b>5-</b> 125 | 0.04 | 25           |       |
| Arsenic                         | 106                | 2.0                | Iŧ.   | 100            | ND               | 106        | 7 <b>5-12</b> 5 | 0.9  | 25           |       |
| Copper ·                        | 99.3               | 1.0                | н     | 100            | 0.780            | 98         | 75-125          | I    | 25           |       |
| lron                            | 449                | 50                 | τl    | 100            | 373              | .76        | 75-125          | . 3  | 25           |       |
| Zinc                            | 103                | - 2.0              | II    | 100            | 1.77             | 101        | 75-125          | 2    | 25           |       |
| Cadmium                         | 10.7               | 0.50               | 11    | 10.0           | ND               | 107        | 75-125          | 3    | 25 ,         |       |
| Matrix Spike Dup (CS04678-MSD2) | Soi                | urce: CSF086       | 59-10 | Prepared       | & Analyze        | d: 06/23/0 | )9              |      |              |       |
| Aluminum                        | 124                | 20                 | μg/L  | 100            | 35.2             | 88         | <b>75-</b> 125  | 0.9  | 25           |       |
| Arsenic                         | - 103              | 2.0                | 0     | 100            | ND               | 103        | 75-125          | 0.4  | 25           |       |
| Copper                          | 116                | 1.0                | v     | 100            | 22.2             | 94         | 75-125          | 0.9  | 25           |       |
| Iron                            | 265                | 50                 | It    | 100            | 177              | 88         | 75-125          | 0.9  | 25           |       |
| Zinc                            | 98.0               | 2.0                | н     | 100            | 9.34             | 89         | 75-125          | 0.6  | 25           |       |
| Cadmium                         | 10.2               | 0.50               | н     | 10.0           | ND               | 102        | 75-125          | 0.6  | 25           |       |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC #: 94811,83105

### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

| Analyte                    | Result   | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC              | %REC<br>Limits | RPD         | RPD<br>Limit | Notes |
|----------------------------|----------|--------------------|-------|----------------|------------------|-------------------|----------------|-------------|--------------|-------|
|                            |          |                    |       |                |                  | :                 |                |             |              |       |
| Batch CS04693 - EPA 3020A  | <u> </u> |                    |       |                |                  |                   |                |             |              |       |
| Blank (CS04693-BLK1)       |          |                    |       | Prepared       | & Analyz         | ed: <u>06/24/</u> | 09             |             |              |       |
| Aluminum                   | ND       | 20                 | μg/L  |                |                  |                   |                |             |              |       |
| Arsenic                    | ND .     | 5.0                | 11    |                |                  |                   |                |             |              |       |
| Copper                     | ND       | 2.0                | . 11  |                |                  |                   |                |             |              |       |
| Iron                       | ND       | 50                 | н     |                |                  |                   |                |             |              |       |
| Zinc                       | ND       | 2.0                | 16    |                |                  |                   |                |             |              |       |
| Cadmium                    | ND       | 0.50               | "     |                |                  | -                 |                |             |              |       |
| LCS (CS04693-BS1)          |          |                    |       | Prepared       | & Analyz         | ed: 06/24/        | 09             |             |              |       |
| Aluminum                   | 97.3     | 20                 | μg/L  | 100            |                  | 97                | 80-120         |             |              |       |
| Arsenic                    | 98.4     | 5.0                | . If  | 100            |                  | 98                | 80-120         |             |              |       |
| Copper ·                   | 98.6     | 2.0                | D     | 100            |                  | 99                | 80-120         | 1           |              |       |
| Iron                       | 101      | · 50               | II .  | 100            |                  | 101               | 80-120         |             |              |       |
| Zinc                       | 100      | 2.0                | 1)    | 100            |                  | 100               | 80-120         |             |              |       |
| Cadmium                    | 9.93     | 0.50               | n     | 10.0           |                  | 99                | 80-120         |             |              |       |
| LCS Dup (CS04693-BSD1)     |          |                    |       | Prepared       | & Analyz         | ed: 06/24/        | '09            |             |              | _     |
| Aluminum                   | 99.1     | 20                 | μg/L  | 100            |                  | 99                | 80-120 .       | 2           | 20           |       |
| Arsenic                    | 98.3     | 5.0                | 'n    | 100            |                  | 98                | 80-120         | 0.08        | 20           | •     |
| Copper                     | 104      | 2.0                | 11    | 100            |                  | 104               | 80-120         | 5           | 20           |       |
| Iron                       | . 116    | 50                 | u J   | 100            |                  | 116               | 80-120         | 13          | 20           |       |
| Zinc                       | 102      | 2.0                | 11    | 100            |                  | 102               | 80-120         | . 1         | 20           |       |
| Cadmium                    | 9.97     | 0.50               | 11    | 10.0           | •                | . 100             | 80-120         | 0.4         | 20           |       |
| Matrix Spike (CS04693-MS1) | So       | urce: CSF08        | 69-01 | Prepared       | & Analyz         | ed: 06/24/        | 09             |             |              |       |
| Aluminum                   | 102      | 20                 | μg/L  | 100            | 6.14             | 96                | 75-125         | <del></del> |              |       |
| Arsenic                    | 98.9     | 5.0                |       | <b>4</b> 100   | ИD               | 99                | 75-125         |             |              |       |
| Copper                     | 95.9     | 2.0                | n     | 100            | 0.370            | 96                | 75-125         |             |              |       |
| Iron                       | 328      | 50                 | íi .  | 100            | 21.3             | 307               | 75-125         |             | ,            | QM-   |
| Zine                       | 98.1     | 2.0                | tı    | 100            | ND               | 98                | 75-125         |             |              |       |
| Cadmium                    | 9.75     | 0.50               | 11    | 10.0           | ND               | 98                | 75-125         |             |              |       |
| *                          |          |                    |       |                |                  |                   |                |             |              |       |

07/09/09 08:08

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: \

Walker Mine

Project Number: [none]
Project Manager: Jeff Huggins

CLS Work Order#: CSF0869

COC #: 94811,83105

#### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

| Analyte                         | Result             | Reporting<br>Limit | Units | Spike -<br>Level | Source<br>Result | %REC       | %REC<br>Limits  | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------------------|--------------------|-------|------------------|------------------|------------|-----------------|-----|--------------|-------|
| Batch CS04693 - EPA 3020A       |                    |                    |       |                  |                  |            |                 | •   |              |       |
| Matrix Spike (CS04693-MS2)      | Soi                | arce: CSF080       | 69-10 | Prepared d       | & Analyz         | ed: 06/24/ | 09              |     |              |       |
| Aluminum                        | 104                | 20                 | μg/L  | 100              | 13.4             | 91 .       | 75-125          |     |              |       |
| Arsenic                         | 98.9               | 5.0                | †I    | 100              | ND               | 99         | 75-125          | •   |              |       |
| Copper                          | 111                | 2.0                | 0     | 100              | 17.7             | 94         | 75-125          |     |              |       |
| Iron                            | 240                | 50                 | II.   | 100              | 124              | 116        | 75-125          |     |              |       |
| Zinc                            | 97.8               | 2.0                | II.   | 100              | 2.64             | 95         | 75-125          |     |              |       |
| Cadmium                         | 9.87               | 0.50               | В     | 10.0             | ND               | 99         | 75-125          |     |              |       |
| Matrix Spike Dup (CS04693-MSD1) | Source: CSF0869-01 |                    |       | Prepared &       | ed: 06/24/0      |            |                 |     |              |       |
| Aluminum                        | 103                | 20                 | μg/L  | 100              | 6.14             | 97         | 75-125          | I   | 25           |       |
| Arsenic                         | 100                | 5.0                | и     | 100              | ND               | 100        | 7 <b>5-</b> 125 | I   | 25           |       |
| Copper                          | 97.7               | 2.0                | 17    | 100              | 0.370            | 97         | 75-125          | 2   | 25           |       |
| Iron                            | 338                | 50                 | 11    | 100              | 21.3             | 316        | 75-125          | 3   | 25           | QM-1  |
| Zinc                            | 99.5               | 2.0                | I)    | 100              | ND               | 100        | 75-125          | . 1 | 25           |       |
| Cadmium                         | 10,2               | 0:50               | н     | 10.0             | ND               | 102        | 75-125          | 5   | 25           |       |
| Matrix Spike Dup (CS04693-MSD2) | Sou                | rce: CSF086        | 59-10 | Prepared &       | ed: 06/24/0      |            | 4               |     |              |       |
| Aluminum                        | 103                | 20                 | μg/L  | 100              | 13.4             | 89         | 75-125          | 2   | 25           |       |
| Arsenic                         | 98.4               | 5.0                | n     | 100              | ND               | 98         | 75-125          | 0.5 | 25           |       |
| Copper                          | 110                | 2.0                | n     | 100              | 17.7             | 93         | 75-125          | 0.8 | 25           |       |
| Iron                            | 264                | 50                 | n     | 100              | 124              | 140        | 75-125          | 10  | 25           | QM-7  |
| Zinc .                          | 100                | 2.0                | If    | 100              | 2.64             | 98         | 75-125          | 3   | 25           | •     |
| Cadmium                         | 9.97               | 0.50               | N     | 10.0             | ND               | 100        | 75-125          | 1   | 25           | •     |

Q & OLG

## CALIFORNIA LABORATORY SERVICES

07/09/09 08:08

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]
Project Manager: Jeff Huggins

CLS Work Order #: CSF0869

COC #: 94811,83105

#### Notes and Definitions

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS/LCSD recovery.

OM-5

The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

HT-F

This is a field test method and it is performed in the lab outside holding time.

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

#### CENTRAL VALLEY REGIONAL WATER QUALITY CONTROL BOARD

#### INSPECTION REPORT

23 October 2009

**DISCHARGER:** 

Walker Mine

LOCATION & COUNTY:

Walker Mine, Plumas County

CONTACT(S):

None

**INSPECTION DATE:** 

21 October 2009

INSPECTED BY:

Jeff Huggins/Dan Little

**ACCOMPANIED BY:** 

NA

#### **OBSERVATIONS AND COMMENTS:**

Board staff performed the annual fall inspection of the Walker Mine in Plumas County as required by Walker Mine Operations and Maintenance Procedures, dated June 1997.

#### **WALKER MINE PORTAL AREA:**

The portal door at the main 700 level adit was securely locked upon our arrival. There did not appear to be any new bullet holes in the steel door that secures access to the 700 level adit nor vandalism of the portal door. A brief inspection of the Telog pressure data recorder indicated that it was recording pressure data daily as programmed.

Board staff downloaded and analyzed pressure data from the Telog data recorder during the inspection. The Telog data recorder is connected via a 2,500-foot long electronic cable to a Druck pressure sensor at the mine seal. Once per day the data recorder measures and stores an electronic current measurement (mAmps) from the Druck pressure sensor. This data is converted mathematically by Board staff to feet of pressure head on the mine seal<sup>1</sup>. At the time of the inspection, a current measurement of 6.28 mAmps (approximately 100 feet of head over the mine seal) was recorded. A maximum pressure head of 135 feet over the mine seal was recorded from 1 July through 30 July 2009 likely due to snowmelt seepage into the mine workings.

The batteries that power the Druck pressure sensor recorder were removed and replaced with recharged batteries during this inspection. All four of the heavy-duty locks on the portal doors were securely locked upon leaving the mine portal.

The drainage channel inside the corrugated section of the mine tunnel was working effectively and was not obstructed. The drainage channel between the mine portal and the waste dump was open and flowing at about 0.5 gallons per minute. Board Staff did not perform an inspection of the mine tunnel beyond the corrugated metal pipe (187 feet into the main drift) because approximately 700 lineal feet of the suspended ventilation duct within the main mine

| Approved: |  | ٠ |
|-----------|--|---|

<sup>&</sup>lt;sup>1</sup> (Note: The Druck pressure sensor is scaled to transmit 4 to 20 mAmps for 0 to 300 psi).

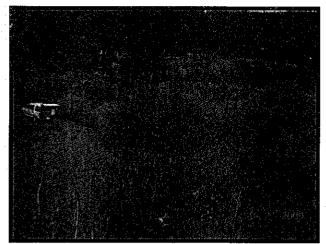
portal has fallen to the ground and is unusable for ventilation purposes (as reported in the 19 June 2007 inspection report). Repair of the ventilation duct is required before staff can safely inspect the mine seal.

#### WALKER MINE TAILINGS FACILITY:

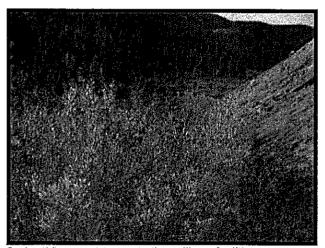
Board staff also checked the Walker Mine tailings facility located on adjacent public lands administered by the United States Department of Agriculture Forest Service (USFS). The tailings facility represents a significant source of water pollution into both Dolly Creek and Little Grizzly Creek. Staff inspected progress on the 2009 renovations to the Dolly Creek diversion work being carried out by the USFS as required by Order No R5-00-028. Diversion of Dolly Creek off of the tailings is expected to reduce heavy metals contamination in Little Grizzly Creek.

Renovations to the diversion channel headworks were nearly complete as shown in Photos #4-12. The prior design had not worked effectively, which resulted in a significant amount of subsurface drainage from Dolly Creek passing beneath the diversion structure and making its way to the old Dolly Creek channel.

#### WATER QUALITY MONITORING:


Surface water samples were collected from Dolly, Little Grizzly, Nye, and Ward Creeks. However, the south branch of Ward Creek (WM-11) and Nye Creek (WM-13) were dry and therefore no samples were collected from these locations. All of the other sample locations had sufficient surface water to sample. Laboratory results are pending.

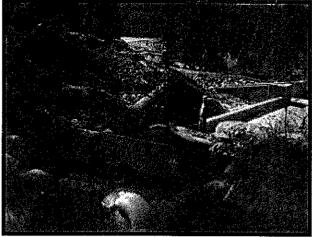
#### SUMMARY:


A semi annual inspection was made of the Walker Mine site. Surface water monitoring was performed and water pressure measurements on the mine seal were obtained. New batteries were installed for the data logger. Renovation work at the Dolly Creek drainage channel headworks' was nearly complete and this should reduce the volume of Dolly Creek water that comes into contact with the Walker Mine tailings facility.

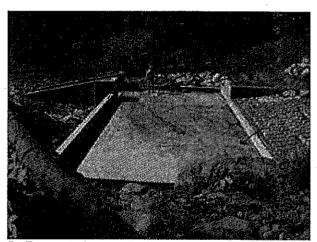
#### **RECOMMENDATIONS:**

Repair of the ventilation duct is required before staff can safely inspect the mine seal that was installed by the Regional Water Board in 1987 to prevent the discharge of acid mine drainage from the underground mine to Dolly Creek. An effort to initiate a contract for repair of the ventilation ducting and some minor timber rehabilitation work was stalled by budget constraints during the spring of 2009. The mine seal and stainless steel piping and valves need to be inspected and physically tested to ensure their operability in accordance with the Board's Operations and Maintenance Plan for the Walker Mine.

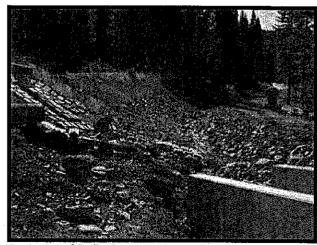



1. Walker Mine Portal Area.




2. Looking west towards the tailings facility.

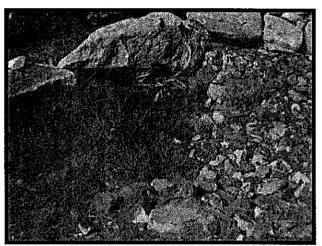



3. Sampling at Dolly Creek upstream (WM-2).



4. USFS Headworks diversion above the Walker Mine tailings facility.

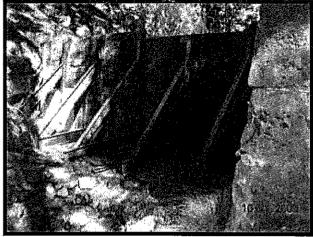



5. Renovated concrete diversion structure for Dolly Creek diversion.

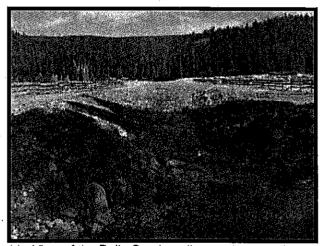


6. Outlet of Dolly Creek to the realignment across the Walker Mine tailings facility.

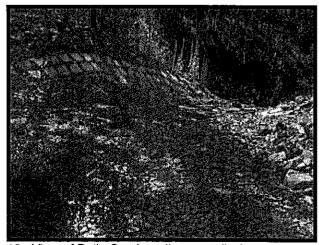



7. View of the 100 year storm emergency overflow to the old Dolly Creek channel.




8. View of some minor subsurface underflow water seeping out at the base of the 100 year overflow.




9. View of water remaining in the old Dolly Creek channel near the USFS dam.



10. View of USFS dam with virtually no overflow. Most of the Dolly Creek water volume has been successfully diverted to the diversion channel.



11. View of the Dolly Creek realignment across the Walker Mine tailings facility near junction with Little Grizzly Creek.



12. View of Dolly Creek realignment discharge structure to Little Grizzly Creek.

3249 Fitzgerald Road Rancho Cordova, CA 95742

October 28, 2009

CLS Work Order #: CSJ0884 COC #: 94812,84178

Jeff Huggins CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova, CA 95670-6114

Project Name: Walker Mine

Enclosed are the results of analyses for samples received by the laboratory on 10-22-09 08:30. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D.

Laboratory Director



#### Sample Receiving Exception Report Work Order #CSJ0884

The Chain of Custody does not match the labels on the sample bottles. The Chain of Custody states the sample date is 6\21\09 and the sample bottles state 10\21\09. Per client samples were logged in according to sample bottles.

| ,             | 0                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                              | 1                |           |          | BA1        | Ī . |                |             |             |           |           | ·<br>                                   |                        |                                                                                                       |                 |      |              |                       | Ī.             |
|---------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|------------------|-----------|----------|------------|-----|----------------|-------------|-------------|-----------|-----------|-----------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------|-----------------|------|--------------|-----------------------|----------------|
| LOG NO. 94812 | ER:<br>T   YES   NO                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IE SPECIAL INSTRUCTIONS    | OR ALT. ID:                  | Need In debedran | 47        |          |            |     |                |             | INVOICE TO: |           |           | PO.#                                    | -W-120                 | (b) = N <sub>2</sub> S <sub>2</sub> O <sub>3</sub> (c) = N <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | FRIE COMPANY    |      |              | , Sal                 |                |
| 200           | GEOTRACKER:<br>EDF REPORT<br>GLOBAL ID:                      | COMPOSITE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TURN AROUND TIME           | YAQ<br>S<br>YAQ<br>3<br>YAQ  |                  |           |          |            |     |                |             | -           |           | -         |                                         | (S) = (C)              | (4) = NaOH                                                                                            | ( (Signa)       |      |              | CONDITIONS / COMMENTS | AIR BILL #     |
| WID NO.       | REQUESTED                                                    | le i Ica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Anais                      | <b>ग्रा</b> त                |                  |           |          |            |     | ·              |             |             | •         | 164       | D/2015 (N/2)                            | (1) HCL                | (2) HNO <sub>3</sub> (4)=                                                                             |                 |      |              | 00                    |                |
| <b>5(</b>     |                                                              | PTOW L<br>DEPWOOD<br>DOWN POWER<br>DOWN POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER POWER | ر فيري<br>رومز<br>TIVES    | 8:9 C                        | 7                |           | £        |            |     |                |             |             |           | -         | No Water                                | PRESERVATIVES          | DATE / TIME                                                                                           | 0830 Bahalal    |      |              | <b>B</b> B            | ОТНЕВ          |
|               | CT_C33-150-0<br>DESTINATION LABORATORY    CLS (916) 638-7301 | 3249 FITZGERALD BD. RANCHO CORDOVA, CA. 95742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | CONTAINER NO. TYPE           | <b>37</b>        | r         | E. C.    | 2          | -   |                | <i>Y</i> .  | C           | ţ,        | ĬΜ        | 1 2 S S S S S S S S S S S S S S S S S S | (5)                    | DDINT MARKE / CORROANY                                                                                | Certific Villey | 1    | 7.           | DATE/TWEP JOB         | □ ups / l □ oī |
|               | ich Valadez<br>ey Water Board                                | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mendera                    | SAMPLE SAMPLE IDENTIFICATION | -5 160/115       | 1-3 DC/DS | و ع      | , ix       |     | -9 Bowns Cabin | ١,          | - تر ا      | 175       | 9-1       | +1                                      | 1 S Mid B. War         |                                                                                                       | THE             |      |              | ( MUM)                | FED X          |
|               | NAME AND ADDRESS LETTER CENTRAL VAILEY VA                    | 1.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JOB DESCRIPTION COLLECTION | STE LOCATION   LLANCES       | GAILED ROYS WM-5 | Bio       | CAZO WM- | F-MW GOIGI |     | Wids WM-9      | 12:10 WM-72 | 12,00 WM-   | -MM 08:2) | 12:40 WM- | 1,55 WM                                 | SUSPECTED CONSTITUENTS | BET INCHES BY ASICAL                                                                                  | Whs Branco      | 7 // | 11 (11/11/11 | Too William Chill     | SHIPPED BY:    |

|                        |                                                                 |                                                                          |                   |                             |                                 | ~~                         |            | ₽A.                | 1. |             |      |   |        |     |                                               |                                        |       |                                    |
|------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------|-----------------------------|---------------------------------|----------------------------|------------|--------------------|----|-------------|------|---|--------|-----|-----------------------------------------------|----------------------------------------|-------|------------------------------------|
| 29-21<br>LOG NO. 84178 | KER: RT   YES   NO                                              |                                                                          |                   | ME SPECIAL INSTRUCTIONS     | a                               | Need low defection         |            |                    |    | INVOICE TO: | 2000 |   | P.O. # |     | (5) = $R_2 S_2 O_3$ (7) = (6) = $R_2 S_2 O_3$ | PRINT NAME / COMPANY                   |       | 200                                |
| NST0804                | GEOTRACKER:<br>EDF REPORT<br>GLOBAL ID:                         | COMPOSITE                                                                | FIELD CONDITIONS: | TOHN AROUND TIME            | a                               | Jake                       | 1          |                    |    |             |      |   |        | 100 | (4) = COLD<br>(4) = NaOH                      | RECEIVED BY (SIGN)                     |       | CONDITIONS / COMMENTS:) AIR BILL # |
| CLEND No.;             | ANALYSIS REQUESTED                                              | ) Sm+21./                                                                | 01. d >>0         | <br>                        | - 1                             | Sample Mo Waste            |            |                    |    |             |      |   |        |     | 2 <b>0</b>                                    |                                        |       | 0                                  |
| (5                     | )" " " (                                                        |                                                                          | VATIVE            | nd (500<br>1 600            | 2                               | 2 Z                        | 4          |                    |    |             |      |   |        |     | PHESEHVAIIVES:                                | DATE / TIME                            |       | 3<br>3THER                         |
| CHAIN OF CUSTODY       | CLIENT JOB NUMBER  C7 - C. 35 - 150 - C  DESTINATION LABORATORY | CLS (916) 638-7301<br>3249 HTZGERALD RD.<br>RANCHO CORDOVA, CA.<br>95742 | Отнея<br>         | -                           | Š ģ                             | WHEN 3 Playing             | <b>^</b>   | AAAA               |    |             |      | 1 |        |     |                                               | PRINT NAME / COMPANY,  LENTEL VEILER / |       | ONTEL/MED 22 (D                    |
| CLS - Labs             | NAME AND ADDRESS LETCIA Valade?                                 | PROJECT MANAGER HUGGINS (916) 464-4639                                   | 1 - 21 - 6-11     | STIFLOCATION PLUMES, COUNTY | DATE TIME SAMPLE IDENTIFICATION | 6-21-691473 WM-13 ME Greek | ILIN WW-30 | 15:15 WM-10 254057 |    |             |      |   |        |     |                                               | AM S. Hand BY (SIGN) PRIN              | .   . | SHIPPED BY: FED X                  |

10-28-09 I5:23

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: 07-023-150-0 Project Manager: Jeff Huggins CLS Work Order#: CSJ0884

COC#: 94812,84178

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                              | Result          | Reporting<br>Limit | Units       | Dilution  | Batch         | Prepared | Analyzed                              | <b>M</b> eth <b>o</b> d | Notes |
|--------------------------------------|-----------------|--------------------|-------------|-----------|---------------|----------|---------------------------------------|-------------------------|-------|
| WM-5 (LGC/MS) (CSJ0884-01) Water     | Sampled: 10-2   | 1-09-08:45         | Received    | : 10-22-0 | 9 08:30       | <u> </u> |                                       |                         |       |
| Total Alkalinity                     | 75              | 5.0                | mg/L        | 1         | CS08041       | 10-22-09 | 10-22-09                              | SM2310B                 |       |
| Bicarbonate as CaCO3                 | 75              | 5.0                | 11          | ıt        | It            | II.      | rt                                    | · n                     |       |
| Carbonate as CaCO3                   | ND              | 5.0                | H           | lt        | .11           | II       | R                                     | п                       |       |
| Hydroxide as CaCO3                   | ND              | 5.0                | l*          | n         | It            | lt ,     | lt.                                   | п                       |       |
| Chloride                             | 0.85            | 0.50               | n           | п         | CS08103       | 10-26-09 | 10-26-09                              | EPA 300.0               |       |
| Specific Conductance (EC)            | 160             | 1.0                | μmhos/cm    | п         | CS08034       | 10-22-09 | 10-22-09                              | EPA 120.1               |       |
| Methylene Blue Active Substances     | ND              | 0.10               | mg/L        | a         | CS08033       | 10-22-09 | 10-22-09                              | SM5540 C                |       |
| Calcium                              | 16              | 1.0                | *1          | 11        | CS08035       | 10-22-09 | 10-22-09                              | 200.7/2340B             |       |
| Magnesium                            | 7.5             | 1.0                | 4 ,         | ш         | 10            | и .      | l)                                    | II.                     | •     |
| Potassium                            | 2.4             | 1.0                | #           | n         | ıt            | II       | · · · · · · · · · · · · · · · · · · · | 11                      |       |
| Sodium                               | 5.0             | 1.0                | 11          | 11        | n             | II       | ш                                     | 11                      |       |
| Hardness as CaCO3                    | 70              | 1.0                | 10          | п         | II            | n        | u                                     | п                       |       |
| рН                                   | 7.13            |                    | pH Units    | И         | CS08018       | 10-22-09 | 10-22-09                              | SM4500-H B              | HT-F  |
| Sulfate as SO4                       | ND              | 0.50               | mg/L        | II        | CS08103       | 10-26-09 | 10-26-09                              | EPA 300.0               |       |
| Total Dissolved Solids               | 100             | 10                 |             | ti        | CS08084       | 10-23-09 | 10-26-09                              | SM2540C                 |       |
| •                                    | Sampled: 10-21- | 09 09:10 1         | Received:   | 10-22-09  | <b>08:3</b> 0 |          | •                                     |                         |       |
| Total Alkalinity                     | 76              | 5.0                | mg/L        | 1         | CS08041       | 10-22-09 | 10-22-09                              | SM2310B                 | ,     |
| Bicarbonate as CaCO3                 | 76              | 5.0                | n           | It        | II            | fl       | 11                                    | 11                      |       |
| Carbonate as CaCO3                   | ND              | 5.0                | .lf         | It        | U             | It       | 11                                    | lı                      |       |
| Hydroxide as CaCO3                   | ND              | 5.0                | 11          | п         | . 11          | It       | н                                     | . If                    |       |
| Chloride                             | 0.70            | 0.50               | n           | †1        | CS08103       | 10-26-09 | 10-26-09                              | EPA 300.0               |       |
| Specific Conductance (EC)            | 150             | 1.0                | μmhos/cm    | It        | CS08034       | 10-22-09 | 10-22-09                              | EPA 120.1               |       |
| Methylene Blue Active Substances     | ND              | 0.10               | mg/L        | , и       | CS08033       | 10-22-09 | 10-22-09                              | SM5540 C                |       |
| Calcium                              | 16              | 1.0                | II          | п         | CS08035       | 10-22-09 | 10-22-09                              | 200.7/2340B             |       |
| Magnesium                            | 9.2             | 1.0                | H           | \$I       | 31            | li .     |                                       | . и                     |       |
| Potassium                            | 1.2             | 1.0                | . 17        | 11        | ıi            | (I       | п                                     | н :                     |       |
| Sodium                               | 3.5             | 1.0                | u           | II        | It '          |          | *1                                    | R                       |       |
| Hardness as CaCO3                    | 77              | 1.0                | п           | IF        | lr .          | h        | 11                                    | , 4                     |       |
| pH                                   | 7.60            | 0.01               | pH Units    | tı        | CS08018       | 10-22-09 | 10-22-09                              | SM4500-H B              | HT-F  |
| Sulfate as SO4                       | 0.77            | 0.50               | mg/L        | . u       | CS08103       | 10-26-09 | 10-26-09                              | EPA 300.0               |       |
| Total Dissolved Solids               | 100             | 10                 | . 0         | 11        | CS08084 ·     | 10-23-09 | 10-26-09                              | SM2540C                 |       |
|                                      |                 | 10-21-09           | יים חוביוט∩ | nama. 1   |               |          | 10 20 07                              |                         | •     |
| WM-19 (Settling Pond) (CSJ0884-03) W | vater Sampled   | . 10-41-09         | OZIZU KE    | cerveu; 1 |               |          |                                       |                         |       |

10-28-09 15:23

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order #: CSJ0884

COC #: 94812,84178

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                                  | Result      | Reporting<br>Limit | Units      | Dilution   | Batch      | Prepared           | Analyzed          | Method      | Notes |
|------------------------------------------|-------------|--------------------|------------|------------|------------|--------------------|-------------------|-------------|-------|
| WM-19 (Settling Pond) (CSJ0884-03) Water | Sampled     | : 10-21-09 (       | 9:20 Red   | ceived: 10 | -22-09 08: | 30                 |                   |             |       |
| Total Alkalinity                         | 32          | 5.0                | mg/L       | 1          | CS08041    | 10-22-09           | 10-22-09          | SM2310B     |       |
| Bicarbonate as CaCO3                     | 32          | 5.0                | Ħ          | Ir         | Ħ          | n                  | u                 | er          |       |
| Carbonate as CaCO3                       | ND          | 5.0                | 11         | It         | 11         | li                 | п                 | af.         |       |
| Hydroxide as CaCO3                       | ND          | 5.0                | II         | II.        | Ħ          | ŋ                  | II                | 11          |       |
| Chloride                                 | 0.73        | 0.50               | II         | H          | CS08103    | 10-26-09           | 10-26-09          | EPA 300.0   |       |
| Specific Conductance (EC)                | 260         | 1.0                | µmhos/cm   | II         | CS08034    | 10-22-09           | 10-22-09          | EPA 120.1   |       |
| Methylene Blue Active Substances         | ND          | 0.10               | mg/L       | It         | CS08033    | 10-22-09 .         | 10-22-09          | SM5540 C    |       |
| Calcium                                  | 29          | 1.0                | ij         | . It       | CS08035    | I 0-22 <b>-</b> 09 | 10-22-09          | 200.7/2340B |       |
| Magnesium                                | 7.8         | 1.0                | n          | It         | ıt         | 4                  | 17                | r.          |       |
| Potassium                                | 3.4         | 1.0                | ц          | If         | D          | Ħ                  | п                 | п           |       |
| Sodium                                   | 8.2         | 1.0                | 11         | n          | II         | 11                 | И                 | u           |       |
| Hardness as CaCO3                        | 110         | 1.0                | 11         | 19         | U          | ıl                 | II                | 'n          |       |
| pH                                       | 7.29        | 0.01               | pH Units   | łı         | CS08018    | 10-22-09           | 10-22-09          | SM4500-H B  | HT-F  |
| Sulfate as SO4                           | 88          | 2.5                | mg/L       | . 5        | CS08103    | 10-26-09           | 10-27-09          | EPA 300.0   |       |
| Total Dissolved Solids                   | 190         | 10                 | 11         | 1          | CS08084    | 10-23-09           | 10-26-09          | SM2540C     |       |
| WM-1 (Portal) (CSJ0884-04) Water Sampl   | ed: 10-21-6 | 9 09:45 R          | eceived: 1 | 0-22-09 0  | 8:30       |                    |                   |             |       |
| Total Alkalinity                         | 58          | 5.0                | mg/L       | 1          | CS08041    | 10-22-09           | 10-22-09          | SM2310B     | –     |
| Bicarbonate as CaCO3                     | 58          | 5.0                | H          | u          | п          | 11                 | u                 | н           | -     |
| Carbonate as CaCO3                       | ND          | 5.0                | ur .       | н          | · B        | 11                 | ıı ıı             | h           |       |
| Hydroxide as CaCO3                       | ND          | 5.0                | 17         | Ħ          | n          | ı                  | Ħ                 | 41          |       |
| Chloride                                 | 0.59        | 0.50               | i1         | n          | CS08103    | 10-26-09           | 10 <b>-2</b> 6-09 | EPA 300.0   |       |
| Specific Conductance (EC)                | 120         | 1.0                | µmhos/cm   | r          | CS08034    | 10-22-09           | 10-22-09          | EPA 120.1   |       |
| Methylene Blue Active Substances         | ND          | 0.10               | mg/L       | ıt         | CS08033    | 10 <b>-22</b> -09  | 10-22-09          | SM5540 C    |       |
| Calcium                                  | 13          | 1.0                | 11         | 11         | CS08035    | 10-22-09           | 10-22-09          | 200.7/2340B |       |
| Magnesium                                | 5.4         | 1.0                | IF         | п          | и          | М                  | U                 | 11          |       |
| Potassium                                | 1.0         | 1.0                | 17         |            | It         | II                 | ii                | l)          |       |
| Sodium                                   | 5.3         | 1.0                | u,         | Ħ          | tr         | IS                 | ŧı                | 0           |       |
| Hardness as CaCO3                        | 54          | 1.0                | n          | 19         | Ħ          | ſI                 | п                 | 11          |       |
| pH                                       | 7.49        | 0.01               | pH Units   | п          | CS08018    | 10-22-09           | 10-22-09          | SM4500-H В  | HT-F  |
| Sulfate as SO4                           | 1.2         | 0.50               | mg/L       |            | CS08103    | 10-26-09           | 10-26-09          | EPA 300.0   |       |
| Total Dissolved Solids                   | 92          | 10                 | IUS/L      | u          | C\$08084   | 10-23-09           | 10-26-09          | SM2540C     |       |
| WM-2 (DC/MS) (CSJ0884-05) Water Sam      |             |                    | T          |            |            | 10-23-07           | 10-20-03          | 211220 100  |       |

10-28-09 15:23

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order #: CSJ0884

COC#: 94812,84178

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                           | Result          | Reporting<br>Limit | Units     | Dilution   | Batch      | Prepared | Analyzed          | Method      | Notes |
|-----------------------------------|-----------------|--------------------|-----------|------------|------------|----------|-------------------|-------------|-------|
| WM-2 (DC/MS) (CSJ0884-05) Water   | Sampled: 10-21  | -09 10:00          | Received: | 10-22-09   | 08:30      | _        | -                 |             |       |
| Total Alkalinity                  | 74              | 5.0                | mg/L      | 1          | CS08041    | 10-22-09 | 10-22-09          | SM2310B     |       |
| Bicarbonate as CaCO3              | 74              | 5.0                | *1        | н          | W          | ù        | и                 | и           |       |
| Carbonate as CaCO3                | ND              | 5.0                | tì        | li         | n          | n        | 16                | и           | *     |
| Hydroxide as CaCO3                | ND              | 5.0                | 41        | It         | и          | 11       | ıı                | H           |       |
| Chloride                          | 0.63            | 0,50               | łı        | H          | CS08103    | 10-26-09 | 10-26-09          | EPA 300.0   |       |
| Specific Conductance (EC)         | <b>15</b> 0     | 1.0                | μmhos/cm  | 11         | CS08034    | 10-22-09 | 10-22-09          | EPA 120.1   |       |
| Methylene Blue Active Substances  | ND              | 0.10               | mg/L      | n          | CS08033    | 10-22-09 | 10-22-09          | SM5540 C    |       |
| Calcium                           | 15              | 1.0                | ш.        | D          | CS08035    | 10-22-09 | 10-22-09          | 200.7/2340B |       |
| Magnesium                         | 9.1             | 1.0                | IF        | υ          | IT         | iI       | 11                | B           |       |
| Potassium                         | 1.1             | 1.0                | H         | н          | H          | fi       | lı                | II.         | *     |
| Sodium                            | 3,2             | 1.0                | D         | n          | n          | 16       | 11                | u .         |       |
| Hardness as CaCO3                 | 76              | 1.0                | n         | +1         | ıl         | и        | II.               | tı          |       |
| рH                                | 7.72            | 0.01               | pH Units  | ' 0        | CS08018    | 10-22-09 | 10-22-09          | SM4500-H B  | HT-F  |
| Sulfate as SO4                    | ND              | 0.50               | mg/L      | ĮI.        | C\$08103   | 10-26-09 | 10 <b>-</b> 26-09 | EPA 300.0   |       |
| Total Dissolved Solids            | 110             | 10                 | · n       | μ          | CS08084    | 10-23-09 | 10-26-09          | SM2540C     |       |
| WM-4 (48" Culvert) (CSJ0884-06) W | ater Sampled: 1 | 0-21-09 11:        | 30 Receiv | ved: 10-22 | 2-09 08:30 |          |                   |             |       |
| Total Alkalinity                  | 77              | 5.0                | mg/L      | 1          | CS08041    | 10-22-09 | 10-22-09          | SM2310B     |       |
| Bicarbonate as CaCO3              | 77              | 5,0                | 11        | n          | н          | . 4      | 11 -              | If          |       |
| Carbonate as CaCO3                | ND              | 5.0                | μ .       | IJ         | N          | 11       | ti                | D           |       |
| Hydroxide as CaCO3                | ND              | 5.0                | 18        | Ħ          | If         | 11       | tı .              | d           |       |
| Chloride                          | 0.70            | 0.50               | n         | , ti       | CS08103    | 10-26-09 | 10-26-09          | EPA 300.0   |       |
| Specific Conductance (EC)         | 150             | 1.0                | μmhos/cm  | н          | CS08034    | 10-22-09 | 10-22-09          | EPA 120.1   |       |
| Methylene Blue Active Substances  | ND              | 0.10               | mg/L      | If         | CS08033    | 10-22-09 | 10-22-09          | SM5540 C    |       |
| Calcium                           | 15              | 1.0                | lr        | 17         | CS08035    | 10-22-09 | 10-22-09          | 200.7/2340B |       |
| Magnesium                         | 8.6             | 1.0                | u         | n          | II .       | ıı       | н                 | IF .        |       |
| Potassium                         | 1.1             | 1.0                | 11        | , u        | и.         | н        |                   | D           |       |
| Sodium                            | 3.4             | 1.0                | . 0       | , 11       | 11         | II.      | ď                 | n           |       |
| Hardness as CaCO3                 | 73              | 1.0                | 11        | N          | If         | 10       | II                | fi          |       |
| На                                | 7.71            | 0.01               | pH Units  | n          | CS08018    | 10-22-09 | 10-22-09          | SM4500-H B  | HT-F  |
| Sulfate as SO4                    | 0.82            | 0.50               | mg/L      | 'n         | CS08103    | 10-26-09 | 10-26-09          | EPA 300.0   |       |
|                                   |                 |                    |           |            |            |          | 10 05 00          | 03.605.400  |       |
| Total Dissolved Solids            | 100             | 10                 | IF        | #1         | CS08084    | 10-23-09 | 10-26-09          | SM2540C     |       |

10-28-09 15:23

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: 07-023-150-0

CLS Work Order #: CSJ0884 Project Manager: Jeff Huggins

COC #: 94812,84178

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                                | Result      | Reporting<br>Limit | Units               | Dilution  | n Batch     | Pr <b>e</b> pared | Analyzed          | Method           | Notes |
|----------------------------------------|-------------|--------------------|---------------------|-----------|-------------|-------------------|-------------------|------------------|-------|
| WM-9 (Browns Cabin) (CSJ0884-07) Water | Sampled:    | 10-21-09           | 11:45 Rec           | eived: 10 | )-22-09 08: | 30 .              | 4                 |                  |       |
| Total Alkalinity                       | 75          | 5.0                | mg/L                | 1         | C\$08041    | 10-22-09          | 10-22-09          | SM2310B          |       |
| Bicarbonate as CaCO3                   | 75          | 5.0                | fi                  | IP .      | u           | "                 | н                 | I†               |       |
| Carbonate as CaCO3                     | ND          | 5.0                | Ħ                   | IF '      | ij          | 11                | · п               | lt .             |       |
| Hydroxide as CaCO3                     | ND          | 5.0                | 11                  | 11        | ti .        | "                 | ţį .              | H                | •     |
| Chloride                               | 0.81        | 0.50               | Ħ                   | . 16      | CS08103     | 10-26-09          | 10-26-09          | EPA 300.0        |       |
| Specific Conductance (EC)              | 180         | . 1.0              | μmhos/cm            |           | CS08034     | 10-22-09          | 10-22-09          | EPA 120.1        |       |
| Methylene Blue Active Substances       | ND          | 0.10               | mg/L                | 19        | CS08033     | 10-22-09          | 10-22-09          | SM5540 C         |       |
| Calcium                                | 20          | 1.0                | 11                  | H         | CS08035     | 10-22-09          | 10-22-09          | 200.7/2340B      |       |
| Magnesium                              | .7.2        | 1.0                | II                  | п         | N .         | 11                | u                 | Ħ                |       |
| Potassium                              | 2.1         | 1.0                | If                  | и         | ut .        | <b>st</b> ,       | . 11              | <del>1</del> 1 . |       |
| Sodium                                 | 4.8         | 1.0                | If                  | II.       | *           | 11                | 11                | п                |       |
| Hardness as CaCO3                      | 80          | 1.0                | 0 .                 | 11        | 1)          | If                | Я                 | я                |       |
| pH                                     | 7.77        | 0.01               | pH Units            | 11        | CS08018     | 10-22-09          | 10-22-09          | SM4500-H B       | HT-F  |
| Sulfate as SO4                         | 12          | 0.50               | mg/L                | 11        | CS08103     | 10-26-09          | 10-26-09          | EPA 300.0        |       |
| Total Dissolved Solids                 | 110         | 10                 | 71                  | u         | CS08084     | 10-23-09          | 10-26-09          | SM2540C          |       |
| WM-7a (CSJ0884-08) Water Sampled: 10-2 | 21-09 12:10 | Received           | l: <b>10-22-</b> 09 | 08:30     |             | -                 |                   |                  |       |
| Total Alkalinity                       | 78          | 5.0                | mg/L                | 1         | CS08041     | 10-22-09          | 10-22-09          | SM2310B          |       |
| Bicarbonate as CaCO3                   | 78          | 5.0                | и                   | ø         | , <b>II</b> | 11                | (I                | . H              |       |
| Carbonate as CaCO3                     | ND          | 5.0                | н .                 | n n       | 19          | , b               | ti .              | и .              |       |
| Hydroxide as CaCO3                     | ND          | 5.0                | 0                   | 11        | W .         | n .               | и .               | ıt .             | 4     |
| Chloride                               | 0.73        | 0.50               | ti                  | 1.0       | CS08103     | 10-26-09          | 10-26-09          | EPA 300.0        |       |
| Specific Conductance (EC)              | 150         | 1.0                | μmhos/cm            | 11        | CS08034     | 10-22-09          | 10-22-09          | EPA 120.1        |       |
| Methylene Blue Active Substances       | ND          | 0.10               | mg/L                | 11        | CS08033     | 10-22-09          | 10 <b>-22-</b> 09 | SM5540 C         | •     |
| Calcium                                | 16          | 1.0                | u                   | . В       | CS08035     | 10-22-09          | 10-22-09          | 200.7/2340B      |       |
| Magnesium                              | 8.5         | 1.0                | и .                 | IJ        | 11          | If                | . 41              | 1)               |       |
| Potassium                              | 1.2         | 1.0                | ļ.                  | II        | n           | n                 |                   | й                |       |
| Sodium                                 | 3.7         | 1.0                | н                   | 11        | Ŋ           | . 11              | 11                | н                |       |
| Hardness as CaCO3                      | 75          | 1.0                | 11                  | tt        | u           | . 11              | . 0               | и                |       |
| pH                                     | 7.93        | 0.01               | pH Units            | H         | CS08018     | 10-22-09          | 10-22-09          | SM4500-H B       | HT-I  |
| Sulfate as SO4                         | 1.3         | 0.50               | mg/L                | ĮI.       | CS08103     | 10-26-09          | 10-26-09          | EPA 300.0        |       |
| Total Dissolved Solids                 | 100         | 10                 | ıt.                 | ŗı        | CS08084     | 10-23-09          | 10-26-09          | SM2540C          |       |
| WM-7b (CSJ0884-09) Water Sampled: 10-  |             |                    | a: 1ó-22-09         | 08:30     |             |                   |                   |                  |       |

10-28-09 15:23

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order #: CSJ0884

COC #: 94812,84178

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Amaluka                          | Result                 | Reporting  | Linita      | Dilution  | Batch    | Drangrad          | Amalumad | Mathad                | Moto |
|----------------------------------|------------------------|------------|-------------|-----------|----------|-------------------|----------|-----------------------|------|
| MM-7b (CSJ0884-09) Water S       | -                      | Limit      | Units       |           | - Dateil | Prepared          | Analyzed | Method<br>            | Note |
|                                  |                        |            | <del></del> |           |          | · · ·             | <u> </u> |                       |      |
| Total Alkalinity                 | 76                     | 5.0        | mg/L        | 1         | CS08041  | 10-22-09          | 10-22-09 | SM2310B               |      |
| Bicarbonate as CaCO3             | 76                     | 5.0        | 14          | 11        | it<br>1t | fi .              | n<br>    | "<br>"                |      |
| Carbonate as CaCO3               | ND                     | 5.0        | 11          | #<br>II   | "        | 11                | "        | n<br>H                |      |
| Hydroxide as CaCO3               | ND                     | 5.0        |             | " "       |          | "                 | "        |                       |      |
| Chloride                         | 0.83                   | 0.50       |             | "         | CS08103  | 10-26-09          | 10-26-09 | EPA 300.0             |      |
| Specific Conductance (EC)        | 170<br>s ND            |            | μmhos/cm    | II        | CS08034  | 10-22-09          | 10-22-09 | EPA 120.1<br>SM5540 C |      |
| Methylene Blue Active Substances |                        | 0.10       | mg/L        | n '       | CS08033  | 10-22-09          | 10-22-09 | 200.7/2340B           |      |
| Calcium                          | 20                     | 1.0        | 13          | <br>H     | CS08035  | 10-22-09          | 10-22-09 | 200.772340B           |      |
| Magnesium                        | 6.2                    | 1.0        | 11          | "<br>JI • | 11       | 11                | "        |                       |      |
| Potassium<br>Sodium              | 2.3                    | 1.0<br>1.0 | 4           | 11        | " ·      |                   | "        | "                     |      |
|                                  | 5.3                    | 1.0        | 'n          | ,,<br>11  |          |                   |          | II                    |      |
| Hardness as CaCO3                | 75                     |            |             | )t        |          | 10.00.00          |          | SM4500-H B            | нт-  |
| pH                               | 7.32                   | 0.01       | pH Units    | ir        | CS08018  | 10-22-09          | 10-22-09 | EPA 300.0             | 111- |
| Sulfate as SO4                   | 12<br>110              | 0.50<br>10 | mg/L        | "<br>It   | CS08103  | 10-26-09          | 10-26-09 | SM2540C               |      |
| Total Dissolved Solids           |                        |            |             | 1         | CS08084  | 10-23-09          | 10-26-09 | 314123400             |      |
| WM-7c (CSJ0884-10) Water S       | ampled: 10-21-09 12:30 | Received   | : 10-22-09  | 08:30     |          |                   |          |                       |      |
| Total Alkalinity                 | 75                     | 5.0        | mg/L        | 1         | CS08041  | 10-22-09          | 10-22-09 | SM2310B               |      |
| Bicarbonate as CaCO3             | 75                     | 5.0        | †I          | 17        | 11       | II.               | IJ       | If                    |      |
| Carbonate as CaCO3               | ND                     | 5.0        | 11          | li        | Ħ        | IJ                | ij       | ti                    |      |
| Hydroxide as CaCO3               | ND                     | 5.0        | II          |           | II       | 11                | п        | "                     |      |
| Chloride                         | 0.75                   | 0.50       | l†          | 11        | CS08103  | 10-26-09          | 10-26-09 | EPA 300,0             |      |
| Specific Conductance (EC)        | 150                    | 1.0        | μmhos/cm    | H-        | CS08034  | 10-22 <b>-</b> 09 | 10-22-09 | EPA 120.1             | •    |
| Methylene Blue Active Substances | s ND .                 | 0.10       | mg/L        | 11        | CS08033  | 10-22 <b>-</b> 09 | 10-22-09 | SM5540 C              |      |
| Calcium                          | 16                     | 1.0        | υ.          | . "       | CS08035  | 10-22-09          | 10-22-09 | 200.7/2340B           | •    |
| Magnesium                        | 8.2                    | 1.0        | u           | †I        | 31       | . #               | ij       | ħ                     |      |
| Potassium                        | 1.3                    | 1.0        | , II,       | †I        | 11       | I,                | B        | <del>1</del> 1        |      |
| Sodium                           | 3.7                    | 1.0        | n           | 11        | . 11     | . 11              | и.       | ¢1                    | •    |
| Hardness as CaCO3                | 72                     | 1.0        | и           | , It      | II       | ĮĮ                | ù        | H                     |      |
| pH                               | 7.85                   | 0.01       | pH Units    | 17        | CS08018  | 10-22-09          | 10-22-09 | SM4500-H B            | HT-  |
| Sulfate as SO4                   | 1.4                    | 0.50       | mg/L        | 11        | CS08103  | 10-26-09          | 10-26-09 | EPA 300.0             |      |
| Total Dissolved Solids           | 100                    | 10         | n           |           | CS08084  | 10-23-09          | 10-26-09 | SM2540C               |      |
| WM-6 (CSJ0884-11) Water Sa       | mpled: 10-21-09 12:40  | Received:  | 10-22-09    | 08:30     |          |                   |          |                       |      |

10-28-09 15:23

CRWQCB - Sacramento

I 1020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order#: CSJ0884

COC#: 94812,84178

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                            | Result         | Reporting<br>Limit | Units    | Dilution   | Batch      | Prepared   | Analyzed | Method      | Notes |
|------------------------------------|----------------|--------------------|----------|------------|------------|------------|----------|-------------|-------|
| WM-6 (CSJ0884-11) Water Sampled:   | 10-21-09 12:40 | Received:          | 10-22-09 | 08:30      |            | , <u> </u> |          |             |       |
| Total Alkalinity                   | . 77           | 5.0                | mg/L     | 1          | CS08041    | 10-22-09   | 10-22-09 | SM2310B     |       |
| Bicarbonate as CaCO3               | 77             | 5.0                | )tr      | II .       | lt         | II         | II       | И           |       |
| Carbonate as CaCO3                 | ND             | 5.0                | II       |            | 90 -       | u          |          | . и         |       |
| Hydroxide as CaCO3                 | ND             | 5.0                | li .     | . 0        | Ħ          | · a        | lt.      | H           |       |
| Chloride                           | 1.1            | 0.50               | 11       | 6 i II     | CS08103    | 10-26-09   | 10-26-09 | EPA 300.0   |       |
| Specific Conductance (EC)          | 260            | 1.0                | μmhos/cm | · п        | CS08034    | 10-22-09   | 10-22-09 | EPA 120.1   |       |
| Methylene Blue Active Substances   | ND             | 0.10               | mg/L     | II         | CS08033    | 10-22-09   | 10-22-09 | SM5540 C    |       |
| Calcium                            | 31             | 1.0                | #1       | . 11       | CS08035    | 10-22-09   | 10-22-09 | 200.7/2340B |       |
| Magnesium                          | 8.8            | 1.0                | u        | и .        | lt         | и,         | a        | U           |       |
| Potassium                          | 6.2            | 1.0                |          | ď          | μ ·        | II         | (I       | II.         |       |
| Sodium                             | 5.0            | 1.0                | 11       | ø.         | IP         | a          | u        | U           |       |
| Hardness as CaCO3                  | 110            | 1.0                | n        | п          | P.         | u .        | . 11     |             |       |
| pH                                 | 7.79           | 0.01               | pH Units | п          | CS08018    | 10-22-09   | 10-22-09 | SM4500-H В  | HT-F  |
| Sulfate as SO4                     | 51             | 2.5                | mg/L     | 5          | CS08103    | 10-26-09   | 10-27-09 | EPA 300.0   |       |
| Total Dissolved Solids             | 170            | · 10               | 11       | . 1        | CS08084    | 10-23-09   | 10-26-09 | SM2540C     |       |
| WM-12 (Mid B. Ward) (CSJ0884-12) W | ater Sampled   | : 10-21-09         | 14:00 Re | ceived: 10 | -22-09 08: | 30         |          |             |       |
| Total Alkalinity                   | 14             | 5,0                | mg/L     | 1          | CS08041    | 10-22-09   | 10-22-09 | SM2310B     |       |
| Bicarbonate as CaCO3               | 14             | 5.0                | u        | ď          | н          | . "        | 11       |             |       |
| Carbonate as CaCO3                 | ND             | 5.0                | n        | ц          | D .        | U          | 11       | 11          |       |
| Hydroxide as CaCO3                 | ND             | 5.0                | ч        | tı         | IJ         | 11         | 11       | И           |       |
| Chloride                           | 0.54           | 0.50               | R        | 11         | CS08103    | 10-26-09   | 10-26-09 | EPA 300.0   |       |
| Specific Conductance (EC)          | 30             | 1.0                | μmhos/cm | , 11       | CS08034    | 10-22-09   | 10-22-09 | EPA 120.1   |       |
| Methylene Blue Active Substances   | ND             | 0.10               | mg/L     | Iţ         | CS08033    | 10-22-09   | 10-22-09 | SM5540 C    |       |
| Calcium                            | 3.0            | 1.0                | Ħ        | tr.        | CS08035    | 10-22-09   | 10-22-09 | 200.7/2340B |       |
| Magnesium                          | 1.3            | 1.0                |          | ţı         | R          | . #        | u        | II.         |       |
| Potassium                          | ND             | 1.0                | Ħ        | , ti       | , и        | ıt         | Ħ        | et .        |       |
| Sodium                             | 1.2            | 1.0                | It       | 11         | 71         | U          | 11       | ď           |       |
| Hardness as CaCO3                  | 13             | 1.0                | It       | II         | н          | 11         | μ        | и           |       |
| р <b>Н</b>                         | 6.21           | 0.01               | pH Units | h          | CS08018    | 10-22-09   | 10-22-09 | SM4500-H B  | HT-F  |
| Sulfate as SO4                     | ND             | 0.50               | mg/L     | If         | CS08103    | 10-26-09   | 10-26-09 | EPA 300.0   |       |
| Total Dissolved Solids             | 23             | 10                 | u u      | It         | CS08084    | 10-23-09   | 10-26-09 | SM2540C     |       |
| •                                  |                |                    |          |            |            |            |          |             |       |

10-28-09 15:23

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order#: CSJ0884

COC #: 94812,84178

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                             | Result        | Reporting<br>Limit | Units      | Dilution     | Batch    | Prepared | Analyzed | Method      | Notes |
|-------------------------------------|---------------|--------------------|------------|--------------|----------|----------|----------|-------------|-------|
| WM-17 (NBWC) (CSJ0884-13) Water     | Sampled: 10-2 | 1-09 14:20         | Received:  | 10-22-09     | 08:30    | _        |          |             |       |
| Total Alkalinity                    | 86            | 5.0                | mg/L       | 1            | CS08041  | 10-22-09 | 10-22-09 | SM2310B     |       |
| Bicarbonate as CaCO3                | 86            | 5.0                | ıt         | 19           | **       | B .      | ŋ        | If          |       |
| Carbonate as CaCO3                  | ND            | 5.0                | I.f        | If           | If       | B        | 11       | IT          |       |
| Hydroxide as CaCO3                  | ND            | 5.0                | <b>"</b> . | ıt           | If       | ıt       | u        | l†          |       |
| Chloride                            | 0.63          | 0.50               | II.        | u            | CS08103  | 10-26-09 | 10-26-09 | EPA 300.0   |       |
| Specific Conductance (EC)           | 160           | 1.0                | μmhos/cm   | 14           | CS08034  | 10-22-09 | 10-22-09 | EPA 120.1   |       |
| Methylene Blue Active Substances    | ND            | 0.10               | mg/L       | It           | CS08033  | 10-22-09 | 10-22-09 | SM5540 C    |       |
| Calcium                             | 18            | 1.0                |            | <b>I</b> f . | CS08035  | 10-22-09 | 10-22-09 | 200.7/2340B |       |
| Magnesium                           | 8.3           | 1.0                | ır         | 19           | 15       | P        | 11       | n'          |       |
| Potassium                           | 1.8           | 1.0                | 11         | If           | 11 .     | t!       | fi       | n           |       |
| Sodium                              | 3.8           | 1.0                | ıt         | If           | 11       | II       | ij       | и .         |       |
| Hardness as CaCO3                   | 79            | 1.0                | t)         | 17           | п        | q.       | 11       | II .        |       |
| р <b>Н</b>                          | 7.86          | 0.01               | pH Units   | ıŧ           | CS08018  | 10-22-09 | 10-22-09 | SM4500-H B  | HT-F  |
| Sulfate as SO4                      | 0.61          | 0.50               | mg/L       | 0            | CS08103  | 10-26-09 | 10-26-09 | EPA 300.0   |       |
| Total Dissolved Solids              | 110           | 10                 | 11         | a ·          | CS08084  | 10-23-09 | 10-26-09 | SM2540C     |       |
| WM-20 (Far West) (CSJ0884-14) Water | r Sampled: 10 | -21-09 14:5        | 0 Receive  | d: 10-22-0   | 09 08:30 |          |          |             |       |
| Total Alkalinity                    | . 77          | 5.0                | . mg/L     | I            | CS08041  | 10-22-09 | 10-22-09 | SM2310B     |       |
| Bicarbonate as CaCO3                | 77            | 5.0                | ti .       | н            | 11       | ĸ        | ır       | R           |       |
| Carbonate as CaCO3                  | ND            | 5.0                | 11         | н            | и        | U        | )ı       | .n          |       |
| Hydroxide as CaCO3                  | ND            | 5.0                | u          | И            | 'u       | Ŋ        | U        | н           |       |
| Chloride                            | 0.88          | 0.50               | tt.        | II           | CS08103  | 10-26-09 | 10-26-09 | EPA 300.0   |       |
| Specific Conductance (EC)           | 180           | 1.0                | μmhos/cm   | ŧı           | CS08034  | 10-22-09 | 10-22-09 | EPA 120.1   | •     |
| Methylene Blue Active Substances    | ND            | 0.10               | mg/L       | u            | CS08033  | 10-22-09 | 10-22-09 | SM5540 C    |       |
| Calcium                             | 20            | 1.0                | п          | 0            | CS08035  | 10-22-09 | 10-22-09 | 200.7/2340B |       |
| Magnesium                           | 5.8           | 1.0                | .10        | h            | И        | Iţ       | u u      | 91          |       |
| Potassium                           | 2.1           | 1.0                | н          | H            | ii .     | u        | 'n       | Ħ           |       |
| Sodium .                            | 8.6           | 1.0                | U          | ĸ            | η,       | tı       | u        | ц           |       |
| Hardness as CaCO3                   | 75            | 1.0                | п          | tt.          | n ,      | 11       | tı       | ıt          |       |
| pH                                  | 7.91          | 0.01               | pH Units   | II           | CS08018  | 10-22-09 | 10-22-09 | SM4500-H B  | HT-F  |
| Sulfate as SO4                      | 13            | 0.50               | mg/L       | u'           | CS08103  | 10-26-09 | 10-26-09 | EPA 300.0   |       |
| Total Dissolved Solids              | 120           | 10                 | 11         |              | CS08084  | 10-23-09 | 10-26-09 | SM2540C     |       |
|                                     | ~             |                    |            |              |          |          |          |             |       |

10-28-09 15:23

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order #: CSJ0884

COC #: 94812,84178

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                           | Result        | Reporting<br>Limit | Units    | Dilution  | Batch   | Prepared | Analyzed | Method      | Notes |
|-----------------------------------|---------------|--------------------|----------|-----------|---------|----------|----------|-------------|-------|
| WM-10 (25N05Y) (CSJ0884-15) Water | Sampled: 10-2 | 21-09 15:15        | Received | : 10-22-0 | 9 08:30 | •        |          |             |       |
| Total Alkalinity                  | 79            | 5.0                | mg/L     | 1         | CS08041 | 10-22-09 | 10-22-09 | SM2310B     |       |
| Bicarbonate as CaCO3              | 79            | 5.0                | 11.      | n         | ti      | II       | H        | și          |       |
| Carbonate as CaCO3                | ND            | 5.0                | 11       | 1)        | H .     | If       | Ħ        | Ц           |       |
| Hydroxide as CaCO3                | ND            | 5.0                | 11       | 1)        | 16      | P        | n        | If          |       |
| Chloride                          | 0.81          | 0.50               | If       | D.        | CS08103 | 10-26-09 | 10-26-09 | EPA 300.0   |       |
| Specific Conductance (EC)         | <b>i7</b> 0   | 1.0                | μmhos/cm | 11        | CS08034 | 10-22-09 | 10-22-09 | EPA 120.1   |       |
| Methylene Blue Active Substances  | ND            | 0.10               | mg/L     | 21        | CS08033 | 10-22-09 | 10-22-09 | SM5540 C    |       |
| Calcium                           | 22            | 1.0                | n        | 11        | CS08035 | 10-22-09 | 10-22-09 | 200.7/2340B |       |
| Magnesium                         | 5.3           | 1.0                | īl       | . 11      | 11 .    | II       | TI       | . 11        |       |
| Potassium                         | 1.4           | 1.0                | 11       | · It      | , a     | II       | ti ti    | н           |       |
| Sodium                            | 5.8           | 1.0                | h        | 17        | 11      | . н      | Ħ        | II.         | •     |
| Hardness as CaCO3                 | 78            | 1.0                | , II     | 0         | If .    | . 11     | If       | n           |       |
| pH                                | 7.88          | 0.01               | pH Units | n         | CS08018 | 10-22-09 | 10-22-09 | SM4500-H B  | HT-F  |
| Sulfate as SO4                    | 7.7           | 0.50               | mg/L     | 11        | CS08103 | 10-26-09 | 10-26-09 | EPA 300.0   |       |
| Total Dissolved Solids            | 100           | 10                 | n        | 11        | CS08084 | 10-23-09 | 10-26-09 | SM2540C     |       |

