Working with Nature Across the Land-use Spectrum: A Holistic Approach to Ecological Resilience

SWAMP Science Symposium 20 June 2018

Transforming our cities and landscapes into ecologically resilient systems is both necessary and possible.

Where we work

Science: Draw on cutting-edge science from across disciplines

Translation: Turn science into usable local guidance, visions, tools

Implementation: Facilitate integrated actions via partnerships and planning

LANDSCAPE RESILIENCE FRAMEWORK

LANDSCAPE RESILIENCE FRAMEWORK

Operationalizing ecological resilience at the landscape scale

SALARCECTURAR ACTUS SFEI

Beller E, Spotswood E, Robinson A, Anderson M, Grenier L, Grossinger R, Higgs E, Hobbs R, Suding K, Zavaleta E. in prep.

LANDSCAPE RESILIENCE FRAMEWORK

CONNECTIV

REDUNDANCY

DIVERSITY & COMPLEXITY

LANDSCAPE RESILIENCE FRAMEWORK

Operationalizing ecological resilience at the landscape scale

ANT NAME OF TAXABLE PARTY AND A DESCRIPTION OF A DESCRIPT

resilientsv.sfei.org

WORKING WITH NATURE across the lands-use spectrum

	WILDLANDS	AGRICULTURE	URBAN	SHORE
Nature-Based Solutions	Habitat conservation and restoration			
	Emulate fire disturbance			
	Prevent development			
Resulting	Water capture			
Ecosystem Services	Carbon sequestration Manage wildfire risk			

Peninsula Watershed

San Mateo County

Study Area

Expected vegetation shifts

Expected vegetation shifts

With fire suppression and

grazing removal:

- Conifer expansion
- Oak woodland expansion
- Grassland contraction
- Coastal scrub

encroachment

WORKING WITH NATURE across the lands-use spectrum

	WILDLANDS	AGRICULTURE	URBAN	SHORE
Nature-Based Solutions	Habitat conservation and restoration	Creek / wetland restoration		
	Emulate fire disturbance	Wildlife-friendly ag Prevent development		
	Prevent development			
Resulting	Water capture	Water quality benefits		
Ecosystem	Carbon sequestration	Water infiltration		
Services	Manage wildfire risk	Flood risk management		

Laguna de Santa Rosa

Sonoma County

AQUATIC SCIENCE CENTER

SFE

Project Focus Area

\$29 Laguna 100-yr floodplain Mark West Creek RUS Forestville Santa Rosa Greek Santa Rosa Sebastopo S101 Rosa Rohnert Park 15 2 miles Marin County

Historical Habitat Types and Channels

Modern Habitat Types and Channels

NUTRIENT TRANSPORT AND ASSIMILATION (CONCEPTUAL)

Source: Baumgarten et al. 2017

Project Components

Historical Ecology & Landscape Change

Restored Landscape Vision

Master Restoration Plan

Restoration Project Designs

WORKING WITH NATURE across the lands-use spectrum

	WILDLANDS	AGRICULTURE	URBAN	SHORE
Nature-Based Solutions	Habitat conservation and restoration	Creek / wetland restoration	Native plant urban forest	
	Emulate fire disturbance	Wildlife-friendly ag Prevent development	Mitigate barriers to wildlife movement	
	Prevent development		Creek realignment	
Resulting Ecosystem	Water capture Carbon sequestration	Water quality benefits Water infiltration	Flood peak reduction	
Services	Manage wildfire risk	Flood risk management	Sediment transport	

WORKING WITH NATURE across the lands-use spectrum

	WILDLANDS	AGRICULTURE	URBAN	SHORE
Nature-Based Solutions	Habitat conservation and restoration	Creek / wetland restoration	Native plant urban forest	Marshes Beaches
	Emulate fire disturbance	Wildlife-friendly ag Prevent development	Mitigate barriers to wildlife movement	Hybrid shorelines
	Prevent development		Creek realignment	
Resulting	Water capture	Water quality benefits	Flood peak reduction	Shoreline protection
Ecosystem Services	Carbon sequestration Manage wildfire risk	Water infiltration Flood risk management	Water quality benefits Sediment transport	Carbon sequestration Water quality benefits

