San Francisco Bay Nutrients

San Francisco Bay Stakeholder Advisory Group (SF Bay SAG) Meeting

June 22, 2012, 9:00 am-2:00 pm
Meeting Goals

- Review status of Regional Nutrient Strategy
- Discuss recommendations for 2013 RMP funding
- Identify priority work/studies for 2103
- Provide feedback on informal SAG survey
Agenda

- Introductions, goals, logistics
- Recap of March meeting
- Comments on Draft Nutrient Strategy
- Proposed projects for 2013 funding
- Lunch (on your own)
- Discuss informal survey results
- Wrap up and next steps
Recap of Last Meeting

- Presented draft elements of nutrient strategy
 - Requested Comments (4 letters received)
- Provided an overview of funded projects
- Discussed organizational structure
Nutrient Strategy: Context

- Builds on clear statement of management decisions and goals
- Overarching work plan needed to guide project activities
- Strategy should represent consensus on science & policy work elements needed to manage nutrients
- Results in blueprint for regulatory decision-making
High Priority Projects Underway

- Conceptual model, scenario development & summary of existing loads (RMP, $80K)
- Phytoplankton NNE (SWRCB, $115K)
- Suisun Bay Studies (SWRCB, SFWCA, CCCSD)
- Nutrient strategy support/modeling/Suisun Bay Studies (BACWA, $300 K)
- Effluent characterization
Revisiting NNE Organizational Structure

- NNE organization part of larger statewide process
- Need for flexible organization to accommodate local culture
 - Different funding agencies, different procedures and expectations for communication
 - Would like one manageable, open/transparent process
- Revisit project organization
- Local facilitator
Timeline

- Nutrient Strategy
 - March 2012

- Suisun Bay Studies
 - SWAMP Study 2011-2012
 - Sampling and Toxicity Testing
 - Collaborative Studies 2012-2014
 - Work Plan
 - March-May 2012

- Numeric Model Development
 - Work Plan
 - Modeling Strategy
 - June 2012

- Loading Studies
 - Effluent Characterization 2012-2014
 - Small Tributary Loadings
 - RMP/MRP Data Integration
 - ?? 2012

- Assessment Framework
 - Delta Plan – Nutrient Objectives
 - March 2012
Additional Comments? Concerns?
We want to hear your feedback
Draft Nutrient Strategy

1. Problem Definition, Conceptual Model

2. Establish Guidelines

3. Monitoring Program Development

4. Nutrient/Biogeochemical Modeling

5. Control strategies: nutrient removal

6. Regulatory approaches
1. Timing of Strategy potentially out of sync with some permit drivers.

2. Assessment framework: something before March 2013

3. Importance of Peer review - conceptual model, modeling strategy

4. Monitoring program – accurate assessment of loads (point, non-point, ocean loads)

5. Modeling - support for load-response modeling, creation of model evaluation group, specific input on approach

6. Develop objectives after management scenarios

7. Control strategies - consider capital planning, nutrient load reductions
Strategy Comments - SRCSD

- 1. Strategy is beginning of solid framework to approach for nutrients
- 2. Coordinate Bay and Delta RMPs
- 3. Develop objectives after management scenarios
- 4. Concerned about listing on 303(d) based on model forecasting
- 5. Difficulty of developing a consensus statement about existing or future conditions
Strategy Comments - SFCWA

1. Supportive of nutrient strategy
2. Takes too narrow a view of the nutrient problem - need to think beyond ‘classic’ eutrophication
3. Missing literature: NH4 inhibition, stoichiometry
4. Biogeochemical pathways – more emphasis
5. More process-oriented measurements – e.g. direct measures of productivity, diel hypoxia O₂
6. Supports evaluation of ammonia objectives
7. Monitoring needs to be a high priority, and accelerated
8. Consider agricultural sources of loads
Timeline - Strategy

- **Jun 2012**: Revise Strategy
- **Jul 2012**: Draft2 Strategy
- **Aug 2012**: Comments
- **Sep 2012**: Draft3 Strategy
- **Oct 2012**: Comments
- **Nov 2012**: Revise Strategy
- **Dec 2012**: Final Strategy
Discussion - Strategy

