Consideration of Non-Stationary Sediment Dynamics in Watershed Based Plans

Andrew Gray
Assistant Professor of Watershed Hydrology
Department of Environmental Sciences

2nd Annual Watershed Health Indicators and Data Science Symposium
Sacramento, CA Thursday June 29, 2017

Image: Monterey County Water Resources Agency
Fine River Sediment

- **Master Variable**

- **Natural Variability** in abundance often spans orders of magnitude within and between systems

- **Non-Stationary** (time dependent) dynamics can sabotage ‘snapshot’ based plans

- **Suggestions**
What is suspended sediment?

- **Shear Velocity**
- **Particle Size**
 - Bedload
 - Suspended Load
 - Coarse
 - Medium
 - Fine
- **Concentration**

Channel Bed
All natural water bodies transport sediment.

Sediment is the most prevalent impairment of water bodies.

Bio-geochemical Cycles

Geomorphology

Direct

Physical Habitat

Surface Mediated Transport

Heavy Metals
Pesticides
Herbicides
Nutrients
Organic Carbon
Microbia

1. Milliman and Meade (1983)
Spatially Divergent Demands

Coastal
- Wetland accretion
 - SLR
- Legacy sediments contaminated¹

Interior
- Source restructuring²
 - Damming
 - Agriculture
- Habitat
- Human use

'SClean’ Sediment as Resource

Sacramento-San Joaquin Watershed
from: CA DFW

1. Schoelhamer et al. (2007)
2. McKee et al. (2013)
Fluvial Suspended Sediment Monitoring

• Ambient Characterization

• Dynamical/Flux-Based

Current-meter discharge measurements are made by determining the discharge in each subsection of a channel cross section and summing the subsection discharges to obtain a total discharge.
Suspended Sediment Dynamics

The $C_{ss} - Q$ Relationship
High Variability

1. Lower Salinas River fine suspended sediment
90% of Sediment flux from n% of hydrologic record

5-10%

1-2%

0-1%

Dominated by rare, high magnitude events

Farnsworth and Warrick (2007)
Time Dependent Behavior

Found across a wide range of temporal scales

✓ Event to Interdecadal
Supply Augmentation

Eel River Christmas Flood

December, 1964

~ 200 year recurrence interval

Log C_{ss}

Decreasing temporal trend in C_{ss}-Q relationship at the Interdecadal Scale

Warrick et al. (2013)

System Rebound

Goni et al. (2013)
Wildfire-Storm Event Sequencing

Suspended Sediment Response

Post 1977 100x pre-fire
Post 2008 2x pre-fire

Event Scale Disturbance
Interannual Scale
Supply Recovery
Conditioned by Rainfall Intensity

(1) Warrick et al. (2012)
Event Scale Non-Stationarities

Hysteresis

Hydrologic Regime

- Baseflow
- Stormflow
- Reservoir Release

\[C_{ss} \ (mg/L) \]

\[Q \ (m^3s^{-1}) \]

1. Williams (1989)
Hydroclimate & Humans

Event to Interannual

Loading/Flushing Regimes

- Drought/Low Flow
- Event magnitude/timing
- Fines: Threshold Supply Suppression
- Sand: General Supply Suppression

Gray et al. (2014)

Decadal

Persistent Hydro-Climatic Cycles

- Persistent Patterns in Hydrologic Conditions
- Sediment flux comparisons

Gray et al. (2015a,b)

Interdecadal

Salinas River

Agriculture

- Salinas River Watershed
 - ~50% increase in crop area from 1965-2011

Drip irrigation
 - Introduced in 1960s.
 - Expanded rapidly from 1990 to present

Gray et al. (2016a)
Variability Rich, Data Poor

Only 23 of 250+ watersheds have 10+ year suspended sediment data sets

- Short duration
- Sporadic, low resolution
- ‘Effective’ flood events missed

Almost no sediment composition/associated contaminant data

Gray et al., in prep.
Automated C_{ss}-Q Sampling

Fine sediment ($D < 63 \mu m$) well mixed, and carry most of contaminant load
Sediment Associated Contaminant Dynamics

• **Very, very few studies ever conducted**¹

 Requirements²

 • SS dynamics
 • Contaminant analysis
 → LARGE samples (10 – 10³ liters)
 → High volume processing for SS (i.e. large or continuous flow centrifuges)

• **We know very little** about the transport dynamics of sediment associated contaminants through fluvial systems.

¹ LeBlanc et al. (2004)
² Conn et al. (2016)
Sediment Provenance

Characterize Source/SS

- Trace elements
- Contaminants
- Fallout Radionuclides

Mixing Model

- Geology
- Land use
- Erosion/Transport

The Future of Sediment Management Requires Rethinking Sediment Monitoring

Watershed Based Plans

Beyond reach scale & distributed ‘snapshot’ requirements

• **Dynamical/Flux-based monitoring**
 – Associated contaminant dynamics

• **Emergent technologies**
 – Remote sensing, high resolution surveys, sediment fingerprinting

• **Explicit consideration of time**
References