CA DOHS ELAP Accreditation/Registration Number 1233

Fax: 916-638-4510

10-28-09 15:23

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project Number: 07-023-150-0 Project Manager: Jeff Huggins

CLS Work Order #: CSJ0884 COC #: 94812,84178

| Analyte                              | Result          | Reporting<br>Limit   | Units     | Dilution            | Batch       | Prepared | Analyzed | Method    | Note |
|--------------------------------------|-----------------|----------------------|-----------|---------------------|-------------|----------|----------|-----------|------|
| WM-5 (LGC/MS) (CSJ0884-01) Water     | Sampled: 10-2   | 1-09 08:45           | Receive   | d: 10-22-0          | 9 08:30     |          |          |           |      |
| Aluminum                             | ND              | 20                   | μg/L      | 1                   | CS08066     | 10-23-09 | 10-23-09 | EPA 200.8 |      |
| Arsenic                              | ND              | 2.0                  | H .       | n ,                 | H           | . ti     | h        | If        |      |
| Copper                               | , ND            | 1.0                  | H         | 19                  | n           | ţ1       | H        | H.        |      |
| Iron                                 | 540             | 250                  | H         | 5                   | 11          | n        | п        | H         |      |
| Zinc                                 | ND              | 2.0                  | H         | 1                   | *1          | ti       | . 17     | U         |      |
| Cadmium                              | ND              | 0.5 <b>0</b>         | H         | D                   | 11          | 11       | Ił       | II        |      |
| WM-3 (DC/DS) (CSJ0884-02) Water S    | Sampled: 10-21- | 09 09:10 R           | leceived: | 10-22-09            | 08:30       |          |          |           |      |
| Aluminum                             | 21              | 20                   | μg/L      | 1                   | CS08066     | 10-23-09 | 10-23-09 | EPA 200.8 |      |
| Arseni <b>c</b>                      | ND              | 2.0                  | 21        | 31                  | н           | If       | Ħ        | n 11      |      |
| Copper ,                             | 4.6             | 1.0                  | 11        | 11                  | u .         | , u      | 11       | H         |      |
| Iron                                 | 400             | 100                  | и         | . 2                 | II .        | 11       | h ,      | If        |      |
| Zine                                 | ND              | 2.0                  | И         | 1                   | D.          | †1       | 10       | II.       |      |
| Cadmium                              | ND              | 0.50                 | . 14      | li                  | ų)          | 11       | 11       | Ð         |      |
| WM-19 (Settling Pond) (CSJ0884-03) W | ater Sampled    | : <b>10-21-</b> 09 0 | 9:20 R    | eceived: 10         | )-22-09 08: | 30       |          |           |      |
| Aluminum                             | 190             | 20                   | μg/L      | 1                   | C\$08066    | 10-23-09 | 10-23-09 | EPA 200.8 |      |
| Arsenic                              | ND              | 2.0                  | 31        | er '                | 11          | H        | ħ,       | н .       |      |
| Copper .                             | 990             | 5.0                  | H         | 5                   | 1)          | tı       | I)<br>:  | jt.       |      |
| Iron                                 | 410             | 250                  | и -       | #1                  | Ŋ           | 11       | n        | )r        |      |
| Zinc                                 | 84              | 2.0                  | н .       | 1                   | п           |          | 11       | n         |      |
| Cadmium                              | 0.69            | 0.50                 | lı .      | · II                | u           | ıı       | It       | II .      |      |
| WM-1 (Portal) (CSJ0884-04) Water S   | ampled: 10-21-0 | 9 09:45 R            | eceived:  | 10-22-09 0          | 8:30        |          |          | ,         |      |
| Aluminum                             | ND              | 20                   | μg/L      | 1                   | CS08066     | 10-23-09 | 10-23-09 | EPA 200.8 |      |
| Arsenic                              | 8.8             | 2.0                  | 81 ·      | 0                   | 11          | 31       | 0        | 61        |      |
| Copper                               | 92              | 1.0                  | 11        | ęı                  | u           | 11       | 11       | 11        |      |
| Iron                                 | 52              | 50                   | N         | · . #               | ti          | , N      | 71       | п         |      |
| Zinc                                 | 18              | 2.0                  | , n .     | и                   | . 31        | h        | If       | );        |      |
| Cadmium                              | ND              | 0.50                 | 11        | и                   | . If        | lı       | 'n       | IJ        |      |
| WM-2 (DC/MS) (CSJ0884-05) Water      | Sampled: 10-21  | -09 10:00            | Received  | : 10 <b>-22</b> -09 | 08:30       |          | ·        | •         |      |
| Aluminum                             | ND              | 20                   | μg/L      | 1                   | CS08066     | 10-23-09 | 10-23-09 | EPA 200.8 |      |
| Arsenic                              | ND              | 2.0                  | н         | . "                 | 71          | 11       | 17       | . 4       |      |
| Copper                               | ND              | 1.0                  | H         | I)                  | ly .        |          | I)       | 11        |      |
| Iron                                 | 60              | 50                   | 14        | н                   | )t          | ıt       | 19       | ıı .      |      |

10-28-09 15:23

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: 07-023-150-0 Project Manager: Jeff Huggins

CLS Work Order#: CSJ0884

COC#: 94812,84178

|                             |           |                  | Reporting  |           | _           | <del>.</del> |          |          |           |       |
|-----------------------------|-----------|------------------|------------|-----------|-------------|--------------|----------|----------|-----------|-------|
| Analyte                     |           | Result           | Limit      | Units     | Dilution    | Batch        | Prepared | Analyzed | Method    | Notes |
| WM-2 (DC/MS) (CSJ0884-05)   | ) Water   | Sampled: 10-21-0 | 9 10:00 I  | Received  | : 10-22-09  | 08:30        | -        |          |           |       |
| Zinc                        |           | 2.6              | 2.0        | μg/L      | 1           | CS08066      | ц.       | 10-23-09 | EPA 200.8 |       |
| Cadmium                     |           | ND               | 0.50       | 19        | II          | It           | 11       | It       | ħ,        |       |
| WM-4 (48" Culvert) (CSJ088- | 4-06) Wat | er Sampled: 10-  | 21-09 11:3 | 30 Rece   | ived: 10-22 | 2-09 08:30   |          |          |           |       |
| Aluminum                    |           | ND               | 20         | μg/L      | 1           | C\$08066     | 10-23-09 | 10-23-09 | EPA 200.8 |       |
| Arsenic                     |           | ND               | 2.0        | ц         | Ð           | It           | u u      | 'n       | 11        |       |
| Copper ·                    |           | 7.9              | 1.0        | IJ        | n           | It ·         | a        | n        | lt        | •     |
| Iron                        |           | <b>25</b> 0      | 100        | 11        | 2           | n            | 11       | D        | If        |       |
| Zinc                        |           | 3.1              | 2.0        | 11        | 1           | D            | 11       | IJ       | 17        |       |
| Cadmium                     |           | ND               | 0.50       | 111       | н           | n            | 11       | ш        | II        |       |
| WM-9 (Browns Cabin) (CSJ0   | 884-07) W | ater Sampled:    | 10-21-09 1 | 1:45 Re   | eceived: 10 | -22-09 08:3  | 30       |          |           | 1     |
| Aluminum                    |           | ND               | 20         | μg/L      | 1           | CS08066      | 10-23-09 | 10-23-09 | EPA 200.8 |       |
| Arsenic                     |           | ND               | 2.0        | 11        | II.         | lt '         | it       | I)       | . "       |       |
| Copper                      |           | 4.9              | 1.0        | Iŧ        | I†          | п            | JI       | Ð        | И         |       |
| Iron                        |           | 530              | 250        | 13        | 5           | II .         | u        | tt ,     | 17        | •     |
| Zinc                        |           | ND               | 2.0        | 11        | 1           | ır           | H .      | Ð        | It        |       |
| Cadmium                     |           | ND               | 0.50       | 11        | U           | ır           | 'n       | n        | II        |       |
| WM-7a (CSJ0884-08) Water    | Sampled   | : 10-21-09 12:10 | Received:  | 10-22-0   | 9 08:30     |              |          |          |           |       |
| Aluminum                    |           | ND               | 20         | μg/L      | 1           | CS08066      | 10-23-09 | 10-23-09 | EPA 200.8 |       |
| Arsenic                     |           | ND               | 2.0        | 17        | . 0         | . 9          | II       | 11       | Ŋ         |       |
| Copper                      |           | 16               | 1.0        | 11        | u           | н            | И        | n        | . "       |       |
| Iron                        |           | 450              | 250        | 9         | 5           | И            | Н        | 11       | II        |       |
| Zinc                        | •         | 2.9              | 2.0        | Ħ         | . 1         | и            | I)       | 11       | ų         |       |
| Cadmium                     |           | ND               | 0.50       | П         | и           | μ .          | n.       | ıí       | 11        |       |
| WM-7b (CSJ0884-09) Water    | Sampled   | : 10-21-09 12:20 | Received   | : 10-22-0 | 9 08:30     |              |          | •        |           |       |
| Aluminum                    |           | . ND             | 20         | μg/L      | 1           | CS08066      | 10-23-09 | 10-23-09 | EPA 200.8 |       |
| Arsenic                     |           | ND               | 2.0        | Ħ         | U           | ır           | II       | 11       | . 11      |       |
| Copper                      |           | ND               | 1.0        | it        | . 0         | I†           | n        | • 0      | И         |       |
| Iron                        |           | 760              | 250        | H         | 5           | ¥ .          |          | n        | н .       |       |
| Zinc                        |           | ND               | 2.0        | 11        | 1           | n ·          | ii       | 11       | н         |       |
| Cadınium                    |           | ND .             | 0.50       | n         | ti.         | 71           | H        | 11       | . "       |       |
| WM-7c (CSJ0884-10) Water    | Sampled   | : 10-21-09 12:30 | Received:  | 10-22-0   | 9 08:30     |              |          |          | ·         |       |
| Aluminum                    |           | 39               | 20         | μg/L      | 1           | CS08066      | 10-23-09 | 10-23-09 | EPA 200.8 |       |

10-28-09 15:23

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: 07-023-150-0 Project Manager: Jeff Huggins CLS Work Order#: CSJ0884

COC #: 94812,84178

| Analyte                   | Result                   | Reporting<br>Limit | Units    | Dilution    | Batch      | Prepared   | Analyzed | Method    | Note |
|---------------------------|--------------------------|--------------------|----------|-------------|------------|------------|----------|-----------|------|
| WM-7c (CSJ0884-10) Water  | Sampled: 10-21-09 12:30  | Received           | 10-22-0  | 9 08:30     |            |            |          |           |      |
| Arsenic                   | ND                       | 2.0                | μg/L     | 1           | CS08066    | st         | 10-23-09 | EPA 200.8 |      |
| Copper                    | 14                       | 1.0                | 11       | и.          | P          | <b>(</b> 1 | н        | II        |      |
| Iron                      | 340                      | 100                | . 0      | . 2         | ıt         | †I         | U        | II .      |      |
| Zine                      | 3.0                      | 2.0                | n        | 1           | п          | Ħ          | n        | II.       |      |
| Cadmium                   | ND                       | 0.50               | . "      |             | 11         | ti         | 10       | P         |      |
| WM-6 (CSJ0884-11) Water   | Sampled: 10-21-09 12:40  | Received:          | 10-22-09 | 08:30       |            |            |          |           | •    |
| Aluminum                  | ND                       | 20                 | μg/L     | 1           | CS08066    | 10-23-09   | 10-23-09 | EPA 200.8 |      |
| Arsenic                   | ND                       | 2.0                | tt.      | #1          | 11         | н          | 1)       | h         |      |
| Copper                    | 48                       | 1.0                | ti       | 11          | . н        | ìi         | H        | и .       |      |
| Iron                      | 610                      | 250                | I†       | . 5         | н          | н          | II       | Ħ         |      |
| Zinc                      | 54                       | 2.0                | н        | 1           | It         | \$I        | U        | П         |      |
| Cadmium                   | ND                       | 0.50               | D        | in 1        | II         | st         | 11       | if .      |      |
| WM-12 (Mid B. Ward) (CSJ  | 0884-12) Water Sampled:  | : 10-21-09 1       | 4:00 R   | eceived: 10 | -22-09 08: | 30         |          |           |      |
| Aluminum                  | -31                      | 20                 | μg/L     | . 1         | CS08066    | 10-23-09   | 10-23-09 | EPA 200.8 |      |
| Arsenic                   | " ; ND                   | 2.0                | lı       | . 11        | II         | ţf.        | 11       | . 19      |      |
| Copper                    | 3.7                      | 1.0                | l)       | ĸ           | pi         | ıt         | Ħ        | II        |      |
| Iron                      | ND                       | 50                 | lı       | н           | If         | ıt         | al .     | 11        |      |
| Zinc                      | ND                       | 2.0                | u        | If          | . 11       | . н.       |          | K         |      |
| Cadmium                   | ND                       | 0.50               | ii.      | If          | "          | II         | 11 ,     | · n       |      |
| WM-17 (NBWC) (CSJ0884-1   | 13) Water Sampled: 10-21 | 1-09 14:20         | Receive  | d: 10-22-09 | 08:30      |            |          |           |      |
| Aluminum                  | ND                       | 20                 | μg/L     | i           | CS08066    | 10-23-09   | 10-23-09 | EPA 200.8 |      |
| Arsenic                   | · ND                     | 2,0                |          | It          | u          | 0          | It .     | 11        |      |
| Copper                    | ND                       | 1.0                | п        |             | u          | <b>\$1</b> | II       | n         |      |
| Iron                      | · ND                     | 50                 | II       | IF          | n          | 11         | . 0      | , u       |      |
| Zinc                      | ND                       | 2.0                | ıt       | B           | н          | H .        | n        | 19        |      |
| Cadmium                   | ND                       | 0.50               | I)       | Iŝ          | It         | H          | n        | 11        |      |
| WM-20 (Far West) (CSJ0884 | 4-14) Water Sampled: 10- | 21-09 14:50        | Receiv   | ved: 10-22- | 09 08:30   |            |          |           |      |
| Aluminum                  | ND                       | 20                 | μg/L     | 1           | CS08066    | 10-23-09   | 10-23-09 | EPA 200.8 |      |
| Alumnum                   |                          | 2.0                | н        | ů.          | ti         | 11         | )I       | 11,       |      |
| Arsenic                   | ND                       | , 2.0              |          |             |            |            |          |           |      |
|                           | ND<br><b>3.9</b>         | 1.0                | I†       | Ħ           | Ŋ          | 11         | II       | ĸ         |      |
| Arsenic                   | ·                        | •                  | I†<br>I) | 11          | H<br>H     | 11<br>11   | B        | rs<br>It  |      |

10-28-09 15:23

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mina

Project Number: 07-023-150-0 Project Manager: Jeff Huggins

CLS Work Order #: CSJ0884

COC #: 94812,84178

|                                     |               | Reporting    |         |            |          |          |          |           |       |
|-------------------------------------|---------------|--------------|---------|------------|----------|----------|----------|-----------|-------|
| Analyte                             | Result        | Limit        | Units   | Dilution   | Batch    | Prepared | Analyzed | Method    | Notes |
| WM-20 (Far West) (CSJ0884-14) Water | Sampled: 10   | -21-09 14:50 | Receiv  | ed: 10-22- | 09 08:30 |          |          |           |       |
| Cadmium                             | ND            | 0.50         | μg/L    | 1          | CS08066  | ti       | 10-23-09 | EPA 200.8 | •     |
| WM-10 (25N05Y) (CSJ0884-15) Water   | Sampled: 10-2 | 21-09 15:15  | Receive | d: 10-22-0 | 9 08:30  |          |          |           |       |
| Aluminum                            | ND            | 20           | μg/L    | 1          | CS08066  | 10-23-09 | 10-23-09 | EPA 200.8 |       |
| Arsenic                             | ND            | 2.0          | It      | If         | II       | II.      | Ħ        | 1(        |       |
| Copper                              | . 2.2         | 1.0          | IŤ      | l†         | u,       | 0 .      | II.      | Ü         |       |
| Iron                                | ND            | 50           | U       | l†         | U        | 11       | tı       | . It      |       |
| Zinc                                | ND            | 2.0          | ti .    | D.         | u        | ii.      | ti       | Iţ        |       |
| Cadmium                             | ИD            | 0.50         | U       | 11         | и .      |          | 0.       | It.       |       |

10-28-09 15:23

CRWOCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order#: CSJ0884

COC #: 94812,84178.

#### Metals (Dissolved) by EPA 200 Series Methods

|                                                                                                                                             | _                                                            |                                                |                           |                                                |                                          |                   |          |           |             |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|---------------------------|------------------------------------------------|------------------------------------------|-------------------|----------|-----------|-------------|
| Analyte                                                                                                                                     | Result                                                       | Reporting<br>Limit                             | Units                     | Dilution                                       | n Batch                                  | Prepared          | Analyzed | Method    | . Not       |
| WM-5 (LGC/MS) (CSJ0884-01) Water                                                                                                            | Sampled: 10-2                                                | 21-09 08:45                                    | Received                  | : 10-22-                                       | 09 08:30                                 |                   |          |           |             |
| Aluminum                                                                                                                                    | 28                                                           | 20                                             | μg/L                      | 1                                              | Č\$08101                                 | 10-26-09          | 10-26-09 | EPA 200.8 |             |
| Arsenic                                                                                                                                     | ND                                                           | 5.0                                            | #)                        | n                                              | Ħ                                        | it                | 0 -      | O         |             |
| Copper                                                                                                                                      | ND                                                           | 2.0                                            | Ð                         | n                                              | ti                                       | И                 | 0        | 0         | ٠           |
| (ron                                                                                                                                        | 260                                                          | 100                                            | D                         | 2                                              | и                                        | и                 | n .      | • "       |             |
| Zinc                                                                                                                                        | 2.4                                                          | 2.0                                            | u                         | 1                                              | 11 .                                     | it                | n        | O         |             |
| Cadmiu <b>m</b>                                                                                                                             | ND                                                           | 0.50                                           | · u                       | n                                              | n                                        | lt                | 0        | )i        |             |
| WM-3 (DC/DS) (CSJ0884-02) Water S                                                                                                           | Sampled: 10-21-                                              | 09 09:10 F                                     | Received: 1               | 0-22-09                                        | 08:30                                    |                   |          |           |             |
| Aluminum                                                                                                                                    | ND                                                           | 20                                             | μg/L                      | İ                                              | CS08101                                  | 10-26-09          | 10-26-09 | EPA 200.8 |             |
| Arsenic                                                                                                                                     | ND                                                           | 5.0                                            | В                         | 0                                              | O O                                      | 11                | ัน       | u ·       |             |
| Copper                                                                                                                                      | 2.9                                                          | 2.0                                            | 14                        | . "                                            | 11                                       | "                 | n        | U         |             |
| fron .                                                                                                                                      | 190                                                          | 50                                             | A                         | n                                              | Ħ                                        | tt                | и        | II        |             |
| Zinc                                                                                                                                        | 2.2                                                          | 2.0                                            | H                         | n .                                            | Ħ                                        | и                 | u,       | U,        |             |
| Cadmium                                                                                                                                     | ND                                                           | 0.50                                           | H                         | ti .                                           | u .                                      | ti                | ni .     | 0         |             |
| WM-19 (Settling Pond) (CSJ0884-03) W                                                                                                        | ater Sampled                                                 | i: 10-21-09 (                                  | 9:20 Red                  | eived: 1                                       | 0-22-09 08:                              | 30                |          |           |             |
| Aluminum                                                                                                                                    | ND                                                           | 20                                             | μg/L                      | 1                                              | CS08101                                  | 10-26-09,         | 10-26-09 | EPA 200.8 |             |
| Arsenic                                                                                                                                     | ND                                                           | 5.0                                            | . 0                       | ti .                                           | . 11                                     | ÌI                | "        | 0         | •           |
| Copper                                                                                                                                      | 520                                                          | 2.0                                            | θ                         | 11                                             | н                                        | H                 | n        | ţĺ        |             |
| ron                                                                                                                                         | ND                                                           | 50                                             | si                        | 11                                             | 11                                       | u                 | h        | ti        |             |
| Zinc                                                                                                                                        | 00                                                           |                                                |                           |                                                |                                          |                   |          |           |             |
| •                                                                                                                                           | . 80                                                         | 2.0                                            | 2)                        | IJ                                             | lf                                       | st.               | н .      | 11        |             |
| Cadmium                                                                                                                                     | 0.54                                                         | 2.0<br>0.50                                    | n .                       | 11                                             | íf<br>íf                                 | B '               | ti .     | И         |             |
|                                                                                                                                             | 0.54                                                         | 0.50                                           | и .                       |                                                | lf .                                     |                   |          |           |             |
| WM-1 (Portal) (CSJ0884-04) Water S                                                                                                          | 0.54                                                         | 0.50                                           | и .                       |                                                | lf .                                     |                   |          |           |             |
| WM-1 (Portal) (CSJ0884-04) Water Statuminum                                                                                                 | 0.54<br>ampled: 10-21-(                                      | 0.50<br>09 09 <b>:45</b> R                     | eceived: 1                | 0-22-09                                        | 08:30                                    | н ,               | ,11      | н         |             |
| WM-1 (Portal) (CSJ0884-04) Water Sa<br>Aluminum<br>Arsenic                                                                                  | 0,54<br>ampled: 10-21-0<br>ND                                | 0.50<br>09 09:45 R<br>20                       | eceived: 1<br>µg/L        | 0 <b>-22-</b> 09 (                             | 08:30<br>CS08101                         | 10-26-09          | 10-26-09 | EPA 200.8 |             |
| WM-1 (Portal) (CSJ0884-04) Water Sa<br>Aluminum<br>Arsenic<br>Copper                                                                        | 0.54<br>ampled: 10-21-(<br>ND<br>8.9                         | 0.50<br>09 09:45 R<br>20<br>5.0                | eceived: 1<br>µg/L        | 0-22-09 (                                      | 08:30<br>CS08101                         | 10-26-09          | 10-26-09 | EPA 200.8 |             |
| WM-1 (Portal) (CSJ0884-04) Water Sa<br>Aluminum<br>Arsenic<br>Copper                                                                        | 0.54<br>ampled: 10-21-0<br>ND<br>8.9<br>79                   | 0.50<br>09 09:45 R<br>20<br>5.0<br>2.0         | eceived: 1<br>µg/L  "     | 0-22-09 (                                      | 08:30<br>C\$08101                        | 10-26-09          | 10-26-09 | EPA 200.8 |             |
| WM-1 (Portal) (CSJ0884-04) Water Sa<br>Aluminum<br>Arsenic<br>Copper<br>fron<br>Zinc                                                        | 0.54<br>ampled: 10-21-6<br>ND<br>8.9<br>79<br>ND             | 0.50<br>09 09:45 R<br>20<br>5.0<br>2.0<br>50   | eceived: 1<br>µg/L  " " " | 0-22-09 (                                      | 08:30<br>C\$08101                        | 10-26-09          | 10-26-09 | EPA 200.8 | · · · · · · |
| WM-1 (Portal) (CSJ0884-04) Water Sa<br>Aluminum<br>Arsenic<br>Copper<br>Gron<br>Zinc<br>Cadmium                                             | 0.54<br>ampled: 10-21-(<br>ND<br>8.9<br>79<br>ND<br>18<br>ND | 0.50 09 09:45 R 20 5.0 2.0 50 2.0 0.50         | eceived: 1                | 0-22-09                                        | O8:30 CS08101                            | 10-26-09          | 10-26-09 | EPA 200.8 |             |
| WM-1 (Portal) (CSJ0884-04) Water Sa<br>Aluminum<br>Arsenic<br>Copper<br>Iron<br>Zinc<br>Cadmium<br>WM-2 (DC/MS) (CSJ0884-05) Water          | 0.54<br>ampled: 10-21-(<br>ND<br>8.9<br>79<br>ND<br>18<br>ND | 0.50 09 09:45 R 20 5.0 2.0 50 2.0 0.50         | eceived: 1                | 0-22-09                                        | O8:30 CS08101                            | 10-26-09          | 10-26-09 | EPA 200.8 |             |
| WM-1 (Portal) (CSJ0884-04) Water Sa<br>Aluminum<br>Arsenic<br>Copper<br>Iron<br>Zinc<br>Cadmium<br>WM-2 (DC/MS) (CSJ0884-05) Water          | 0.54 ampled: 10-21-(                                         | 0.50 09 09:45 R 20 5.0 2.0 50 0.50 -09 10:00   | eceived: 1                | 0-22-09 (                                      | 08:30<br>C\$08101<br>"" "" " " " 0 08:30 | 10-26-09  " " " " | 10-26-09 | EPA 200.8 | · · · · · · |
| Cadmium WM-1 (Portal) (CSJ0884-04) Water Saluminum Arsenic Copper Iron Zinc Cadmium WM-2 (DC/MS) (CSJ0884-05) Water Aluminum Arsenic Copper | 0.54 ampled: 10-21-6 ND 8.9 79 ND 18 ND Sampled: 10-21       | 0.50 09 09:45 R 20 5.0 2.0 50 0.50 -09 10:00 1 | eceived: 1                | 0-22-09 (<br>1<br>"<br>"<br>"<br>"<br>10-22-05 | 08:30<br>C\$08101<br>"" "" " 0 08:30     | 10-26-09          | 10-26-09 | EPA 200.8 |             |

10-28-09 15:23

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: 07-023-150-0 Project Manager: Jeff Huggins CLS Work Order#: CSJ0884

COC#: 94812,84178

#### Metals (Dissolved) by EPA 200 Series Methods

| Analyte                           | Result              | Reporting<br>Limit | Units     | Dilution    | Batch     | Prepared    | Analyzed           | Method    | Note |
|-----------------------------------|---------------------|--------------------|-----------|-------------|-----------|-------------|--------------------|-----------|------|
| WM-2 (DC/MS) (CSJ0884-05) Water   | Sampled: 10-21-     | 09 10:00           | Received: | 10-22-09    | 08:30     |             |                    |           |      |
| Zinc                              | ND                  | 2.0                | μg/L      | 1           | CS08101   | И           | 10-26-09           | EPA 200.8 |      |
| Cadmium                           | ND                  | 0.50               | ti        | . 11        | 11        | ų           | н                  | II        |      |
| WM-4 (48" Culvert) (CSJ0884-06) W | ater Sampled: 10    | -21-09 11:         | 30 Recei  | ived: 10-22 | -09 08:30 |             |                    |           |      |
| Aluminum                          | ND                  | 20                 | <br>μg/L  | 1           | CS08101   | 10-26-09    | 10-26-09           | EPA 200.8 |      |
| Arsenic                           | ND                  | 5.0                | II.       | li          | 11        | я .         | li                 | 11        |      |
| Copper                            | 6.0                 | 2.0                | ır .      | II          | #1        | 11          | н                  | 11        |      |
| Iron .                            | 130                 | 50                 | II        | II          | n         | 11          | Ü                  | 19        |      |
| Zinc                              | ND                  | 2.0                | n.        | स           | н         | 11          | 16                 | ņ         |      |
| Cadmium                           | ND                  | 0.50               | IT        | 11          | **        | 11          | it                 | ti        |      |
| WM-9 (Browns Cabin) (CSJ0884-07)  | Water Sampled:      | 10-21-09 1         | 1:45 Re   | ceived: 10- | 22-09 08: | 30          |                    |           |      |
| Aluminum                          | ND                  | 20                 | μg/L      | 1 .         | CS08101   | 10-26-09    | 10-26-09           | EPA 200.8 |      |
| Arsenic                           | ND                  | 5.0                | If        | tı          | *1        | Ħ           | ir                 | 11        | •    |
| Copper                            | 3.6                 | 2.0                | l†        | . 11        | II        | 11          | II                 | , 11      |      |
| Iron                              | 320                 | 100                | 17        | 2           | я         | 11          | II                 |           |      |
| Zinc                              | ND                  | 2,0                | It        | 1           | 11        | . H         | и                  | ,R        |      |
| Cadmium '                         | ND                  | 0.50               | ı,        | 11          | **        | 11          | R                  | ıf        |      |
| WM-7a (CSJ0884-08) Water Sampl    | ed: 10-21-09 12:10  | Received           | : 10-22-0 | 9 08:30     |           |             |                    |           |      |
| Aluminum                          | ND                  | 20                 | μg/L      | 1           | CS08101   | 10-26-09    | 10-26-09           | EPA 200.8 |      |
| Arsenic                           | ND                  | 5.0                | н         | II          | lf .      | If          | β                  | li.       |      |
| Copper                            | 13                  | 2.0                | 'n        | If          | H         | IŤ          | ıı                 | It        |      |
| Iron                              | 330                 | 100                | Ħ         | 2           | ıf        | lf          | ij                 | Iţ        |      |
| Zinc                              | 6.4                 | 2.0                | н .       | 1           | 11        | If          | я                  | li        |      |
| Cadmium                           | . ND                | 0.50               | Ħ         | If          | Įŧ.       | li          | . 11               | , II      |      |
| WM-7b (CSJ0884-09) Water Sampl    | led: 10-21-09 12:20 | Received           | : 10-22-0 | 9 08:30     |           |             | ·                  |           |      |
| Aluminum                          | ND                  | 20                 | μg/L      | 1           | CS08101   | 10-26-09    | 10-26-09           | EPA 200.8 |      |
| Arsenic                           | ND                  | 5.0                | 11        | a a         | п         | <b>11</b> · | #                  | II        |      |
| Copper                            | ND                  | 2.0                | . п       | 11,         | и ,       | 11 .        | 41                 | H         |      |
| Iron                              | 420                 | 250                | H         | 5           | II        | li          | 11                 | II        |      |
| Zinc                              | ND                  | 2.0                | ц         | 1           | fI        | И           | 11                 | II        |      |
| Cadmium                           | ND                  | 0.50               | II.       | ш.,         | ti .      | ıı          |                    | II        |      |
| WM-7c (CSJ0884-10) Water Sample   | ed: 10-21-09 12:30  | Received           | : 10-22-0 | 9 08:30     |           |             |                    |           |      |
| Aluminum                          | ND                  | 20                 | μg/L      | 1           | CS08101   | 10-26-09    | ·10 <b>-26-</b> 09 | EPA 200.8 |      |
|                                   |                     |                    |           |             |           |             |                    |           |      |

10-28-09 15:23

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: 07-023-150-0 Project Manager: Jeff Huggins

CLS Work Order #: CSJ0884

COC #: 94812,84178

#### Metals (Dissolved) by EPA 200 Series Methods

| Analyte                   | Result                   | Reporting<br>Limit | Units    | Dilution     | Batch               | Prepared | Analyzed | Method    | Not |
|---------------------------|--------------------------|--------------------|----------|--------------|---------------------|----------|----------|-----------|-----|
| WM-7c (CSJ0884-10) Water  | Sampled: 10-21-09 12:30  | Received:          | 10-22-0  | 9 08:30      |                     |          |          |           |     |
| Arsenic                   | ND                       | 5.0                | μg/L     | 1            | CS08101             | u        | 10-26-09 | EPA 200.8 |     |
| Copper                    | 11                       | 2.0                | . 16     | n            | u                   | u .      | *1       | н .       |     |
| Iron                      | 250                      | 100                | н        | 2            | ų                   | l;       | u        | 11        |     |
| Zinc                      | 2.9                      | 2.0                | If       | 1            | D.                  | U.       | n        | п         |     |
| Cadmium                   | ND                       | 0.50               | n        | n            | u                   | ij       | ı¢       | ч         |     |
| WM-6 (CSJ0884-11) Water   | Sampled: 10-21-09 12:40  | Received:          | 10-22-09 | 08:30        |                     |          |          |           |     |
| Aluminum                  | ND                       | 20                 | μg/L     | 1            | CS08101             | 10-26-09 | 10-26-09 | EPA 200.8 |     |
| Arsenic                   | ND                       | 5.0                | n        | 11           | 14                  | IT       | 14       | Ħ         |     |
| Copper                    | 22                       | 2.0                | и        | ų            |                     | IT       | u        | Ħ         |     |
| iron                      | 56                       | 50                 | t)       | Ħ            | lt.                 | ii.      | n        | n         |     |
| Zinc                      | 45                       | 2.0                | n        | 71           | lf .                | , tr     | n        | n         |     |
| Cadmium                   | ND                       | 0.50               | a        | Ħ            | п                   | ır       | 11       | α .       |     |
| WM-12 (Mid B. Ward) (CSJ  | 0884-12) Water Sampled   | : 10-21-09 1       | 4:00 Re  | ceived: 10   | 22-09 08:           | 30       |          |           |     |
| Aluminum                  | ND                       | 20                 | μg/L     | · I          | CS08101             | 10-26-09 | 10-26-09 | EPA 200.8 |     |
| Arsenic                   | ND                       | 5.0                | в        | 71           | n n                 | , IT     | и .      | n         |     |
| Copper                    | 3.1                      | 2.0                | ч        | μ            | 17                  | l7       | It       | n.        |     |
| ron                       | ND                       | 50                 | 11       | lf           | , If                | n ·      | IJ       | n         |     |
| Zine                      | 2.5                      | 2.0                | H        | ٠ ١١         | H                   | 'n       | 17       | . 1       |     |
| Cadmium                   | ND                       | 0.50               | 11       | н            | If "                | ly       | l†       | 11        |     |
| WM-17 (NBWC) (CSJ0884-1   | 13) Water Sampled: 10-21 | 1-09 14:20         | Received | i: 10-22-09  | 08:30               |          |          |           |     |
| Aluminum                  | ND                       | 20                 | μg/L     | 1            | CS08101             | 10-26-09 | 10-26-09 | EPA 200.8 |     |
| Arsenic .                 | ND                       | 5.0                | τl       | 11           | h                   | В        | n        | п         |     |
| Copper                    | ND                       | 2.0                | . и      | в            | u                   | B        | ti       | q         |     |
| ron                       | ND                       | 50                 | )¢       | lı .         | u                   | B        | n        | n         |     |
| Zinc                      | ND                       | 2.0                | IŤ       | u            | · · · · · · · · · · | u        | , si     | tt        | •   |
| Cadmium                   | ND                       | 0.50               | ) f      | u            | ti                  | ú        | n        | n         |     |
| WM-20 (Far West) (CSJ0884 | 4-14) Water Sampled: 10- | 21-09 14:50        | Receiv   | 'ed: 10-22-0 | <b>09 08:3</b> 0    | _        |          |           | •   |
| Aluminum                  | ND                       | 20                 | μg/L     | 1            | CS08101             | 10-26-09 | 10-26-09 | EPA 200.8 |     |
| Arsenic                   | ND                       | 5.0                | n        | Ħ            | 11                  | ti       | 11       | 11        |     |
| Copper                    | 2.9                      | 2.0                | п        | ji           | h                   | 11       | 11       | Ħ .       |     |
| Iron                      | ND                       | 50                 | n        | и            | lţ                  | 11       | 11       | 11        |     |
| Zinc                      | ND                       | 2,0                |          | <b>π</b>     | H                   | H        | Ħ        | н .       |     |

10-28-09 15:23

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order#: CSJ0884

COC #: 94812,84178

#### Metals (Dissolved) by EPA 200 Series Methods

| Analyte                             | Result       | Reporting<br>Limit | Units   | Dilution    | Batch    | Prepared | Analyzed | Method    | Not |
|-------------------------------------|--------------|--------------------|---------|-------------|----------|----------|----------|-----------|-----|
| WM-20 (Far West) (CSJ0884-14) Water | Sampled: 10  | -21-09 14:50       | Receiv  | ed: 10-22-0 | 09 08:30 |          |          |           |     |
| Cadmium                             | ND           | 0.50               | μg/L    | 1           | CS08101  | ħ        | 10-26-09 | EPA 200.8 |     |
| WM-10 (25N05Y) (CSJ0884-15) Water   | Sampled: 10- | 21-09 15:15        | Receive | d: 10-22-0  | 9 08:30  |          |          |           |     |
| Aluminum                            | ND           | 20                 | μg/L    | 1           | CS08101  | 10-26-09 | 10-26-09 | EPA 200.8 |     |
| Arsenic                             | ND           | 5.0                | 11      | 11          | rı       | ù        | O.       | II .      |     |
| Copper                              | ND           | 2.0                | II      | 11          | ti .     | II       | II.      | , II      |     |
| Iron                                | . ND         | 50                 | . 0     | 11          | ti .     | 11       | II.      | п         |     |
| Zinc                                | ND           | 2.0                | ti      | N .         | 11       | n        | 0        | II        |     |
| Cadmium                             | ND           | 0.50               | H       | II .        | n        | 11       | Ü        | , n       |     |

10-28-09 15:23

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order #: CSJ0884

COC#: 94812,84178

| Analyte                             | Result | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|----------|----------------|------------------|------------|----------------|-----|--------------|-------|
| Batch CS08033 - General Preparation |        |                    |          |                |                  | N.         | ,              |     |              |       |
| Blank (CS08033-BLK1)                |        |                    |          | Prepared       | & Analyze        | ed: 10-22- | 09             |     |              |       |
| Methylene Blue Active Substances    | ND     | 0.10               | mg/L     | _              | -                |            |                |     | -            |       |
| LCS (CS08033-BS1)                   |        | 4                  |          | Prepared       | & Analyze        | ed: 10-22- | 09             |     |              |       |
| Methylene Blue Active Substances    | 0.480  | 0.10               | mg/L     | 0.500          |                  | 96         | 80-120         |     |              | •     |
| LCS Dup (CS08033-BSD1)              |        |                    |          | Prepared       | & Analyze        | ed: 10-22- | 09             |     |              |       |
| Methylene Blue Active Substances    | 0.476  | 0.10               | mg/L     | 0.500          |                  | 95         | 80-120         | 0.8 | 20           | -     |
| Matrix Spike (CS08033-MS1)          | So     | urce: CSJ08        | 84-01    | Prepared       | & Analyze        | ed: 10-22- | 09             |     |              |       |
| Methylene Blue Active Substances    | 0.500  | 0.10               | mg/L     | 0.500          | ND               | 100        | 75-125         |     |              |       |
| Matrix Spike Dup (CS08033-MSD1)     | So     | urce: CSJ08        | 84-01    | Prepared       | & Analyze        | d: 10-22-  | 09             |     |              |       |
| Methylene Blue Active Substances    | 0.512  | 0.10               | mg/L     | 0.500          | ND               | 102        | 75-125         | 2   | 25           |       |
| Batch CS08034 - General Preparation |        |                    |          |                |                  |            |                |     |              |       |
| Blank (CS08034-BLK1)                |        |                    |          | Prepared       | & Analyze        | ed: 10-22- | 09             |     |              |       |
| Specific Conductance (EC)           | ND     | 1.0                | μmhos/cm | 1              |                  |            |                | _,  |              |       |
| Batch CS08035 - 6010A/No Digestion  |        |                    |          | •              |                  |            |                |     |              |       |
| Blank (CS08035-BLK1)                |        |                    |          | Prepared       | & Analyze        | ed: 10-22- | 09             |     |              |       |
| Calcium                             | ND     | 1.0                | mg/L     |                |                  |            |                |     | -            |       |
| Magnesium                           | ND     | 1.0                | H        |                |                  |            |                |     |              |       |
| Potassium                           | ND     | 1.0                | · · · if |                |                  |            |                |     |              |       |
| Sodium                              | ND     | 1.0                | IT       |                |                  |            |                |     |              |       |
| Hardness as CaCO3                   | ND     | 1.0                | lf .     |                |                  |            |                |     |              |       |

10-28-09 15:23

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: 07-023-150-0 Project Manager: Jeff Huggins CLS Work Order #: CSJ0884

COC #: 94812,84178

| Analyte                             | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|-------|----------------|------------------|------------|----------------|-------|--------------|-------|
| Batch CS08035 - 6010A/No Digestion  |        |                    | _     | ·<br>          | ,                | _          |                |       |              | _     |
| LCS (CS08035-BS1)                   |        |                    |       | Prepared       | & Analyze        | ed: 10-22- | 09             |       |              |       |
| Calcium                             | 9.56   | 1.0                | mg/L  | 0.01           |                  | 96         | 80-120         |       |              |       |
| Magnesium                           | 12.7   | 1.0                | 11    | 12.0           |                  | 106        | 80-120         |       |              |       |
| Potassium                           | 9.73   | 1.0                | . 11  | 10.0           |                  | 97         | 80-120         |       |              |       |
| Sodium                              | 11.5   | 1.0                | Ħ     | 10.0           |                  | 115        | 80-120         |       |              |       |
| LCS Dup (CS08035-BSD1)              |        |                    |       | Prepared       | & Analyz         | d: 10-22-  | 09             |       |              |       |
| Calcium                             | 9.65   | 1.0                | mg/L  | 10.0           |                  | 97         | 80-120         | 1     | 20           |       |
| Magnesium                           | 12.8   | 1.0                | 14    | 12.0           |                  | 107        | 80-120         | - 0.8 | 20           |       |
| Potassium                           | 9.82   | 1.0.               | 19    | 10.0           |                  | 98         | 80-120         | 1     | 20           |       |
| Sodium .                            | 11.6   | 1.0                | II.   | 10.0           |                  | . 116      | 80-120         | 1     | 20           |       |
| Matrix Spike (CS08035-MS1)          | So     | urce: CSJ088       | 34-01 | Prepared       | & Analyzo        | ed: 10-22- | 09             |       |              |       |
| Calcium                             | 26.1   | 1.0                | mg/L  | 10.0           | 15.5             | 105        | 75-125         |       |              |       |
| Magnesium                           | 20.8   | 1.0                | II    | 12.0           | 7.49             | 111        | 75-125         |       |              |       |
| Potassium                           | 12.7   | 1.0                | II .  | 10.0           | 2.42             | 103        | 75-125         |       |              |       |
| Sodium                              | 17.7   | 1.0                | II    | 10.0           | 4.96             | 127        | 75-125         |       |              | QM-7  |
| Matrix Spike Dup (CS08035-MSD1)     | So     | urce: CSJ088       | 34-01 | Prepared       | & Analyz         | ed: 10-22- | 09             |       |              |       |
| Calcium                             | 26.9   | 1.0                | mg/L  | 10.0           | 15.5             | 113        | 75-125         | 3     | 25           |       |
| Magnesium                           | 22.2   | 1.0.               | 11    | 12.0           | 7.49             | 123        | 75-125         | 7     | 25           |       |
| Potassium                           | 13.7   | 0.1                | * IF  | 10.0           | 2.42             | 112        | 75-125         | 7     | 25           |       |
| Sodium                              | 18.3   | 1.0                | It    | 10.0           | 4.96             | 133        | 75-125         | 3     | 25           | QM-7  |
| Batch CS08041 - General Preparation |        |                    |       |                |                  |            |                | _     |              | ·     |
| Blank (CS08041-BLK1)                |        |                    |       | Prepared       | & Analyz         | ed: 10-22- | 09             |       |              |       |
| Total Alkalinity                    | ND     | 5.0                | mg/L  |                |                  |            |                |       |              |       |
| Bicarbonate as CaCO3                | ND     | 5.0                | π     |                |                  |            |                |       |              |       |
| Carbonate as CaCO3                  | ND     | 5,0                | **    |                |                  |            |                |       |              |       |
| Hydroxide as CaCO3                  | ND     | 5.0                | · tr  |                |                  |            |                | •     |              |       |

10-28-09 15:23

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order#: CSJ0884

COC #: 94812,84178

| Analyte                             | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits       | RPD | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|-------|----------------|------------------|------------|----------------------|-----|--------------|-------|
| Batch CS08041 - General Preparation |        |                    |       |                |                  |            |                      |     |              |       |
| Duplicate (CS08041-DUP1)            | Soi    | arce: CSJ088       | 4-01_ | Prepared a     | & Analyze        | d: 10-22-  | 09                   |     | _            |       |
| Total Alkalinity                    | 75.4   | 5.0                | mg/L  |                | 74.8             |            |                      | 0.8 | 20           |       |
| Bicarbonate as CaCO3                | 75.4   | 5.0                | IJ    |                | 74.8             |            |                      | 8.0 | 20           |       |
| Carbonate as CaCO3                  | ND     | 5.0                | 19    |                | ND               |            |                      |     | 20           |       |
| Hydroxide as CaCO3                  | ND     | 5.0                | !f    |                | ND               |            |                      |     | 20           |       |
| Batch CS08084 - General Preparation |        |                    |       |                | •                |            |                      |     |              |       |
| Blank (CS08084-BLK1)                |        |                    |       | Prepared:      | 10-23-09         | Analyzed   | l: 10 <b>-</b> 26-09 | )   |              | ·     |
| Total Dissolved Solids              | ND     | 10                 | mg/L  |                |                  |            |                      |     |              |       |
| Duplicate (CS08084-DUP1)            | Soi    | urce: CSJ088       | 4-01  | Prepared:      | 10-23-09         | Analyzed   | l: 10-26-09          | )   | · ·          |       |
| Total Dissolved Solids              | 96.0   | 10                 | mg/L  |                | 101              |            |                      | 5   | 20           |       |
| Batch CS08103 - General Prep        |        |                    |       |                |                  |            |                      |     |              |       |
| Blank (CS08103-BLK1)                |        |                    |       | Prepared a     | & Analyze        | d: 10-26-0 | 09                   |     |              |       |
| Chloride                            | ND     | 0.50               | mg/L  |                |                  |            |                      |     |              |       |
| Sulfate as SO4                      | ND     | 0.50               | ij    |                |                  |            |                      |     |              |       |
| LCS (CS08103-BS1)                   | ·      |                    |       | Prepared a     | & Analyze        | d: 10-26-0 | 09                   |     |              |       |
| Chloride                            | 1.92   | 0.50               | mg/L  | 2.00           |                  | 96         | 80-120               |     |              |       |
| Sulfate as SO4                      | 5.19   | 0.50               | , fi  | 5.00           |                  | 104        | 80-120               |     |              |       |
| LCS Dup (CS08103-BSD1)              |        |                    |       | Prepared of    | & Analyze        | d: 10-26-0 | 09                   |     |              |       |
| Chloride                            | 1.95   | 0.50               | mg/L  | 2.00           |                  | 97         | 80-120               | 2   | 20           |       |
| Sulfate as SO4                      | 5.26   | 0.50               | lt    | 5.00           |                  | 105        | 80-120               | 1   | 20           |       |

10-28-09 15:23

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: 07-023-150-0 Project Manager: Jeff Huggins

CLS Work Order#: CSJ0884

COC#: 94812.84178

| Analyte                         | Result             | Reporting<br>Limit | Units | Spike<br>Level                | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------------------|--------------------|-------|-------------------------------|------------------|------------|----------------|-----|--------------|-------|
| Batch CS08103 - General Prep    |                    | ·<br>              |       |                               |                  |            |                |     |              |       |
| Matrix Spike (CS08103-MS1)      | Sou                | rce: CSJ088        | 34-01 | Prepared                      | & Analyze        | ed: 10-26- | 09             |     | •            |       |
| Sulfate as SO4                  | 5.50               | 0.50               | mg/L  | 5.00                          | ND               | 110        | 75-125         |     |              |       |
| Chloride                        | 2.71               | 0.50               | n     | 2.00                          | 0.854            | 93         | 75-125         |     |              |       |
| Matrix Spike Dup (CS08103-MSD1) | Source: CSJ0884-01 |                    |       | Prepared & Analyzed: 10-26-09 |                  |            |                |     |              |       |
| Chloride                        | 2.78               | 0.50               | mg/L  | 2.00                          | 0.854            | 96         | 75-125         | 2   | 25           |       |
| Sulfate as SO4                  | 5.73               | 0.50               | 10    | 5.00                          | ND               | 115        | 75-125         | 4   | 25           |       |

10-28-09 15:23

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: 07-023-150-0 Project Manager: Jeff Huggins

CLS Work Order #: CSJ0884

COC#: 94812,84178

#### Metals by EPA 200 Series Methods - Quality Control

| Analyte                    | Result | Reporting<br>Limit | Units       | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|----------------------------|--------|--------------------|-------------|----------------|------------------|------------|----------------|-----|--------------|-------|
| Batch CS08066 - EPA 3020A  |        |                    |             | * -            |                  |            |                |     |              |       |
| Blank (CS08066-BLK1)       |        |                    |             | Prepared       | & Analyz         | ed: 10-23- | 09             |     | •            | -     |
| Aluminum                   | ND     | 20                 | μg/L        |                |                  |            |                |     |              |       |
| Arsenic                    | ND     | 2.0                | U           |                |                  |            |                |     |              |       |
| Copper                     | ND     | 1.0                | tt          |                |                  |            |                |     |              |       |
| Iron                       | ND     | 50                 | Įŧ.         |                |                  |            |                |     |              | •     |
| Zinc                       | ND     | 2.0                | l†          |                |                  |            |                |     |              |       |
| Cadmium                    | ND     | 0.50               | 17          |                |                  |            |                |     |              |       |
| LCS (CS08066-BS1)          |        |                    |             | Prepared       | & Analyz         | ed: 10-23- | 09             |     |              |       |
| Aluminum                   | 100    | 20                 | <u>μg/L</u> | 100            |                  | 100        | 80-120         |     |              |       |
| Arsenic                    | 100    | 2.0                | 11          | 100            |                  | 100        | 80-120         |     |              | •     |
| Соррег                     | 105    | 1.0                | II          | 100            |                  | 105        | 80-120         |     |              |       |
| Iron                       | 131    | 50                 | II          | 100            |                  | 13 I       | 80-120         |     |              | QM-7  |
| Zinc                       | 108    | 2.0                | ш           | 100            |                  | 108        | 80-120         |     |              |       |
| Cadmium                    | 10.5   | 0.50               | Ħ           | 10.0           |                  | 105        | 80-120         | •   |              |       |
| LCS Dup (CS08066-BSD1)     |        | .•                 |             | Prepared       | & Analyz         | ed: 10-23- | 09             |     |              |       |
| Aluminum                   | 103    | . 20               | μg/L        | .100           | * 24.5           | 103        | 80-120         | 3   | 20           |       |
| Arsenic                    | 102    | 2.0                | 11          | 100            |                  | 102        | 80-120         | 2   | 20           |       |
| Copper                     | 112    | 1:0                | H           | 100            |                  | 112        | 80-120         | 6   | 20           |       |
| Iron                       | . 131  | 50                 | 17          | 100            |                  | 131        | 80-120         | 0.5 | 20           | QM-7  |
| Zine                       | 105    | 2.0                | j†          | 100            |                  | 105        | 80-120         | 3   | 20           |       |
| Cadmium                    | 11.0   | 0.50               | И           | 10.0           |                  | 110        | 80-120         | 4   | 20           |       |
| Matrix Spike (CS08066-MS1) | So     | urce: CSJ088       | 4-01        | Prepared       | & Analyz         | ed: 10-23- | 09             |     |              |       |
| Aluminum                   | 115    | 20                 | μg/L        | 100            | 18.7             | 97         | 75-125         |     | <u> </u>     |       |
| Arsenic                    | 105    | 2.0                | U           | 100            | ND               | 105        | 75-125         |     |              |       |
| Copper                     | 104    | 1.0                | U           | 100 -          | 0.320            | 103        | 75-125         |     |              |       |
| Iron                       | 653    | 50                 | U           | 100            | 542              | 111        | 75-125         |     |              |       |
| Zine                       | 99.8   | 2.0                | и.          | 100            | ND               | 100        | 75-125         |     |              |       |
| Cadmium                    | 10.7   | 0.50               | u           | 10.0           | ND               | 107.       | 75-125         |     |              |       |

10-28-09 15:23

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order #: CSJ0884

COC #: 94812,84178

#### Metals by EPA 200 Series Methods - Quality Control

| Analyte                         | Result             | Reporting<br>Limit | Units | Spike<br>Level                | Source<br>Result | %REC | %REC<br>Limits | RPD  | RPD<br>Limit                                  | Notes |
|---------------------------------|--------------------|--------------------|-------|-------------------------------|------------------|------|----------------|------|-----------------------------------------------|-------|
| Batch CS08066 - EPA 3020A       |                    |                    |       |                               | ·                |      |                |      | <u>.</u>                                      |       |
| Matrix Spike (CS08066-MS2)      | Source: CSJ0884-10 |                    |       | Prepared & Analyzed: 10-23-09 |                  |      |                |      |                                               |       |
| Aluminum                        | 136                | . 20               | μg/L  | 100                           | 39.4             | 97   | 75-125         |      |                                               |       |
| Arsenic                         | 106                | 2.0                | н .   | 100                           | ND               | 106  | 75-125         |      |                                               |       |
| Copper                          | 117                | 1.0                | Ħ     | . 100                         | 14.3             | 103  | 75-125         |      |                                               |       |
| Iron                            | 461                | 50                 | П     | 100                           | 344              | 117  | 75-125         |      |                                               |       |
| Zinc                            | 101                | 2.0                | п     | 100                           | 2.96             | 98   | 75-125         |      |                                               |       |
| Cadmium                         | 11.0               | 0.50               | ır    | 10.0                          | ND               | 110  | 75-12 <b>5</b> |      |                                               |       |
| Matrix Spike Dup (CS08066-MSD1) | Source: CSJ0884-01 |                    |       | Prepared & Analyzed: 10-23-09 |                  |      |                |      | <u>.                                     </u> |       |
| Aluminum                        | 115                | 20                 | μg/L  | 100                           | 18.7             | 96   | 75-125         | 0.6  | 25                                            |       |
| Arsenic                         | 104                | 2.0                | Ц     | 100                           | ND               | 104  | 75-125         | 1    | 25                                            |       |
| Copper                          | 103                | 1.0                | It    | 100                           | 0.320            | 102  | 75-125         | 0.9  | 25                                            |       |
| Iron                            | 653                | 50                 | Iţ    | 100                           | 542              | 111  | 75-125         | 0.04 | 25                                            |       |
| Zinc                            | 99.9               | 2.0                | Ц     | 100                           | ND               | 100  | 75-125         | 0.1  | 25                                            |       |
| Cadmium                         | 10.7               | 0.50               | 12    | 10.0                          | ND               | 107  | 75-125         | 0.09 | 25                                            |       |
| Matrix Spike Dup (CS08066-MSD2) | Source: CSJ0884-10 |                    |       | Prepared & Analyzed: 10-23-09 |                  |      |                |      |                                               |       |
| Aluminum                        | 132                | 20                 | μg/L  | 100 -                         | 39.4             | 92   | 75-125         | 3    | 25                                            |       |
| Arsenic                         | 104                | 2.0                | #1    | 100                           | ND               | 104  | 75-125         | 2    | . 25                                          |       |
| Copper .                        | 114                | 1.0                | 11    | 100                           | 14.3             | 100  | 75-125         | 2    | 25                                            |       |
| Iron                            | 435                | 50                 | · it  | 100                           | 344              | 91   | 75-125         | 6    | 25                                            |       |
| Zine                            | 97.5               | 2.0                | u .   | 100                           | 2.96             | 95   | 75-125         | 3    | 25                                            |       |
| Cadmium                         | 10.7               | 0.50               | u     | 10.0                          | ND               | 107  | 75-125         | 3    | 25                                            |       |

10-28-09 15:23

CRWOCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order #: CSJ0884

COC#: 94812,84178

#### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

| Analyte                    | Result | Reporting<br>Limit            | Units | Spike<br>Level                | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|----------------------------|--------|-------------------------------|-------|-------------------------------|------------------|------------|----------------|-----|--------------|-------|
| Batch CS08101 - EPA 3020A  |        | 9                             |       | _                             |                  |            |                |     |              |       |
| Blank (CS08101-BLK1)       |        | Prepared & Analyzed: 10-26-09 |       |                               |                  |            |                |     |              |       |
| Aluminum                   | ND     | 20                            | μg/L  |                               |                  |            |                |     |              |       |
| Arsenic                    | ND     | 5.0                           | . "   |                               |                  |            |                |     |              |       |
| Copper                     | ND     | 2.0                           | В     |                               |                  | •          |                |     |              |       |
| Iron                       | ND     | 50                            | 11    |                               |                  |            |                |     |              |       |
| Zinc                       | ND     | 2.0                           | 15    |                               |                  |            |                |     |              |       |
| Cadmium                    | ND     | 0.50                          | и.    |                               |                  |            |                |     |              |       |
| LCS (CS08101-BS1)          | •      | Prepared & Analyzed: 10-26-09 |       |                               |                  |            |                |     |              |       |
| Aluminum                   | 95.7   | 20                            | μg/L  | 100                           |                  | 96         | 80-120         |     |              |       |
| Arsenic                    | 103    | 5.0                           | 11    | 100                           |                  | 103        | 80-120         |     |              |       |
| Copper                     | 103    | 2.0                           | 11    | 100                           |                  | 103        | 80-120         |     |              |       |
| Iron                       | 98.2   | 50                            | 11    | 100                           |                  | 98         | 80-120         |     |              |       |
| Zine                       | · 104  | 2.0                           | 11    | 100                           |                  | 104        | 80-120         |     |              |       |
| Cadmium                    | 10.2   | 0.50                          | 11    | 10.0                          |                  | 102        | 80-120         |     |              |       |
| LCS Dup (CS08101-BSD1)     |        |                               |       | Prepared                      | & Analyz         | ed: 10-26- | 09             |     |              |       |
| Aluminum                   | 96.0   | 20                            | μg/L  | 100                           |                  | 96         | 80-120         | 0.4 | 20           | - 14  |
| Arsenic                    | 103    | 5.0                           | П     | 100                           |                  | 103        | 80-120         | 0.3 | 20           |       |
| Copper                     | 104    | 2.0                           | П     | 100                           |                  | 104        | 80-120         | 1   | 20           |       |
| Iron                       | . 107  | 50                            | II    | . 100                         |                  | 107        | 80-120         | 9   | 20           |       |
| Zinc                       | 102    | 2.0                           | ."    | 100                           |                  | 102        | 80-120         | 3   | 20           | :     |
| Cadmium                    | 10.0   | 0.50                          | u     | 10.0                          |                  | 100        | 80-120         | 2   | 20           |       |
| Matrix Spike (CS08101-MS1) | So     | urce: CSJ088                  | 34-02 | Prepared & Analyzed: 10-26-09 |                  |            |                |     |              | •     |
| Aluminum                   | 98.6   | 20                            | μg/L  | 100                           | 10.8             | 88         | 75-125         |     |              |       |
| Arsenio                    | 103    | 5.0                           | 17    | 100                           | ND               | 103        | 75-125         |     |              |       |
| Copper                     | 99.0   | 2.0                           | tr    | 100                           | 2.85             | 96         | 75-125         |     |              |       |
| Iron                       | 282    | 50                            | U     | 100                           | 188              | 94         | 75-125         |     |              |       |
| Zino                       | 99.6   | 2,0                           | n     | 100                           | 2.16             | 97         | 75-125         |     |              |       |
| Cadmium                    | 10.1   | 0.50                          | Ħ     | 10.0                          | ND               | 101        | 75-125         |     |              |       |

10-28-09 15:23

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: 07-023-150-0 Project Manager: Jeff Huggins

CLS Work Order#: CSJ0884

COC #: 94812,84178

#### Metals (Dissolved) by EPA 200 Series Methods - Quality Control

|                                 | Reporting          |       |       | Spike                         | Source |      | %REC   |     | RPD   | •     |
|---------------------------------|--------------------|-------|-------|-------------------------------|--------|------|--------|-----|-------|-------|
| Analyte                         | Result             | Limit | Units | Level                         | Result | %REC | Limits | RPD | Limit | Notes |
| Batch CS08101 - EPA 3020A       |                    |       |       | •                             |        |      |        | _   |       | ···   |
| Matrix Spike (CS08101-MS2)      | Source: CSJ0884-10 |       |       | Prepared & Analyzed: 10-26-09 |        |      |        |     |       |       |
| Aluminum                        | 98.9               | 20    | μg/L  | 100                           | 12.4   | 87   | 75-125 |     |       | _     |
| Arsenic                         | 102                | 5.0   | ц     | 100                           | ND     | 102  | 75-125 |     |       |       |
| Copper                          | 105                | 2.0   | ıt    | 100                           | 10.8   | 94   | 75-125 |     |       | •     |
| Iron                            | 317                | . 50  | . #   | 100                           | 255    | 62   | 75-125 |     |       | QM-7  |
| Zinc                            | 99.0               | 2.0   | H     | 100                           | 2.94   | 96   | 75-125 |     |       |       |
| Cadmium                         | 10.4               | 0.50  |       | 10.0                          | ND     | 104  | 75-125 |     |       |       |
| Matrix Spike Dup (CS08101-MSD1) | Source: CSJ0884-02 |       |       | Prepared & Analyzed: 10-26-09 |        |      |        | -   |       |       |
| Aluminum                        | 101                | 20    | μg/L  | 100                           | 10.8   | 90   | 75-125 | 3   | 25    |       |
| Arsenic                         | 103                | 5.0   | 11    | 100                           | ND     | 103  | 75-125 | 0.4 | 25    |       |
| Copper                          | 99.6               | 2.0   | п     | 100                           | 2.85   | 97   | 75-125 | 0.6 | 25    |       |
| Iron                            | 288                | . 50  | п     | 100                           | 188    | 100  | 75-125 | 2   | 25    |       |
| Zinc                            | 102                | 2.0   | ır    | 100                           | 2.16   | 100  | 75-125 | 3   | 25    |       |
| Cadmium                         | 10.2               | 0.50  | lr.   | 10.0                          | ND     | 102  | 75-125 | 0.9 | 25    |       |
| Matrix Spike Dup (CS08101-MSD2) | Source: CSJ0884-10 |       |       | Prepared & Analyzed: 10-26-09 |        |      |        |     |       |       |
| Aluminum                        | 97.9               |       | μg/L  | 100                           | 12.4   | 85   | 75-125 | 1   | 25    |       |
| Arsenic                         | 98.9               | 5.0   | †I    | 100                           | ND     | 99   | 75-125 | 3   | 25    |       |
| Copper                          | . 105              | 2.0   | 71    | 100                           | 10.8   | 94   | 75-125 | 0.1 | 25    |       |
| Iron                            | 327                | 50    | и.    | 100                           | 255    | 72   | 75-125 | 3   | 25    | QM-7  |
| Zine                            | 98.8               | 2.0   | II    | 100                           | 2.94   | 96   | 75-125 | 0.2 | 25    |       |
| Cadmium                         | 10.1               | 0.50  | И     | 10.0                          | ND     | 101  | 75-125 | 3   | 25    |       |

CA DOHS ELAP Accreditation/Registration Number 1233

3249 Fitzgerald Road Rancho Cordova, CA 95742

www.californialab.com 916-638-7301

Fax: 916-638-4510

10-28-09 15:23

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine Project Number: 07-023-150-0

Project Manager: Jeff Huggins

CLS Work Order #: CSJ0884

COC#: 94812,84178

#### Notes and Definitions

QM-7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS/LCSD recovery.

