

Campbell • Cupertino • Los Altos • Los Altos Hills • Los Gatos • Milpitas • Monte Sereno • Mountain View • Palo Alto San Jose • Santa Clara • Saratoga • Sunnyvale • Santa Clara County • Santa Clara Valley Water District

Uploaded to SF Bay Water Board ftp Site (c/o Zachary Rokeach) and Uploaded to Regional Data Center ftp Site (SFEI) on 4/1/2019

March 31, 2019

Mr. Michael Montgomery Executive Officer San Francisco Bay Region Regional Water Quality Control Board 1515 Clay Street, Suite 1400 Oakland, CA 94612

Subject: SCVURPPP Urban Creeks Monitoring Report and Electronic Monitoring Data submittal for Water Year 2018

Dear Mr. Montgomery:

At the direction of the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP) Management Committee, I am pleased to submit SCVURPPP's Urban Creeks Monitoring Report (UCMR) and Electronic Monitoring Data for water quality monitoring conducted in Water Year (WY) 2018 (October 1, 2017 through September 30, 2018). The UCMR is submitted in compliance with provision C.8.h.iii of the 2015 Municipal Regional Stormwater Permit (MRP, NPDES # CAS612008, Order R2-2015-0049) and pursuant to provision C.8 of the MRP, including: Creek Status Monitoring (Provision C.8.d), Stressor/Source Identification Projects (Provision C.8.e), Pollutants of Concern Monitoring (Provision C.8.f), and Pesticides and Toxicity Monitoring (C.8.g). The UCMR consists of a main report and several appendices. Electronic monitoring data are submitted in compliance with provision C.8.h.ii of the MRP. Whereas, the UCMR summarizes data collected by SCVURPPP and third-party organizations¹, the electronic data files include only those data collected by SCVURPPP pursuant to the MRP provisions listed in Table 1.

Table 1. Project, date range, and applicable MRP provision for data included in the Electronic Status Monitoring Data

 Report.

Project	Date Range	MRP Provision		
Creek Status Monitoring	April - September 2018	C.8.d		
Stressor/Source Identification Study	July 2018	C.8.e		
Pollutants of Concern Monitoring	January – May 2018	C.8.f		
Pesticides and Toxicity Monitoring	January - July 2018	C.8.g		

The quality of all Creek Status Monitoring (MRP provision C.8.d), Stressor/Source Investigation (MRP provision C.8.e), and Pesticides and Toxicity Monitoring (MRP provision C.8.g) data, and Pollutants of Concern (MRP provision C.8.f) nutrient and copper data was evaluated consistent with the Bay Area Stormwater Management Agencies Association (BASMAA) Regional Monitoring Coalition's *Creek Status Monitoring Program Quality Assurance Project Plan* (QAPP), which is comparable with the latest version

¹ See Third-Party Monitoring Statement at end of this letter.

Mr. Michael Montgomery March 31, 2019 Page 2

of the State of California's Surface Water Ambient Monitoring Program (SWAMP) Quality Assurance Program Plan (QAPrP). The quality of all data from the Pollutants of Concern Monitoring (MRP provision C.8.f) PCBs and mercury data was consistent with the Clean Watersheds for Clean Bay (CW4CB) QAPP.

In compliance with provision C.8.h.ii (Electronic Reporting) of the MRP, all CEDEN-acceptable data (i.e., data collected from receiving waters) were also provided to the Regional Data Center for the California Environmental Data Exchange Network (CEDEN), located at the San Francisco Estuary Institute (SFEI), via upload to their FTP site.² These data are submitted in a format comparable with the SWAMP database. Pollutants of Concern Monitoring data collected in non-receiving waters are included in the attached electronic files, but were not submitted to the Regional Data Center. For more details regarding the data types associated with CEDEN, see the BASMAA letter to the CEDEN Data Manager (dated March 20, 2017) which was cc'd to several of your staff.

Monitoring data included in this submittal suggest that water quality conditions in Santa Clara Basin creeks vary substantially among sites and between monitoring events. Temporal and spatial variability adds to the challenge of interpreting and evaluating the data and using it to help identify potential persistent water quality issues warranting a programmatic response from stormwater agencies. A detailed analysis of the data is included in the UCMR.

We look forward to discussing the findings, conclusions and recommended next steps included in the UCMR and to continuing to work with you and your staff to successfully address new challenges regarding water quality monitoring. Please contact me or Chris Sommers (<u>csommers@eoainc.com</u>) if you have any comments or questions.

Certification Regarding SCVURPPP Program Urban Creeks Monitoring Report

"I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Very truly yours,

Hr. N.C

Adam W. Olivieri, Dr. P.H., P.E. Program Manager

CC: SCVURPPP Management Committee Members Tom Mumley, Assistant Executive Officer, SF Bay Water Board Chris Sommers, SCVURPPP Project Manager

Attachments: SCVURPPP UCMR Water Year 2018 (uploaded to ftp site) Electronic Data Report for Water Year 2018 Creek Status and Pesticides & Toxicity Monitoring Data, Stressor/Source Identification Data, and Pollutants of Concern Monitoring Data (uploaded to ftp site) Third Party Monitoring Statement

² Receiving waters monitoring data were also provided directly to the Marine Pollution Studies Laboratory at Moss Landing Marine Laboratories (MPSL-MLML) which is assisting SFEI with CEDEN uploads in 2019.

Third Party Monitoring Statement

Please note that consistent with provision C.8.a.iii of the MRP, one water quality monitoring requirement was partially fulfilled by third party monitoring in Water Year 2018:

- The Regional Monitoring Program for Water Quality in the San Francisco Estuary (RMP) supplements SCVURPPP data collection from Water Year 2018, pursuant to MRP provision C.8.f – Pollutants of Concern Loads Monitoring. The results of monitoring conducted through the RMP are summarized in Section 5 of the attached UCMR. Data collected from stations monitored by the RMP will be submitted to the California Environmental Data Exchange Network directly by the RMP following completion of their quality assurance review.
- Data collected by the State of California's Surface Water Ambient Monitoring Program (SWAMP) through its Stream Pollutant Trend (SPoT) Monitoring Program supplements SCVURPPP data collection associated with MRP Provision C.8.f Pollutants of Concern Monitoring requirements. These SPoT data address the pollutants trends management question. Data collected from stations monitored by the SPoT Program will be submitted directly to the California Environmental Data Exchange Network according to the SWAMP schedule for review and reporting of data, which may not occur for several years.

Watershed Monitoring and Assessment Program

Urban Creeks Monitoring Report Water Quality Monitoring

Water Year 2018 (October 2017 – September 2018)

Submitted in compliance with Provision C.8.h.iii of NPDES Permit # CAS612008 (Order No. R2-2015-0049)

March 31, 2019

PREFACE

In early 2010, several members of the Bay Area Stormwater Agencies Association (BASMAA) joined together to form the Regional Monitoring Coalition (RMC), to coordinate and oversee water quality monitoring required by the Municipal Regional National Pollutant Discharge Elimination System (NPDES) Stormwater Permit (in this document the permit is referred to as the MRP).¹ The RMC includes the following participants:

- Alameda Countywide Clean Water Program (ACCWP)
- Contra Costa Clean Water Program (CCCWP)
- San Mateo County Wide Water Pollution Prevention Program (SMCWPPP)
- Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP)
- Fairfield-Suisun Urban Runoff Management Program (FSURMP)
- City of Vallejo and Vallejo Flood and Wastewater District (Vallejo)

This Urban Creeks Monitoring Report complies with MRP provision C.8.h.iii for reporting of all data in Water Year 2018 (October 1, 2017 through September 30, 2018). Data were collected pursuant to provision C.8 of the MRP. Data presented in this report were produced under the direction of the RMC and the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP) using probabilistic and targeted monitoring designs as described herein.

Monitoring data were collected in accordance with the BASMAA RMC Quality Assurance Project Plan (QAPP; BASMAA, 2016a) and the BASMAA RMC Standard Operating Procedures (SOPs; BASMAA, 2016b). Where applicable, monitoring data were derived using methods comparable with methods specified by the California Surface Water Ambient Monitoring Program (SWAMP) Quality Assurance Program Plan (QAPrP).² Data presented in this report were also submitted in electronic SWAMP-comparable formats by SCVURPPP to the Regional Water Board on behalf of SCVURPPP Co-permittees and pursuant to provision C.8.h.ii of the MRP.

² The current SWAMP QAPrP, dated May 2017, is available at:

https://www.waterboards.ca.gov/water_issues/programs/swamp/qapp/swamp_QAPrP_2017_Final.pdf

¹ The San Francisco Bay Regional Water Quality Control Board (SFRWQCB or Regional Water Board) issued the MRP to 76 cities, counties and flood control districts (i.e., Permittees) in the Bay Area on October 14, 2009 (SFRWQCB 2009). On November 19, 2015, the Regional Water Board updated and reissued the MRP (SFRWQCB 2015). The BASMAA programs supporting MRP Regional Projects include all MRP Permittees as well as the cities of Antioch, Brentwood, and Oakley, which were not named as Permittees under the 2015 MRP but have voluntarily elected to participate in MRP-related regional activities.

LIST OF ACRONYMS

ACCWP	Alamada Countivuida Claan Water Program
ACCVVP	Alameda Countywide Clean Water Program
AFDM	Ash Free Dry Mass Alternative Flame Retardant
ASCI	Algae Stream Condition Index
BAHM	Bay Area Hydrological Model
BASMAA	Bay Area Stormwater Management Agency Association
BASMAA BOD	BASMAA Board of Directors
BMI	Benthic Macroinvertebrate
BMP	Best Management Practice
BSM	Bioretention Soil Media
CADDIS	Causal Analysis/Diagnosis Decision Information System
CCCWP	Contra Costa Clean Water Program
CEC	Chemicals of Emerging Concern
CEDEN	California Environmental Data Exchange Network
COLD	Cold Freshwater Habitat
CSCI	California Stream Condition Index
DPR	California Department of Pesticide Regulation
ECWG	Emerging Contaminant Workgroup
FSURMP	Fairfield Suisun Urban Runoff Management Program
GIS	Geographic Information Systems
HDS	Hydrodynamic Separator
IBI	Index of Biological Integrity
IMR	Integrated Monitoring Report
IPI	Index of Physical Habitat Integrity
IPM	Integrated Pest Management
IWRMP	Integrated Water Resources Master Plan
LID	Low Impact Development
MPC	Monitoring and Pollutants of Concern Committee
MRP	Municipal Regional Permit
MWAT	Maximum Weekly Average Temperature
NMFS	National Marine Fisheries Service
NMS	Nutrient Management Strategy
NPDES	National Pollution Discharge Elimination System
PAHs	Polycyclic Aromatic Hydrocarbons
PBDEs	Polybrominated Diphenyl Ethers
PCBs	Polychlorinated Biphenyls
PEC	Probable Effect Concentration
PFAS	Perfluoroalkyl and Polyfluoroalkyl Substances
PFOS	Perfluorooctane Sulfonate
PHAB	Physical Habitat Assessment
POC	Pollutant of Concern
POTW	Publicly Owned Treatment Works
QAPP	Quality Assurance Project Plan
QAPrP	Quality Assurance Program Plan
RAA	Reasonable Assurance Analysis
RMC	Regional Monitoring Coalition
RMP	Regional Monitoring Program for Water Quality in San Francisco Bay
RWSM	Regional Watershed Spreadsheet Model
SCVURPPP	Santa Clara Valley Urban Runoff Pollution Prevention Program
SCVWD	Santa Clara Valley Water District
SFEI	San Francisco Estuary Institute

SCVURPPP WY 2018 Urban Creeks Monitoring Report

SMCWPPP SOP	San Mateo County Water Pollution Prevention Program
SOP	Standard Operating Procedures Sources, Pathways, and Loadings Workgroup
SPoT	Statewide Stream Pollutant Trend Monitoring
SSC	Suspended Sediment Concentration
SSID	Stressor/Source Identification
S&T	Status and Trends Monitoring Program
STLS	Small Tributary Loading Strategy
SWAMP	Surface Water Ambient Monitoring Program
TEC	Threshold Effect Concentration
TIE	Toxicity Identification Evaluations
TKN	Total Kjeldahl Nitrogen
TMDL	Total Maximum Daily Load
TRC	Technical Review Committee
TRE	Toxicity Reduction Evaluations
TU	Toxic Unit
UCMR	Urban Creeks Monitoring Report
USEPA	US Environmental Protection Agency
USGS	US Geological Survey
WARM	Warm Freshwater Habitat
WMA	Watershed Management Area
WQ	Water Quality
WQO	Water Quality Objective
WY	Water Year

TABLE OF CONTENTS

Prefa	ice			i
List o	of Acr	onyms.		iii
Table	e of Co	ontents		v
List o	of Figu	ures		. vii
List o	of Tab	les		. vii
List o	of App	endice	S	. vii
Table	e E.1. V	Water y	ear 2018 Creek Status Monitoring Stations	viii
Exec	utive	Summa	ry	1
1.0	Intro			
	1.1	RMC C	verview (C.8.a)	6
	1.2	Coordi	nation with Third-party Monitoring Programs	7
2.0	San F	rancis	co Estuary Receiving Water Monitoring (C.8.c)	8
	2.1	RMP S	tatus and Trends Monitoring Program	8
	2.2	RMP P	ilot and Special Studies	9
	2.3	Particip	ation in Committees, Workgroups and Strategy Teams	.10
3.0	Cree	k Status	s (C.8.d) and Pesticides/Toxicity Monitoring (C.8.g)	.11
	3.1	Approa	ch to Management Questions	.13
	3.2	Monito	ing Results and Conclusions	.13
		3.2.1	Bioassessment Monitoring	.13
		3.2.2	Continuous Monitoring for Temperature and General Water Quality	.18
		3.2.3	Pathogen Indicator Monitoring Results/Conclusions	.19
		3.2.3	Chlorine Monitoring Results/Conclusions	.20
		3.2.4	Pesticides and Toxicity Monitoring Results/Conclusions	.20
	3.3	Trigger	Assessment	.21
	3.4	Recom	mendations	.23
	3.5	Manag	ement Implications	.23
4.0	Stres	sor/Sou	urce Identification (C.8.e)	. 26
	4.1	Coyote	Toxicity	.27
	4.2	Region	al PCBs from Electrical Utility Equipment	.29
5.0	Pollu	tants of	f Concern Monitoring (C.8.f)	. 30
	5.1	SCVUF	RPPP POC Monitoring (C.8.f)	. 31
		5.1.1	PCBs and Mercury	. 31
		5.1.2	Copper	. 33
		5.1.3	Nutrients	34
		5.1.4	Recommendations for SCVURPPP POC Monitoring in WY 2019	34
	5.2	BASMA	AA Monitoring	. 35
		5.2.1	PCBs in Infrastructure Caulk Study	. 35
		5.2.2	Best Management Practices (BMP) Effectiveness Study	. 36
	5.3	Small T	ributaries Loading Strategy	. 38
		5.3.1	Wet Weather Characterization	. 38
		5.3.2	STLS Trends Strategy	. 39
		5.3.3	Advanced Data Analysis	. 40

	-		
60			
	5.3.5	Regional Watershed Spreadsheet Model	.42
	5.3.4	Alternative Flame Retardant Conceptual Model	.42

LIST OF FIGURES

Figure 1.1. SCVURPPP Creek Status, Pollutants of Concern (POC), Pesticides and Toxicity, and Stressor/Source Identification (SSID) monitoring stations in WY 2018
Figure 3.1. SCVURPPP Creek Status and Pesticides and Toxicity monitoring stations, WY 201812
Figure 4.1. Sampling locations in WY 2018 for sediment chemistry and toxicity testing in Coyote Creek mainstem as part of the Coyote Toxicity SSID Project
Figure 5.1. WMA map of Santa Clara County, showing catchments sampled in WY 2018
Figure 5.2. PCB particle ratios for water samples collected in MS4s and receiving waters draining to the Bay
Figure 5.3. Aroclor fractions in stormwater at the outlet of Pulgas Pump Station South over time (figure produced by SFEI, 2018)

LIST OF TABLES

Table E.1. Water Year 2018 Creek Status Monitoring Stations.	. viii
Table 1.1 Regional Monitoring Coalition (RMC) participants	6
Table 2.1. RMP Status and Trends Monitoring Schedule	9
Table 3.1. Summary of SCVURPPP trigger threshold exceedance analysis in WY 2018. "No" indicates samples were collected, but did not exceed the MRP trigger threshold. "Yes" and shading indicates an exceedance of the MRP trigger threshold	

LIST OF APPENDICES

Appendix A.	SCVURPPP Creek Status Monitoring Report, Water Year 2018
Appendix B.	Regional Stressor/Source Identification (SSID) Report
Appendix C.	SCVURPPP POC Data Report, Water Year 2018
Appendix D.	BASMAA Pollutant Removal from Stormwater with Biochar Amended BSM
Appendix E.	BASMAA Evaluation of Mercury and PCBs Removal Effectiveness of Full Trash Capture HDS Units
Appendix F.	RMP STLS POC Reconnaissance Monitoring Progress Report, Water Years 2015 – 2018
Appendix G.	Regional SSID Work Plan: PCBs from Electrical Utilities

TABLE E.1. WATER YEAR 2018 CREEK STATUS MONITORING STATIONS

In compliance with provision C.8.h.iii.(1), this table of all Creek Status Monitoring stations sampled by SCVURPPP in Water Year 2018 is provided immediately following the Table of Contents. See Section 3.0 for additional information on Creek Status Monitoring.

							Probabilistic	Targeted				
Map ID ¹	Station ID	Watershed	Creek Name	Land Use	Latitude	Longitude	Bioassessment, Nutrients, General WQ	Chlorine	Pesticides & Toxicity	Temp 2	Cont WQ ³	Pathogen Indicators
749	204R00749	Alameda Creek	Smith Creek	NU	37.31672	-121.65057	Х	Х				
746	205R00746	San Tomas Aquino	Saratoga Creek	NU	37.25201	-122.06016	Х	Х				
769	205R00769	Coyote Creek	MF Coyote Creek	NU	37.21998	-121.54206	Х	Х				
3498	205R03498	San Tomas Aquino	Saratoga Creek	U	37.25747	-122.03631	Х	Х				
3562	205R03562	San Tomas Aquino	Saratoga Creek	U	37.25258	-122.04500	Х	Х				
3591	205R03591	San Francisquito Cr	Los Trancos Creek	U	37.35238	-122.19713	Х	Х				
3619	205R03619	San Tomas Aquino	Saratoga Creek	U	37.30297	-121.99653	Х	Х				
3683	205R03683	Permanente Creek	Permanente Creek	U	37.33985	-122.09228	Х	Х				
3699	205R03699	Permanente Creek	Hale Creek	U	37.36703	-121.69869	Х	Х				
3738	205R03738	Coyote Creek	Upper Silver Creek	U	37.28625	-121.77795	Х	Х				
3754	205R03754	San Tomas Aquino	San Tomas Aquino	U	37.25954	-121.99221	Х	Х				
3795	205R03795	Coyote Creek	Lower Silver Creek	U	37.35770	-121.85820	Х	Х				
3825	205R03825	Coyote Creek	Thompson Creek	U	37.28066	-121.75541	Х	Х				
3843	205R03843	San Tomas Aquino	San Tomas Aquino	U	37.38186	-121.96843	Х	Х				
3847	205R03847	San Francisquito Cr	Los Trancos Creek	U	37.38068	-122.19441	Х	Х				
3875	205R03875	Calabazas Creek	Calabazas Creek	U	37.31483	-122.01634	Х	Х				
3907	205R03907	Lower Penitencia	Lower Penitencia	U	37.43624	-121.91424	Х	Х				
4190	205R04190	Guadalupe River	Guadalupe Creek	U	37.23516	-121.89116	Х	Х				
4217	205R04217	Coyote Creek	Upper Penitencia	U	37.40062	-121.74910	Х	Х				
4266	205R04266	Calabazas Creek	Calabazas Creek	U	37.29627	-122.02921	Х	Х				
400	205LGA400	Guadalupe River	Los Gatos Creek	U	37.31830	-122.06197						Х
30	205MAT030	Matadero Creek	Matadero Creek	U	37.41001	-122.13823						Х
64	205STE064	Stevens Creek	Stevens Creek	U	37.25764	-122.03561						Х
225	205GUA225	Guadalupe River	Arroyo Calero	U	37.23878	-121.97094						Х
75	205SAR075	San Tomas Aquino	Saratoga Creek	U	37.21416	-121.83447						Х
190	205GUA190	Guadalupe River	Guadalupe Creek	U	37.24373	-121.87561				Х		
202	205GUA202	Guadalupe River	Guadalupe Creek	U	37.23291	-121.89795				Х		
210	205GUA210	Guadalupe River	Guadalupe Creek	U	37.21746	-121.91039				Х		
218	205GUA218	Guadalupe River	Guadalupe Creek	U	37.2028	-121.88845				Х		
250	205GUA250	Guadalupe River	Alamitos Creek	U	37.23363	-121.87058				Х		

Table E.1. Water Year 2018 Creek Status Monitoring Stations.

SCVURPPP WY 2018 Urban Creeks Monitoring Report

		Probabilistic			Probabilistic	Targeted						
Map ID ¹	Station ID	Watershed	Creek Name	Land Use	Latitude	Longitude	Bioassessment, Nutrients, General WQ	Chlorine	Pesticides & Toxicity	Temp 2	Cont WQ ³	Pathogen Indicators
255	205GUA255	Guadalupe River	Alamitos Creek	U	37.22607	-121.85842				Х		
262	205GUA262	Guadalupe River	Alamitos Creek	U	37.22041	-121.84516				Х		
270	205GUA270	Guadalupe River	Alamitos Creek	U	37.20129	-121.82891				Х		
279	205GUA279	Guadalupe River	Alamitos Creek	U	37.17409	-121.82409				Х		
235	205COY235	Coyote Creek	Coyote Creek	U	37.3536	-121.87417					Х	
236	205COY236	Coyote Creek	Coyote Creek	U	37.35098	-121.87378					Х	
239	205COY239	Coyote Creek	Coyote Creek	U	37.33722	-121.86953					Х	
18	205CAL018	Calabazas Creek	Calabazas Creek	U	37.38760	-121.98690			Х			
21	205STE021	Stevens Creek	Stevens Creek	U	37.40985	-122.06906			Х			
10	205STQ010	San Tomas Aquino	San Tomas Aquino	U	37.38843	-121.96865			Х			

U = urban, NU = non-urban

¹ Map ID applies to Figure 3.1.
 ² Temperature monitoring was conducted continuously (i.e., hourly) April through September.
 ³ Continuous water quality monitoring (temperature, dissolved oxygen, pH, specific conductivity) was conducted during two 2-week periods (spring and late summer).