OPERATIONAL LANDSCAPE UNITS FOR SF BAY: Using nature's jurisdictions to plan for sea level rise

Funded by SF BAY RWQCB

Shoreline planning units based on physicál processes

Nature-based Solutions

Low-crested oyster reef Submerged vegetation Mudflat augmentation Marsh **Cobble beach** Sand beach Shell hash beach

Polder management Horizontal levee **Migration space preparation** +Creek to bay connections +Green stormwater infrastructure

Pairing Problems with Measures

Problem	Cause	Example measure
Wave overtopping or erosion of levee with wide foreshore	Large waves reach levee	Marsh, fine beach, horizontal levee
Waves overtopping or erosion with narrow foreshore	Close to deep water	Coarse beach
Combined flooding	Loss of floodplain	Retention basins, setback levee
Combined flooding	Channel conveyance	Tidal restoration, geomorphic channels
Loss of marsh area	Wave erosion of scarp	Coarse beach, oyster reef
Loss of elevation capital	Low accretion rate	Strategic placement
No space to migrate marsh	Development up to levee	Horizontal levee
Subsided areas behind levee	Diking and draining of marshes	Reconnect to creeks, warping

Vulnerability

LEGEND

Vulnerable buildings

25 cm SLR + 100 year storm 50 cm SLR + 100 year storm

150 cm SLR + 100 year storm

Flood hazard

existing (0 cm SLR, no storm) 25 cm SLR + 100 year storm 50 cm SLR + 100 year storm 150 cm SLR + 100 year storm

Shoreline infrastructure

Data from BayWave

Physical Processes & Drivers

Elevation range (z*) T-zone (<2.00) High marsh (<1.20)

Mid marsh (<0.85) Low marsh (<0.55) Mudflat (<0.25) Shallow subtidal (<-1) Mid subtidal (<-2) Deep subtidal (<-4)

Waves

Also **sediment load** (see large map)

Richardson Bay

Opportunities Map

LEGEND

Low-crested oyster reef creation

Submerged vegtation restoration

Marsh restoration
Potential marsh needed for wave attenuation
Potential marsh

Migration space preparation

Developed migration space

Undeveloped and protected migration space Undeveloped but not protected migration space

Polder management

Horizontal Levee

Opportunities Map

LEGEND

Development

Cow-crested oyster reef creation

Submerged vegtation restoration

Marsh restoration Potential marsh needed for wave attenuation

Potential marsh

Migration space preparation

Undeveloped and protected migration space

Undeveloped but not protected migration space

Horizontal Levee

creek flooding 📈

combined fluvial flooding

lack of migration space

low elevation capital

WORKING WITH NATURE across the lands-use spectrum

	WILDLANDS	AGRICULTURE	URBAN	SHORE	
Nature-Based Solutions	Habitat conservation and restoration	Creek / wetland restoration	Native plant urban forest	Marshes Beaches	
	Emulate fire disturbance	mulate fire Wildlife-friendly ag Mitigate barriers to isturbance Prevent development wildlife movement		Hybrid shorelines	
	Prevent development		Creek realignment		
Resulting	Water capture	Water quality benefits	Flood peak reduction	Shoreline protection	
Ecosystem Services	Carbon sequestration Manage wildfire risk	Water infiltration Flood risk management	Water quality benefits Sediment transport	Carbon sequestration Water quality benefits	

Thank You

Ecosystem Services Provided by Native Oaks

Distribution of Ecosystem Services

- The spatial distribution of ecosystem services is consistent across services provided.
- Hot spots of total annual benefits: central San Jose residential areas, some riparian corridors
- Cold spots of total annual benefits: undeveloped areas, hillsides, tidal marsh, and San Jose airport.

Distribution of Ecosystem Services

- The spatial distribution of ecosystem services is consistent across services provided.
- Hot spots of total annual benefits: central San Jose residential areas, some riparian corridors
- Cold spots of total annual benefits: undeveloped areas, hillsides, tidal marsh, and San Jose airport.