This is a field test method and it is performed in the lab outside holding time.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

HT-F

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

3249 Fitzgerald Road Rancho Cordova, CA 95742

16 June 2010

CLS Work Order #: CTF0482

COC #: 2 Chains

Leticia Valadez CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova, CA 95670-6114

Project Name: Walker Mine

Enclosed are the results of analyses for samples received by the laboratory on 06/10/10 09:15. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D.

Laboratory Director

|   | _         |     |
|---|-----------|-----|
|   | CHAIN OF  |     |
|   | )F CUSTOD |     |
|   | ¥<br>\_   | -   |
|   | 3) O.K    |     |
|   | No No     |     |
|   |           | 7   |
| _ | XX X      | ジング |
|   |           | J   |
|   | T00       |     |

| * SHIPPED BY: LED X |             | VF / / / / / / / / / / / / / / / / / / / |   | The Will        | RELINQUISHED BY (SIGN) | 0,1                                                   | 1430 NM-12 |       | MM  | 11-MM-17 | ZM-77       | KW 7-WW (252) | WM-9 L           | HO HUMN SIRI | NH2!    | WM-1 - 12 | 3 PI-MW 0260 | ST S-MN OHBS      | 6-9-10 0920 NM-5 LGC | IDENT                                    | SITELOCATION PLUMES COUNT        | KY CALVAICT                                 | redins/12         | Huggins (916) 41 | Cordola CA 9             | ress Leticia Valo | REPORT TO:            | CLS - Labs       |       |
|---------------------|-------------|------------------------------------------|---|-----------------|------------------------|-------------------------------------------------------|------------|-------|-----|----------|-------------|---------------|------------------|--------------|---------|-----------|--------------|-------------------|----------------------|------------------------------------------|----------------------------------|---------------------------------------------|-------------------|------------------|--------------------------|-------------------|-----------------------|------------------|-------|
|                     |             | M DATE FINAL 1                           |   | Roberthall CUES | PRINT NAME / COMPANY   | 4                                                     | ***        |       |     |          |             | ISFS Dam      | GCB Blowns albin | 18" Churt    | DC-115- | 0,10      | 200          | 1/DS              | MS. White 3          | SAMPLE CONTAINER IFICATION MATRIX NO. TY |                                  | 1 (8) (8) (8)                               |                   | <u>.</u>         | 5670 LCLS (916) 638-7301 | DESTINATION LABOR | . [원                  | CHAIN OF CUSTODY |       |
| CIRCA               | C. I An     | N/W                                      |   | CIPO VIIDIDI    | DATE / TIME            | PRESERVATIVES:                                        |            |       |     |          |             |               |                  |              |         |           |              |                   | Plastic 1/3          | Bia<br>Bia                               | VH+                              | <b>S3</b> /<br><b>7</b> (0)<br><b>7</b> (0) | p76<br>177        |                  | a ( /<br>a ( /           | Vine<br>Total     | - NALYSIE             | S) CLS ID        |       |
| All Colors          | AIR BIII. # | CONDITIONS / COMMENTS:                   |   |                 | RECEIVED BY (SIGN)     | (1) HCL (3) = COLD<br>(2) HNO <sub>3</sub> (4) = NaOH |            |       |     |          |             |               |                  |              | >       |           |              |                   |                      | D                                        | 1<br>PAY<br>2<br>PAY<br>5<br>PAY | TURN AROUND TIME                            | FIELD CONDITIONS: | COMPLOSITE       | GLOBAL ID:               | EDF REPORT        | REQUESTED GEOTRACKER: | No.; CFBX2-L     | Š     |
|                     |             | 100                                      | • |                 | PRINT NAME / COMPANY   | (6) = $H_2SO_4$ (7) = (6) = $Na_2S_2O_3$              |            | RU. # | D . |          | INVOICE TO. | INDICE TO     |                  |              |         |           |              | limits for Metals | Need low develop     | ALT. ID:                                 | OR.                              | SPECIAL INSTRUCTIONS                        |                   |                  |                          | T YES NO          | H.                    | LOG NO. 94815    | P. J. |

### MDL REPORT

This is a "MDL Report", thus if the report denotes an "ND" for a particular analyte, it should be noted that the analyte was not detected at or above the MDL.

06/16/10 08:00

CRWQCB - Sacramento

Project: Walker Mine

Project Number: [none]

CLS Work Order #: CTF0482

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project Manager: Leticia Valadez

COC #: 2 Chains

| Sulfate as SO4 ND 0.50 mg/L 1 CT04167 06/10/10 06/10/10 EPA 300.0  Total Dissolved Solids 47 10 " 1 CT04202 06/11/10 06/14/10 SM2540C  WM-3 (DC/DS) (CTF0482-02) Water Sampled: 06/09/10 09:40 Received: 06/10/10 09:15  Total Alkalinity 55 5.0 mg/L 1 CT04196 06/11/10 06/11/10 SM2310B  Bicarbonate as CaCO3 55 5.0 " 1 " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyte                          | Result     | MDL         | Reporting<br>Limit | Units       | Dilution          | Batch   | Prepared | Analyzed   | Method      | Notes |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------|-------------|--------------------|-------------|-------------------|---------|----------|------------|-------------|-------|
| Bicarbonate as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WM-5 (LGC/MS) (CTF0482-01) W     | ater Sampl | led: 06/09/ | 10 09: <b>20</b> R | eceived: 00 | 5/ <b>10/10</b> 0 | 9:15    |          |            |             |       |
| Bicarbonate as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Alkalinity                 | 22         |             | 5.0                | _           | _                 |         |          | +          |             |       |
| Carbonate as CaCO3 ND 5.0 " 1 " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bicarbonate as CaCO3             | 22         |             | 5.0                | H           | . 1               |         |          | -          | -           |       |
| Hydroxide as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Carbonate as CaCO3               | ND         |             | 5.0                | 11          | 1                 |         | •-       |            | •           |       |
| Specific Conductance (EC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hydroxide as CaCO3               | ND         |             | 5.0                |             | 1                 | K       |          |            |             |       |
| Methylene Blue Active Substances  ND  0.10  mg/L  1 CT04172  06/10/10  06/11/10  SM5540 C  Calcium  5.2  0.031  1.0  " 1 CT04168  06/10/10  06/10/10  200.7/2340B  Magnesium  1.7  0.028  1.0  " 1 " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chloride                         | 0.51       |             | 0.50               | ŧ           | . 1               | CT04167 |          | 06/10/10   | EPA 300.0   |       |
| Calcium         5.2         0.031         1.0         "         1         CT04168         06/10/10         06/10/10         200.7/2340B           Magnesium         1.7         0.028         1.0         "         1         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                         | Specific Conductance (EC)        | 44         |             | 1.0                | μmhos/cm    | 1                 | CT04169 | 06/10/10 | 06/10/10   | EPA 120.1   |       |
| Magnesium         1.7         0.028         1.0         "         1         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                         | Methylene Blue Active Substances | ND         |             | 0.10               | mg/L        | 1                 | CT04172 | 06/10/10 | 06/11/10   | SM5540 C    |       |
| Magnesium   1.7   0.028   1.0   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Calcium                          | 5,2        | 0.031       | 1.0                | 11          | 1                 | CT04168 |          |            |             |       |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Magnesium                        | 1.7        | 0.028       | 1.0                | n           | 1                 | 11      |          |            |             |       |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Potassium                        | ND         | 0.87        | 1.0                | n           | 1                 | n       | 11       |            |             |       |
| Hardness as CaCO3         20         1         I         1         CT04134         06/10/10         06/10/10         SM4500-H B         HTS           Sulfate as SO4         ND         0.50         mg/L         1         CT04167         06/10/10         06/10/10         SM4500-H B         HTS           Total Dissolved Solids         47         10         "         1         CT04202         06/11/10         06/14/10         SM2540C           WM-3 (DC/DS) (CTF0482-02) Water         Sampled: 06/09/10 09:40         Received: 06/10/10 09:15         T         CT04196         06/11/10         06/11/10         SM2540C           WM-3 (DC/DS) (CTF0482-02) Water         Sampled: 06/09/10 09:40         Received: 06/10/10 09:15         T         CT04196         06/11/10         06/11/10         SM2540C           WM-3 (DC/DS) (CTF0482-02) Water         55         5.0         mg/L         1         CT04196         06/11/10         06/11/10         SM2310B           Bicarbonate as CaCO3         ND         5.0         "         1         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                   | Sodium                           | 2.7        | 0.021       | 1.0                | ш.          | 1                 | H       |          | . "        |             |       |
| ND   0.50   mg/L   1   CT04167   06/10/10   06/10/10   EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hardness as CaCO3                | 20         |             | 1.0                | Ir          | 1                 | n       | )ŧ       | ч          | IP .        |       |
| Sulfate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μH                               | 7.16       |             | 0.01               | pH Units    | 1                 | CT04134 | 06/10/10 | 06/10/10   | SM4500-H B  | HT-F  |
| WM-3 (DC/DS) (CTF0482-02) Water         Sampled: 06/09/10 09:40         Received: 06/10/10 09:15           Total Alkalinity         55         5.0         mg/L         1         CT04196         06/11/10         06/11/10         SM2310B           Bicarbonate as CaCO3         55         5.0         "         1         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " <t< td=""><td></td><td>ND</td><td></td><td>0.50</td><td>mg/L</td><td>1</td><td>CT04167</td><td>06/10/10</td><td>06/10/10</td><td>EPA 300.0</td><td></td></t<> |                                  | ND         |             | 0.50               | mg/L        | 1                 | CT04167 | 06/10/10 | 06/10/10   | EPA 300.0   |       |
| Total Alkalinity   55   5.0 mg/L   1 CT04196   06/11/10   06/11/10   SM2310B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Dissolved Solids           | 47         |             | 10                 | н .         | 1                 | CT04202 | 06/11/10 | 06/14/10   | SM2540C     |       |
| Bicarbonate as CaCO3   S5   S.0   "   1   "   "   "   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WM-3 (DC/DS) (CTF0482-02) Water  | er Sampled | i: 06/09/10 | 09:40 Rec          | eived: 06/1 | 0/10 09:          | 15      |          |            |             |       |
| Carbonate as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total Alkalinity                 | 55         |             | 5.0                | mg/L        | 1                 | CT04196 | 06/11/10 | 06/11/10   | SM2310B     |       |
| Carbonate as CaCO3 ND 5.0 " 1 " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                | 55         |             | 5.0                | ìr          | 1                 | tl      | 19       | 11         | 1f          |       |
| Chloride 0.55 0.50 " 1 CT04167 06/10/10 06/10/10 EPA 300.0  Specific Conductance (EC) 110 1.0 µmhos/cm 1 CT04169 06/10/10 06/10/10 EPA 120.1  Methylene Blue Active Substances ND 0.10 mg/L 1 CT04172 06/10/10 06/10/10 SM5540 C  Calcium 12 0.031 1.0 " 1 CT04168 06/10/10 06/10/10 200.7/2340B  Magnesium 5.9 0.028 1.0 " 1 " " " " " " "  Potassium 0.97 0.87 1.0 " 1 " " " " " " " "  Sodium 13.0 0.021 1.0 " 1 " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Carbonate as CaCO3               | ND         |             | 5.0                | U           | . 1               | 11      | 11       | п          | nt          |       |
| Chloride         0.55         0.50         "         1         CT04167         06/10/10         06/10/10         EPA 300.0           Specific Conductance (EC)         110         μmhos/cm         1         CT04169         06/10/10         06/10/10         EPA 120.1           Methylene Blue Active Substances         ND         0.10         mg/L         1         CT04172         06/10/10         06/11/10         SM5540 C           Calcium         12         0.031         1.0         "         1         CT04168         06/10/10         06/10/10         200.7/2340B           Magnesium         5.9         0.028         1.0         "         1         "         "         "         "         "           Potassium         0.97         0.87         1.0         "         1         "         "         "         "           Sodium         3.0         0.021         1.0         "         1         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                            | Hydroxide as CaCO3               | ND         |             | 5.0                | n           | 1                 | 11      | l1       | tl         | Ħ           |       |
| Specific Conductance (EC)   110   1.0   μmhos/cm   1   CT04169   06/10/10   06/10/10   EPA 120.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                | 0.55       |             | 0.50               | Ц           | . 1               | CT04167 | 06/10/10 | 06/10/10   | EPA 300.0   |       |
| Methylene Blue Active Substances         ND         0.10         mg/L         1         CT04172         06/10/10         06/11/10         SM5540 C           Calcium         12         0.031         1.0         "         1         CT04168         06/10/10         06/10/10         200.7/2340B           Magnesium         5.9         0.028         1.0         "         1         "         "         "         "           Potassium         0.97         0.87         1.0         "         1         "         "         "         "           Sodium         3.0         0.021         1.0         "         1         "         "         "         "           Hardness as CaCO3         54         1.0         "         1         "         "         "         "         "           pH         7.52         0.01         pH Units         1         CT04134         06/10/10         06/10/10         SM4500-H B         HT           Sulfate as SO4         1.6         0.50         mg/L         1         CT04167         06/10/10         06/10/10         EPA 300.0                                                                                                                                                                                                                          |                                  | 110        |             | 1.0                | μmhos/cm    | ı 1               | CT04169 | 06/10/10 | 06/10/10   | EPA 120.1   |       |
| Calcium         12         0.031         1.0         "         1         CT04168         06/10/10         06/10/10         200.7/2340B           Magnesium         5.9         0.028         1.0         "         1         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                          |                                  |            |             | 0.10               | mg/L        | 1                 | CT04172 | 06/10/10 | 06/11/10   | SM5540 C    |       |
| Magnesium         5.9         0.028         1.0         "         1         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                         | -                                | 12         | 0.031       | 1.0                | _           | . 1               | CT04168 | 06/10/10 | 06/10/10   | 200.7/2340B |       |
| Potassium         0.97         0.87         1.0         "         1         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                         |                                  | 5.9        | 0.028       | 1.0                | tf          | 1                 | II.     | n .      | "          | n           |       |
| Sodium         3.0         0.021         1.0         "         1         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                            | <del>-</del>                     |            | 0.87        | 1.0                | п           | 1                 | ţI.     | · m      | <b>\$1</b> | n           | J     |
| Hardness as CaCO3 54 1.0 " 1 " " " " " " " PH Units pH CT04134 06/10/10 06/10/10 SM4500-H B HT05 Sulfate as SO4 1.6 0.50 mg/L 1 CT04167 06/10/10 06/10/10 EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |            | 0.021       | 1.0                | 11          | 1                 | ri      | н        | В          | ţI.         |       |
| pH 7.52 0.01 pH Units 1 CT04134 06/10/10 06/10/10 SM4500-H B HT Sulfate as SO4 1.6 0.50 mg/L 1 CT04167 06/10/10 06/10/10 EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | 54         |             | 1.0                | ir          | 1                 | ŧı      | 11       | 11         | tl          |       |
| Sulfate as SO4 1.6 0.50 mg/L 1 CT04167 06/10/10 06/10/10 EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | 7.52       |             | 0.01               | pH Units    | 1 .               | CT04134 | 06/10/10 | 06/10/10   | SM4500-H B  | HT-F  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                |            |             |                    | •           | 1                 | CT04167 | 06/10/10 | 06/10/10   | EPA 300.0   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Dissolved Solids           | 81         | •           | 10                 | _           | 1                 | CT04202 | 06/11/10 | 06/14/10   | SM2540C ·   |       |

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order#: CTF0482

COC #: 2 Chains

| Analyte                          | Result      | MDL        | Reporting<br>Limit | Units        | Dilution  | Batch_  | Prepared | Analyzed | Method      | Notes |
|----------------------------------|-------------|------------|--------------------|--------------|-----------|---------|----------|----------|-------------|-------|
| WM-19 (Pond) (CTF0482-03) Water  | Sampled     | : 06/09/10 | 09:50 Rece         | eived: 06/10 | 0/10 09:1 | .5      |          | <u>,</u> |             |       |
| Total Alkalinity                 | 15          |            | 5.0                | mg/L         | . 1       | CT04196 | 06/11/10 | 06/11/10 | SM2310B     |       |
| Bicarbonate as CaCO3             | 15          |            | 5.0                | 11           | 1         | 11      | tt.      | II ·     | II          |       |
| Carbonate as CaCO3               | ND          |            | 5.0                | U.           | 1         | Я       | Ħ        | . 11     | u .         |       |
| Hydroxide as CaCO3               | ND          |            | 5.0                | II           | 1         | Ħ       | II.      | 11       | u           |       |
| Chloride                         | 0.55        |            | 0.50               | Ħ            | 1         | CT04167 | 06/10/10 | 06/10/10 | EPA 300.0   |       |
| Specific Conductance (EC)        | <b>1</b> 60 | •          | 1.0                | μmhos/cm     | . 1       | CT04169 | 06/10/10 | 06/10/10 | EPA 120.1   |       |
| Methylene Blue Active Substances | ND          |            | 0.10               | mg/L         | 1         | CT04172 | 06/10/10 | 06/11/10 | SM5540 C    |       |
| Calcium                          | 20          | 0.031      | 1.0                | II           | 1         | CT04168 | 06/10/10 | 06/10/10 | 200.7/2340B |       |
| Magnesium                        | 4.5         | 0.028      | 1.0                | п '          | 1         | 47      | li       | P .      | et .        |       |
| Potassium                        | 1.8         | 0.87       | 1.0                | II .         | 1         | ti      | II       | 11       | , n         | •     |
| Sodium                           | 3.9         | 0.021      | 1.0                |              | 1         | 11      | II       | 15       | 11          |       |
| Hardness as CaCO3                | 68          |            | 1.0                | lę.          | 1         | If      | II       | li       | B.          |       |
| pH                               | 6.88        |            | 0.01               | pH Units     | 1         | CT04134 | 06/10/10 | 06/10/10 | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | 55          |            | 2.5                | mg/L         | 5         | CT04167 | 06/10/10 | 06/11/10 | EPA 300.0   |       |
| Total Dissolved Solids           | 130         |            | 10                 | 9            | 1         | CT04202 | 06/11/10 | 06/14/10 | SM2540C     |       |
| WM-1 (Portal) (CTF0482-04) Water | Sampled     | : 06/09/10 | 10:30 Rece         | ived: 06/10  | 0/10 09:1 | .5      |          |          |             |       |
| Total Alkalinity                 | 61          |            | 5.0                | mg/L         | 1         | CT04196 | 06/11/10 | 06/11/10 | SM2310B     |       |
| Bicarbonate as CaCO3             | 61          |            | 5.0                | If           | 1         | If      | #1       | ń        | · ·         |       |
| Carbonate as CaCO3               | ND          |            | 5.0                | II           | 1         | l)      | **       | Ħ        | 11          |       |
| Hydroxide as CaCO3               | ND          |            | 5.0                | II           | 1         | I)      | ¥        | ŧI       | <b>"</b>    |       |
| Chloride                         | 0.66        |            | 0.50               | Ħ            | 1         | CT04167 | 06/10/10 | 06/10/10 | EPA 300.0   |       |
| Specific Conductance (EC)        | 120         |            | 1.0                | μmhos/em     | 1         | CT04169 | 06/10/10 | 06/10/10 | EPA 120.1   |       |
| Methylene Blue Active Substances | ND          |            | 0.10               | mg/L         | 1         | CT04172 | 06/10/10 | 06/11/10 | SM5540 C    |       |
| Calcium                          | 12          | 0.031      | 1.0                | el           | 1         | CT04168 | 06/10/10 | 06/10/10 | 200.7/2340B |       |
| Magnesium                        | 5.0         | 0.028      | 1.0                | 97           | 1         | u       | It       | 11       | If          |       |
| Potassium                        | ND          | 0.87       | 1.0                | 11           | 1         | . 4     | · tr     | 11       | II .        |       |
| Sodium                           | 5.2         | 0.021      | 1.0                | 18           | 1         | tt.     | и .      | lt       | , b         |       |
| Hardness as CaCO3                | 51          |            | 1.0                | ıt           | 1         | ır      | **       | ıı       | n           |       |
| pH                               | 7.67        |            | 0.01               | pH Units     | 1         | CT04134 | 06/10/10 | 06/10/10 | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | 1.2         |            | 0.50               | mg/L         | . 1       | CT04167 | 06/10/10 | 06/10/10 | BPA 300.0   |       |
| Total Dissolved Solids           | 99          |            | 10                 | 11 -         | 1         | CT04202 | 06/11/10 | 06/14/10 | SM2540C     |       |

### California Laboratory Services

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order#: CTF0482

COC#: 2 Chains

| Analyte                           | Result | MDL           | Reporting<br>Limit | Units      | Dilution               | Batch     | Prepared | Analyzed | Method      | Notes |
|-----------------------------------|--------|---------------|--------------------|------------|------------------------|-----------|----------|----------|-------------|-------|
| WM-2 (DC/MS) (CTF0482-05) Water   | Samp   | led: 06/09/10 | 10:20 Re           | eived: 06/ | 10/10 <mark>09:</mark> | 15        |          |          |             |       |
| Total Alkalinity                  | 68     |               | 5.0                | mg/L       | 1                      | CT04196   | 06/11/10 | 06/11/10 | SM2310B     |       |
| Bicarbonate as CaCO3              | 68     |               | 5.0                | II         | 1                      | 11        | и.       | 11       | 11          |       |
| Carbonate as CaCO3                | ND     |               | 5.0                | ır ·       | - 1                    | lt        | `ti      | tr       | н           |       |
| Hydroxide as CaCO3                | ND     |               | 5.0                | 11         | 1                      | If        | li       | **       | и           |       |
| Chloride                          | 0.60   |               | 0.50               | If         | . 1                    | CT04167   | 06/10/10 | 06/10/10 | EPA.300.0   |       |
| Specific Conductance (EC)         | 130    |               | 1.0                | μmhos/cm   | 1                      | CT04169   | 06/10/10 | 06/10/10 | EPA 120.1   |       |
| Methylene Blue Active Substances  | ND     |               | 0.10               | mg/L       | 1                      | CT04172   | 06/10/10 | 06/11/10 | SM5540 C    |       |
| Calcium                           | 15     | 0.031         | 1.0                | I†         | . 1                    | CT04168   | 06/10/10 | 06/10/10 | 200.7/2340B |       |
| Magnesium                         | 7.8    | 0.028         | 1.0                | 11         | 1                      | 11        | if       | fl       | If          |       |
| Potassium                         | ND     | 0.87          | 1.0                | II.        | 1                      | it .      | H        | *1       | If          |       |
| Sodium                            | 2.9    | 0.021         | 1.0                | II         | 1                      | Ħ         | 11       | *1       | . It        |       |
| Hardness as CaCO3                 | 69     |               | 1.0                | 11         | 1                      | ţi        | B        | tl       | R .         |       |
| pH                                | 7.67   |               | 0.01               | pH Units   | 1                      | CT04134   | 06/10/10 | 06/10/10 | SM4500-H B  | HT-F  |
| Sulfate as SO4                    | ND     |               | 0.50               | mg/L       | 1                      | CT04167   | 06/10/10 | 06/10/10 | EPA 300.0   |       |
| Total Dissolved Solids            | 99     |               | 10                 | l1         | 1                      | CT04202   | 06/11/10 | 06/14/10 | SM2540C     |       |
| WM-4 (@ 48' Culvert) (CTF0482-06) | Water  | Sampled: 0    | 6/09/10 12:1       | 5 Receive  | d: 06/10               | /10 09:15 |          |          |             |       |
| Total Alkalinity                  | 50     |               | 5.0                | mg/L       | 1                      | CT04196   | 06/11/10 | 06/11/10 | SM2310B     |       |
| Bicarbonate as CaCO3              | 50     |               | 5.0                | . 0        | 1                      | II        | 11       | 15       | 18          |       |
| Carbonate as CaCO3                | ND     |               | 5.0                | , If       | 1                      | II        | 17       |          | 11          |       |
| Hydroxide as CaCO3                | ND     |               | 5.0                | 11         | 1                      | 11        | 16       | H        | 11          |       |
| Chloride                          | 0.57   |               | 0.50               | tt         | . 1                    | CT04167   | 06/10/10 | 06/10/10 | EPA 300.0   |       |
| Specific Conductance (EC)         | 98     |               | 1.0                | μmhos/cm   | 1                      | CT04169   | 06/10/10 | 06/10/10 | EPA 120.1   |       |
| Methylene Blue Active Substances  | ND     |               | 0.10               | mg/L       | 1                      | CT04172   | 06/10/10 | 06/11/10 | SM5540 C    |       |
| Calcium                           | 11     | 0.031         | 1.0                | 11         | 1                      | CT04168   | 06/10/10 | 06/10/10 | 200.7/2340B |       |
| Magnesium                         | 5.3    | 0.028         | 1.0                | 71         | 1                      | 11        | tt       | li       | ıt          | •     |
| Potassium                         | 1.1    | 0.87          | 1.0                | . 11       | 1                      | 11        | 11       | II       | ij          |       |
| Sodium                            | 3.0    | 0.021         | 1.0                | . 11       | 1                      | It        | πt       | Л        | ti          |       |
| Hardness as CaCO3                 | 50     |               | 1.0                | ŧı         | 1                      | 11        | Ir       | II       | я           |       |
| р <b>Н</b>                        | 7.62   |               | 0.01               | pH Units   | 1                      | CT04134   | 06/10/10 | 06/10/10 | SM4500-HB   | HT-F  |
| Sulfate as SO4                    | 1.7    |               | 0.50               | mg/L       | 1                      | CT04167   | 06/10/10 | 06/10/10 | EPA 300.0   |       |
| Total Dissolved Solids            | 83     |               | 10                 | ц          | 1                      | CT04202   | 06/11/10 | 06/14/10 | SM2540C     |       |

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC#: 2 Chains

| Analyte                                                                                                                                     | Result                                             | MDL             | Reporting<br>Limit                                     | Units                                | Dilution                             | Batch                                         | Prepared                                          | Analyzed                                                 | Method                                                 | Notes    |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------|--------------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------|---------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|----------|
| WM-9 (LGC @ Browns Cabin) (CT                                                                                                               | F0482-07) \                                        | Vater Sa        | mp <b>led:</b> 06/0                                    | 9/10 12:30                           | Receive                              | ed: 06/10/1                                   | 0 09:15                                           |                                                          |                                                        |          |
| Total Alkalinity                                                                                                                            | 28                                                 |                 | 5.0                                                    | mg/L                                 | 1                                    | CT04196                                       | 06/11/10                                          | 06/11/10                                                 | SM2310B                                                |          |
| Bicarbonate as CaCO3                                                                                                                        | . 28                                               |                 | 5.0                                                    | q                                    | 1                                    | *1                                            | · B                                               | *1                                                       | 17                                                     |          |
| Carbonate as CaCO3                                                                                                                          | ND                                                 |                 | 5.0                                                    | n                                    | 1                                    | 11                                            | lı                                                | 19                                                       | *1                                                     |          |
| Hydroxide as CaCO3                                                                                                                          | ND                                                 |                 | 5.0                                                    | ıt                                   | 1 -                                  | ц.                                            | et .                                              | 18                                                       | 11                                                     |          |
| Chloride                                                                                                                                    | 0.51                                               |                 | 0.50                                                   | n                                    | . 1                                  | CT04167                                       | 06/10/10                                          | 06/10/10                                                 | EPA. 300.0                                             |          |
| Specific Conductance (EC)                                                                                                                   | 48                                                 |                 | 1.0                                                    | μmhos/cm                             | . 1                                  | CT04169                                       | 06/10/10                                          | 06/10/10                                                 | EPA 120.1                                              |          |
| Methylene Blue Active Substances                                                                                                            | ND                                                 |                 | 0.10                                                   | mg/L                                 | 1                                    | CT04172                                       | 06/10/10                                          | 06/11/10                                                 | SM5540 C                                               |          |
| Calcium                                                                                                                                     | 5.7                                                | 0.031           | 1.0                                                    | 71                                   | 1                                    | CT04168                                       | 06/10/10                                          | 06/10/10                                                 | 200.7/2340B                                            |          |
| Magnesium                                                                                                                                   | 1.8                                                | 0.028           | 1.0                                                    | 11                                   | 1                                    | 17                                            | ţr                                                | H                                                        | 11                                                     |          |
| Potassium                                                                                                                                   | ND                                                 | 0.87            | 1.0                                                    | H                                    | 1                                    | II                                            | 11                                                | и .                                                      | II                                                     | •        |
| Sodium                                                                                                                                      | 2.6                                                | 0.021           | 1.0                                                    | II                                   | 1                                    | Ħ                                             | li .                                              | 11                                                       | ii ii                                                  |          |
| Hardness as CaCO3                                                                                                                           | 21                                                 |                 | 1.0                                                    | ĮĮ.                                  | 1                                    | B                                             | ji                                                |                                                          | H                                                      |          |
| pH                                                                                                                                          | 7.61                                               |                 | 0.01                                                   | pH Units                             | 1                                    | CT04134                                       | 06/10/10                                          | 06/10/10                                                 | SM4500-H B                                             | HT-F     |
| Sulfate as SO4                                                                                                                              | 0.84                                               |                 | 0.50                                                   | mg/L                                 | 1                                    | CT04167                                       | 06/10/10                                          | 06/10/10                                                 | EPA 300.0                                              |          |
| Total Dissolved Solids                                                                                                                      | 52                                                 |                 | 10                                                     | 11                                   | 1                                    | CT04202                                       | 06/11/10                                          | 06/14/10                                                 | SM2540C                                                |          |
| WM-6 (MSFS Dam) (CTF0482-08)                                                                                                                | Water Sar                                          | npled: 06/(     | 9/10 12:50                                             | Received:                            | 06/10/10                             | 09:15                                         |                                                   |                                                          |                                                        | <u>.</u> |
| Total Alkalinity                                                                                                                            | 39                                                 |                 | 5.0                                                    | mg/L                                 | 1                                    | CT04196                                       | 06/11/10                                          | 06/11/10                                                 | SM2310B                                                |          |
| Bicarbonate as CaCO3                                                                                                                        | 39                                                 |                 | <b>6</b> A                                             | n                                    |                                      | ti .                                          | II                                                | 11                                                       | II.                                                    |          |
|                                                                                                                                             |                                                    |                 | 5,0                                                    | .,                                   | . 1                                  |                                               |                                                   |                                                          |                                                        |          |
| Cardonare as CaCO3                                                                                                                          | ND                                                 |                 | 5.0<br>5.0                                             | н                                    | 1                                    | fi                                            | h                                                 | lī                                                       | 11                                                     |          |
| Carbonate as CaCO3 Hydroxide as CaCO3                                                                                                       | ND<br>ND                                           |                 |                                                        |                                      | 1<br>1<br>1                          | 11                                            | h<br>H                                            | ir<br>tr                                                 | #I                                                     |          |
| Hydroxide as CaCO3                                                                                                                          |                                                    |                 | 5.0                                                    | и                                    | , 1                                  |                                               |                                                   |                                                          |                                                        |          |
| Hydroxide as CaCO3<br>Chloride                                                                                                              | ND<br>0 <b>.5</b> 9                                |                 | 5.0<br>5.0                                             | H.                                   | , 1                                  | 11                                            | n                                                 | t!                                                       | п                                                      |          |
| Hydroxide as CaCO3 Chloride Specific Conductance (EC)                                                                                       | ND<br>0. <b>5</b> 9<br>210                         |                 | 5.0<br>5.0<br>0.50                                     | н<br>Н                               | 1<br>1<br>1                          | "<br>CT04167                                  | 06/10/10                                          | 06/11/10                                                 | "<br>EPA 300.0                                         |          |
| Hydroxide as CaCO3 Chloride Specific Conductance (EC) Methylene Blue Active Substances                                                      | ND<br>0 <b>.5</b> 9                                | 0.031           | 5.0<br>5.0<br>0.50<br>1.0                              | н<br>н<br>µmhos/cm                   | 1<br>1<br>1                          | "<br>CT04167<br>CT04169                       | 06/10/10<br>06/10/10                              | 06/11/10<br>06/10/10                                     | EPA 300.0<br>EPA 120.1                                 |          |
| Hydroxide as CaCO3 Chloride Specific Conductance (EC) Methylene Blue Active Substances Calcium                                              | ND<br>0.59<br>210<br>ND<br>22                      | 0.03 l<br>0.028 | 5.0<br>5.0<br>0.50<br>1.0<br>0.10                      | в<br>в<br>µmhos/cm<br>mg/L           | 1<br>1<br>1<br>1                     | "<br>CT04167<br>CT04169<br>CT041 <b>72</b>    | 06/10/10<br>06/10/10<br>06/10/10                  | "<br>06/11/10<br>06/10/10<br>06/11/10                    | "<br>EPA 300.0<br>EPA 120.1<br>SM5540 C                |          |
| Hydroxide as CaCO3 Chloride Specific Conductance (EC) Methylene Blue Active Substances Calcium Magnesium                                    | ND<br>0. <b>5</b> 9<br><b>210</b><br>ND            | 0.028           | 5.0<br>5.0<br>0.50<br>1.0<br>0.10<br>1.0               | μmhos/cm<br>mg/L                     | 1<br>1<br>1<br>1<br>1                | "<br>CT04167<br>CT04169<br>CT04172<br>CT04168 | 06/10/10<br>06/10/10<br>06/10/10<br>06/10/10      | "<br>06/11/10<br>06/10/10<br>06/11/10<br>06/10/10        | "<br>EPA 300.0<br>EPA 120.1<br>SM5540 C<br>200.7/2340B |          |
| Hydroxide as CaCO3 Chloride Specific Conductance (EC) Methylene Blue Active Substances Calcium Magnesium Potassium                          | ND<br>0.59<br>210<br>ND<br>22<br>4.1<br>2.3        | 0.028<br>0.87   | 5.0<br>5.0<br>0.50<br>1.0<br>0.10<br>1.0               | μmhos/cm<br>mg/L                     | 1<br>1<br>1<br>1<br>1<br>1           | "<br>CT04167<br>CT04169<br>CT04172<br>CT04168 | 06/10/10<br>06/10/10<br>06/10/10<br>06/10/10      | 06/11/10<br>06/10/10<br>06/11/10<br>06/10/10             | "<br>EPA 300.0<br>EPA 120.1<br>SM5540 C<br>200.7/2340B |          |
| Hydroxide as CaCO3 Chloride Specific Conductance (EC) Methylene Blue Active Substances Calcium Magnesium Potassium Sodium                   | ND<br>0.59<br>210<br>ND<br>22<br>4.1<br>2.3<br>4.9 | 0.028           | 5.0<br>5.0<br>0.50<br>1.0<br>0.10<br>1.0<br>1.0<br>1.0 | n<br>n<br>umhos/cm<br>mg/L<br>n      | 1<br>1<br>1<br>1<br>1<br>1<br>1      | "CT04167<br>CT04169<br>CT04172<br>CT04168     | 06/10/10<br>06/10/10<br>06/10/10<br>06/10/10<br>" | 06/11/10<br>06/10/10<br>06/11/10<br>06/10/10             | EPA 300.0<br>EPA 120.1<br>SM5540 C<br>200.7/2340B      |          |
| Hydroxide as CaCO3 Chloride Specific Conductance (EC) Methylene Blue Active Substances Calcium Magnesium Potassium Sodium Hardness as CaCO3 | ND<br>0.59<br>210<br>ND<br>22<br>4.1<br>2.3<br>4.9 | 0.028<br>0.87   | 5.0<br>5.0<br>0.50<br>1.0<br>0.10<br>1.0<br>1.0<br>1.0 | ι<br>μmhos/em<br>mg/L<br>ι<br>υ<br>π | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | "CT04167<br>CT04169<br>CT04172<br>CT04168     | " 06/10/10 06/10/10 06/10/10 06/10/10 " " "       | 06/11/10<br>06/10/10<br>06/10/10<br>06/11/10<br>06/10/10 | EPA 300.0<br>EPA 120.1<br>SM5540 C<br>200.7/2340B      | HT-F     |
| Hydroxide as CaCO3 Chloride Specific Conductance (EC) Methylene Blue Active Substances Calcium Magnesium Potassium Sodium                   | ND<br>0.59<br>210<br>ND<br>22<br>4.1<br>2.3<br>4.9 | 0.028<br>0.87   | 5.0<br>5.0<br>0.50<br>1.0<br>0.10<br>1.0<br>1.0<br>1.0 | n n n n n n n n n n p/L n n n        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | " CT04167 CT04169 CT04172 CT04168 " " "       | " 06/10/10 06/10/10 06/10/10 06/10/10 " " " "     | 06/11/10<br>06/10/10<br>06/10/10<br>06/11/10<br>06/10/10 | EPA 300.0<br>EPA 120.1<br>SM5540 C<br>200.7/2340B      | НТ-Е     |

6/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order#: CTF0482

COC#: 2 Chains

| Analyte                         | Result           | MDL      | Reporting<br>Limit | Units       | Dilution | Batch   | Prepared | Analyzed   | Method      | Notes        |
|---------------------------------|------------------|----------|--------------------|-------------|----------|---------|----------|------------|-------------|--------------|
| WM-7b (CTF0482-09) Water        | Sampled: 06/09/1 | 10 13:00 | Received: 0        | 6/10/10 09: | 15       |         |          |            |             |              |
| Total Alkalinity                | 48               |          | 5.0                | mg/L        | • 1      | CT04196 | 06/11/10 | 06/11/10   | SM2310B     |              |
| Bicarbonate as CaCO3            | 48               |          | 5.0                | Ħ           | 1        | . 11    | 11       | 11         | H           |              |
| Carbonate as CaCO3              | ND               |          | 5.0                | 19          | 1        | If      | lr .     | H          | tt          |              |
| Hydroxide as CaCO3              | ND               |          | 5.0                | II.         | 1        | lt .    | Tŧ       | I†         | II          |              |
| Chloride                        | 0.57             |          | 0.50               | , n         | 1        | CT04167 | 06/10/10 | 06/11/10   | EPA 300.0   |              |
| Specific Conductance (EC)       | 99               |          | 1.0                | μmhos/cm    | 1        | CT04169 | 06/10/10 | 06/10/10   | EPA 120.1   |              |
| Methylene Blue Active Substance | s ND             |          | 0.10               | mg/L        | . 1      | CT04172 | 06/10/10 | 06/11/10   | SM5540 C    |              |
| Calcium                         | 12               | 0.031    | 1.0                | d           | 1        | CT04168 | 06/10/10 | 06/10/10   | 200.7/2340B |              |
| Magnesium                       | 5.2              | 0.028    | 1.0                | 11          | 1        | , n     | И        | D ·        | II          |              |
| Potassium                       | 1.1              | 0.87     | 1.0                | 11          | 1        | 0       | n        | 11         | tt          |              |
| Sodium                          | 3.2              | 0.021    | 1.0                | , II        | 1        | 9       | D °      | It .       | п           |              |
| Hardness as CaCO3               | 50               |          | 1.0                | D           | 1        | 11      | 11       | n          | lı          |              |
| pH                              | 8.05             |          | 0.01               | pH Units    | 1        | CT04134 | 06/10/10 | 06/10/10   | SM4500-H B  | HT-F         |
| Sulfate as SO4                  | 1.9              |          | 0.50               | mg/L        | 1        | CT04167 | 06/10/10 | 06/11/10   | EPA 300.0   |              |
| Total Dissolved Solids          | 77               |          | 10                 | U           | 1        | CT04202 | 06/11/10 | 06/14/10   | SM2540C     |              |
| WM-7c (CTF0482-10) Water        | Sampled: 06/09/1 | 0 13:05  | Received: 0        | 6/10/10 09: | 15       |         |          |            |             |              |
| Total Alkalinity                | 24               | •        | 5.0                | mg/L        | 1 .      | CT04196 | 06/11/10 | 06/11/10   | \$M2310B    |              |
| Bicarbonate as CaCO3            | 24               |          | 5.0                | H           | 1        | . 11    | æ        | 11         | 11          |              |
| Carbonate as CaCO3              | ND               |          | 5.0                | # ,*        | 1        | II      | ži.      | в          | ît          |              |
| Hydroxide as CaCO3              | ND               |          | 5.0                | 11          | 1        | It.     | R        | 13         | lt .        |              |
| Chloride                        | 0.51             |          | 0.50               | н           | 1        | CT04167 | 06/10/10 | . 06/11/10 | EPA 300.0   |              |
| Specific Conductance (EC)       | 49               |          | 1.0                | μmhos/cm    | ı 1      | CT04169 | 06/10/10 | 06/10/10   | EPA 120.1   |              |
| Methylene Blue Active Substance | es ND            |          | 0.10               | mg/L        | 1        | CT04172 | 06/10/10 | 06/11/10   | SM5540 C    |              |
| Calcium                         | 5.6              | 0.031    | 1.0                | ***         | 1        | CT04168 | 06/10/10 | 06/10/10   | 200.7/2340B |              |
| Magnesium                       | 1.7              | 0.028    | 1.0                | Ħ           | 1        | 11      | tl       | 11         | "           |              |
| Potassium                       | ND               | 0.87     | 1.0                | Ħ           | 1        | 19      | Ħ        | 18         | a           |              |
| Sodium                          | 2.6              | 0.021    | 1.0                | D           | 1        | D       | 11 .     | ų ·        | è           |              |
| Hardness as CaCO3               | 21               |          | 1.0                | n           | 1        | 11      | It       | II         | . "         |              |
| рН                              | 7.26             |          | 0.01               | pH Units    | 1        | CT04134 | 06/10/10 | 06/10/10   | SM4500-H B  | <b>HT-</b> F |
| Sulfate as SO4                  | 0.71             |          | 0.50               | mg/L        | 1        | CT04167 | 06/10/10 | 06/11/10   | EPA 300.0   |              |
| Total Dissolved Solids          | 47               |          | 10                 | #           | 1        | CT04202 | 06/11/10 | 06/14/10   | SM2540C     |              |

### California Laboratory Services

06/16/10 08:00

CRWQCB - Sacramento

Project: Walker Mine

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC #: 2 Chains

| Analyte                             | Result        | MDL      | Reporting<br>Limit | Units                | Dilution | Batch    | Prepared     | Analyzed   | Method         | Notes |
|-------------------------------------|---------------|----------|--------------------|----------------------|----------|----------|--------------|------------|----------------|-------|
| WM-7a (CTF0482-11) Water San        | pled: 06/09/  | 10 13:25 | Received: 0        | 6/10/10 0 <u>9</u> : | 15       |          |              |            |                |       |
| Total Alkalinity                    | 51            |          | 5.0                | mg/L                 | 1        | CT04196  | 06/11/10     | 06/11/10   | SM2310B        |       |
| Bicarbonate as CaCO3                | 51            |          | 5.0                | a                    | 1        | ø        | N            | . 11       | . #            |       |
| Carbonate as CaCO3                  | ND            |          | 5.0                | 11                   | 1        | 11       | 11           | ti .       | 11             |       |
| Hydroxide as CaCO3                  | ND            |          | 5.0                | u                    | 1        | . 0      | 11           | n          | 11             |       |
| Chloride                            | 0.56          |          | 0.50               | 11                   | 1        | CT04167  | 06/10/10     | 06/11/10   | EPA 300.0      |       |
| Specific Conductance (EC)           | 98            |          | 1.0                | μmhos/cm             | 1        | CT04169  | 06/10/10     | 06/10/10   | EPA 120.1      |       |
| Methylene Blue Active Substances    | ND            |          | 0.10               | mg/L                 | 1        | CT04172  | 06/10/10     | 06/11/10   | SM5540 C       |       |
| Caleium                             | 12            | 0.031    | 1.0                | 11                   | . 1      | CT04168  | 06/10/10     | 06/10/10   | 200.7/2340B    |       |
| Magnesium                           | 5.3           | 0.028    | 1.0                | 11                   | 1        | , u      | 17           | n          |                |       |
| Potassium                           | 1.1           | 0.87     | 1.0                | \$1                  | 1        | u        | U            | h          | 11             |       |
| Sodium                              | 3.2           | 0.021    | 1.0                | n .                  | 1        | 0        | 11           | h          | 11             |       |
| Hardness as CaCO3                   | 51            |          | 1.0                | şi                   | 1        | 11       | u            | Ħ          | u              |       |
| рH                                  | 7.84          |          | 0.01               | pH Units             | 1        | CT04134  | 06/10/10     | 06/10/10   | SM4500-HB      | HT-F  |
| Sulfate as SO4                      | 1.8           |          | 0.50               | mg/L                 | 1        | CT04167  | 06/10/10     | 06/11/10   | EPA 300.0      |       |
| Total Dissolved Solids              | 79            |          | 10                 | 11                   | 1        | CT04202  | 06/11/10     | 06/14/10   | SM2540C        |       |
| WM-11 (CTF0482-12) Water San        | apled: 06/09/ | 10 14:20 | Received: 0        | <b>6/10/10</b> 09:   | 15       |          | ·            | •          |                |       |
| Total Alkalinity                    | 15            |          | 5.0                | mg/L                 | 1        | CT04196  | 06/11/10     | - 06/11/10 | SM2310B        |       |
| Bicarbonate as CaCO3                | 15            |          | 5.0                | u                    | 1        | u        | lf           | и .        | tt.            |       |
| Carbonate as CaCO3                  | ND            |          | 5.0                | . 11                 | 1        | Ü        | II           | n          | 11             |       |
| Hydroxide as CaCO3                  | ND            |          | 5.0                | li                   | 1        | Ü        | n n          | 11         | 41             |       |
| Chloride                            | 0.51          |          | 0.50               | u                    | 1        | CT04167  | 06/10/10     | 06/11/10   | EPA 300.0      |       |
| Specific Conductance (EC)           | 33            |          | 1.0                | μmhos/cm             | 1        | CT'04169 | 06/10/10     | 06/10/10   | EPA 120.1      |       |
| Methylene Blue Active Substances    | ND            |          | 0.10               | mg/L                 | 1        | CT04172  | 06/10/10     | 06/11/10   | SM5540 C       |       |
| Calcium                             | 3.1           | 0.031    | 1.0                | n                    | 1        | CT04168  | 06/10/10     | 06/10/10   | 200.7/2340B    |       |
| Magnesium                           | 1.1           | 0.028    | 1.0                | 11                   | 1        | u        | 11           | 11         | 11             |       |
| Potassium                           | ND            | 0.87     | 1.0                | II                   | 1        | u        | . 11         | ir         | l†             |       |
| Sodium                              | 1.8           | 0.021    | 1.0                | И                    | 1        | n        | 11           | (f         | H              |       |
|                                     | 12            |          | 1.0                | В                    | 1        | Ħ        | 17           | Ħ          | Ħ              |       |
| Hardness as CaCO3                   |               |          |                    | pH Units             | 1        | CT04134  | 06/10/10     | 06/10/10   | SM4500-HB      | HT-F  |
|                                     | 7.61          |          | 0.01               | pm omes              | 1        | CIVITAL  | 001 I 01 I 0 | 00, 20, 20 | DITT ID OUT II |       |
| Hardness as CaCO3 pH Sulfate as SO4 | 7.61<br>1.1   |          | 0.01               | mg/L                 | 1        | CT04167  | 06/10/10     | 06/11/10   | EPA 300.0      |       |

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC #: 2 Chains

| Analyte                         | Result           | MDL     | Reporting<br>Limit | Units       | Dilution | Batch   | Prepared | Analyzed | Method      | Notes |
|---------------------------------|------------------|---------|--------------------|-------------|----------|---------|----------|----------|-------------|-------|
| WM-12 (CTF0482-13) Water        | Sampled: 06/09/1 | 0 14:30 | Received: 0        | 6/10/10 09: | 15       |         |          |          |             |       |
| Total Alkalinity                | 13               |         | 5.0                | · mg/L      | 1        | CT04196 | 06/11/10 | 06/11/10 | SM2310B     |       |
| Bicarbonate as CaCO3            | 13               |         | 5.0                | N           | 1        | tl      | ii       |          |             |       |
| Carbonate as CaCO3              | ND               |         | 5.0                | II ·        | 1        | 11      | 17       | II       | . "         |       |
| Hydroxide as CaCO3              | ND               |         | 5.0                | Į.          | 1 -      | 19      | 19       | H        | ıt          |       |
| Chloride                        | 0.51             |         | 0.50               | 14          | 1        | CT04167 | 06/10/10 | 06/11/10 | EPA 300.0   |       |
| Specific Conductance (EC)       | 26               |         | 1.0                | μmhos/cm    | 1        | CT04169 | 06/10/10 | 06/10/10 | EPA 120.1   |       |
| Methylene Blue Active Substance | s ND             |         | 0.10               | mg/L        | 1        | CT04172 | 06/10/10 | 06/11/10 | SM5540 C    |       |
| Calcium                         | 2.5              | 0.031   | 1.0                | <b>11</b>   | 1        | CT04168 | 06/10/10 | 06/10/10 | 200.7/2340B |       |
| Magnesium                       | 1.3              | 0.028   | 1.0                | Ħ           | 1        | 17      | Ħ        | ıt .     |             |       |
| Potassium                       | ND               | 0.87    | 1.0                | 11          | 1        | Į       | IP.      | H        | II          |       |
| Sodium                          | 1.2              | 0.021   | 1.0                | 0           | 1        | Ħ       | II       | Ħ        | . 11        |       |
| Hardness as CaCO3               | 11               | •       | 1.0                | It          | 1        | 11      | . "      | II       | IP .        |       |
| pH                              | 6.54             |         | 0.01               | pH Units    | 1        | CT04134 | 06/10/10 | 06/10/10 | SM4500-H B  | HT-F  |
| Sulfate as SO4                  | ND               |         | 0.50               | mg/L        | 1        | CT04167 | 06/10/10 | 06/11/10 | EPA 300.0   |       |
| Total Dissolved Solids          | 27               |         | 10                 | Ш           | 1        | CT04202 | 06/11/10 | 06/14/10 | SM2540C     |       |
| WM-13 (CTF0482-14) Water        | Sampled: 06/09/1 | 0 14:40 | Received: 0        | 6/10/10 09  | :15      |         |          |          | -           |       |
| Total Alkalinity                | 28               |         | 5.0                | mg/L        | 1        | CT04196 | 06/11/10 | 06/11/10 | SM2310B     |       |
| Bicarbonate as CaCO3            | 28               |         | 5.0                |             | 1        | Ħ       | 11       | 11       | . "         |       |
| Carbonate as CaCO3              | ND               |         | 5.0                | P           | 1        | 11      | tt       | 11       | ŧt.         |       |
| Hydroxide as CaCO3              | · ND             |         | 5.0                | ıı          | 1        | 19      | 15       | 17       | II          |       |
| Chloride                        | ND               |         | 0.50               | Ħ           | 1        | CT04167 | 06/10/10 | 06/11/10 | EPA 300.0   |       |
| Specific Conductance (EC)       | 56               |         | 1.0                | μmhos/cn    | 1 1      | CT04169 | 06/10/10 | 06/10/10 | EPA 120.1   |       |
| Methylene Blue Active Substance | es ND            |         | 0.10               | mg/L        | 1        | CT04172 | 06/10/10 | 06/11/10 | SM5540 C    |       |
| Calcium                         | 6.6              | 0.031   | 1.0                | #1          | 1        | CT04168 | 06/10/10 | 06/10/10 | 200.7/2340B |       |
| Magnesium                       | 3.0              | 0.028   | 1.0                | ıf          | 1        | п       | D        | и        | п           |       |
| Potassium                       | ND               | 0.87    | 1.0                | 11          | 1        | tı      | II       | ĮI       | 11          |       |
| Sodium                          | 1.8              | 0.021   | 1.0                |             | 1        | 11      | Ħ        | , 11     | it          |       |
| Hardness as CaCO3               | 29               |         | 1.0                | *1          | 1        | n       | 11       | Ħ        | u           |       |
| pH                              | 7.36             |         | 0.01               | pH Units    | . 1      | CT04134 | 06/10/10 | 06/10/10 | SM4500-HB   | HT-F  |
| Sulfate as SO4                  | ND               |         | 0.50               | mg/L        | 1        | CT04167 | 06/10/10 | 06/11/10 | EPA 300.0   |       |
| Total Dissolved Solids          | 47               |         | 10                 | "           | 1        | CT04202 | 06/11/10 | 06/14/10 | SM2540C     |       |
| **                              |                  |         |                    |             |          |         |          |          |             |       |

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC #: 2 Chains

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                          | Result          | MDL     | Reporting<br>Limit | Units               | Dilution_ | Batch     | Prepared   | Analyzed | Method      | Notes |
|----------------------------------|-----------------|---------|--------------------|---------------------|-----------|-----------|------------|----------|-------------|-------|
| WM-17 (CTF0482-15) Water Sa      | impled: 06/09/1 | 0 14:45 | Received: 0        | 6/10/10 <b>0</b> 9: | 15        |           |            |          |             |       |
| Total Alkalinity                 | 67              |         | 5.0                | mg/L                | 1         | CT04196   | 06/11/10   | 06/11/10 | SM2310B     |       |
| Bicarbonate as CaCO3             | 67              |         | 5.0                | III                 | 1         | **        | II.        | 11       | i)          |       |
| Carbonate as CaCO3               | ND              |         | 5.0                |                     | 1         | 17        | H          | II       | II          |       |
| Hydroxide as CaCO3               | ND              |         | 5.0                | I†                  | 1         | 11        | tt .       | 11       | н           |       |
| Chloride                         | 0.59            |         | 0.50               | H                   | 1         | CT04167   | 06/10/10   | 06/11/10 | EPA 300.0   |       |
| Specific Conductance (EC)        | 130             |         | 1.0                | μmh <b>o</b> s/cm   | 1         | CT04169   | 06/10/10   | 06/10/10 | EPA 120.1   |       |
| Methylene Blue Active Substances | ND              |         | 0.10               | mg/L                | . 1       | CT04172   | 06/10/10   | 06/11/10 | SM5540 C    |       |
| Calcium                          | 15              | 0.031   | 1.0                | . 11                | 1         | CT04168   | 06/10/10   | 06/10/10 | 200.7/2340B |       |
| Magnesium                        | 6.5             | 0.028   | 1.0                | It                  | 1         | ļi        | <b>1</b> 1 | li       | If          |       |
| Potassium                        | 1.5             | 0.87    | 1.0                | 10 -                | 1         | 11        | 11         | · II     | li          |       |
| Sodium                           | 3.5             | 0.021   | 1.0                | II.                 | 1         |           | II         | II       | II          |       |
| Hardness as CaCO3                | 64              |         | 1.0                | Н                   | 1         | <b>#1</b> | (r         | . 41     | п -         |       |
| pH                               | 7.76            |         | 0.01               | pH Units            | 1         | CT04134   | 06/10/10   | 06/10/10 | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | 0.55            |         | 0.50               | mg/L                | 1         | CT04167   | 06/10/10   | 06/11/10 | EPA 300.0   |       |
| Total Dissolved Solids           | 88              | 1       | 10                 | It                  | 1 .       | CT04202   | 06/11/10   | 06/14/10 | SM2540C     |       |
| WM-18 (CTF0482-16) Water Sa      | ampled: 06/09/1 | 0 15:20 | Received: 0        | 6/10/10 09:         | :15       |           |            |          |             |       |
| Total Alkalinity                 | 66              |         | 5.0                | mg/L                | 1         | CT04196   | 06/11/10   | 06/11/10 | SM2310B     |       |
| Bicarbonate as CaCO3             | 66              |         | 5.0                | Ħ                   | 1         | II        | 11         | 11       | If          |       |
| Carbonate as CaCO3               | ND              |         | 5.0                | и.                  | 1         | il        | 17         | Ħ        | Ħ           |       |
| Hydroxide as CaCO3               | ND              |         | 5.0                | ti                  | 1         | 10        | tt .       | 17       | Ħ           |       |
| Chloride                         | 0.59            | -       | 0.50               | II                  | 1         | CT04167   | 06/10/10   | 06/11/10 | EPA 300.0   |       |
| Specific Conductance (EC)        | 130             |         | 1.0                | μmhos/en            | n 1       | CT04169   | 06/10/10   | 06/10/10 | EPA 120.1   |       |
| Methylene Blue Active Substances | ND              |         | 0.10               | mg/L                | 1         | CT04172   | 06/10/10   | 06/11/10 | SM5540 C    |       |
| Calcium                          | 14              | 0.031   | 1.0                | 31                  | 1         | CT04168   | 06/10/10   | 06/10/10 | 200.7/2340B |       |
| Magnesium                        | 6.1             | 0.028   | 1.0                | ж                   | 1         | 11        | Ħ          | H        | ц           |       |
| Potassium                        | 1.6             | 0.87    | 1.0                | If                  | 1         | B         | 11         | ti       | 11          |       |
| Sodium                           | 3.8             | 0.021   | 1.0                | ti .                | 1         | и         | II.        | If       | 0           |       |
| Hardness as CaCO3                | 61              |         | 1.0                | · ti                | 1         | II        | II         | 17       | Ħ           |       |
| рН                               | 7.94            |         | 0.01               | pH Units            | 1         | CT04134   | 06/10/10   | 06/10/10 | SM4500-HB   | HT-F  |
| Sulfate as SO4                   | 0.61            |         | 0.50               | mg/L                | 1         | CT04167   | 06/10/10   | 06/11/10 | EPA 300.0   |       |
| Total Dissolved Solids           | 88              |         | 10                 | II.                 | 1         | CT04202   | 06/11/10   | 06/14/10 | SM2540C     |       |

CA DOHS ELAP Accreditation/Registration Number 1233

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC #: 2 Chains

| Analyte                          | Result           | MDL      | Reporting<br>Limit | Units                | Dilution | Batch   | Prepared | Analyzed  | Method      | Notes |
|----------------------------------|------------------|----------|--------------------|----------------------|----------|---------|----------|-----------|-------------|-------|
| WM-16 (CTF0482-17) Water S       | Sampled: 06/09/1 | 10 15:45 | Received: 0        | 6/10/10 0 <u>9</u> : | 15       |         |          |           |             |       |
| Total Alkalinity                 | 50               |          | 5.0                | mg/L                 | 1        | CT04196 | 06/11/10 | 06/11/10  | SM2310B     |       |
| Bicarbonate as CaCO3             | 50               |          | 5.0                | n                    | 1        | n       | li .     | 11        | п           |       |
| Carbonate as CaCO3               | ND               |          | 5.0                | श                    | 1        | 11      | n        | IJ        | "           |       |
| Hydroxide as CaCO3               | ND               |          | 5.0                | 11                   | 1        | 11      | n        | 11        | H.          |       |
| Chloride                         | 0.55             |          | 0.50               | 11                   | 1        | CT04167 | 06/10/10 | 06/11/10  | EPA 300.0   |       |
| Specific Conductance (EC)        | 91               |          | 1.0                | µmhos/cm             | ι . 1    | CT04169 | 06/10/10 | 06/10/10  | EPA 120.1   |       |
| Methylene Blue Active Substance: | s ND             |          | 0.10               | mg/L                 | . 1      | CT04172 | 06/10/10 | 06/11/10  | SM5540 C    |       |
| Calcium                          | . 11             | 0.031    | 1.0                | Ħ                    | 1        | CT04168 | 06/10/10 | 06/10/10  | 200.7/2340B |       |
| Magnesium                        | 4.7              | 0.028    | 1.0                | 11                   | 1        | . 11    | h        | u         | 19          |       |
| Potassium                        | ND               | 0.87     | 1.0                | lt.                  | 1        | n       | М        | II        | n           |       |
| Sodium                           | 2.6              | 0.021    | 1.0                | ir                   | 1        | *1      | n        | . "       | 11          |       |
| Hardness as CaCO3                | 47               |          | 1.0                | n                    | 1        | 11      | 11       | lt .      | n .         |       |
| Hq                               | 7 <b>.77</b>     |          | 0.01               | pH Units.            | 1        | CT04134 | 06/10/10 | 06/10/10  | SM4500-H B  | HT-F  |
| Sulfate as SO4                   | ND               |          | 0.50               | mg/L                 | 1        | CT04167 | 06/10/10 | 06/11/10  | EPA 300.0   |       |
| Total Dissolved Solids           | 63               |          | 10                 | ıı                   | 1        | CT04202 | 06/11/10 | 06/14/10  | SM2540C     |       |
| WM-15 (CTF0482-18) Water         | Sampled: 06/09/  | 10 16:00 | Received: 0        | 6/10/10 09           | :15      | •       |          |           | <u> </u>    |       |
| Total Alkalinity                 | 29               |          | 5.0                | mg/L                 | 1        | CT04196 | 06/11/10 | 06/11/10  | SM2310B     |       |
| Bicarbonate as CaCO3             | 29               |          | 5.0                | 17                   | 1        | #       | tt       | n         | n .         |       |
| Carbonate as CaCO3               | ND               |          | 5.0                | e                    | 1        | II      | ii       | ti        | If          |       |
| Hydroxide as CaCO3               | ND               |          | 5.0                | ħ                    | 1        | n       | н        | fi        | B           |       |
| Chloride                         | 0.53             |          | 0.50               | n                    | 1        | CT04167 | 06/10/10 | 06/11/10  | EPA 300.0   |       |
| Specific Conductance (EC)        | <b>5</b> 3       |          | 1.0                | μmhos/en             | n 1      | CT04169 | 06/10/10 | 06/10/10  | EPA 120.1   |       |
| Methylene Blue Active Substance  | s ND             |          | 0.10               | mg/L                 | 1        | CT04172 | 06/10/10 | 06/11/10  | SM5540 C    |       |
| Calcium                          | 6.3              | 0.031    | 1.0                | 16                   | 1        | CT04168 | 06/10/10 | 06/10/10  | 200.7/2340B |       |
| Magnesium                        | 2.6              | 0.028    | 1.0                | n                    | 1        | n       | 11       | Ħ         | 0           |       |
| Potassium                        | ND               | 0.87     | 1.0                | II                   | 1        | 11      | 11       | 11        | ti          |       |
| Sodium                           | 1.8              | 0.021    | 1.0                | · 10 1               | 1        | η       | #        | lt        | ti          |       |
| Hardness as CaCO3                | 26               |          | 1.0                | lt .                 | 1        | ìţ      | 11       | n         | If          |       |
| pH                               | 7.68             |          | 0.01               | pH Units             | 1        | CT04134 | 06/10/10 | 06/10/10  | SM4500-H B  | HT-F  |
| yrı<br>Sulfate as SO4            | ND               |          | 0.50               | mg/L                 | 1        | CT04167 | 06/10/10 | 06/11/10  | EPA 300.0   |       |
| Total Dissolved Solids           | 40               |          | 10                 | 11                   | 1        | CT04202 | 06/11/10 | 06/14/10  | SM2540C     |       |
| Total Dissolved Solids           | 40               |          | 10                 |                      | 7        | C104202 | 50/11/10 | VW 1-1110 |             |       |