EXECUTIVE SUMMARY

This Urban Creeks Monitoring Report was prepared by the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP) in compliance the National Pollutant Discharge Elimination System stormwater permit for Bay Area municipalities referred to as the Municipal Regional Permit (MRP; Order No. R2-2015-0049). This report, including all appendices and attachments, fulfills the requirements of Provision C.8.h.iii of the MRP for reporting of all data collected in Water Year 2018 (WY 2018; October 1, 2017 through September 30, 2018) pursuant to Provision C.8 of the MRP. Data presented in this report were also submitted in electronic SWAMP-comparable formats by SCVURPPP to the Regional Water Board on behalf of SCVURPPP Co-permittees and pursuant to Provision C.8.h.ii of the MRP.

Water quality monitoring required by Provision C.8 of the MRP is intended to assess the condition of water quality in Bay Area receiving waters (creeks and the Bay); identify and prioritize stormwater associated impacts, stressors, sources, and loads; identify appropriate management actions; and detect trends in water quality over time and the effects of stormwater control measure implementation.

The organization of this Executive Summary follows the sub-provisions of Provision C.8 (Water Quality Monitoring) of the MRP. Each section very briefly describes what was done and summarizes key results. More details are provided in the body of the report and in its corresponding appendices.

Compliance Options (C.8.a)

Provision C.8.a (Compliance Options) of the MRP allows Permittees to address monitoring requirements through a "regional collaborative effort," their countywide stormwater program, and/or individually. On behalf of Co-permittees, SMCWPPP conducts creek water quality monitoring and monitoring projects in the Santa Clara Basin in collaboration with the Bay Area Stormwater Management Agency Association (BASMAA) Regional Monitoring Coalition (RMC), and actively participates in the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP), which focuses on assessing Bay water quality and associated impacts.

Monitoring Protocols and Data Quality (C.8.b)

Creek status and pesticides & toxicity monitoring data were collected in accordance with the BASMAA RMC Quality Assurance Project Plan (QAPP) and the BASMAA RMC Standard Operating Procedures (SOPs). Where applicable, and in compliance with Provision C.8.b, methods described in the QAPP and SOP are comparable with methods specified by the California Surface Water Ambient Monitoring Program (SWAMP) Quality Assurance Program Plan (QAPrP).

San Francisco Estuary Receiving Water Monitoring (C.8.c)

In accordance with Provision C.8.c of the MRP, Permittees are required to provide financial contributions towards implementing an Estuary receiving water monitoring program on an annual basis that, at a minimum, is equivalent to the monitoring conducted via the RMP. SCVURPPP Permittees comply with this provision by making financial contributions to the RMP via SCVURPPP. Additionally, SCVURPPP Program staff and other BASMAA RMC representatives actively participate in RMP committees, workgroups, and strategy teams, such as the Small Tributaries Loading Strategy (STLS) to help oversee RMP activities and provide input, consistent with MRP Permittee interests.

Creek Status Monitoring (C.8.d)

The RMC's creek status monitoring strategy includes both a regional ambient/probabilistic monitoring design and a local "targeted" monitoring design. The probabilistic monitoring design was developed to remove bias from site selection such that ecosystem conditions can be objectively assessed on local (i.e., Santa Clara County) and regional (i.e., RMC) scales. The targeted monitoring design focuses on sites selected based on the presence of significant fish and wildlife resources as well as historical and/or

recent indications of water quality concerns. Monitoring results are compared to "triggers" listed in Provision C.8.d of the MRP. Some triggers are equivalent to regulatory Water Quality Objectives (WQOs); others are thresholds above (or below) which potential impacts to aquatic life or other beneficial uses may occur. Sites were triggers are exceeded (or not met) are considered for future stressor/source identification (SSID) projects.

During WY 2018, SCUVRPPP conducted biological assessments at twenty probabilistic sites. Bioassessments include the collection of benthic macroinvertebrate and algae samples, physical habitat measurements, water chemistry (i.e., nutrient analyses) and general water quality. The California Stream Condition Index (CSCI), a statewide tool that translates benthic macroinvertebrate data into an overall measure of stream health, was used to assess biological condition at all probabilistic sites. Of the twenty sites monitored in WY 2018, ten sites (50%) scored below the trigger CSCI score of 0.795 and were rated as altered or degraded. Low CSCI scores are related impacts to physical habitat typical for urbanized areas, such as creek channel modifications (e.g., lining with concrete) and contributing watersheds with high percentages of impervious surface.

Targeted monitoring parameters consist of water temperature, general water quality, and pathogen indicators. In WY 2018, continuous temperature data were collected at nine targeted stations in the Guadalupe River watershed and continuous general water quality data (pH, dissolved oxygen, specific conductance, and temperature) were collected at three targeted stations in the mainstem of Coyote Creek. Although there were exceedances of the temperature and dissolved oxygen triggers from the MRP, the presence of steelhead populations in these creeks suggest that the triggers may not be suited to the Lower South Bay region and/or they are not limiting to populations in the monitored reaches.

In WY 2018, pathogen indicator samples (i.e., enterococci, *E. coli*) were collected at five stations in Santa Clara County that coincide with public parks. The MRP trigger thresholds for *E. coli* and enterococci were exceeded at three sites.

Impacts to urban streams identified through creek status monitoring are likely the result of long-term changes in stream hydrology, channel geomorphology, in-stream habitat complexity, and other modifications associated with the urban development, along with pollutant discharges typically found in urban watersheds. SCVURPPP Co-permittees are actively implementing many stormwater management programs to address these and other stressors and associated sources of water quality conditions observed in local creeks, with the goal of protecting these natural resources. Through the continued implementation of MRP-associated and other watershed stewardship programs, SCVURPPP anticipates that stream conditions and water quality in local creeks will continue to improve over time.

Stressor/Source Identification (SSID) Projects (C.8.e)

Provision C.8.e of the MRP requires that Permittees evaluate creek status (Provision C.8.d) and pesticides and toxicity (Provision C.8.g) monitoring data with respect to triggers defined in the MRP and maintain a list of all results exceeding trigger thresholds. Sites where triggers are exceeded may indicate potential impacts to aquatic life or other beneficial uses and are therefore considered as candidates for future SSID projects. The MRP requires SCVURPPP and its RMC partners to collectively initiate a region-wide minimum of eight SSID projects. In WY 2018, SCVURPPP implemented the Coyote Creek Toxicity SSID Project Work Plan. Based on monitoring results from WY 2018, sources of toxicity could not be determined. The Program will conduct another year of monitoring at a reduced number of sites (three sites rather than five) during WY 2019 to continue to evaluate sources of toxicity and appropriate management actions.

Pollutants of Concern Monitoring (C.8.f)

Pollutants of Concern (POC) monitoring is required by Provision C.8.f of the MRP. POC monitoring is intended to assess inputs of POCs to the Bay from local tributaries and urban runoff, provide information to support implementation of Total Maximum Daily Load (TMDL) water quality restoration plans and other pollutant control strategies, assess progress toward achieving wasteload allocations (WLAs) for TMDLs,

and help resolve uncertainties associated with loading estimates for POCs. In WY 2018, SMCWPPP met or exceeded the MRP's minimum yearly requirements for all POC monitoring parameters.

PCBs and mercury monitoring in WY 2018 continued to focus primarily on identification of source areas of PCBs and mercury to the MS4 and San Francisco Bay. WY 2018 data are being used by SCVURPPP to implement a process to identify and prioritize watershed management areas (WMAs) and identify specific source properties in the Santa Clara Valley. WMAs are priority watersheds or catchments in the urban landscape where control measures for PCBs and mercury are currently being implemented or will be implemented during the MRP permit term, to the extent that feasible and cost-effective controls can be identified.

In WY 2018, three creeks were sampled for copper and nutrient analyses during two types of flow events (storm event and baseflow) for a total of six samples. Copper and nutrients were higher in the storm event samples, compared to the baseflow samples suggesting an influence of stormwater runoff. Similarity in the magnitude of concentrations between the sites suggest that there are no localized high priority sources of copper or nutrients in upstream areas.

Pesticides and Toxicity Monitoring (C.8.g)

In WY 2018, SCVURPPP conducted dry weather pesticides and toxicity monitoring at two stations (Stevens Creek and San Tomas Aquino Creek) and wet weather pesticides and toxicity monitoring at three stations (Calabazas Creek, Stevens Creek, and San Tomas Aquino Creek) in compliance with provision C.8.g of the MRP and in coordination with the RMC.

Statistically significant toxicity to *C. dilutus* (survival) was observed in the water sample collected from Stevens Creek during dry season sampling. However, the magnitude of the toxic effects in this sample did not exceed MRP trigger criteria of 50 Percent Effect. Statistically significant toxicity to *H.* azteca (survival) was also observed in the Calabazas Creek, San Tomas Aquino Creek, and Stevens Creek water samples during wet weather sampling. The magnitude of the toxic effects in the Stevens Creek sample did not exceed MRP trigger criteria, while the magnitude of the toxic effects in the Calabazas Creek and San Tomas Aquino Creek samples did exceed the MRP threshold for re-sampling (i.e., Percent Effect \geq 50%). In follow-up sampling that was conducted during a storm event in March 2018, statistically significant toxicity was observed in the Calabazas Creek sample. However, the magnitude of the toxic effects was below the MRP threshold. No statistically significant toxicity was observed in the follow-up San Tomas Aquino Creek sample. The cause of the observed toxicity is unknown. Pesticide concentrations in the dry season sediment samples were all very low, most below MDLs, and calculated Toxic Unit (TU) equivalents did not exceed 0.1 in either sample, with the exception of bifenthrin in the Stevens Creek sample. Pesticide concentrations in wet weather water samples were also very low, with most values below MDLs.

Threshold Effect Concentration (TEC) and Probable Effect Concentration (PEC) quotients were calculated for all metals and total polycyclic aromatic hydrocarbons (PAHs) measured in sediment samples. Some TEC and PEC trigger exceedances were observed for chromium and nickel, but are likely related to natural occurrences of these metals associated with the area's serpentine geology.

1.0 INTRODUCTION

This Urban Creeks Monitoring Report (UCMR) was prepared by the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP or Program), on behalf of its 15 member agencies (13 cities/towns, the County of Santa Clara, and the Santa Clara Valley Water District) subject to the National Pollutant Discharge Elimination System (NPDES) stormwater permit for Bay Area municipalities referred to as the Municipal Regional Permit (MRP).

The MRP was first adopted by the San Francisco Regional Water Quality Control Board (SFRWQCB or Regional Water Board) on October 14, 2009 as Order R2-2009-0074 (SFRWQCB 2009). On November 19, 2015, the SFRWQCB updated and reissued the MRP as Order R2-2015-0049 (SFRWQCB 2015). This report fulfills the requirements of Provision C.8.h.iii of the MRP for comprehensively interpreting and reporting all monitoring data collected during the foregoing October 1 – September 30 period (i.e., Water Year 2018). Data were collected pursuant to water quality monitoring requirements in provision C.8 of the MRP. Monitoring data presented in this report were submitted electronically to the Regional Water Board by SCVURPPP and, if collected from a receiving water, may be obtained via the San Francisco Bay Area Regional Data Center of the California Environmental Data Exchange Network (CEDEN) (http://www.ceden.org).

Chapters in this report are organized according to the following topics and MRP sub-provisions. Several of the topics are summarized in this report but described fully in appendices.

- 1.0 Introduction
- 2.0 San Francisco Estuary Receiving Water Monitoring (MRP provision C.8.c)
- 3.0 Creek Status Monitoring (MRP provision C.8.d) and Pesticides and Toxicity Monitoring (MRP provision C.8.g) (**Appendix A**)
- 4.0 Stressor/Source Identification (SSID) Projects (MRP provision C.8.e) (Appendices B, C, and D)
- 5.0 Pollutants of Concern (POC) Monitoring (MRP provision C.8.f) (Appendices E and F)
- 6.0 Recommendations and Next Steps

Figure 1.1 maps locations of monitoring stations associated with provision C.8 compliance in Water Year (WY) 2018, including Creek Status Monitoring, the SSID project, Pesticides and Toxicity Monitoring, and POC Monitoring conducted by SCVURPPP and the Small Tributaries Loading Strategy (STLS). This figure illustrates the geographic extent of monitoring conducted in Santa Clara County in WY 2018.

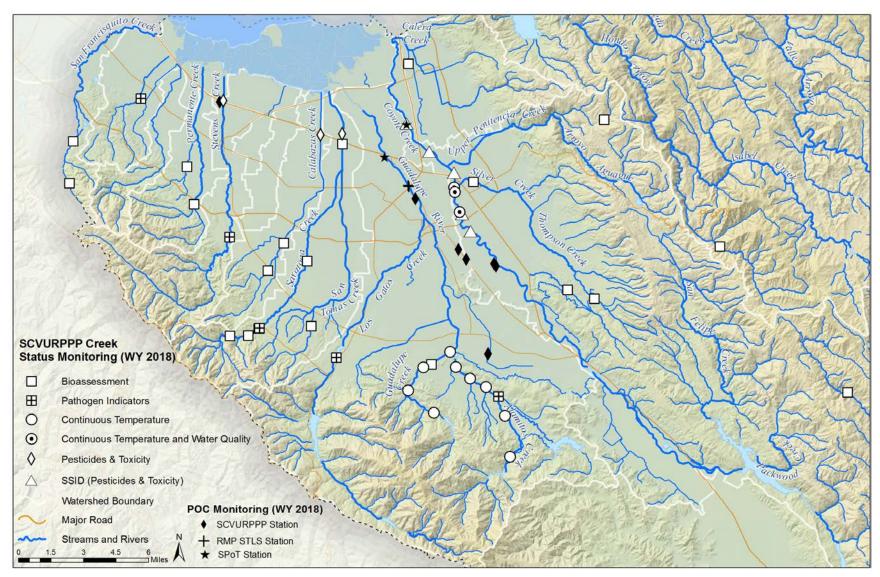


Figure 1.1. SCVURPPP Creek Status, Pollutants of Concern (POC), Pesticides and Toxicity, and Stressor/Source Identification (SSID) monitoring stations in WY 2018.

1.1 RMC Overview (C.8.a)

Provision C.8.a (Compliance Options) of the MRP allows Permittees to address monitoring requirements through a "regional collaborative effort," their Stormwater Program, and/or individually. In June 2010, Permittees notified the Water Board in writing of their agreement to participate in a regional monitoring collaborative to address requirements in provision C.8. The regional monitoring collaborative is referred to as the Bay Area Stormwater Management Agencies Association (BASMAA) Regional Monitoring Coalition (RMC). In a November 2, 2010 letter to the Permittees, the Water Board's Assistant Executive Officer (Dr. Thomas Mumley) acknowledged that all Permittees have opted to conduct monitoring required by the MRP through a regional monitoring collaborative, the BASMAA RMC. Participants in the RMC are listed in Table 1.1.

In February 2011, the RMC developed a Multi-Year Work Plan (RMC Work Plan; BASMAA 2011) to provide a framework for implementing regional monitoring and assessment activities required under provision C.8 of the 2009 MRP. The RMC Work Plan summarizes RMC projects planned for implementation between Fiscal Years 2009-10 and 2014-15. Projects were collectively developed by RMC representatives to the BASMAA Monitoring and Pollutants of Concern Committee (MPC), and were conceptually agreed to by the BASMAA Board of Directors (BASMAA BOD). Although there are no plans to update the Multi-Year Work Plan, several regional projects have already been identified and will be conducted in compliance with the 2015 MRP. Current regional projects relevant to provision C.8 compliance include (but may not be limited to) projects to maintain and update the regional database, coordinate the RMC Workgroup meetings, conduct POC monitoring, and implement an SSID study.

Regionally implemented activities are conducted under the auspices of BASMAA, a 501(c)(3) non-profit organization comprised of the municipal stormwater programs in the San Francisco Bay Area. Scopes, budgets, and contracting or in-kind project implementation mechanisms for BASMAA regional projects follow BASMAA's Operational Policies and Procedures, approved by the BASMAA BOD. MRP Permittees, through their stormwater program representatives on the BASMAA BOD and its subcommittees, collaboratively authorize and participate in BASMAA regional projects or tasks. Regional project costs are shared by either all BASMAA members or among those Phase I municipal stormwater programs that are subject to the MRP.

Stormwater Programs	RMC Participants					
Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP)	Cities of Campbell, Cupertino, Los Altos, Milpitas, Monte Sereno, Mountain View, Palo Alto, San José, Santa Clara, Saratoga, Sunnyvale, Los Altos Hills, and Los Gatos; Santa Clara Valley Water District; and, Santa Clara County					
Alameda Countywide Clean Water Program (ACCWP)	Cities of Alameda, Albany, Berkeley, Dublin, Emeryville, Fremont, Hayward, Livermore, Newark, Oakland, Piedmont, Pleasanton, San Leandro, and Union City; Alameda County; Alameda County Flood Control and Water Conservation District; and, Zone 7					
Contra Costa Clean Water Program (CCCWP)	Cities of Antioch, Brentwood, Clayton, Concord, El Cerrito, Hercules, Lafayette, Martinez, Oakley, Orinda, Pinole, Pittsburg, Pleasant Hill, Richmond, San Pablo, San Ramon, Walnut Creek, Danville, and Moraga; Contra Costa County; and, Contra Costa County Flood Control and Water Conservation District					
San Mateo County Wide Water Pollution Prevention Program (SMCWPPP)	Cities of Belmont, Brisbane, Burlingame, Daly City, East Palo Alto, Foster City, Half Moon Bay, Menlo Park, Millbrae, Pacifica, Redwood City, San Bruno, San Carlos, San Mateo, South San Francisco, Atherton, Colma, Hillsborough, Portola Valley, and Woodside; San Mateo County Flood Control District; and, San Mateo County					
Fairfield-Suisun Urban Runoff Management Program (FSURMP)	Cities of Fairfield and Suisun City					
Vallejo Permittees	City of Vallejo and Vallejo Sanitation and Flood Control District					

Table 1.1 Regional Monitoring Coalition (RMC) participants.

1.2 Coordination with Third-party Monitoring Programs

SCVURPPP strives to work collaboratively with our water quality monitoring partners to find mutually beneficial monitoring approaches. Provision C.8.a.iii of the MRP allows Permittees to use data collected by third-party organizations to fulfill monitoring requirements, provided the data are demonstrated to meet the required data quality objectives.

In WY 2018, SCVURPPP continued to coordinate with water quality monitoring programs conducted by third parties. These programs include the Regional Monitoring Program for Water Quality in San Francisco Bay's (RMP) Small Tributaries Loading Strategy (STLS) and the Stream Pollutant Trends (SPoT) monitoring conducted by the State of California's Surface Water Ambient Monitoring Program (SWAMP). Water quality data from these programs are reported in this document and were utilized to supplement SCVURPPP compliance with provision C.8 of the MRP, consistent with sub-provision C.8.a.iii.^{3,4} Data are specifically referenced in section 5.0 (POC Monitoring) of this report.

³ Data reported by the RMP STLS are summarized in this report but are not included in the SCVURPPP electronic data submittal.

⁴ In most years, including WY 2018, the SPoT Program monitors two stations in Santa Clara County for a subset of the constituents required by provision C.8.f of the MRP.

2.0 SAN FRANCISCO ESTUARY RECEIVING WATER MONITORING (C.8.C)

As described in provision C.8.c of the MRP, Permittees are required to provide financial contributions towards implementing an Estuary receiving water monitoring program on an annual basis that at a minimum is equivalent to the Regional Monitoring Program for Water Quality in the San Francisco Bay (RMP). Since the adoption of the 2009 MRP, SCVURPPP has complied with this provision by making financial contributions to the RMP. Additionally, SCVURPPP staff actively participates in RMP committees, workgroups, and strategy teams as described in the following sections, which also provide a brief description of the RMP and associated monitoring activities conducted during WY 2018.

The RMP is a long-term (1993 – present) monitoring program that is discharger-funded and shares direction and participation by regulatory agencies and the regulated community with the goal of assessing water quality in the San Francisco Bay. The regulated community includes municipal separate stormwater sewer systems (MS4s), publicly owned treatment works (POTWs), dredger, and industrial dischargers. The San Francisco Estuary Institute (SFEI) is the implementing entity for the RMP and the fiduciary agent for RMP stakeholder funds. SFEI does not provide direct oversight of the RMP but does help identify stakeholder information needs, develop workplans that address these needs, and implement the workplans.

The RMP is intended to answer the following core management questions:

- 1. Are chemical concentrations in the Estuary potentially at levels of concern and are associated impacts likely?
- 2. What are the concentrations and masses of contaminants in the Estuary and its segments?
- 3. What are the sources, pathways, loadings, and processes leading to contaminant related impacts in the Estuary?
- 4. Have the concentrations, masses, and associated impacts of contaminants in the Estuary increased or decreased?
- 5. What are the projected concentrations, masses, and associated impacts of contaminants in the Estuary?