- Comments, questions, clarifications?
- Next steps
<table>
<thead>
<tr>
<th>Define the problem</th>
<th>Establish guidelines</th>
<th>Monitor</th>
<th>Modeling</th>
<th>Control Strategies</th>
<th>Regul. Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual models and Scenarios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Phytoplank. Assessment Framework**
- **NH₄⁺ and Suisun**
- **DO Objectives**
- **Macroalgal framework**
- **Modeling Strategy**
- **Basic Biogeochemical Modeling**
- **Load estimates**
- **Load Models**

Timeline

- **2012**
- **2013**
- **2014**
- **2015**
- **2016**

- **RMP**
- **BACWA**
- **SWQCB**
Progress since last meeting

• Conceptual model work
 – Kick-off CM meeting: May 7-8
 – synthesis and drafts underway
 – next technical team meeting: August
 – Draft CM report ➔ September 30 2012

• Loading calculations
 – Calculations for POTWs by Bay segment (rough)
 – Beginning to refine calculations based on historic data
 – Developing approach for stormwater and Delta loads
Progress since last meeting

• Suisun Bay synthesis
 – Data gathering and data analysis
 – Simple 1-box budget for NH4
 – Beginning to develop detailed scope

• Assessment framework
 – Detailed scope development: Summer 2012

• Informal survey of stakeholders of process and governance completed
Goals of Today’s meeting

- Summarize comments on 2012 Nutrient Strategy Draft
- Discuss Priority Projects for 2013
- Review Survey Results

- **Key Outputs:**
 - Recommendations/feedback: 2013 projects/priorities
 - Identify next steps for process/governance
Funding Priorities 2013

• There are a number of projects that could be considered high priority based on
 – Strategy
 – Feedback on strategy
 – Conceptual Model Technical Team
 – Other stakeholder input

• More costs than funds

• Goal: Feedback on proposed projects for 2013 funding
 – Proposals going to RMP
 – Projects under consideration for funding by other groups
<table>
<thead>
<tr>
<th>Work Element</th>
<th>Priority Projects (subset) for 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Moored sensor pilot study</td>
</tr>
<tr>
<td>2.</td>
<td>Algal phytotoxins</td>
</tr>
<tr>
<td>3.</td>
<td>Nutrient stormwater sampling</td>
</tr>
<tr>
<td>4.</td>
<td>Loading study continuation</td>
</tr>
<tr>
<td></td>
<td>Work Element</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3,4</td>
</tr>
<tr>
<td></td>
<td>1,4</td>
</tr>
</tbody>
</table>
Priority Projects (subset) for 2013

<table>
<thead>
<tr>
<th>Work Element</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Moored sensor pilot study</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2. Algal phytotoxins</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3. Nutrient stormwater sampling</td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>4. Loading study continuation</td>
<td></td>
<td></td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>5. Monitoring program development</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6. Biogeochemical modeling</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7. Loads across Golden Gate</td>
<td></td>
<td></td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>8. Photosynt. effic., and NH4/NO3 p.p.</td>
<td></td>
<td></td>
<td>2,3,4</td>
<td></td>
</tr>
<tr>
<td>9. Loads to Suisun from Delta</td>
<td></td>
<td></td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>10. 3D model development</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>11. Assessment framework framework continuation</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
1969-present
- monthly sampling
- research studies
- RMP support
 -1993-present

- USGS
- IEP
Major Questions Related to Monitoring Program

Scientific

- Parameters to be measured, what spatial/temporal frequency?
- What combination of approaches is needed
 - ship-based, moored sensors, others
Major Questions Related to Monitoring Program

Scientific

- Parameters to be measured, what spatial/temporal frequency?
- What combination of approaches is needed
 - ship-based, moored sensors, others

Institutional

- Approx. cost for running the program?
- What institutional agreements need to be established?
 - e.g., continued partnering with USGS, IEP
- Transition timeline?
Current continuous monitoring

Other capabilities???
- chl-a
- nitrate
- Eventual others...
 - FloCAM?
Moored Sensor Pilot Study - Dumbarton Bridge

cost: $270k (120k RMP, 70k USGS match, 70k other)
PI: J Cloern, D Senn

Objective: Deploy moored multi-sensor platform and develop regional capacity for use as part of monitoring program.
Moored Sensor Pilot Study - Dumbarton Bridge

cost: $270k (120k RMP, 70k USGS match, 70k other)
PI: J Cloern, D Senn

Objective: Deploy moored multi-sensor platform and develop regional capacity for use as part of monitoring program.