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC#: 2 Chains

| Analyte                         | Result          | MDL      | Reporting<br>Limit | Units                | Dilution | Batch      | Prepared | Analyzed                                     | Method      | Notes |
|---------------------------------|-----------------|----------|--------------------|----------------------|----------|------------|----------|----------------------------------------------|-------------|-------|
| WM-14 (CTF0482-19) Water S      | Sampled: 06/09/ | 10 16:05 | Received: 0        | 6/1 <b>0</b> /10 09: | 15       |            |          |                                              |             |       |
| Total Alkalinity                | 36              |          | 5.0                | mg/L                 | 1        | CT04196    | 06/11/10 | 06/11/10                                     | SM2310B     |       |
| Bicarbonate as CaCO3            | 36              |          | 5.0                | II                   | 1        | 11         | 11       | 11                                           | *1          |       |
| Carbonate as CaCO3              | ND              |          | 5.0                | H                    | . 1      | It         | u        | 17                                           | 11          |       |
| Hydroxide as CaCO3              | ND              |          | 5.0                | H                    | 1        | II.        | It       | 13                                           | It          |       |
| Chloride                        | 0.54            |          | 0.50               | If .                 | 1        | CT04167    | 06/10/10 | 06/11/10                                     | EPA 300.0   |       |
| Specific Conductance (EC)       | 70              |          | 1.0                | μmhos/cm             | 1        | CT04169    | 06/10/10 | 06/10/10                                     | EPA 120.1   |       |
| Methylene Blue Active Substance | s ND            |          | 0.10               | mg/L                 | 1        | CT04172    | 06/10/10 | 06/11/10                                     | SM5540 C    |       |
| Calcium                         | 12              | 0.031    | 1.0                | Ħ                    | 1        | CT04168    | 06/10/10 | 06/10/10                                     | 200.7/2340B |       |
| Magnesium                       | 1.4             | 0.028    | 1.0                | Ħ                    | 1        | Ħ          | 11       | **                                           | ц           |       |
| Potassium                       | ND              | 0.87     | 1.0                | tı                   | 1        | **         | 11       | H                                            | tı          |       |
| Sodium                          | 2.2             | 0.021    | 1.0                | It                   | 1        | 11         | If       | II                                           | It.         |       |
| Hardness as CaCO3               | 35              |          | 1.0                | • п                  | 1        | II         | . #      | 11                                           | ti .        |       |
| рН                              | 7.64            |          | 0.01               | pH Units             | 1        | CT04134    | 06/10/10 | 06/10/10                                     | SM4500-H B  | HT-F  |
| Sulfate as SO4                  | 1.8             |          | 0.50               | mg/L                 | 1        | CT04167    | 06/10/10 | 06/11/10                                     | EPA 300.0   |       |
| Total Dissolved Solids          | 52              |          | 10                 | ĥ                    | 1        | CT04202    | 06/11/10 | 06/14/10                                     | SM2540C     |       |
| WM-10 (CTF0482-20) Water        | Sampled: 06/09/ | 10 17:00 | Received: 0        | 6/10/10 09:          | :15      | . <u> </u> | ·        | <u>.                                    </u> |             |       |
| Total Alkalinity                | 23              |          | 5.0                | mg/L                 | 1        | CT04196    | 06/11/10 | 06/11/10                                     | SM2310B     |       |
| Bicarbonate as CaCO3            | 23              |          | 5.0                | 11                   | i        | Ħ          | 11       | II                                           | ti          |       |
| Carbonate as CaCO3              | ND              |          | 5.0                | ıt                   | . 1      | If a       | ti       | ti                                           | п           |       |
| Hydroxide as CaCO3              | ND              |          | 5.0                | 19                   | 1        | II         | **       | 11                                           | 11          |       |
| Chloride                        | 0 <b>.5</b> 1   |          | 0.50               | 11                   | 1        | CT04167    | 06/10/10 | 06/11/10                                     | EPA 300.0   |       |
| Specific Conductance (EC)       | 50              |          | 1.0                | μmhos/cn             | n 1      | CT04169    | 06/10/10 | 06/10/10                                     | EPA 120.1   |       |
| Methylene Blue Active Substance | s ND            |          | 0.10               | mg/L                 | 1        | CT04172    | 06/10/10 | 06/11/10                                     | SM5540 C    |       |
| Calcium                         | 6.3             | 0.031    | 1.0                | Ħ                    | 1        | CT04168    | 06/10/10 | 06/10/10                                     | 200.7/2340B |       |
|                                 | 1.6             | 0.028    | 1.0                | 11                   | 1        | 11         | и .      | 19                                           | ti          |       |
| Magnesium<br>Potassium          | ND              | 0.87     | 1.0                | n                    | 1        | IF         | **       | н                                            | и.          |       |
| Sodium                          | 2.2             | 0.021    | 1.0                | D                    | 1        | Rt.        | D        | п.                                           | и.          |       |
| Hardness as CaCO3               | 22              | 5.521    | 1.0                | Ħ                    | 1        | н          | *1       | 11                                           | К           |       |
|                                 | 7.53 .          |          | 0.01               | pH Units             | ,        | CT04134    | 06/10/10 | 06/10/10                                     | SM4500-HB   | HT-I  |
| pH<br>Sulfate as SO4            | 0.98            |          | 0.50               | mg/L                 | 1        | CT04167    | 06/10/10 | 06/11/10                                     | EPA 300.0   |       |
| Total Dissolved Solids          | 40              |          | 10                 | 1116711              | 1        | CT04202    | 06/11/10 | 06/14/10                                     | SM2540C     |       |
| TOTAL DISSUIVED DOMUS           | 70              |          | 10                 |                      | •        | 2200       |          |                                              |             |       |

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC #: 2 Chains

| Analyte                          | Result  | MDL          | Reporting<br>Limit | Units         | Dilution           | Batch_      | Prepared_ | Analyzed         | Method    | Notes |
|----------------------------------|---------|--------------|--------------------|---------------|--------------------|-------------|-----------|------------------|-----------|-------|
| WM-5 (LGC/MS) (CTF0482-01) Wate  | er Samp | oled: 06/09/ | 10 09:20 R         | eccived: 0    | 6/10/10 0          | 9:15        |           |                  | <u>.</u>  |       |
| Aluminum                         | 74      | 5.0          | 20                 | μg/L          | 1                  | CT04189     | 06/11/10  | 06/11/10         | EPA 200.8 |       |
| Arsenic                          | ND      | 0.85         | 2.0                | II            | 1.                 | В           | II        | ri .             | I\$       |       |
| Copper                           | 0.57    | 0.23         | 1.0                | 19            | 1                  | II          | 11        | 11               | n         | J     |
| Iron                             | 89      | 7.2          | 50                 | ti            | 1                  | ll.         | Tr .      | 11               | it '      |       |
| Zine                             | 2.8     | 0.93         | 2.0                | . 4           | 1                  | II.         | 11        | 11               | Ħ         |       |
| Cadmium                          | ND      | 0.50         | 0.50               | 11            | 1                  | II.         | 1f        | *                | 11        |       |
| WM-3 (DC/DS) (CTF0482-02) Water  | Sample  | d: 06/09/10  | 09:40 Rec          | eived: 06/    | 10/10 09:          | L5 <u> </u> |           |                  |           |       |
| Aluminum                         | 60      | 5.0          | 20                 | μg/L          | 1                  | CT04189     | 06/11/10  | 06/11/10         | EPA 200.8 |       |
| Arsenic                          | ND      | 0.85         | 2.0                | ii ii         | 1                  | 1)          | O O       | Ð                | ď         |       |
| Copper                           | 25      | 0.23         | 1,0                | el            | . 1                | 11          | II        | n                | 18        |       |
| Iron                             | 160     | 7.2          | 50                 | 11            | 1                  | 11          | и.        | Œ                | ir        |       |
| Zine                             | 6.4     | 0.93         | 2.0                | 19 -          | 1                  | II          | il        | Ħ                | н         |       |
| Cadmium                          | ND      | 0.50         | 0.50               | 11            | . 1                | в.          | 14        | )f               | Iŧ        |       |
| WM-19 (Pond) (CTF0482-03) Water  | Sample  | i: 06/09/10  | 09: <b>5</b> 0 Rec | eived: 06/1   | 10/10 09:1         | .5          |           |                  |           |       |
| Aluminum                         | 95      | 5.0          | 20                 | <br>μg/L      | 1                  | CT041.89    | 06/11/10  | 06/11/10         | EPA 200.8 |       |
| Arsenic                          | ND      | 0.85         | 2.0                | 11            | 1                  | u ff        | H         | "                | 11        |       |
| Copper                           | 1800    | 1.2          | 5.0                | 11            | · 5                | )r          | В         | 06/11/10         | 11        |       |
| Iron                             | 320 ~   | 7.2          | 50                 | h             | 1                  | II          | 16        | 06/11/1 <b>0</b> | 31        |       |
| Zine                             | 170     | 0.93         | 2.0                | a a           | 1                  | li          | 44        | 11               | n         |       |
| Cadmium                          | 1.2     | 0.50         | 0,50               | 11            | . 1                | a ·         | 11        | 11               | 1)        |       |
| WM-1 (Portal) (CTF0482-04) Water | Sample  | I: 06/09/10  | 10:30 Rec          | eived: 06/1   | 10/10 <u>0</u> 9:1 | 5           |           |                  |           |       |
| Aluminum                         | 5.0     | 5.0          | 20                 | μ <b>g</b> /L | 1                  | CT04189     | 06/11/10  | 06/11/10         | EPA 200.8 | 1     |
| Arsenic                          | 16      | 0.85         | 2.0                | 'n            | 1                  | n           | tt        | ri .             | n         |       |
| Copper                           | 87      | 0.23         | 1.0                | li .          | 1                  | Ņ           | и.        | 11               | . 41      |       |
| Iron                             | ND      | 7.2          | 50                 | P             | 1                  | tr .        | 19        | 17               | 19        |       |
| Zine                             | 26      | 0.93         | 2.0                | u             | 1                  | l?          | 19 ,      | p                | h         |       |
| Cadmium                          | ND      | 0.50         | 0.50               | II            | 1                  | 11          | II        | н                | II        |       |

06/16/10 08:00

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine
Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order#: CTF0482

COC#: 2 Chains

| Analyte                           | Result     | MDL           | Reporting<br>Limit | Units      | Dilution    | Batch       | Prepared | Analyzed | Method    | Notes |
|-----------------------------------|------------|---------------|--------------------|------------|-------------|-------------|----------|----------|-----------|-------|
| WM-2 (DC/MS) (CTF0482-05) Water   | Samp       | oled: 06/09/1 | 0 10:20 Red        | eived: 06  | /10/10 09:  | 15          |          |          |           |       |
| Aluminum                          | 23         | 5.0           | 20                 | μg/L       | 1           | CT04189     | 06/11/10 | 06/11/10 | EPA 200.8 |       |
| Arsenic                           | ND         | 0.85          | 2.0                | . 15       | 1           | 71          | 11       | 11       | u .       |       |
| Copper                            | 0.43       | 0.23          | 1.0                | n          | 1           | 11          | 11       | 11       | H         | J     |
| Iron                              | 21         | 7.2           | 50                 | n          | 1           | n           | 11       | ti       | n         | J     |
| Zinc                              | ND         | 0.93          | 2.0                | 11         | 1           | n           | 11       | ħ        | n         | •     |
| Cadmium                           | ND         | 0.50          | 0.50               | LF         | 1           | t)          | 11       | 11       | . #       |       |
| WM-4 (@ 48' Culvert) (CTF0482-06) | Water      | Sampled: 0    | 6/09/10 12:1       | 5 Receiv   | ed: 06/10   | /10 09:15   |          |          | · .       |       |
| Aluminum                          | 51         | 5.0           | 20                 | μg/L       | 1           | CT04189     | 06/11/10 | 06/11/10 | EPA 200.8 |       |
| Arsenic                           | ND         | 0.85          | 2.0                | n          | . 1         | n           | II       | 11       | и .       |       |
| Copper                            | 32         | 0.23          | 1.0                | n          | 1           | n           | lt       | 11       | n .       |       |
| Iron                              | 110        | 7.2           | 50                 | n          | 1           | 0 .         | 11       | 11       | If        |       |
| Zinc                              | 10         | 0.93          | 2.0                | n          | 1           | u           | 11       | ır '     | l†        |       |
| Cadmium                           | ND         | 0.50          | 0.50               | 11         | 1           | ш :         | 11       | )ŧ       | U         |       |
| WM-9 (LGC @ Browns Cabin) (CTF    | 0482-07    | ) Water Sa    | mpled: 06/0        | 9/10 12:30 | ) Receive   | ed: 06/10/1 | 10 09:15 |          |           |       |
| Aluminum                          | <b>5</b> 9 | 5.0           | . 20               | μg/L       | 1 .         | CT04189     | 06/11/10 | 06/11/10 | EPA 200.8 |       |
| Arsenic                           | ND         | 0.85          | 2.0                | ħ          | . 1         | 17          |          | lŧ       | 11        |       |
| Copper                            | 2.2        | 0.23          | 1.0                | Ħ          | 1           | 11          | n        | · II     | R         |       |
| Iron                              | 89         | 7.2           | 50                 | н          | 1           | n           | n        | l†       | ţţ.       |       |
| Zinc                              | 6.2        | 0.93          | 2.0                | 11         | 1           | 11          | n        | n        | R         |       |
| Cadmium                           | ND         | 0.50          | 0.50               | 15         | 1           | n           | ŧì       | . "      | tt        |       |
| WM-6 (MSFS Dam) (CTF0482-08) W    | ater S     | ampled: 06/0  | 09/10 12:50        | Received   | l: 06/10/10 | 09:15       |          |          |           |       |
| Aluminum                          | 19         | 5.0           | 20                 | μg/L       | 1           | CT04189     | 06/11/10 | 06/11/10 | EPA 200.8 | J     |
| Arsenic                           | ND         | 0.85          | 2.0                | li.        | 1           | 11          | n        | 17 .     | Ħ         |       |
| Copper                            | 51         | 0.23          | 1.0                | n          | 1           | R           | 11       | n ·      | tt        |       |
| Copper                            |            |               |                    | H          | ,           | is .        | Ŋ        | 19       | 17        |       |
| Iron                              | 190        | 7.2           | 50                 | .,         | 1           |             |          |          |           |       |
|                                   | 190<br>36  | 7.2<br>0.93   | 50<br>2.0          | n          | 1           | II          | ø        | 11       | 11        |       |

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC #: 2 Chains

| Analyte                  | Result           | MDL      | Reporting<br>Limit | Units         | Dilution | Batch     | Prepared | Analyzed                  | Method     | Notes    |
|--------------------------|------------------|----------|--------------------|---------------|----------|-----------|----------|---------------------------|------------|----------|
| WM-7b (CTF0482-09) Water | Sampled: 06/09/1 | 13:00    | Received: 0        | 6/10/10 09    | ):15     |           |          |                           | . <u> </u> |          |
| Aluminum                 | 110              | 5.0      | 20                 | μg/L          | 1        | CT04189   | 06/11/10 | <b>0</b> 6/1 <b>1</b> /10 | EPA 200.8  |          |
| Arsenic                  | ND               | 0.85     | 2.0                | 11            | 1        | R         | It       | H                         | Įł         |          |
| Copper                   | <b>3</b> 9       | 0.23     | 1.0                | tt            | 1        | <b>11</b> | H        | II                        | lt.        |          |
| Iron                     | 240              | 7.2      | 50                 | If            | 1        | ti        | "        | li                        | II         |          |
| Zinc                     | 10               | 0.93     | 2.0                | H             | 1        | II        | n ·      | ti                        | II .       |          |
| Cadmium                  | ND               | 0.50     | 0.50               | н             | 1        | 11        | 11       | #                         | It         |          |
| WM-7c (CTF0482-10) Water | Sampled: 06/09/1 | 0 13:05  | Received: 0        | 6/10/10 09    | :15      |           |          |                           | <u> </u>   |          |
| Aluminum                 | 69               | 5.0      | 20                 | μ <b>g/</b> L | 1        | CT04189   | 06/11/10 | 06/11/10                  | EPA 200.8  |          |
| Arsenic                  | ND               | 0.85     | 2.0                | 11            | 1        | ii        | . 11     | II                        | . 11       |          |
| Copper                   | 0.64             | 0.23     | 1.0                | Ħ             | 1        |           | II       | II                        | 31         | J        |
| Iron                     | 95               | 7.2      | 50                 | 11            | 1        | H         | H ·      | l!                        | В          |          |
| Zinc                     | ND               | 0.93     | 2.0                | u             | 1        | Ħ         | t)       | ti                        | li         |          |
| Cadmium                  | ND               | 0.50     | 0.50               | 11            | 1        | P         | . 11     | It                        | Ħ          |          |
| WM-7a (CTF0482-11) Water | Sampled: 06/09/2 | 10 13:25 | Received: 0        | 6/10/10 09    | 9:15     |           |          |                           |            | <u>_</u> |
| Aluminum                 | 38               | 5.0      | 20                 | μg/L          | 1        | CT04189   | 06/11/10 | 06/11/10                  | EPA 200.8  |          |
| Arsenic                  | ND               | 0.85     | 2.0                | II            | 1        | . 11      | . #      | 17                        | D          |          |
| Copper                   | 37               | 0.23     | 1.0                | n             | 1        | Ħ         | It       | *1                        | II .       |          |
| Iron                     | 140              | 7.2      | 50                 | 1)            | 1        | 11        | II       | 11                        | - п        |          |
| Zinc                     | 6.3              | - 0.93   | 2.0                | 11            | 1        | II        | , tr     | l†                        | 11         |          |
| Cadmium                  | ND               | 0.50     | 0.50               | *1            | 1        | . (1      | . 11     | 11                        | . 14       |          |
| WM-11 (CTF0482-12) Water | Sampled: 06/09/  | 10 14:20 | Received:          | 06/10/10 0    | 9:15     |           |          |                           |            |          |
| Aluminum                 |                  | 5.0      | 20                 | μ <b>g</b> /L | i        | CT04189   | 06/11/10 | 06/11/10                  | EPA 200.8  |          |
| Arsenic                  | ND               | 0.85     | 2.0                | u             | 1        | П         | Ħ        | II                        | . "        |          |
| Copper                   | 9.6              | 0.23     |                    | II.           | 1        | ŧi .      | it it    | ji .                      | n          |          |
| Iron                     | 42               | 7.2      |                    | ıl.           | 1        | п         | π        | N                         | II .       | ĭ        |
| Zinc                     | 5.5              | 0.93     |                    | 51            | 1        | u         | It       | ij                        | 41         |          |
| Cadmium                  | ND               | 0.50     |                    | 11            | 1        | . 11      | 11       | 11                        | К          | -        |

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC#: 2 Chains

| Analyte                   | Result           | MDL             | Reporting<br>Limit | Units               | Dilution | Batch   | Prepared          | Analyzed | Method         | Notes |
|---------------------------|------------------|-----------------|--------------------|---------------------|----------|---------|-------------------|----------|----------------|-------|
| WM-12 (CTF0482-13) Water  | Sampled: 06/09/1 | 0 14:30         | Received: 0        | 6/10/10 09          | :15      |         |                   |          |                |       |
| Aluminum                  | 110              | 5.0             | 20                 | μg/L                | 1        | CT04189 | 06/11/10          | 06/11/10 | EPA 200.8      |       |
| Arsenic                   | ND               | 0.85            | 2.0                | 11                  | 1        | 11      | U                 | ħ        | Ħ              |       |
| Copper                    | 17               | 0.23            | 1.0                | П                   | 1        | **      | U                 | 11       | Ħ              |       |
| Iron                      | 81               | 7.2             | 50                 | u                   | 1        | 11      | 0                 | , ii     | Ħ              |       |
| Zinc                      | 8.5              | 0.93            | 2.0                | n                   | 1        | 11      | 0                 | a        | fl fl          |       |
| Cadmium                   | ND               | 0.50            | 0.50               | . 10                | 1        | 11      | 11                | (I       | Ħ              |       |
| WM-13 (CTF0482-14) Water_ | Sampled: 06/09/1 | 0 14:40         | Received: 0        | 6/10/10 <b>0</b> 9  | :15      | _       | <u> </u>          |          |                |       |
| Aluminum                  | 33               | 5.0             | 20                 | μg/L                | 1        | CT04189 | 06/11/10          | 06/11/10 | EPA 200.8      |       |
| Arsenic                   | ND               | 0.85            | 2.0                | II                  | 1        | II      | II                | Ħ        | a .            |       |
| Copper                    | 0.49             | 0.23            | 1.0                | n .                 | 1        | И       | п                 | lt       | a a            | J     |
| Iron                      | 15               | 7.2             | 50                 | H                   | 1        | lt      | 11 .              | II       | fi fi          | J     |
| Zinc                      | 6.7              | 0.93            | 2.0                | . 11                | ' 1      | В       | 11                | II       | 11             |       |
| Cadmium                   | ND               | 0.50            | 0.50               | U                   | 1        | К       | IT                | I)       | II             |       |
| WM-17 (CTF0482-15) Water  | Sampled: 06/09/1 | 0 14:45         | Received: 0        | 6/1 <b>0</b> /10 09 | :15      |         |                   |          |                |       |
| Aluminum                  | 28               | 5.0             | .20                | μg/L                | 1        | CT04189 | 06/11/10          | 06/11/10 | EPA 200.8      |       |
| Arsenic                   | ND               | 0.85            | 2.0                | u                   | 1        | 11      | ff                | Ħ .      | 11             |       |
| Copper                    | 0.35             | 0.23            | 1.0                | 0                   | 1        | 15      | 17                | 11       | 11             | J     |
| Iron                      | <b>8.</b> 6      | 7.2             | 50                 | 11                  | 1        | 19      | 11                | IP .     | ji             | j     |
| Zinc                      | ND               | 0.93            | 2.0                | ţŧ                  | 1        | 11      | 19                | 11       | <b>វា</b>      |       |
| Cadmium                   | ND               | 0.50            | 0.50               | It                  | 1        | II      | H                 | U        | <del>(</del> I |       |
| WM-18 (CTF0482-16) Water  | Sampled: 06/09/1 | 0 <b>15:2</b> 0 | Received: 0        | 6/10/10 09          | :15      |         |                   |          |                |       |
| Aluminum                  | 60               | 5.0             | 20                 | μg/L                |          | CT04189 | 06/1 <b>1</b> /10 | 06/11/10 | EPA 200.8      |       |
| Arsenic                   | ŅD               | 0.85            | 2.0                | 19                  | 1        | li      | ti                | u        | e              |       |
| Copper                    | 0.36             | 0.23            | 1.0                | II                  | 1        | u       | II                | . (1     | 11             | J     |
|                           | 30               | 7.2             | 50                 | ц                   | 1        | II      | ĮI                | 11       | ' II           | J     |
| Iron                      |                  |                 |                    |                     |          |         |                   |          |                |       |
| Iron<br>Zine              | ND               | 0.93            | 2.0                | H                   | 1        | n       | II .              | þ        | ır             |       |

06/16/10 08:00

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine
Project Number: [none]

CLS Work Order#: CTF0482 COC #: 2 Chains

Project Manager: Leticia Valadez

| Analyte                  | Result           | MDL      | Reporting<br>Limit | Units                     | Dilution_ | Batch   | Prepared                  | Analyzed                  | Method     | Notes |
|--------------------------|------------------|----------|--------------------|---------------------------|-----------|---------|---------------------------|---------------------------|------------|-------|
| WM-16 (CTF0482-17) Water | Sampled: 06/09/1 | 0 15:45  | Received: 0        | 6/10/10 09                | :15       |         |                           |                           |            |       |
| Aluminum                 | 25               | 5.0      | 20                 | μg/L                      | 1         | CT04189 | <b>0</b> 6/1 <b>1</b> /10 | 06/11/10                  | EPA 200.8  |       |
| Arsenic                  | ND               | 0.85     | 2.0                | II                        | 1         | и       | 11                        | #                         | . 11       |       |
| Copper                   | 0.48             | 0.23     | 1.0                | l†<br>-                   | 1         | tt      | 19                        | **                        | 11         | J.    |
| Iron                     | 15               | 7.2      | 50                 | H                         | 1         | Ш       | 19                        | н                         | *1         | J     |
| Zinc                     | 4.5              | 0.93     | 2.0                | It                        | 1         | li .    | 11                        | ţi                        | 11         |       |
| Cadmium                  | ND               | 0.50     | 0.50               | H                         | 1         | - 11    | 19                        | 11                        | 11         |       |
| WM-15 (CTF0482-18) Water | Sampled: 06/09/1 | 0 16:00  | Received: 0        | <b>6/1<u>0</u>/10 0</b> 9 | :15       |         |                           |                           | <u> </u>   |       |
| Aluminum                 | 70               | 5.0      | 20                 | μg/L                      | 1         | CT04189 | 06/11/10                  | <b>0</b> 6/1 <b>1</b> /10 | EPA, 200.8 |       |
| Arsenic                  | ND               | 0.85     | 2.0                | п                         | 1         | li      | It                        | H                         | I*         |       |
| Copper                   | 5.0              | 0.23     | 1.0                | 10                        | 1         | Ħ       | Iŧ.                       | 11                        | <b>n</b>   |       |
| Iron                     | 47               | 7.2      | 50                 | + It                      | 1         | Ħ       | IR                        | 11                        | ţī.        | J     |
| Zinc                     | 2.2              | 0.93     | 2.0                | И                         | 1         | tı      | Ħ                         | II                        |            |       |
| Cadmium                  | ND               | 0.50     | <b>0.5</b> 0       | 41                        | 1         | 11      | II .                      | 11                        | II         |       |
| WM-14 (CTF0482-19) Water | Sampled: 06/09/1 | 10 16:05 | Received: 0        | <b>6/10/10 0</b> 9        | :15       |         |                           |                           |            |       |
| Aluminum                 | 91               | 5.0      | 20                 | μg/L                      | 1         | CT04189 | -06/11/10                 | 06/11/10                  | EPA 200.8  |       |
| Arsenic                  | ND               | 0.85     | 2.0                | l1                        | 1         | It      | 11                        | 31                        | 11         |       |
| Copper                   | 5.9              | 0.23     | 1.0                | 11                        | 1         | l)      | II                        | 1†                        | 19         |       |
| Iron                     | 59               | 7.2      | 50                 | ú                         | 1         | iı      | II                        | II.                       | · II       |       |
| Zinc                     | 7.3              | 0.93     | 2.0                | If                        | 1         | II .    | μ                         | , Th                      | D          |       |
| Cadmium                  | ND               | 0.50     | 0.50               | , <b>1</b> 1              | 1         | u       | n                         | ľ                         | D          |       |
| WM-10 (CTF0482-20) Water | Sampled: 06/09/1 | l0 17:00 | Received: 0        | <b>6/10/10 0</b> 9        | :15       |         |                           |                           |            |       |
| Aluminum                 | 72               | 5.0      | 20                 | μg/L                      | 1         | CT04189 | 06/11/10                  | 06/11/10                  | EPA 200.8  |       |
| Arsenic                  | ND '             | 0.85     | 2.0                | 11                        | 1         | Ħ       | II                        | n                         | В          | *     |
| Copper                   | 3.9              | 0.23     | 1.0                | 11                        | 1         | tt      | li .                      | n                         | 11         |       |
| <del></del>              | 82               | 7.2      | <b>5</b> 0         | 11                        | 1         | Ħ.      | п                         | II                        | ĸ          |       |
| Iron                     |                  |          |                    |                           |           |         |                           |                           |            |       |
| Iron<br>Zinc             | 7.9              | 0.93     | 2.0                | 11                        | 1         | 11      | . "                       | h                         | n          |       |

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order#: CTF0482

. COC #; 2 Chains

| Analyte                          | Result | MDL                  | Reporting<br>Limit | Units             | Dilution   | Batch   | Prepared                  | Analyzed         | Method     | Notes |
|----------------------------------|--------|----------------------|--------------------|-------------------|------------|---------|---------------------------|------------------|------------|-------|
| WM-5 (LGC/MS) (CTF0482-01) Wate  | r Sam  | ple <b>d:</b> 06/09/ | 10 09:20 I         | Received: (       | 6/10/10 0  | 9:15    |                           |                  |            |       |
| Aluminum                         | 27     | 5.0                  | 20                 | μ <b>g/</b> L     | . 1        | CT04187 | 06/11/10                  | 06/1 <b>1/10</b> | EPA 200.8  | ÷     |
| Arsenic                          | ND     | 0.85                 | 5.0                | H                 | 1          | 19      | n                         | 11               | Ņ.         |       |
| Copper                           | 0.51   | 0.23                 | 2.0                | n                 | 1          | ij      | H ,                       | ņ                | П          | J     |
| Iron                             | 23     | 7.2                  | 50                 | 11                | 1          | 19      | ŧI                        | 19               | 0          | J     |
| Zinc                             | 3.4    | 0.93                 | 2.0                | ti .              | 1          | 11      | It                        | Н                | 11         |       |
| Cadmium                          | ND     | 0.50                 | 0.50               | . 10              | 1          | H       | 11                        | ji               | И          |       |
| WM-3 (DC/DS) (CTF0482-02) Water  | Sample | ed: 06/09/10         | 09:40 Re           | ceived: 06/       | 10/10 09:  | 15      |                           | <u> </u>         |            |       |
| Aluminum                         | 22     | 5.0                  | 20                 | <br>μg/L          | 1          | CT04187 | 06/11/10                  | 06/11/10         | EPA 200.8  | •     |
| Arsenic                          | ND     | 0.85                 | 5.0                | 11                | 1          | 11      | 1 11                      | )ţ               | 11         |       |
| Copper                           | 18     | 0.23                 | 2.0                | IJ                | 1          | 9       | Ħ                         | t.               | ų          |       |
| Iron                             | 36     | 7.2                  | 50                 | it                | 1          | lf      | 11                        | )ų               | v          | J     |
| Zine                             | 5.0    | 0.93                 | 2,0                | †I                | 1          | IJ      | 11                        | It               | ti         |       |
| Cadmium                          | ND     | 0.50                 | 0.50               | 11                | 1          | u · .   | H                         | И                | li         |       |
| WM-19 (Pond) (CTF0482-03) Water  | Sample | d: 06/09/10          | 09:50 Rec          | eived: 06/        | 10/10 09:1 | 15      | · .                       |                  |            |       |
| Aluminum                         | ND     | 5.0                  | 20                 | μg/L              | 1          | CT04187 | 06/11/10                  | 06/11/10         | EPA 200.8  |       |
| Arsenic                          | ND     | 0.85                 | 5.0                | 11                | 1          | . 11    | . 11                      | il               | 11         |       |
| Copper                           | 1200   | 1.2                  | 10                 | ĸ                 | 5          | h       | . н                       | "                | <b>\$1</b> |       |
| Iron                             | ND     | 7.2                  | 50                 | şi                | 1,         | tt      | 11                        | 11               | И .        |       |
| Zinc                             | 170    | 0.93                 | 2.0                | †1                | 1          | н       | <b>.</b>                  | ti .             | ti         |       |
| Cadmium                          | 1.1    | 0.50                 | 0.50               | 11                | 1          | . 11    | n .                       | )te              | 11         |       |
| WM-1 (Portal) (CTF0482-04) Water | Sample | d: 06/09/10          | 10:30 Red          | eived: 06/        | 10/10 09:  | 15      |                           |                  |            |       |
| Aluminum                         | ND     | 5.0                  | . 20               | <br>μ <b>g/</b> L | 1          | CT04187 | <b>0</b> 6/ <b>1</b> 1/10 | 06/11/10         | EPA 200.8  |       |
| Arsenic                          | 17     | 0.85                 | 5.0                | 11                | 1          | It      | lt                        | 11               | н          |       |
|                                  | 81     | 0.23                 | 2.0                | ti                | 1          | · n     | 11                        | 19               | 11         |       |
| Copper<br>Iron                   | ND     | 7.2                  | 50                 | 11                | 1          | ìT      | ' 11                      | n                | н          |       |
| Zinc                             | 27     | 0.93                 | 2.0                | If                | 1          | πt      | 11                        | n                | 1f         |       |
| Cadmium                          | ND     | 0.50                 | 0.50               | 11                | 1          | h       | 0,                        | 19               | 11         |       |

06/16/10 08:00

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine
Project Number: [none]
Project Manager: Leticia Valadez

CLS Work Order #: CTF0482 COC #: 2 Chains

| Analyte                                                                                                                          | Result                                        | MDL_                                                                              | Reporting<br>Limit                                                       | Units                                  | Dilution                             | Batch                                                                             | Prepared                     | Analyzed             | Method               | Notes |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|------------------------------|----------------------|----------------------|-------|
| WM-2 (DC/MS) (CTF0482-05) Water                                                                                                  | Samp                                          | led: 06/09/10                                                                     | 10:20 Rec                                                                | eived: 06                              | /10/10 <mark>0</mark> 9:             | 15                                                                                |                              |                      |                      | ·     |
| Aluminum                                                                                                                         | ND                                            | 5.0                                                                               | 20                                                                       | μg/L                                   | 1                                    | CT04187                                                                           | 06/11/10                     | 06/11/10             | EPA 200.8            |       |
| Arsenic                                                                                                                          | ND                                            | 0.85                                                                              | 5.0                                                                      | ıt                                     | 1                                    | 11                                                                                | н                            | ji                   | It                   |       |
| Copper                                                                                                                           | 0.33                                          | 0.23                                                                              | 2.0                                                                      | ti ,                                   | 1                                    | . 0                                                                               | t)                           | li .                 | lf.                  | J     |
| Iron                                                                                                                             | ND                                            | 7.2                                                                               | 50                                                                       |                                        | 1.                                   | h                                                                                 | 0                            | If                   | . U                  |       |
| Zine                                                                                                                             | 1.3                                           | 0.93                                                                              | 2.0                                                                      | 10                                     | 1                                    | U                                                                                 | It                           | II.                  | n .                  | J     |
| Cadmium                                                                                                                          | ND                                            | 0.50                                                                              | 0.50                                                                     | n                                      | 1                                    | н                                                                                 | #                            | Ħ                    | 11                   |       |
| WM-4 (@ 48' Culvert) (CTF0482-06)                                                                                                | Water                                         | Sampled: 0                                                                        | 6/09/10 12:1                                                             | 5 Receiv                               | ed: 06/10                            | /10 09:15                                                                         |                              |                      |                      |       |
| Aluminum                                                                                                                         | 22                                            | 5.0                                                                               | 20                                                                       | <u>μ</u> g/L                           |                                      | CT04187                                                                           | 06/11/10                     | 06/11/10             | EPA 200.8            |       |
| Arsenic                                                                                                                          | ND                                            | 0.85                                                                              | 5.0                                                                      | D                                      | . 1                                  | r n                                                                               | n                            | 1†                   | p                    |       |
| Copper                                                                                                                           | 25                                            | 0.23                                                                              | 2.0                                                                      | n                                      | 1                                    | 11                                                                                | u .                          | 11                   | ų                    |       |
| Iron                                                                                                                             | 34                                            | 7.2                                                                               | 50                                                                       | # .                                    | 1                                    | Ü .                                                                               | it .                         | ų                    | Ħ                    | J     |
| Zinc                                                                                                                             | 5.6                                           | 0.93                                                                              | 2.0                                                                      | n                                      | 1                                    | #1                                                                                | 11                           | 11                   | t t                  |       |
| ZILLO                                                                                                                            |                                               |                                                                                   |                                                                          |                                        | _                                    | 17                                                                                | 11                           | I <del>I</del>       | 11                   |       |
| Cadmium                                                                                                                          | ND                                            | 0.50                                                                              | 0.50                                                                     | 11                                     | 1                                    | ,,                                                                                |                              |                      |                      |       |
|                                                                                                                                  |                                               |                                                                                   |                                                                          |                                        | l<br>O Receiv                        |                                                                                   | 10 09:15                     |                      |                      |       |
| WM-9 (LGC @ Browns Cabin) (CTFC                                                                                                  |                                               | Water Sa                                                                          |                                                                          | 9/10 12:3                              | 1<br>0 Receiv<br>1                   |                                                                                   | 0 <b>09:15</b>               | 06/1 <b>1</b> /10    | EPA 200.8            |       |
| WM-9 (LGC @ Browns Cabin) (CTFC                                                                                                  | )482-07)<br>20                                | Water Sa                                                                          | mpled: 06/0                                                              |                                        |                                      | ed: 06/10/1                                                                       |                              | 06/11/10             | EPA 200.8            | 1     |
| WM-9 (LGC @ Browns Cabin) (CTFC Aluminum Arsenic                                                                                 | 0482-07)<br>20<br>ND                          | Water Sa<br>5.0<br>0.85                                                           | mpled: 06/0<br>20<br>5.0                                                 | 9/10 12:3<br>μg/L                      | 1                                    | ed: 06/10/1<br>CT04187                                                            | 0 <b>6/1</b> 1/10            |                      |                      | 1     |
| WM-9 (LGC @ Browns Cabin) (CTFC Aluminum Arsenic Copper                                                                          | )482-07)<br>20                                | 5.0<br>0.85<br>0.23                                                               | mpled: 06/0<br>20                                                        | 9/10 12:3<br>μg/L                      | 1<br>1                               | ed: 06/10/1<br>CT04187                                                            | 0 <b>6/1</b> 1/10            | u                    | и                    | -     |
| WM-9 (LGC @ Browns Cabin) (CTFC Aluminum Arsenic Copper Iron                                                                     | 20<br>ND<br>1.6<br>35                         | 5.0<br>0.85<br>0.23<br>7.2                                                        | 20<br>5.0<br>2.0                                                         | 9/10 12:30<br>μg/L                     | 1<br>1                               | ed: 06/10/1<br>CT04187                                                            | 0 <b>6/1</b> 1/10<br>"       | tt<br>(t             | n<br>n               | 1     |
| WM-9 (LGC @ Browns Cabin) (CTFC Aluminum Arsenic Copper                                                                          | 20<br>ND<br>1.6                               | 5.0<br>0.85<br>0.23                                                               | 20<br>5.0<br>2.0<br>5.0                                                  | 9/10 12:30<br>μg/L<br>"                | 1<br>1<br>1<br>1                     | ed: 06/10/1<br>CT04187                                                            | 06/11/10<br>"<br>"           | tt<br>(t             | 11<br>11             | J     |
| WM-9 (LGC @ Browns Cabin) (CTFC Aluminum Arsenic Copper Iron Zinc Cadmium                                                        | 20<br>ND<br>1.6<br>35<br>5.0<br>ND            | 5.0<br>0.85<br>0.23<br>7.2<br>0.93<br>0.50                                        | 20<br>5.0<br>2.0<br>50<br>2.0<br>50<br>2.0<br>0.50                       | 9/10 12:30<br>µg/L<br>n<br>n           | 1<br>1<br>1<br>1                     | ed: 06/10/7                                                                       | 06/11/10 " " " "             | ti<br>ft<br>11<br>   | il<br>ti<br>tt       | J     |
| WM-9 (LGC @ Browns Cabin) (CTFC Aluminum Arsenic Copper Iron Zinc Cadmium WM-6 (MSFS Dam) (CTF0482-08) W                         | 20<br>ND<br>1.6<br>35<br>5.0<br>ND            | 5.0<br>0.85<br>0.23<br>7.2<br>0.93<br>0.50                                        | 20<br>5.0<br>2.0<br>50<br>2.0<br>50<br>2.0<br>0.50                       | 9/10 12:30  µg/L  " " " Received       | 1<br>1<br>1<br>1<br>1                | ed: 06/10/7                                                                       | 06/11/10 " " " "             | ti<br>ft<br>11<br>   | il<br>ti<br>tt       | J     |
| WM-9 (LGC @ Browns Cabin) (CTFO Aluminum Arsenic Copper Iron Zinc Cadmium WM-6 (MSFS Dam) (CTF0482-08) W Aluminum                | 20<br>ND<br>1.6<br>35<br>5.0<br>ND<br>ater S  | 5.0<br>0.85<br>0.23<br>7.2<br>0.93<br>0.50<br>ampled: 06/6                        | 20<br>5.0<br>2.0<br>50<br>2.0<br>0.50<br>0.50                            | 9/10 12:30<br>µg/L<br>n<br>n           | 1<br>1<br>1<br>1<br>1                | ed: 06/10/1<br>CT04187                                                            | 06/11/10<br>"<br>"<br>"<br>" | 11<br>11<br>11<br>11 | II<br>II<br>II<br>II | J     |
| WM-9 (LGC @ Browns Cabin) (CTFO Aluminum Arsenic Copper Iron Zinc Cadmium WM-6 (MSFS Dam) (CTF0482-08) W Aluminum Arsenic        | 20<br>ND<br>1.6<br>35<br>5.0<br>ND<br>ater S: | 5.0<br>0.85<br>0.23<br>7.2<br>0.93<br>0.50<br>ampled: 06/6                        | 20<br>5.0<br>2.0<br>50<br>2.0<br>0.50<br>2.9/10 12:50<br>20<br>5.0       | 9/10 12:30 μg/L " " Received           | 1<br>1<br>1<br>1<br>1<br>1: 06/10/1  | ed: 06/10/7<br>CT04187<br>" " " " " " " " " CT04187                               | 06/11/10                     | 06/11/10             | и<br>и<br>и<br>и     | J     |
| WM-9 (LGC @ Browns Cabin) (CTFO Aluminum Arsenic Copper Iron Zinc Cadmium WM-6 (MSFS Dam) (CTF0482-08) W Aluminum Arsenic Copper | 20<br>ND<br>1.6<br>35<br>5.0<br>ND<br>ater S  | 5.0<br>0.85<br>0.23<br>7.2<br>0.93<br>0.50<br>ampled: 06/6<br>5.0<br>0.85<br>0.23 | 20<br>5.0<br>2.0<br>50<br>2.0<br>0.50<br>0.50<br>0.9/10 12:50            | 9/10 12:30  µg/L  n  Received  µg/L  n | 1<br>1<br>1<br>1<br>1<br>1: 06/10/10 | ed: 06/10/7 CT04187 " " " " " " " " CT04187 " " " " " " " " " " " " " " " " " " " | 06/11/10                     | 06/11/10             | и<br>и<br>и<br>и     | J     |
| WM-9 (LGC @ Browns Cabin) (CTFO Aluminum Arsenic Copper Iron Zinc Cadmium WM-6 (MSFS Dam) (CTF0482-08) W Aluminum Arsenic        | 20<br>ND<br>1.6<br>35<br>5.0<br>ND<br>ater S: | 5.0<br>0.85<br>0.23<br>7.2<br>0.93<br>0.50<br>ampled: 06/6                        | 20<br>5.0<br>2.0<br>50<br>2.0<br>0.50<br>29/10 12:50<br>20<br>5.0<br>2.0 | 9/10 12:3/                             | 1<br>1<br>1<br>1<br>1<br>1: 06/10/10 | ed: 06/10/2<br>CT04187<br>" " " " " " " " " " " " " " " " " CT04187               | 06/11/10                     | 06/11/10             | и<br>и<br>и<br>и     | J     |

6/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order#: CTF0482

COC #: 2 Chains

| Analyte                  | Result           | MDL      | Reporting<br>Limit | Units      | Dilution | Batch      | Prepared | Analyzed | Method    | Notes |
|--------------------------|------------------|----------|--------------------|------------|----------|------------|----------|----------|-----------|-------|
| WM-7b (CTF0482-09) Water | Sampled: 06/09/1 | 0 13:00  | Received: 0        | 6/10/10 09 | :15      |            |          |          |           |       |
| Aluminum                 | 19               | 5.0      | 20                 | μg/L       | 1        | CT04187    | 06/11/10 | 06/11/10 | EPA 200.8 | . д   |
| Arsenic                  | ND               | 0.85     | 5.0                | It         | 1        | II         | II       | IJ       | n         |       |
| Copper                   | 26               | 0.23     | 2.0                | 11         | . 1      | ėl –       | **       | li .     | н         | •     |
| Iron                     | 60               | 7.2      | 50                 | 11         | 1        | , 11       | **       | rt .     | I)        |       |
| Zinc                     | 7.5              | 0.93     | 2.0                | 14         | 1        | 11         | . 11     | 11       | 11        |       |
| Cadmium                  | ND               | 0.50     | 0.50               | II         | 1        | 11         | It       | 11       | • "       |       |
| WM-7c (CTF0482-10) Water | Sampled: 06/09/1 | 0 13:05  | Received: 0        | 6/10/10 09 | 2:15     |            |          |          |           |       |
| Aluminum                 | 22               | 5.0      | 20                 | μg/L       | 1        | CT04187    | 06/11/10 | 06/11/10 | EPA 200.8 |       |
| Arsenic                  | ND               | 0.85     | 5.0                | n          | 1        | II         | 11       | n        | 11        |       |
| Copper                   | 0.45             | 0.23     | 2.0                | n -        | 1        |            | II .     | u        |           | J     |
| Iron                     | 27               | 7.2      | 50                 | , di       | 1        | li .       | #        | 11       | 11        | J     |
| Zine                     | 2.0              | 0.93     | 2.0                | 17         | 1        | Ħ          | Н        | II       | Ü         | J     |
| Cadmium                  | ND               | 0.50     | 0.50               | ti         | 1        | It         | Ħ        | 11       | 11        |       |
| WM-7a (CTF0482-11) Water | Sampled: 06/09/1 | 0 13:25  | Received: 0        | 6/10/10 09 | 9:15     | <u></u>    |          |          |           |       |
| Aluminum                 | 18               | 5.0      | 20                 | μg/L       | 1        | CT04187    | 06/11/10 | 06/11/10 | EPA 200.8 | J     |
| Arsenic                  | ND               | 0.85     | 5.0                | π -        | 1        | II         | ₽?       | B        | n .       |       |
| Copper                   | 28               | 0.23     | 2.0                | ŧŧ         | 1        | n          | 11       | II       | н         |       |
| Iron                     | 70               | 7.2      | 50                 | n          | 1        | #1         | n        | u        | ţi        |       |
| Zinc                     | 4.9              | 0.93     | 2.0                | п          | 1        | . 11       | 17       | 11       | 11        |       |
| Cadmium                  | ND               | 0.50     |                    | IT.        | 1        | ti ·       | 11 .     | 11       | If        | •     |
| WM-11 (CTF0482-12) Water | Sampled: 06/09/2 | 10 14:20 | Received:          | 6/10/10 0  | 9:15     |            |          |          | <u>.</u>  | -     |
| Aluminum                 | 39               | 5.0      |                    | μg/L       | 1        | CT04187    | 06/11/10 | 06/11/10 | EPA 200.8 |       |
| Arsenic                  | ND               | 0.85     |                    | 11         | 1        | tt.        | R        | l†       | 11        |       |
| Copper                   | 8.5              | 0.23     |                    | 11         | . 1      | ti         | II       | И        | 11        |       |
| Iron                     | ND               | 7.2      |                    | п          | 1        | <b>\$1</b> | n        |          | п         |       |
| Zine                     | 2.5              | 0.93     |                    | 11         | 1        | D ·        | **       | 19       | Ħ         |       |
| Cadmium                  | ND               | 0.50     |                    | 15         | 1        | "          | н        | II       |           |       |

06/16/10 08:00

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project: Walker Mine Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order#: CTF0482

COC #: 2 Chains

| Analyte                  | Result           | MDL     | Reporting<br>Limit | Units      | Dilution | Batch   | Prepared        | Analyzed                                     | Method    | Notes |
|--------------------------|------------------|---------|--------------------|------------|----------|---------|-----------------|----------------------------------------------|-----------|-------|
| WM-12 (CTF0482-13) Water | Sampled: 06/09/1 | 0 14:30 | Received: 0        | 6/10/10 09 | ):15     |         |                 |                                              |           | ·     |
| Aluminum                 | 35               | 5.0     | 20                 | μg/Ľ       | 1        | CT04187 | 06/11/10        | 06/11/10                                     | EPA 200.8 |       |
| Arsenic                  | ND               | 0.85    | 5.0                | 19         | 1        | li .    | II              | 11                                           | B         |       |
| Copper                   | 12               | 0.23    | 2.0                | . 41       | 1        | II      | II              | Ħ                                            | "         |       |
| Iron .                   | ND               | 7.2     | 50                 | 17         | 1        | II      | . "             | it .                                         | r,        |       |
| Zinc                     | 5.9              | 0.93    | 2.0                | . #        | 1        | II      | п               | 11                                           | lt .      |       |
| Cadmium                  | ND               | 0.50    | 0.50               | I†         | 1        | II      | И               | 11                                           | If        |       |
| WM-13 (CTF0482-14) Water | Sampled: 06/09/1 | 0 14:40 | Received: 0        | 6/10/10 09 | 9:15     |         |                 |                                              |           |       |
| Aluminum                 | 9.1              | 5.0     | 20                 | μg/L       | 1        | CT04187 | 06/11/10        | 06/11/10                                     | EPA 200.8 | J     |
| Arsenic                  | ND               | 0.85    | 5.0                | 11         | 1        | II      | н               | 11                                           | I*        |       |
| Copper                   | 0.31             | 0.23    | 2.0                | 11         | 1        | . "     | 11              | . "                                          | ľ         | j     |
| Iron                     | ND               | 7.2     | 50                 | 11         | 1        | ll -    | Ð               | 8                                            | 19        |       |
| Zinc                     | 5.5              | 0.93    | 2.0                | 11         | 1        | II      | 11              | H                                            | u ·       |       |
| Cadmium                  | ND               | 0.50    | 0.50               | В          | 1        | 11      |                 | Н                                            | 19        |       |
| WM-17 (CTF0482-15) Water | Sampled: 06/09/1 | 0 14:45 | Received: 0        | 6/10/10 09 | ):15     |         |                 | <u>.                                    </u> |           |       |
| Aluminum                 | 5.0              | 5.0     | 20                 | μg/L       | . 1      | CT04187 | <b>06/11/10</b> | 06/ <b>11</b> /10                            | EPA 200.8 | J     |
| Arsenic                  | ND               | 0.85    | 5.0                | II         | 1        | 19      | II              | Ħ                                            | lt .      |       |
| Copper                   | 0.26             | 0.23    | 2.0                | 17         | 1        | 11      | Ħ               | ii                                           | H         | 1     |
| Iron                     | ND               | 7.2     | 50                 | đ          | 1        | . 11    | ti              | H                                            | lt        |       |
| Zinc                     | ND               | 0.93    | 2.0                | tt         | 1        | II      | Ħ               | H                                            | lt        |       |
| Cadmium                  | ND               | 0.50    | 0.50               | ti         | 1        | Ü       | *1              | · II                                         | ır        |       |
| WM-18 (CTF0482-16) Water | Sampled: 06/09/1 | 0 15:20 | Received: 0        | 6/10/10 09 | 9:15     |         |                 |                                              |           |       |
| Aluminum                 | 5.1              | 5.0     | 20                 | μg/L       | 1        | CT04187 | 06/11/10        | 06/11/10                                     | EPA 200.8 | į     |
| Arsenic                  | ND               | 0.85    | 5.0                | 11         | 1        | Ħ       | rt .            | i)                                           | 11        |       |
| Copper                   | 0.25             | 0.23    | 2.0                | lr .       | 1        | 11      | **              | II                                           | u         |       |
| Iron                     | ND               | 7.2     | 50                 | n          | 1        | *1      | #               | II                                           | 11        |       |
| Zinc                     | ND               | 0.93    | 2.0                | 17         | 1        | . 11    | tt              | 0                                            | П         |       |
| Cadmium                  | ND               | 0.50    | 0.50               | 19         | 1        | 11      | lf .            | II                                           | II        |       |
|                          |                  |         |                    |            |          |         |                 |                                              |           |       |

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC #: 2 Chains

| Analyte                  | Result           | MDL     | Reporting<br>Limit | Units                   | Dilution | Batch   | Prepared | Analyzed | Method    | Notes      |
|--------------------------|------------------|---------|--------------------|-------------------------|----------|---------|----------|----------|-----------|------------|
| WM-16 (CTF0482-17) Water | Sampled: 06/09/1 | 0 15:45 | Received: 0        | <b>6/10/10 0</b> 9      | :15      |         |          | _        |           |            |
| Aluminum                 | 7.2              | 5.0     | 20                 | μg/L                    | 1        | CT04187 | 06/11/10 | 06/11/10 | EPA 200.8 | J          |
| Arsenic                  | ND .             | 0.85    | <b>5</b> .0        | II                      | . 1      | IT      | II       | {I       | n         |            |
| Copper                   | 0.37             | 0.23    | 2.0                | <b>11</b>               | . 1      | n       | Ħ        | n        | п         | J          |
| Iron                     | ND               | 7.2     | 50                 | П                       | 1        | Ħ       | 39       | it .     | 11        |            |
| Zinc                     | 1.3              | 0.93    | 2.0                | 1f                      | 1        | Ħ       | 19       | IF.      | 11        | J          |
| Cadmium                  | ND               | 0.50    | 0.50               | II                      | 1        | †I      | 19       | II       | It        |            |
| WM-15 (CTF0482-18) Water | Sampled: 06/09/1 | 0 16:00 | Received: 0        | 6/10/10 09              | 15       |         |          |          |           |            |
| Aluminum                 | 39               | 5.0     | 20                 | μ <b>g</b> /L           | 1        | CT04187 | 06/11/10 | 06/11/10 | EPA 200.8 |            |
| Arsenic                  | ND               | 0.85    | 5.0                | 11                      | 1        | If      | П        | 10       | ii        |            |
| Copper                   | 3.7              | 0.23    | 2.0                | †I                      | 1        | ti      | 11       | 10       | *         |            |
| Iron                     | ND               | 7.2     | 50                 | $v_{\underline{a}} = 0$ | 1        | 11      | 35       | II       | a)        |            |
| Zinc                     | ND               | 0.93    | 2.0                | Ü                       | 1        | 11      |          | *        | li .      |            |
| Cadmium                  | ND               | 0.50    | 0.50               | 11                      | 1        | 11      | II       | 11       | li.       |            |
| WM-14 (CTF0482-19) Water | Sampled: 06/09/1 | 0 16:05 | Received: 0        | 6/10/10 09              | 9:15     | ·<br>   |          |          | ·         |            |
| Aluminum                 | 19               | 5.0     | 20                 | μg/Ľ                    | 1        | CT04187 | 06/11/10 | 06/11/10 | EPA 200.8 | J          |
| Arsenic                  | ND               | 0.85    | 5.0                | 11                      | ì        | . N     | li       | n i      | H         |            |
| Copper                   | 4.0              | 0.23    | 2.0                | tı                      | 1        | ц       | **       | II       |           |            |
| Iron                     | ND               | 7.2     | . 50               | II                      | 1        | I†      | - 10     | II       | 11        |            |
| Zinc                     | 2.3              | 0.93    | 2.0                | If.                     | 1        | Ħ       | 17       | it       | lf .      |            |
| Cadmium .                | ND               | 0.50    | 0.50               | и                       | İ        | 11      | H        | "        | η,        |            |
| WM-10 (CTF0482-20) Water | Sampled: 06/09/1 | 17:00   | Received: 0        | 6/10/10 0               | 9:15     |         |          |          |           | · <u> </u> |
| Aluminum                 | 16               | 5.0     | 20                 | μg/L                    | 1        | CT04187 | 06/11/10 | 06/11/10 | EPA 200.8 | J          |
| Arsenic                  | ND               | 0.85    | 5.0                |                         | 1        | IP      | 11       | п        | 11        |            |
| Copper                   | 2.2              | 0.23    | 2.0                |                         | 1        | †1      | H        | ü        | 17        |            |
| Iron                     | ND               | 7.2     | 50                 | ţi                      | 1        | 11      | II       | #1       | n         |            |
| Zinc                     | 5.5              | 0.93    | 2.0                | 11                      | 1        | II      | n, ·     |          | IJ        |            |
| Cadmium                  | ND               | 0.50    | 0.50               | n                       | . 1      | 14      | tt       | п        | tt        |            |

### California Laboratory Services

CRWQCB - Sacramento

Project: Walker Mine

CLS Work Order#: CTF0482

11020 Sun Center Drive, Ste. 200

Project Number: [none]

COC #: 2 Chains

Rancho Cordova CA, 95670-6114

Project Manager: Leticia Valadez

#### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control CLS Labs

|                                 |        |        | Reporting |       | Spike    | Source    |            | %REC   |     | RPD   |       |
|---------------------------------|--------|--------|-----------|-------|----------|-----------|------------|--------|-----|-------|-------|
| Analyte                         | Result | MDL    | Limit     | Units | Level    | Result    | %REC       | Limits | RPD | Limit | Notes |
| Batch CT04167 - General Prep    | •      |        |           | ı     |          |           |            |        |     |       |       |
| Blank (CT04167-BLK1)            |        |        |           |       | Prepared | & Analyz  | ed: 06/10/ | 10     |     |       |       |
| Sulfate as SO4                  | ND .   |        | 0.50      | mg/L  |          |           |            |        |     |       |       |
| Chloride                        | ND     |        | 0.50      | u     |          |           |            |        |     |       |       |
| LCS (CT04167-BS1)               |        |        |           |       | Prepared | & Analyze | d: 06/10/  | 10     |     |       |       |
| Chloride                        | 2.01   |        | 0.50      | mg/L  | 2.00     |           | 100        | 80-120 |     |       |       |
| Sulfate as SO4                  | 4.95   |        | 0.50      | и     | 5.00     |           | 99         | 80-120 |     |       |       |
| LCS Dup (CT04167-BSD1)          |        |        |           |       | Prepared | & Analyza | d: 06/10/  | 10     |     |       |       |
| Chloride                        | 2.02   |        | 0.50      | mg/L  | 2.00     |           | 101        | 80-120 | 0.3 | 20    |       |
| Sulfate as SO4                  | 4.94   |        | 0.50      | ŧi    | 5.00     |           | 99         | 80-120 | 0.2 | 20    |       |
| Matrix Spike (CT04167-MS1)      |        | Source | CTF0483   | -01   | Prepared | & Analyze | d: 06/10/  | 10     |     |       |       |
| Sulfate as SO4                  | 10.4   |        | 0.50      | mg/L  | 5.00     | 5.37      | 100        | 75-125 |     |       |       |
| Chloride                        | 22.1   |        | 0.50      | If    | 2.00     | 20.7      | . 70       | 75-125 |     |       | QM-4X |
| Matrix Spike Dup (CT04167-MSD1) |        | Source | CTF0483   | -01   | Prepared | & Analyze | d: 06/10/  | 10     |     |       |       |
| Chloride                        | 22.4   |        | 0.50      | mg/L  | 2.00     | 20.7      | 84         | 75-125 | 1   | 25    |       |
| Sulfate as SO4                  | 10.4   |        | 0.50      | и     | 5.00     | 5.37      | 101        | 75-125 | 0.3 | 25    |       |
| Batch CT04168 - 6010A/No Diges  | tion   |        |           | ••••  |          |           |            |        |     |       |       |
| Blank (CT04168-BLK1)            |        |        |           |       | Prepared | & Analyze | d: 06/10/  | 10     |     |       |       |
| Calcium                         | ND     | 0.031  | 1,0       | mg/L  |          |           |            |        |     |       |       |
| Magnesium                       | ND     | 0.028  | 1.0       | lı    |          |           |            |        |     |       |       |
| Potassium                       | ND     | 0.87   | 1.0       | 1f    |          |           |            |        |     |       |       |
| Sodium                          | ND     | 0.021  | 1.0       | II    |          |           |            |        |     |       |       |
| Hardness as CaCO3               | ND     |        | 1.0       | lt    |          |           |            |        |     |       |       |