The RMP budget is generally broken into two major program elements: Status and Trends and Pilot/Special Studies. The following sections provide a brief overview of these programs. The *RMP 2018 Detailed Workplan and Budget*⁵ provides more details and establishes deliverables for each component of the current RMP budget. The RMP publishes annual summary reports. In odd years, the *Pulse of the Estuary Report* focuses on Bay water quality and summarizes information from all sources. In even years, the *RMP Update Report* has a narrower and specific focus. The *2018 Pulse of the Estuary*⁶ includes: a brief summary of noteworthy findings of the multifaceted RMP; a description of the management context that guides the RMP; and a summary of progress to date and future plans for addressing priority water quality topics. It also includes an article on per- and polyfluoroalkyl substances (PFAS) in San Francisco Bay wildlife, one of the pollutants of concern identified in MRP Provision C.8.f.

2.1 RMP Status and Trends Monitoring Program

The Status and Trends Monitoring Program (S&T Program) is the long-term contaminant-monitoring component of the RMP. The S&T Program was initiated as a pilot study in 1989, implemented thereafter, and was redesigned in 2007 based on a more rigorous statistical design that enables the detection of trends. The RMP Technical Review Committee (TRC), in which SCVURPPP participates, continues to

⁵ <u>https://www.sfei.org/documents/2018-rmp-detailed-workplan-and-budget</u>

⁶ <u>https://www.sfei.org/documents/rmp-update-2018</u>

assess the efficacy and value of the various elements of the S&T Program and to recommend modifications to S&T Program activities based on ongoing findings. The current S&T sampling schedule, established in 2014, is listed in Table 2.1 with 2018 accomplishments and 2019 goals.

Program Element	Schedule	2018 Sampling	2019 Sampling
Water	Every two years	No	Yes
Bird Eggs	Every three years	Yes	No
Sediment	Every four years	Yes	Yes
Sport Fish	Every five years	No	Yes
Bivalves	Every two years	Yes	No
Support to the USGS for suspended sediment, nutrient, and phytoplankton monitoring	Every year	Yes	Yes

Table 2.1. RMP Status and Trends Monitoring Schedule.

Additional information on the S&T Program and associated monitoring data are available for download via the RMP website at http://www.sfei.org/content/status-trends-monitoring.

2.2 RMP Pilot and Special Studies

The RMP also conducts Pilot and Special Studies on an annual basis. Studies are typically designed to investigate and develop new monitoring measures related to anthropogenic contamination or contaminant effects on biota in the Estuary. Special Studies address specific scientific issues that RMP committees, workgroups, and strategy teams identify as priority for further study. These studies are developed through an open selection process at the workgroup level and selected for funding through the TRC and the Steering Committee.

In 2018, Pilot and Special Studies focused on the following topics:

- Nutrients Management Strategy
 - Continuous monitoring of nutrients, phytoplankton biomass, and dissolved oxygen at moored sensors
 - o Continuous monitoring of dissolved oxygen in shallow margin habitats
 - Ship-based nutrient sampling
 - Data analysis and quantitative mechanistic interpretations to identify factors contributing to observed conditions
- Small Tributary Loading Strategy (see Section 5.0 for more details)
 - o Watershed characterization reconnaissance monitoring for pollutants of concern
 - Advanced analysis of PCBs data
 - Planning support for alternative flame retardants conceptual model
 - Development of a trends strategy
 - Regional Watershed Spreadsheet Model (RWSM) support
- Emerging Contaminant Strategy
 - Review and update of the RMP's Tiered Risk and Management Action Framework

- Chemicals of emerging concern (CEC) monitoring (imidacloprid, fragrance ingredients, PFAS, nonionic surfactants, pharmaceuticals) in water, sediment, and/or wastewater
- o Non-targeted analysis of Bay sediment to help identify new CECs
- Monitoring of microplastics in bivalves
- Development of toxicity reference values for screening dredged material bioassay results
- Development of conceptual PCB models for prioritized Bay margin units
- Hosting and support for Dredged Material Management Office (DMMO) database
- Improved Lower South Bay suspended sediment flux measurements
- San Leandro Bay fish diet analysis to help understand PCB accumulation
- Development of the Selenium Strategy

Results and summaries of the most pertinent Pilot and Special Studies can be found on the RMP website (<u>http://www.sfei.org/rmp/rmp_pilot_specstudies</u>).

In WY 2018, a considerable amount of RMP and Stormwater Program staff time was spent overseeing and implementing Special Studies associated with the RMP's Small Tributary Loading Strategy (STLS). Pilot and Special Studies associated with the STLS are intended to fill data gaps associated with loadings of Pollutants of Concern (POC) from relatively small tributaries to the San Francisco Bay. Additional information on STLS-related studies is included in Section 5.0 (POC Loads Monitoring) of this report.

2.3 Participation in Committees, Workgroups and Strategy Teams

In WY 2018, SCVURPPP actively participated in the following RMP committees, workgroups, and strategy teams:

- Steering Committee (SC)
- Technical Review Committee (TRC)
- Sources, Pathways and Loadings Workgroup (SPLWG)
- Emerging Contaminant Workgroup (ECWG)
- Nutrient Technical Workgroup
- Strategy Teams (e.g., Small Tributaries, PCBs, Microplastics, Dioxins, Selenium)

Committee, workgroup, and strategy team representation was provided by Permittee, Stormwater Program staff, and/or individuals designated by RMC participants and the BASMAA BOD. Representation included participating in meetings, reviewing technical reports and work products, co-authoring or reviewing articles and publication, and providing general program direction to RMP staff. Representatives of the RMC also provided timely summaries and updates to and received input from, Stormwater Program representatives (on behalf of Permittees) during BASMAA Monitoring and Pollutants of Concern Committee (MPC) and/or BASMAA BOD meetings to ensure that Permittees' interests were represented.

3.0 CREEK STATUS (C.8.D) AND PESTICIDES/TOXICITY MONITORING (C.8.G)

This section summarizes the results of creek status monitoring and pesticides and toxicity monitoring required by provisions C.8.d and C.8.g of the MRP, respectively. Creek Status and Pesticides and Toxicity monitoring stations are listed in Table E-1 and mapped in Figure 3.1. Detailed methods and results are provided in **Appendix A.** Consistent with provision C.8.h.ii of the MRP, creek status and pesticides and toxicity monitoring data were submitted to the Regional Water Board by SCVURPPP in electronic SWAMP-comparable formats. These data were also provided to the Regional Data Center (i.e., SFEI) for upload to CEDEN.

Creek Status Monitoring (C.8.d)

Provision C.8.d of the MRP requires Permittees to conduct creek status monitoring that is intended to answer the following management questions:

- 1. Are water quality objectives, both numeric and narrative, being met in local receiving waters, including creeks, rivers and tributaries?
- 2. Are conditions in local receiving waters supportive of or likely supportive of beneficial uses?

Creek status monitoring parameters, methods, occurrences, durations and minimum number of sampling sites for each stormwater program are described in provision C.8.d of the MRP. The RMC's regional monitoring strategy for complying with creek status monitoring requirements is described in the RMC Creek Status and Long-Term Trends Monitoring Plan (BASMAA 2012). The strategy includes a regional ambient/probabilistic monitoring component and a component based on local "targeted" monitoring. The combination of these monitoring designs allows each individual RMC participating program to assess the status of beneficial uses in local creeks within its Program (jurisdictional) area, while also contributing data to answer management questions at the regional scale (e.g., differences between aquatic life condition in urban and non-urban creeks). Implementation began in WY 2012.

The probabilistic monitoring design was developed to remove bias from site selection such that ecosystem conditions can be objectively assessed on local (i.e., SCVURPPP) and regional (i.e., RMC) scales. Probabilistic parameters consist of bioassessments, nutrients, and conventional analytes conducted according to methods described in the SWAMP SOP (Ode et al. 2016). Free chlorine and total chlorine residual were also measured at probabilistic sites. Twenty probabilistic sites were sampled by SCVURPPP in WY 2018 (Table E-1).

The targeted monitoring design focuses on sites selected based on the presence of significant fish and wildlife resources as well as historical and/or recent indications of water quality concerns. Targeted monitoring parameters consist of water temperature, general water quality, and pathogen indicators using methods, sampling frequencies, and number of stations required in provision C.8.d of the MRP. Hourly water temperature measurements were recorded during the dry season at eight sites using HOBO® temperature, dissolved oxygen, pH and specific conductivity) was conducted using YSI continuous water quality equipment (sondes) for two 2-week periods (spring and late summer) at three sites in the Coyote Creek watershed. Water samples for analysis of pathogen indicators (*E. coli* and enterococcus) were collected at five sites located in parks.

Pesticides and Toxicity Monitoring (C.8.g)

Provision C.8.g of the MRP requires Permittees to conduct wet weather and dry weather pesticides and toxicity monitoring. Test methods, sampling frequencies, and number of stations required are described in the MPR. In WY 2018, SCVURPPP conducted dry weather pesticides and toxicity monitoring at two bottom-of-the-watershed stations. SCVURPPP also coordinated with its RMC partners to complete the wet weather monitoring requirements.

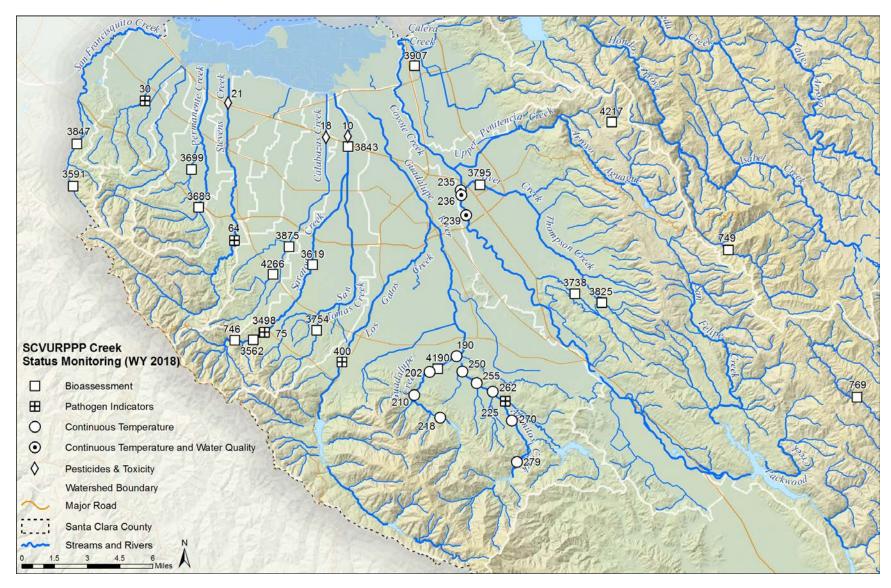


Figure 3.1. SCVURPPP Creek Status and Pesticides and Toxicity monitoring stations, WY 2018.

3.1 Approach to Management Questions

The first MRP creek status management question (*Are water quality objectives, both numeric and narrative, being met in local receiving waters, including creeks, rivers and tributaries?*) is addressed primarily through the evaluation of probabilistic and targeted monitoring data with respect to the triggers defined in the MRP. The MRP also defines triggers for pesticides and toxicity monitoring data. A summary of trigger exceedances observed for each site is presented below in Table 3.2. Sites where triggers are exceeded may indicate potential impacts to aquatic life or other beneficial uses and are considered for future stressor/source identification (SSID) projects (see Section 4.0 for a discussion of ongoing and completed SSID projects).

The second MRP creek status management question (*Are conditions in local receiving waters supportive of or likely supportive of beneficial uses?*) is addressed primarily by assessing indicators of aquatic biological health using benthic macroinvertebrate and algae data collected at probabilistic sites. The indices of biological integrity based on BMI and algae data (i.e., CSCI and ASCI) are direct measures of aquatic life beneficial uses. Biological condition scores were compared to physical habitat and water quality data collected synoptically with bioassessments to evaluate whether any correlations exist that may explain the variation in biological condition scores. Continuous monitoring data (temperature, dissolved oxygen, pH, and specific conductance) are evaluated with respect to COLD and WARM Beneficial Uses. Although the total number of probabilistic sites in Santa Clara Valley that have been sampled since WY 2012 (i.e., 152) is sufficient to evaluate the condition of aquatic life within known estimates of precision, the analysis presented in **Appendix A** is limited to the 20 sites monitored in WY 2018.

The BASMAA RMC recently completed a *regional* analysis of biological condition using a five-year dataset (WY 2012 – WY 2016). The BASMAA regional study included the following analyses:

- Assess the biological condition of streams in the region and each county using indices of biological integrity (IBIs) based on benthic macroinvertebrate and algae data collected by each countywide program and SWAMP.
- Evaluate IBIs in distinct groupings such as type of stream (urban/non-urban).
- Assess stressors associated with poor stream condition using multivariate modeling analyses (i.e., random forest).
- Evaluate the five-year dataset for trends.
- Introduce the analyses that will be needed to make recommended changes to the probabilistic monitoring design.

The BASMAA RMC Five-Year Bioassessment Report (5-Year Report) is summarized and attached to **Appendix A**.

3.2 Monitoring Results and Conclusions

3.2.1 Bioassessment Monitoring

Bioassessment monitoring in WY 2018 was conducted in compliance with provision C.8.d.i of the MRP. Twenty sites were sampled for benthic macroinvertebrates (BMIs), benthic algae, physical habitat observations, and nutrients using methods consistent with the BASMAA RMC QAPP (BASMAA 2016a) and SOPs (BASMAA 2016b). Stations were randomly selected using a probabilistic monitoring design. Seventeen of the sites were classified as urban and three were classified as non-urban.

The following conclusions are made based on the WY 2018 data. An assessment of biological condition is provided and potential stressors are compared to applicable water quality objectives (WQOs) and

triggers identified in the MRP. Sites with monitoring results that exceed WQOs and triggers are considered as candidates for further investigation as SSID projects, consistent with provision C.8.e of the MRP. See **Appendix A** for detailed explanations of the findings.

Biological Condition Assessment

Stream condition was assessed using three different types of indices/tools: the BMI-based California Stream Condition Index (CSCI), the draft benthic algae-based Algae Stream Condition Index (ASCI), and the Index of Physical Habitat Integrity (IPI). Of these three, the CSCI is the only tool with a MRP trigger threshold for follow-up SSID consideration.

- **CSCI** The benthic (i.e., bottom-dwelling) macroinvertebrates collected through bioassessment monitoring are organisms that live on, under, and around the rocks and sediment in the stream bed. Examples include dragonfly and stonefly larvae, snails, worms, and beetles. Each BMI species has a unique response to water chemistry and physical habitat condition. Some are relatively sensitive to poor habitat and pollution; others are more tolerant. Therefore, the abundance and variety of BMIs in a stream indicates the biological condition of the stream. The CSCI is a statewide tool that translates the BMI taxa data into an overall measure of stream health. The CSCI is currently the most robust method of assessing aquatic biological health.
 - Ten of the twenty (50%) bioassessment sites monitored in WY 2018 had CSCI scores in the two higher condition categories - "possibly intact" and "likely intact" condition. Seven of these ten sites had scores greater than 1.0. These higher scoring sites were directly downstream of relatively undeveloped land areas, with impervious areas ranging between 1% and 6%. Five of these sites were located in two creeks: Saratoga Creek (3) and Los Trancos Creek (2).
- ASCI Similar to BMI's, the abundance and type of benthic algae species living on a streambed can indicate stream health. When evaluated with the CSCI, biological indices based on benthic algae can provide a more complete picture of the streams biological condition because algae respond more directly to nutrients and water chemistry. In contrast, BMIs are more responsive to physical habitat. The State Water Board and the Southern California Coastal Water Research Project (SCCWRP) recently developed the draft ASCI which uses benthic algae data as a measure of biological condition for streams in California (Theroux et al. in prep.). The ASCI is a non-predictive scoring tool that consists of three multimetric indices: diatoms, soft algae, and the combined "hybrid." The ASCI is currently under review by the Biostimulatory-Biointegrity Policy Science Advisory Panel and the State Water Board. Therefore, scores presented in this report are considered provisional.
 - Seven of the twenty bioassessment sites had hybrid ASCI scores that were classified as "possibly intact" or "likely intact" condition. The higher scoring sites occurred in drainages with relatively low levels of urbanization, ranging from 1% to 5% impervious area. Six of the seven sites also received CSCI scores that were in two higher condition categories.
- **IPI** The State Water Board recently developed the IPI as an overall measure of physical habitat condition. Similar to the CSCI, the IPI is calculated using a combination of physical habitat data collected in the field and environmental data generated in GIS following the methods described in Rehn et al. (2018).
 - Seventeen of the twenty sites (85%) had IPI scores in the two upper condition categories. IPI scores were positively correlated with CSCI scores, and slightly less so with hybrid ASCI scores.
- Overall Condition The number of sites in the top two condition categories varied substantially by index, with as many as 17 of 20 sites for the IPI to as few as 7 of 20 sites for the hybrid ASCI. There was relatively good consistency among the indices for sites in the top two condition categories where lower urbanization (< 5% impervious area) was present. The diatom ASCI, soft algae ASCI, and IPI scores were relatively variable (i.e., both high and low scoring) at sites that drained more developed/urbanized watershed areas. Further evaluation of the newer indices and

their association with stressor data is needed to better understand how these indicators can be used to effectively assess site conditions.

 Seven of the ten sites (70%) had IPI scores in the two upper condition categories. IPI scores were positively correlated with CSCI scores, and slightly less so with hybrid ASCI scores.

Stressor Assessment

Relationships between potential stressors (water chemistry, physical habitat, landscape variables) and biological condition were explored using the WY 2018 dataset. Sites with stressor levels exceeding applicable WQOs and triggers identified in the MRP will be considered as candidates for SSID projects. The correlations between biological conditions and stressors are not expected to be very strong due to the small sample size.

- **General water quality** (pH, temperature, dissolved oxygen, specific conductance). None of the water quality measurements exceeded water quality objectives or MRP trigger thresholds. None of the water quality measurements were correlated with CSCI or hybrid ASCI scores.
- Nutrients and conventional analytes (ammonia, unionized ammonia, chloride, AFDM, chlorophyll a, nitrate, nitrite, total Kjeldahl nitrogen, ortho-phosphate, phosphorus, silica). There were no water quality objective exceedances for water chemistry parameters. Total nitrogen concentrations ranged from 0.12 to 8.1 mg/L. The two highest nitrogen concentrations were measured at site 205R03795 in Lower Silver Creek (8.1 mg/L) and site 205R03699 (3.1 mg/L) on Hale Creek. Total phosphorus concentrations ranged from <0.001 to 0.22 mg/L. The highest concentration of total phosphorus occurred at site 205R03699 on Hale Creek. None of the nutrient parameters were correlated with CSCI or hybrid ASCI scores.
- **Physical habitat metric scores** were generated from the physical habitat data. CSCI scores correlated with metrics associated with substrate size and composition. Hybrid ASCI scores were poorly correlated with all 11 physical habitat metrics.
- Landscape variables were calculated for each of the watershed areas draining into the bioassessment sites. CSCI scores were moderately correlated (negatively) with impervious area and road density.

RMC Five Year Bioassessment Report Summary (WY 2012 – WY 2016)

A comprehensive analysis of bioassessment data collected by the RMC partners is included in the RMC Five-Year Bioassessment Report (5-Year Report) (BASMAA 2019) (Attachment 2). The BASMAA-funded study evaluated bioassessment data collected by the RMC over the first five years of monitoring (WY 2012 – WY 2016). Bioassessment data from 354 sites were compiled and evaluated to address the three study questions:

- 1) What is the biological condition of streams in the region?
- 2) What stressors are associated with poor condition?
- 3) Are conditions changing over time?

The findings of the BASMAA study are intended to help stormwater programs better understand the current condition of wadable streams, prioritize stream reaches in need of protection or restoration, and identify stressors that are likely to pose the greatest risk to the health of streams in the Bay Area.

The BASMAA report also evaluated the existing RMC probabilistic monitoring design and identified a range of potential options for revising the design (if desired) to better address the questions posed. The redesign options are intended to provide considerations for discussion during the planning for reissuance of the Municipal Regional Permit, which is likely to be adopted in 2021.

Biological Conditions

Results of the survey indicate that streams in the RMC area are generally in poor biological condition. As such, aquatic life uses may not be supported at a majority of sites sampled by the RMC. Two biological indicators were used to assess conditions:

- The BMI-based CSCI shows that 58% of the stream length regionwide was ranked in the lowest CSCI condition category ("very likely altered"); 74% of the of the sampled stream length exhibited CSCI scores below 0.795, the MRP trigger for potential follow-up activity.
- The Southern California algae indices for diatoms (D18) and soft algae (S2) were evaluated for biological conditions⁷. Based on D18 and S2 scores, stream conditions regionwide appear slightly less degraded, with approximately 40% ranked in the lowest algae condition category. The algal indices also had greater stream length in the "likely intact" condition class (19-21%) compared to CSCI score (15%).

These findings should be interpreted with the understanding that the survey focused on urban stream conditions. Approximately 80% of the samples (284 of 354) were collected at urban sites. Although the low non-urban sample size precludes making any definitive comparisons, bioassessment scores in the non-urban area were generally higher than scores in the urban area for each County.

Stressor Assessment

The association between biological indicators (CSCI and D18) and stressor data was evaluated in the RMC 5-Year study using random forest statistical analyses. The results indicate that each of the biological indicators respond to different types of stressors.

- Biological condition, based on CSCI scores, was correlated with physical habitat and land use variables. Overall, the largest influence on CSCI scores in the random forest model was percent impervious area in a 5 km radius.
- Biological condition, based on D18 scores, was moderately correlated with water quality variables and less associated with the physical or landscape variables.

In general, CSCI scores at urban sites were consistently low, indicating that degraded physical habitat conditions do not support healthy BMI assemblages. D18 scores at urban sites were more variable, indicating that healthy diatom assemblages potentially can occur at sites with poor habitat, but can also indicate poor water quality at sites with degraded habitat.

None of the nutrient variables (e.g., nitrate, total nitrogen, orthophosphate, phosphorus) correlated strongly with CSCI scores, or were highly ranked variables in the CSCI random forest model runs. Phosphorus and ash-free dry mass (which increases in response to biostimulation) were important in predicting D18 scores; however, no statistically significant relationships were observed. This finding suggests that the nutrient targets being developed by the State Water Board as part of the Biostimulatory/Biointegrity Project may not be appropriate in urban streams in the Bay Area.