Approach:
- Research, selection
- Calibration, deployment, maintenance
- Co-deploy with existing USGS sensors
- Data analysis, QA/QC
- Product: Operating manual and technical memo
Potential Platform

LOBO
- conductivity
- temperature
- dissolved O_2
- chlorophyll
- turbidity
- nitrate
- telemetry
- bio-fouling resistant
Potential Platform
Algal biotoxins monitoring

cost: $65k (RMP)
PI: R Kudela (UC Santa Cruz)

Objective:
- Characterize the distribution of algal biotoxins in SF Bay
- Calibrate sampler for quantification of ambient concentrations
- Develop approach for use in monitoring program

Approach:
- Deploy Solid Phase Adsorption Toxin Tracking (SPATT) samplers
 - Monthly Transects: Polaris flow-through system
 - Dumbarton and Benicia Bridges (30 days)
- Calibrate SPATT through controlled laboratory experiments
- Product: Technical report
Algal biotoxins monitoring

cost: $65k (RMP)
PI: R Kudela (UC Santa Cruz)

Objective:
- Characterize the distribution of algal biotoxins in SF Bay
- Calibrate sampler for quantification of ambient concentrations
- Develop approach for use in monitoring program

Approach:
- Deploy Solid Phase Adsorption Tracking (SPATT) samplers
 - Monthly Transects: *Polaris* flowthrough system
 - Dumbarton and Benicia Bridges (30 days)
- Calibrate SPATT through controlled laboratory experiments
- *Product*: Technical report
SPATT concentrations plotted in Temperature-Salinity space

Bubble size = toxin concentration; color corresponds to Bay regions

Bars represent 1 SD for Salinity and Temperature
Stormwater nutrient monitoring, 6 watersheds
Cost: $38k (RMP)
PI: D Senn (for nutrients)

Objective:
- Characterize nutrient concentrations and quantify loads in diverse watersheds

Funding: RMP and BASMAA
Stormwater nutrient monitoring, 6 watersheds
Cost: $38k (RMP)
PI: D Senn (for nutrients)

Objective:
- Characterize nutrient concentrations and quantify loads in diverse watersheds

Approach:
- Piggy-back on larger study (leverage >$300k in fieldwork)
- 6 watersheds, 4 storms
- NO3, NO2, NH4, PO4, TN, TP

Product: Technical memo

New sites: - North Richmond pump station
- Pulgas

Funding: RMP and BASMAA
Assess Nutrient Loads to the Bay – continuation

Cost: $30k (RMP)
PI: D Senn

Objectives
- Assess major nutrient loads and composition
- Characterize variations in space and time
- Identify major uncertainties and data gaps, future work
Assess Nutrient Loads to the Bay – continuation

Cost: $30k (RMP)
PI: D Senn

Approach for Part I & II:
- Refine POTW loads with archived and new effluent data
- Estimating stormwater and groundwater loads
- Initial estimates of GG loads and loads from the Delta
- Characterize variations in space and time
- Identify major uncertainties and data gaps, future work
 - **Product:** Technical Report
Discussion of RMP projects

• Agreement on prioritization of these projects?

• Other priorities?
Priority Projects (subset) for 2013

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Element</td>
<td>3</td>
<td>3</td>
<td>3,4</td>
<td>1,4</td>
<td>3</td>
<td>4</td>
<td>1,4</td>
<td>2,3,4</td>
<td>1,4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Monitoring Program Development I

cost: $25-50k (Nutrient Group)
PI: D Senn, J Davis, J Cloern (USGS)

Objective: Develop a transition plan for Monitoring Program migration from USGS to RMP

Approach:
- Investigate costs, infrastructure, logistics for various scenarios
- Identify new partners (e.g., IEP)
- Identify institutional agreements, timelines, constraints
- Convene ad hoc advisory committee of stakeholders, regulators, USGS and other partners

- Product: Report on migration plan
Objective: Develop biogeochemical models to...