06/16/10 08:00

CRWQCB - Sacramento

Project: Walker Mine

CLS Work Order#; CTF0482

11020 Sun Center Drive, Ste. 200

Project Number: [none]

COC #: 2 Chains

Rancho Cordova CA, 95670-6114

Project Manager: Leticia Valadez

# Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control CLS Labs

| Analyte                         | Result | MOL    | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------|--------------------|----------|----------------|------------------|------------|----------------|-----|--------------|-------|
| Batch CT04168 - 6010A/No Diges  | tion   | ,      |                    |          |                |                  |            |                |     |              |       |
| LCS (CT04168-BS1)               |        |        |                    |          | Prepared       | & Analyze        | ed: 06/10/ | 10             |     |              |       |
| Calcium                         | 9.65   | 0.031  | 1.0                | mg/L     | 10.0           |                  | 96         | 80-120         |     |              |       |
| fagnesium                       | 11.2   | 0.028  | 1.0                | ti .     | 10.0           |                  | 112        | 80-120         | -   |              |       |
| otassium                        | 9.70   | 0.87   | 1.0                | U        | 10.0           |                  | 97         | 80-120         |     |              |       |
| odium                           | 11.2   | 0.021  | 1.0                | II       | 10.0           | •                | 112        | 80-120         |     |              |       |
| .CS Dup (CT04168-BSD1)          |        |        | _                  |          | _Prepared      | & Analyze        | d: 06/10/  | 10             |     |              |       |
| Calcium                         | 9.84   | 0.031  | 1.0                | mg/L     | . 10.0         |                  | 98         | 80-120         | 2   | 20           |       |
| /lagnesium                      | 11.4   | 0.028  | 1.0                | H        | 10.0           |                  | 114        | 80-120         | 2   | 20           |       |
| otassium                        | 9.79   | 0.87   | 1.0                | H        | 10.0           |                  | 98         | 80-120         | 1   | 20           |       |
| odium ·                         | 11.4   | 0.021  | 1.0                | Н        | 10.0           |                  | 114        | 80-120         | 2   | 20           |       |
| Matrix Spike (CT04168-MS1)      |        | Source | : CTF0482          | -01      | Prepared       | & Analyze        | ed: 06/10/ | 10             |     |              |       |
| Calcium                         | 14.0   | 0.031  | 1.0                | mg/L     | 10.0           | 5.24             | 88         | 75-125         |     |              |       |
| Magnesium                       | 12.3   | 0.028  | 1.0                | tt       | 10.0           | 1.70             | 106        | 75-125         |     |              |       |
| otassium                        | 9.90   | 0.87   | 1.0                | Ţĺ       | 10.0           | ND               | 99         | 75-125         |     |              |       |
| odium                           | 13.1   | 0.021  | 1.0                | 11       | 10.0           | 2.68             | 104        | 75-125         |     |              | •     |
| Aatrix Spike Dup (CT04168-MSD1) |        | Source | : CTF0482          | -01      | Prepared       | & Analyze        | ed: 06/10/ | 10             | _   |              | _     |
| Calcium                         | 14.1   | 0.031  | 1.0                | mg/L     | 10.0           | 5.24             | 88         | 75-125         | 0.1 | 25           |       |
| /agnesium                       | 12.3   | 0.028  | 1.0                | II       | 10.0           | 1.70             | 106        | 75-125         | 0   | 25           |       |
| otassium                        | 9.96   | 0.87   | 1.0                | JI.      | 10.0           | ND               | 100        | 75-125         | 0.6 | 25           |       |
| odium                           | 13.1   | 0.021  | 1.0                | 11       | 10.0           | 2.68             | 104        | 75-125         | 0.3 | 25           |       |
| Batch CT04169 - General Prepar  | ation  |        |                    | ,        |                |                  |            |                |     |              | .,    |
| Blank (CT04169-BLK1)            |        |        |                    |          | Prepared       | & Analyzo        | ed: 06/10/ | 10             |     |              |       |
| Specific Conductance (EC)       | ND     |        | 1.0}               | ımhos/cı | m              |                  |            |                |     |              |       |

CA DOHS ELAP Accreditation/Registration Number 1233

### California Laboratory Services

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC#: 2 Chains

# Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control CLS Labs

|                                  |         | ]       | Reporting |       | Spike     | Source          |            | %REC                 |     | RPD          |       |
|----------------------------------|---------|---------|-----------|-------|-----------|-----------------|------------|----------------------|-----|--------------|-------|
| Analyte                          | Result  | MDL     | Limit     | Units | Level     | Result          | %REC       | Limits               | RPD | Limit        | Notes |
| Batch CT04172 - General Prep     | aration |         |           |       |           |                 |            |                      | ,   |              |       |
| Blank (CT04172-BLK1)             |         |         |           |       | Prepared: | 06/10/10        | Analyzed   | I: 06/11/10          |     |              |       |
| Methylene Blue Active Substances | ND      |         | 0.10      | mg/L  |           |                 |            |                      |     |              |       |
| CS (CT04172-BS1)                 |         |         |           |       | Prepared: | 06/10/10        | Analyzed   | l: 06/11/10          |     | <del> </del> |       |
| Methylene Blue Active Substances | 0.483   | •       | 0.10      | mg/L  | 0.500     |                 | 97         | 80-120               |     |              |       |
| CS Dup (CT04172-BSD1)            |         |         |           |       | Prepared: | <u>06/10/10</u> | Analyzed   | l: <u>0</u> 6/11/10  |     |              |       |
| lethylene Blue Active Substances | 0.481   |         | 0.10      | mg/L  | 0.500     |                 | 96         | 80-120               | 0.4 | 20           |       |
| Matrix Spike (CT04172-MS1)       |         | Source: | CTF0482   | -01   | Prepared: | 06/10/10        | Analyzed   | l: 0 <u>6/11/</u> 10 |     | <u> </u>     |       |
| fethylene Blue Active Substances | 0.494   |         | 0.10      | mg/L  | 0.500     | ND              | 99         | 75-125               |     |              |       |
| Iatrix Spike Dup (CT04172-MSD    | 1)      | Source: | CTF0482   | -01   | Prepared: | 06/10/10        | Analyzed   | l: 06/11/10          |     |              |       |
| Methylene Blue Active Substances | 0.497   |         | 0.10      | mg/L  | 0.500     | ND              | 99         | 75-125               | 0.6 | <b>2</b> 5   |       |
| Batch CT04196 - General Prep     | aration |         |           |       |           |                 |            |                      | 4.  |              | _     |
| Blank (CT04196-BLK1)             |         |         |           |       | Prepared  | & Analyz        | ed: 06/11/ | 10                   |     |              |       |
| otal Alkalinity                  | ND      | •       | 5.0       | mg/L  | -         |                 |            |                      |     |              |       |
| Bicarbonate as CaCO3             | ND      |         | 5.0       | (1    |           |                 |            |                      |     |              |       |
| Carbonate as CaCO3               | . ND    |         | 5.0       | (5    |           |                 |            |                      | -   |              |       |
| lydroxide as CaCO3               | ND      |         | 5.0       | H     |           |                 |            | •                    |     |              |       |
| Duplicate (CT04196-DUP1)         |         | Source: | CTF0482   | -01   | Prepared  | & Analyz        | ed: 06/11/ | 10                   |     |              |       |
| Total Alkalinity                 | 21.8    |         | 5.0       | mg/L  |           | 2 <b>2</b> .4   |            |                      | 3   | 20           |       |
| Bicarbonate as CaCO3             | 21.8    |         | 5.0       | (1    |           | 22.4            |            |                      | 3   | 20           |       |
| Carbonate as CaCO3               | ND      |         | 5.0       | . 0   |           | ND              | ÷          |                      |     | 20           |       |
| Hydroxide as CaCO3               | ND      |         | 5.0       | 11    |           | ND              |            |                      |     | 20           |       |

### California Laboratory Services

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200

Rancho Cordova CA, 95670-6114

Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order#: CTF0482

COC #: 2 Chains

#### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control CLS Labs

| Апаlyte                     | Result   | MDL    | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-----------------------------|----------|--------|--------------------|-------|----------------|------------------|----------|----------------|-----|--------------|-------|
| Batch CT04202 - General Pre | paration |        |                    |       |                |                  |          |                |     |              |       |
| Blank (CT04202-BLK1)        |          |        |                    |       | Prepared:      | 06/11/10         | Analyzed | : 06/14/10     |     |              |       |
| Total Dissolved Solids      | ND       |        | 10                 | mg/L  |                |                  |          |                |     |              |       |
| Duplicate (CT04202-DUP1)    |          | Source | : CTF0482          | 2-08  | Prepared:      | 06/11/10         | Analyzed | : 06/14/10     |     |              |       |
| Total Dissolved Solids      | 123      |        | 10                 | mg/L  |                | 119              |          |                | 3   | 20           |       |

06/16/10 08:00

CRWOCB - Sacramento

Zinc

Cadmium

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Reporting

Spike

Source

Project Manager: Leticia Valadez

CLS Work Order#: CTF0482

RPD

COC #: 2 Chains

%REC

#### Metals by EPA 200 Series Methods - Quality Control CLS Labs

%REC Limits RPD Limit Notes Limit Result Units Level Result MDL Analyte Batch CT04189 - EPA 3020A Prepared & Analyzed: 06/11/10 Blank (CT04189-BLK1) μg/L ND 5,0 20 Aluminum ND 0.85 2.0 Arsenic 1.0 ND 0.23 Copper 7.2 50 ND Iron ND 0.93 2.0 Zinc 0.50 ND 0.50 Cadmium Prepared & Analyzed: 06/11/10 LCS (CT04189-BS1) 80-120 105 5,0 20 μg/L 105 Aluminum 103 80-120 100 0.85 103 2.0 Arsenic 80-120 110 100 110 0.23 1.0 Copper 80-120 120 100 7.2 50 120 Iron 80-120 2.0 100 108 108 0.93 Zinc 80-120 103 10.3 0.50 0.50 10.0 Cadmium Prepared & Analyzed: 06/11/10 LCS Dup (CT04189-BSD1) 80-120 5 111 20 111 20 μg/L 100 5.0 Aluminum 80-120 2 20 100 105 2.0 105 0.85 Arsenic 80-120 20 100 113 113 0.23 1.0 Copper 80-120 5 20 QM-1 126 7.2 50 100 126 Iron 113 80-120 20 100 113 0.93 2.0 Zinc 105 80-120 20 0.50 10.0 10.5 0.50 Cadmium Prepared & Analyzed: 06/11/10 Source: CTF0482-01 Matrix Spike (CT04189-MS1) 75-125 73.5 108 181 20 μg/L 100 5.0 Aluminum 75-125 ND 105 100 2.0 105 0.85 Arsenic 100 0.570 103 75-125 1.0 103 0.23 Copper 75-125 89.3 103 100 7.2 50 193 Iron 75-125

2.0

0.50

0.93

0.50

104

10.6

100

10.0

2.79

ND

102

106

75-125

06/16/10 08:00

CRWQCB - Sacramento

11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC #: 2 Chains

### Metals by EPA 200 Series Methods - Quality Control

#### **CLS** Labs

| Analyte                         | Result | MDL    | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------|--------------------|-----------|----------------|------------------|------------|----------------|-----|--------------|-------|
| Batch CT04189 - EPA 3020A       |        |        | <u>_</u>           | _         |                |                  |            |                |     |              |       |
| Matrix Spike (CT04189-MS2)      | -      | Source | : CTF0482          | -10       | Prepared       | & Analyze        | d: 06/11/  | <u> </u>       |     |              |       |
| Aluminum                        | 168    | 5.0    | 20                 | $\mu$ g/L | 100            | 69.3             | 98         | 75-125         |     |              |       |
| Arsenic                         | 104    | 0.85   | 2.0                | 11        | 100            | ND               | 104        | 75-125         |     |              |       |
| Copper                          | 104    | 0.23   | 1.0                | II        | 100            | 0.640            | 103        | 75-125         |     |              |       |
| Iron                            | 200    | 7.2    | 50                 | 11        | 100            | 94. <b>8</b>     | 105        | 75-125         |     |              |       |
| Zinc                            | 103    | 0.93   | 2.0                | fi        | 100            | ND               | 103        | 75-125         |     |              | •     |
| Cadmium                         | 10.6   | 0.50   | . 0.50             | If        | 10.0           | ND               | 106        | 75-125         |     |              |       |
| Matrix Spike Dup (CT04189-MSD1) |        | Source | e: CTF0482         | -01       | Prepared       | & Analyze        | ed: 06/11/ | 10             |     |              |       |
| Aluminum                        | 193    | 5.0    | . 20               | μg/L      | 100            | 73.5             | 119        | 75-125         | 6   | 25           |       |
| Arsenic                         | 106    | 0.85   | 2.0                | )!        | 100            | ND               | 106        | 75-125         | 0.8 | 25           |       |
| Copper                          | 104    | 0.23   | 1.0                | 11        | 100            | 0.570            | 104        | 75-125         | 0.9 | 25           |       |
| Iron                            | 203    | 7.2    | 50                 | μ         | 100            | 89.3             | 113        | 75-125         | 5   | 25           |       |
| Zinc                            | 105    | 0.93   | 2.0                | 11        | 100            | 2.79             | 102        | 75-125         | 0.5 | 25           |       |
| Cadmium                         | 10.6   | 0.50   | 0.50               | n         | 10.0           | ND               | 106        | 75-125         | 0.5 | 25           |       |
| Matrix Spike Dup (CT04189-MSD2) |        | Sourc  | e: CTF0482         | -10       | Prepared       | & Analyz         | ed: 06/11/ | 10             |     |              |       |
| Aluminum                        |        | 5.0    | 20                 | μg/L      | 100            | 69.3             | 106        | 75-125         | 4 . | 25           |       |
| Arsenic                         | 105    | 0.85   | 2.0                | Ħ         | 100            | ND               | 105        | 75-125         | 2   | 25           |       |
| Copper                          | 106    | 0.23   | 1.0                | ıı        | 100            | 0.640            | 105        | 75-125         | 2   | 25           |       |
| Iron                            | 207    | 7.2    | 50                 | lį        | 100            | 94.8             | 112        | 75-125         | 4   | 25           |       |
| Zinc                            | 106    | 0.93   | 2.0                | 0         | 100            | ND               | 106        | 75-125         | 3 - | 25           |       |
| Cadmium                         | 10.6   | 0.50   | 0.50               | Ħ         | 10.0           | ND               | 106        | 75-125         | 0.3 | 25           |       |

06/16/10 08:00

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114

Project Number: [none]

Project: Walker Mine

Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC #: 2 Chains

#### Metals (Dissolved) by EPA 200 Series Methods - Quality Control **CLS Labs**

| Analyte                    | Result   | MDL   | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC               | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|----------------------------|----------|-------|--------------------|-----------|----------------|------------------|--------------------|----------------|-----|--------------|-------|
| Batch CT04187 - EPA 3020A  | ·<br>    |       |                    |           |                |                  |                    | · .            |     |              |       |
| Blank (CT04187-BLK1)       | <u> </u> | ·     |                    |           | Prepared       | & Analyze        | d: 06/11/          | 10             |     |              | · ·   |
| Aluminum                   | ND       | 5.0   | 20                 | $\mu g/L$ |                |                  | •                  |                |     |              |       |
| Arsenic                    | ND       | 0.85  | 5.0                | II        |                |                  |                    |                |     |              |       |
| Copper                     | ND       | 0.23  | 2.0                | II        |                |                  |                    |                |     |              |       |
| Iron                       | ND       | 7.2   | 50                 | *1        |                |                  |                    |                |     |              |       |
| Zinc                       | ND       | 0.93  | 2.0                | 11        |                |                  |                    |                |     |              |       |
| Cadmium                    | ND       | 0.50  | 0.50               | ıt        |                |                  |                    |                |     |              |       |
| LCS (CT04187-BS1)          |          |       |                    |           | Prepared       | & Analyz         | ed: 06/11 <u>/</u> | 10             |     |              |       |
| Aluminum                   | 104      | 5.0   | 20                 | μg/L      | 100            |                  | 104                | 80-120         |     |              |       |
| Arsenic                    | 102      | 0.85  | 5.0                | 10        | 100            |                  | 102                | 80-120         |     |              |       |
| Copper                     | 105      | 0.23  | 2.0                | II        | 100            |                  | . 105              | 80-120         |     |              |       |
| Iron                       | 108      | 7.2   | 50                 | 31        | 100            |                  | 108                | 80-120         |     |              |       |
| Zine                       | . 102    | 0.93  | 2.0                | . #       | 100            |                  | 102                | 80-120         |     |              |       |
| Cadmium                    | 10.3     | 0.50  | 0.50               | ıı        | 10.0           |                  | 103                | 80-120         |     |              |       |
| LCS Dup (CT04187-BSD1)     |          |       |                    |           | Prepared       | & Analyz         | ed: <u>06/11/</u>  | 10             |     |              |       |
| Aluminum                   | 106      | 5.0   | 20                 | μg/L      | 100            |                  | 106                | 80-120         | 2   | 20           |       |
| Arsenic                    | 104      | 0.85  | 5.0                | "         | 100            |                  | 104                | 80-120         | 3   | 20           |       |
| Copper                     | 107      | 0.23  | 2.0                | 11        | 100            | ÷                | 107                | 80-120         | 2   | 20           |       |
| Iron                       | 107      | 7.2   | . 50               | If .      | 100            |                  | 107                | 80-120         | 0.3 | 20           |       |
| Zinc                       | 106      | 0.93  | 2.0                | п         | 100            |                  | 106                | 80-120         | 4   | 20           |       |
| Cadmium                    | 10.5     | 0.50  | 0.50               | И         | 10.0           |                  | 105                | 80-120         | 1   | 20           |       |
| Matrix Spike (CT04187-MS1) |          | Sourc | e: CTF0482         | 2-01      | Prepared       | & Analyz         | ed: 06/11/         | 10             |     |              |       |
| Aluminum                   | 127      | 5.0   | 20                 | μg/L      | 100            | 27.3             | 99                 | 75-125         |     |              |       |
| Arsenic                    | 104      | 0.85  | 5.0                | ب.<br>تا  | 100            | ND               | 104                | 75-125         |     |              |       |
| •                          | 103      | 0.23  | 2.0                | п         | 100            | 0.510            | 102                | 75-125         |     |              |       |
| Copper                     | 135      | 7.2   | 50                 | ır        | 100            | 23.2             | 112                | 75-125         |     |              |       |
| Iron<br>Zinc               | 105      | 0.93  | 2.0                | n         | 100            | 3.37             | 101                | 75-125         |     |              |       |
| Zinc<br>Cadmium            | 10.5     | 0.50  | 0.50               | 11        | 10.0           | ND               | 105                | 75-125         |     |              |       |

06/16/10 08:00

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine

Project Number: [none]
Project Manager: Leticia Valadez

CLS Work Order #: CTF0482

COC#: 2 Chains

#### Metals (Dissolved) by EPA 200 Series Methods - Quality Control CLS Labs

|                                 | ** •         |         | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC               | %REC<br>Limits  | RPD.     | RPD<br>Limit | Notes |
|---------------------------------|--------------|---------|--------------------|--------------|----------------|------------------|--------------------|-----------------|----------|--------------|-------|
| Analyte                         | Result       | MDL     | Limit              | Onns         | Tevel          | Kosuit           | /IICEC             | · ·             |          | - Date       |       |
| Batch CT04187 - EPA 3020A       |              |         | _                  |              |                |                  |                    |                 |          |              |       |
| Matrix Spike (CT04187-MS2)      |              | Source  | CTF0482            | -11          | Prepared       | & Analyze        | d: 06/1 <u>1/</u>  | 10              |          |              |       |
| Aluminum                        | 120          | 5.0     | 20                 | μ <b>g/L</b> | 100            | 18.2             | 101                | 75-12 <b>5</b>  |          |              |       |
| Arsenic                         | 108          | 0.85    | 5.0                | IJ           | 100            | ND               | 108                | 75-125          |          |              |       |
| Copper                          | 127          | 0.23    | 2.0                | 11           | 100            | 28.2             | 98                 | 75-125          |          | ÷            |       |
| Iron                            | 184          | 7.2     | 50                 | 17           | 100            | 70.1             | 114                | 75 <b>-125</b>  |          |              |       |
| Zinc                            | 1 <b>1</b> 1 | 0.93    | 2.0                | 11           | 100            | 4.89             | 106                | 75-12 <b>5</b>  |          |              |       |
| Cadmium.                        | 10.9         | 0.50    | 0.50               | IJ           | 10.0           | ND               | 109                | 7 <b>5-</b> 125 |          |              |       |
| Matrix Spike Dup (CT04187-MSD1) |              | Source: | CTF0482            | -0 <u>1</u>  | Prepared       | & Analyz         | ed: 06/11/         | 10              | <u> </u> |              |       |
| Aluminum                        | 128          | 5.0     | 20                 | μg/L         | 100            | 27.3             | <b>1</b> 01        | 75-125          | 1        | 25           |       |
| Arsenic                         | 108          | 0.85    | 5.0                | **           | 100            | ND               | 108                | 75-125          | 3        | 25           |       |
| Copper                          | 106          | 0.23    | 2.0                | <b>31</b> -  | 100            | 0.510            | 106                | 75-125          | 3        | 25           |       |
| Iron                            | 133          | 7.2     | 50                 | Ħ            | 100            | 23,2             | 110                | 75-125          | 1        | 25           |       |
| Zinc                            | 107          | 0.93    | 2.0                | 1)           | 100            | 3.37             | 104                | 75-125          | 2        | 25           |       |
| Çadmium                         | 10.9         | 0.50    | 0.50               | II           | 10.0           | ND               | 109                | 75-125          | 4        | 25           |       |
| Matrix Spike Dup (CT04187-MSD2) |              | Source: | CTF0482            | 2-11         | Prepared       | & Analyz         | e <u>d: 06/11/</u> | 10              |          |              |       |
| Aluminum                        | 120          | 5.0     | 20                 | μg/L         | 100            | 18.2             | 102                | 75-125          | 0.1      | 25           |       |
| Arsenic                         | 105          | 0.85    | 5.0                | 11           | 100            | ND               | 105                | .75-125         | 3        | 25           | •     |
| Соррег                          | 130          | 0.23    | 2.0                | 11           | 100            | 28.2             | · 10 <b>1</b>      | 75-125          | 2        | 25           |       |
| Iron                            | 175          | 7.2     | 50                 | E)           | 100            | 70.1             | 105                | 75-125          | 5        | 25           |       |
| Zinc                            | 108          | 0.93    | 2.0                | 17           | 100            | 4.89             | 103                | 75-125          | 3        | 25           |       |
| Cadmium                         | 10.6         | 0.50    | 0.50               | II           | 10.0           | ND               | 106                | 75-125          | 3        | 25           |       |

06/16/10 08:00

CRWQCB - Sacramento 11020 Sun Center Drive, Ste. 200 Rancho Cordova CA, 95670-6114 Project: Walker Mine
Project Number: [none]
Project Manager: Leticia Valadez

CLS Work Order#: CTF0482 COC #: 2 Chains

#### Notes and Definitions

QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

QM-1 The spike recovery was outside acceptance limits for the LCS or LCSD. The batch was accepted based on acceptable MS/MSD recoveries & RPD's.

Detected but below the Reporting Limit; therefore, result is an estimated concentration.

HT-F This is a field test method and it is performed in the lab outside holding time.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

#### CENTRAL VALLEY REGIONAL WATER QUALITY CONTROL BOARD

#### INSPECTION REPORT

17 August 2010

**DISCHARGER:** 

Walker Mine, Abandoned and Unclaimed Private Property

**LOCATION & COUNTY:** 

Plumas County

CONTACT(S):

Central Valley Water Board, Jeff Huggins

**INSPECTION DATE:** 

19-23 July 2010

INSPECTED BY:

Jeff Huggins, Water Resources Control Engineer

ACCOMPANIED BY:

Elmer Brown and Jeremy Micallef, Becks Enterprises

#### COMMENTS:

During the week of July 19-23 Central Valley Water Board staff supervised the inspection, maintenance, and repairs of the ventilation system in the 700 Level Adit of the Walker Mine by Beck's Enterprises Inc. (Beck's). The work was authorized in a 10 June 2010 Memorandum from the State Water Resources Control Board, Division of Financial Assistance Deputy Director Barbara Envoy to Central Valley Water Board Executive Officer Pamela Creedon. The work performed is described in this inspection report and a photo log of the work performed is also attached.

#### **CONDITIONS:**

Weather conditions were clear and warm during the week with temperatures outside of the adit in the mid 80°s Fahrenheit. Inside the 700 Level Adit, depending on the location within the adit, conditions were both wet and dry with temperatures of about 55° Fahrenheit.

#### **DAILY ACTIVITIES:**

**18 July 2010** – Central Valley Water Board staff and the Contractor (Beck's) mobilized to Portola California to begin work at the Walker Mine. Staff met briefly with the contractor to discuss access to the mine site, proposed start time, status of equipment and supplies, and location of local suppliers.

19 July 2010 – 6:30 am: Mobilized to the Walker Mine with the contractor.

6:30-9:00: Unload and setup equipment and supplies (see photos 1-6).

9:00am: Preliminary safety meeting before entering 700 Level Adit. Tested radio communications gear for both the mine entry and telecommunications for access to 911 emergency services. Initial reconnaissance of the first 400 lineal feet of the 700 Level Adit was performed using multi-gas detector which continuously monitors for oxygen levels. Required oxygen levels were within the acceptable parameters of 19.5 to 22 percent oxygen.

9:30-11:30 am: Removed old ventilation fan flexible exhaust line and install new flexible line (see photo 4).

| Approved: |  |
|-----------|--|
|           |  |

11:30-1:30 pm: Jerry Snapp of the California Department of Occupational Safety and Health, Mining and Tunneling Unit is on-site to conduct the prejob safety meeting.

1:30-3:30: Test generator and fan (see photos 7-12). Fan motor runs for approximately 20 seconds and trips motor control circuit overload switches. Several more attempts to run fan in both forward and reverse resulted in continual tripping of circuit overload switches in less than 20 seconds. Trouble shoot problem, by going through all electrical circuits, connectors, and generator controls. No success.

3:30-6:00 pm: Offsite to find qualified large power electrician to trouble shoot fan motor problem. Call seven different electrical contractors (Dave's Generator, Compass Equipment, AIC Electric, Allens Electric, Gray Eagle Electric, Grizzly Electric, and Burritt Electric). Return calls from Compass, AIC, and Burritt. Conduct short phone interviews with each to determine experience and availability. Burritt has experience with large power systems at Nevada Cement Plant, is local and is available Tuesday morning. Select Burritt and make arrangements for his services to be paid by Becks Enterprises as a subcontractor.

20 July 2010 - 6:30 am: Meet John Burritt and mobilized to Walker Mine with him.

7:30-11:00 am: John Burritt and Elmer Brown trouble shoot fan electrical motor problems. After testing generator output, each power cable and connectors, motor control switch gear and circuit breakers, and finally the fan motor, John Burritt finds that the fan motor had been previously rewired to run on 3 phase 208/240 voltage. Both the fan motor plate and job specifications had indicated that the fan motor was 3 phase 480 voltage.

With this information, the generator was switched to run on 3 phase 230 voltage and the fan performed successfully in both the forward and reverse mode. Under start-up conditions (full load amps), the amperage of the fan motor climbed to 40 amps and took nearly 30 seconds to draw down to the normal operating range of approximately 4 amps. John Burritt surmised that the fan would run more efficiently and draw less startup amperage if wired correctly in the future (3 phase 480 voltage).

7:30-11:00am: Jeremy, Larry, and Jimmy start re-hanging ventilation ducting (see photos 15-16). Suspension wire (photo 17) obtained by Beck's is of better quality than required in the Scope-of-Work. Therefore, single wrapping of 18-inch Schauenburg ducting is allowed by staff. Additionally, because most timber sets are skin-to-skin suspension wire cannot be hung from the cap timbers. As such, 20-penny nails are driven into competent timbers high-up on each rib and the suspension wire and 18-inch Schauenburg ducting hung from that anchor point (see photo 18).

11:30-4:30pm: 600 feet of ventilation ducting re-hung during the day. Fan tested in both the forward (exhaust) and reverse (blow) mode. Better air flow was achieved in the exhaust mode and that mode was maintained for the duration of the project.

21 July 2010 – 6:30 am: Mobilize to Walker Mine. Meet with the contractor and discussed planned activities. Plan is to finish hanging vent ducting in the timbered section today (up to Station 1,100). Some of the bell ends of the vent ducting are cracked or split and may not seal correctly. Decide to rotate ducting so splits are towards the outside of the rib where they can be inspected and sealed if necessary. Elmer to inspect a portion of the unsupported section of the 700 Level Adit depending on airflow and ground conditions.

8:30-11:30: Good progress in re-hanging vent ducting up to the Station 1,000. Some unsupported ground near Station 1,000 required support (photo 20). Beck's used some of the Regional Water Boards stockpiled pressure treated 3"x12" timber for this work.

11:30-4:30 pm: Finished hanging vent line in the timbered section, start transition to the floor. Inspect, sound, and perform minor scaling all the way to the Walker Mine seal (Station 2,675). Overall unsupported ground conditions are good. Minor evidence of rock fall from the back and ribs. Geologic material is decomposed granite (DG) and granodiorite. DG is weathered and granodiorite is heavily fractured with evidence of water and clay in the fractures (photos 21-22). A brief inspection of the mine seal was made by staff (photos 23-24). The seal appeared to have a minor seepage estimated at 0.1-0.25 gallons per minute. This compares with previous estimates made during other site visits.

**22 July 2010** – 6:30 am: Mobilize to Walker Mine. Meet with the contractor and discussed planned activities. Plan is to finish transition of the vent ducting from the timbered section (hanging) to the floor, to seal the ducting joints where they are leaking in the timbered section only, patch the vent ducting at the damaged sections, mark/paint the Station Numbers at 100-foot intervals, advance the communication line from the timbered section to the mine seal, and cleanup construction debris from current and previous work.

9:30 am Transition of vent ducting from hanging to the floor is complete, Beck's is starting on sealing the joints of the 20-foot long ducting in the timbered section.

9:30-3:30 pm: Beck's works on finishing sealing vent ducting joints and cleanup of trash in the timbered section while staff replaced the four large (12 volt) deep cycle marine batteries with similar recharged batteries. These batteries provide continuous power for the GE Druck data transmitter and the Telog data logger. Staff also replaced the two small (3 volt) Telog data recorder batteries (photos 29-30). The data recorder batteries had gone approximately 6 years without replacement and had failed during our 9 June 2010 inspection while we were downloading data from the recorder.

Because staff was unable to change the 3-volt batteries within the allotted 20 seconds, the original programming and stored data on the Telog data recorder were lost. However, a duplicate of the stored data is retained on the Walker Mine lap top computer and on the Central Valley Water Boards T drive. Staff reprogrammed the Telog data recorder and obtained a data recorder reading of 6.68-mAmps (123 feet of pressure head). This correlated reasonably with the last recorder reading during the 9 June 2010 inspection of 6.92-mAmps (134 feet of pressure head).

23 July 2010 – 6:30 am: Mobilize to Walker Mine. Meet with the contractor and discuss planned activities. Plan is for Beck's to repair the crushed vent ducting at Station 1,940 that was damaged from scaling activities during a prior inspection. Beck's to finish advancing the communications line to the mine seal and test, and take ventilation readings throughout the 700 Level Adit. Board staff will inspect mine seal and valves for leakage and corrosion.

7:30-10:30am: Becks repaired the crushed vent ducting at Station 1,940 by cutting sections from extra vent ducting and constructing a sleeve over the damaged section. Patch works fairly well. Beck's assisted staff in testing the Regional Water Boards Walker Mine

communication gear. Communication gear works fairly well, but has some limitations regarding mobility and call out (e.g. no squawk box function). Both operators have to be on the line at the same time using prearranged communications schedule.

10:30am-3:00pm: Staff inspected the mine seal and valves. Slight leakage noted in upper left hand corner of the mine seal. Leakage appears to be coming through the contact between the overlying granodiorite formation and the mine seal. As discussed above, the mine seal appeared to have minor seepage estimated at 0.1-0.25 gallons per minute. On the left hand side of the adit, water was pooled immediately below the mine seal to a depth of approximately 18-inches (see photo 24). This water is retained by spilled concrete on the floor of the adit, which is presumably from the mine seal construction. Once the pooled water tops over the spilled concrete abutment, it quickly infiltrates into the floor of the adit within approximately 100 feet of the end of the concrete. The floor of the adit and drainage ditch is dry from that point to nearly the timber section of the 700 Level Adit.

The two 4-inch shutoff valves and auxiliary valves were loosely covered with thin plastic bags to protect the valves from seeping water from the mine seal and the roof. Staff carefully removed the plastic covering and inspected the 4-inch shutoff valves originally installed with the mine seal in 1987. The pressure gauge installed on the right hand 4-inch stainless steel drain pipe indicated a gauge reading of approximately 50 pounds per square inch which corresponds to a approximately 116 feet of pressure head.

The rotary, manual, handwheel actuator for each valve are painted cast iron. The actuators are encrusted with metal oxide deposits and show external corrosion due to constant exposure of acidic water from the mine seal area (photos 31-32). The exterior of the valves themselves are lightly corroded but appear to be in good condition. The downstream 4-inch auxiliary backup valves made of stainless steel that were installed during 2001 Walker Mine Seal Testing show little evidence of corrosion (photo 33).

Because of time constraints and limited mechanical tools on hand, no effort was made to operate the primary control valves or the downstream backup valves. Staff covered the valves with heavy duty visqueen bags and exited the adit. Staff recommends that during the regular 2010 pre-winter inspection that Board staff be prepared to test the operation of the valves in accordance with the procedures outlined in the section 7 of the Walker Mine Seal Testing and Evaluation Report (GEI Consultants, 1 March 2002).

#### SUMMARY:

During the week of July 19-23<sup>rd</sup> Central Valley Water Board staff supervised a contractor in the inspection, maintenance, and repairs of the ventilation system in the 700 Level Adit of the Walker Mine. All work was performed in general accordance with the scope of work and has been completed. The Walker Mine ventilation system is operable, but with some limitations as noted in this Central Valley Water Board inspection report and in Beck's inspection report dated 26 July 2010.

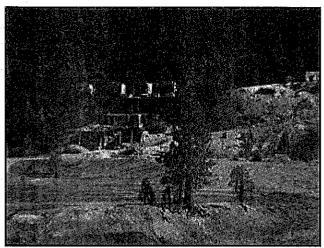



Photo 1. Walker Mine mill foundations.

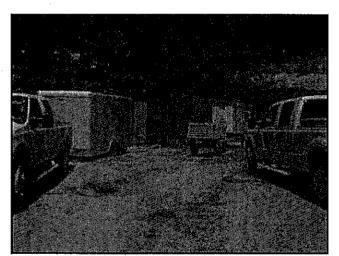



Photo 2. Walker Mine portal area.

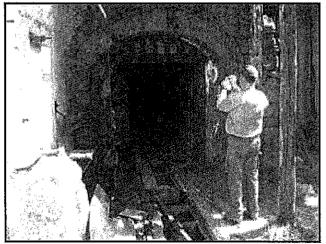



Photo 3. Walker Mine 700 Level Adit Entrance.

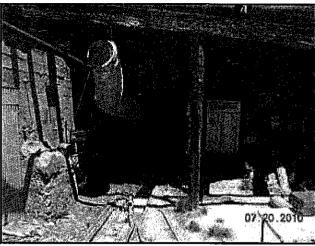



Photo 4. Ventilation fan flexible exhaust ducting.

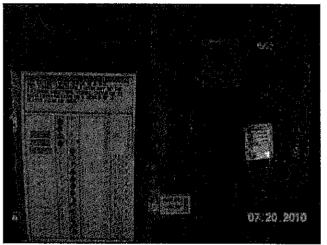



Photo 5. In/out board, fan motor control box, and mine phone.

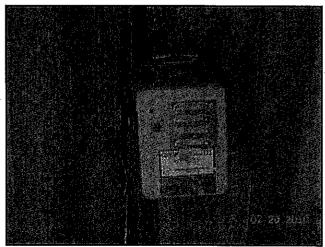



Photo 6. Temporary internal mine phone provided by Beck's.



Photo 7. Ventilation fan motor control box provided by Central Valley Water Board.

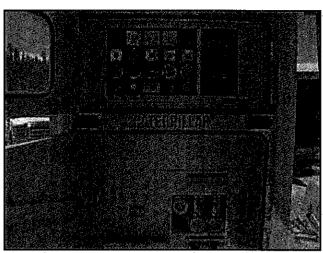



Photo 10. Generator control panel.

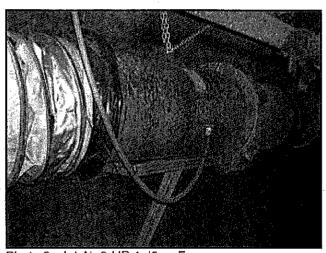



Photo 8. Jet Air 3-HP Axiflow Fan.

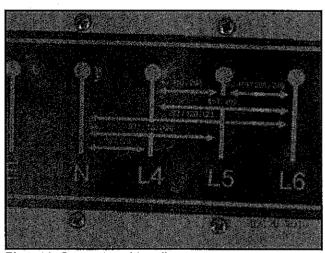



Photo11. Generator wiring diagram.

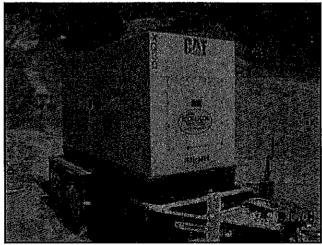



Photo 9. CAT 40KW Diesel Generator.

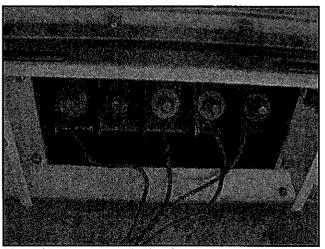



Photo 12. Generator wired to fan motor control box electrical leads.




Photo 13. 18-inch Schauenburg rigid ventilation ducting hung in the concrete/culvert section.



Photo 16. Looking towards the adit entrance, showing Beck's rehanging the ventilation ducting.

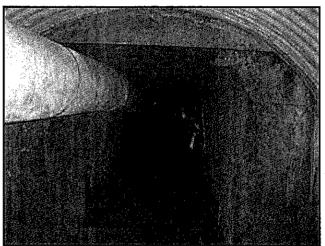



Photo 14. 18-inch rigid ventilation ducting hung at transition from culvert to timbered section.

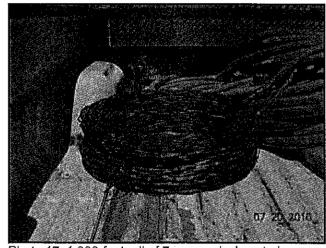



Photo 17. 1,000-foot roll of 7-gauge vinyl coated galvanized tie wire.



Photo 15. Showing collapsed ventilation ducting on the floor of the adit 60 feet into the timbered section.

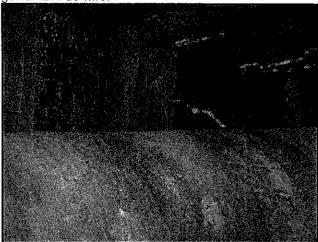



Photo 18. Rigid ventilation ducting wrapped with tie wire and hung from 20-penny nail sunk into timber support.

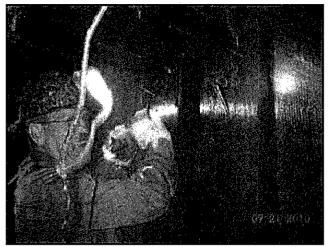



Photo 19. Rehanging the ventilation system.



Photo 22. Picture of unsupported ground showing fractures in the granodiorite.

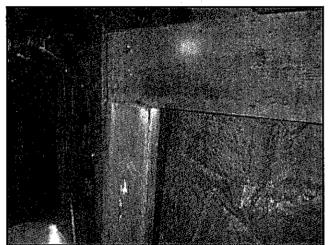



Photo 20. Additional ground support placed near Station 1,000.



Photo 23. Walker Mine seal at Station 2675. Black plastic visqueen bags cover the 4-inch shutoff valves.

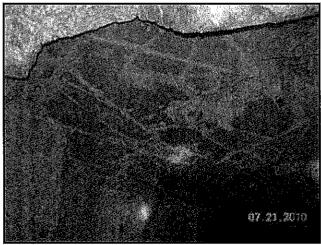



Photo 21. Unsupported section of the 700 Level Adit just past the timbered section.



Photo 24. Showing water leaking from the area of the mine seal pooled below the 4-inch shutoff valves.

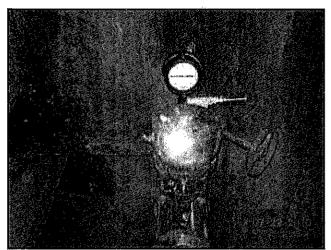



Photo 25. Showing the pressure gauge and GE Druck pressure sensor attached below the pressure gauge.

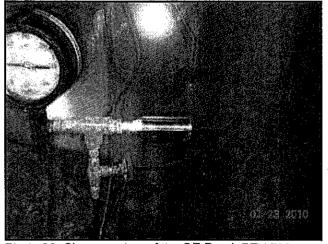



Photo 26. Close-up view of the GE Druck PTX 520 industrial pressure transmitter.

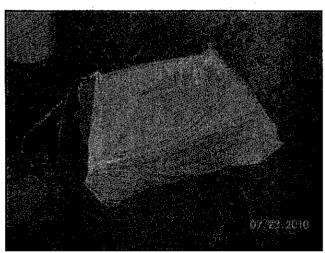



Photo 27. Plastic box near the mine seal containing the GE Druck Sensor Termination Enclosure.

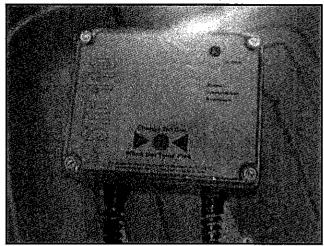



Photo 28. Close-up view of previous photo. Wiring strung along the floor of the length of the adit connects the pressure transmitter with the data logger.



Photo 29. Telog data logger located near the transition from culvert to timbered section of the 700 Level Adit.

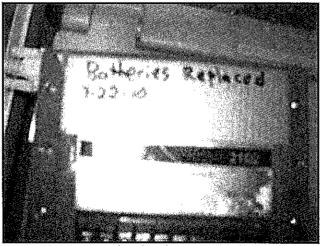



Photo 30. Notation showing that batteries in the data logger had been replaced.

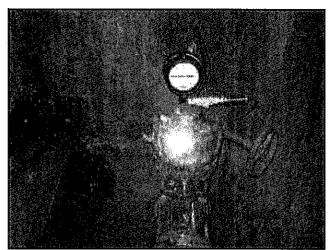



Photo 31. Right hand side shutoff valve.

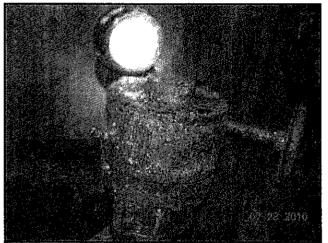



Photo 32. Shutoff valve actuator housing and 6-inch diameter handwheel shows signs of heavy corrosion.

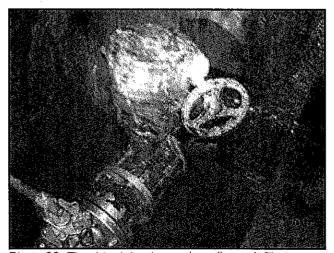



Photo 33. The 4-inch backup valves (lower left) show little sign of corrosion.

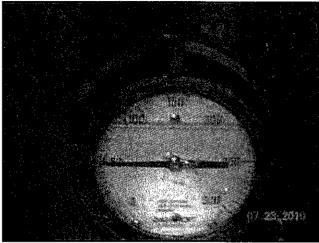



Photo 34. Hydraulic pressure reading of 50 psi or approximately 116 feet of head.



Photo 35. Showing termination of 18-inch ventilation ducting approximately 20 feet from the mine seal.



Photo 36. Looking towards the 700Level Adit portal. Light in center of the photo is portal opening 2,675 feet from the mine seal.

# BECK'S ENTERPRISES

3105 Sierra St. Riverbank, Ca. 95367 15278 Monreal Rd. Madera, Ca. 93636



becksinc@gmail.com

July 26, 2010

Project: IFB No. 10-038-150

Attention: Jeff Huggins

California Valley Water Board

Regarding: Safety and stabilization of the Walker Mine 700' Access Tunnel.

During the site work of repairing the ventilation system in the access tunnel at the 700' Level of the Walker Mine an inspection was completed by Jeff Huggins (Central Valley Water Board) and Beck's Enterprises (Elmer Brown and Jeremy Micallef). The results of this inspection are summarized in this letter report dated July 23, 2010. This inspection will also include a review of the repairs previously completed.

The west reach of the 700' level access tunnel at the Walker Mine from station 0+00 to station 3+50<sup>+</sup> has experienced an ancient major slide above the portal, causing partial tunnel collapses (possibly during construction of the access tunnel or while mining operations were on going), leaving loose displaced rock and ground above the tunnel in heights from 8' to 60'. The scarp on the hillside is 60' High 150' wide.

The first reach of the tunnel station 0+00 to station  $0+15^{\pm}$  is concrete lined approximately  $15^{2}$  of the tunnel appears to be in good condition along with the portal. Recommendation: no maintenance at this time.

The second reach of the tunnel station 0+15 to station 2+55 is galvanized steel corrugated pipe with 10<sup>2±</sup> cross section. This reach of the tunnel appears to be in good condition. Recommendation: no maintenance at this time.

The third reach of the tunnel (station 2+55 to station 11+35) is Timbered Sets, Posts and Caps. There are signs of long term staining and deteriorating timbers with water seepage coming through the fractures and joints of the rocks. Areas could be seen where timbers sets had been replaced during previous repairs. Timber Posts and caps are placed skin to skin to support the heavy weight of loose ground and displaced rocks, extending approximately 350' into the tunnel from the west portal beneath the ancient slide. During the inspection July 23, 2010 it was noted 10% of the existing timber sets need to be replaced due to continuing deterioration (refer to Timber Pictures).



The fourth reach of the access tunnel (station 11+35 to station 26+00) was inspected and scaled down as recommended for the necessary maintenance repairs of the ventilation system. This reach of the tunnel was unlined and without any rock reinforcement. Elmer Brown found the tunnel to be horseshoe shaped with a current width of 8'<sup>±</sup> and a height of 9'<sup>±</sup>. The unlined reach was approximately 1,465'<sup>±</sup>. The rock masses appear to be generally blocky resulting from faults and joints in the rock. Very few rocks were seen in the invert that had previously fallen from air slacking. There are signs of long term staining water and mud seepage coming through fractures and joints; however there are few signs of instability. Some tight rear vertical joints in the roof were observed and have several discontinuities and joints that could lead to instability in the future. A few areas could be seen where spot rockbolting could be used to improve the long term stability of the tunnel.

#### Ventilation System

The 18" Jet Air 3 hp ventilation fan motor would not run on 3-phase 480 voltage as indicated on the fan motor plate, this problem required the services of a qualified electrician to inspect, test and diagnose. The electrician found that the fan motor had been rewired for 3 phase 208/240 voltage. The fan could potentially perform better if rewired for 3 phase 480 voltage, but probably it is too small (won't produce sufficient ventilation) for future construction activities. Ventilation fans are designed to run both in forward (exhaust) or reverse (blow). Beck's Enterprises performed tests on both directions and recommends that running the fan in the forward (exhaust) position in order to provide proper air flow.

It is recommended that the current 18" inch Jet Air 3 hp Ventilation System in the Walker Mine 700 Level Adit should be increased or changed to support any future construction activities. The air velocity in the Walker Mine varied through the different reaches in the Adit Tunnel. Due to the reduction in size of some reaches in the Adit Tunnel, and distance the ventilation fan had to maintain the positive pressure through out these reaches.

Example: The C.M.P. reach maintained a positive pressure of 30 LFM, due to it being larger a cross section. The Timber reach maintained a positive pressure of 60 LFM due to the reduction in size of the cross section of this reach. In the Bald Headed section the pressure varied from 45 LFM at St. 12+00 to at the Bulk Head where air flow had decreased to a level that was not measurable. Due to the increased size of the cross section of the Bald Headed reach the condition of the ground changes. The Ribs and Back of the Adit Tunnel are irregular which causes turbulence thus decreasing the air flow due to the length of the ventilation system as well as the turbulence created by the rough walls in this cross section of the Adit Tunnel.



As stated in the Title Eight Regulations Subchapter 20. Tunnel Safety Orders Article 12. Ventilation and Dust Control, 8437. Ventilation and Air Quality.

- (a) Fresh air shall be provided in adequate quantities to all underground work areas. The supply shall at least be sufficient to prevent dangerous or harmful accumulations of dusts, fumes, vapors or gases, and shall not be less than 200 cubic feet per minute for each person underground and 100 cubic feet per minute per brake horse power on a diesel engines. The lineal velocity of the air flow in the tunnel bore shall not be less than 60 feet per minute in those tunnels where blasting or rock drilling is conducted or where there are other conditions that are likely to produce dusts, fumes, vapors or gases in harmful quantities.
- (b) The main ventilation system shall be so arranged that the air flow can be reversed or shut off from the surface.

#### **SUMMARY**

The results of our site inspection indicated minor stability problems due to rotting timber, post & caps. Although it is unlikely that a large failure will occur, (which could block the tunnel), erosion of the weathered rock will continue without remedial measures.

Beck's Enterprises recommends, the Central Valley Water Board consider installing rockbolts as required. Conditions in unlined tunnels with highly jointed rock and fractures such as these can change rapidly.

Beck's enterprises recommends, the Central Valley Water Board consider replacing rotten timber sets, post and caps as outlined above in this report.

As with the timbered reach of the tunnel, it is critical that any ground that requires support be reinforced as quickly as possible. It is simpler, faster and less expensive to support ground that is still keyed together than after movement has occurred and may still be in progress. Ground that is open but still keyed, is to some extent self-supporting. This fact means that the total rock load does not need to be supported, as with the timbered reach of this tunnel where a previously partial or total tunnel collapse had occurred (station 0+00 to station 9+50<sup>±</sup> possibly during construction). Some of the unlined portion of the tunnel should have some maintenance however the tunnel condition are such that there is no clear dividing line regarding where to start or stop maintenance work.



# Walker Mine 700 Level Adit Safety Evaluation

This Evaluation was created to inform and increase the awareness of the Potential Hazards, Proper Equipment and Safety Procedures for future visits or Construction Activities at the Walker Mine Site.

Prior to the entry and the onsite work completed at the Walker Mine 700 Level Adit Job Site. A series of Safety precautions and procedures were devised and implemented in order to safely complete the construction tasks required and to protect the safety of Beck's Enterprises Personnel and the Central Valley Water Board. The procedures included but were not limited to the creation of a site specific Emergency Action Plan, a JSSA (Job Specific Site Analysis) and the Safety Training and Orientation required by the Title Eight TSO and Division of Mining and Tunneling Cal OSHA Regulations.

Subchapter 20. Tunnel Safety Orders, Article 2. Definitions
Tunnel- An underground passageway, 30 inches in diameter or greater, excavated by
employees working below the earth's surface, that provides a subterranean route along
which employees, equipment or substances can move; other then passageways excavated
by mine or quarry operators in connection with such operations. For the purpose of these
safety orders, "tunnels" include shafts, raises, underground chambers and premises
appurtenant thereto.

An initial mandatory job site inspection with the Mining and Tunnel Division of Cal OSHA representative Jerry Snapp included Beck's Enterprises personnel and the Central Valley Water Board Engineer, Jeff Huggins. The ATA (Atmosphere) was monitored with an Industrial Scientific 5 Gas I.T.X. Gas Detection Meter for any potential Toxic and or Explosive Gases during this inspection. Ventilation checks where made through out the inspection with a Davis Low Speed Anemometer and the air flow were evaluated to determine the limitations of Construction activities allowed during the Walker Mine 700 Level Adit Repairs. (see attached Gas Logs) The Air Quality through out the Walker Mine was sufficient with the O<sub>2</sub> varying from 20.9 to 20.7. No toxic gasses were recorded. The Air Movement throughout the Walker mine varied with different sections with readings from 10 LFM to 60LFM. At the Bulkhead the airflow was unreadable due to the low flow.

Walker mine has not been ventilated for a long time period, and the air has had very little movement, the gases that exist in the mine atmosphere can separate and stratify according the specific gravity (weight) of each gas in the mixture. Very light gases such as methane and carbon monoxide will rise to the overhead, and heavier gases such as carbon dioxide will descend to low lying areas. Other gases, including oxygen will stratify somewhere between the crown and the invert, but you can never know in advance just what level any gas will be in because you can never know what gases are present, or how much of any particular gas exists, until you test the atmosphere.



The air movement caused simply by walking through the stratified gases causes mixing of the stratified gas with the other gases, possibly even seemingly good air. The resulting mixture may be incapable of supporting respiration, and the person may not be able to evacuate the mine.

Stratification of gases can happen over short distances or long distances, so it is important to test for gases starting at the portal and test continuously for the duration of the mine exploration. When entering a mine, DO NOT BE IN A HURRY.

# Walker Mine 700 Level Adit CMP (Corrugated Metal Pipe)

The CMP was found to be in good condition and provides safe access.

#### Walker Mine 700 Level Adit Timber Set Section-

Many of the timbers throughout the Timber Set reach of the Walker Mine 700 Level Adit that have once supported the rock above, have oxidized and rotted. Although they may remain in-place and appear to provide support, they could be totally ineffective. In order to provide future access and maintain safety for personnel for maintenance and inspection purposes some of the timber sets should be replaced.

#### Walker Mine 700 Level Adit Bald Headed Section-

During the inspection of the Bald Headed section, areas in the Walker Mine 700 Level Adit were noted and addressed as potential hazards, due to the excessive amount of mud that is seeping into the mine through fractures and seams located in the back and ribs of the mine. Unlike caves, mines are artificial, temporary openings designed to last as long as it takes to extract the ore. When a mine is abandoned, there is no longer a maintenance program to address deteriorating rock conditions and weakened ground supports. Naturally occurring caves are formed over thousands of years by relatively stable processes, whereas mines are created by blasting, which destabilizes the rock that is left in place. Soft, stratified rock types, such as shale, tend to collapse easily, but often in small pieces. Harder, more massive rock types such as granite, limestone, or sandstone collapse less frequently, but often more catastrophically in large blocks. Keep in mind that mines often follow fault zones, which are inherently unstable.



# GUIDELINES FOR WALKER MINE ADIT LEVEL 700 FUTURE MAINTAINCE OR INSPECTION

- 1. Underground exploration teams must realize that the Walker Mine Adit Level 700 is an unnatural, unstable, and temporary openings with a unique set of potential hazards. Spelunking (natural cave exploration) experience is <u>not</u> a substitute for underground mine experience.
- 2. Underground teams should be comprised of at least two people. If three or more people are present, one person will remain at the mine entrance. The exploration crew will check in with this person at predetermined time intervals.

As stated in the Title Eight Regulations Subchapter 20. Tunnel Safety Orders Article 4. Safety Precautions, 8410. General Safety Precautions.

- (d) At least one designated person shall be on duty outside of all tunnels whenever anyone is working underground. This person's duties shall not interfere with his/her ability to secure aid for those persons underground in case of emergency.
- 3. At least one person on the team will need to be trained and experienced in underground mine safety and hazard recognition. This individual will lead the underground team and instruct inexperienced team members on potential hazards, underground mine safety procedures, and the use of safety equipment.
- 4. Safety equipment for each individual will include, but not be limited to:
- Hardhat
- Steel-toed Footwear
- Proper Lighting, at least two reliable lights, plus additional batteries each person.
- Eye Protection safety glasses are recommended; contact lenses are discouraged.
- 5. In addition to the above equipment, the lead person will be equipped with and use:
- Scaling Bar
- Air Monitoring Equipment recommend using a multi-gas detector which continuously monitors for oxygen, carbon monoxide, hydrogen sulfide and explosive gasses. The meter should have a visual display of gas concentrations, with warning lights and audible alarms that illuminate and sound when a PEL level of any of these gases is detected.



#### WHERE TO TEST

#### Test gases

- overhead,
- at your head (breathing) level,
- chest level,
- waist level,
- knee level and
- at your foot level (floor).

# MINIMUM GASES TO TEST FOR IN TUNNELS ARE:

- Oxygen (O<sub>2</sub>)
- Carbon Monoxide (CO)
- Methane (CH<sub>4</sub>)
- Carbon Dioxide (CO<sub>2</sub>)
- Hydrogen Sulfide (H2S)

The dangers associated with the mine gases is one reason why extreme caution, <u>proper instrumentation</u>, and approved procedures should be used when descending into a mine.

#### ALWAYS BE CAREFUL AND TEST YOUR GASES!

You must remember that a mine atmosphere is very small compared to the atmosphere outside, so dangerous gases can build up quickly. MINE GASES

The composition of clean, dry air at sea level is 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.03% carbon dioxide, and 0.01% other gases. Air composition can be altered in underground mines for a number of reasons. Some gases are poisonous, some gases are not poisonous, but all gases that are not oxygen can kill you simply by displacing the oxygen and suffocating you. So, always test continuously for the oxygen content in a mine atmosphere to be certain that you have enough oxygen to keep you safe and alive

6. Underground teams will maintain voice contact with each other at all times.



# **CHANGE:** A Major Reason for Caution

The Walker Mine 700 Level Adit Site is dynamic. That means that the conditions in and around the mine can change over time, even a short period of time. Rock stability will deteriorate with time, so a portal or drift that may have been stable previously may now be a death trap. A heavy snow pack or a torrential spring storm may cause subsidence of a shallow mine feature, leaving a treacherous opening which may not have existed the last time a site was visited. Erosion may uncover new hazards such as abandoned explosives or openings that were not properly closed in the past.

Perhaps the most dynamic aspect of change at Walker Mine 700 Level Adit Site is <u>airflow</u>. Airflow can influence a mine's internal configuration due to fluctuations in temperature, and changes in atmospheric pressure.

Mines are often described as "breathing", in that airflow at a given opening may be static, incast, or outcast under different atmospheric conditions. Because of these air movements, a particular area may have good air on one site visit and bad air on the next visit. Air quality may even change in the course of an extended site visit. When conducting underground inspections, note the direction of airflow, especially at intersections where air from a different source may be encountered. Keep in mind that temperature and pressure changes may reverse airflow, bringing contaminated or oxygendeficient air from different parts of a mine into an area that previously had good air.

In conclusion of the Walker Mine Level 700 Adit Repairs and Inspection and Safety Inspection the primary potential hazards that has been identified by Beck's Enterprises are the high levels of mud that is seeping through the fractures and seams weakening the integrity of these localized areas throughout bald headed section. Many areas throughout the timber section were identified as oxidized and rotted. In addition the current 18" Jet Air 3 hp Ventilation System in the Walker Mine 700 Level Adit should be replaced by a larger fan with higher pressures to support any future construction/maintenance activities. For the safety and integrity of the Walker Mine Level 700 Adit for future inspection and maintenance procedures these areas should be addressed.

If desired, we could provide assistance to the Central Valley Water Board in the design of the recommended repair measures and in the field during scaling, installation of rockbolts, and replacement of timber sets, post & caps.

Thank you, Project Manager Elmer Brown



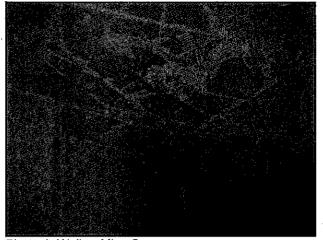



Photo 1. Walker Mine Seam

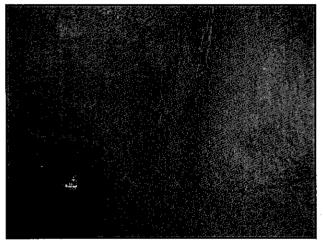



Photo 2. Vertical Seam without Support.

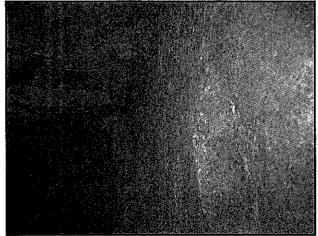



Photo 3. Vertical Mud Seam.



Photo 4. Stalls under Rock.



Photo 5. Rotten Timber – 4 inch penetration.



Photo 6. Rotten Timber – 4 inch penetration Vertical Mud Seam.

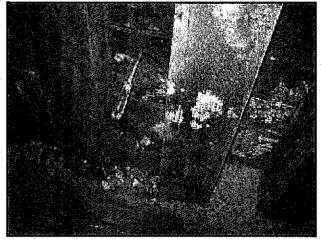



Photo 7. Rotten Timber 4.

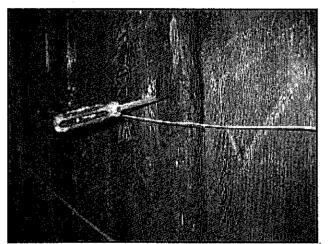



Photo 8. Rotten Timber 3.



Photo 9. Rotten Timber 2.



Photo 10. Rotten Timber 1.



Photo 11. Rock Scaling and Sounding.




Photo 12. Rock Fall and Mud.

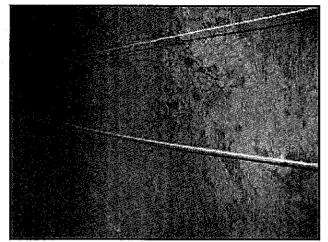



Photo 13 Mud Seeping into Invert.




Photo 14. Mud Seam 2.

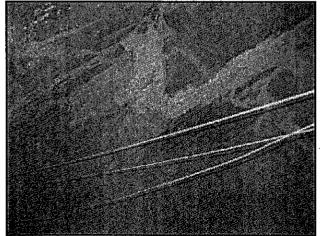



Photo 15. Mud Seam.



Photo 16. Loose Rock-Rotten Timber.