Trend Assessment

The short time frame of the survey (five years) limited the ability to detect trends. However, the five-year bioassessment dataset does provide a baseline to compare with future assessments.

⁷ The ASCI was not yet available during development of the RMC 5-Year Report.

A potential application of bioassessment monitoring may be to assess stream conditions following implementation of stormwater treatment projects. It is anticipated that peak flow volumes and intensities will be reduced following the implementation of mandatory stormwater treatment via green infrastructure and low impact development (LID). Future creek status monitoring may provide additional insight into the potential positive impacts of green infrastructure and creek restoration to support water quality objectives and beneficial uses in urban creeks as these projects get built.

Assessment of the RMC Monitoring Design

Over the first five years of monitoring, the RMC evaluated about 25% (1455 out of 5740) of the sites in the sample frame to obtain 354 samples. Approximately 46% (873 out of 1896) of the total number of urban sites in the sample frame were evaluated during that time. Based on rejection rates from previous years, the sample frame is anticipated to only last through WY 2019. Revision of the RMC monitoring design could seek to reduce the future rejection rate through re-evaluation of the sample frame to exclude areas of low management interest or regions that would not be candidates for sampling (such as due to lack of permissions or physical barriers to access). This would improve the spatial balance of samples that more closely represents the proportion of the sample frame that can be reliably assessed.

The RMC sample design was created to probabilistically sample all streams within the RMC area, which resulted in a master list of 33% urban sites and 67% non-urban sites. However, because participating municipalities are primarily concerned with runoff from urban areas, the RMC focused sampling efforts on urban sites (80%) over non-urban sites (20%). As a result, non-urban samples are under-represented in the dataset resulting in much lower overall biological condition scores than would be expected for a spatially balanced dataset.

Based on evaluation of data collected during the first five years of the survey, several options to revise the RMC Monitoring Design are presented below:

- 1) Continue to sample new probabilistic sites until the draw is exhausted
- 2) Probabilistic monitoring design for a trends assessment
 - a. Re-visit probabilistic sites using existing RMC Sample Frame
 - b. Re-design sample frame that re-weights urban/non-urban sites; over sample list
- 3) Monitor targeted sites for special studies
- 4) Combination of two and three

The RMC will assess these and other options during discussions with Regional Water Board staff during the MRP reissuance process beginning in 2019.

3.2.2 Continuous Monitoring for Temperature and General Water Quality

Continuous monitoring of water temperature and general water quality in WY 2018 was conducted in compliance with provisions C.8.d.iii – Iv of the MRP. Hourly temperature measurements were recorded at nine sites in the Guadalupe River Watershed from April through September. Continuous (15-minute) general water quality measurements (pH, DO, specific conductance, temperature) were recorded at three sites in the Coyote Creek watershed during two 2-week periods in June (Event 1) and September (Event 2). Targeted monitoring stations were deliberately selected using the Directed Monitoring Design Principle and were generally consistent with those monitored in WY 2017.

Conclusions from targeted continuous monitoring in WY 2018 are organized on the basis of two management questions:

- 1. What is the spatial and temporal variability in water quality conditions during the spring and summer season?
- 2. Do general water quality measurements indicate potential impacts to aquatic life?

Sites with targeted monitoring results exceeding the MRP trigger criteria and/or WQOs are identified as candidate SSID projects.

Spatial and Temporal Variability (Temperature)

- **Spatial**. Spatial trends in water temperatures measured at key locations along two tributaries to Guadalupe River were similar. Relatively warm conditions were observed at sites directly below reservoirs (possible influence from solar radiation on reservoir water). Water temperatures then decreased at sites in the middle of the sampled profiles, possibly due to shading from riparian vegetation. Farther downstream, temperatures gradually increased, possibly due to less shading of the creek and greater influence from urban land use and ground water return flows. These patterns were similar to WY 2017 monitoring results; however, the stations directly below the reservoirs, added in WY 2018, help paint a more complete picture of water temperature trends in Guadalupe Creek and Alamitos Creek.
- **Temporal**. Temperatures at all nine sites in the Guadalupe River Watershed increased from June (when the loggers were deployed) through mid-August 2018, followed by a gradual decline through the end of the monitoring period in late September. These patterns were similar to WY 2017 monitoring results at the same stations.

Spatial and Temporal Variability (Water Quality)

- **Spatial**. General water quality parameters measured at three stations along the mainstem of Coyote Creek were similar to each other throughout both monitoring windows, with the exception of dissolved oxygen which was consistently lower at the two downstream sites. The downstream decrease in dissolved oxygen may be associated with thermal stratification which was observed in that reach during the Coyote Creek SSID Project (SCVURPPP 2014).
- **Temporal**. Water quality at the Coyote Creek stations was relatively consistent between sampling events, with slight changes in dissolved oxygen following a rise in temperature during Event 1. The diurnal pattern was more pronounced at the upstream site (239), and less variable at the two downstream sites (235, 236). Compared to WY 2017 and WY 2013 data collected at the same stations, temperature in WY 2018 was lower and consequently dissolved oxygen was higher.

Potential Impacts to Aquatic Life

• Potential impacts to aquatic life were assessed through analysis of continuous temperature data collected at nine targeted stations in the Guadalupe River watershed from April through September and analysis of continuous general water quality data (pH, dissolved oxygen, specific

conductance, and temperature) collected at three targeted stations in Coyote Creek during two two-week periods (June and September).

- All nine temperature stations in the Guadalupe River Watershed exceeded the MRP trigger threshold of having two or more weeks where the Maximum Weekly Average Temperature (MWAT) exceeded 17°C. However, none of the stations exceeded the MRP maximum instantaneous trigger threshold of 24°C for more than 20% of total recorded samples.
 - All stations with MWAT trigger exceedances will be added to the list of candidate SSID projects; however, review of the monitoring data in the context of locally-derived temperature thresholds developed by NMFS (NMFS 2016) suggests that temperature may not be a limiting factor for salmonid habitat (i.e., summer rearing juveniles) in the study reaches, as long as sufficient dam releases maintain longitudinal connectivity and provide cooler water temperatures and potential refugia for juvenile steelhead during the summer.
- Sites on Coyote Creek had no exceedances of the maximum temperature trigger threshold of 24°C but did exceed the MWAT trigger of 17.0 °C for two consecutive weeks during both events and will therefore be added to the list of candidate SSID projects.
- The WQO for dissolved oxygen in waters designated as having cold freshwater habitat (COLD) Beneficial Uses (i.e., 7.0 mg/L) was not met in over 20% of the measurements recorded at all three water quality stations in Coyote Creek. The results were similar to the findings from WY 2017 Creek Status Monitoring. The middle reach of Coyote Creek is a potentially important migration corridor for salmonid fish populations; however, habitat and water quality conditions in this reach are more suitable for a warm water fishery. Steelhead migration is typically during winter season, when flows are much higher and dissolved oxygen levels are expected to be much higher than what was observed during this study.
- Values for pH and specific conductance measured at the three sites in Coyote Creek during WY 2018 did not exceed their respective triggers or water quality objectives during either event.

3.2.3 Pathogen Indicator Monitoring Results/Conclusions

Pathogen indicator monitoring in WY 2018 was conducted in compliance with provision C.8.d.v of the MRP. Pathogen indicator grab samples were collected during a sampling event in July at five sites throughout Santa Clara County that coincide with public parks.

- Pathogen indicator densities were measured at five targeted sites during WY 2018. Although
 none of the stations could be considered "bathing beaches," monitoring locations were selected
 at city parks or trails that were considered to have a relatively high potential for public access.
 The *E. coli* concentrations did not exceed the MRP trigger threshold (410 cfu/100 ml) or the newly
 adopted (but not yet approved) statewide WQO (320 cfu/100 ml) at any of the five sites. Both the
 MRP threshold (130 cfu/100ml) and newly adopted WQO (110 cfu/100 ml) for enterococcus were
 exceeded at three sites: Saratoga Creek at Wildwood Park, Stevens Creek at Blackberry Farm,
 and Matadero Creek at Bol Park. These sites will be added to the list of candidate SSID projects.
- It is important to recognize that pathogen indicator thresholds are based on human recreation at beaches receiving bacteriological contamination from human wastewater, and may not be applicable to conditions found in urban creeks. Pathogen indicators observed at the WY 2018 stations may not be associated with human sources and therefore may not pose a threat to human health. As a result, the comparison of pathogen indicator results to water quality objectives and criteria for full body contact recreation may not be appropriate and should be interpreted cautiously.

3.2.3 Chlorine Monitoring Results/Conclusions

Free chlorine and total chlorine residual were measured concurrently with bioassessments at the twenty probabilistic sites in compliance with provision C.8.c.ii. While chlorine residual is generally not a concern in Santa Clara Valley urban creeks, prior monitoring results suggest there are occasional free chlorine and total chlorine residual exceedances in the County. Trigger exceedances that are observed are usually the result of a one-time potable water discharges that are difficult to trace. Furthermore, chlorine in surface waters can dissipate from volatilization and reaction with dirt and organic matter. In WY 2018, there were no exceedances of the MRP trigger for chlorine (0.1 mg/L). The Program will continue to monitor chlorine in compliance with the MRP and will follow-up with illicit discharge staff as needed.

3.2.4 Pesticides and Toxicity Monitoring Results/Conclusions

In WY 2018, SCVURPPP conducted dry weather pesticides and toxicity monitoring at two stations (Stevens Creek and San Tomas Aquino Creek) and wet weather pesticides and toxicity monitoring at three stations (Calabazas Creek, Stevens Creek, and San Tomas Aquino Creek) in compliance with provision C.8.g of the MRP and in coordination with the RMC.

Statistically significant toxicity to *C. dilutus* (survival) was observed in the water sample collected from Stevens Creek during dry season sampling in July 2018. However, the magnitude of the toxic effects in this sample did not exceed MRP trigger criteria of 50 Percent Effect. Statistically significant toxicity to *H.* azteca (survival) was also observed in the Calabazas Creek, San Tomas Aquino Creek, and Stevens Creek water samples during wet weather sampling in January 2018. The magnitude of the toxic effects in the Stevens Creek sample did not exceed MRP trigger criteria, while the magnitude of the toxic effects in the Calabazas Creek and San Tomas Aquino Creek samples did exceed the MRP threshold for resampling (i.e., Percent Effect \geq 50%). In follow-up sampling that was conducted during a storm event in March 2018, statistically significant toxicity was observed in the Calabazas Creek sample. However, the magnitude of the toxic effects was below the MRP threshold. No statistically significant toxicity was observed in the follow-up San Tomas Aquino Creek sample. The cause of the toxicity observations is unknown. Pesticide concentrations in the dry season sediment samples were all very low, most below MDLs, and calculated TU equivalents did not exceed 0.1 in either sample with the exception of bifenthrin in the Stevens Creek sample. Pesticide concentrations in wet weather water samples were also very low, with most values below MDLs.

Sediment chemistry results are evaluated as potential stressors based on TEC quotients and PEC quotients according to criteria in provision C.8.g.iv of the MRP. SCVURPPP also evaluated TU equivalents of pyrethroids and fipronil. TEC and PEC quotients were calculated for all metals and total PAHs measured in sediment samples. Both sites had at least one TEC or PEC quotient exceeding 1.0. In compliance with the MRP, both stations will therefore be placed on the list of candidate SSID projects. Decisions about which SSID projects to pursue should be informed by the fact that most of the TEC and PEC quotient exceedances are related to naturally occurring chromium and nickel due to serpentine soils in the watersheds. No TU equivalents exceeded 1.0. The highest TU equivalents in both samples were for bifenthrin and deltamethrin. Bifenthrin is considered to be the leading cause of pyrethroid-related toxicity in urban areas (Ruby 2013) and the most-commonly detected insecticide monitored by the DPR SWPP (Ensminger 2017).

Pesticide analytes targeted by wet weather monitoring in WY 2018 were generally found at concentrations below the MDL, except for bifenthrin and fipronil compounds. As no water quality objectives are specified in the Basin Plan for these pollutants, they are not currently being used to identify SSID project locations. The wet weather pesticide monitoring data in WY 2018 was compared to pesticide data collected by the DPR SWPP and the USEPA aquatic benchmarks used in DPR SWPP studies to allow for interpretation of the WY 2018 results in the context of larger statewide datasets. However, sites sampled during the WY 2018 wet weather pesticide monitoring where exceedances of the USEPA benchmarks were observed were not added to the list of candidate SSID projects. In future years, data

collected by the DPR SWPP and contained on the DPR SURF database can be queried to allow for further comparison of MRP pesticide monitoring results.

SCVURPPP will continue to sample the same two stations for dry weather pesticides and toxicity throughout the permit term.

3.3 Trigger Assessment

The MRP requires analysis of the monitoring data to identify candidate sites for SSID projects. Trigger thresholds against which to compare the data are provided for most monitoring parameters in the MRP and are described in the foregoing sections of this report. Stream condition was based on CSCI scores that were calculated using BMI data. Nutrient data were evaluated using applicable water quality standards from the Basin Plan. Water and sediment chemistry and toxicity data were evaluated using numeric trigger thresholds specified in the MRP. In compliance with provision C.8.e.i of the MRP, all monitoring results exceeding trigger thresholds are added to a list of candidate SSID projects that will be maintained throughout the permit term. Follow-up SSID projects will be selected from this list. Table 3.1 lists candidate SSID projects based on WY 2018 Creek Status and Pesticides/Toxicity monitoring data.

Additional data analysis is provided in **Appendix A** and should be considered prior to selecting and defining SSID projects. The analyses include review of physical habitat (including channel type and location with respect to reservoirs) and water chemistry data to identify potential stressors that may be contributing to degraded or diminished biological conditions. Analyses in Appendix A also include historical and spatial perspectives that help provide context and deeper understanding of the trigger exceedances.

Table 3.1. Summary of SCVURPPP trigger threshold exceedance analysis in WY 2018. "No" indicates samples were collected, but did not exceed the MRP trigger threshold. "Yes" and shading indicates an exceedance of the MRP trigger threshold.

Station ID	Creek	Bioassessment ¹	Nutrients ²	Chlorine ³	Water Toxicity ⁴	Sediment Toxicity ⁴	Water Chemistry ⁵	Sediment Chemistry ⁵	Continuous Temperature ⁶	Dissolved Oxygen ⁷	pH ⁸	Specific Conductance ⁹	Pathogen Indicators ¹⁰
204R00749	Smith Creek	No	No	No									
205R00746	Saratoga Creek	No	No	No									
205R00769	MF Coyote Creek	Yes	No	No									
205R03498	Saratoga Creek	No	No	No									
205R03562	Saratoga Creek	No	No	No									
205R03591	Los Trancos Creek	No	No	No									
205R03619	Saratoga Creek	Yes	No	No									
205R03683	Permanente Creek	No	No	No									
205R03699	Hale Creek	Yes	No	No									
205R03738	Upper Silver Creek	Yes	No	No									
205R03754	San Tomas Aquino	No	No	No									
205R03795	Lower Silver Creek	Yes	No	No									
205R03825	Thompson Creek	Yes	No	No									
205R03843	San Tomas Aquino	Yes	No	No									
205R03847	Los Trancos Creek	No	No	No									
205R03875	Calabazas Creek	Yes	No	No									
205R03907	Lower Penitencia	Yes	No	No									
205R04190	Guadalupe Creek	No	No	No									
205R04217	Upper Penitencia	No	No	No									
205R04266	Calabazas Creek	Yes	No	No									
205LGA400	Guadalupe River												No
205MAT030	Matadero Creek												Yes
205STE064	Stevens Creek												Yes
205GUA225	Arroyo Calero												No
205SAR075	Saratoga Creek												Yes
205GUA190	Guadalupe Creek								Yes				
205GUA202	Guadalupe Creek								Yes				
205GUA210	Guadalupe Creek								Yes				
205GUA218	Guadalupe Creek								Yes				
205GUA250	Alamitos Creek								Yes				
205GUA255	Alamitos Creek								Yes				
205GUA262	Alamitos Creek								Yes				
205GUA270	Alamitos Creek								Yes				
205GUA279	Alamitos Creek								Yes				
205COY235	Coyote Creek								Yes	Yes	No	No	
205COY236	Coyote Creek								Yes	Yes	No	No	
205COY239	Coyote Creek								Yes	Yes	No	No	
205CAL010	Calabazas Creek				No		No						
205STE021	Stevens Creek				No	No	No	Yes					
205STQ010	San Tomas Aquino				No	No	No	Yes					
Notes:													

1. CSCI score ≤ 0.795 .

Unionized ammonia (as N) ≥ 0.025 mg/L, nitrate (as N) ≥ 10 mg/L, chloride > 250 mg/L. 2.

3. Free chlorine or total chlorine residual ≥ 0.1 mg/L.

4. 5.

The chlorine of total chlorine residual ≥ 0.1 Hig/L. Test of Significant Toxicity = Fail and Percent Effect ≥ 50 %. TEC or PEC quotient ≥ 1.0 for any constituent. Two or more MWAT ≥ 17.0 °C or 20% of results ≥ 24 °C. DO < 7.0 mg/L in COLD streams or DO < 5.0 mg/L in WARM streams. 6. 7.

8. pH < 6.5 or pH > 8.5.

9. Specific conductance > 2000 uS. 10. Enterococcus \geq 130 cfu/100ml or *E. coli* \geq 410 cfu/100ml.

3.4 Recommendations

The following recommendations are based on findings from WY 2018 Creek Status and Pesticides and Toxicity monitoring conducted by SCVURPPP, as well as reflections on other monitoring, data analysis, and policy development projects being conducted in the region (e.g., RMC 5-Year Report) and statewide.

- In WY 2019, the Program will continue to coordinate with RMC partners on implementation of monitoring requirements in MRP provisions C.8.d and C.8.g.
- A major component of the WY 2019 monitoring will be bioassessment surveys and data assessment. In WY 2019, SCVURPPP will conduct biological assessments at both probabilistic and targeted sites. To date, a total of 152 probabilistic sites have been monitored by SCVURPPP (n=140) and SWAMP (n=12). This exceeds the number of samples necessary for a statistically representative dataset. Therefore, SCVURPPP is eligible to select up to 20 percent of sample locations on a targeted basis to evaluate trends or address other aquatic life related concerns.
- In WY 2018, BASMAA funded a study to evaluate five years of regional bioassessment data (WY 2012 WY 2016). Findings from the RMC 5-Year Report are summarized in this report is included as Attachment 2 to Appendix A. In WY 2019, SCVURPPP will apply some of the tools used in the RMC 5-Year Report (i.e., random forest models) to analyze bioassessment data collected in Santa Clara County over all eight years of MRP monitoring (WY 2012 WY 2019). Results of the analyses will be described in the Integrated Monitoring Report (IMR) which will be developed following WY 2019 and submitted by March 31, 2020 (the fifth year of the Permit term) in lieu of an annual UCMR.
- Biological condition and stressor data will also be evaluated in the IMR at finer spatial scales (e.g., watersheds). In addition, historical (pre-MRP) bioassessment data may be incorporated to evaluate spatial and temporal trends of biological condition.
- For the past two years (WY 2017 and WY 2018), SCVURPPP has conducted continuous temperature monitoring in the Guadalupe River Watershed and continuous water quality monitoring on the mainstem of Coyote Creek. During WY 2019, SCVURPPP will collect continuous temperature and water quality (sondes) data at the same locations that were monitored in WY 2017 and WY 2018. Monitoring activities will include continuous temperature monitoring at 4 to 5 sites on Alamitos Creek and 4 sites on Guadalupe Creek and continuous water quality monitoring at 3 sites on Coyote Creek mainstem. A third year of monitoring at these locations will provide additional data to evaluate inter-annual variability in water quality conditions across range of water years.
- Provision C.8.g Pesticides and Toxicity monitoring will be conducted during the dry season at the same two stations targeted in WY 2016, WY 2017, and WY 2018: Stevens Creek and San Tomas Aquino Creek. In WY 2019, the full dataset from these stations (WY 2016 – WY 2019) will be evaluated in the IMR.

3.5 Management Implications

The Program's Creek Status and Pesticides and Toxicity Monitoring programs (consistent with MRP provisions C.8.d and C.8.g, respectively) focus on assessing the water quality condition of urban creeks in the Santa Clara Valley and identifying stressors and sources of impacts observed. The sample size from WY 2018 (overall n=20; urban n=17) is not sufficient to develop statistically representative conclusions regarding the overall condition of all creeks. A more comprehensive bioassessment data analyses for the entire eight years of monitoring under the MRP (WY 2012 through WY 2019) will be conducted as part of the Integrated Monitoring Report during WY 2019.

Like previous years, WY 2018 data suggest that most urban streams have likely or very likely altered populations of aquatic life indicators (e.g., benthic macroinvertebrates). These conditions are likely the result of long-term changes in stream hydrology, channel geomorphology, in-stream habitat complexity,

and other modifications to the watershed and riparian areas associated with the urban development that has occurred over the past 50 plus years. Additionally, episodic or site-specific increases in temperature (particularly in lower creek reaches or reaches directly below reservoirs) may not be optimal for aquatic life in some local creeks.