- Quantitative data synthesis and nutrient budgets
- Assess relative importance of key processes/drivers
- Sensitivity analysis, identify critical uncertainties and data gaps
- Characterize system response (e.g., chl, O₂) under future scenarios
- Inform monitoring program and special studies
Biogeochemical Modeling: Suisun and South Bay

- flow, tidal exchange (t_{res})
- light limitation
- benthic grazing
- potential inhibition of PP by NH$_4^+$
- budgets: transformations, sources, and sinks
Evidence of NH4 inhibiting NO3 uptake

Dugdale et al., 2007
Turnover by grazing clams (d⁻¹)
Example: May 2010

J. Thompson, USGS, pers. comm.

source: Kimmerer et al. 2011
Biogeochemical Modeling: Suisun and South Bay

\[P = \text{phytoplankton biomass} \]

\[
V \frac{dP}{dt} = + M_{in} - k_{\text{flush}} P V - k_{\text{graze}} P V + \alpha_{\text{light}} \alpha_{\text{NH4}} k_{\text{grow-max}} P V
\]

\[\alpha_{\text{light}}, \alpha_{\text{NH4}} < 1 \]
Biogeochemical Modeling: Suisun and South Bay

Approach:

- Model development with technical team and WQ modeling and hydrodynamic consultants
- Use hydrodynamic data from other efforts (grid aggregation)
- Open-source model delivered to SFEI, technical group, and stakeholders to perform simulations, test/generate hypotheses
- *Product:* Model, technical report(s)
Nutrient exchange across the Golden Gate

Cost: $150k (Nutrient Group)
PI: M Stacey (UC Berkeley), J Largier (UC Davis)

- Coastal upwelling: cold, nutrient-rich water. max NO3 ~ 35μM

- Upwelling strongest during summer months when land runoff is weakest.

- Water at mouth of the Bay transported far into Bay each tidal cycle
 - ocean waters may intrude further as a density-driven lower layer (when stratified).

- These loads could potentially rival anthropogenic loads on any given day (given the Bay’s tidal prism volume and upwelled NO3 levels)
Nutrient exchange across the Golden Gate

Cost: $150k (Nutrient Group)
PI: M Stacey (UC Berkeley), J Largier (UC Davis)
Nutrient exchange across the Golden Gate

Cost: $150k (Nutrient Group)
PI: M Stacey (UC Berkeley), J Largier (UC Davis)

Objectives & Approach:
- Develop conceptual model of nutrient delivery from ocean to bay, including factors controlling concentration, intrusion distance and time scales.

- Develop first-order quantitative estimates of nutrient flux from ocean to bay for a variety of scenarios.
 - e.g., using T-NO3 relationships

- Develop first-order quantitative estimates of the “reach of the ocean” – how far into the bay may ocean nutrients be important?
 - existing 1-D salt intrusion models

- Recommend next steps for refining estimates
Photosynthesis efficiency and primary production rates on NH4 vs. NO3

Cost: $200k (IEP, SFCWA, others)
PI: R Kudela (USCS)
Partners: M Berg (AMS), Region 2 Board, SFCWA, others

Stress affects photosynthesis

\[
\text{Yield} = \frac{\text{ATP}}{\text{SUN}}
\]

YIELD
– conversion efficiency of light energy into chemical energy for C fixation
– very sensitive to stressors
 • toxicity, changes in irradiance, salinity, temperature, and nutrient limitation
Photosynthesis efficiency and primary production rates on NH4 vs. NO3

Cost: $200k (IEP, SFCWA, others)
PI: R Kudela (USCS)
Partners: M Berg (AMS), Region 2 Board, SFCWA, others

Stress affects photosynthesis

Yield = \[\frac{ATP}{SUN} \]

Does stress vary spatially in San Francisco Bay?