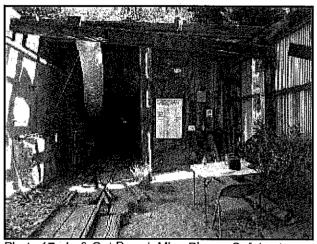



Photo 17. In & Out Board, Mine Phone, Safety etc.



Photo 18. Fractured Rock.

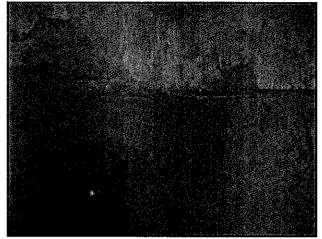



Photo 19. Flat back (mud forced through cracks, mud seeping).



Photo 22. Copper Contaminated Mud.



Photo 20. Discontinuous Seams and Wedges (Needs rock bolts).

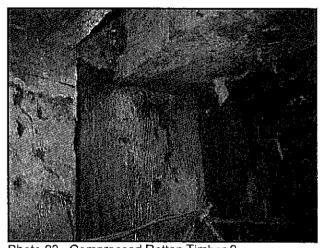



Photo 23. Compressed Rotten Timber 2.

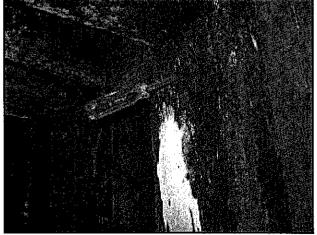



Photo 21. Deteriorating Timber.



Photo 24. Compressed Rotten Timber.

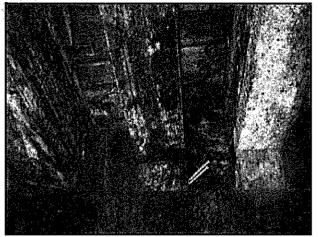



Photo 25. Broken Timber-Loose Rock-Weight 2.

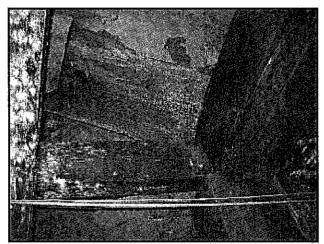



Photo 26. Broken Timber-Loose Rock-Weight.

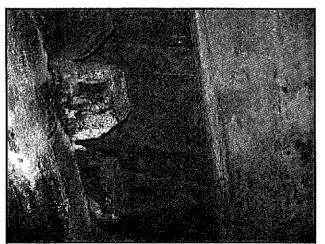



Photo 27. Broken Timber and Crown Bars.

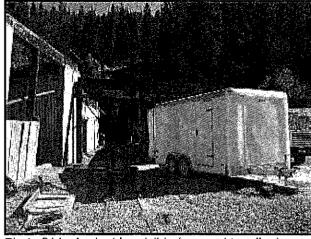



Photo 014. Ancient Landslide (scarp at tree line).

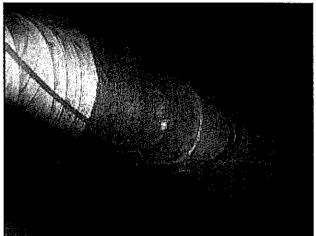



Photo ?. Walker Mine ventilation fan.

# **EXCELCHEM**

# **Environmental Labs**

1135 W Sunset Boulevard Suite A Rocklin, CA 95765 Phone# 916-543-4445 Fax# 916-543-4449



ELAP Certificate No.: 2119

17 December 2010

Leticia Valadez

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200

Rancho Cordova, CA 95670

RE: Walker Mine

Sincerely,

Workorder number:1011135

Enclosed are the results of analyses for samples received by the laboratory on 11/18/10 09:02. All Quality Control results are within acceptable limits except where noted as a case narrative. If you have any questions concerning this report, please feel free to contact the laboratory.

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project: Project Number: Walker Mine

Project Manager:

10-026-150 Leticia Valadez

Date Reported: 12/17/10 14:20

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled   | Date Received                |
|-----------|---------------|--------|----------------|------------------------------|
| WM-1      | 1011135-01    | Water  | 11/16/10 10:00 | 11/18/10 09:02               |
| WM-2      | 1011135-02    | Water  | 11/16/10 10:10 | 11/18/10 09:02               |
| WM-19     | 1011135-03    | Water  | 11/16/10 10:25 | 11/18/10 09:02               |
| WM-3      | 1011135-04    | Water  | 11/16/10 10:30 | 11/18/10 09:02               |
| WM-5      | 1011135-05    | Water  | 11/16/10 10:45 | 11/18/10 09:02               |
| WM-7B     | 1011135-06    | Water  | 11/16/10 11:10 | 11/18/10 09:02               |
| WM-7C     | 1011135-07    | Water  | 11/16/10 11:15 | 11/18/10 09:02               |
| WM-6      | 1011135-08    | Water  | 11/16/10 11:20 | 11/18/10 09:02               |
| WM-7A     | 1011135-09    | Water  | 11/16/10 11:45 | 11/18/10 09:02               |
| WM-4      | 1011135-10    | Water  | 11/16/10 12:20 | 11/18/10 09:02               |
| WM-9      |               | Water  | 11/16/10-12:30 | 11/18/10 0 <del>9:</del> 02- |
| WM-12     | 1011135-12    | Water  | 11/16/10 12:50 | 11/18/10 09:02               |
| WM-13     | 1011135-13    | Water  | 11/16/10 13:00 | 11/18/10 09:02               |
| WM-17     | 1011135-14    | Water  | 11/16/10 13:05 | 11/18/10 09:02               |
| WM-18     | 1011135-15    | Water  | 11/16/10 13:30 | 11/18/10 09:02               |
| WM-16     | 1011135-16    | Water  | 11/16/10 13:55 | 11/18/10 09:02               |
| WM-15     | 1011135-17    | Water  | 11/16/10 14:00 | 11/18/10 09:02               |
| WM-14     | 1011135-18    | Water  | 11/16/10 14:05 | 11/18/10 09:02               |
| WM-10     | 1011135-19    | Water  | 11/16/10 14:45 | 11/18/10 09:02               |
| WM-20     | 1011135-20    | Water  | 11/16/10 15:10 | 11/18/10 09:02               |
| WM-30     | 1011135-21    | Water  | 11/17/10 12:00 | 11/18/10 09:02               |
| WM-31     | 1011135-22    | Water  | 11/17/10 12:45 | 11/18/10 09:02               |
| WM-32     | 1011135-23    | Water  | 11/17/10 13:00 | 11/18/10 09:02               |

Excelchem Environmental Lab.



Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200

Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number:

10-026-150

Project Manager: Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-1 1011135-01 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method       | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|--------------|-------|
|                           |        |                    |          |         |                  |                  |              |       |
| Metals by 200 series      |        |                    |          |         |                  |                  |              |       |
| Calcium                   | 12000  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7    |       |
| Magnesium                 | 4630   | 50.0               | ù        | . 11    | n                | 11/29/10         | н            |       |
| Potassium                 | 919    | 100                | . "      | H       | n ·              | 11/29/10         | н .          |       |
| Sodium                    | 4600   | 200                | n        | н       | 11               | 11/30/10         | н            |       |
| Wet Chemistry             |        |                    |          |         |                  |                  |              |       |
| Fotal Alkalinity          | 58.0   | 5.00               | . mg/L   | ATK0186 | 11/19/10         | 11/19/10         | SM2320B      |       |
| Bicarbonate Alkalinity    | 58.0   | 5.00               | h        | н       | n                | н                | п            |       |
| Carbonate Alkalinity      | ·ND    | 5.00               | 'n       | n       | и                | н                | 11           |       |
| Specific Conductance (EC) | 112    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1    |       |
| Hydroxide Alkalinity      | ND .   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B      |       |
| pH                        | 7.33   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+ B | Field |
| Total Dissolved Solids    | 98.0   | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C     |       |
| Total Hardness            | 48.0   | 5.00               | n        | ATK0171 | 11/18/10         | 11/18/10         | SM2340B      | ٠     |
| lon Chromatography        | •      |                    |          |         |                  |                  |              |       |
| Chloride                  | ND     | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0    |       |
| Sulfate as SO4            | 1.3    | 0.5                | ıı       | 11      | IF.              | 17               | n.           |       |

Excelchem Environmental Lab.



Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Date Reported: 12/17/10 14:20

Project Manager: Leticia Valadez

# WM-2 1011135-02 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
| Vietals by 200 series     |        |                    |          |         |                  |                  |             |       |
| Calcium                   | 15500  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Magnesium                 | 7900   | 50.0               | n        | l†      | . н              | 11/29/10         | 11          |       |
| Potassium                 | 974    | 100                | n.       | 11      | n                | 11/29/10         | П           |       |
| Sodium                    | 2830   | 200                | H        | . #     | n                | 11/30/10         | ħ           |       |
| Wet Chemistry             |        |                    |          |         |                  |                  |             |       |
| Cotal Alkalinity          | 76.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Bicarbonate Alkalinity    | 76.0   | 5.00               | μ        | Ņ       | N                | tr               | n           |       |
| Carbonate Alkalinity      | ND     | 5.00               | И        | 17      | II               | ø,               | n           |       |
| Specific Conductance (EC) | 141    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Iydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| эН                        | 7.89   | 0,100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 107    | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C    |       |
| Total Hardness            | 72.0   | 5.00               | II.      | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| on Chromatography         |        | •                  | •        |         |                  |                  |             |       |
| <br>Chloride              | ND     | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0   |       |
| Sulfate as SO4            | ND     | 0.5                | 11       | и       | ч                | , <b>n</b>       | tl .        |       |

Excelchem Environmental Lab.

2

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number: Project Manager: 10-026-150

Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-19 1011135-03 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method       | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|--------------|-------|
| Motole by 200 contes      |        |                    |          |         |                  | ÷                |              |       |
| Metals by 200 series      | 02500  | 100                | a        |         | 14444            | 4 4 4 - 14 -     |              |       |
| Calcium                   | 23700  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7    |       |
| Magnesium                 | 5770   | 50.0               | И        | И       | и                | 11/29/10         | "            |       |
| Potassium                 | ŊD     | 100                | н        |         | н                | 11/29/10         | ".           |       |
| Sodium                    | 5660   | 200                | , N      | II.     | 1                | 11/30/10         | n            |       |
| Wet Chemistry             |        |                    |          |         |                  |                  |              |       |
| Fotal Alkalinity          | 30.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B      |       |
| Bicarbonate Alkalinity    | 30.0   | 5.00               | U        | 11      | 17               | n                | н            |       |
| Carbonate Alkalinity      | ND     | 5.00               | 11       | ц       | 11               | "                | И            |       |
| Specific Conductance (EC) | 206    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1    |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B      |       |
| рН                        | 7.48   | 0.100              | pH Units | ATK0166 | 11/18/10.        | 11/18/10         | SM 4500-H+ B | Field |
| Total Dissolved Solids    | 161    | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C     |       |
| Total Hardness            | 170    | 5.00               | 11       | ATK0171 | 11/18/10         | 11/18/10         | SM2340B      |       |
| on Chromatography         |        |                    |          |         |                  |                  |              |       |
| Chloride                  | ND     | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0    |       |
| Sulfate as SO4            | 68.2   | 0.5                | И        | H       | н                | 17               | ļu           |       |

Excelchem Environmental Lab.

3 -

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-3 1011135-04 (Water)

|                           |        | ,                  |          |         |                  |                  |             |       |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|                           |        |                    |          |         |                  |                  |             |       |
| Metals by 200 series      |        |                    | *        |         |                  |                  |             |       |
| Calcium                   | 15000  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Magnesium                 | 6890   | 50.0               | II.      | и       | 11               | 11               | 17          |       |
| Potassium                 | ND     | · 100              | h        | 17      | 11               | 11/29/10         | 17          |       |
| Sodium                    | 3100   | 200                | " н      | и       | n                | 11/30/10         | 11          |       |
| Wet Chemistry             |        |                    |          |         |                  |                  |             |       |
| Cotal Alkalinity          | 66.0   | 5.00               | . mg/L   | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Bicarbonate Alkalinity    | 66.0   | 5.00               | 11       | н       | n                | h                | н           |       |
| Carbonate Alkalinity      | ND     | 5.00               | п        | n       | 11               | н                | n           |       |
| Specific Conductance (EC) | 136    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| эН                        | 7.76   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 112    | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C    |       |
| l'otal Hardness           | 66.0   | 5.00               | И        | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     | •     |
| on Chromatography         |        |                    |          |         |                  |                  |             |       |
| Chloride                  | 0.5    | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300,0   |       |
| Sulfate as SO4            | 5.0    | 0.5                | D.       | 11      | u                | 11               | pt          |       |

Excelchem Environmental Lab.

3- A---

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-5 1011135-05 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
| Matala har 200 anning     |        |                    |          |         |                  |                  |             |       |
| Metals by 200 series      | 11100  |                    |          |         |                  |                  |             |       |
| Calcium                   | 11100  | · 100              | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Magnesium                 | 4310   | 50,0               | n        | н       | н                | rı .             | . н         |       |
| Potassium                 | 1340   | 100                | н        | h       | н                | 11/29/10         | ħ           |       |
| Sodium                    | 3740   | 200                | н        | н       | И                | 11/30/10         | н           |       |
| Wet Chemistry             |        |                    |          |         |                  | -                |             |       |
| Total Alkalinity          | 54.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Bicarbonate Alkalinity    | 54.0   | 5.00               | н        | и       | .u               | И                | , н         |       |
| Carbonate Alkalinity      | ND     | 5.00               | н        | н       | u                | . н              | н           |       |
| Specific Conductance (EC) | 102    | 5.00               | uS/em    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120,1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| р <del>Н</del>            | 7.58   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 84.0   | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C    |       |
| Total Hardness            | 46.0   | 5.00               | Œ        | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| Ion Chromatography        |        | a                  |          |         |                  |                  |             |       |
| Chloride                  | 0.7    | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0   |       |
| Sulfate as SO4            | ND     | 0.5                | 11       | j)      | 11               | 11               | 11          |       |

Excelchem Environmental Lab.

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200

Rancho Cordova, CA 95670

Project Mumber: Dr. #200

Project Mumber: Dr. #200

Project Mumber: Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-7B 1011135-06 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
|                           |        | <del></del>        | _        |         |                  |                  |             |       |
| Metals by 200 series      |        |                    |          |         |                  |                  | •           |       |
| Calcium                   | 14900  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/29/10         | EPA 200.7   | _     |
| Magnesium                 | 6740   | 50.0               | н        |         | II               | 17               | 17          |       |
| Potassium                 | 1040   | 100                | н        | It      | II               | 11/29/10         | 11          |       |
| Sodium                    | 3050   | 200                | И        | II:     | ij               | 11/30/10         | ¥           |       |
| Wet Chemistry             | •      | •                  |          |         |                  |                  |             |       |
| Fotal Alkalinity          | 68.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Bicarbonate Alkalinity    | 68.0   | 5.00               | И        | 11      | II               | 17               | 17          |       |
| Carbonate Alkalinity      | ND     | 5.00               | и        | II .    | II               | 11               | 11          |       |
| Specific Conductance (EC) | 134    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 1-1/19/10        | SM2320B     |       |
| р <b>Н</b>                | 8.00   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 81.0   | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C    |       |
| Гotal Hardness            | 64.0   | 5.00               | II .     | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| Ion Chromatography        |        |                    |          |         |                  |                  |             |       |
| Chloride                  | 0.5    | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0   |       |
| Sulfate as SO4            | 2.0    | 0.5                | II       | н       | 11               | h .              | n           |       |

Excelchem Environmental Lab.

3- A---

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number: Project Manager: 10-026-150

Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-7C 1011135-07 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method       | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|--------------|-------|
| Metals by 200 series      |        |                    |          |         |                  |                  |              |       |
| Calcium                   | 15200  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7    |       |
| Magnesium                 | 4510   | 50.0               | 11       | 11      | И                | 11               |              |       |
| Potassium                 | ND     | 100                | 11       | н       | и                | 11/29/10         | н            |       |
| Sodium                    | 4260   | 200                | 11       | 0       | н                | 11/30/10         | н            |       |
| Wet Chemistry             |        |                    |          |         |                  |                  |              |       |
| Fotal Alkalinity          | 60.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B      |       |
| Bicarbonate Alkalinity    | 60.0   | 5.00               | ħ ,      | . н     | tr               | н                | tt.          |       |
| Carbonate Alkalinity      | ND .   | 5.00               | н        | . 17    | tr.              | н                | <b>n</b> .   |       |
| Specific Conductance (EC) | 128    | 5,00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1    |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B      |       |
| pII                       | 7.54   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+ B | Field |
| Total Dissolved Solids    | 32.0   | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C     |       |
| Total Hardness            | 58.0   | 5.00               | н :      | ATK0171 | 11/18/10         | 11/18/10         | SM2340B      |       |
| Ion Chromatography        | . •    |                    |          |         |                  |                  |              | •     |
| Chloride                  | 0.6    | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0    |       |
| Sulfate as SO4            | 5.7    | -0.5               | II.      | 11      | И                | п                | . н          |       |

Excelchem Environmental Lab.

3 - S-

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager: Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-6 1011135-08 (Water)

| Analyte                  | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|--------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
| Metals by 200 series     |        |                    |          |         |                  |                  |             |       |
| Calcium                  | 26300  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Agnesium                 | 4280   | 50.0               | 0        | 11      | ч                | Œ                | u           |       |
| Potassium                | 4380   | 100                |          | 11      |                  | 11/29/10         | u .         |       |
| Sodium                   | 4830   | 200                | 9        | 17      | Ħ                | 11/30/10         | н           |       |
| Wet Chemistry            |        |                    |          |         |                  |                  | •           |       |
| Total Alkalinity         | 58.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| icarbonate Alkalinity    | 58.0   | 5.00               | 11       | : II    | . 4              | 11               | ' н         |       |
| Carbonate Alkalinity     | ND     | 5.00               | 17       | U       | 11               | 11               | и           |       |
| pecific Conductance (EC) | 210    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Iydroxide Alkalinity     | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| H                        | 7.56   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids   | 143    | 15.0               | . mg/L   | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C    |       |
| Total Hardness           | 98.0   | 5.00               | "        | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| on Chromatography        |        |                    |          |         |                  |                  |             |       |
| Chloride                 | 0.5    | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0   |       |
| Sulfate as SO4           | 44.6   | 0.5                | и        | н       | n                | u                | n           |       |

Excelchem Environmental Lab.

3- ---

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Leticia Valadez

Date Reported: 12/17/10 14:20

#### WM-7A 1011135-09 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
| Metals by 200 series      |        |                    |          |         |                  |                  |             | 4     |
| Calcium                   | 14700  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Magnesium                 | 6670   | 50.0               | Ħ        | n       | п                | н                |             |       |
| Potassium                 | 1080   | 100                | 11       | II      | н                | 11/29/10         | "           |       |
| Sodium                    | 3380   | 200                | 11       | н       | ų                | 11/30/10         | п           |       |
| Wet Chemistry             |        |                    |          |         |                  |                  |             |       |
| Total Alkalinity          | 70.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Bicarbonate Alkalinity    | 70.0   | 5.00               | ĮI       | 10      | п                | н                | 11          | •     |
| Carbonate Alkalinity      | ND     | 5.00               | ,        | 17      | н                | It               | 11          |       |
| Specific Conductance (EC) | 135    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND -   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| рH                        | 7.98   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 96.0   | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C    |       |
| Total Hardness            | 61.0   | 5.00               | ıf       | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| Ion Chromatography        | •      |                    |          |         |                  |                  |             |       |
| Chloride                  | 0.5    | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0   |       |
| Sulfate as SO4            | 2.1    | 0.5                | n        | 17      | . tl             | н .              | н           |       |

Excelchem Environmental Lab.

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number: Project Manager: 10-026-150

Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-4 1011135-10 (Water)

| Analyte                      | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method       | Notes |
|------------------------------|--------|--------------------|----------|---------|------------------|------------------|--------------|-------|
| Metals by 200 series         |        |                    |          |         |                  |                  | ·            |       |
| Calcium                      | 14600  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7    | -     |
| Magnesium                    | 6940   | 50.0               | n        | и       | n                | It               | 11           |       |
| Potassium                    | 1060   | 100                | п.       | и       | и                | 11/29/10         | u .          | Ē     |
| Sodium                       | 3140   | 200                | ři.      | ri .    | и                | 11/30/10         | . 0          |       |
| Wet Chemistry                |        |                    |          |         |                  | •                |              |       |
| Fotal Alkalinity             | 70.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B      |       |
| Bicarbonate Alkalinity       | 70.0   | 5.00               | n        | и       | đ                | e                | n            |       |
| Carbonate Alkalini <b>ty</b> | ND     | 5.00               | il       | ħ       | ц                | 17               | h            |       |
| Specific Conductance (EC)    | 135    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1    |       |
| Hydroxide Alkalinity         | ND     | 5.00               | ıng/L    | ATK0186 | 11/19/10         | 11/19/10         | SM2320B      |       |
| pH.                          | 7.86   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+ B | Field |
| Fotal Dissolved Solids       | 97.0   | 15.0               | ıng/L    | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C     |       |
| Fotal Hardness               | 67.0   | 5.00               | ri .     | ATK0171 | 11/18/10         | 11/18/10         | SM2340B      |       |
| Ion Chromatography           |        |                    |          |         |                  |                  |              |       |
| Chloride                     | 0.5    | 0,5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0    |       |
| Sulfate as SO4               | 2.0    | 0.5                | н        | q       | 11               | . "              | н            |       |

Excelchem Environmental Lab.

Dr 2-

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150.

Project Manager: Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-9 1011135-11 (Water)

| Analyte                  | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|--------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
| Metals by 200 series     |        |                    |          |         |                  |                  |             |       |
| Calcium                  | 16600  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| /agnesium                | 5200   | 50.0               | н        | н ,     | И                | И                | . "         |       |
| Potassium                | 1550   | 100                | И        | н       | 0                | 11/29/10         | 11          |       |
| odium                    | 4020   | 200                | И        | н       | 11               | 11/30/10         | 11          |       |
| Vet Chemistry            |        |                    |          |         |                  |                  |             |       |
| otal Alkalinity          | 64.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| icarbonate Alkalinity    | 64.0   | 5.00               | 11       | 11      | D                | . "              | rj .        |       |
| Carbonate Alkalinity     | ND     | 5.00               | 0        | и       | n                | , н              | н           |       |
| pecific Conductance (EC) | 137    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Iydroxide Alkalinity     | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Н                        | 7.85   | 0,100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids   | 113    | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C    |       |
| otal Hardness            | 70.0   | 5.00               | н        | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| on Chromatography        |        |                    |          |         |                  |                  |             |       |
| Chloride                 | 0.6    | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0   |       |
| Sulfate as SO4           | 7.6    | 0.5                | II.      | 41      | 0 .              | н                | 'μ          |       |

Excelchem Environmental Lab.

2-

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number: Project Manager:

10-026-150 Leticia Valadez Date Reported:

12/17/10 14:20

# WM-12 1011135-12 (Water)

| Analyte                                        | Result       | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes    |
|------------------------------------------------|--------------|--------------------|----------|---------|------------------|------------------|-------------|----------|
| - <u>-                                    </u> |              |                    |          |         |                  |                  |             | <u> </u> |
| Metals by 200 series                           | ·            |                    |          |         |                  |                  |             |          |
| Calcium                                        | 2620         | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |          |
| Magnesium                                      | 1120         | 50.0               | н        |         | 10               | 11               | п           |          |
| Potassium                                      | 356          | 100                | н        | H       | u                | 11/29/10         | H           |          |
| Sodium                                         | 1120         | 200                | н        | н       | n                | 11/30/10         | н           |          |
| Wet Chemistry                                  |              |                    |          |         |                  |                  |             |          |
| Total Alkalinity                               | 14.0         | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |          |
| Bicarbonate Alkalinity                         | 14.0         | 5.00               | 11       | н       | н                | U                | tt.         |          |
| Carbonate Alkalinity                           | ND           | 5.00               | ч        | 11      | H                | н                | tt.         |          |
| Specific Conductance (EC)                      | <b>25.</b> 4 | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   | •        |
| Hydroxide Alkalinity                           | ND           | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |          |
| рЫ                                             | 6.50         | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field    |
| Total Dissolved Solids                         | ND           | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C    |          |
| Total Hardness                                 | 10.0         | 5.00               | н        | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |          |
| Ion Chromatography                             |              |                    |          |         |                  |                  |             |          |
| Chloride                                       | ND           | 0.5                | mg/L     | ATK0217 | 11/22/10         | . 11/22/10       | EPA 300.0   | • •      |
| Sulfate as SO4                                 | 0.5          | 0.5                | 0        | tr.     | u                | н .              | n           |          |

Excelchem Environmental Lab.

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager: Leticia Valadez

Date Reported: 12/17/10 14:20

## WM-13 1011135-13 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
|                           |        |                    |          | _       |                  |                  |             |       |
| Metals by 200 series      |        |                    |          |         |                  |                  |             |       |
| Calcium                   | 13900  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Magnesium                 | 5930   | 50.0               | 'n       | 17      | 11               | н                | II          |       |
| Potassium                 | 512    | 100                | и        | 17      | И                | 11/29/10         | II          |       |
| Sodium                    | 2640   | 200                | ís .     | . 11    | н                | 11/30/10         | п           |       |
| Wet Chemistry             |        | •                  |          |         |                  |                  | _           |       |
| Fotal Alkalinity          | 64.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Bicarbonate Alkalinity    | 64.0   | 5.00               | 0        | - 11    | н                | н                | н           |       |
| Carbonate Alkalinity      | ND     | 5.00               | ft       | · u     | D.               | ч                | п           |       |
| Specific Conductance (EC) | 121    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| pΗ                        | 7.28   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 93.0   | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C    |       |
| Fotal Hardness            | 62.0   | 5.00               | 17       | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| on Chromatography         | ·      |                    |          |         |                  |                  |             |       |
| Chloride                  | 0.5    | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0   |       |
| Sulfate as SO4            | ND     | 0.5                | н        | н       | н                | н                | 17          |       |

Excelchem Environmental Lab.

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number: Project Manager: 10-026-150

Leticia Valadez

Date Reported: 12/17/10 14:20

#### WM-17 1011135-14 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
| Metals by 200 series      |        |                    |          |         |                  |                  |             |       |
| Calcium                   | 17200  | 100                | 11~/T    | ATK0247 | 11/04/10         | 11/30/10         | EPA 200.7   |       |
|                           |        |                    | ug/l     | ATKU247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Magnesium                 | 7010   | 50.0               |          |         |                  | "                | 11          |       |
| Potassium                 | 1600   | 100                | It       | н       | и                | 11/29/10         | 11          |       |
| Sodium                    | 3450   | 200                | 11       | h       | И                | 11/30/10         | tr          |       |
| Wet Chemistry             |        |                    |          |         |                  | •                |             |       |
| Fotal Alkalinity          | 84.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Bicarbonate Alkalinity    | 84.0   | 5.00               | II.      | н       | 11               | н                | n           |       |
| Carbonate Alkalinity      | ND     | 5.00               | n        | U.      | w                | tt               | h           |       |
| Specific Conductance (EC) | 154    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| рH                        | 7.90   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 102    | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C    |       |
| Γotal Hardness            | 74.0   | 5.00               | н .      | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| on Chromatography         |        |                    |          |         |                  |                  |             |       |
| Chloride                  | ND     | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0   | -     |
| Sulfate as SO4            | 0.6    | 0.5                | u u      | H       | . 11             | h                | 11          |       |

Excelchem Environmental Lab.

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Leticia Valadez

Date Reported: 12/17/10 14:20

#### WM-18 1011135-15 (Water)

| Analyte                  | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|--------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
|                          |        |                    | -        |         |                  |                  |             |       |
| Actals by 200 series     |        |                    |          |         |                  |                  |             |       |
| Calcium                  | 17300  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/29/10         | EPA 200.7   |       |
| 1agnesium                | 6970   | 50.0               | 11       | П       | U                | н                | И           |       |
| otassium                 | 1930   | 100                | . 0      | h       | 17               | 11/29/10         | и           |       |
| odium                    | 3740   | 200                | н        | u       | 17               | 11/30/10         | n           |       |
| Vet Chemistry            |        |                    |          |         |                  |                  |             |       |
| Otal Alkalinity          | 78.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     | ·     |
| Bicarbonate Alkalinity   | 78.0   | 5.00               | Ji       | 17 .    | н                | 11               | 17          |       |
| Carbonate Alkalinity     | ND     | 5.00               | h        | u       | и                | 11*              | 11          |       |
| pecific Conductance (EC) | 150    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Iydroxide Alkalinity     | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     | •     |
| H                        | 7.94   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids   | 111    | 15.0               | mg/L     | ATL0022 | 11/23/10         | - 12/06/10       | SM 2540C    |       |
| Total Hardness           | 70.0   | 5.00               | er er    | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| on Chromatography        |        |                    | •        |         |                  |                  |             |       |
| Chloride                 | ND     | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0   |       |
| ulfate as SO4            | ND     | 0.5                | н        | ч ,     | и                | tt.              | 11          |       |

Excelchem Environmental Lab.

Central Valley Regional Water Quality Control Brd Project: Walker Mine
11020 Sun Center Dr. #200 Project Number: 10-026-150
Rancho Cordova, CA 95670 Project Manager: Leticia Valadez

# WM-16 1011135-16 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch            | Date<br>Prepared | Date<br>Analyzed | Method       | Notes    |
|---------------------------|--------|--------------------|----------|------------------|------------------|------------------|--------------|----------|
| Metals by 200 series      |        |                    | ·.       |                  |                  |                  |              |          |
| Calcium                   | 16300  | 100                | ug/l     | ATK0247          | 11/24/10         | 11/30/10         | EPA 200.7    |          |
| Magnesium                 | 6140   | 50.0               | "        | 1)               | 0                | и.               | h            |          |
| Potassium                 | 1190   | 100                | n        | ĮI.              | н                | 11/29/10         | н            |          |
| Sodium                    | 3030   | 200                | h        | . н              | н                | 11/30/10         | и            |          |
| Wet Chemistry             |        |                    |          |                  |                  |                  |              |          |
| Fotal Alkalinity          | 72.0   | 5,00               | mg/L     | ATK0186          | 11/19/10         | 11/19/10         | SM2320B      |          |
| Bicarbonate Alkalinity    | 72.0   | 5.00               | Ħ        | N                | н                | u ,              | н            |          |
| Carbonate Alkalinity      | ND     | 5.00               | n        | 17               | II               | 1)               | n            |          |
| Specific Conductance (EC) | 136    | 5.00               | uS/cm    | ATK0167          | 11/18/10         | 11/18/10         | EPA 120.1    |          |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK <b>0</b> 186 | 11/19/10         | 11/19/10         | SM2320B      |          |
| H                         | 7.89   | 0.100              | pH Units | ATK0166          | 11/18/10         | 11/18/10         | SM 4500-H+ B | Field    |
| Total Dissolved Solids    | 109    | 15.0               | mg/L     | ATL0 <b>0</b> 22 | 11/23/10         | 12/06/10         | SM 2540C     |          |
| Total Hardness            | 68.0   | 5.00               | h        | ATK0171          | 11/18/10         | 11/18/10         | SM2340B      | -        |
| on Chromatography         |        |                    |          |                  |                  |                  |              |          |
| Chloride                  | ND     | 0.5                | mg/L     | ATK0217          | 11/22/10         | 11/22/10         | EPA 300.0    | <u> </u> |
| Sulfate as SO4            | 0.6    | 0.5                | . "      | 11               | 11               | h                | P .          |          |

Excelchem Environmental Lab.

A ----

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Date Reported:

12/17/10 14:20

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager: Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-15 1011135-17 (Water)

| Analyte                     | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method       | Notes |
|-----------------------------|--------|--------------------|----------|---------|------------------|------------------|--------------|-------|
| Metals by 200 series        |        |                    |          |         |                  |                  |              |       |
| Calcium                     | 14300  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7    |       |
| Magnesium                   | 5500   | 50.0               |          | 11      | Tr.              | ų                | ff f         |       |
| Potassium                   | 1060   | 100                | h        | 11      | H                | 11/29/10         | l)           |       |
| Sodium                      | 2820   | 200                | ч        | h       | и                | 12/01/10         | H            |       |
| Wet Chemistry               |        | •                  | ٠.       |         |                  |                  |              |       |
| Total Alkalinity            | 68.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B      |       |
| Bicarbonate Alkalinity      | 68.0   | 5.00               | 11       | ų       | 11               | . 4              | 41           |       |
| Carbonate Alkalinity        | ND     | 5.00               | H        | и       | Ħ                | ti.              | d.           |       |
| Specific Conductance (EC)   | 121    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1    |       |
| Hydroxide Alkalinity        | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B      |       |
| pН                          | 8.01   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+ B | Field |
| -<br>Total Dissolved Solids | 97.0   | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C     |       |
| Total Hardness              | 62.0   | 5.00               | II       | ATK0171 | 11/18/10         | 11/18/10         | SM2340B      |       |
| Ion Chromatography          |        |                    |          |         |                  |                  |              |       |
| Chloride                    | ND     | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0    |       |
| Sulfate as SO4              | 0.5    | 0.5                | II .     | н       | н                |                  | н .          |       |
|                             |        |                    |          |         |                  |                  |              |       |

Excelchem Environmental Lab.

3- ---

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-14 1011135-18 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
|                           |        |                    |          |         |                  |                  |             |       |
| Metals by 200 series      |        |                    |          |         |                  |                  |             |       |
| Calcium                   | 47100  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Magnesium                 | 3600   | 50.0               | II       | н       | н                | 11/29/10         | ii .        |       |
| Potassium                 | 873    | · 100              | 11       | п       | n                | 11/29/10         | n           |       |
| Sodium                    | 2760   | 200                | It       | и       | н                | 11/30/10         | H .         |       |
| Wet Chemistry             |        |                    |          |         | •                |                  |             |       |
| Total Alkalinity          | 128    | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Biearbonate Alkalinity    | 128    | 5.00               | h        | 11      | 11               | H                | m ·         |       |
| Carbonate Alkalinity      | · ND   | 5.00               | н        | n .     | и ,              | II.              | 11          |       |
| Specific Conductance (EC) | 263    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| pН                        | 8.00   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 165    | 15.0               | mg/L     | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C    |       |
| Total Hardness            | 138    | 5.00               | II       | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| Ion Chromatography        |        |                    |          |         |                  |                  |             |       |
| Chloride                  | 0.5    | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/22/10         | EPA 300.0   |       |
| Sulfate as SO4            | 6.6    | 0.5                | n        | 17      | 17               | 17               | v           |       |

Excelchem Environmental Lab.

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number: Project Manager: 10-026-150

Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-10 1011135-19 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch            | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|------------------|------------------|------------------|-------------|-------|
| 34-401a hay 200 a         |        |                    |          |                  |                  |                  |             |       |
| Metals by 200 series      | 10100  |                    |          |                  |                  |                  | ·           |       |
| Calcium                   | 19100  | 100                | ug/l     | ATK0247          | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Magnesium                 | 4030   | 50.0               | 0        | 1)               | 'n               | и                | 11          |       |
| Potassium                 | ND     | 100                | 17       | н                | н                | 11/29/10         | "           |       |
| Sodium                    | 4630   | 200                | 11       | 19               | н                | 12/01/10         | 19          |       |
| Wet Chemistry             |        |                    |          |                  |                  |                  |             |       |
| Total Alkalinity          | 72.0   | 5.00               | mg/L     | ATK0186          | 11/19/10         | 11/19/10         | SM2320B     |       |
| Bicarbonate Alkalinity    | 72.0   | 5.00               | į 10     | n                | - <u>,</u> 11    | 11               | 11          |       |
| Carbonate Alkalinity      | ND     | 5.00               | 'n       | 11               | 11               | 17 .             | 11          |       |
| Specific Conductance (EC) | 150    | 5.00               | uS/cm    | ATK0167          | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186          | 11/19/10         | 11/19/10         | SM2320B     |       |
| pH                        | 8.15   | 0.100              | pH Units | ATK <b>0</b> 166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 99.0   | 15.0               | mg/L     | ATL0022          | 11/23/10         | 12/06/10         | SM 2540C    |       |
| Total Hardness            | 72.0   | 5.00               | н        | ATK0171          | 11/18/10         | 11/18/10         | SM2340B     |       |
| Ion Chromatography        |        |                    |          |                  |                  |                  |             |       |
| Chloride                  | 0.5    | 0,5                | mg/L     | ATK0217          | 11/22/10         | 11/22/10         | EPA 300.0   |       |
| Sulfate as SO4            | 6.1    | 0.5                | н        | 17               | н                | и                | н           |       |

Excelchem Environmental Lab.

Central Valley Regional Water Quality Control BrdProject:Walker Mine11020 Sun Center Dr. #200Project Number:10-026-150Date Reported:Rancho Cordova, CA 95670Project Manager:Leticia Valadez12/17/10 14:20

# WM-20 1011135-20 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
| Metals by 200 series      |        |                    |          |         |                  |                  |             |       |
| Calcium                   | 17900  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Magnesium                 | 4640   | 50.0               | 0        | И       | 0                | n                | 0           |       |
| Potassium                 | 1710   | 100                | 0        | 11      | . 0              | .11/29/10        | 11          |       |
| Sodium                    | 7010   | 200                | n        | 11      | "                | 12/01/10         | 11          |       |
| Wet Chemistry             |        |                    |          |         | ·                |                  |             |       |
| Fotal Alkalinity          | 68.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Bicarbonate Alkalinity    | 68.0   | 5.00               | Й        | 11      | ıı,              | 11               | н           |       |
| Carbonate Alkalinity      | ND     | 5.00               | и        | 11      | н                | 1r               | Ħ           |       |
| Specific Conductance (EC) | 151    | 5.00               | uS/cm    | ATK0167 | 11/18/10 -       | 11/18/10         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| рН                        | 8.04   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Fotal Dissolved Solids    | 115    | 15.0               | ıng/L    | ATL0022 | 11/23/10         | 12/06/10         | SM 2540C    |       |
| Fotal Hardness            | 64.0   | 5.00               | н        | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| Ion Chromatography        |        |                    |          |         |                  |                  |             |       |
| Chloride                  | 0.5    | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/23/10         | EPA 300.0   |       |
| Sulfate as SO4            | 8.0    | 0.5                | и        | þ       | И                | 17               | н           |       |

Excelchem Environmental Lab.

M 2---

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150 Leticia Valadez

Project Manager: I

Date Reported: 12/17/10 14:20

# WM-30 1011135-21 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
|                           |        |                    |          |         |                  | ÷                |             |       |
| Metals by 200 series      |        |                    |          |         |                  |                  |             |       |
| Calcium                   | 37800  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Magnesium                 | 6810   | 50.0               | n        | 11      | n                | "                | h           |       |
| Potassium                 | 2250   | 100                | n        | 11      | U                | 11/29/10         | п           | •     |
| Sodium                    | 2740   | 200                | n .      | U       | tt.              | 12/01/10         | и           |       |
| Wet Chemistry             |        | •                  |          |         |                  |                  |             |       |
| Total Alkalinity          | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Bicarbonate Alkalinity    | ND     | 5.00               | И        | U       | ħ                |                  | t†          |       |
| Carbonate Alkalinity      | ND     | 5.00               | h        | Ħ       | n                | u                | ff.         |       |
| Specific Conductance (EC) | 400    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| PΗ                        | 4.46   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 309    | 15.0               | mg/L     | ATL0022 | 11/24/10         | 12/06/10         | SM 2540C    |       |
| Total Hardness            | 522    | 5.00               | 11       | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| Ion Chromatography        |        |                    |          |         |                  | •                |             |       |
| Chloride                  | ND     | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/23/10         | EPA 300.0   |       |

Excelchem Environmental Lab.

3 - ----

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-30

# 1011135-21RE1 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ion Chromatography |        |                    |       |         |                  |                  |           |       |
| Sulfate as SO4     | 225    | 5.0                | mg/L  | ATK0217 | 11/22/10         | 11/23/10         | EPA 300.0 |       |

Excelchem Environmental Lab.

3 - L

Central Valley Regional Water Quality Control Brd
Project: Walker Mine
11020 Sun Center Dr. #200
Project Number: 10-026-150
Project Manager: Leticia Valadez
Date Reported:
12/17/10 14:20

# WM-31 1011135-22 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
| N. ( 1 1 200 )            |        |                    |          |         |                  |                  |             |       |
| Metals by 200 series      |        |                    |          |         |                  |                  |             |       |
| Calcium                   | 37600  | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Magnesium                 | 6790   | 50.0               | н        | n .     | 11               | 0 .              | h           |       |
| Potassium                 | 2240   | 100                | н        | н       | II               | 11/29/10         | н           |       |
| Sodium                    | 2760   | 200                | Ħ        | п       | II               | 12/01/10         | н           |       |
| Wet Chemistry             |        |                    |          |         |                  |                  |             |       |
| Fotal Alkalinity          | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Bicarbonate Alkalinity    | ND     | 5.00               | , h      | Ü       | If               | н                | н           |       |
| Carbonate Alkalinity      | ND     | 5.00               | н        | . "     | н                | H                | . "         |       |
| Specific Conductance (EC) | 402    | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Н                         | 4.44   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 307    | 15.0               | mg/L     | ATL0022 | 11/24/10         | 12/06/10         | SM 2540C    |       |
| Total Hardness            | 584    | 5.00               | R        | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| on Chromatography         |        |                    |          |         |                  |                  |             |       |
| Chloride                  | ND     | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/23/10         | EPA 300.0   |       |

Excelchem Environmental Lab.

3- A---

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Leticia Valadez

Date Reported: 12/17/10 14:20

WM-31

1011135-22RE1 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch    | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|----------|------------------|------------------|-----------|-------|
| Ion Chromatography |        |                    |       |          |                  |                  |           |       |
| Sulfate as SO4     | 238    | 5.0                | mg/L  | ATK.0217 | 11/22/10         | 11/23/10         | EPA 300.0 |       |

Excelchem Environmental Lab.

3- 3---

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number: Project Manager: 10-026-150

Leticia Valadez

Date Reported: 12/17/10 14:20

# WM-32 1011135-23 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
|                           |        | <u>.</u>           | _        |         |                  |                  |             |       |
| Metals by 200 series      |        |                    |          |         |                  |                  |             |       |
| Calcium                   | 2590   | 100                | ug/l     | ATK0247 | 11/24/10         | 11/30/10         | EPA 200.7   |       |
| Magnesium                 | 1040   | 50.0               | 11       | 11      | 11               | 17               | ų           |       |
| Potassium                 | 608    | 100                | 11       | II      | 11               | 11/29/10         | n ·         |       |
| Sodium                    | 2440   | 200                | . 11     | II      | 11               | 12/01/10         | h           |       |
| Wet Chemistry             |        |                    |          |         |                  |                  |             |       |
| Total Alkalinity          | 18.0   | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| Bicarbonate Alkalinity    | 18.0   | 5.00               | li li    | 11      | ir               | 11               | н .         |       |
| Carbonate Alkalinity      | ND     | 5.00               | ħ        | и       | 11               | ři.              | и           |       |
| Specific Conductance (EC) | 30.7   | 5.00               | uS/cm    | ATK0167 | 11/18/10         | 11/18/10         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | ATK0186 | 11/19/10         | 11/19/10         | SM2320B     |       |
| pН                        | 6.88   | 0.100              | pH Units | ATK0166 | 11/18/10         | 11/18/10         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 77.0   | 15.0               | mg/L     | ATL0022 | 11/24/10         | 12/06/10         | SM 2540C    |       |
| Total Hardness            | 12.0   | 5.00               | H        | ATK0171 | 11/18/10         | 11/18/10         | SM2340B     |       |
| Ion Chromatography        |        |                    |          |         |                  |                  |             |       |
| Chloride                  | 1.4    | 0.5                | mg/L     | ATK0217 | 11/22/10         | 11/23/10         | EPA 300.0   |       |
| Sulfate as SO4            | 0.6    | 0.5                | h        | Ņ       | н                | H.               | U           |       |
|                           |        |                    |          |         |                  |                  |             |       |

Excelchem Environmental Lab.

A -

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Leticia Valadez

Date Reported: 12/17/10 14:20

#### Metals by 200 series - Quality Control

| Analyte                   | Result | Reporting<br>Limit | Units       | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit  | Notes |
|---------------------------|--------|--------------------|-------------|----------------|------------------|-------------|----------------|-----|---------------|-------|
| Batch ATK0247 - EPA 200.7 |        | ·<br>              |             |                |                  |             |                |     |               |       |
| Blank (ATK0247-BLK1)      |        |                    |             | Prepared: 1    | 1/24/10 A        | nalyzed: 11 | /29/10         |     |               |       |
| Calcium                   | ND     | 100                | ug/l        |                |                  |             |                |     |               |       |
| Magnesium                 | ND     | 50.0               | и           |                |                  |             |                |     |               |       |
| Potassium                 | ND ·   | 100                | и           |                |                  |             |                |     |               |       |
| Sodium                    | ND     | 200                | ŋ           | •              |                  |             |                |     |               |       |
| Blank (ATK0247-BLK2)      |        |                    |             | Prepared: 1    | 11/24/10 A:      | nalyzed: 11 | /30/10         |     |               |       |
| Calcium                   | ND     | 100                | ug/1        |                |                  |             |                |     | - <del></del> | •     |
| Magnesium                 | ND     | 50.0               | 11          |                |                  |             |                |     |               |       |
| Potassium                 | ND     | 100                | 17          |                |                  |             |                |     |               |       |
| Sodium                    | ND     | 200                | 11          |                |                  |             |                |     |               |       |
| Blank (ATK0247-BLK3)      |        |                    |             | Prepared: 1    | 1/24/10 A        | nalyzed: 11 | /29/10         |     |               |       |
| Calcium                   | ND     | 100                | ug/l        |                |                  |             |                |     |               |       |
| Magnesium                 | ND     | 50,0               | и           |                |                  |             |                |     |               |       |
| Potassium                 | ND     | 100                | n           |                |                  |             |                |     |               |       |
| Sodium                    | , ND   | 200                | . h         |                |                  | •           |                |     |               |       |
| LCS (ATK0247-BS1)         |        |                    |             | Prepared:      | 11/24/10 A       | nalyzed: 11 | /29/10         |     |               |       |
| Calcium                   | 913    | 100                | ug/l        | 1000           |                  | 91.3        | 85-115         |     |               |       |
| Magnesium                 | 917    | 50.0               | · · · · · · | 1000           |                  | 91.7        | 85-115         |     |               |       |
| Potassium                 | 11100  | 100                | ħ           | 10000          |                  | 111         | 85-115         |     |               |       |
| Sodium                    | 917    | 200                | н           | 1000           |                  | 91.7        | 85-115         |     |               |       |
| LCS (ATK0247-BS2)         | •      |                    |             | Prepared:      | 11/24/10 A       | nalyzed: 11 | /29/10         |     |               |       |
| Calcium                   | 911    | 100                | ug/l        | 1000           |                  | 91.1        | 85-115         |     |               |       |
| Magnesium                 | 887    | 50.0               | 11          | 1000           |                  | 88.7        | 85-115         |     |               |       |
| Potassium                 | 10900  | 100                | 11          | 10000          |                  | 109         | 85-115         |     |               |       |
| Sodium                    | 936    | 200                | 17          | 1000           |                  | 93.6        | 85-115         |     |               |       |

Excelchem Environmental Lab.

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number: Project Manager: 10-026-150

Leticia Valadez

Date Reported: 12/17/10 14:20

#### Metals by 200 series - Quality Control

| Analyte                    | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|----------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Batch ATK0247 - EPA 200.7  |        |                    |       |                |                  |             |                |       |              |       |
| LCS (ATK0247-BS3)          |        |                    |       | Prepared: 1    | 1/24/10 A        | nalyzed: 11 | /29/10         |       |              |       |
| Calcium                    | 949    | 100                | ug/l  | 1000           |                  | 94.9        | 85-115         |       |              |       |
| Magnesium                  | 889    | 50.0               | 17    | 1000           |                  | 88.9        | 85-115         |       |              |       |
| Potassium                  | 10500  | 100                | P     | 10000          |                  | 105         | 85-115         |       |              |       |
| Sodium                     | 974    | 200                | Ð     | 1000           |                  | 97.4        | 85-115         |       |              |       |
| LCS Dup (ATK0247-BSD1)     |        |                    |       | Prepared: 1    | 1/24/10 A        | nalyzed: 11 | /29/10         |       |              |       |
| Calcium                    | 929    | 100                | ug/l  | 1000           |                  | 92.9        | 85-115         | 1.69  | 20           |       |
| Magnesium                  | 930    | 50.0               | ħ     | 1000           |                  | 93.0        | 85-115         | 1.42  | 20           |       |
| Potassium                  | 11000  | 100                | н     | 10000          |                  | 110         | 85-115         | 1.14  | 20           |       |
| Sodium                     | 933    | 200                | u     | 1000           |                  | 93.3        | 85-115         | 1.72  | 20           |       |
| LCS Dup (ATK0247-BSD2)     |        |                    |       | Prepared: 1    | 1/24/10 A        | nalyzed; 11 | /29/10         |       |              |       |
| Calcium                    | 899    | 100                | ug/I  | 1000           |                  | 89.9        | 85-115         | 1.41  | 20           |       |
| Magnesium                  | . 871  | 50.0               | u     | 1000           |                  | 87.1        | 85-115         | 1.83  | 20           | ·     |
| Potassium                  | 10600  | 100                | 11    | 10000          |                  | 106         | 85-115         | 3.08  | 20           |       |
| Sodium                     | . 955  | 200                | ŧr    | 1000           |                  | 95.5        | 85-115         | 1.97  | 20           |       |
| LCS Dup (ATK0247-BSD3)     |        |                    |       | Prepared: 1    | 11/24/10 A       | nalyzed: 11 | /29/10         |       |              |       |
| Calcium                    | 916    | 100                | ug/l  | 1000           |                  | 91.6        | 85-115         | 3.45  | 20           |       |
| Magnesium                  | 894    | 50.0               | н     | 1000           |                  | 89.4        | 85-115         | 0.547 | 20           |       |
| Potassium                  | 10500  | 100                | н     | 10000          |                  | 105         | 85-115         | 0.127 | 20           |       |
| Sodium                     | 953    | 200                | н     | 1000           |                  | 95.3        | 85-115         | 2.19  | 20           |       |
| Matrix Spike (ATK0247-MS1) |        | Source: 101113     | 5-06  | Prepared: 1    | 11/24/10 A       | nalyzed: 11 | <b>/2</b> 9/10 |       | •            |       |
| Calcium                    | 15600  | 100                | ug/l  | 1000           | 14900            | 75.0        | 75-125         |       |              |       |
| Magnesium                  | 7720   | 50.0               | и     | 1000           | 6740             | 98.3        | 75-125         |       |              |       |
| Potassium                  | 11800  | 100                | u     | 10000          | 1040             | 108         | 75-125         |       |              |       |
| Sodium                     | 4070   | 200                | 11    | 1000           | 3050             | 101         | 75-125         |       |              |       |

Excelchem Environmental Lab.

A- 2----

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number: Project Manager: 10-026-150 Leticia Valadez Date Reported: 12/17/10 14:20

#### Metals by 200 series - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD    | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|--------|--------------|-------|
| Batch ATK0247 - EPA 200.7       |        |                    |       | ·              |                  |             |                |        |              |       |
| Matrix Spike (ATK0247-MS2)      |        | Source: 1011135    | 5-15  | Prepared: 1    | 1/24/10 Ai       | nalyzed: 11 | /29/10         |        |              |       |
| Calcium                         | 19200  | 100                | ug/l  | 1000           | 17300            | 191         | 75-125         |        |              | QL-01 |
| Magnesium                       | 7730   | 50.0               | н     | 1000           | 6970             | 76.1        | 75-125         |        |              |       |
| Potassium                       | 12700  | . 100              | н     | 10000          | 1930             | 108         | 75-125         |        |              |       |
| Sodium                          | 4610   | 200                | Ìt    | 1000           | 3740             | 87.1        | 75-125         |        |              |       |
| Matrix Spike (ATK0247-MS3)      |        | Source: 1011135    | 5-18  | Prepared: 1    | 11/24/10 A       | nalyzed: 11 | /30/10         |        |              |       |
| Calcium                         | 48400  | 100                | ug/l  | 1000           | 47100            | 123         | 75-125         |        |              |       |
| Magnesium .                     | 4640   | 50.0               | "     | 1000           | 3600             | 104         | 75-125         |        |              |       |
| Potassium                       | 11400  | 100                | И     | 10000          | 873              | 105         | 75-125         |        |              |       |
| Sodium                          | 3780   | 200                | н     | 1000           | 2760             | 101         | 75-125         |        |              |       |
| Matrix Spike Dup (ATK0247-MSD1) |        | Source: 101113     | 5-06  | Prepared: 1    | 11/24/10 A       | nalyzed: 11 | /29/10         |        |              |       |
| Calcium                         | 16000  | 100                | ug/l  | 1000           | 14900            | 110         | 75-125         | 2.21   | 25           |       |
| Magnesium                       | 7850   | 5.0,0              | 17    | 1000           | 6740             | 111         | 75-125         | 1.61   | 25           |       |
| Potassium                       | 11700  | . 100              | l)    | 10000          | 1040             | 107         | 75-125         | 0.745  | 25           |       |
| Sodium                          | 4070   | 200                | h     | 1000           | 3050             | 102         | 75-125         | 0.171  | 25           |       |
| Matrix Spike Dup (ATK0247-MSD2) |        | Source: 101113:    | 5-15  | Prepared:      | 11/24/10 A       | nalyzed: 11 | 1/30/10        |        |              |       |
| Calcium                         | 19200  | 100                | ug/l  | 1000           | 17300            | 193         | 75-125         | 0.0799 | 25           | QL-01 |
| Magnesium                       | 7820   | 50.0               | u u   | 1000           | 6970             | 85.3        | 75-125         | 1.18   | 25           |       |
| Potassium                       | 12400  | 100                | 11    | 10000          | 1930             | 104         | 75-125         | 2.50   | 25           |       |
| Sodium                          | 4610   | 200                | 'n    | 1000           | 3740             | 87.2        | 75-125         | 0.0236 | 25           |       |
| Matrix Spike Dup (ATK0247-MSD3) |        | Source: 101113     | 5-18  | Prepared:      | 11/24/10 A       | nalyzed: 11 | 1/30/10.       |        |              |       |
| Calcium                         | 47300  | 100                | ug/l  | 1000           | 47100            | 15.6        | 75-125         | - 2.25 | 25           | QL-01 |
| Magnesium                       | 4690   | 50.0               | u     | 1000           | 3600             | 109         | 75-125         | 1.07   | 25           |       |
| Potassium                       | 11100  | 100                | 11    | 10000          | 873              | 103         | 75-125         | 2.20   | 25           |       |
| Sodium                          | 3760   | 200                | 11    | 1000           | 2760             | 100         | 75-125         | 0.407  | 25           |       |

Excelchem Environmental Lab.

Central Valley Regional Water Quality Control Brd 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:
Project Number:
Project Manager:

Walker Mine 10-026-150 Leticia Valadez

Date Reported: 12/17/10 14:20

#### Wet Chemistry - Quality Control

| Analyte                      | Result | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|------------------------------|--------|--------------------|----------|----------------|------------------|----------|----------------|-------|--------------|-------|
| Batch ATK0166 - SM 4500-H+ B |        |                    |          |                |                  |          |                | -     |              |       |
| Duplicate (ATK0166-DUP1)     |        | Source: 101113     | 35-22    | Prepared &     | k Analyzed:      | 11/18/10 |                |       |              |       |
| рН                           | -4.45  | 0.100              | pH Units |                | 4.44             |          |                | 0.225 | 20           | Field |
| Duplicate (ATK0166-DUP2)     |        | Source: 101113     | 35-23    | Prepared &     | k Analyzed:      | 11/18/10 |                |       |              |       |
| рН                           | 6.89   | 0.100              | pH Units | -              | 6.88             |          |                | 0.145 | 20           | Field |
| Batch ATK0167 - EPA 120.1    |        |                    |          |                |                  | •        |                |       |              |       |
| Duplicate (ATK0167-DUP1)     |        | Source: 101113     | 35-22    | Prepared &     | Analyzed:        | 11/18/10 |                |       |              |       |
| Specific Conductance (EC)    | 399    | 5.00               | nS/cin   |                | 402              |          |                | 0.749 | 20           |       |
| Duplicate (ATK0167-DUP2)     |        | Source: 101113     | 35-23    | Prepared &     | k Analyzed:      | 11/18/10 |                |       |              |       |
| Specific Conductance (EC)    | 30.6   | 5.00               | uS/em    |                | 30.7             |          |                | 0.326 | 20           |       |
| Batch ATK0171 - SM2340B      |        |                    |          |                |                  |          |                |       |              |       |
| Blank (ATK0171-BLK1)         |        |                    |          | Prepared &     | & Analyzed:      | 11/18/10 |                |       |              |       |
| Total Hardness               | ND     | 5.00               | mg/L     |                | <del></del>      |          |                |       |              |       |
| LCS (ATK0171-BS1)            |        |                    |          | Prepared &     | & Analyzed:      | 11/18/10 |                |       |              |       |
| Total Hardness               | 56.0   | 5.00               | mg/L     | 50.0           |                  | 112      | 80-120         |       |              |       |
| LCS Dup (ATK0171-BSD1)       |        |                    |          | Prepared &     | & Analyzed:      | 11/18/10 |                |       |              |       |
| Total Hardness               | 52.0   | 5.00               | mg/L     | 50.0           |                  | 104      | 80-120         | 7.41  | 20           |       |
| Duplicate (ATK0171-DUP1)     | :      | Source: 10111      | 35-12    | Prepared &     | & Analyzed       | 11/18/10 |                |       |              |       |
| Total Hardness               | 12.0   | 5.00               | mg/L     | _              | 10,0             |          |                | 18.2  | 200          |       |

Excelchem Environmental Lab.

3- ---

Central Valley Regional Water Quality Control Brd Project: Walker Mine
11020 Sun Center Dr. #200 Project Number: 10-026-150 Date Reported:
Rancho Cordova, CA 95670 Project Manager: Leticia Valadez 12/17/10 14:20

#### Wet Chemistry - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|----------------|------------------|----------|----------------|------|--------------|-------|
| Batch ATK0171 - SM2340B         |        |                    |       |                |                  |          |                |      |              |       |
| Duplicate (ATK0171-DUP2)        |        | Source: 101113     | 5-23  | Prepared &     | k Analyzed:      | 11/18/10 |                |      |              |       |
| Total Hardness                  | 16.0   | 5.00               | mg/L  |                | 12.0             |          |                | 28.6 | 200          |       |
| Matrix Spike (ATK0171-MS1)      |        | Source: 101113:    | 5-01  | Prepared &     | Analyzed:        | 11/18/10 |                |      |              |       |
| Total Hardness                  | 98.0   | 5.00               | mg/L  | 50.0           | 48.0             | 100      | 75-125         |      |              |       |
| Matrix Spike Dup (ATK0171-MSD1) |        | Source: 101113:    | 5-01  | Prepared &     | k Analyzed:      | 11/18/10 |                |      |              |       |
| Total Hardness                  | 98.0   | 5.00               | mg/L  | 50.0           | 48.0             | 100 .    | 75-125         | 0.00 | 20           |       |
| Batch ATK0186 - SM2320B         |        |                    |       |                |                  |          |                |      |              |       |
| Blank (ATK0186-BLK1)            |        |                    |       | Prepared &     | t Analyzed:      | 11/19/10 |                |      |              |       |
| Bicarbonate Alkalinity          | ND     | 5.00               | mg/L  |                |                  |          |                |      |              | -     |
| Carbonate Alkalinity            | ND     | 5.00               | И     |                |                  |          |                |      |              |       |
| Hydroxide Alkalinity            | ND     | 5.00               | и     |                |                  |          |                |      |              |       |
| Total Alkalinity                | ND     | 5.00               | . "   | . "            |                  |          |                |      |              | -     |
| Blank (ATK0186-BLK2)            |        | •                  |       | Prepared &     | ż Analyzed:      | 11/22/10 |                |      |              |       |
| Bicarbonate Alkalinity          | ND     | 5.00               | ıng/L | •              |                  |          |                |      |              |       |
| Carbonate Alkalinity            | ND     | 5.00               | 11    |                |                  |          |                | •    |              |       |
| Hydroxide Alkalinity            | ND     | 5.00               | 11    |                |                  |          |                |      |              |       |
| Total Alkalinity                | ND     | 5.00               | 17    |                |                  |          |                |      | -            |       |
| LCS (ATK0186-BS1)               |        |                    |       | Prepared &     | k Analyzed:      | 11/19/10 |                |      |              |       |
| Total Alkalinity                | 104    | 5.00               | mg/L  | 100            |                  | 104      | 80-120         |      |              |       |
| LCS (ATK0186-BS2)               |        |                    |       | Prepared &     | k Analyzed:      | 11/22/10 |                |      |              |       |
| Total Alkalinity                | 118    | 5.00               | mg/L  | 100            | -                | 118      | 80-120         |      |              |       |

Excelchem Environmental Lab.