The Program and its Co-permittees are actively implementing many stormwater management programs to address these and other stressors and associated sources of water quality conditions observed in local creeks, with the goal of protecting these natural resources. For example:

- In compliance with MRP provision C.3, new and redevelopment projects in the Bay Area are now
 designed to more effectively reduce water quality and hydromodification impacts associated with
 urban development. Low impact development (LID) methods, such as rainwater harvesting and
 use, infiltration and biotreatment are required as part of development and redevelopment
 projects. In addition, Green Infrastructure planning is now part of all municipal projects. These
 LID measures are expected to reduce the impacts of urban runoff and associated impervious
 surfaces on stream health.
- In compliance with MRP provision C.7, the Program and its Co-permittees are implementing stormwater outreach activities through the Watershed Watch Campaign (Campaign) that directly engages citizens and youth to make watershed-friendly choices. Pollution prevention messages are delivered at 8 to 10 community events per year, communicating the value and protection of creeks' natural resources to citizens both in plain non-scientific wording and multiple native languages (e.g., Spanish, Vietnamese, Chinese). Media advertising, such as the Earthquakes' and Sharks' collaborations, teach citizens how to dispose properly of litter, hazardous wastes, and car wash water. The Campaign also conducts numerous activities and sessions to educate children about watersheds and urban runoff pollution prevention through the Don Edwards San Francisco Bay National Wildlife Refuge, including watershed-focused field trips, marsh walks, gardening events, bird watching, and wildlife observation. Additionally, the Campaign supports the musical assembly program, ZunZun that engages students through music and theatre while teaching them about stormwater, watersheds, and pollution prevention topics. These efforts are expected to encourage watershed-positive behavior change in Santa Clara Valley residents.
- In compliance with MRP provision C.9, the Program and Co-permittees are implementing
 pesticide toxicity control programs that focus on source control and pollution prevention
 measures. The control measures include the implementation of integrated pest management
 (IPM) policies/ordinances, public education and outreach programs, pesticide disposal programs,
 the adoption of formal State pesticide registration procedures, and sustainable landscaping
 requirements for new and redevelopment projects. Through these efforts, it is estimated that the
 amount of pyrethroids observed in urban stormwater runoff will decrease by 80-90% over time,
 and in turn significantly reduce the magnitude and extent of toxicity in local creeks.
- Trash loadings to local creeks have been reduced through implementation of new control
 measures in compliance with MRP provision C.10 and other efforts by Co-permittees to reduce
 the impacts of illegal dumping directly into waterways. These actions include the installation and
 maintenance of trash capture systems, the adoption of ordinances to reduce the impacts of litter
 prone items, enhanced institutional controls such as street sweeping, and the on-going removal
 and control of direct dumping. The MRP establishes a mandatory trash load reduction schedule,
 minimum areas to be treated by trash full capture systems, and requires development of receiving
 water monitoring programs for trash.
- In compliance with MRP provisions C.2 (Municipal Operations), C.4 (Industrial and Commercial Site Controls), C.5 (Illicit Discharge Detection and Elimination), and C.6 (Construction Site Controls) Co-permittees continue to implement programs that are designed to prevent non-stormwater discharges during dry weather and reduce the exposure of contaminants to stormwater and sediment in runoff during rainfall events.

- In compliance with MRP provision C.13, copper in stormwater runoff is reduced through implementation of controls such as architectural and site design requirements, prohibition of discharges from water features treated with copper, and industrial facility inspections.
- Mercury and polychlorinated biphenyls (PCBs) in stormwater runoff are being reduced through implementation of the respective TMDL water quality restoration plans. In compliance with MRP provisions C.11 (mercury) and C.12 (PCBs), the Program will continue to identify sources of these pollutants and will implement control actions designed to achieve new minimum load reduction goals. Monitoring activities conducted in WY 2018 that specifically target mercury and PCBs are described in the Pollutants of Concern Monitoring Data Report that is included as Appendix E to the WY 2018 UCMR.

In addition to the Program and Co-permittee controls implemented in compliance with the MRP, numerous other efforts and programs designed to improve the biological, physical and chemical condition of local creeks are underway. For example, the Santa Clara Valley Water District's Integrated Water Resources Master Plan (IWRMP) or "One Water Plan" is an ongoing, multi-year process to develop a framework for long-term management of Santa Clara County water resources. The One Water Plan identifies, prioritizes and implements activities at a watershed scale to meet flood protection, water supply, water quality and environmental stewardship goals and objectives. Additionally, SCVURPPP, via a Proposition 1 grant awarded to the Santa Clara Valley Water District, continued to develop a Storm Water Resource Plan for the Santa Clara Basin in 2018 that will support the development and implementation of MRP-required Green Stormwater Infrastructure Plans and produce a list of prioritized runoff capture and use projects that will be eligible for future State implementation grant funds. Through the continued implementation of MRP-associated and other watershed stewardship programs, SCVURPPP anticipates that stream conditions and water quality in local creeks will continue to improve over time. In the near term, toxicity observed in creeks should decrease as pesticide regulations better incorporate water quality concerns during the pesticide registration process. In the longer term, control measures implemented to "green" the "gray" infrastructure and disconnect impervious areas constructed over the course of the past 50-plus years will take time to implement. Consequently, it may take several decades to observe the outcomes of these important, large-scale improvements to our watersheds in our local creeks. Long-term creek status monitoring programs designed to detect these changes over time are therefore beneficial to our collective understanding of the condition and health of our local waterways.

4.0 STRESSOR/SOURCE IDENTIFICATION (C.8.E)

Provision C.8.e of the MRP requires that Permittees evaluate creek status (provision C.8.d) and pesticides and toxicity (provision C.8.g) monitoring data with respect to triggers defined in the MRP, and maintain a list of all results exceeding trigger thresholds. Table 3.1 lists the results of the trigger evaluation for WY 2018 data. Sites where triggers are exceeded may indicate potential impacts to aquatic life or other beneficial uses and are therefore considered as candidates for future Stressor/Source Identification (SSID) projects. SSID projects are selected from the list of trigger exceedances based on criteria such as magnitude of threshold exceedance, parameter, and likelihood that stormwater management action(s) could address the exceedance. Pollutants of concern monitoring results (provision C.8.f) may be considered as appropriate.

The MRP requires that Permittees initiate a minimum number of SSID projects during the permit term, with a minimum of one for toxicity. As a regional collaborative, SCVURPPP and its RMC partners must collectively initiate a region-wide minimum of eight new SSID projects during the permit term, with a minimum of one for toxicity. RMC programs have agreed that the distribution of the eight required SSID projects will be as follows, with most projects conducted by individual Programs addressing local needs and one conducted regionally:

- 2 each: ACCWP and SCVURPPP
- 1 each: CCCWP and SMCWPPP
- 1 jointly: FSURMP and Vallejo Permittees
- 1 regionally: all RMC partners

In compliance with Provision C.8.e.iii, half of the required number of SSID projects (i.e., four) were initiated with a work plan by the third year of the permit term (i.e., 2018). All SSID projects initiated in compliance with the 2015 MRP are summarized in the BASMAA RMC Regional SSID Report (**Appendix B**).

SSID projects must identify and isolate potential sources and/or stressors associated with observed water quality impacts. They are intended to be oriented to taking action(s) to alleviate stressors and reduce sources of pollutants. The 2015 MRP describes the stepwise process for conducting SSID projects initiated under the current permit:

- Step 1: Develop a work plan for each SSID project that defines the problem to the extent known, describes the SSID project objectives, considers the problem within a watershed context, lists candidate causes of the problem, and establishes a schedule for investigating the cause(s) of the trigger. The MRP recommends study approaches for specific triggers. For example, toxicity studies should follow guidance for Toxicity Reduction Evaluations (TRE) or Toxicity Identification Evaluations (TIE), physical habitat and conventional parameter (e.g., dissolved oxygen, temperature) studies should generally follow Step 5 (Identify Probable Causes) of the Causal Analysis/Diagnosis Decision Information System (CADDIS), and pathogen indicator studies should generally follow the California Microbial Source Identification Manual (SCCWRP 2013).
- Step 2: Conduct SSID investigation according to the schedule in the SSID work plan and report on the status of SSID investigations annually in the UCMR.
- Step 3: Conduct follow-up actions based on SSID investigation findings. These may include development of an implementation schedule for new or improved best management practices (BMPs). If a Permittee determines that MS4 discharges are not contributing to an exceedance of a water quality standard, the Permittee may end the SSID project upon written concurrence of the Executive Officer. If the SSID investigation is inconclusive, the Permittee may request that the Executive Officer consider the SSID project complete.

In 2017, SCVURPPP developed a work plan for the Coyote Creek Toxicity SSID Project which fulfills the regional requirement of one toxicity project. In 2018, BASMAA began development of a regional SSID project addressing releases and spills of PCBs from electrical utility equipment. The status of these projects are summarized below.

4.1 Coyote Toxicity

In WY 2017, SCVURPPP initiated an SSID project in Coyote Creek to investigate sources of sediment toxicity. This SSID project was triggered by the recent listing (303(d) List/305(b) Report) of Coyote Creek for toxicity in sediment in the 2016 Integrated Report for the San Francisco Bay Region. It satisfies the regional requirement for one toxicity SSID project. The Coyote Creek SSID Work Plan (SCVURPPP 2018a) was submitted with the SCVURPPP WY 2017 UCMR on March 31, 2018. The goals of the project are to:

- 1. Identify the magnitude and extent of toxicity in a reach of the Coyote Creek mainstem where previous data were collected; and
- 2. Identify potential causes of sediment toxicity (if observed).

In July 2018, Program collected sediment samples at five locations in the Coyote Creek mainstem (Figure 4.1). The monitoring results showed that sediment samples were not toxic, with the exception of site COY080 at Oakland Rd, which had 76% survival compared to control (<80% is considered toxic). The sediment chemistry at site COY080 was inconclusive (i.e., pyrethroid or metal concentrations were not at levels that are known to cause toxic effects). At other sites, pyrethroid concentrations were at levels that may cause effects, but toxicity was not observed. The Program subsequently conducted a Toxicity Investigation Evaluation (TIE) for sediment collected at site COY080. Results from the TIE showed no toxicity (survival > 80%).

Based on monitoring results from WY 2018, sources of toxicity and identification of potential management actions could not be determined. The Program will conduct another year of monitoring at a reduced number of sites (three sites rather than five) during WY 2019. Monitoring will follow the same monitoring approach used in WY 2018, that is described in the SSID work plan. The Program will prepare a Final Report with data results and interpretation for both years of monitoring. It is anticipated that the report will be submitted to the Regional Water Board with the Integrated Monitoring Report on March 31, 2020.

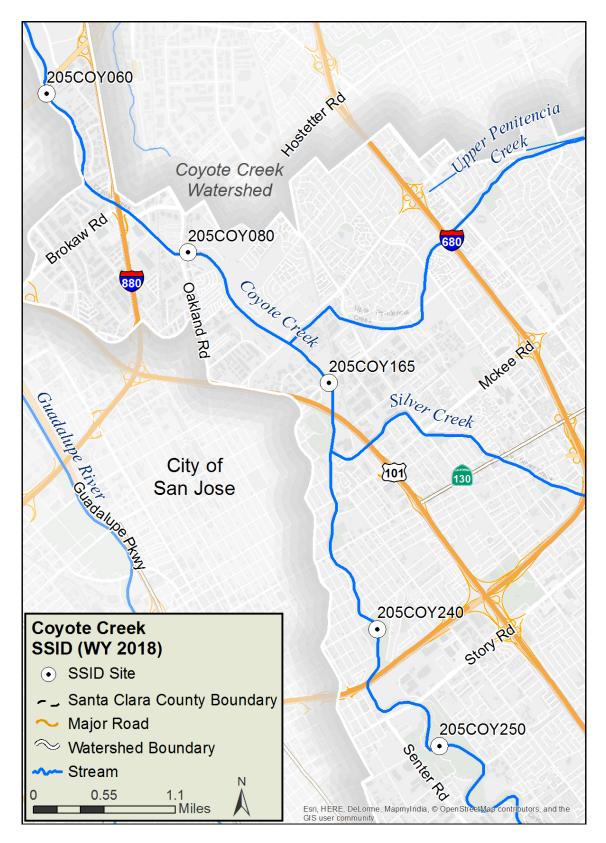


Figure 4.1. Sampling locations in WY 2018 for sediment chemistry and toxicity testing in Coyote Creek mainstem as part of the Coyote Toxicity SSID Project.

4.2 Regional PCBs from Electrical Utility Equipment

In late-2018, BASMAA contracted with EOA, Inc. to develop a work plan for a regional SSID project addressing releases and spills of PCBs from electrical utility equipment. The Regional SSID Project - Electrical Utilities as a Potential PCBs Source to Stormwater in the San Francisco Bay Area – was triggered by fish tissue monitoring in the Bay that led to the Bay being designated as impaired on the Clean Water Act (CWA) Section 303(d) list and the adoption of a TMDL for PCBs in 2008. Subsequent PCBs monitoring by the BASMAA RMC partners and the RMP suggests that diffuse sources of PCBs are present throughout the region. One potential source of PCBs to stormwater is releases and spills from electrical utility equipment.

PCBs were historically used in several types of electrical utility equipment, some of which still contain PCBs. Although much of the PCB-containing equipment has been removed from service, some remains in use, and releases and spills from the equipment may be occurring at levels approaching the TMDL waste load allocation. However, the information currently available is not adequate to fully quantify the scope and magnitude of electrical utility applications as a source of PCBs to stormwater. The information gap is partially due to state and federal regulatory levels for reporting and clean-up of PCBs spills that are higher than the PCB levels needed to comply with the PCBs TMDL requirements. Furthermore, stormwater Programs have neither the authority to compel electrical utilities to provide information about spills, equipment replacement programs, and clean-up protocols, nor the authority to require additional controls. Therefore, BASMAA identified a need to develop and implement a regional SSID work plan to further understand the magnitude and extent of this potential PCBs source, and identify controls (if necessary) that could be put into place to reduce the water quality impacts of this source.

The work plan is included with this WY 2018 UCMR as **Appendix G**. It presents a framework for working with the Regional Water Board, which does have jurisdictional authority over electrical utility companies. Implementation of the regional SSID work plan will begin in WY 2019.

5.0 POLLUTANTS OF CONCERN MONITORING (C.8.F)

Pollutants of Concern (POC) monitoring is required by provision C.8.f of the MRP. POC monitoring is intended to assess inputs of POCs to the Bay from local tributaries and urban runoff, provide information to support implementation of total maximum daily load action plans (TMDLs) and other pollutant control strategies, assess progress toward achieving wasteload allocations (WLAs) for TMDLs, and help resolve uncertainties associated with loading estimates for these pollutants. The MRP identifies five priority POC management information needs that need to be addressed though POC monitoring:

- 1. **Source Identification** identifying which sources or watershed source areas provide the greatest opportunities for reductions of POCs in urban stormwater runoff;
- Contributions to Bay Impairment identifying which watershed source areas contribute most to the impairment of San Francisco Bay beneficial uses (due to source intensity and sensitivity of discharge location);
- 3. **Management Action Effectiveness** providing support for planning future management actions or evaluating the effectiveness or impacts of existing management actions;
- 4. Loads and Status providing information on POC loads, concentrations, and presence in local tributaries or urban stormwater discharges; and
- 5. **Trends** evaluating trends in POC loading to the Bay and POC concentrations in urban stormwater discharges or local tributaries over time.

Provision C.8.f of the MRP requires POC monitoring of polychlorinated biphenyls (PCBs), mercury, copper, emerging contaminants, and nutrients.⁸ The MRP defines yearly and total (i.e., permit term) minimum number of samples for each POC and specifies the minimum number of samples for each POC that must address each information need. Progress toward POC monitoring requirements accomplished in WY 2018 and the planned allocation of effort for WY 2019 are described in the SCVURPPP POC Monitoring Report (SCVURPPP 2018b) that was submitted to the Regional Water Board on October 15, 2018 in compliance with provision C.8.h.iv of the MRP.

In WY 2018, SCVURPPP complied with provision C.8.f of the MRP through the following activities:

- Implementation of a catchment-scale storm sampling program for PCBs and mercury (n=8);
- Collection of wet and dry weather samples for nutrients and copper analysis (n=6);
- Participation in BASMAA regional study to analyze infrastructure caulk and sealant samples for PCBs (n=5; ¼ of project total);
- Participation in BASMAA regional study to evaluate the PCBs and mercury removal effectiveness
 of hydrodynamic separator (HDS) units and biochar-amended bioretention soil media (BSM) (n =
 8; ¼ of project total);
- Participation in SWAMP's Stream Pollutant Trends monitoring program; and
- Participation in the RMP Small Tributaries Loading Strategy Team (STLS).⁹

A report describing the results of all POC monitoring conducted by SCVURPPP is included as **Appendix C** to this report. Reports describing the results of BASMAA's BMP effectiveness studies are included as

⁸ Emerging contaminant monitoring requirements will be met through participation in RMP special studies and will address at least PFOS, PFAS, and alternative flame retardants being used to replace PBDEs.

⁹ SCVURPPP works collaboratively with our water quality monitoring partners to find mutually beneficial monitoring approaches. Provision C.8.a.iii of the MRP allows Permittees to use data collected by third-party organizations to fulfill monitoring requirements, provided the data are demonstrated to meet the required data quality objectives. Samples collected in Santa Clara County through the RMP are used to supplement the Program's efforts towards achieving provision C.8.f monitoring requirements.

Appendices D and **E**. A report describing the results of POC monitoring conducted by the STLS is included as **Appendix F**. Appendices C, D, E, and F are summarized in the sections below.

5.1 SCVURPPP POC Monitoring (C.8.f)

In compliance with provision C.8.f of the MRP, the Program conducted POC monitoring in WY 2018 for PCBs, mercury, copper, and nutrients. The MRP-required yearly minimum number of samples was exceeded for all POCs. Results are summarized in the sections below and described in more detail in **Appendix C**.

5.1.1 PCBs and Mercury

PCBs and mercury monitoring in WY 2018 continued to focus primarily on identification of source areas of PCBs and mercury to the MS4 and San Francisco Bay. WY 2018 data are being used by SCVURPPP to implement a process to identify and prioritize watershed management areas (WMAs) and identify specific source properties in the Santa Clara Valley. This process is generally consistent with the approaches currently being implemented by other RMC partners. WMAs are priority watersheds or catchments in the urban landscape where control measures for PCBs and mercury are currently being implemented or will be implemented during the MRP permit term, to the extent that feasible and cost-effective controls can be identified.

WMA Prioritization

Wet weather samples were collected from MS4 outfalls or manholes to provide information to identify WMAs where control measures could be implemented to comply with MRP requirements for load reductions of PCBs and mercury. This is the same approach that was implemented in WY 2016 – WY 2017, and monitoring was conducted in accordance with the Water Year 2016 Pollutant of Concern Monitoring - Sampling and Analysis Plan (SCVURPPP 2015). The sampling was focused on collection of storm composite samples from high interest WMAs that may contain PCB and/or mercury source properties. High interest WMAs were identified and prioritized for sampling by evaluating several types of data, including: PCBs and mercury concentrations from prior sediment and water sampling efforts, land use data showing old industrial parcels, municipal storm drain data showing pipelines and access points (e.g., manholes, outfalls, pump stations), catchment areas delineated from municipal storm drain data, and logistical/safety considerations (SCVURPPP 2015).

During WY 2018, the Program collected eight samples for PCBs and mercury analysis. Each sample was a composite consisting of four to eight aliquots collected during the rising limb and peak of the storm hydrograph (as determined through field observations). Samples were analyzed for the "RMP 40" PCB congeners¹⁰ (method EPA 1668C), total mercury (method EPA 1631E), and suspended sediment concentration (SSC; method ASTM D3977-97).

In summary, WY 2018 results included:

- Total PCB concentrations, calculated as the sum of the "RMP 40" congeners, ranged from 0.15 ng/L to 57.3 ng/L; and PCB particle ratios, calculated by dividing total PCB concentrations by SSC, ranged from 4.0 ng/g to 623 ng/g.
- Mercury concentrations ranged from 1.07 ng/L to 31.6 ng/L; and mercury particle ratios ranged from 27.6 ng/g to 344 ng/g.

Although WY 2018 monitoring results did not result in identification of WMAs with "known high source areas" where source investigations should be considered. However, review of data from prior years

¹⁰ The RMP 40 PCB congeners include: PCB-8, PCB-18, PCB-28, PCB-31, PCB-33, PCB-44, PCB-49, PCB-52, PCB-56, PCB-60, PCB-66, PCB-70, PCB-74, PCB-87, PCB-95, PCB-97, PCB-99, PCB-101, PCB-105, PCB-110, PCB-118, PCB-128, PCB-132, PCB-138, PCB-141, PCB-149, PCB-151, PCB-153, PCB-156, PCB-158, PCB-170, PCB-174, PCB-177, PCB-180, PCB-183, PCB-187, PCB-194, PCB-195, PCB-201, PCB-203.

during WY 2018 did result in updates to the WMA map. Figure 5.1 illustrates the current state of knowledge about WMAs in Santa Clara County.

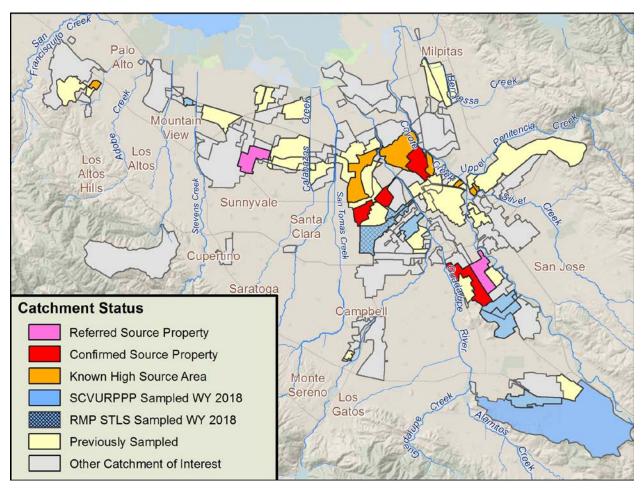


Figure 5.1. WMA map of Santa Clara County, showing catchments sampled in WY 2018.

The wet weather characterization data collected by SCVURPPP in WY 2018 were compiled with similar data collected throughout the region by the RMP STLS and SMCWPPP (Figure 5.2). The full dataset includes samples collected from 127 MS4 catchments and 28 receiving waters.