GreenPlan-IT Overview

Versatile & flexible to meet a range of stormwater management needs, from GI planning to Stormwater Resources Plans & Descent black and the formula of th

Reasonable Assurance An GIS SITE OPPORTUNITY LOCATOR TOOL MAP Scientifically rigorous OPTIMIZATION MODELING TOOL TOOL (Hydrology, water quality and LID simulation) OPTIMAL LID **SCENARIOS** Public domain Incorporation of other information and expert **TRACKER TOOL** judgements; identification of priority loca-(Upload implementation tions and proposed phased implementation data, assess, report) Phased implementation WATERSHED PLANNING DOCUMENTS

Examples of GIS data layers

GIS Layers

- Streets
- Parks
- Parking Lots
- Priority Development Areas
- Bike Lane Plans
- Storm Water Drainage network
- Storm Inlets
- Fire Hydrants
- Street Trees
- Pavement Condition
- Gas Lines
- City Owned Parcels
- Building Footprints
- High Trash Generation Areas
 - Schools
- Public Spaces

Outputs of Optimization Tool

GreenPlan-IT Applications

Identified GI locations for City of San Mateo's Sustainable Street Plan

- Identified cost-effective GI locations for
 - Downtown San Jose for PCB control

GENERAL PLAN

GreenPlan-IT Applications

Support GI watershed planning for controlling PCBs for Sunnyvale, Oakland, Richmond and Contra Costa County

GreenPlan-IT Applications

Wetland restoration planning for nutrient load reduction

Building Capacity

- Reduce stormwater runoff and nutrient loads to Laguna de Santa Rosa
- Prioritize and identify watershed scale wetland restoration project sites

Healthy Watersheds Resilient Baylands

- Integrate water quality benefits and ecological functions
- Identify where GI and urban forestry can synergistically achieve multiple benefits

Identify local elements for landscape resilience...

Urban forests that **increase recharge and reduce stormwater peak flow** Native plant communities integrated into urban spaces **support native wildlife**

SAN FRANCISCO ESTLARY INSTITUTE SFEEL

which increase community resilience...

Urban forests designed to **reduce heat**, **provide shade**, and **store carbon**

Native plant landscaping that is **drought tolerant**, **connects people to nature**, and makes city **unique**

How to create meaningful urban ecology as part of the surrounding landscape

CREATE A HEALTHIER FUTURE FOR PEOPLE AND WILDLIFE

by delivering science to maximize benefits of working with nature across the land use spectrum

How we do it

Science: Draw on cutting-edge science from across disciplines

Translation: Turn science into usable local guidance, visions, tools

Implementation: Facilitate integrated actions via partnerships and planning

Working with nature Across the land use spectrum					
	WILDLANDS	AGRICULTURE	URBAN	SHORE	
Nature-Base Solution	d Conservation/restoration Prevent development Fire management	Wildlife-friendly agriculture Hedgerows Prevent development	Native plant communities Mitigate barriers Floodplain restoration Creek realignment	Marshes Beaches Hybrid shorelines	
Resultii Ecosyste Servic	ng Water capture m Carbon sequestration Biodiversity support	Water infiltration Habitat connectivity Pollination	Flood peak reduction Water quality improvement sediment transport	Shoreline protection Carbon sequestration Biodiversity support	

WORKING WITH NATURE across the lands-use spectrum

	WILDLANDS	AGRICULTURE	URBAN	SHORE	
Nature-Based Solutions	Habitat conservation and restoration	Wildlife-friendly agriculture	Native plant urban forest	Marshes Beaches	
	Prevent development Emulate fire	levelopment Creek corridor Mitigate barriers to restoration wildife movement		Hybrid shorelines	
Doculting	Water capture	Water infiltration		Shoreline protection	
Ecosystem Services	Carbon sequestration Manage wildfire risk	Habitat connectivity Pollination	Flood peak reduction Water quality benefits Sediment transport	Carbon sequestration Water quality benefits	

Project Goals

Use archival and geophysical data to examine historical ecological, hydrological, and geomorphic patterns and local environmental variability within the Peninsula Watershed, with emphasis on terrestrial vegetation communities

Analyze and document landscape change over time and effects on desired ecological functions

Support SFPUC in identifying appropriate restoration targets and priorities

Inform watershed management activities related to water quality, vegetation, fire, sediment, wildlife, and public access