3- A---

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number: Project Manager: 10-026-150

Leticia Valadez

Date Reported: 12/17/10 14:20

# Wet Chemistry - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result    | %REC     | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|----------------|---------------------|----------|----------------|------|--------------|-------|
| Batch ATK0186 - SM2320B         |        |                    |       |                |                     |          |                |      |              |       |
| LCS Dup.(ATK0186-BSD1)          | *      | ·                  |       | Prepared &     | Analyzed:           | 11/19/10 |                |      |              |       |
| Total Alkalinity                | 106    | 5.00               | mg/L  | 100            |                     | 106      | 80-120         | 1.90 | 20           |       |
| LCS Dup (ATK0186-BSD2)          |        |                    |       | Prepared &     | : Analyzed:         | 11/22/10 |                |      |              |       |
| Total Alkalinity                | 98.0   | 5.00               | mg/L  | 100            |                     | 98.0     | 80-120         | 18.5 | 20           |       |
| Duplicate (ATK0186-DUP1)        |        | Source: 1011135    | 5-10  | Prepared &     | Analyzed:           | 11/19/10 |                |      | 4            |       |
| Bicarbonate Alkalinity          | 64.0   | 5.00               | mg/L  |                | 70.0                |          | •              | 8.96 | 20           |       |
| Carbonate Alkalinity            | ND     | 5.00               | н     |                | ND                  |          |                |      | 20           |       |
| Hydroxide Alkalinity            | ND     | 5,00               | 11    |                | ND                  |          |                |      | 20           |       |
| Total Alkalinity                | 64.0   | 5.00               | 11    |                | 70.0                |          |                | 8.96 | 20           |       |
| Duplicate (ATK0186-DUP2)        |        | Source: 1011135    | 5-11  | Prepared &     | Analyzed:           | 11/19/10 |                |      |              |       |
| Bicarbonate Alkalinity          | 62.0   | 5.00               | mg/L  | <b>4</b>       | 64.0                |          |                | 3.17 | 20           |       |
| Carbonate Alkalinity            | ND     | 5.00               | 'n    |                | ND                  |          |                |      | 20           |       |
| Hydroxide Alkalinity            | ND     | 5,00               | H     |                | ND                  |          |                |      | 20           |       |
| Total Alkalinity                | 62.0   | 5.00               | h     |                | 64.0                |          | •              | 3.17 | 20           |       |
| Matrix Spike (ATK0186-MS1)      |        | Source: 1011135    | 5-02  | Prepared &     | k Analyzed:         | 11/19/10 |                |      |              |       |
| Total Alkalinity                | 180    | 5.00               | mg/L  | 100            | 76.0                | 104      | 80-120         |      |              |       |
| Matrix Spike (ATK0186-MS2)      |        | Source: 1011135    | 5-03  | Prepared &     | k Analyzed:         | 11/22/10 | -              |      |              |       |
| Total Alkalinity                | . 136  | 5.00               | mg/L  | 100            | 30.0                | 106      | 80-120         |      |              |       |
| Matrix Spike Dup (ATK0186-MSD1) |        | Source: 101113:    | 5-02  | Prepared &     | ኔ Analyzed:         | 11/19/10 |                | ٠    |              |       |
| Total Alkalinity                | 182    | 5,00.              | mg/L  | 100            | 76.0                | 106      | 80-120         | 1.10 | 20           |       |
| Matrix Spike Dup (ATK0186-MSD2) | *      | Source: 101113     | 5-03  | Prepared &     | ն <b>A</b> nalyzed: | 11/22/10 |                |      |              |       |
| Total Alkalinity                | 136    | 5.00               | mg/L  | 100            | 30.0                | 106      | 80-120         | 0.00 | 20           |       |

Excelchem Environmental Lab.

3 - A---

Central Valley Regional Water Quality Control Brd 11020 Sun Center Dr. #200

Rancho Cordova, CA 95670

Project: Project Number: Walker Mine

Project Number: Project Manager: 10-026-150 Leticia Valadez Date Reported: 12/17/10 14:20

#### Wet Chemistry - Quality Control

| Analyte                  |   | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits  | RPD  | RPD<br>Limit | Notes |
|--------------------------|---|--------|--------------------|-------|----------------|------------------|--------------|-----------------|------|--------------|-------|
| Batch ATL0022 - SM 2540C | • |        |                    |       |                |                  |              | ٠               |      |              |       |
| Blank (ATL0022-BLK1)     |   |        |                    |       | Prepared: 1    | 1/24/10 A        | nalyzed: 12  | /06/10          |      |              |       |
| Total Dissolved Solids   |   | ND     | 15.0               | mg/L  |                |                  |              |                 |      |              |       |
| Blank (ATL0022-BLK2)     |   |        |                    |       | Prepared: 1    | 1/24/10 A        | nalyzed: 12  | /0 <b>6</b> /10 |      |              |       |
| Total Dissolved Solids   |   | ND     | 15.0               | mg/L  |                |                  |              |                 |      |              |       |
| Duplicate (ATL0022-DUP1) |   |        | Source: 1011135    | 5-08  | Prepared: 1    | 1/24/10 A        | nalyzed: 12. | /06/10          |      |              |       |
| Total Dissolved Solids   |   | 154    | 15.0               | mg/L  |                | 143              |              |                 | 7.41 | 20           |       |
| Duplicate (ATL0022-DUP2) |   |        | Source: 1011135    | 5-22  | Prepared: 1    | 1/24/10 A        | nalyzed: 12  | /06/10          |      |              |       |
| Total Dissolved Solids   |   | 316    | 15.0               | mg/L  |                | 307              |              |                 | 2.89 | 20           |       |

Excelchem Environmental Lab.

Central Valley Regional Water Quality Control Brd 11020 Sun Center Dr. #200

Rancho Cordova, CA 95670

Project:
Project Number:
Project Manager:

Walker Mine .

10-026-150 Leticia Valadez Date Reported: 12/17/10 14:20

#### Ion Chromatography - Quality Control

| Analyte                   | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result        | %REC        | %REC<br>Limits | RPO   | RPO<br>Limit | Notes |
|---------------------------|--------|--------------------|-------|----------------|-------------------------|-------------|----------------|-------|--------------|-------|
| Batch ATK0217 - EPA 300.0 |        |                    |       |                |                         |             |                |       |              |       |
| Blank (ATK0217-BLK1)      |        |                    |       | Prepared &     | Analyzed:               | 11/22/10    |                |       |              |       |
| Chloride                  | NO     | 0.5                | mg/L  |                |                         | •           |                |       |              |       |
| Sulfate as SO4            | NO     | 0.5                | н     |                |                         |             |                |       |              |       |
| Blank (ATK0217-BLK2)      |        |                    |       | Prepared &     | Analyzed:               | 11/22/10    |                |       |              |       |
| Chloride                  | ND     | 0.5                | mg/L  |                |                         |             |                |       |              |       |
| Sulfate as SO4            | NO     | 0.5                | 17    |                |                         |             |                |       |              |       |
| LCS (ATK0217-BS1)         |        |                    |       | Prepared &     | k Analyzed:             | 11/22/10    | -              |       |              |       |
| Chloride                  | 10.4   | 0.5                | mg/L  | 10.0           |                         | 104         | 80-12 <b>0</b> |       |              |       |
| Sulfate as SO4            | 9.0    | 0.5                | n     | 10.0           |                         | 90.2        | 80-12 <b>0</b> |       |              |       |
| LCS (ATK0217-BS2)         |        |                    |       | Prepared:      | 11/22/10 A              | nalyzed: 11 | /30/10         |       |              |       |
| Chloride                  | 10.1   | 0.5                | mg/L  | 10.0           |                         | 101         | 80-120         |       |              |       |
| Sulfate as SO4            | 10.5   | 0.5                | н     | 10.0           |                         | 105         | 80-120         |       |              |       |
| LCS Dup (ATK0217-BSD1)    |        |                    |       | Prepared &     | k Analyzed:             | 11/22/10    |                |       |              |       |
| Chloride                  | 11.4   | 0.5                | mg/L  | 10.0.          |                         | 114         | 80-120         | 8.91  | 20           |       |
| Sulfate as SO4            | 9.6    | 0.5                | 17    | 10.0           |                         | 95.5        | 80-120         | 5.79  | 20           |       |
| LCS Dup (ATK0217-BSD2)    |        |                    |       | Prepared:      | 11/22/10 <sub>.</sub> A | nalyzed: 11 | /30/10         |       |              |       |
| Chloride                  | 10.2   | 0.5                | mg/L  | 10.0           |                         | 102         | 80-120         | 0.733 | 20           |       |
| Sulfate as SO4            | 10.6   | 0.5                | н     | 10.0           |                         | 106         | 80-120         | 1.04  | 20           |       |
| Duplicate (ATK0217-DUP1)  |        | Source: 101113     | 5-19  | Prepared &     | k Analyzed:             | 11/22/10    |                |       |              |       |
| Chloride                  | 0.6    | 0.5                | mg/L  |                | 0.5                     |             |                | 12.1  | 20           |       |
| Sulfate as SO4            | 6.5    | . 0.5              | 11    |                | 6.1                     |             |                | 5.84  | 20           |       |

Excelchem Environmental Lab.

---

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Leticia Valadez

Date Reported: 12/17/10 14:20

#### Notes and Definitions

QL-01 Sample results for the QC batch were accepted based on LCS/LCSD percent recoveries and RPD values.

Field This analyte was analyzed outside of the EPA recommended hold time of ASAP and should be analyzed in the field.

ND Analyte not detected at reporting limit.

NR Not reported

Excelchem Environmental Lab.

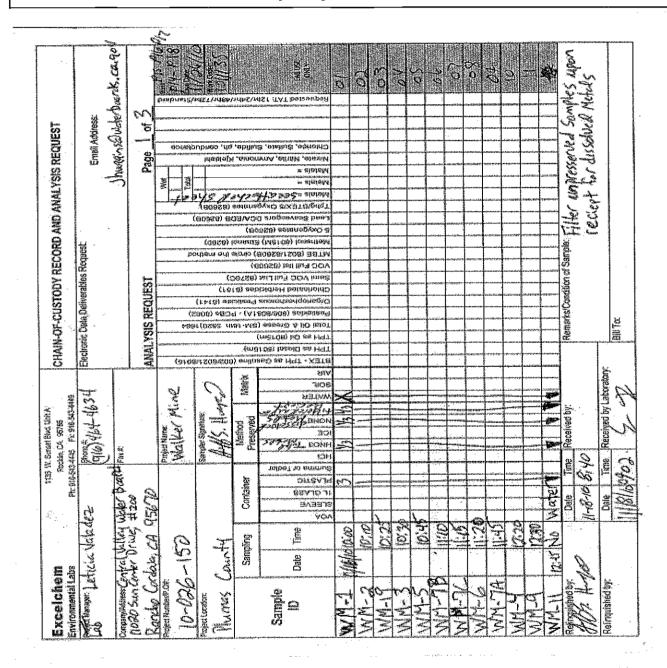
3 - ----

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200

Project:

Walker Mine


Project Number:

10-026-150

Rancho Cordova, CA 95670 Project Manager:

Leticia Valadez

Date Reported: 12/17/10 14:20



Excelchem Environmental Lab.



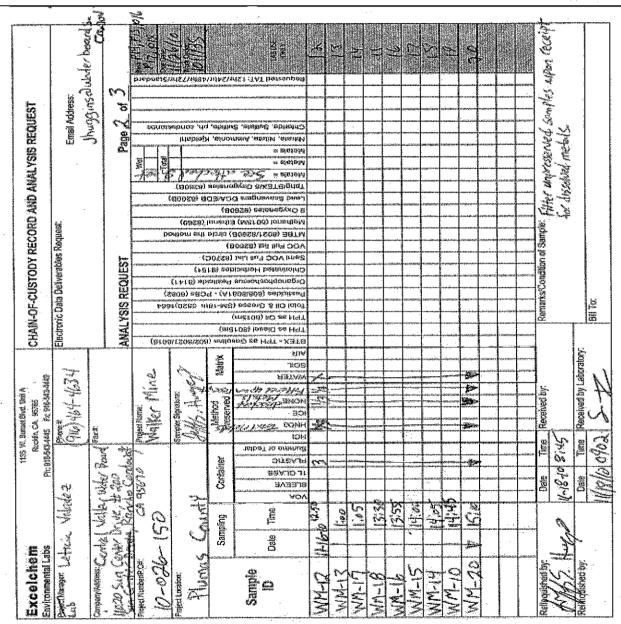
Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200

Project:

Walker Mine

Project Number:


10-026-150

Rancho Cordova, CA 95670

Project Manager:

Leticia Valadez

Date Reported: 12/17/10 14:20



Excelchem Environmental Lab.

Central Valley Regional Water Quality Control Brd

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Leticia Valadez

Date Reported: 12/17/10 14:20

|                                                                                    | Triblic Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of th | Thursqing Aude, bands. ca. gol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>L</b> C                                                   | borebnete<br>10 mm                      | 17/7/CII 2/19/18/2/19/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | progress               | utst stad bereugsvil<br>High<br>Million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ã             | K<br>C                                 | <b>\$6</b>                              |                                        |                                             |                                         |                                         |            |                                                        |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | がなる                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|------------|--------------------------------------------------------|--------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| IS REQUEST                                                                         | Erzè Adress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ainの記載                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Page 3 of                                                    | *************************************** | TURDS O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***********            | Meinie "Arren<br>Alteine Painien, Su<br>Criorete, Sulfain, Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 410014344441<br>410014354841           |                                             |                                         |                                         | 4          | -11-011-1-1                                            | derek diseri |                                         | -19:011501:sd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | All alonida.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | * 3                                     | (acess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) sopau<br>2020vi      | d858) ankonodys S &<br>G argoneorad bos J<br>Sylva argonetry<br>The argonetry<br>A a S & argonetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                        |                                         |                                        | **********                                  | ***********                             |                                         | *******    |                                                        |              |                                         | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / 2.20777800000000000000000000000000000000 |
| CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST                                       | eratries Request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EST                                                          | **************************************  | odkam en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2000)<br>()<br>(2000) | Chiadrawa Parisca<br>Sens VOC Full Lat<br>VOC Full sal (\$2605)<br>saffer (\$031/62605)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                        |                                         |                                        | *********                                   |                                         |                                         |            | **************************************                 | 2000         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RemarksCondition of Sample: Filles and presserved<br>Research for dissolved in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |
| ANGFCUST                                                                           | Electronic Data Deliverables Request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANALYSIS REDUEST                                             | P6308614486694D4839644                  | zace) sa:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24-(V)                 | 1911 os Chesei (8016m)<br>1914 os Cheseso (1<br>1916 Cil & Cheseso (1<br>1921/1921 (1921/1923)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | citaciata.    |                                        | 0446404646                              |                                        |                                             | *************************************** | *************************************** |            | **********                                             |              | 31-36300                                | CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE | Reneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e lie                                      |
| Samuenção monte                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | *************************************** | eu son so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3) 50480<br>3) 50480   | ANTER<br>GOLL<br>AIR<br>AIR - TPH as Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5           | ************************************** |                                         | *********                              | 1001031010<br>10010101010101010101010101010 | *********                               | *********                               | ~~~        |                                                        |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CONTRACTION AND AND AND AND AND AND AND AND AND AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Received by Laboration;                    |
| 1735 W. Sursai BM. Unich.<br>Roden, CA. 98766<br>Pr. 916-EKS-4446 Pr. 919-541-1448 | 55%-11h (Mb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Section of the Feature of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Sectio | 110/10/1803/401011                                           | Wild Wille                              | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ansang.                | A Live Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the | er.           | ************************************** |                                         | ************************************** |                                             | *********                               |                                         |            |                                                        |              | **************************************  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
|                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16,4260<br>1,4560<br>1,4560                                  |                                         | CANSSINGER AND THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR | Container              | UVELIC<br>II COVER<br>STEENE<br>ACV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                        |                                         |                                        | •                                           |                                         |                                         | 1-145-1457 | *101/40/27                                             | 1001 MISSE   | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |
| cit                                                                                | Figure Wild American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Company Control Valley to by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1830 Sun Certer 1862/£ #200<br>1860 des Certaire, 104 956/10 | 2                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Buydues                | Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11-11-11 1200 | 12:45                                  | 13,00                                   |                                        |                                             | *                                       | 44                                      |            |                                                        |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |
| Excelchem<br>Ervirenmental Labs                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Assay, printed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1885 S.C.                                                    | Paled Municipal Co.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | <u>\$</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05-MW         | WW-31                                  | 27.5                                    |                                        |                                             |                                         |                                         |            | SHEETH HARRING CO. CO. CO. CO. CO. CO. CO. CO. CO. CO. |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Walley of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control | Wellingshoot by                            |

Excelchem Environmental Lab.



Central Valley Regional Water Quality Control Brd Project: Walker Mine 11020 Sun Center Dr. #200 10-026-150 Project Number: Date Reported: Rancho Cordova, CA 95670 Leticia Valadez 12/17/10 14:20 Project Manager: WORK ORDER 6/1/35 Sample Integrity Date Received: 11/13/10 Section 1 - Sample Arrival Info **EXCELCHEM Courier** Fed-Ex Other: (Walk-In) Sample Transport: ONTRAC UPS USPS Transported In: (Tee Chest) Box Bubble Wrap Packing Peanuts Feam Describe type of packing materials: Chilled to Touch Samples Received: Has chilling process begun? fee Chest Temperature(s) (°C): Temperature of Samples (°C): Was temperature in Range?! (V) Section 2 - Bottle/Analysis Info. Did all bottles arrive unbroken and intact?
Did all bottle labels agree with COC? Were correct containers used for the tests requested? Were correct preservations used for the tests requested? Was a sufficient amount of sample sent for tests indicated? Were bubbles present in VOA Vials?: (Volatile Methods Only) Section 3 - COC Info. <u>Completed</u> Yes No Completed Yes 140 Comments Analysis Requested Samples errived within holding time Was COC Received Date Sampled Any hold times less than 72 hrs Time Sampled Client Name Sample ID Address/Telephone# Rush TAT Section 4 - Comments / Discrepancies Notified by: Was Client notified of discrepancies: Samples Labeled by: Labels reviewed by:
Bin #s: P/Y, P/S A
COC Scanned/Attached by:

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Date/Time:



Form completed by:

# EXCELCHEM Environmental Labs

1135 W Sunset Boulevard Suite A Rocklin, CA 95765 Phone# 916-543-4445 Fax# 916-543-4449



ELAP Certificate No.: 2119

25 July 2011 Jeff Huggins RWQC Central Valley 11020 Sun Center Dr. #200

Rancho Cordova, CA 95670

RE: Walker Mine

Work order number:1106070

Enclosed are the results of analyses for samples received by the laboratory on 06/02/11 16:00. All Quality Control results are within acceptable limits except where noted as a case narrative. If you have any questions concerning this report, please feel free to contact the laboratory.

| Sincerery,                |
|---------------------------|
| •                         |
|                           |
|                           |
| John Somers, Lab Director |

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:
Project Number:
Project Manager:

Walker Mine 10-026-150 Jeff Huggins

Date Reported: 07/25/11 11:47

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | •   | Date Sampled     | Date Received  |
|-----------|---------------|--------|-----|------------------|----------------|
| WM-30     | 1106070-01    | Water  |     | . 06/01/11 13:30 | 06/02/11 16:00 |
| WM-40     | 1106070-02    | Water  |     | 06/01/11 13:30   | 06/02/11 16:00 |
| WM-3      | 1106070-03    | Water  |     | 06/01/11 15:50   | 06/02/11 16:00 |
| WM-19     | 1106070-04    | Water  |     | 06/01/11 15:55   | 06/02/11 16:00 |
| WM-4      | 1106070-05    | Water  |     | 06/01/11 16:20   | 06/02/11 16:00 |
| WM-9      | 1106070-06    | Water  | ٠.  | 06/01/11 16:30   | 06/02/11 16:00 |
| WM-5      | 1106070-07    | Water  |     | 06/02/11 07:40   | 06/02/11 16:00 |
| WM-1      | 1106070-08    | Water  | 2.5 | 06/02/11 08:00   | 06/02/11 16:00 |
| WM-2      | 1106070-09    | Water  |     | 06/02/11 08:10   | 06/02/11 16:00 |
| WM-7A     | 1106070-10    | Water  |     | 06/02/11 09:20   | 06/02/11 16:00 |
| WM-7B     | 1106070-11    | Water  |     | 06/02/11 08:45   | 06/02/11 16:00 |
| WM-7C     | 1106070-12    | Water  |     | 06/02/11 08:50   | 06/02/11 16:00 |
| WM-6      | 1106070-13    | Water  |     | 06/02/11 09:00   | 06/02/11 16:00 |
| WM-20     | 1106070-14    | Water  |     | 06/02/11 10:30   | 06/02/11 16:00 |

Excelchem Environmental Lab.

Dr 2-

RWQC Central Valley

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Project Number:

Walker Mine

Project Manager:

10-026-150 Jeff Huggins

Date Reported: 07/25/11 11:47

# WM-30 1106070-01 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method          | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-----------------|-------|
| Aetals by 200 series      |        |                    |          |         |                  |                  |                 |       |
| Dissolved Aluminum        | 3860   | 50.0               | ug/l     | AUF0201 | 06/10/11         | 07/20/11         | EPA 200.7       | ٠     |
| Aluminum                  | 3400   | 50.0               | II       | AUF0292 | 06/09/11         | 07/19/11         |                 |       |
| Dissolved Arsenic         | ND     | 10.0               | ų .      | AUF0201 | 06/10/11         | 07/20/11         | . "             |       |
| Arsenic                   | ND     | 10.0               | Ŋ        | AUF0292 | 06/09/11         | 07/18/11         | ч               |       |
| Dissolved Cadmium         | 9.8    | 5.0                | II.      | AUF0201 | 06/10/11         | 07/20/11         | ff <sub>.</sub> |       |
| Cadmium                   | 9.1    | 5.0                | 11       | AUF0292 | 06/09/11         | 07/18/11         | U               |       |
| Calcium                   | 33200  | 100                | 11       |         | н                | н                | H               |       |
| Dissolved Copper          | 11900  | . 5.0              | 11       | AUF0201 | 06/10/11         | 07/20/11         | н               |       |
| Copper                    | 11900  | 5.0                | н        | AUF0292 | 06/09/11         | 07/18/11         | н               |       |
| Dissolved Iron            | 100    | 20.0               | "        | AUF0201 | 06/10/11         | 07/20/11         | н               |       |
| ron                       | 1090   | 20.0               | n .      | AUF0292 | 06/09/11         | 07/19/11         | Ŋ               |       |
| /lagnesium                | 6140   | 50.0               | Н        | n       | n                | 07/18/11         | tt .            |       |
| otassium                  | 2180   | 100                | II       | н       | "                | и .              | u               |       |
| Sodium                    | 2760   | 200                | 11       | н       | ,,               | н                | p               |       |
| Dissolved Zinc            | 748    | 10.0               | 11       | AUF0201 | 06/10/11         | 07/20/11         | n               |       |
| Zine .                    | 621    | 10.0               | H        | AUF0292 | 06/09/11         | 07/20/11         | н               |       |
| Wet Chemistry             | •      |                    |          |         |                  |                  |                 |       |
| Total Alkalinity          | ND     | 5.00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B         |       |
| Bicarbonate Alkalinity    | ND     | 5.00               | n n      | н       | ři.              | н                | 11              |       |
| Carbonate Alkalinity      | ND ·   | 5.00               | lt.      | н       |                  | ,                | li .            |       |
| Specific Conductance (EC) | 348    | 5.00               | uS/cm    | AUF0090 | 06/06/11         | 06/06/11         | EPA 120.1       |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B         |       |
| ЭH                        | 3.99   | 0.100              | pH Units | AUF0088 | 06/03/11         | 06/03/11         | SM 4500-H+ B    | Field |
| Total Dissolved Solids    | 248    | 15.0               | mg/L     | AUF0141 | 06/07/11         | 06/13/11         | SM 2540C        |       |
| Total Hardness            | 378    | 5.00               |          | AUF0192 | 06/13/11         | 06/13/11         | SM2340B         |       |

Excelchem Environmental Lab.

RWQC Central Valley

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Jeff Huggins

Date Reported:

07/25/11 11:47

# WM-30 1106070-01 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ion Chromatography |        | ·                  |       |         |                  |                  | _         |       |
| Chloride           | 0.7    | 0.5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative

RWQC Central Valley

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager: Jeff Huggins

Date Reported: 07/25/11 11:47

# WM-30

# 1106070-01RE1 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ion Chromatography |        |                    |       |         |                  |                  |           |       |
| Sulfate as SO4     | 147    | 5.0                | mg/L  | AUF0117 | 06/09/11         | 06/09/11         | EPA 300.0 |       |

Excelchem Environmental Lab.

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:
Project Number:
Project Manager:

Walker Mine 10-026-150 Jeff Huggins

Date Reported: 07/25/11 11:47

# WM-40 1106070-02 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch     | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|-----------|------------------|------------------|-------------|-------|
| Metals by 200 series      |        |                    |          |           |                  |                  |             |       |
| Dissolved Aluminum        | 4300   | 50.0               | ug/l     | AUF0201   | 06/10/11         | 07/20/11         | EPA 200.7   |       |
| Aluminum                  | 3340   | 50.0               | n'       | AUF0292   | 06/09/11         | 07/19/11         | 11          |       |
| Dissolved Arsenic         | ND     | 10.0               | . 11     | AUF0201   | 06/10/11         | 07/20/11         | 11          |       |
| Arsenic                   | ND     | 10.0               | И        | AUF0292   | 06/09/11         | 07/18/11         | 11          |       |
| Dissolved Cadmium         | 10.7   | 5.0                | h        | AUF0201   | 06/10/11         | 07/20/11         | 11          |       |
| Cadmium                   | 8.8    | 5.0                | II       | AUF0292   | 06/09/11         | 07/18/11         | p           |       |
| Calcium                   | 34600  | 100                | И        | ħ         | 11               | и                | n           | •     |
| Dissolved Copper          | 13500  | 5.0                | н        | AUF0201   | 06/10/11         | 07/20/11         | n           |       |
| Copper                    | 12200  | 5.0                | н        | AUF0292   | 06/09/11         | 07/18/11         | b           |       |
| Dissolved Iron            | 111    | 20.0               | It       | AUF0201   | 06/10/11         | 07/20/11         | n           |       |
| Iron                      | 851    | 20.0               | ıt       | AUF0292   | 06/09/11         | 07/19/11         | и           |       |
| Magnesium                 | 6290   | 50.0               | it .     | н         | , h              | 07/18/11         | н           |       |
| Potassium                 | 2250   | 100                | 11       | н         | н                | 19               | , .Dt       |       |
| Sodium                    | 2660   | 200                | 11       | ч         | н                | h                | . н         |       |
| Dissolved Zinc            | 787    | 10.0               | Ir       | AUF0201   | 06/10/11         | 07/20/11         | ij          |       |
| Zine                      | 634    | 10.0               | D        | AUF0292   | 06/09/11         | 07/20/11         | . н         |       |
| Wet Chemistry             |        |                    |          |           |                  |                  |             |       |
| Total Alkalinity          | ND     | 5.00               | mg/L     | . AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| Bicarbonate Alkalinity    | ND     | 5.00               | 11       | n         | 11               | н                | 11          |       |
| Carbonate Alkalinity      | ND     | 5.00               | h        | . 10      | 11               | н                | 11          |       |
| Specific Conductance (EC) | 348    | 5.00               | uS/cm    | AUF0090   | 06/06/11         | 06/06/11         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | AUF0193   | 06/15/11         | 06/15/11         | SM2320B     |       |
| pH                        | 4.03   | 0.100              | pH Units | AUF0088   | 06/03/11         | 06/03/11         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 243    | 15.0               | mg/L     | AUF0141   | 06/07/11         | 06/13/11         | SM 2540C    |       |
| Total Hardness            | 280    | 5.00               | "        | AUF0192   | 06/13/11         | 06/13/11         | SM2340B     |       |

Excelchem Environmental Lab.

De Donn

RWQC Central Valley

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Jeff Huggins

Date Reported:

Project Manager:

07/25/11 11:47

## WM-40 1106070-02 (Water)

|    | Analyte          | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|----|------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
|    |                  |        |                    |       |         |                  |                  |           | _     |
| Io | n Chromatography |        |                    |       | _       |                  | <u> </u>         |           |       |
| Cl | loride           | 0.8    | 0,5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |

Excelchem Environmental Lab.

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number:

10-026-150

Jeff Huggins

Date Reported:

Project Manager:

07/25/11 11:47

#### WM-40 1106070-02RE1 (Water)

|    | Analyte           | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|----|-------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ic | on Chromatography |        |                    |       |         |                  |                  |           |       |
| Si | ılfate as SO4     | 143    | 5.0                | mg/L  | AUF0117 | 06/09/11         | 06/09/11         | EPA 300.0 |       |

Excelchem Environmental Lab.

RWQC Central Valley

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Walker Mine

Project Number:

10-026-150

Project Manager:

Jeff Huggins

Date Reported: 07/25/11 11:47

WM-3 1106070-03 (Water)

| Analyte                   | Result       | Reporting<br>Limit | . Units  | Batch   | Date<br>Prepared | Date<br>Analyzed | Method       | Notes |
|---------------------------|--------------|--------------------|----------|---------|------------------|------------------|--------------|-------|
| Metals by 200 series      |              |                    |          |         |                  |                  |              |       |
| Dissolved Aluminum        | ND           | 50.0               | ug/l     | AUF0201 | 06/10/11         | 07/20/11         | EPA 200.7    |       |
| Aluminum                  | 77.4         | 50.0               | 1)       | AUF0292 | 06/09/11         | 07/19/11         | u            |       |
| Dissolved Arsenic         | ND           | 10.0               | tr.      | AUF0201 | 06/10/11         | 07/20/11         | II.          |       |
| Arsenic                   | ND           | 10,0               | Ų        | AUF0292 | 06/09/11         | 07/18/11         | . "          |       |
| Dissolved Cadmium         | ND           | 5.0                | · u      | AUF0201 | 06/10/11         | 07/20/11         | tr           |       |
| Cadmium                   | ND           | 5.0                | #        | AUF0292 | 06/09/11         | 07/18/11         | 11           |       |
| Calcium                   | 9580         | 100                | U        | II      | "                | u                | 11           |       |
| Dissolved Copper          | 26.8         | 5.0                | 0        | AUF0201 | 06/10/11         | 07/20/11         | н            |       |
| Copper                    | 27.4         | 5.0                | ħ        | AUF0292 | 06/09/11         | 07/18/11         | 11           |       |
| Dissolved Iron            | 106          | 20.0               | 11       | AUF0201 | 06/10/11         | 07/20/11         | н            |       |
| Iron                      | 1 <b>1</b> 9 | 20,0               | n        | AUF0292 | 06/09/11         | 07/19/11         | и            |       |
| Magnesium                 | 4620         | 50.0               | п        | 11      | Ņ                | 07/18/11         | Ħ            |       |
| Potassium                 | 892          | 100                | н        | U       | н                | n                | н            |       |
| Sodium                    | 2480         | 200                | п        | 11      | 11               | n                | tt           |       |
| Dissolved Zinc            | ND           | 10.0               | и        | AUF0201 | 06/10/11         | 07/20/11         | t)           |       |
| Zine                      | ND           | 10.0               | . н      | AUF0292 | 06/09/11         | 07/20/11         | · u          |       |
| Wet Chemistry             |              |                    |          |         |                  |                  |              |       |
| Total Alkalinity          | 46.0         | 5.00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B      |       |
| Bicarbonate Alkalinity    | 46.0         | 5.00               | Ū.       | н       | tr               | u                | †I           |       |
| Carbonate Alkalinity      | ND           | 5.00               | et e     |         | 11               | tr.              | H .          |       |
| Specific Conductance (EC) | 88.3         | 5.00               | uS/cm    | AUF0090 | 06/06/11         | 06/06/11         | EPA 120.1    |       |
| Hydroxide Alkalinity      | ND           | 5.00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B      |       |
| pH                        | 7.33         | 0.100              | pH Units | AUF0088 | 06/03/11         | 06/03/11         | SM 4500-H+ B | Field |
| Total Dissolved Solids    | 72.0         | 15.0               | mg/L     | AUF0141 | 06/07/11         | 06/13/11         | SM 2540C     |       |
| Total Hardness            | 44.0         | 5.00               | "        | AUF0192 | 06/13/11         | 06/13/11         | SM2340B      |       |

Excelchem Environmental Lab.

RWQC Central Valley

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

nager: Jeff Huggins

Date Reported: 07/25/11 11:47

## WM-3 1106070-03 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ion Chromatography |        |                    |       |         |                  |                  |           |       |
| Chloride           | 0.6    | 0.5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |
| Sulfate as SO4     | 1.8    | 0,5                | O     | и       | ù                | И                | М         |       |

Excelchem Environmental Lab.

8- A--

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project Number:

Walker Mine

10-026-150 Jeff Huggins

Project Manager:

Date Reported: 07/25/11 11:47

WM-19 1106070-04 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
| Metals by 200 series      |        |                    |          |         |                  |                  |             |       |
| Dissolved Aluminum        | ND     | 50.0               | · ug/l   | AUF0201 | 06/10/11         | 07/20/11         | EPA 200.7   |       |
| Aluminum                  | ND     | 50.0               |          | AUF0292 | 06/09/11         | 07/19/11         | н .         |       |
| Dissolved Arsenic         | · ND   | 10.0               | M        | AUF0201 | 06/10/11         | 07/20/11         | н .         |       |
| Arsenic                   | ND     | 10.0               | u        | AUF0292 | 06/09/11         | 07/18/11         | . н         |       |
| Dissolved Cadmium         | ND     | 5.0                | n        | AUF0201 | 06/10/11         | 07/20/11         | н           |       |
| Cadmium                   | ND     | 5.0                | ₩ ,      | AUF0292 | 06/09/11         | 07/18/11         | 0           |       |
| Calcium                   | 18700  | 100                | H        | 19      | II               | 0                | μ.          |       |
| Dissolved Copper          | 3420   | 5.0                |          | AUF0201 | 06/10/11         | 07/20/11         | H           |       |
| Copper                    | 3870   | 5.0                | II       | AUF0292 | 06/09/11         | 07/18/11         | п           |       |
| Dissolved Iron            | 32.4   | 20.0               | P        | AUF0201 | 06/10/11         | 07/20/11         | н           |       |
| Iron                      | 70.4   | 20.0               | 0        | AUF0292 | 06/09/11         | 07/19/11         | n n         |       |
| Magnesium                 | 3670   | 50.0               | •        | .0      | п                | 07/18/11         | 0           |       |
| Potassium                 | 1620   | 100                | H        | 11      | 10               | 0                | H           |       |
| Sodium                    | 3020   | 200                |          | Ħ       | 0                | H                | n           |       |
| Dissolved Zine            | 249    | 10.0               | TI .     | AUF0201 | 06/10/11         | 07/20/11         | n           |       |
| Zinc                      | 193    | 10.0               | 0        | AUF0292 | 06/09/11         | 07/20/11         | <b>q</b>    |       |
| Wet Chemistry             |        | •                  |          |         |                  | •                |             |       |
| Total Alkalinity          | 12.0   | 5.00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| Bicarbonate Alkalinity    | 12.0   | 5.00               |          | n n     | 11               | н                | п           |       |
| Carbonate Alkalinity      | ND     | 5.00               | W.       | n       |                  | н                | н           |       |
| Specific Conductance (EC) | 162    | 5.00               | uS/cm    | AUF0090 | 06/06/11         | 06/06/11         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | ·5.00              | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| pH                        | 5.89   | 0.100              | pH Units | AUF0088 | 06/03/11         | 06/03/11         | SM 4500-H-B | Field |
| Total Dissolved Solids    | 133    | 15.0               | mg/L     | AUF0141 | 06/07/11         | 06/13/11         | SM 2540C    |       |
| Total Hardness            | 182    | 5.00               | 1        | AUF0192 | 06/13/11         | 06/13/11         | SM2340B     | •     |

Excelchem Environmental Lab.

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Jeff Huggins

Date Reported: 07/25/11 11:47

WM-19 1106070-04 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
|                    |        |                    |       |         |                  |                  |           | _     |
| Ion Chromatography |        |                    |       |         |                  |                  |           |       |
| Chloride           | 0.5    | 0.5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |
| Sulfate as SO4     | 56.3   | 0.5                | n     | U       | н                | IT .             | н         |       |

Excelchem Environmental Lab.

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:
Project Number:
Project Manager:

Walker Mine 10-026-150 Jeff Huggins

Date Reported: 07/25/11 11:47

## WM-4 1106070-05 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units          | Batch   | Date<br>Prepared | Date<br>Analyzed | Method       | Notes |
|---------------------------|--------|--------------------|----------------|---------|------------------|------------------|--------------|-------|
| Metals by 200 series      |        |                    |                |         |                  |                  |              |       |
| Dissolved Aluminum        | 95.9   | 50.0               | ug/l           | AUF0201 | 06/10/11         | 07/20/11         | EPA 200.7    |       |
| Aluminum                  | 76.1   | 50.0               | 0              | AUF0292 | 06/09/11         | 07/19/11         | и            |       |
| Dissolved Arsenic         | ND     | 10.0               | fr.            | AUF0201 | 06/10/11         | 07/20/11         | н            |       |
| Arsenic                   | ND     | 10.0               | . 0            | AUF0292 | 06/09/11         | 07/18/11         | п            |       |
| Dissolved Cadmium         | ND     | 5.0                | ft             | AUF0201 | 06/10/11         | 07/20/11         | н            |       |
| Cadmium                   | ND     | 5.0                | t <sub>t</sub> | AUF0292 | 06/09/11         | 07/18/11         | . п          | •     |
| Calcium                   | 9690   | 100                | 0 .            | и ,     | 17               | . "              | п            |       |
| Dissolved Copper          | 97.7   | 5.0                | 0              | AUF0201 | 06/10/11         | 07/20/11         | h            |       |
| Copper                    | 54.7   | 5.0                | 4              | AUF0292 | 06/09/11         | 07/18/11         | n            |       |
| Dissolved Iron            | 97.9   | 20.0               | er             | AUF0201 | 06/10/11         | 07/20/11         | и            |       |
| ron                       | 111    | 20.0               | 11             | AUF0292 | 06/09/11         | 07/19/11         | h            |       |
| Magnesium                 | 4180   | 50.0               | 41             | н       | 11               | 07/18/11         | h            |       |
| Potassium                 | 955    | 100                | 17             | lij .   | 11               | н.,              | H            |       |
| Sodium                    | 2630   | 200                | U              | . 11    | D.               | н                | (I           |       |
| Dissolved Zinc            | 12.6   | 10.0               | 0              | AUF0201 | 06/10/11         | 07/20/11         | It           |       |
| Zine                      | ND     | 10.0               | . н            | AUF0292 | 06/09/11         | 07/20/11         | 11           |       |
| Wet Chemistry             |        |                    |                |         |                  |                  |              |       |
| Fotal Alkalinity          | 44.0   | 5.00               | mg/L           | AUF0193 | 06/15/11         | 06/15/11         | SM2320B      |       |
| Bicarbonate Alkalinity    | 44.0   | 5.00               | н .            | 11      | н                | 11               | 11           |       |
| Carbonate Alkalinity      | ND ·   | 5.00               | н              | 11      | н                | "                | 11           |       |
| Specific Conductance (EC) | 85.2   | 5.00               | uS/cm          | AUF0090 | 06/06/11         | 06/06/11         | EPA 120.1    |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L           | AUF0193 | 06/15/11         | 06/15/11         | SM2320B      |       |
| ρΗ                        | 7.18   | 0.100              | pH Units       | AUF0088 | 06/03/11         | 06/03/11         | SM 4500-H+ B | Field |
| Fotal Dissolved Solids    | 75.0   | 15.0               | mg/L           | AUF0141 | 06/07/11         | 06/13/11         | SM 2540C     |       |
| Total Hardness            | 40.0   | 5.00               | K              | AUF0192 | 06/13/11         | 06/13/11         | SM2340B      |       |

Excelchem Environmental Lab.



RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number:

10-026-150

Project Manager: Jeff Huggins

Date Reported: 07/25/11 11:47

#### WM-4 1106070-05 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ion Chromatography |        |                    |       |         |                  |                  |           |       |
| Chloride           | 3.2    | 0.5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |
| Sulfate as SO4     | 2.4    | 0.5                | Ð     | n .     | 11*              | 11               | 11        |       |

Excelchem Environmental Lab.

Syl American

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number: Project Manager: 10-026-150 Jeff Huggins

Date Reported: 07/25/11 11:47

## WM-9 1106070-06 (Water)

| Analyte                   | Result        | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|---------------|--------------------|----------|---------|------------------|------------------|-------------|-------|
| Metals by 200 series      | -             |                    |          |         |                  |                  | •           |       |
| Dissolved Aluminum        | 81.2          | 50,0               | ug/l     | AUF0201 | 06/10/11         | 07/20/11         | EPA 200.7   |       |
| Aluminum                  | 95.8          | 50.0               | ħ        | AUF0292 | 06/09/11         | 07/20/11         | n           |       |
| Dissolved Arsenic         | ND            | 10.0               | п        | AUF0201 | 06/10/11         | 07/20/11         | n :         |       |
| Arsenic                   | ND            | 10.0               | n        | AUF0292 | 06/09/11         | 07/18/11         | н           |       |
| Dissolved Cadmium         | ND            | 5.0                | n        | AUF0201 | 06/10/11         | 07/20/11         | , n         |       |
| Cadmium                   | ND            | 5.0                | Ŋ        | AUF0292 | 06/09/11         | 07/18/11         | п           |       |
| Calcium                   | 6670          | 100                | п        | u       | 11               |                  | ı           |       |
| Dissolved Copper          | 33.9          | 5.0                | п        | AUF0201 | 06/10/11         | 07/20/11         | a ·         |       |
| Copper                    | 11.4          | 5.0                | n '      | AUF0292 | 06/09/11         | 07/18/11         | u           |       |
| Dissolved Iron            | 9 <b>2.</b> 7 | 20.0               | . "      | AUF0201 | 06/10/11         | 07/20/11         | u           |       |
| fron                      | 144           | 20.0               | и.,      | AUF0292 | 06/09/11         | 07/20/11         | u           |       |
| Magnesium                 | 2100          | 50.0               | н        | tt      | 11               | 07/18/11         | . п         |       |
| Potassium                 | 722           | 100                | н        | ti.     | tį.              | н                | ti          |       |
| Sodium                    | 2690          | 200                | и        | 11      | 11               | n                | ti          |       |
| Dissolved Zinc            | ND            | 10.0               | u        | AUF0201 | 06/10/11         | 07/20/11         | tt          |       |
| Zine                      | ND            | 10.0               | u        | AUF0292 | 06/09/11         | 07/20/11         | 11          |       |
| Wet Chemistry             |               |                    |          |         |                  |                  |             |       |
| Fotal Alkalinity          | 30.0          | 5.00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| Bicarbonate Alkalinity    | 30.0          | 5.00               | н        | tr      | п                | · n              | ir          |       |
| Carbonate Alkalinity      | ND            | 5.00               | н        | 11      | и                |                  | ir          |       |
| Specific Conductance (EC) | 56.7          | 5.00               | uS/cm    | AUF0090 | 06/06/11         | 06/06/11         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND            | 5,00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| p <b>H</b>                | 7.59          | 0.100              | pH Units | AUF0088 | 06/03/11         | 06/03/11         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 62.0          | 15.0               | mg/L     | AUF0141 | 06/07/11         | 06/13/11         | SM 2540C    |       |
| Total Hardness            | 22.0          | 5.00               | 11       | AUF0192 | 06/13/11         | 06/13/11         | SM2340B     |       |

Excelchem Environmental Lab.

Dr 2

RWQC Central Valley

Project:

Walker Mine

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project Number:

10-026-150

Project Manager:

Jeff Huggins

Date Reported: 07/25/11 11:47

WM-9

1106070-06 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
|                    |        |                    |       |         |                  | -                |           |       |
| Ion Chromatography |        |                    |       |         |                  |                  |           |       |
| Chloride           | 0.5    | 0.5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |
| Sulfate as SO4     | 1.2    | 0.5                | fl fl | и       | и                | 0                | n ·       |       |

Excelchem Environmental Lab.

RWQC Central Valley

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Project Number:

Walker Mine 10-026-150

Project Manager:

10-026-150 Jeff Huggins Date Reported: 07/25/11 11:47

WM-5

1106070-07 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
|                           |        |                    |          |         |                  |                  |             |       |
| Metals by 200 series      |        |                    |          |         |                  |                  | v           |       |
| Dissolved Aluminum        | 65.8   | 50.0               | ug/l     | AUF0201 | 06/10/11         | 07/20/11         | EPA 200,7   |       |
| Aluminum                  | 88.5   | 50.0               | · "      | AUF0292 | 06/09/11         | 07/20/11         | 11          |       |
| Dissolved Arsenic         | ND     | 10.0               | 11       | AUF0201 | 06/10/11         | 07/20/11         | 11          |       |
| Arsenic                   | ND     | 10.0               |          | AUF0292 | 06/09/11         | 07/18/11         | ņ           |       |
| Dissolved Cadmium         | ND     | 5.0                | U        | AUF0201 | 06/10/11         | 07/20/11         | p .         |       |
| Cadmium                   | ND     | 5.0                | "        | AUF0292 | 06/09/11         | 07/18/11         | h           |       |
| Calcium                   | 6130   | 100                | н        | И       | 11               | d                | н           |       |
| Dissolved Copper          | 13.7   | 5.0                | il       | AUF0201 | 06/10/11         | 07/20/11         | rf          |       |
| Соррег                    | ND     | 5.0                | O O      | AUF0292 | 06/09/11         | 07/18/11         | 11          |       |
| Dissolved Iron            | 69.8   | 20.0               | 11       | AUF0201 | 06/10/11         | 07/20/11         | lt.         |       |
| lron (                    | 107    | 20.0               | · e      | AUF0292 | 06/09/11         | 07/20/11         | н           | •     |
| Magnesium                 | 2010   | 50.0               | 0        | ļi      | - н              | 07/18/11         | is .        |       |
| Potassium                 | 587    | 100                | н        | Д       | u                | 17               | и           |       |
| Sodium                    | 2770   | 200                | н        | н       | 11               | н                |             |       |
| Dissolved Zinc            | ND     | 10.0               | и        | AUF0201 | 06/10/11         | 07/20/11         | ч           |       |
| Zine                      | ND     | 10.0               | fl .     | AUF0292 | 06/09/11         | 07/20/11         | 17          |       |
| Wet Chemistry             |        |                    |          |         |                  |                  |             |       |
| Fotal Alkalinity          | 28.0   | 5.00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| Bicarbonate Alkalinity    | 28.0   | 5.00               | n        | н       | 17               | 11               | н           |       |
| Carbonate Alkalinity      | ND     | 5.00               | н        |         | 17               | н                | н .         |       |
| Specific Conductance (EC) | 54.2   | 5.00               | uS/cm    | AUF0090 | 06/06/11 -       | 06/06/11         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| pH                        | 7.28   | 0.100              | pH Units | AUF0088 | 06/03/11         | 06/03/11         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 56.0   | 15.0               | mg/L     | AUF0141 | 06/07/11         | 06/13/11         | SM 2540C    |       |
| Total Hardness            | 22.0   | 5.00               | "        | AUF0192 | 06/13/11         | 06/13/11         | SM2340B     |       |

Excelchem Environmental Lab.

--- A---

RWQC Central Valley

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Jeff Huggins

Date Reported: 07/25/11 11:47

WM-5

1106070-07 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ion Chromatography |        |                    |       |         |                  |                  |           |       |
| Chloride           | 0.7    | 0.5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |
| Sulfate as SO4     | 0.9    | 0.5                | ji    | н       | и .              | ft.              | n n       |       |

Excelchem Environmental Lab.

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Date Reported: 07/25/11 11:47 Jeff Huggins

## WM-1 1106070-08 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
|                           |        |                    |          |         |                  |                  |             |       |
| Metals by 200 scries      |        |                    |          |         |                  |                  |             |       |
| Dissolved Aluminum        | 78.8   | 50.0               | ug/l     | AUF0201 | 06/10/11         | 07/20/11         | EPA 200.7   |       |
| Aluminum                  | ND     | 50.0               | n        | AUF0292 | 06/09/11         | 07/20/11         | H           |       |
| Dissolved Arsenic         | ND     | 10.0               | н        | AUF0201 | 06/10/11         | 07/20/11         | n           |       |
| Arsenic                   | ND     | 10.0               | ij       | AUF0292 | 06/09/11         | 07/18/11         | И           |       |
| Dissolved Cadmium         | ND     | 5.0                | . И      | AUF0201 | 06/10/11         | 07/20/11         | н           |       |
| Cadmium                   | ND     | 5.0                | н        | AUF0292 | 06/09/11         | 07/18/11         | н           |       |
| Calcium                   | 13500  | 100                | 11       | 11      | u                | n                | 11          |       |
| Dissolved Copper          | 102    | 5.0                | II       | AUF0201 | 06/10/11         | 07/20/11         | ff          |       |
| Copper                    | 99.6   | 5,0                | 11       | AUF0292 | 06/09/11         | 07/18/11         | 11          |       |
| Dissolved Iron            | 46.1   | 20.0               | 11       | AUF0201 | 06/10/11         | 07/20/11         | Ħ           |       |
| Iron                      | 49.2   | 20.0               | 31       | AUF0292 | 06/09/11         | 07/20/11         | н           |       |
| Magnesium                 | 5030   | 50.0               | Ħ        | И       | н                | 07/18/11         | и           |       |
| Potassium                 | 883    | 100                | H        | 11      | н                | 11               | II          |       |
| Sodium                    | 4710   | 200                | H        | 11      | 11               | 11               | н           |       |
| Dissolved Zine            | 78.9   | 10.0               | н        | AUF0201 | 06/10/11         | 07/20/11         | 11          |       |
| Zinc                      | 62.7   | 10.0               | И        | AUF0292 | 06/09/11         | 07/20/11         | ft .        |       |
| Wet Chemistry             |        |                    |          |         |                  | •                |             |       |
| Total Alkalinity          | 60.0   | 5.00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| Bicarbonate Alkalinity    | 60.0   | 5.00               | 44       | H       | н                | 11               | 11          |       |
| Carbonate Alkalinity      | ND     | 5.00               | Ð        | н       | H                | - 11             | п           |       |
| Specific Conductance (EC) | 116    | 5.00               | uS/cm    | AUF0090 | 06/06/11         | 06/06/11         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5,00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| pН                        | 6.87   | 0.100              | pH Units | AUF0088 | 06/03/11         | 06/03/11         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 96.0   | 15.0               | mg/L     | AUF0141 | 06/07/11         | 06/13/11         | SM 2540C    |       |
| Total Hardness            | 50.0   | 5.00               | H        | AUF0192 | 06/13/11         | 06/13/11         | SM2340B     |       |

Excelchem Environmental Lab.

RWQC Central Valley

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager;

Jeff Huggins

Date Reported: 07/25/11 11:47

# WM-1

## 1106070-08 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ion Chromatography |        |                    |       |         |                  |                  |           |       |
| Chloride           | 0.7    | 0.5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |
| Sulfate as SO4     | 1.6    | 0.5                | н     | н       | n                | 4                | "         |       |

Excelchem Environmental Lab.

RWQC Central Valley

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Jeff Huggins

Date Reported: 07/25/11 11:47

WM-2 1106070-09 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch      | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|------------|------------------|------------------|-------------|-------|
| Metals by 200 series      |        |                    |          |            |                  |                  |             |       |
| Dissolved Aluminum        | ND     | 50.0               | ug/l     | AUF0201    | 06/10/11         | 07/20/11         | EPA 200.7   |       |
| Aluminum                  | ND     | 50.0               | . "      | AUF0292    | 06/09/11         | 07/20/11         | If .        |       |
| Dissolved Arsenic         | ND     | 10.0               | u.       | AUF0201    | 06/10/11         | 07/20/11         | If .        |       |
| Arsenic                   | ND     | 10.0               | ii .     | AUF0292    | 06/09/11         | 07/18/11         | If .        |       |
| Dissolved Cadmium         | ND     | 5.0                | er e     | AUF0201    | 06/10/11         | 07/20/11         | lr.         |       |
| Cadmium                   | ND     | 5.0                | 4        | AUF0292    | 06/09/11         | 07/18/11         | rr .        |       |
| Calcium                   | 14900  | 100                | tr.      | e          | u                | 11               | н           |       |
| Dissolved Copper          | 14.0   | 5.0                | 11       | AUF0201    | 06/10/11         | 07/20/11         | ņ           |       |
| Copper                    | ND     | 5.0                | er er    | AUF0292    | 06/09/11         | 07/18/11         | ħ           |       |
| Dissolved Iron            | 35.5   | 20.0               | . 0      | AUF0201    | 06/10/11         | 07/20/11         | "           |       |
| Iron                      | 63.0   | 20.0               | 11       | AUF0292    | 06/09/11         | 07/20/11         | . "         |       |
| Magnesium                 | 7100   | 50.0               | tr       | 11         | w                | 07/18/11         |             |       |
| Potassium                 | 912    | 100                | tr.      | 11         | w                | 11               | n .         |       |
| Sodium                    | 2920   | 200                | W        | Į <b>i</b> | tr.              | н                | n .         |       |
| Dissolved Zinc            | ND     | 10.0               | 0        | AUF0201    | 06/10/11         | 07/20/11         | и           |       |
| Zinc                      | ND .   | 10.0               | 0        | AUF0292    | 06/09/11         | 07/20/11         | н .         |       |
| Wet Chemistry             |        |                    |          |            |                  |                  |             |       |
| Total Alkalinity          | 70.0   | - 5.00             | mg/L     | AUF0193    | 06/15/11         | 06/15/11         | SM2320B     |       |
| Bicarbonate Alkalinity    | 70.0   | 5.00               | "        | ņ          | и .              | п                | H           |       |
| Carbonate Alkalinity      | ND -   | 5.00               | . "      | N          | "                | н                | . 11        |       |
| Specific Conductance (EC) | 129    | 5.00               | uS/cm    | AUF0090    | 06/06/11         | 06/06/11         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | AUF0193    | 06/15/11         | 06/15/11         | SM2320B     |       |
| pН                        | 7.47   | 0.100              | pH Units | AUF0088    | 06/03/11         | 06/03/11         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 83.0   | 15.0               | mg/L     | AUF0141    | 06/07/11         | 06/13/11         | SM 2540C    |       |
| Total Hardness            | 60.0   | 5.00               | ji       | AUF0192    | 06/13/11         | 06/13/11         | SM2340B     |       |

Excelchem Environmental Lab.

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Jeff Huggins

Date Reported: 07/25/11 11:47

## WM-2 1106070-09 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ion Chromatography |        |                    |       |         | -                |                  |           |       |
| Chloride           | 0.6    | 0.5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |
| Sulfate as SO4     | 0.9    | 0.5                | 11    | b.      | n                | Pt·              | "         |       |

Excelchem Environmental Lab.

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number: Project Manager: 10-026-150 Jeff Huggins Date Reported: 07/25/11 11:47

WM-7A 1106070-10 (Water)

| Analyte                   | Result   | Reporting<br>Limit | Units      | Batch              | Date<br>Prepared | Date<br>Analyzed     | Method       | Notes  |
|---------------------------|----------|--------------------|------------|--------------------|------------------|----------------------|--------------|--------|
| Metals by 200 series      |          |                    |            |                    |                  |                      |              |        |
| Dissolved Aluminum        | 110      | 50.0               | 110/1      | AUF0201            | 06/10/11         | 07/20/11             | EPA 200,7    |        |
| Aluminum                  | 107      | 50.0               | ug/l       | AUF0201<br>AUF0292 | 06/10/11         |                      | EPA 200.7    |        |
| Dissolved Arsenic         | ND ·     | 10.0               | 11         | AUF0292<br>AUF0201 | 06/09/11         | 07/20/11<br>07/20/11 | И            |        |
| Arsenic                   | ND       | 10.0               | 11         | AUF0201<br>AUF0292 | 06/09/11         |                      | и            |        |
| Arsenic Dissolved Cadmium | ND<br>ND |                    | h          |                    |                  | 07/18/11             | н            |        |
|                           |          | 5.0                | H          | AUF0201            | 06/10/11         | 07/20/11             | н            |        |
| Cadmium                   | ND       | 5.0                | ;;<br>H    | AUF0292            | 06/09/11         | 07/18/11             | 11           |        |
| Calcium                   | 9730     | 100                | ,,<br>H    |                    |                  |                      |              |        |
| Dissolved Copper          | 47.9     | 5.0                | , "<br>, H | AUF0201            | 06/10/11         | 07/20/11             | ti .         |        |
| Copper                    | 49.9     | 5.0                |            | AUF0292            | 06/09/11         | 07/18/11             | 17           |        |
| Dissolved Iron            | 108      | 20.0               | h          | AUF0201            | 06/10/11         | 07/20/11             | 11           |        |
| Iron                      | 157      | 20.0               | ji         | AUF0292            | 06/09/11         | 07/20/11             | - 11         |        |
| Magnesium                 | 4120     | 50.0               | n          | н                  | "                | 07/18/11             | tt '         |        |
| Potassium                 | 936      | 100                | h .        | h                  | ij .             | Ц                    | 11           |        |
| Sodium                    | 2750     | 200                | и          | н                  | H                | и .                  | lr .         | •      |
| Dissolved Zinc            | 12.3     | 10.0               | н          | AUF0201            | 06/10/11         | 07/20/11             | "            |        |
| Zine                      | ND       | 10.0               | и          | AUF0292            | 06/09/11         | 07/20/11             | H            |        |
| Wet Chemistry             |          |                    |            |                    |                  |                      |              |        |
| Total Alkalinity          | 46.0     | 5.00               | mg/L       | AUF0193            | 06/15/11         | 06/15/11             | SM2320B      |        |
| Bicarbonate Alkalinity    | 46.0     | 5.00               | ц          | н                  | И                | 11                   | n            |        |
| Carbonate Alkalinity      | ND       | 5.00               | n          | н                  | И                | 11                   | n            |        |
| Specific Conductance (EC) | 86.5     | 5.00               | uS/cm      | AUF0090            | 06/06/11         | 06/06/11             | EPA 120.1    |        |
| Hydroxide Alkalinity      | ND       | 5.00               | mg/L       | AUF0193            | 06/15/11         | 06/15/11             | SM2320B      |        |
| рН                        | 7.72     | 0.100              | pH Units   | AUF0088            | 06/03/11         | 06/03/11             | SM 4500-H+ B | Field  |
| Total Dissolved Solids    | 66.0     | 15.0               | mg/L       | AUF0141            | 06/07/11         | 06/13/11             | SM 2540C     | 1 1414 |
| Total Hardness            | 36.0     | 5.00               |            | AUF0192            | 06/13/11         | 06/13/11             | SM2340B      |        |

Excelchem Environmental Lab.

Dr 200

RWQC Central Valley

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Jeff Huggins

Date Reported:

07/25/11 11:47

## WM-7A 1106070-10 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ion Chromatography |        |                    |       |         |                  |                  |           |       |
| Chloride           | 0.5    | 0,5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |
| Sulfate as SO4     | 2.2    | 0.5                | U     | It      | 11               | lr.              | н         |       |

Excelchem Environmental Lab.

RWQC Central Valley

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

Project Number:

10-026-150

Project Manager:

Jeff Huggins

Date Reported: 07/25/11 11:47

**WM-7B** 1106070-11 (Water)

| Analyte                   | Result   | Reporting<br>Limit | Units          | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|----------|--------------------|----------------|---------|------------------|------------------|-------------|-------|
| 35431 -00                 |          |                    |                |         |                  |                  | -           |       |
| Metals by 200 series      | <u> </u> |                    |                |         |                  |                  | <u> </u>    | ,     |
| Dissolved Aluminum        | 96.9     | 50.0               | ug/1           | AUF0201 | 06/10/11         | 07/20/11         | EPA 200.7   |       |
| Aluminum                  | ND       | 50.0               | IJ             | AUF0291 | 06/09/11         | 07/18/11         | u .         |       |
| Dissolved Arsenic         | ND .     | 10.0               | "              | AUF0201 | 06/10/11         | 07/20/11         | 11          |       |
| Arsenic                   | ND       | 10.0               | н              | AUF0291 | 06/09/11         | 07/18/11         | 11          |       |
| Dissolved Cadmium         | ND       | 5.0                | 11             | AUF0201 | 06/10/11         | 07/20/11         | IJ          |       |
| Cadmium                   | ND       | 25.0               | н              | AUF0291 | 06/09/11         | 07/14/11         | 11          | R-07  |
| Calcium                   | 8480     | 100                | и              | H       | 11               | 07/15/11         | 17          |       |
| Dissolved Copper          | 51.8     | 5.0                | 11             | AUF0201 | 06/10/11         | 07/20/11         | 11          |       |
| Copper                    | 44.9     | 5.0                | ш              | AUF0291 | 06/09/11         | 07/07/11         | . 11        |       |
| Dissolved Iron            | 121      | 20.0               | н              | AUF0201 | 06/10/11         | 07/20/11         | · "         |       |
| Iron                      | 145      | 20.0               | н              | AUF0291 | 06/09/11         | 07/07/11         | н           |       |
| Magnesium                 | 3560     | 50.0               | н              | n       | 11               | 07/15/11         | h           |       |
| Potassium                 | 1080     | 100                | И              | ŧŧ      | 11               | 07/18/11         | и           |       |
| Sodium                    | 2470     | 200                | H              | er er   | 11               | 07/15/11         | . н         |       |
| Dissolved Zinc            | 12.8     | 10.0               | 11             | AUF0201 | 06/10/11         | 07/20/11         | н           |       |
| Zine                      | ND       | 50.0               | II.            | AUF0291 | 06/09/11         | 07/14/11         | n           | R-07  |
| Wet Chemistry             |          |                    |                |         |                  |                  |             | •     |
| Total Alkalinity          | 42.0     | 5.00               | mg/L           | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| Bicarbonate Alkalinity    | 42.0     | 5.00               | e <sup>2</sup> | 11      | n                | н                | It          |       |
| Carbonate Alkalinity      | ND       | 5.00               | tr.            | n       | "                | f n              | ŧŧ          |       |
| Specific Conductance (EC) | 85.2     | 5.00               | uS/cm          | AUF0090 | 06/06/11         | 06/06/11         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND ·     | 5.00               | mg/L           | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| pH                        | 7.75     | 0.100              | pH Units       | AUF0088 | 06/03/11         | 06/03/11         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 68.0     | 15.0               | mg/L           | AUF0141 | 06/07/11         | 06/13/11         | SM 2540C    |       |
| Total Hardness            | 38.0     | 5.00               | n              | AUF0192 | 06/13/11         | 06/13/11         | SM2340B     |       |
|                           | •        |                    |                |         |                  |                  |             |       |

Excelchem Environmental Lab.