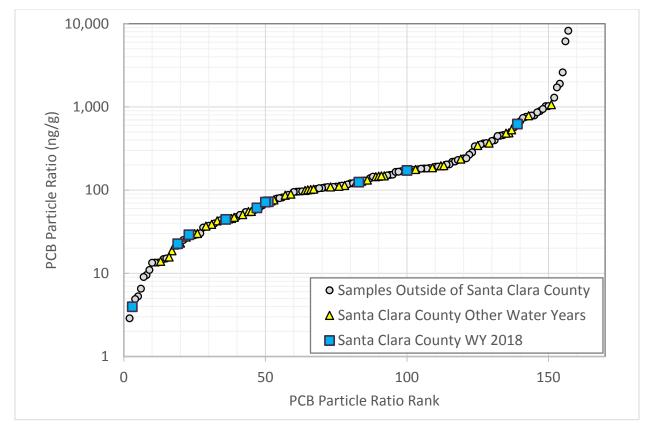


Figure 5.2. PCB particle ratios for water samples collected in MS4s and receiving waters draining to the Bay.

SCVURPPP plans to continue working with other Bay Area countywide stormwater programs (through the BASMAA MPC Committee) and the RMP STLS to evaluate the results of the ongoing efforts in the Bay Area to identify PCBs and mercury source areas and plan next steps in Santa Clara County.

5.1.2 Copper

In WY 2018, the Program collected a total of six samples for copper analysis (i.e., total and dissolved copper, and hardness). Three bottom-of-the-watershed stations (Stevens Creek, San Tomas Aquino Creek, and Calabazas Creek) were sampled during a large storm event on January 8, 2018, concurrent with nutrient monitoring and Provision C.8.g.iii Wet Weather Pesticides and Toxicity Monitoring. The three sites were sampled again on May 21, 2018 during spring baseflows. The goal of this approach is to address Management Question #5 (Trends) by comparing copper concentrations during different seasons. Management Question #4 (Loads and Status) is also addressed by characterizing copper concentrations in mixed-use watersheds.

Based on the laboratory results, the following findings are noted:

- Copper concentrations were higher in the storm samples compared to the spring baseflow samples. Conversely, hardness concentrations were lower in the storm samples compared to the spring baseflow samples.
- Copper concentrations are similar (i.e., within the same order of magnitude) in all three creeks sampled. There do not appear to be localized sources of copper.

In general, dissolved copper concentrations were below calculated acute and chronic WQOs¹¹; however, one dissolved copper sample (collected from San Tomas Aquino on Jan. 8, 2018) exceeded the calculated WQOs. Because the total copper concentration from this sample was much lower (14 ug/L) than the dissolved copper concentration (30 ug/L), a scenario not possible due to the nature of the analyte types, this result has been flagged as questionable in the electronic data deliverable (EDD). It is possible that contamination was introduced during the laboratory filtration process.

5.1.3 Nutrients

In WY 2018, the Program collected samples for nutrients analysis (i.e., ammonium¹², nitrate, nitrite, total Kjeldahl nitrogen (TKN), dissolved orthophosphate, and total phosphorus) from three bottom-of-thewatershed locations on Stevens Creek, San Tomas Aquino Creek, and Calabazas Creek concurrent with copper monitoring and Provision C.8.g.iii Wet Weather Pesticides and Toxicity Monitoring to address Management Question #4 (loads and status). Samples were collected during a large storm event on January 8, 2018 and during dry season baseflows on May 21, 2018.

Based on the laboratory results, the following findings are noted:

- Concentrations of all nutrients were similar at all three stations during the January event. In contrast, there was high variability among the stations during the May event, particularly for nitrate and phosphorus which varied by an order of magnitude.
- Inorganic nitrogen (nitrate and nitrite) concentrations were higher in May compared to the January storm event (with the exception of San Tomas Aquino Creek) and organic nitrogen (TKN) concentrations were lower in May compared to the January storm event.
- Organic nitrogen (TKN) made up a greater proportion of the total nitrogen concentration during the January storm event compared to the May event. It is likely that organically-bound nitrogen washed off surfaces during the January storm had not yet had time to cycle through the ammonification and nitrification processes before samples were collected.
- Phosphorus concentrations were higher during the January storm runoff sampling event compared to the May baseflow event. This finding is consistent with the draft conceptual model developed by the NMS which suggests that nutrient loads to San Francisco Bay from creeks are highest during the wet season, although considerably less than loads from publicly owned wastewater treatment works (POTWs) (Senn and Novick 2014). However, nutrient concentrations (primarily nitrate) were higher during the baseflow event at two of the three stations. The nitrate patterns were not consistent with the NMS model but were consistent with SCVURPPP POC monitoring conducted in WY 2017 in Silver Creek.
- No applicable WQOs were exceeded.

5.1.4 Recommendations for SCVURPPP POC Monitoring in WY 2019

As described in **Appendix C**, the Program identified the following recommendations for POC monitoring in WY 2019 and beyond:

¹¹ Acute (1-hour average) and chronic (4-day average) WQOs for copper are expressed in terms of the dissolved fraction of the metal in the water column and are hardness dependent. The copper WQOs were calculated using the base e exponential functions described in the California Toxics Rule (40 CFR 131.38) which apply hardness values measured at the sample station.

¹² Ammonium was calculated as the difference between ammonia and un-ionized ammonia. Un-ionized ammonia was calculated using the formula provided by the American Fisheries Society Online Resources (http://fishculture.fisheries.org/resources/fish-hatchery-management-calculators/).

- SCVURPPP and the RMP's STLS will continue to conduct PCBs and mercury monitoring with the goal of identifying WMAs and specific source properties where new PCB and mercury control measures can be implemented during the permit term.
- SCVURPPP will continue to participate in the STLS Trends Strategy Team in developing a
 regional monitoring strategy to assess trends in POC loading to San Francisco Bay from small
 tributaries (see Section 5.2.3). The STLS Trends Strategy will initially focus on PCBs and
 mercury, but will not be limited to those POCs. Analysis of recent and historical data collected at
 region-wide loadings stations suggests that PCB concentrations are highly variable. Therefore, a
 monitoring design to detect trends with statistical confidence may require more samples than is
 feasible with current resources. The STLS Trends Strategy Team is continuing to evaluate
 available data from the Guadalupe River watershed to explore more economical monitoring
 opportunities. The Team is also considering modeling options that could be used in concert with
 monitoring to detect and predict trends in POC loadings.
- SCVURPPP will continue to work with the SPoT Program to address Management Question #5 (Trends). The SPoT Monitoring Program conducts annual dry season monitoring (subject to funding constraints) of sediments collected from a statewide network of large rivers. The goal of the SPoT Program is to investigate long-term trends in water quality (Management Question #5 Trends). Sites are targeted in bottom-of-the-watershed locations with slow water flow and appropriate micromorphology to allow deposition and accumulation of sediments, including two stations in Santa Clara County (Coyote Creek and Guadalupe River). In most years, sediments are analyzed for PCBs, mercury, other metals, toxicity, pesticides, and organic pollutants (Phillips et al. 2014).
- A minimum of two copper samples will be collected from old industrial catchments concurrent with PCBs and mercury storm composite samples.
- A minimum of two nutrient samples will be collected from mixed land use watersheds during baseflow to address Management Question # 4 (Loads and Status).
- SCVURPPP will continue to participate in the RMP's STLS and the RMP's CEC Strategy.

5.2 BASMAA Monitoring

In WY 2018, SCVURPPP participated in the BASMAA "POC Monitoring Project for Source Identification and Management Action Effectiveness" project. This regional project includes two somewhat independent monitoring studies designed during WY 2017 and implemented during WY 2018. BASMAA developed two study designs to implement these projects and a shared Sampling and Analysis Plan and Quality Assurance Project Plan (SAP/QAPP). The SAP/QAPP describes field and laboratory methods, measurement quality objectives, quality control procedures, and data management aspects. As one of four Countywide Programs subject to provision C.8.f POC Monitoring requirements, SCVURPPP's POC monitoring accomplishments include ¼ of the total number of samples collected through this regional project.

5.2.1 PCBs in Infrastructure Caulk Study

The BASMAA Regional Infrastructure Caulk and Sealant Sampling Program was developed to satisfy the provision C.12.e requirement to collect 20 composite caulk/sealant samples throughout the MRP permit area and evaluate (at a screening level) whether PCBs are present in right-of-way infrastructure caulk and sealants in the Bay Area. This study also addresses Management Question #1 (Source Identification). The sampling program was designed to specifically target roadway and storm drain structures that were constructed during the most recent time period when PCBs were potentially used in caulk and sealant materials (i.e., prior to 1980, with a focus on the 1960's and 1970's).

In WY 2018, the BASMAA project team collected 54 samples of caulk/sealant materials from ten types of

roadway and storm drain infrastructure in the public right-of-way (ROW). Structures sampled included concrete bridges/overpasses, sidewalks, curbs and gutters, roadway surfaces, above and below ground storm drain structures (i.e., flood control channels and storm drains accessed from manholes), and electrical utility boxes or poles attached to concrete sidewalks. The individual samples were grouped by structure type and sample appearance (color and texture) into 20 composites and analyzed for the RMP 40 PCB congeners using a modified method EPA 8270C.

Total PCBs concentrations across the 20 composite samples ranged from non-detect (ND) to > 4,000 mg/Kg. The majority of the composites had PCBs concentrations that were below 0.2 mg/Kg. PCBs were not detected in ten of the composite samples, representing nearly 60% of the individual samples collected during the program. PCBs in twenty-five percent (5 of 20) of the composites were above 1 mg/Kg. Of these, two composites had very high PCBs concentrations (> 1,000 mg/Kg) that indicate PCBs were likely part of the original caulk or sealant formulations. Both of these composites were comprised of black, pliable joint filler materials that were collected from concrete bridges/overpasses. These results demonstrate that PCBs-containing caulks and sealants were used to some degree in Bay Area roadway and storm drain infrastructure in the past, but the full extent and magnitude of this use is unknown. The conclusions from this sampling program are primarily limited by the small number of structures that were sampled (n=54), compared with the vast number of roadway and storm drain structures throughout the Bay Area that were originally constructed during the peak period of PCBs production and use (1950 – 1980).

Given the limitations of the project, much more information would be needed to estimate the total mass of PCBs in infrastructure caulk and sealant materials, to better understand the fate and transport of PCBs in these materials, and to calculate stormwater loading estimates. Nevertheless, this screening-level sampling program was the first step towards understanding if infrastructure caulk and sealants are a potential source of PCBs to urban stormwater. Although limited by the small sample number, the results of this sampling program indicate:: (1) the majority of roadway and storm drain structure types that were sampled in this project did not have PCBs-containing caulks or sealants at concentrations of concern, and (2) only black, pliable joint fillers found on concrete bridges/overpasses sampled had PCBs concentrations of potential concern to stormwater. If further investigation is conducted, focus on this type of application may be a reasonable place to continue such efforts.

The final project report was included with the Program's Fiscal Year 2017/18 Annual Report, submitted to the Regional Water Board on September 30, 2018 (EOA, SFEI, KLI 2018).

5.2.2 Best Management Practices (BMP) Effectiveness Study

The BASMAA Best Management Practices (BMP) Effectiveness Study was developed to satisfy provision C.8.f requirements to collect at least eight PCBs and mercury samples (per participating county) that address Management Question #3 (Management Action Effectiveness). A major consideration of the study was collection of data in support of conducting the Reasonable Assurance Analysis (RAA) that is required by provision C.12.c.iii.(3) which must be submitted with the 2020 Annual Report (September 30, 2020). The study design, developed in September 2017, describes monitoring and sample collection activities designed to evaluate, at a pilot scale, the effectiveness of two treatment options that have the potential reduce PCB discharges: biochar- enhanced bioretention filters and hydrodynamic separator (HDS) units. In WY 2018 the BASMAA project team implemented the BMP Effectiveness Study by collecting a total of 34 samples. Results of the study are summarized in two reports addressing the two targeted treatment options. These reports are submitted with this WY 2018 Urban Creeks Monitoring Report as **Appendices D and E**.

Biochar-Amended Bioretention Soil Media Column Study (Appendix D)

This regional study evaluated the effectiveness of biochar-amended bioretention soil media (BSM) to remove PCBs and mercury from stormwater collected within the region covered by the MRP. A prior BASMAA study, the Clean Watershed for a Clean Bay (CW4CB) project, found that BSM amended with

biochar substantially improved PCBs removal compared to the standard BSM specified in MRP Provision C.3 at the same location (BASMAA 2017a). Only one biochar source was tested in the CW4CB study, so it was unknown whether there would be substantial performance differences among differing biochar sources.

The goal of this study was to identify readily available biochar media amendments that improve PCB and mercury load removal by bioretention BMPs. Stormwater was collected in March and April of 2018, and the BSM testing was conducted in April and May of 2018. Twenty-six samples consisting of influent/effluent pairs from column tests of biochar-enhanced BSM were analyzed. Stormwater was run through six columns with five different biochar-enhanced BSM mixes and one standard BSM as a control to evaluate which mix was most effective at removing PCBs and mercury. Dilutions were run on two columns to assess removal efficiencies with decreasing influent pollutant concentrations. Samples were analyzed for the RMP 40 PCB congeners (method EPA 1668C), total mercury (method EPA 1631E), SSC (method ASTM D3977-97), and total organic carbon (method EPA 9060).

All five biochar-BSM blends showed evidence of overall improved PCB and mercury performance compared to the standard BSM; however, the increased benefit relative to increased cost was not analyzed. Hydraulics were found to be a critical factor in achieving good pollutant removal in the columns suggesting that outlet controls could be used to enhance performance of BMPs. Furthermore, this study suggests that an irreducible minimum concentration of PCBs may be 1,000 pg/L.

The final project report is included as Appendix D.

HDS Unit Study (Appendix E)

The goal of the BASMAA Evaluation of Mercury and PCBs Removal Effectiveness of Full Trash Capture HDS Units study was to evaluate the mercury and PCBs removal effectiveness of HDS units due to removal of solids captured within the sumps. The information provided by this monitoring effort will be used by MRP Permittees and the Regional Water Board to better quantify the pollutant load reductions achieved by existing and future HDS units installed in urban watersheds of the Bay Area.

The study combined sampling and modeling efforts to evaluate the mercury and PCBs removal performance of HDS units as follows.

- First samples of the solids captured and removed from eight HDS unit sumps during cleanouts were collected and analyzed for the RMP 40 PCB congeners (method EPA 1668), total mercury (method EPA 1631E), total solids¹³ (method EPA 160.3), total organic carbon (method EPA 415.1), and bulk density (method ASTM E1109-86). If the sample was comprised of sediments only, it was also analyzed for grain size (method ASTM D422M/PSEP). If the sample contained organic/leaf debris, it was also analyzed for total organic matter (method EPA 160.4) in order to calculate the inorganic fraction (i.e., the mineral fraction assumed to be associated with POCs).
- Second, maintenance records and construction plans for the HDS units were reviewed to develop estimates of the average volume of solids removed per cleanout. This information was combined with the monitoring data to calculate the mass of POCs removed during cleanouts.
- Third, the annual mercury and PCBs loads discharged from each HDS unit catchment were estimated under two different loading scenarios. For the first loading scenario (Land Use x Yields), the POC loads discharged from each catchment were calculated from land-use based POC yields. For the second loading scenario (Flow x EMC), the POC loads discharged from each catchment were calculated from modeled stormwater volumes and POC event mean

¹³ Samples were analyzed for total solids so that dry weight calculations could be made.

concentrations (EMCs) for a given land-use type.

• Finally, HDS unit performance was evaluated under each loading scenario by calculating the average annual percent removal of POCs due to cleanout of solids from the HDS unit sumps

Across all eight units, the median percent PCBs removal for calculated catchment loads ranged from 5% to 32%. These results will be considered in the update to the Interim Accounting Methodology that is being conducted as part of a separate BASMAA regional study in support of Reasonable Assurance Analysis development

The final project report is included as **Appendix E**.

5.3 Small Tributaries Loading Strategy

The RMP Small Tributaries Loading Strategy was developed in 2009 by the STLS Team, which includes representatives from BASMAA, Regional Water Board staff, RMP staff, and technical advisors and is overseen by the Sources, Pathways, and Loadings Workgroup (SPLWG). The objective of the STLS is to develop a comprehensive planning framework to coordinate POC monitoring/modeling between the RMP and RMC participants. In 2018, the following management policies and decisions were identified:

- Refining pollutant loading estimates for future TMDL updates,
- Informing provisions of the current and future versions of the MRP,
- Identifying small tributaries to prioritize for management actions, and
- Informing decisions on the best management practices for reducing concentrations and loads.

Work conducted by the STLS is framed by the same five priority POC management information needs identified in the MRP (see beginning of Section 5.0).

The sections below describe the tasks implemented by the RMP STLS in 2018 to address the relevant management policies.

5.3.1 Wet Weather Characterization

With a goal of identifying watershed sources of PCBs and mercury, STLS field monitoring in WYs 2015 - 2018 focused on collection of storm composite samples in the downstream reaches of catchments located throughout the Bay Area. In WY 2018, 10 catchments were sampled during storm events. The 10 catchments range in size from 0.02 km² to 36.67 km² and represent engineered MS4 drainage areas, flood control channels, and creeks. Half of the WY 2018 samples were collected at previously sampled stations in order to validate concentrations previously measured. Storm composite water samples were analyzed for concentrations of PCBs (i.e., RMP 40 congeners), total mercury, and suspended sediment concentration. In addition, a pilot study was continued at a subset of locations (two stations) to collect fine sediments using specialized settling chambers. A full description of the methods and results from WY 2015 through WY 2018 monitoring is included in **Appendix F** (Pollutants of Concern Reconnaissance Monitoring Final Progress Report, Water Years 2015 - 2018).

In WY 2018 two previously unsampled catchments were targeted in Santa Clara County based on recommendations by Program staff evaluating land uses in the County that have the highest likelihood of generating PCBs in stormwater runoff. Both of the Santa Clara County sampling stations were located at MS4 outfalls to the Guadalupe River. Results of these STLS stations are summarized with SCVURPPP monitoring results in **Appendix E**. Wet weather characterization monitoring by the RMP STLS is planned to continue in WY 2019.

Findings

The RMP STLS has a growing database, now consisting of 83 stations that have been sampled at least once during wet weather events for PCBs, mercury, and SSC since 2003. Some stations have also been sampled for a larger suite of constituents. Prior to WY 2015, most of the stations were located in natural creeks, whereas the 49 of the 60 stations sampled in WY 2015 through WY 2018 were primarily located in small catchments draining primarily old industrial land uses. At 15 of the stations, a second sample was collected with either a Hamlin or Walling tube (or both) remote sediment sampler.

Acknowledging that dynamic climatic conditions and individual storm characteristics may affect data interpretation, the following conclusions have been identified:

- PCBs positively correlate with impervious cover, old industrial land use, and mercury. They inversely correlate with watershed area. Although mercury and PCBs positively correlate, the relationship is relatively weak, probably due to the larger role of atmospheric recirculation in the mercury cycle and the differences in use history of each POC.
- Neither PCBs nor mercury have strong correlations with other trace metals (As, Cu, Cd, Pb, and Zn). Therefore, there is no support for the use of trace metals as surrogate investigative tools for either PCBs or mercury sources.
- Remote samplers generally characterized sites similarly to the composite stormwater sampling methods and could be used exclusively for preliminary screening of new stations to identify watershed sources of PCBs and mercury.
- Continued focus on resampling of some stations (i.e., those that return lower than expected concentrations) is recommended to test for false negatives.

5.3.2 STLS Trends Strategy

In 2018, the STLS Trends Strategy team continued to meet. The STLS Trends Strategy was initiated in 2015 by recommendation of from the SPLWG which advised the STLS to define where and how trends may be most effectively measured in relation to management effort so that data collection methods deployed over the next several years will support this management information need. The STLS Trends Strategy team is comprised of SFEI staff, RMC participants, and Regional Water Board staff. Invitations to key meetings are extended to additional interested parties (e.g., EPA), and technical advisors (e.g., USGS) are consulted to review specific technical work products.

The Trends Strategy document (and Technical Appendix), initially drafted in WY 2016, serves as a foundation for this team. The main document summarizes the background, management questions, and guiding principles of the Trends Strategy. It also describes coordination between the RMP and BASMAA within the context of the MRP, proposed tasks to answer the management questions, anticipated deliverables, and the overall timeline. The current priority POCs are PCBs and mercury and trend indicators under consideration (i.e., PCB concentrations and particle-ratios) were identified within the context of existing datasets (e.g., POC loading stations) and TMDL timelines. However, the Strategy recognizes that priorities can change in the future. The Technical Appendix (Melwani et al. 2016) presents an evaluation of variability and statistical power¹⁴ for detecting trends based on POC loading station PCBs data. It presents sample size and revisit frequency scenarios needed to detect declining trends in PCBs in 25 years with > 80% statistical power. Due to high variability in baseline PCB concentrations, the modeled sampling scenarios would likely not be practical to implement. Therefore, the Technical Appendix recommends additional analyses and monitoring that should be considered prior to developing a trends monitoring design.

¹⁴ Power is defined as the probability of detecting a trend of a certain magnitude during a specified monitoring period (years), where a Type I error rate is set at 5%.

In 2018, the STLS Trends Strategy team followed up on some of the recommendations from the Technical Appendix. A statistical model for trends in PCB loads in the Guadalupe River (as a case study) was finalized. The model incorporates the significant turbidity-PCB relationships that exist and evaluates climatic, seasonal, and inter-annual factors as potential drivers of PCB loads. More intensive review of the Guadalupe River dataset resulted in two main findings: 1) No trends in PCB loads were apparent for the period of 2003 through 2014: 2) A monitoring design that includes sampling at least two storms in 13 out of 20 years (with 4 to 6 grab samples per storm) would detect inter-annual trends of 25% or more over 20 years with > 80% power (Melwani et al. 2018). Results of the statistical analyses were presented at key stages in the analysis to USGS technical advisors with expertise in trends analysis of water data. It is uncertain how the Guadalupe River model and analysis could be applied to other watersheds which have distinct characteristics.