If so, what are the underlying causes?
The answer is Yes

• Yield was 3-fold lower in Suisun compared with South and Central Bays with San Pablo falling in-between

• The low-yield region in Suisun was well-defined and originated in the middle of the Bay, dissipating outwards.

• Yield increased moving towards the Sacramento River
Basin-specific Questions

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>APPROACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>How big is the Misery Spot in Suisun?</td>
<td>Map areal extent of spot</td>
</tr>
<tr>
<td>Does the spot move?</td>
<td>Map several times over the course of a year</td>
</tr>
<tr>
<td>Are phytoplankton stressed closer to SAC Regional?</td>
<td>Transect up the Sacramento River past SAC Regional</td>
</tr>
</tbody>
</table>
Phytoplankton physiology-specific Questions

<table>
<thead>
<tr>
<th>QUESTIONS</th>
<th>APPROACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does ammonium inhibit yield, carbon fixation and growth in phytoplankton in Suisun?</td>
<td>Isolate individual phytoplankton species into culture from within and outside the Misery Spot and investigate the effect of varying nitrogen source (NH4, NO3) on yield, carbon fixation, and growth under controlled conditions (light, temperature, community composition)</td>
</tr>
<tr>
<td></td>
<td>Perform TIE tests using the same unialgal cultures; add yield measurements</td>
</tr>
</tbody>
</table>
Quantify Central Valley nutrient loads to Suisun Bay as a function of time?

Approach...

1. Quantify loads arriving at Delta
2. Use monitoring data and flow estimates to quantify loads to Suisun
3. Estimate internal loads, flows, and N mass balance

NH4 = 4500
NOx = 9200

NH4 = 4400
NOx = 1300

NH4 = xx
NOx = 14000

kg d⁻¹
Approach...

1. Quantify loads arriving at Delta
2. Use monitoring data and flow estimates to quantify loads to Suisun
3. Estimate internal loads, flows, and N mass balance

Kratzer et al. 2011 USGS
Approach...

1. Quantify loads arriving at Delta
2. Use monitoring data and flow estimates to quantify loads to Suisun
3. Estimate internal loads, flows, and N mass balance
4. Loads internally from agricultural are poorly constrained and could be large
 1. Constrain with isotopes
 2. DICU can be large during certain times (Delta internal consumptive use)

Still editing
5. 250 internal ag pumping, return flows
Volumetric Fingerprinting of Delta Water

Figure 14.9: Typical Fingerprinting Source Locations for the Sacramento-San Joaquin Delta.
Delta Simulation Model 2 (DSM2)

Daily source “fingerprint”
Priority Projects (subset) for 2013

<table>
<thead>
<tr>
<th>Work Element</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Moored sensor pilot study</td>
<td>3</td>
</tr>
<tr>
<td>2. Algal phytotoxins</td>
<td>3</td>
</tr>
<tr>
<td>3. Nutrient stormwater sampling</td>
<td>3,4</td>
</tr>
<tr>
<td>4. Loading study continuation</td>
<td>1,4</td>
</tr>
<tr>
<td>5. Monitoring program development</td>
<td>3</td>
</tr>
<tr>
<td>6. Biogeochemical modeling</td>
<td>4</td>
</tr>
<tr>
<td>7. Loads across Golden Gate</td>
<td>1,4</td>
</tr>
<tr>
<td>8. Photosynt. effic., and NH4/NO3 p.p.</td>
<td>2,3,4</td>
</tr>
<tr>
<td>9. Loads to Suisun from Delta</td>
<td>1,4</td>
</tr>
<tr>
<td>10. 3D model development</td>
<td>4</td>
</tr>
<tr>
<td>11. Assessment framework continuation</td>
<td>2</td>
</tr>
</tbody>
</table>
Discussion...
Informal Survey Results Overview

- Role of this group: input on study ideas; work product and workplan review; advise regional board
- Time commitment: quarterly
- Technical subcommittee formation: yes
- More formal governance structure: 100% for work and funding priorities
Need for outside facilitation to define roles and responsibilities and organization structure: yes
Funding for outside facilitation: no
Formal meeting facilitation: no
State Board as meeting facilitator: yes