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number:

10-026-150 Jeff Huggins Project Manager:

Date Reported: 07/25/11 11:47

## WM-7B 1106070-11 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ion Chromatography |        |                    |       |         |                  |                  |           |       |
| Chloride           | 1.6    | 0.5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |
| Sulfate as SO4     | 2.5    | 0.5                | II.   | 'n      | ní               | , 11             | н         |       |

Excelchem Environmental Lab.

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number:

10-026-150

Project Manager: Jeff Huggins

Date Reported: 07/25/11 11:47

## WM-7C 1106070-12 (Water)

| Authors   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author   Author    | Analyte                   | Result | Reporting<br>Limit | Units    | Batch     | Date<br>Prepared | Date<br>Analyzed | Method       | Notes |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------|--------------------|----------|-----------|------------------|------------------|--------------|-------|
| Illuminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ietals by 200 series      |        |                    |          | £         |                  |                  |              |       |
| Sesolved Arsenic   ND   10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dissolved Aluminum        | ND     | 50.0               | ug/l     | AUF0201   | 06/10/11         | 07/20/11         | EPA 200.7    |       |
| ND   10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aluminum                  | 148    | 50.0               | n        | AUF0291   | 06/09/11         | 07/18/11         | u            |       |
| ND   10.0   AUF0291   06/09/11   07/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11   10/18/11  | Dissolved Arsenic         | ND     | 10.0               | H        | AUF0201   | 06/10/11         | 07/20/11         | 11           |       |
| Academium ND 25.0 " AUF0201 66/10/11 07/20/11 " Recalcium 6320 100 " " " " " 07/15/11 " ND 25.0 " AUF0201 06/10/11 07/15/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " AUF0201 06/09/11 07/20/11 " ND 25.0 " " " " 07/15/11 " ND 25.0 " " " " 07/15/11 " ND 25.0 " " " " 07/15/11 " ND 25.0 " " " 07/15/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " AUF0201 06/10/11 07/20/11 " ND 25.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arsenic                   | ND     | 10.0               | H        | AUF0291   | 06/09/11         | 07/18/11         | tr.          |       |
| Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Authors   Auth | Dissolved Cadmium         | ND     | 5.0                | H        | AUF0201   | 06/10/11         | 07/20/11         | 11           |       |
| 12.3   5.0     AUF0201   06/10/11   07/20/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cadmium                   | ND     | 25.0               | n        | AUF0291   | 06/09/11         | 07/14/11         | 11           | R-07  |
| Solution   S.8   S.0   "   AUF0291   06/09/11   07/07/11   "   Obsolved Iron   77.4   20.0   "   AUF0291   06/09/11   07/07/11   "   Obsolved Iron   156   20.0   "   AUF0291   06/09/11   07/07/11   "   Obsolved Iron   156   20.0   "   AUF0291   06/09/11   07/07/11   "   Obsolved Iron   156   20.0   "   "   "   07/15/11   "   Obsolved Iron   100   "   "   "   07/15/11   "   Obsolved Iron   100   "   "   "   07/15/11   "   Obsolved Iron   100   "   "   "   07/15/11   "   Obsolved Iron   100   "   "   "   Obsolved Iron   100   "   Obsolved Iron   100   "   Obsolved Iron   100   "   Obsolved Iron   100   "   Obsolved Iron   100   "   Obsolved Iron   100   Obsolved Iron   100   "   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron   100   Obsolved Iron    | Calcium                   | 6320   | 100                | H        | "         | · u              | 07/15/11         | tr           |       |
| 156   20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dissolved Copper          | 12.3   | 5.0                | н        | AUF0201   | 06/10/11         | 07/20/11         | v            |       |
| Total Alkalinity   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Secti | Copper                    | 5.8    | 5.0                | þ        | AUF0291   | 06/09/11         | 07/07/11         | . 11         |       |
| Alagnesium   2050   50.0   "   "   "   07/15/11   "   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dissolved Iron            | 77.4   | 20.0               | H        | AUF0201   | 06/10/11         | 07/20/11         | 11           |       |
| Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkalinity   Total Alkal | ron                       | 156    | 20.0               | H        | . AUF0291 | 06/09/11         | 07/07/11         | 17           |       |
| 2600   200   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /Ingnesium                | 2050   | 50.0               | H        | 11        | 0                | 07/15/11         | ii .         |       |
| Dissolved Zinc   ND   10.0   "   AUF0201   06/10/11   07/20/11   "   ND   50.0   "   AUF0291   06/09/11   07/14/11   "   R   ND   Sicarbonate Alkalinity   32.0   5.00   mg/L   AUF0193   06/15/11   06/15/11   SM2320B   Sicarbonate Alkalinity   ND   5.00   "   "   "   "   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Potassium                 | 710    | 100                | II       | 11        | 1.1.0            | 07/18/11         | 11           |       |
| ND   10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sodium                    | 2600   | 200                | II       | 17        | u :              | 07/15/11         | U            |       |
| Vet Chemistry   32.0   5.00   mg/L   AUF0193   06/15/11   06/15/11   SM2320B     Sicarbonate Alkalinity   32.0   5.00   "   " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dissolved Zinc            | ND     | 10.0               | N        | AUF0201   | 06/10/11         | 07/20/11         | n            |       |
| Starbonate Alkalinity   32.0   5.00   mg/L   AUF0193   06/15/11   06/15/11   SM2320B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zinc                      | ND     | 50.0               | н        | AUF0291   | 06/09/11         | 07/14/11         | n            | R-07  |
| Sicarbonate Alkalinity         32.0         5.00         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wet Chemistry             |        |                    |          |           | •                |                  |              |       |
| Sicarbonate Alkalinity         32.0         5.00         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l'otal Alkalinity         | 32.0   | 5.00               | mg/L     | AUF0193   | 06/15/11         | 06/15/11         | SM2320B      |       |
| Actionate Alkalinity ND 5.00 uS/cm AUF0090 06/06/11 06/06/11 EPA 120.1  Iydroxide Alkalinity ND 5.00 mg/L AUF0193 06/15/11 06/15/11 SM2320B  IH 7.49 0.100 pH Units AUF0088 06/03/11 06/03/11 SM 4500-H+B F  Cotal Dissolved Solids 52.0 15.0 mg/L AUF0141 06/07/11 06/13/11 SM 2540C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bicarbonate Alkalinity    | 32.0   | 5,00               |          | н         | н                | и                | н .          |       |
| Iydroxide Alkalinity         ND         5,00         mg/L         AUF0193         06/15/11         06/15/11         SM2320B           OH         7.49         0.100         pH Units         AUF0088         06/03/11         06/03/11         SM 4500-H+B         F           Cotal Dissolved Solids         52.0         15.0         mg/L         AUF0141         06/07/11         06/13/11         SM 2540C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Carbonate Alkalinity      | ND     | 5.00               | ji .     | н         | н                | n                | n            |       |
| Total Dissolved Solids  7.49  0.100  pH Units AUF0088  06/03/11  06/03/11  SM 4500-H+B  FOTAL Dissolved Solids  52.0  15.0  mg/L  AUF0141  06/07/11  06/13/11  SM 2540C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Specific Conductance (EC) | 59.1   | 5.00               | uS/cm    | AUF0090   | 06/06/11         | 06/06/11         | EPA 120.1    |       |
| Cotal Dissolved Solids         52.0         15.0         mg/L         AUF0141         06/07/11         06/13/11         SM 2540C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Iydroxide Alkalinity      | ND     | 5.00               | mg/L     | AUF0193   | 06/15/11         | 06/15/11         | SM2320B      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | оH                        | 7.49   | 0.100              | pH Units | AUF0088   | 06/03/11         | 06/03/11         | SM 4500-H+ B | Field |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | otal Dissolved Solids     | 52.0   | 15.0               | mg/L     | AUF0141   | 06/07/11         | . 06/13/11       | SM 2540C     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Hardness            | 24.0   | 5.00               |          | AUF0192   | 06/13/11         | 06/13/11         | SM2340B      |       |

Excelchem Environmental Lab.

RWQC Central Valley

Project:

Walker Mine

11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project Number:

10-026-150

Project Manager: Jeff Huggins

Date Reported: 07/25/11 11:47

WM-7C 1106070-12 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ion Chromatography |        |                    |       |         |                  |                  |           |       |
| Chloride           | 0.5    | 0.5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |
| Sulfate as SO4     | 1.4    | 0.5                | н     | n       | fi fi            | 11               | 11        |       |

Excelchem Environmental Lab.

Dr don

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:
Project Number:
Project Manager:

Walker Mine 10-026-150

10-026-150 Jeff Huggins Date Reported: 07/25/11 11:47

## WM-6 1106070-13 (Water)

| Analyte                   | Result       | Reporting<br>Limit | Units      | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------------|--------------------|------------|---------|------------------|------------------|-------------|-------|
| Aetals by 200 series      |              |                    |            |         |                  |                  |             |       |
| Dissolved Aluminum        | ND           | 50,0               | ug/l       | AUF0201 | 06/10/11         | 07/20/11         | EPA 200.7   | ,     |
| Aluminum                  | ND           | 50.0               | "          | AUF0291 | 06/09/11         | 07/18/11         | 6           |       |
| Dissolved Arsenic         | ND           | 10.0               | и          | AUF0201 | 06/10/11         | 07/20/11         | 4           |       |
| Arsenic                   | ND           | 10.0               | И          | AUF0291 | 06/09/11         | 07/18/11         | n           |       |
| Dissolved Cadmium         | ND           | 5.0                | П          | AUF0201 | 06/10/11         | 07/20/11         | n           |       |
| Cadmium                   | ND           | 25.0               | 11         | AUF0291 | 06/09/11         | 07/14/11         | ч ,         | R-07  |
| Calcium                   | 15900        | 100                | <b>1</b> 1 | 11      | "                | 07/15/11         | 11          | 2.37  |
| Dissolved Copper          | 497          | 5.0                | fl.        | AUF0201 | 06/10/11         | 07/20/11         | 11          |       |
| Соррег                    | 876          | 5.0                | tt         | AUF0291 | 06/09/11         | 07/07/11         | 11          |       |
| Dissolved Iron            | <b>59.</b> 7 | 20.0               | ų.         | AUF0201 | 06/10/11         | 07/20/11         | w           |       |
| Iron                      | 395          | 20.0               | er         | AUF0291 | 06/09/11         | 07/07/11         | . "         |       |
| Magnesium                 | 2440         | 50.0               | W .        | 17      | и                | 07/15/11         | 11          |       |
| Potassium                 | 1890         | 100                | tr.        | 11      | Й                | 07/18/11         |             |       |
| Sodium                    | 3960         | 200                | 17         | 11      | n                | 07/15/11         | n           |       |
| Dissolved Zinc            | 144          | 10.0               | 11         | AUF0201 | 06/10/11         | 07/20/11         | ,,          |       |
| Zine                      | 196          | 50.0               | 11         | AUF0291 | 06/09/11         | 07/14/11         | н           | R-07  |
| Wet Chemistry             |              |                    |            |         |                  |                  |             |       |
| Total Alkalinity          | 30.0         | 5.00               | mg/L       | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| Bicarbonate Alkalinity    | 30.0         | 5.00               | N          | н       | 11               | 11               | II          |       |
| Carbonate Alkalinity      | ND           | 5.00               | n          | И       | w .              | "                | и           |       |
| Specific Conductance (EC) | 134          | 5.00               | uS/cm      | AUF0090 | 06/06/11         | 06/06/11         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND           | 5.00               | mg/L       | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| pН                        | 7.14         | 0.100              | pH Units   | AUF0088 | 06/03/11         | 06/03/11         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 104          | 15.0               | mg/L       | AUF0141 | 06/07/11         | 06/13/11         | SM 2540C    |       |
| Total Hardness            | 114          | 5.00               | и          | AUF0192 | 06/13/11         | 06/13/11         | SM2340B     |       |

Excelchem Environmental Lab.

Dr 2-

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number:

10-026-150 Jeff Huggins

Project Manager:

Date Reported: 07/25/11 11:47

WM-6 1106070-13 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
|                    |        | •                  | ÷     |         |                  |                  |           |       |
| Ion Chromatography |        |                    |       |         |                  |                  |           | •     |
| Chloride           | 0.9    | 0.5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |
| Sulfate as SO4     | 30.5   | 0.5                | Ø     | 11      | n                | n                | 17        |       |

Excelchem Environmental Lab.

D- -

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number: Project Manager: 10-026-150 Jeff Huggins

Date Reported: 07/25/11 11:47

## WM-20 1106070-14 (Water)

| Analyte                   | Result | Reporting<br>Limit | Units    | Batch   | Date<br>Prepared | Date<br>Analyzed | Method      | Notes |
|---------------------------|--------|--------------------|----------|---------|------------------|------------------|-------------|-------|
| Actals by 200 series      |        |                    |          |         |                  |                  |             |       |
| Dissolved Aluminum        | ND     | 50.0               | ug/l     | AUF0201 | 06/10/11         | 07/20/11         | EPA 200.7   |       |
| Aluminum                  | 120    | 50.0               | 0        | AUF0291 | 06/09/11         | 07/18/11         | 11          |       |
| Dissolved Arsenic         | ND     | 10,0               | tr.      | AUF0201 | 06/10/11         | 07/20/11         | 11          |       |
| Arsenic                   | ND     | 10.0               | 11       | AUF0291 | 06/09/11         | 07/18/11         | 17          |       |
| Dissolved Cadmium.        | ND     | 5.0                | e e      | AUF0201 | 06/10/11         | 07/20/11         | 17          |       |
| Cadmium                   | ND     | 25.0               | e        | AUF0291 | 06/09/11         | 07/14/11         | ti .        | R-07  |
| Calcium                   | 6690   | 100                | 0        | М       | II .             | 07/15/11         | h           |       |
| Dissolved Copper          | 16.6   | 5.0                | 0        | AUF0201 | 06/10/11         | 07/20/11         | n           |       |
| Copper .                  | 10.8   | 5.0                | er er    | AUF0291 | 06/09/11         | 07/07/11         | н           |       |
| Dissolved Iron            | 50.5   | 20.0               | tt.      | AUF0201 | 06/10/11         | 07/20/11         | н           |       |
| ron                       | 103    | 20.0               | 1)       | AUF0291 | 06/09/11         | 07/07/11         | и           |       |
| Magnesium                 | 2010   | 50.0               | ff .     | н       | 11               | 07/15/11         | ıl          |       |
| Potassium                 | 815    | 100                | . 10     | и       | n                | 07/18/11         | н           |       |
| Sodium                    | 2830   | 200                | Ħ        | н       | 11               | 07/15/11         | . н         |       |
| Dissolved Zinc            | ND     | 10.0               | n        | AUF0201 | 06/10/11         | 07/20/11         | И           |       |
| Zine                      | ND     | 50.0               | н        | AUF0291 | 06/09/11         | 07/14/11         | н           | R-07  |
| Wet Chemistry             |        |                    |          |         |                  |                  |             |       |
| Fotal Alkalinity          | 32.0   | 5.00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| Bicarbonate Alkalinity    | 32.0   | 5.00               | Ħ        | (I      | . 0              | e                | ft          |       |
| Carbonate Alkalinity      | ND     | 5.00               | н        | 11      | u ·              | 11               | n n         |       |
| Specific Conductance (EC) | 58.4   | 5.00               | uS/cm    | AUF0090 | 06/06/11         | 06/06/11         | EPA 120.1   |       |
| Hydroxide Alkalinity      | ND     | 5.00               | mg/L     | AUF0193 | 06/15/11         | 06/15/11         | SM2320B     |       |
| н                         | 7.63   | 0,100              | pH Units | AUF0088 | 06/03/11         | 06/03/11         | SM 4500-H+B | Field |
| Total Dissolved Solids    | 56.0   | 15.0               | mg/L     | AUF0141 | 06/07/11         | 06/13/11         | SM 2540C    |       |
| Total Hardness            | 26.0   | 5.00               | n n      | AUF0192 | 06/13/11         | 06/13/11         | SM2340B     |       |

Excelchem Environmental Lab.

Dr 2-

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number: Project Manager: 10-026-150 Jeff Huggins

Date Reported: 07/25/11 11:47

WM-20 1106070-14 (Water)

| Analyte            | Result | Reporting<br>Limit | Units | Batch   | Date<br>Prepared | Date<br>Analyzed | Method    | Notes |
|--------------------|--------|--------------------|-------|---------|------------------|------------------|-----------|-------|
| Ion Chromatography |        |                    |       |         |                  |                  |           |       |
| Chloride           | 1.2    | 0.5                | mg/L  | AUF0117 | 06/07/11         | 06/07/11         | EPA 300.0 |       |
| Sulfate as SO4     | 1.4    | 0.5                | n ·   | н       | 11               | 11               | 11        |       |

Excelchem Environmental Lab.

3- de-

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number:

10-026-150

Date Reported: 07/25/11 11:47

va, CA 95670 Project Manager:

Jeff Huggins

Metals by 200 series - Quality Control

| Analyte                   | Result | Reporting<br>Limit | Units   | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|---------------------------|--------|--------------------|---------|----------------|------------------|-------------|----------------|-----|--------------|-------|
| Batch AUF0201 - EPA 200.7 |        |                    |         |                |                  |             |                | ·   |              |       |
| Blauk (AUF0201-BLK1)      |        |                    |         | Prepared: (    | 06/10/11 A       | nalyzed: 07 | /20/11         |     |              |       |
| Dissolved Aluminum        | ND     | 50.0               | ug/l    |                |                  |             |                |     |              |       |
| Dissolved Arsenic         | ND     | 10.0               | 11      |                |                  |             |                |     |              |       |
| Dissolved Cadınium        | ND     | 5.0                | IJ      |                |                  |             |                |     |              |       |
| Dissolved Copper          | ND     | 5.0                | 11      |                |                  |             |                |     |              |       |
| Dissolved Iron            | ND     | 20.0               | U       |                |                  |             |                |     |              |       |
| Dissolved Zinc            | ND     | 10.0               | H       |                |                  |             |                |     |              |       |
| Blank (AUF0201-BLK2)      |        |                    |         | Prepared: (    | 06/10/11 A       | nalvzed: 07 | /20/11         |     |              |       |
| Dissolved Aluminum        | ND     | 50.0               | ug/i    |                |                  | ,           |                | _   |              |       |
| Dissolved Arsenic         | ND     | 10.0               | 11      |                |                  |             |                |     |              |       |
| pissolved Cadmium         | ND     | 5.0                | H       |                |                  |             |                |     |              |       |
| issolved Copper           | ND     | 5.0                | н       |                |                  |             |                |     |              |       |
| issolved Iron             | ND     | 20.0               | н       |                |                  |             |                |     |              |       |
| issolved Zinc             | ND     | 10.0               | H       |                |                  |             |                |     |              |       |
| CS (AUF0201-BS1)          | 4      |                    |         | Prepared: (    | 06/10/11 A:      | nalyzed: 07 | /20/11         |     |              |       |
| Dissolved Aluminum        | 1040   | 50.0               | ug/l    | 1000           |                  | 104         | 85-115         |     |              |       |
| Dissolved Arsenic         | 981    | 10.0               | и       | 1000           |                  | 98.1        | 85-115         |     |              |       |
| rissolved Cadmium         | 1060   | 5.0                | и .     | 1000           |                  | 106         | 85-115         | •   |              |       |
| Dissolved Copper          | 1040   | 5.0                | u       | 1000           |                  | 104         | 85-115         |     |              |       |
| Dissolved Iron            | 1100   | 20.0               | fr<br>· | 1000           |                  | 110         | 85-115         |     |              |       |
| Dissolved Zinc            | 1020   | 10.0               | ft      | 1000           |                  | 102 .       | 85-115         | •   |              |       |
| CS (AUF0201-BS2)          |        |                    |         | Prepared: (    | 06/10/11 A       | nalyzed: 07 | /20/11         |     |              |       |
| Dissolved Aluminum        | 987    | 50.0               | ug/l    | 1000           |                  | 98.7        | 85-115         |     |              |       |
| Dissolved Arsenic         | 930    | 10.0               | 1)      | 1000           |                  | 93.0        | 85-115         |     |              |       |
| Dissolved Cadınium        | 942    | 5.0                | 11      | 1000           |                  | 94.2        | 85-115         |     |              |       |
| Dissolved Copper          | 920    | 5.0                | 11      | 1000           |                  | 92.0        | 85-115         |     |              |       |
| Dissolved Iron            | 1000   | 20.0               | n       | 1000           |                  | 100         | 85-115         |     |              |       |
| Dissolved Zinc            | 913    | 10.0               | н       | 1000           |                  | 91.3        | 85-115         |     |              |       |

Excelchem Environmental Lab.

J - -

| RWQC Central Valley       | Project:         | Walker Mine  |                |
|---------------------------|------------------|--------------|----------------|
| 11020 Sun Center Dr. #200 | Project Number:  | 10-026-150   | Date Reported: |
| Rancho Cordova, CA 95670  | Project Manager: | Jeff Huggins | 07/25/11 11:47 |

## Metals by 200 series - Quality Control

| Analyte                    | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result  | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|----------------------------|--------|--------------------|-------------------|----------------|-------------------|-------------|----------------|-------|--------------|-------|
| Batch AUF0201 - EPA 200.7  | _      |                    |                   |                |                   |             |                |       |              | •     |
| LCS Dup (AUF0201-BSD1)     |        |                    |                   | Prepared: (    | 06/10/11 A        | nalyzed: 07 | //20/11        |       |              |       |
| Dissolved Aluminum         | 1000   | 50.0               | ug/l              | 1000           |                   | 100         | 85-115         | 3.05  | 20           |       |
| Dissolved Arsenic          | 1040   | 10.0               | n                 | 1000           |                   | 104         | 85-115         | 6.16  | 20           |       |
| Dissolved Cadınium         | . 1030 | 5.0                | "                 | 1000           |                   | 103         | 85-115         | 2.34  | 20           |       |
| Dissolved Copper           | 1050   | 5.0                |                   | 1000           |                   | 105         | 85-115         | 1.24  | 20           | •     |
| Dissolved Iron             | 1100   | 20.0               |                   | 1000           |                   | 110         | 85-115         | 0.825 | 20           |       |
| issolved Zinc              | 1020   | 10.0               | n                 | 1000           |                   | 102         | 85-115         | 0.505 | 20           |       |
| CS Dup (AUF0201-BSD2)      | •      |                    |                   | Prepared: (    | 6/10/11 A         | nalyzed: 07 | //20/11        |       |              |       |
| Dissolved Aluminum         | 1030   | 50.0               | u <b>g</b> /1     | 1000           |                   | 103         | 85-115         | 3.87  | 20           |       |
| Dissolved Arsenic          | 985    | 10.0               | M                 | 1000           |                   | 98.5        | 85-115         | 5.73  | 20           |       |
| issolved Cadmium           | 1010   | 5.0                | н                 | 1000           |                   | 101         | 85-115         | 6.96  | 20           |       |
| Dissolved Copper           | 1050   | 5.0                | н                 | . 1000         |                   | 105         | 85-115         | 13.0  | 20           |       |
| Dissolved Iron             | . 1080 | 20.0               | н                 | 1000           |                   | 108         | 85-115         | 7.26  | 20           |       |
| Dissolved Zinc             | 1010   | 10.0               | н                 | 1000           |                   | 101         | 85-115         | 10.5  | 20 .         |       |
| Matrix Spike (AUF0201-MS1) | ,      | Source: 1106070    | )6/10/11 <b>A</b> | nalyzed: 07    | 7/20/11           |             |                |       |              |       |
| Dissolved Aluminum         | 1210   | 50.0               | ug/l              | 1000           | 48.0              | 116         | 75-125         |       |              |       |
| Dissolved Arsenic          | 1100   | 10.0               | lt .              | 1000           | ND                | 110         | 75-125         |       |              |       |
| Dissolved Cadmium          | 1030   | 5.0                | u                 | 1000           | ND                | 103         | 75-125         |       |              |       |
| Dissolved Copper           | 1100   | 5.0                | u                 | 1000           | 26.8              | 107         | 75-125         |       |              |       |
| Dissolved Iron             | 1210   | 20.0               | u                 | 1000           | 106               | 110         | 75-125         |       |              |       |
| Dissolved Zinc             | 1020   | 10.0               | u                 | 1000           | 8.62              | 101         | 75-125         |       |              |       |
| Matrix Spike (AUF0201-MS2) |        | Source: 1106070    | )-09              | Prepared: (    | )6/10/11 <b>A</b> | nalyzed: 07 | 7/20/11        |       |              |       |
| Dissolved Aluminum         | 1160   | 50.0               | ug/l              | 1000           | ND                | 116         | 75-125         | _     |              |       |
| Dissolved Arsenic          | 1090   | 10.0               | Ð                 | 1000           | ND                | 109         | 75-125         |       |              |       |
| Dissolved Cadmium          | 1030   | 5.0                | μ .               | 1000           | ND                | 103         | 75-125         |       |              |       |
| Dissolved Copper           | 1090   | 5.0                | μ                 | 1000           | 14.0              | 107         | 75-125         |       |              |       |
| Dissolved Iron             | 1170   | 20.0               | h                 | 1000           | 35.5              | 113         | 75-125         |       |              |       |
| Dissolved Zinc             | 1010   | 10.0               | n                 | 1000           | 5.08              | 101         | 75-125         |       | •            |       |

Excelchem Environmental Lab.

Dr 2-

| Rancho Cordova, CA 95670 Project Manager: Jeff Huggins 07/25/11 11:4 | RWQC Central Valley         Project:         Walker Mine           11020 Sun Center Dr. #200         Project Number:         10-026-150         Date Report Number:           Rancho Cordova, CA 95670         Project Manager:         Jeff Huggins         07/25/11 |  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

#### Metals by 200 series - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Batch AUF0201 - EPA 200.7       | ·      |                    |       |                |                  |             |                |       |              |       |
| Matrix Spike Dup (AUF0201-MSD1) |        | Source: 1106070    | 0-03  | Prepared: 0    | 06/10/11 Aı      | nalyzed: 07 | //20/11        |       |              |       |
| Dissolved Aluminum              | 1060   | 50.0               | ug/l  | 1000           | 48.0             | 101         | 75-125         | 13.3  | 25           |       |
| Dissolved Arsenic               | 983    | 10.0               | "     | 1000           | ND               | 98.3        | 75-125         | 11.1  | 25           |       |
| Dissolved Cadınium              | 957    | 5.0                | "     | 1000           | ND               | 95.7        | 75-125         | 7.76  | 25           |       |
| Dissolved Copper                | 1020   | 5.0                | "     | 1000           | 26.8             | 99.8        | 75-125         | 6.97  | 25           |       |
| Dissolved Iron                  | 1110   | 20.0               | и     | 1000           | 106              | 101         | 75-125         | 8.37  | 25           |       |
| Dissolved Zinc                  | 920    | 10.0               | н     | 1000           | 8.62             | 91.2        | 75-125         | 10.6  | 25           |       |
| Matrix Spike Dup (AUF0201-MSD2) |        | Source: 1106070    | )-09  | Prepared: 0    | 06/10/11 Aı      | nalyzed: 07 | //20/11        |       |              |       |
| Dissolved Aluminum              | 1160   | 50.0               | ug/1  | 1000           | ND               | 116         | 75-125         | 0.653 | 25           |       |
| Dissolved Arsenic               | 1090   | 10.0               | и     | 1000           | ND               | 109         | 75-125         | 0.303 | 25           |       |
| Dissolved Cadmium               | 1040   | 5.0                | и     | 1000           | ND               | 104         | 75-125         | 1.05  | 25           |       |
| Dissolved Copper                | 1070   | 5.0                | н     | 1000           | 14.0             | 105         | 75-125         | 1.92  | 25           |       |
| Dissolved Iron                  | 1130   | 20.0               | ч     | 1000           | 35.5             | 110         | 75-125         | 3.24  | 25           |       |
| Dissolved Zinc                  | 1060   | 10.0               |       | 1000           | 5.08             | 105         | 75-125         | 4.70  | 25           |       |
| Batch AUF0291 - EPA 200.7       |        |                    |       |                |                  |             |                |       |              |       |
| Blank (AUF0291-BLK1)            |        |                    |       | Prepared: (    | 06/09/11 A       | nalyzed: 07 | 7/18/11        |       | •            |       |
| Aluminum                        | ND     | 50.0               | ug/l  |                |                  |             |                |       |              |       |
| Arsenic                         | ND     | 10.0               | 11    |                |                  |             |                |       |              |       |
| Cadmium                         | ND     | 5.0                | 11    |                |                  |             |                |       |              |       |
| Calcium                         | ND     | 100                | u'    |                |                  |             |                |       |              |       |
| Copper                          | ND     | 5.0                | II.   |                |                  |             |                |       |              |       |
| fron                            | ND     | 20.0               | н     |                |                  |             |                |       |              |       |
| Magnesium                       | ND     | 50.0               | н     |                |                  |             |                |       |              |       |
| Potassium                       | ND     | 100                | н     |                |                  |             |                |       |              |       |
| Sodium                          | ND     | 200                | ,,,   |                |                  |             |                |       |              |       |
| Zinc                            | ND     | 10.0               | 11    |                |                  |             |                |       |              |       |

Excelchem Environmental Lab.

Ju do

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number: Project Manager: 10-026-150 Jeff Huggins Date Reported:

07/25/11 11:47

#### Metals by 200 series - Quality Control

| Analyte                    | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|----------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Batch AUF0291 - EPA 200.7  |        |                    |       | -              | -                |             |                |       |              |       |
| LCS (AUF0291-BS1)          |        |                    |       | Prepared: 0    | 16/09/11 Aı      | nalyzed: 07 | /18/11         |       |              |       |
| Aluminum                   | 872    | 50.0               | ug/l  | 1000           |                  | 87.2        | 85-115         |       |              |       |
| Arsenic                    | 1090   | 10,0               | 17 .  | 1000           |                  | 109         | 85-115         |       |              |       |
| Cadmium                    | 969    | 5.0                | 11    | 1000           |                  | 96.9        | 85-115         |       |              |       |
| Calciun                    | 867    | 100                | 11    | 1000           |                  | 86.7        | 85-115         |       |              |       |
| Copper                     | 1110   | 5.0                | ti .  | 1000           |                  | 111         | 85-115         |       |              |       |
| ron                        | 1030   | 20.0               | 11    | 1000           |                  | 103         | 85-115         |       |              |       |
| Magnesium                  | 1040   | 50.0               | 11    | 1000           |                  | 104         | 85-115         |       |              |       |
| Potassium                  | 10800  | 100                | μ     | 10000          |                  | 108         | 85-115         |       |              |       |
| Sodium                     | 961    | 200                | p     | 1000           |                  | 96.1        | 85-115         |       |              |       |
| Zine                       | 1090   | 10.0               | н     | 1000           |                  | 109         | 85-115         |       |              |       |
| LCS Dup (AUF0291-BSD1)     |        |                    |       | Prepared: 0    | 06/09/11 Aı      | nalyzed: 07 | //18/11        |       |              |       |
| Aluminum                   | 911    | 50.0               | ug/l  | 1000           |                  | 91.1        | 85-115         | 4.34  | 20           |       |
| Arsenic                    | 1090   | 10.0               | "     | 1000           |                  | 109         | 85-115         | 0.104 | 20           |       |
| Cadınium ,                 | 1110   | 5.0                | N     | 1000           |                  | 111         | 85-115         | 13.5  | 20           |       |
| Calcium                    | 888    | 100                | " .   | 1000           |                  | 88,8        | 85-115         | 2,35  | 20           |       |
| Copper                     | 1120   | 5.0                | М .   | 1000           |                  | 112         | 85-115         | 1.55  | 20           |       |
| Iron                       | 1030   | 20.0               | и     | 1000           |                  | 103         | 85-115         | 0.600 | 20           |       |
| Magnesium                  | 1050   | 50.0               | M     | 1000           |                  | 105         | 85-115         | 0.181 | 20           |       |
| Potassium                  | 10900  | 100                | М     | 10000          |                  | 109         | 85-115         | 0.884 | . 20         |       |
| Sodium                     | 978    | 200                | , #   | 1000           |                  | 97.8        | 85-115         | 1.70  | 20           |       |
| Zinc                       | 1020   | 10.0               | н     | 1000           |                  | 102         | 85-115         | 6.07  | 20           |       |
| Matrix Spike (AUF0291-MS1) | •      | Source: 1106070    | 6-02  | Prepared: 0    | 06/09/11 Ai      | nalyzed: 07 | 7/18/11        |       |              |       |
| Arsenic                    | 1110   | 10.0               | ug/l  | 1000           | ND               | 111         | 75-125         |       |              |       |
| Cadmium                    | 1220   | 5.0                | · u   | 1000           | 7.30             | 122         | 75-125         |       |              |       |
| Calcium                    | 546000 | 100                | U.    | 1000           | 584000           | NR          | 75-125         |       |              | QL-0  |
| Copper                     | 1050   | 5.0                | U.    | 1000           | 2.06             | 104         | 75-125         |       |              |       |
| Iron                       | 7970   | 20.0               | 11    | 1000           | 7090             | 87.7        | 75-125         |       |              |       |
| Magnesium                  | 107000 | 50.0               | 17    | 1000           | 95600            | NR          | 75-125         | •     |              | QL-0  |
| Potassium                  | 192000 | 100                | 17    | 10000          | 172000           | 204         | 75-125         |       |              | QL-0  |
| Sodium                     | 596000 | 200                | 11    | 1000           | 613000           | NR          | 75-125         |       |              | QL-0  |
| Zinc                       | 6820   | 10.0               | 11    | 1000           | 81.7             | 673         | 75-125         |       |              | QL-0  |

Excelchem Environmental Lab.

| RWQC Central Valley 11020 Sun Center Dr. #200 | Project: Project Number:            | Walker Mine<br>10-026-150 | Data Ranartad                 |
|-----------------------------------------------|-------------------------------------|---------------------------|-------------------------------|
| Rancho Cordova, CA 95670                      | Project Number:<br>Project Manager: | Jeff Huggins              | Date Reported: 07/25/11 11:47 |

## Metals by 200 series - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result    | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit                          | Notes |
|---------------------------------|--------|--------------------|-------|----------------|---------------------|-------------|----------------|------|---------------------------------------|-------|
| Batch AUF0291 - EPA 200.7       |        |                    |       |                | •                   |             |                |      |                                       |       |
| Matrix Spike Dup (AUF0291-MSD1) |        | Source: 1106076    | 6-02  | Prepared: (    | 06/09/11 A          | nalyzed: 07 | /18/11         |      |                                       |       |
| Arsenic                         | 999    | 10.0               | ug/l  | 1000           | ND                  | 99.9        | 75-125         | 10.3 | 25                                    |       |
| Cadmium                         | 1190   | 5.0                | n     | 1000           | 7.30                | 118         | 75-125         | 3.02 | 25                                    |       |
| Calcium                         | 638000 | 100                | n     | 1000           | 584000              | NR          | 75-125         | 15.6 | 25                                    | QL-01 |
| Copper                          | 1060   | 5.0                | п     | 1000           | 2.06                | 106         | 75-125         | 1.12 | 25                                    |       |
| lron ·                          | 7690   | 20.0               | h     | 1000           | 7090                | 59.7        | 75-125         | 3.58 | 25                                    | QL-01 |
| Magnesium                       | 92800  | 50.0               | п     | 1000           | 95600               | NR          | 75-125         | 14.2 | 25                                    | QL-01 |
| Potassium                       | 178000 | 100                | n     | 10000          | 172000              | 60.2        | 75-125         | 7.75 | 25                                    | QL-01 |
| Sodiun                          | 661000 | 200                | n     | 1000           | 613000              | NR          | 75-125         | 10.4 | 25                                    | QL-01 |
| Zinc                            | 6490   | 10.0               | ii    | 1000           | 81.7                | 641         | 75-125         | 4.85 | 25                                    | QL-01 |
| Batch AUF0292 - EPA 200.7       |        |                    |       |                |                     |             |                |      |                                       |       |
| Blank (AUF0292-BLK1)            |        | •                  |       | Prepared: (    | 06/09/11 <b>A</b> i | nalyzed: 07 | /19/11         |      |                                       |       |
| Aluminum                        | ND     | 50.0               | ug/l  |                |                     |             |                | _    |                                       |       |
| Arsenic                         | ND     | 10.0               | t!    |                |                     |             |                |      |                                       |       |
| Cadmium                         | ND     | 5,0                | tr.   |                |                     |             |                |      |                                       |       |
| Calcium                         | ND     | 100                | 11    |                |                     |             |                |      | ,                                     |       |
| Copper                          | ND     | 5.0                | 0     |                |                     |             |                |      |                                       |       |
| fron                            | ND .   | 20.0               | 17    |                |                     |             |                |      |                                       |       |
| Magnesium                       | ND     | 50.0               | 11,   |                |                     |             |                |      |                                       |       |
| Potassium                       | ND     | 100                | 17    |                |                     |             |                |      |                                       |       |
| Sodium                          | , ND   | 200                | 17    |                |                     |             |                |      |                                       |       |
| Zinc                            | ND     | 10.0               | tr    |                |                     |             |                |      |                                       |       |
| LCS (AUF0292-BS1)               |        |                    | ,     |                | 06/09/11 A          | -           |                |      | · · · · · · · · · · · · · · · · · · · |       |
| Aluminum                        | 883    | 50.0               | ug/l  | 1000           |                     | 88.3        | 85-115         |      |                                       |       |
| Arsenic                         | 1060   | 10.0               | n     | 1000           |                     | 106         | 85-115         |      |                                       |       |
| Cadmium                         | 1050   | 5,0                | n     | 1000           |                     | 105         | 85-115         |      |                                       |       |
| Calcium                         | 1090   | 100                | h     | 1000           |                     | 109         | 85-115         |      |                                       |       |
| Copper                          | 1050   | 5.0                | И     | 1000           |                     | 105         | 85-115         |      |                                       |       |
| ron                             | 1010   | 20.0               | N     | 1000           |                     | 101         | 85-115         |      |                                       |       |
| Magnesium                       | 1040   | 50,0               | "     | 1000           |                     | 104         | 85-115         |      |                                       |       |
| Potassium                       | 10800  | 100                | п     | 10000          |                     | 108         | 85-115         |      |                                       |       |
| Sodium                          | 1080   | 200                | п     | 1000           |                     | 108         | 85-115         |      |                                       |       |
| Zinc                            | 929    | 10.0               | n     | 1000           |                     | 92.9        | 85-115         |      |                                       |       |

Excelchem Environmental Lab.

Dr Don

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number: Project Manager: 10-026-150 Jeff Huggins

Date Reported: 07/25/11 11:47

## Metals by 200 series - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result    | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes       |
|---------------------------------|--------|--------------------|-------|----------------|---------------------|-------------|----------------|-------|--------------|-------------|
| Batch AUF0292 - EPA 200.7       |        |                    |       |                |                     |             |                |       |              |             |
| LCS Dup (AUF0292-BSD1)          | •      |                    |       | Prepared: (    | )6/09/11 A          | nalyzed: 07 | /20/11         |       |              | _           |
| Aluminum                        | 957    | 50.0               | ug/l  | 1000           |                     | 95.7        | 85-115         | 8.01  | 20           |             |
| Arsenic                         | 1080   | . 10.0             | ч     | 1000           |                     | 108         | 85-115         | 2.05  | 20           |             |
| Cadınium                        | 1070   | 5.0                | н     | 1000           |                     | 107         | 85-115         | 2.22  | 20           |             |
| Calcium                         | 1090   | 100                | н     | 1000           |                     | 109         | 85-115         | 0.455 | 20           |             |
| Copper                          | 1060   | 5.0                | н     | 1 <b>0</b> 00  |                     | 106         | 85-115         | 0.771 | 20           |             |
| Iron                            | 937    | 20.0               | н     | 1000           |                     | 93.7        | 85-115         | 7.98  | 20           |             |
| Magnesium                       | 1040   | 50.0               | н     | 1 <b>0</b> 00  |                     | 104         | 85-115         | 0.685 | 20           |             |
| Potassium                       | 10700  | 100                | н     | 1000 <b>0</b>  |                     | 107         | 85-115         | 0.193 | 20           |             |
| Sodiun                          | 1120   | 200                | н     | 1000           |                     | 112         | 85-115         | 2.81  | 20           |             |
| Zine                            | 890    | 10.0               | н     | 1000           |                     | 89.0        | 85-115         | 4.37  | 20           |             |
| Matrix Spike (AUF0292-MS1)      |        | Source: 1106070    | -01   | Prepared: (    | )6/09/11 Ai         | nalyzed: 07 | /19/11         |       |              |             |
| Aluminum                        | 4280   | 50.0               | ug/l  | 1000           | 3400                | 88.6        | 75-125         |       |              | <del></del> |
| Arsenic                         | 870    | 10.0               | н     | 1000           | ND                  | 87.0        | 75-125         |       |              |             |
| Cadmium                         | 1100   | 5.0                | н     | 1000           | 9.09                | 109         | 75-125         |       |              |             |
| Calcium                         | 34300  | 100                | н     | 1000           | 33200               | 107         | 75-125         |       |              |             |
| Copper                          | 13200  | 5.0                | ч     | 1000           | 11900               | 131         | 75-125         |       |              | QL-01       |
| Iron                            | 2190   | 20.0               | н     | 1000           | 1090                | 111         | 75-125         |       |              |             |
| Magnesium                       | 7180   | 50.0               | н     | 1000           | 6140                | 105         | 75-125         |       |              |             |
| Potassium                       | 12900  | 100                | н     | 10000          | 2180                | 107         | 75-125         |       |              |             |
| Sodium                          | 3570   | 200                | н     | 1000           | 2760                | 80.8        | 75-125         | •     |              |             |
| Zine                            | 1450   | 10.0               | Ч     | 1000           | 621                 | 83.2        | 75-125         |       |              |             |
| Matrix Spike Dup (AUF0292-MSD1) |        | Source: 1106070    | -01   | Prepared: (    | )6/09/11 <b>A</b> 1 | nalyzed: 07 | /19/11         |       |              |             |
| Aluminum                        | 4230   | 50.0               | ug/l  | 1000           | 3400                | 83.4        | 75-125         | 1.22  | 25           |             |
| Arsenic                         | 1010   | 10.0               | et.   | 1000           | ND                  | 101         | 75-125         | 14.4  | 25           |             |
| Cadmiun                         | 1070   | 5.0                | tl    | 1000           | 9.09                | 106         | 75-125         | 2.75  | 25           |             |
| Calcium                         | 34200  | 100                | п     | 1000           | 33200               | 94.7        | 75-125         | 0.365 | 25           |             |
| Copper                          | 12900  | 5.0                | et et | 1000           | 11900               | 103         | 75-125         | 2.13  | 2 <b>5</b>   |             |
| Iron                            | 1880   | 20.0               | 41    | 1000           | 1090                | 79.0        | 75-125         | 15.6  | 25           |             |
| Magnesium                       | 7120   | 50.0               | 11    | 1000           | 6140                | 98.5        | 75-125         | 0.882 | 25           |             |
| Potassium                       | 12800  | 100                | 11    | 10000          | 2180                | . 106 .     | 75-125         | 0.866 | 25           |             |
| Sodium                          | . 3770 | 200                | 17    | 1000           | 2760                | 101         | 75-12 <b>5</b> | 5.43  | 25           |             |
| Zinc                            | 1430   | 10.0               | 17    | 1000           | 621                 | 81.1        | 75-125         | 1.48  | 25           |             |

Excelchem Environmental Lab.

Dr >--

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number:

10-026-150

Date Reported:

Project Manager:

Jeff Huggins

07/25/11 11:47

## Wet Chemistry - Quality Control

| Analyte                      | Result | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|------------------------------|--------|--------------------|----------|----------------|------------------|-------------|----------------|------|--------------|-------|
| Batch AUF0088 - SM 4500-H+ B |        |                    |          |                |                  |             |                |      |              |       |
| Duplicate (AUF0088-DUP1)     |        | Source: 110606     | 0-01     | Prepared &     | Analyzed:        | 06/03/11    |                |      |              |       |
| pH                           | 7.45   | 0.100              | pH Units |                | 8.08             |             |                | 8.11 | 20           | Field |
| Batch AUF0090 - EPA 120.1    |        |                    |          |                | _                |             |                |      |              |       |
| Duplicate (AUF0090-DUP1)     |        | Source: 110606     | 0-01     | Prepared &     | k Analyzed:      | 06/06/11    |                | •    |              | _     |
| Specific Conductance (EC)    | 706    | 5.00               | uS/cm    |                | 706              |             |                | 0.00 | 20           |       |
| Batch AUF0141 - SM 2540C     |        |                    |          |                |                  |             |                |      |              |       |
| Blank (AUF0141-BLK1)         |        |                    |          | Prepared: (    | 06/07/11 A       | nalyzed: 06 | 5/13/11        |      |              |       |
| Total Dissolved Solids       | ND     | 15.0               | mg/L     |                |                  |             | ì              |      |              |       |
| Duplicate (AUF0141-DUP1)     |        | Source: 110607     | 0-14     | Prepared: (    | 06/07/11 A       | nalyzed: 06 | 5/13/11        |      |              |       |
| Total Dissolved Solids       | 57.0   | 15.0               | mg/L     |                | 56.0             |             |                | 1.77 | 20           |       |
| Batch AUF0192 - SM2340B      |        |                    |          |                |                  |             |                | •    |              |       |
| Blank (AUF0192-BLK1)         |        |                    |          | Prepared &     | t Analyzed:      | 06/13/11    |                |      |              |       |
| Total Hardness               | ND     | 5.00               | mg/L     |                | -                |             |                |      |              | _     |
| LCS (AUF0192-BS1)            |        |                    |          | Prepared &     | k Analyzed:      | 06/13/11    |                |      |              |       |
| Total Hardness               | 50.0   | 5.00               | mg/L     | 50.0           |                  | 100         | 80-120         | _    |              |       |
| LCS Dup (AUF0192-BSD1)       |        |                    |          | Prepared &     | k Analyzed:      | 06/13/11    |                |      |              |       |
| Total Hardness               | 54.0   | 5.00               | mg/L     | 50.0           |                  | 108         | 80-120         | 7.69 | 20           |       |

Excelchem Environmental Lab.

D- -

RWQC Central Valley Project: Walker Mine
11020 Sun Center Dr. #200 Project Number: 10-026-150 Date Reported:
Rancho Cordova, CA 95670 Project Manager: Jeff Huggins 07/25/11 11:47

#### Wet Chemistry - Quality Control

|                                 |        | Reporting<br>Limit |              | Spike<br>Level | Source      |          | %REC<br>Limits |      | RPD<br>Limit |       |
|---------------------------------|--------|--------------------|--------------|----------------|-------------|----------|----------------|------|--------------|-------|
| Analyte                         | Result | Limit              | Units        | Lêvel          | Result      | %REC     | Limits         | RPD  | Limit        | Notes |
| Batch AUF0192 - SM2340B         |        |                    |              |                |             |          |                |      |              |       |
| Duplicate (AUF0192-DUP1)        |        | Source: 1106116    | 5-01         | Prepared &     | Analyzed:   | 06/13/11 |                |      |              |       |
| Total Hardness                  | 374    | 5.00               | mg/L         |                | 346         | -        |                | 7.78 | 20           |       |
| Matrix Spike (AUF0192-MS1)      |        | Source: 1106114    | <b>1-</b> 01 | Prepared &     | : Analyzed: | 06/18/11 |                |      | •            |       |
| Total Hardness                  | 64.0   | 5.00               | ıng/L        | 50.0           | 12.0        | 104      | 75-125         |      |              |       |
| Matrix Spike Dup (AUF0192-MSD1) | 4      | Source: 1106114    | <b>1</b> -01 | Prepared &     | Analyzed:   | 06/18/11 |                |      |              |       |
| Total Hardness                  | 66.0   | 5.00               | mg/L         | 50.0           | 12.0        | 108      | 75-125         | 3.08 | 20           |       |
| Datala 4 TIEQ102 - CB42220D     |        |                    |              | •              |             |          |                |      |              |       |
| Batch AUF0193 - SM2320B         |        |                    |              |                |             | •        |                |      |              |       |
| Blank (AUF0193-BLK1)            |        |                    |              | Prepared &     | Analyzed:   | 06/15/11 |                |      |              |       |
| Bicarbonate Alkalinity          | ND     | 5.00               | mg/L         |                |             |          |                |      |              |       |
| Carbonate Alkalinity            | ИD     | 5.00               | H            |                |             |          |                |      |              |       |
| Hydroxide Alkalinity            | ND     | 5.00               | н            |                |             |          |                |      |              |       |
| Total Alkalinity                | ND     | 5.00               | "            | ,              |             |          |                |      | •            |       |
| LCS (AUF0193-BS1)               |        |                    |              | Prepared &     | Analyzed:   | 06/15/11 |                |      |              |       |
| Total Alkalinity                | 102    | 5.0 <b>0</b>       | mg/L         | 100            |             | 102      | 80-120         | •    |              |       |
| LCS Dup (AUF0193-BSD1)          |        |                    |              | Prepared &     | : Analyzed: | 06/15/11 |                |      |              |       |
| Total Alkalinity                | 104    | 5.00               | ıng/L        | 100            |             | 104      | 80-120         | 1.94 | 20           |       |
| Duplicate (AUF0193-DUP1)        |        | Source: 110607;    | 3-02         | Prepared &     | : Analyzed: | 06/15/11 |                |      |              |       |
| Bicarbonate Alkalinity          | 88.0   | 5.00               | ıng/L        | -              | 86.0        |          |                | 2.30 | 20           |       |
| Carbonate Alkalinity            | ND     | 5.00               | 17           |                | ND          |          |                |      | 20           |       |
| Hydroxide Alkalinity            | ND     | 5,00               | tr           |                | ND          |          |                |      | 20           |       |
| Total Alkalinity                | 88.0   | 5.00               | 17           |                | 86.0        |          |                | 2.30 | 20           |       |

Excelchem Environmental Lab.

Dr 3-

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number: Project Manager: 10-026-150

Jeff Huggins

Date Reported: 07/25/11 11:47

#### Wet Chemistry - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units                         | Spike<br>Level                | Source<br>Result | %REC | %REC<br>Limits | RPD  | RPD<br>Lii <b>ni</b> t | Notes |
|---------------------------------|--------|--------------------|-------------------------------|-------------------------------|------------------|------|----------------|------|------------------------|-------|
| Batch AUF0193 - SM2320B         |        |                    |                               |                               |                  |      |                |      |                        |       |
| Matrix Spike (AUF0193-MS1)      |        | Source: 110607     | 0-04                          | Prepared & Analyzed: 06/15/11 |                  |      |                |      |                        |       |
| Total Alkalinity                | 110    | 5.00               | mg/L                          | 100                           | 12.0             | 98.0 | 80-120         |      |                        | •     |
| Matrix Spike Dup (AUF0193-MSD1) |        | Source: 110607     | Prepared & Analyzed: 06/15/11 |                               |                  |      |                |      |                        |       |
| Total Alkalinity                | 108    | 5.00               | ıng/L                         | 100                           | 12.0             | 96.0 | 80-120         | 1.83 | 20                     | _     |

Excelchem Environmental Lab.

D- 2--

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670

Project:

Walker Mine

Project Number: Project Manager: 10-026-150 Jeff Huggins

Date Reported: 07/25/11 11:47

Ion Chromatography - Quality Control

| Analyte                   | Result   | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|---------------------------|----------|--------------------|-------|----------------|------------------|----------|----------------|-------|--------------|-------|
| Batch AUF0117 - EPA 300.0 | <u> </u> |                    |       |                |                  |          | ٠              |       |              |       |
| Blank (AUF0117-BLK1)      |          |                    |       | Prepared &     | Analyzed:        | 06/07/11 |                |       |              |       |
| Chloride                  | ND       | 0.5                | mg/L  |                |                  |          |                | -     |              |       |
| Sulfate as SO4            | ND       | 0.5                | н     |                |                  |          |                |       |              |       |
| LCS (AUF0117-BS1)         |          |                    |       | Prepared &     | Analyzed:        | 06/07/11 |                |       |              |       |
| Chloride                  | 10.0     | 0.5                | mg/L  | 10.0           |                  | 99.7     | 80-120         |       |              |       |
| Sulfate as SO4            | 10.0     | 0.5                | н     | 10.0           |                  | 99.8     | 80-120         |       |              |       |
| LCS Dup (AUF0117-BSD1)    |          |                    |       | Prepared &     | z Analyzed:      | 06/07/11 |                |       |              |       |
| Chloride                  | 10.0     | 0.5                | mg/L  | 10.0           |                  | 99.5     | 80-120         | 0.241 | 20           | _     |
| Sulfate as SO4            | 10.3     | 0.5                | н     | 10.0           |                  | 103      | 80-120         | 2.91  | 20           |       |
| Duplicate (AUF0117-DUP1)  |          | Source: 1106091    | 1-01  | Prepared &     | Analyzed:        | 06/07/11 |                |       |              |       |
| Chloride                  | 45.1     | 0.5                | mg/L  |                | 44.8             |          |                | 0.638 | 20           |       |
| Sulfate as SO4            | 7.1      | 0.5                | и     |                | 7.2              |          |                | 1.90  | 20           |       |

Excelchem Environmental Lab.

Dr Don

| RWQC Central Valley       | Project:         | Walker Mine  |                |
|---------------------------|------------------|--------------|----------------|
| 11020 Sun Center Dr. #200 | Project Number:  | 10-026-150   | Date Reported: |
| Rancho Cordova, CA 95670  | Project Manager: | Jeff Huggins | 07/25/11 11:47 |

#### **Notes and Definitions**

R-07 This sample was diluted due to matrix interference, resulting in elevated reporting limits

QL-01 Sample results for the QC batch were accepted based on LCS/LCSD percent recoveries and RPD values.

Field This analyte was analyzed outside of the EPA recommended hold time of ASAP and should be analyzed in the field.

ND Analyte not detected at reporting limit.

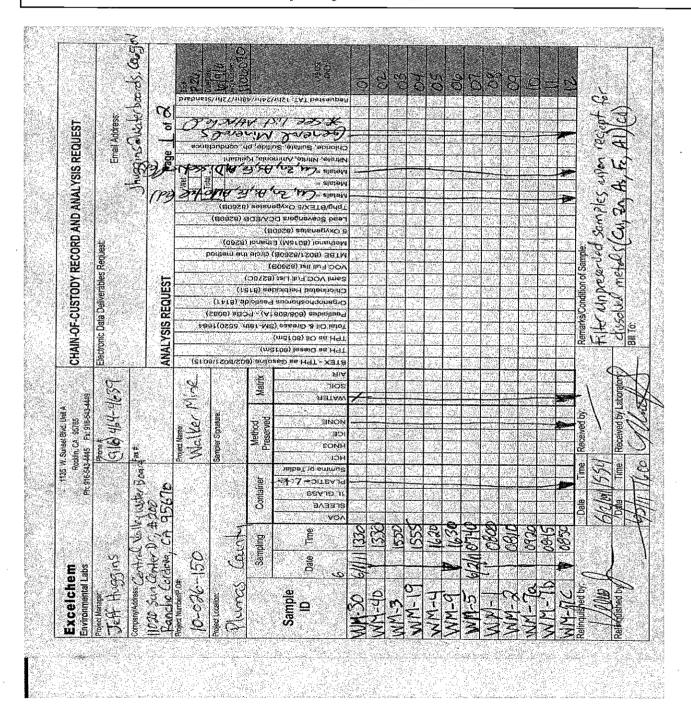
NR Not reported

Excelchem Environmental Lab.

Dr 2 ....

RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project:

Walker Mine

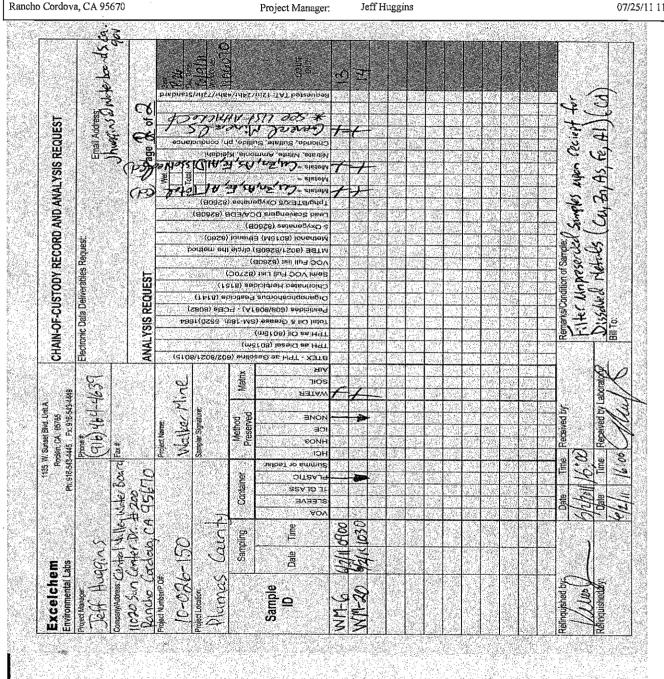

Project Number:

10-026-150

Project Manager:

Jeff Huggins

Date Reported: 07/25/11 11:47




Excelchem Environmental Lab.



RWQC Central Valley 11020 Sun Center Dr. #200 Rancho Cordova, CA 95670 Project: Project Number: Walker Mine 10-026-150 Jeff Huggins

Date Reported: 07/25/11 11:47



Excelchem Environmental Lab.



| RWQC Central Valley 11020 Sun Center Dr. #200 | Project: Project Number: | Walker Mine<br>10-026-150 | Date Reported: |
|-----------------------------------------------|--------------------------|---------------------------|----------------|
| Rancho Cordova, CA 95670                      | Project Manager;         | Jeff Huggins              | 07/25/11 11:47 |

| Sample Integrity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Y</b> 10 milion (Control of Control | WOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K ORDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1106070                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date Received: 💪                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12/2011 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | naeussum en de liste (1905)<br>Partin van Station (1905)                                                                                                                                                                         |
| Section 1 – Sample Arri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ival Info.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the    | raktissa karanga <u>a k</u><br>Mga karang karanga ka                                                                                                                                                                             |
| Sample Transport: O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INTRAC IIPS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ISPS (Walk-In EXCELCHEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f Courier Fed I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x Other:                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                  |
| Transported In Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chest Box Hand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3<br>The State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eg Suserioris III                                                                                                                                                                                                                |
| Describe type of pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ing materials: A Bubl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | old Wrap Foam Packing Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | anuts 🦪 / Paper //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other: Suew                                                                                                                                                                                                                      |
| Has chilling process b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | egun? 🕢 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Samples Received Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 maga ang atrawasi 7.7<br>Sulasi sa atrawasi 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ambient /CO                                                                                                                                                                                                                      |
| A CONTRACTOR OF THE CONTRACTOR OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co    | and the second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                  |
| Temperature of Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iples (°C):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ice Chest Tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ture(s) (°C):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>. 3</u>                                                                                                                                                                                                                       |
| and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                  |
| Section 2 — Bottle/Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                  |
| Section 2 = Bottle/Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SIS LUIO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and and the second                                                                                                                                                                                                               |
| Did all bottles arrive unb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in after the sign of a sign of the sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                         |
| Did all bottle labels agree<br>Were correct containers u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | med de rechtement gegente                                                                                                                                                                                                        |
| Were correct preservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                  |
| Was a sufficient amount o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of sample sent for tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | its indicated?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                  |
| Were bubbles present in VC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )A Vials?: (Volatile M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ethods Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e est primario de la companio de la companio de la companio de la companio de la companio de la companio de la<br>La companio de la companio de la companio de la companio de la companio de la companio de la companio de la co |
| Section 3 – COC Info.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Completed Info From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes No Container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Completed Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comments                                                                                                                                                                                                                         |
| Was COC Received Date Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis Requested Samples arrived within holding time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page 1 to 1 to 1 to 1 to 1 to 1 to 1 to 1 t                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>√</b> 2011-200 200 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Any hold times less than 72 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Committee of the Control of the All Chieffers and the control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t    | 15PC                                                                                                                                                                                                                             |
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X 34 /34 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Client Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Belle et en en en en en en en en en en en en en                                                                                                                                                                                  |
| RushTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 10 X S 10 00 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Address/Telephone #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stanting to world a model to                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gescare that it is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · 第八条件。"是"包"的"不成功"。                                                                                                                                                                                                              |
| Section 4 – Comments /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Discrepancies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | organistic (1, 4 con 1, 7), con 1, part (2, 1), con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1,<br>Con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con 1, con | er er er er er er er er er er er er er e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | entre de la companya de la companya de la companya de la companya de la companya de la companya de la companya<br>La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co |
| Was Client notified of dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No (N/A) Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.25 (2.26) 45 49 45 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500 (1987) 1988 (1988) 2 P                                                                                                                                                                                                       |
| has stemmonted or dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The second area of the second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ified by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |
| Explanations / Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Parks) (J. 1995) (A. 1966)<br>Harris (Harris Harris)                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the company of the first                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 型。第二次 FL 对大型 的现在分词                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE     |                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>ar s</u> agramas com op <u>as.</u><br>Mil King Magazina                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a de la composição de la composição de la composição de la composição de la composição de la composição de la<br>La composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição d | ar ann an Aireann an Aireann an Aireann an Aireann an Aireann an Aireann an Aireann an Aireann an Aireann an A<br>Tagairtí agus an tagairtí |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and our services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | shiled by $\mathcal{C}$                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and our services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | abeled by:                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Samples L<br>Bin #s: P<br>COC Scant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | abeled by:                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Samples L<br>Bin #s: P<br>COC Scant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | abeled by: OC<br>2.6<br>led/Attached by:<br>als reviewed by:                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Samples L<br>Bin #s: P<br>COC Scant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ied/Attached by:                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Samples L<br>Bin #s: P<br>COC Scant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed/Attached by:<br>els reviewed by:                                                                                                                                                                                              |

Excelchem Environmental Lab.