In 2018, the Trends Strategy team updated the Trends Strategy document to include an evaluation of how various tasks to date have and could be used to address the five POC information needs from the MRP (see list at the beginning of Section 5.0). This review included empirical data collection (i.e., POC loads monitoring (loading stations and wet weather characterization), BASMAA source identification and BMP effectiveness monitoring, SPoT monitoring) and modeling approaches (i.e., RWSM, the Guadalupe River statistical analysis, Reasonable Assurance Analysis). The updated document describes the pros and cons of various methods available to identify and predict trends. Due to concerns about the limitations of extrapolating monitoring results from a relatively small number of watersheds to the entire region, regional modeling was proposed as the most efficient tool to estimate POC loading over time and space for trends evaluation at the desired spatial scales. The 2018 Trends Strategy document reviews and compares currently available models and modeling efforts, the Bay Area Hydrological Model (BAHM), the RWSM, and HSPF and SWMM platforms. Based on the goals of the STLS Trends Strategy team, the BAHM (which is based on the HSPF platform) is recommended as the most suitable starting point to develop a regional POC trends model.

A preliminary multi-year workplan for regional POC trends assessment, with estimates of annual budget allocations, was developed in 2018. The workplan recommends development of a Model Implementation Plan in 2019, model development beginning in 2020, and "no-regrets" monitoring based on the Model Implementation Plan beginning in 2020.

5.3.3 Advanced Data Analysis

In 2018, the STLS began a new task to provide a deeper analysis of the growing set of PCBs data collected by BASMAA and the RMP. The Advanced Data Analysis task includes two parallel lines of investigation: site inter-comparison methodologies and PCB congener profile comparisons.

Site Inter-Comparison Methodologies

Most of the wet weather characterization data used by the Program and other BASMAA RMC partners to identify and prioritize Watershed Management Areas where PCB source investigations will be conducted are based on composite samples collected during a single storm event. See Section 5.1.1 for more information on the wet weather sampling programs implemented by the Program and the WMA characterization process. While cost effective, interpretation of the data collected through these sampling techniques has been challenging. Since only one storm was sampled at most sites, differing storm characteristics (intensity, duration, antecedent rainfall conditions) interplay with differing PCB source characteristics to confound comparisons between watersheds. For example, if the targeted storm was relatively small, it is possible that measured PCB concentrations (and/or PCB particle ratios) will be lower than they would be in a sample collected at the same station during a larger storm. The main goal of this investigation was to develop a method to account for the differences in targeted storm characteristics at the various sampled stations.

In 2018, the STLS began development of a method to generate comparable yield estimates for small industrial watersheds where only a single storm has been sampled. The draft method includes five steps:

- 1. Estimate storm runoff volume in the sampled watershed.
- 2. Compute estimates of storm PCBs load for the sampled storm.
- 3. Adjust estimates of storm load to a standard sized storm.
- 4. Normalize standardized storm loads to the land uses and source areas of interest to generate storm yields.
- 5. Compare these yields between watersheds taking into account all the uncertainties associated with the field conditions and the methods used to interpret the data.

This stepwise method was developed using Santa Clara County as a case study and pilot tested with a focus on nested sites within the Guadalupe River watershed. Further development, review, and testing in a greater number of areas, with a wider range of conditions, is recommended for 2019. A report describing the loads-based site inter-comparison method is anticipated in 2019.

PCB Congener Profile Comparisons

PCB samples collected by BASMAA and the STLS are routinely analyzed for 40 individual PCB congeners (i.e., the "RMP 40"). Although most data analyses are conducted using the sum of those congeners, BASMAA and the STLS recognize the value of generating the more robust RMP 40-based dataset and the potential for future data exploration possibilities. For example, PCB congener profiles can be used to help identify source areas that contribute most to the PCB mass exported from the watershed via stormwater, and to illustrate variability in PCB mobilization from source areas over time.

In 2018, the STLS began development of a method to estimate the contributions of different Aroclor¹⁵ mixtures (see note on Aroclors below) to the congener profiles of samples of stormwater and sediment. The method is based on the use of indicator congeners that are representative of each of the four most commonly used Aroclors. Data from the Pulgas Pump Station watershed were used to pilot test the method. At this station, stormwater and sediment had high concentrations with a relatively unique pattern, dominated by congeners indicative of a combination of Aroclors 1242 and 1260. The concentrations and congener profiles in sediment suggest that there are two distinct source areas in the watershed that combine to create the mix of 1242 and 1260 that is dominant in stormwater at the Pump Station (Figure 5.3). The data suggest that if PCB flux from one of these areas could be eliminated, loads from the watershed would be reduced by 50% or more. For the Coyote Creek watershed, the similarity in congener profiles between the highest concentration sediment samples and the stormwater samples suggest that the important source areas in the watershed have been identified, and that reduction of loading from an area at the south end of the Charcot Avenue Storm Drain watershed would yield the greatest reduction in export at the Coyote Creek station. The concentrations and congener profiles in stormwater and sediment from the Guadalupe River watershed indicate the presence of one source area that is likely a significant contributor to PCB export from the watershed, but suggest that all of the significant sources areas may not yet have been identified.

A report describing the PCB congener profile comparison method is anticipated in 2019.

¹⁵ PCBs were manufactured and used as complex mixtures of individual PCBs (referred to as PCB congeners). In North America, the only producer was the Monsanto Company, which marketed PCBs under the trade name Aroclor from 1930 to 1977. A series of different Aroclor mixtures was produced, with varying degrees of overall chlorine content, and these different mixtures were used for different purposes. The congener composition of the various Aroclor mixtures has been reported in the literature (e.g., Schulz et al. 1989, Frame et al. 1996a,b). As a consequence of the use of Aroclor mixtures, PCBs are also present in the environment as complex mixtures of congeners.

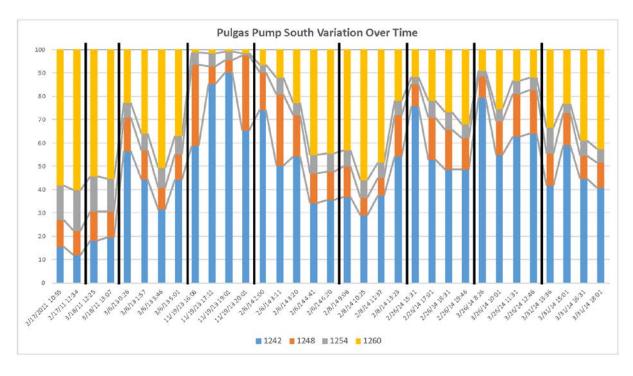


Figure 5.3. Aroclor fractions in stormwater at the outlet of Pulgas Pump Station South over time (figure produced by SFEI, 2018).

5.3.4 Alternative Flame Retardant Conceptual Model

Alternative flame retardants (AFRs) came into use following state bans and nationwide phase-outs of polybrominated diphenyl ether (PBDE) flame retardants in the early 2000's. They include many categories of compounds, including organophosphate esters. In 2018 the RMP STLS and the Emerging Contaminant Workgroup worked together to conduct a special study to inform ECWG's planning activities related to AFRs. The special study compiled and reviewed available data and previously developed conceptual models for PBDE to support a stormwater-related AFR conceptual model being developed by the ECWG. Organophosphate esters were prioritized for further investigation due to their increasing use, persistent character, and ubiquitous detections at concentrations exceeding PBDE concentrations in the Bay. Limited stormwater data from two watersheds in Richmond and Sunnyvale suggest that urban runoff may be an important source of these compounds. Additional monitoring and modeling were recommended. Results of the AFR special study were published in a Technical Report in 2018 (Lin and Sutton 2018).

5.3.5 Regional Watershed Spreadsheet Model

The Regional Watershed Spreadsheet Model (RWSM) is a land use based planning tool for estimation of annual POC loads from small tributaries to San Francisco Bay at a regional scale. Development of the RWSM began in 2010 and, in 201, the STLS Team continued to provide support of the RWSM tool-kit that was published in 2017.

The RWSM is based on the idea that to accurately assess total contaminant loads entering San Francisco Bay, it is necessary to estimate loads from local watersheds. "Spreadsheet models" of stormwater quality provide a useful and relatively inexpensive means of estimating regional scale watershed loads. Spreadsheet models have advantages over mechanistic models because the data for many of the input parameters required by mechanistic models may not currently exist, and also require large calibration datasets which take money and time to collect.

The RWSM is based on the assumption that an estimate of mean annual **volume** for each land use type within a watershed can be combined with an estimate of mean annual **concentration** for that same land use type to derive a **load** which can be aggregated for a watershed or many watersheds within a region of interest. It may be used to provide hypotheses about which sub-regions or watersheds export relatively higher or lower loads to the Bay relative to area. It can also serve as a baseline for analyzing changes in loadings due to large scale changes in land use (e.g., associated with redevelopment and new development) and runoff (e.g., associated with climate change and changes in impoundment). However, the RWSM is less reliable for predicting real loadings for individual watersheds and for estimating load changes in relation to implementation of treatment BMPs.

The RWSM beta tool-kit, published in June 2017 includes:

- Hydrology Model coded using ArcPy and drawing on a user interface accessible through ArcGIS;
- Pollutant Model Spreadsheet for taking the outputs from the Hydrology Model and inputting land use coefficients to estimate pollutant loads;
- Two optional calibration tools a spreadsheet for manual calibration, and an R script for an
 optimized automated calibration; and
- User Manual

Testing of the RWSM beta tool-kit by some of the BASMAA RMC partners began in WY 2017 and continues into WY 2018. The STLS will continue to support the RWSM in WY 2019. If warranted, and in consultation with the STLS and the SPLWG, a more sophisticated dynamic simulation model (i.e., SWMM, HSPF) may be developed in future years. As the modeling team at SFEI becomes more proficient with alternative water-based platforms (i.e., SWMM, HEC-RAS) through development of the Green Plan-IT tool, a more sophisticated basis may be adopted in future years. Decisions on model improvements will be made in consultation with the STLS and the SPLWG.

6.0 NEXT STEPS

Water quality monitoring required by provision C.8 of the MRP is intended to assess the condition of water quality in the Bay area receiving waters (creeks and the Bay); identify and prioritize stormwater associated impacts, stressors, sources, and loads; identify appropriate management actions; and detect trends in water quality over time and the effects of stormwater control measure implementation. On behalf of Co-permittees, SCVURPPP conducts creek water quality monitoring and monitoring projects in the Santa Clara Valley (Lower South Bay) in collaboration with the Regional Monitoring Coalition, and actively participates in the Regional Monitoring Program for Water Quality in San Francisco Bay, which focuses on assessing Bay water quality and associated impacts.

In WY 2019, SCVURPPP will continue to comply with water quality monitoring requirements of the MRP. The following list of next steps will be implemented in WY 2019:

- SCVURPPP will continue to collaborate with the RMC (MRP provision C.8.a).
- Where applicable, monitoring data collected and reported by SCVURPPP will continue to be SWAMP comparable (MRP provision C.8.b).
- SCVURPPP will continue to provide financial contributions towards the RMP and to actively
 participate in the RMP committees and work groups described in Sections 2.0 and 5.0 (MRP
 provision C.8.c).
- SCVURPPP will continue to conduct probabilistic and targeted Creek Status Monitoring consistent with the specific requirements in the MRP (MRP provision C.8.d).
- SCVURPPP will continue to implement Pesticides and Toxicity Monitoring consistent with MRP provision C.8.g.
- SCVURPPP will continue to review monitoring results and maintain a list of all results exceeding trigger thresholds (MRP provision C.8.e.i). SCVURPPP will coordinate with the RMC to initiate a region wide goal of eight new SSID projects by the end of the permit term (MRP provision C.8.e.iii). This will include implementation of the Coyote Creek Toxicity SSID Project, identification and initiation of one new SCVURPPP SSID project, and participation in the regional SSID project addressing releases of PCBs from electrical utility equipment.
- SCVURPPP will continue to participate in the STLS and SPLWG which address MRP provision C.8.f POC management information needs and monitoring requirements through wet weather characterization monitoring, refinement of the RWSM, and advancement of the STLS Trends Strategy.
- SCVURPPP will continue to support mercury monitoring at the Guadalupe River loading stations which is now conducted through the Coordinated Monitoring Program for the Guadalupe River watershed, a collaboration of entities subject to the Guadalupe River Mercury TMDL.
- SCVURPPP will implement a POC monitoring framework to comply with provision C.8.f of the MRP. The monitoring framework will address the annual and total minimum number of samples required for each POC (i.e., PCBs, mercury, copper, emerging contaminants, nutrients) and each management information need (i.e., Source Identification, Contributions to Bay Impairment, Management Action Effectiveness, Loads and Status, Trends). WY 2019 monitoring will include collection of wet weather composite water samples from catchments and collection of dry weather sediment samples from the public right-of-way to identify areas where PCB and mercury control measures may be implemented. WY 2019 monitoring will also include sampling for nutrients and copper.
- WY 2019 POC monitoring accomplishments and allocation of sampling efforts for POC monitoring in WY 2020 will be submitted in the Pollutants of Concern Monitoring Report that is due to the Water Board by October 15, 2019 (MRP provision C.8.h.iv).

Results of WY 2019 monitoring will be described in the Programs Integrated Monitoring Report (IMR) that is due to the Water Board by March 31, 2020 in lieu of the annual Urban Creeks Monitoring Report (MRP provision C.8.h.v). This report will be part of the Report of Waste Discharge for the reissuance of the MRP. The IMR will contain a comprehensive analysis of all data collected pursuant to provision C.8 since the previous IMR which was submitted on March 31, 2014 and included WY 2012 and WY 2013 monitoring data. A major component of the IMR will be evaluation of eight years (WY 2012 – WY 2019) of probabilistic bioassessment monitoring data. Overall stream condition in the Santa Clara Basin will be evaluated using the BMI-based CSCI and other available IBIs. Comparisons between major watersheds and land use (urban/non-urban) will be conducted. Stressors associated with poor condition will be evaluated using the statistical tools implemented by BASMAA in the RMC 5-Year Report.

7.0 REFERENCES

- BASMAA, 2017a. Clean Watersheds for a Clean Bay Project Report, Final Report May 2017. Bay Area Stormwater Management Agencies Association.
- BASMAA, 2017b. Interim Accounting Methodology for TMDL Loads Reduced. Bay Area Stormwater Management Agencies Association.
- BASMAA. 2012. Regional Monitoring Coalition Final Creek Status and Long-Term Trends Monitoring Plan. Prepared By EOA, Inc. Oakland, CA. 23 pp.
- BASMAA. 2016a. Creek Status Monitoring Program Quality Assurance Project Plan, Final Version 3. Prepared for BASMAA by EOA, Inc. on behalf of the Santa Clara Urban Runoff Pollution Prevention Program and the San Mateo Countywide Water Pollution Prevention Program, Applied Marine Sciences on behalf of the Alameda Countywide Clean Water Program, and Armand Ruby Consulting on behalf of the Contra Costa Clean Water Program. March 2016
- BASMAA. 2016b. Creek Status Monitoring Program Standard Operating Procedures, Final Version 3. Prepared for BASMAA by EOA, Inc. on behalf of the Santa Clara Urban Runoff Pollution Prevention Program and the San Mateo Countywide Water Pollution Prevention Program, Applied Marine Sciences on behalf of the Alameda Countywide Clean Water Program, and Armand Ruby Consulting on behalf of the Contra Costa Clean Water Program. March 2016.
- BASMAA. 2011. Regional Monitoring Coalition Multi-Year Work Plan: FY 2009-10 through FY 2014-15. 26 pp + appendices and attachments.
- Ensminger, M. 2017. Ambient Monitoring in Urban Areas in Northern California for FY 2016-2017. Prepared by California Department of Pesticide Regulation Environmental Monitoring Branch.
- EOA, Inc., San Francisco Estuary Institute, Kinnetic Laboratories, Inc. (EOA, SFEI, KLI). 2018. Evaluation of PCBs in Caulk and Sealants in Public Roadway and Storm Drain Infrastructure. Consulting report prepared for Bay Area Stormwater Management Agencies Association. August 16, 2018.
- Lin, D. and Sutton, R. 2018. Alternative Flame Retardants in San Francisco Bay: Synthesis and Strategy. SFEI Contribution No. 885. San Francisco Estuary Institute, Richmond, CA.
- Melwani, A., Yee, D., McKee, L., Gilbreath, A., Trowbridge, P., and Davis, J. 2018. DRAFT Statistical Methods Development and Sampling Design Optimization to Support Trends Analysis for Loads of Polychlorinated Biphenyls from the Guadalupe River in San José, California, USA.
- Melwani, A.R., Yee, D., Gilbreath, A., McKee, L.M. 2016. Technical Appendix to the Small Tributaries Trend Design. San Francisco Estuary Institute.
- Ode, P.R., Fetscher, A.E., and Busse, L.B. 2016. Standard Operating Procedures (SOP) for the Collection of Field Data for Bioassessments of California Wadeable Streams: Benthic Macroinvertebrates, Algae, and Physical Habitat. SWAMP-SOP-SB-2016-0001.
- Phillips, B.M., Anderson, B.S., Siegler, K., Voorhees, J., Tadesse, D., Webber, L., Breuer, R. (2014). Trends in Chemical Contamination, Toxicity and Land Use in California Watersheds: Stream Pollution Trends (SPoT) Monitoring Program. Third Report – Five-Year Trends 2008-2012. California State Water Resources Control Board, Sacramento, CA.
- Rehn, A.C., R.D. Mazor and P.R. Ode. 2018. An index to measure the quality of physical habitat in California wadeable streams. SWAMP Technical Memorandum SWAMP-TM-2018-0005.
- Ruby, A., 2013. Review of Pyrethroid, Fipronil and Toxicity Monitoring Data from California Urban Watersheds. Prepared by Armand Ruby Consulting for the California Stormwater Quality Association.
- San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). 2009. San Francisco Regional Water Quality Control Board Municipal Regional Stormwater NPDES Permit. Order R2-2009-0074, NPDES Permit No. CAS612008. 125 pp plus appendices.
- San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). 2015. San Francisco Region Water Quality Municipal Regional Stormwater NPDES Permit. Order R2-2015-0049, NPDES Permit No. CAS612008. 152 pp plus appendices.
- San Francisco Bay Regional Water Quality Control Board (SFRWQCB). 2017. Water Quality Control Plan (Basin Plan) for the San Francisco Bay Region. San Francisco Regional Water Quality Control Board. Updated to

reflect amendments adopted up through May 4, 2017. http://www.waterboards.ca.gov/sanfranciscobay/basin_planning.shtml.

- SCVURPPP. 2015. Water Year 2016 Pollutant of Concern Monitoring. Sampling and Analysis Plan. November 16, 2015.
- SCVURPPP. 2018a. Coyote Creek Toxicity Stressor Source Identification Project. Work Plan Water Year 2018. March 31, 2018.
- SCVURPPP. 2018b. Pollutants of Concern Monitoring Report. Water Year 2018 Accomplishments and Water Year 2019 Planned Allocation of Effort. October 15, 2018.
- Senn, D.B. and Novick, E. (2014). Scientific Foundation for the San Francisco Bay Nutrient Management Strategy. Draft FINAL. October 2014.
- Southern California Coastal Water Research Project (SCCWRP). 2013. California Microbial Source Identification Manual: A Tiered Approach to Identifying Fecal Pollution Sources to Beaches. Technical Report 804.
- Theroux, S., Mazor, R., Beck, M., Ode, P., Sutula, M. and Stein, E. (in preparation.) A Non-Predictive Algal Index for Complex Environments. Prepared for: Ecological Indicators.

Appendix A

SCVURPPP Creek Status Monitoring Report, Water Year 2018

Watershed Monitoring and Assessment Program

Creek Status Monitoring Report

Water Year 2018 (October 2017 – September 2018)

Submitted in compliance with Provision C.8.h.iii of NPDES Permit No. CAS612008, Order No. R2-2015-049

March 31, 2019

PREFACE

In early 2010, several members of the Bay Area Stormwater Agencies Association (BASMAA) joined together to form the Regional Monitoring Coalition (RMC), to coordinate and oversee water quality monitoring required by the Municipal Regional National Pollutant Discharge Elimination System (NPDES) Stormwater Permit (in this document the permit is referred to as the MRP).¹ The RMC includes the following participants:

- Alameda Countywide Clean Water Program (ACCWP)
- Contra Costa Clean Water Program (CCCWP)
- San Mateo Countywide Water Pollution Prevention Program (SMCWPPP)
- Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP)
- Fairfield-Suisun Urban Runoff Management Program (FSURMP)
- City of Vallejo and Vallejo Flood and Wastewater District (Vallejo)

This Creek Status Monitoring Report complies with provision C.8.h.iii of the MRP for reporting of all data in Water Year 2018 (October 1, 2017 through September 30, 2018). Data were collected pursuant to provisions C.8.d (Creek Status Monitoring) and C.8.g (Pesticides & Toxicity Monitoring) of the MRP. Data presented in this report were produced under the direction of the RMC and the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP or Program) using probabilistic and targeted monitoring designs as described herein.

Consistent with the Creek Status and Long-Term Trends Monitoring Plan (BASMAA 2012), monitoring data were collected in accordance with the most recent versions of the BASMAA RMC Quality Assurance Project Plan (QAPP; BASMAA, 2016a) and the BASMAA RMC Standard Operating Procedures (SOPs; BASMAA, 2016b). Where applicable, monitoring data were derived using methods comparable with methods specified by the California Surface Water Ambient Monitoring Program (SWAMP) Quality Assurance Program Plan (QAPrP)². Data presented in this report were submitted in electronic SWAMP-comparable formats by SCVURPPP to the San Francisco Bay Regional Water Quality Control Board on behalf of SCVURPPP Co-permittees and pursuant to provision C.8.h.ii of the MRP.

² The current SWAMP QAPrP is available at:

https://www.waterboards.ca.gov/water_issues/programs/swamp/qapp/swamp_QAPrP_2017_Final.pdf

¹ The San Francisco Bay Regional Water Quality Control Board (SFRWQCB or Regional Water Board) issued the MRP to 76 cities, counties and flood control districts (i.e., Permittees) in the Bay Area on October 14, 2009 (SFRWQCB 2009). On November 19, 2015, the Regional Water Board updated and reissued the MRP (SFRWQCB 2015). The BASMAA programs supporting MRP Regional Projects include all MRP Permittees as well as the cities of Antioch, Brentwood, and Oakley, which are not named as Permittees under the MRP but have voluntarily elected to participate in MRP-related regional activities.

LIST OF ACRONYMS

	Alemada Countruida Claan Water Brogram
ACCWP AFDM	Alameda Countywide Clean Water Program
AFDINI	Ash Free Dry Mass
AFS	American Fisheries Society
BASMAA	Algae Stream Condition Index
	Bay Area Stormwater Management Agency Association
BMI	Benthic Macroinvertebrate
CCCWP	Contra Costa Clean Water Program
CEDEN	California Environmental Data Exchange Network
COLD	Cold Freshwater Habitat
CSCI	California Stream Condition Index
DF	Detection Frequency
DO	Dissolved Oxygen
DPR	Department of Pesticide Regulation
DPS	Distinct Population Segment
EPA	Environmental Protection Agency
FSURMP	Fairfield Suisun Urban Runoff Management Program
GIS	Geographic Information Systems
GRTS	Generalized Random Tessellation Stratified
IBI	Indices of Biotic Integrity
IMR	Integrated Monitoring Report
IPI	Index Physical Habitat Integrity
IWRMP	Integrated Water Resources Management Plan
LID	Low Impact Development
MDL	Method Detection Limit
MIGR	Fish Migration
MPC	Monitoring and Pollutants of Concern Committee
MRP	Municipal Regional Permit
MUN	Municipal and Domestic Water Supply
MWAT	Maximum Weekly Average Temperature
NMFS	National Marine and Fisheries Services
NPDES	National Pollution Discharge Elimination System
O/E	Observed to Expected
PAH	Polycyclic Aromatic Hydrocarbons
PCBs	Polychlorinated Biphenyls
PEC	Probable Effects Concentrations
PHAB	Physical Habitat Assessment
pMMI	Predictive Multimetric Index
PSA	Perennial Streams Assessment
QAPP	Quality Assurance Project Plan
QAPrP	Quality Assurance Program Plan
QA/QC	Quality Assurance/Quality Control
RARE	Preservation of Rare and Endangered Species
RM	Reporting Module
RMC	Regional Monitoring Coalition
RMP	Regional Monitoring Program
RWB	Reachwide Benthos

SCVURPPP WY 2018 Creek Status Monitoring Report

SAFIT	Southwest Association of Freshwater Invertebrate Taxonomists
SCCWRP	Southern California Coastal Water Research Project
SCVURPPP	Santa Clara Valley Urban Runoff Pollution Prevention Program
SCVWD	Santa Clara Valley Water District
SFRWQCB	San Francisco Bay Regional Water Quality Control Board
SMC	Southern California Monitoring Coalition
SMCWPPP	San Mateo County Water Pollution Prevention Program
SPoT	Stream Pollution Trends
SPWN	Fish Spawning
SOP	Standard Operating Protocol
SSID	Stressor/Source Identification
STV	Statistical Threshold Value
SURF	Surface Water Database
SWAMP	Surface Water Ambient Monitoring Program
SWPP	Surface Water Protection Program
TEC	Threshold Effects Concentrations
TMDL	Total Maximum Daily Load
TNS	Target Non-Sampleable
TOC	Total Organic Carbon
TS	Target Sampleable
TST	Test of Significant Toxicity
TU	Toxicity Unit
UCMR	Urban Creeks Monitoring Report
WARM	Warm Freshwater Habitat
USEPA	Environmental Protection Agency
WQ	Water Quality
WQO	Water Quality Objective
WY	Water Year

TABLE OF CONTENTS

	Ce	
List o	of Acronyms	ii
Table	e of Contents	iv
List o	of Figures	vi
List o	of Tables	viii
List o	of Attachments	ix
1.0	Introduction	1
	1.1 Monitoring Goals	2
	1.2 Regional Monitoring Coalition	2
	1.3 Monitoring and Data Assessment Methods	4
	1.3.1 Monitoring Methods	4
	1.3.2 Laboratory Analysis Methods	5
	1.3.3 Data Analysis Methods	5
	1.4 Setting	
	1.4.1 Watersheds Monitored by SCVURPPP	5
	1.4.2 Designated Beneficial Uses	. 11
	1.4.3 Climate	.12
	1.5 Statement of Data Quality	.14
2.0	Biological Condition Assessment	
	2.1 Introduction	. 15
	2.2 Methods	
	2.2.1 Probabilistic Survey Design	
	2.2.2 Site Evaluations	
	2.2.3 Field Sampling Methods	
	2.2.4 Data Analysis	
	2.3 Results and Discussion	
	2.3.1 Site Evaluations	
	2.3.2 Biological Condition Assessment	
	2.3.3 Stressor Assessment	
3.0	Continuous Water Quality Monitoring	
	3.1 Introduction	
	3.2 Study Area	
	3.2.1 Temperature	
	3.2.2 General Water Quality	
	3.3 Methods	
	3.3.1 Continuous Temperature	
	3.3.2 Continuous General Water Quality	
	3.3.3 Data Evaluation	
	3.4 Results and Discussion	
	3.4.1 Continuous Temperature	
	3.4.2 General Water Quality	
4.0	Pathogen Indicators	
	4.1 Introduction	.64

	4.2 Study Area	64
	4.3 Methods	66
	4.4 Results and Discussion	66
5.0	Chlorine Monitoring	68
	5.1 Introduction	68
	5.2 Methods	68
	5.3 Results and Discussion	68
6.0	Toxicity and Sediment Chemistry Monitoring	72
	6.1 Introduction	72
	6.2 Methods	73
	6.2.1 Site Selection	73
	6.2.2 Sample Collection	73
	6.2.3 Data Evaluation	74
	6.3 Results and Discussion	76
	6.3.1 Toxicity	76
	6.3.2 Sediment Chemistry	79
	6.3.3 Pesticides in Water	83
7.0	Conclusions and Recommendations	85
	7.1 Conclusions	85
	7.1.1 Biological Condition Assessment	
	7.1.2 Continuous Monitoring for Temperature and General Water Quality	91
	7.1.3 Pathogen Indicators	93
	7.1.4 Chlorine Monitoring	93
	7.1.5 Pesticides and Toxicity Monitoring	93
	7.2 Trigger Assessment	94
	7.3 Recommendations	97
	7.4 Management Implications	97
8.0	References	

LIST OF FIGURES

Figure 1.1. Watersheds within SCVURPPP jurisdictional boundaries7
Figure 1.2. Map of SCVURPPP Program Area, major creeks, and sites monitored in WY 201810
Figure 1.3. Average annual precipitation in Santa Clara Valley, as modeled by the PRISM Climate Group for the period of 1981-2010
Figure 1.4. Annual rainfall recorded at the San Jose Airport, WY 1946 - WY 2018
Figure 2.1. Examples of benthic macroinvertebrates
Figure 2.2. Examples of soft algae and diatoms21
Figure 2.3. Total BMI (top) and diatom (bottom) taxa compared to elevation of the bioassessment sites, SCVURPPP, WY 2018
Figure 2.4. CSCI Scores compared to hybrid ASCI (top) and diatom ASCI (bottom) scores for 20 bioassessment sites sampled in Santa Clara County in WY 2018
Figure 2.5. Total PHAB scores compared with IPI scores (top) and biological condition scores (CSCI and hybrid ASCI) plotted with IPI scores (bottom) for twenty bioassessment sites sampled In Santa Clara County during WY 2018
Figure 2.6. Condition category as represented by CSCI, ASCI Hybrid, and IPI scores for 20 probabilistic sites sampled in Santa Clara County during WY 2018
Figure 2.7. CSCI Scores compared to percent impervious (top) and road density (bottom) for 20 bioassessment sites sampled in Santa Clara County in WY 2018
Figure 2.8. CSCI Scores compared to PHAB metrics associated with substrate size and composition (Substrate Smaller than Sand (top) and Diversity of Natural Substrate Types (bottom)) for 20 bioassessment sites sampled in Santa Clara County in WY 2018
Figure 2.9. Total nitrogen concentrations compared with percent macroalgae cover (top) and chlorophyll a concentrations compared with percent macroalgae cover (bottom), for 20 bioassessment sites sampled in Santa Clara County in WY 2018
Figure 3.1. Continuous temperature stations in the Guadalupe River watershed, WY 2017 and 201845 $$
Figure 3.2. Continuous water quality stations in Coyote Creek, WY 2017 and 201847
Figure 3.3. Maximum Weekly Average Temperature (MWAT) values calculated for water temperature collected at four sites in Guadalupe Creek over 26 weeks of monitoring in WY 2018. The MRP trigger (17°C) is shown for comparison
Figure 3.4. Maximum Weekly Average Temperature (MWAT) values calculated for water temperature collected at five sites in Alamitos Creek over 26 weeks of monitoring in WY 2018. The MRP trigger (17°C) is shown for comparison
Figure 3.5. Water temperature, shown as daily average, collected between April and September at four sites in Guadalupe Creek during WY 2017 and WY 2018
Figure 3.6. Water temperature, shown as daily average, collected between April and September at five sites in Alamitos Creek during WY 2017 and WY 201854
Figure 3.7. Water temperature data, presented as bean plots, collected between April and September, at four sites in Guadalupe Creek during WY 2017 and WY 2018. Solid black lines indicate median temperature
Figure 3.8. Water temperature data, presented as bean plots, collected between April and September, at five sites in Alamitos Creek during WY 2017 and WY 2018. Solid black lines indicate median temperature
Figure 3.9 Continuous water quality data (temperature, specific conductance, pH, and dissolved oxygen) collected at three sites in Coyote Creek in May/June 2018 (Event 1)
Figure 3.10. Continuous water quality data (temperature, specific conductance, pH, and dissolved oxygen) collected at three sites in Coyote Creek in September 2018 (Event 2)

Figure 3.11. Comparison of temperate data collected in September 2017 and 2018 for Creek Status Monitoring with data collected in September 2013 for the Coyote Creek SSID Project	61
Figure 3.12. Comparison of dissolved oxygen data collected in September 2017 and 2018 for the Creek Status Monitoring Project (WY 2017 and 2018) with data collected in September 2013 for the Coyote Creek SSID Project	
Figure 4.1. Pathogen indicator monitoring sites sampled in Santa Clara County during WY 2017 and WY 2018.	
Figure 5.1 Chlorine sample stations and results WY 2012 - WY 2018 in Santa Clara County	71
Figure 6.1 Pesticides and toxicity sampling stations in Santa Clara County during WY 2018	74

LIST OF TABLES

Table 1.1. Regional Monitoring Coalition (RMC) participants. 3
Table 1.2. Creek Status Monitoring parameters in compliance with MRP provisions C.8.d (Creek Status
Monitoring) and C.8.g (Pesticides & Toxicity Monitoring) and associated monitoring component
Table 1.3. Characteristics of major watersheds within SCVURPPP boundary. 6
Table 1.4. Sites and parameters monitored in WY 2018 in Santa Clara County
Table 1.5. Creeks monitored by SCVURPPP in WY 2018 and their Beneficial Uses (SFRWQCB 2017). 11
Table 2.1. Condition categories used to evaluate CSCI, ASCI, and IPI scores
Table 2.2. Physical habitat metrics used to assess physical habitat data collected at bioassessment sitesin WY 2018. The five metrics used to calculate IPI scores are also shown.23
Table 2.3. Thresholds for nutrient and general water quality variables. 24
Table 2.4. Bioassessment sampling dates and locations in Santa Clara County in WY 201826
Table 2.5. The total number of unique BMI, diatom and soft algae taxa identified in samples collected at20 bioassessment sites in Santa Clara County during WY 2018.27
Table 2.6. Biological condition scores, presented as CSCI and ASCI (diatom, soft algae and hybrid) for 20 probabilistic sites sampled in Santa Clara during WY 2018. Site characteristics related to percent impervious watershed area, channel modification and flow condition are also presented. Bold highlighted values indicate scores in the two higher condition categories
Table 2.7. IPI scores for twenty probabilistic sites in Santa Clara County sampled in WY 2018. QualitativePHAB scores are also listed.CSCI and hybrid ASCI scores are provided for comparison
Table 2.8. General water quality measurements for twenty probabilistic sites in Santa Clara County sampled in WY 2018. 36
Table 2.9. Landscape variables for watershed areas of the 20 bioassessment sites sampling in WY 2018.
Table 2.10. Scores for 11 PHAB metrics calculated from physical habitat data collected at twentyprobabilistic sites in Santa Clara County during WY 2018.42
Table 2.11. Nutrient and conventional constituent concentrations in water samples collected at 20 sites inSanta Clara County during WY 2018. Physical habitat measurement percent macroalgae cover, is alsoshown for comparison.43
Table 3.1. Water Quality Objectives and thresholds used for trigger evaluation
Table 3.2. Descriptive statistics for continuous water temperature measured between April 5 andSeptember 27, 2018 at nine sites in the Guadalupe River watershed, Santa Clara County
Table 3.3. MWAT values for water temperature data collected at nine stations monitored in Guadalupe River watershed, WY 2018. MWAT values that exceed MRP trigger (17°C) are indicated in bold51
Table 3.4. Descriptive statistics for continuous water temperature, dissolved oxygen, pH, and specific conductance measured at three Coyote Creek sites in Santa Clara County during WY 2018. Data were collected every 15 minutes over two 2-week time periods during May/June (Event 1) and September (Event 2)
Table 3.5. MWAT values for water temperature data collected at three stations monitored in Coyote Creek, WY 2018. 60
Table 3.6. Exceedances of MRP triggers at three sites in Coyote Creek, Santa Clara County, WY 2018.63
Table 4.1. Enterococci and <i>E. coli</i> levels measured in Santa Clara County during WY2017 and WY 2018. Values in bold exceeded MRP trigger thresholds. 67
Table 5.1. Summary of SCVURPPP chlorine testing results compared to MRP trigger of 0.1 mg/L, WY 2018.
Table 6.1. Summary of SCVURPPP dry weather toxicity results for WY 201877
Table 6.2 Summary of SCVURPPP wet weather toxicity results for WY 2018. 78

Table 6.3. Threshold Effect Concentration (TEC) quotients for WY 2018 sediment chemistry constituents. Bolded and shaded values indicate TEC quotient \geq 1.0
Table 6.4. Probable Effect Concentration (PEC) quotients for WY 2018 sediment chemistry constituents. Bolded and shaded values indicate PEC quotient \geq 1.0
Table 6.5. Pesticide concentrations and calculated toxic unit (TU) equivalents, WY 201881
Table 6.6. Summary of grain size for the two locations sampled in Santa Clara during WY 201882
Table 7.1. Summary of SCVURPPP Trigger Threshold Exceedance Analysis, WY 2018. "No" indicates samples were collected but did not exceed the MRP trigger; "Yes" indicates an exceedance of the MRP trigger. 96

LIST OF ATTACHMENTS

Attachment 1. QA/QC Report

Attachment 2. RMC 5-Year Report

1.0 INTRODUCTION

This Creek Status Monitoring Report was prepared by the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP or Program), on behalf of its 15 member agencies (13 cities/towns, the County of Santa Clara, and the Santa Clara Valley Water District), which are subject to the National Pollutant Discharge Elimination System (NPDES) stormwater permit for Bay Area municipalities referred to as the Municipal Regional Permit (MRP). The MRP was first adopted by the San Francisco Regional Water Quality Control Board (SFRWQCB or Regional Water Board) on October 14, 2009 as Order R2-2009-0074 (SFRWQCB 2009; referred to as MRP 1.0). On November 19, 2015, the SFRWQCB updated and reissued the MRP as Order R2-2015-0049 (SFRWQCB 2015; referred to as MRP 2.0). This report fulfills the requirements of provision C.8.h.iii of the MRP for comprehensively interpreting and reporting all Creek Status and Pesticides & Toxicity monitoring data collected during the foregoing October 1 - September 30 (i.e., Water Year 2018).³ Data were collected pursuant to water quality monitoring requirements in provisions C.8.d (Creek Status Monitoring) and C.8.g (Pesticides & Toxicity Monitoring) of the MRP. Monitoring data presented in this report were submitted electronically to the SFRWQCB by SCVURPPP and may be obtained via the San Francisco Bay Area Regional Data Center of the California Environmental Data Exchange Network (CEDEN).⁴

Sections of this report are organized according to the following topics:

- Section 1.0 Introduction including overview of the Program goals, background, monitoring approach, and statement of data quality
- Section 2.0 Biological condition assessment and stressor analysis at probabilistic sites
- Section 3.0 Continuous water quality monitoring (temperature, general water quality)
- Section 4.0 Pathogen indicators
- Section 5.0 Chlorine monitoring
- Section 6.0 Pesticides & Toxicity monitoring
- Section 7.0 Conclusions and recommendations

³ Monitoring data collected pursuant to other C.8 provisions (e.g., Pollutants of Concern Monitoring, Stressor/Source Identification Monitoring Projects) are reported in the SCVURPPP Urban Creeks Monitoring Report (UCMR) for WY 2018 to which this Creek Status Monitoring Report is appended.

⁴ (<u>http://water100.waterboards.ca.gov/ceden/sfei.shtml</u>)

1.1 Monitoring Goals

Provision C.8.d of the MRP requires Permittees to conduct creek status monitoring that is intended to answer the following management questions:

- 1. Are water quality objectives, both numeric and narrative, being met in local receiving waters, including creeks, rivers, and tributaries?
- 2. Are conditions in local receiving water supportive of or likely supportive of beneficial uses?

The first management question is addressed primarily through the evaluation of probabilistic and targeted monitoring data with respect to the triggers defined in the MRP. (A summary of trigger exceedances observed for each site is presented in Table 7.1.) Sites where triggers are exceeded may indicate potential impacts to aquatic life or other beneficial uses and are considered for future evaluation of Stressor/Source identification (SSID) projects.

The second management question is addressed by assessing indicators of beneficial uses. For example, the indices of biological integrity based on benthic macroinvertebrate and algae data are direct measures of aquatic life beneficial uses. Continuous monitoring data (temperature, dissolved oxygen, pH, and specific conductance) are evaluated with respect to COLD and WARM Beneficial Uses. Pathogen indicator data are used to assess REC-1 (water contact recreation) Beneficial Uses.

Creek Status and Pesticides & Toxicity monitoring parameters, methods, occurrences, durations and minimum number of sampling sites are described in provisions C.8.d and C.8.g of the MRP, respectively. The monitoring requirements in the 2015 MRP are similar to the 2009 MRP requirements (which began implementation on October 1, 2011) and build upon earlier monitoring conducted by SCVURPPP between 2002 and 2009. Creek Status and Pesticides & Toxicity monitoring is coordinated through the Regional Monitoring Coalition (RMC). Monitoring results are evaluated to determine whether triggers are met and further investigation is warranted as a potential Stressor/Source Identification (SSID) Project, as described in provision C.8.e of the MRP. Results of Creek Status Monitoring conducted in Water Years 2012 through 2017 were submitted in prior reports (SCVURPPP 2018, SCVURPPP 2017, SCVURPPP 2016, SCVURPPP 2015, SCVURPPP 2014, SCVURPPP 2013).

1.2 Regional Monitoring Coalition

Provision C.8.a (Compliance Options) of the MRP allows Permitees to address monitoring requirements through a regional collaborative effort, their Stormwater Program, and/or individually. The RMC was formed in early 2010 as a collaboration among a number of the Bay Area Stormwater Management Agencies Association (BASMAA) members and MRP Permittees (Table 1.1) to develop and implement a regionally coordinated water quality monitoring program to improve stormwater management in the region and address water quality monitoring required by the MRP.⁵ Implementation of the RMC's Creek Status and Long-Term Trends Monitoring Plan (BASMAA 2012) allows Permittees and the Regional Water Board to improve their ability to collectively answer core management questions in a cost-effective and scientifically rigorous

⁵ The San Francisco Bay Regional Water Quality Control Board (SFRWQCB) issued the first five-year MRP to 76 cities, counties and flood control districts (i.e., Permittees) in the Bay Area on October 14, 2009 (SFRWQCB 2009). The BASMAA programs supporting MRP Regional Projects include all MRP Permittees as well as the cities of Antioch, Brentwood, and Oakley which are not named as Permittees under the MRP but have voluntarily elected to participate in MRP-related regional activities.

way. Participation in the RMC is facilitated through the BASMAA Monitoring and Pollutants of Concern (MPC) Committee.

Stormwater Programs	RMC Participants
Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP)	Cities of Campbell, Cupertino, Los Altos, Milpitas, Monte Sereno, Mountain View, Palo Alto, San José, Santa Clara, Saratoga, Sunnyvale, Los Altos Hills, and Los Gatos; Santa Clara Valley Water District; and, Santa Clara County
Alameda Countywide Clean Water Program (ACCWP)	Cities of Alameda, Albany, Berkeley, Dublin, Emeryville, Fremont, Hayward, Livermore, Newark, Oakland, Piedmont, Pleasanton, San Leandro, and Union City; Alameda County; Alameda County Flood Control and Water Conservation District; and, Zone 7
Contra Costa Clean Water Program (CCCWP)	Cities of Antioch, Brentwood, Clayton, Concord, El Cerrito, Hercules, Lafayette, Martinez, Oakley, Orinda, Pinole, Pittsburg, Pleasant Hill, Richmond, San Pablo, San Ramon, Walnut Creek, Danville, and Moraga; Contra Costa County; and, Contra Costa County Flood Control and Water Conservation District
San Mateo County Wide Water Pollution Prevention Program (SMCWPPP)	Cities of Belmont, Brisbane, Burlingame, Daly City, East Palo Alto, Foster City, Half Moon Bay, Menlo Park, Millbrae, Pacifica, Redwood City, San Bruno, San Carlos, San Mateo, South San Francisco, Atherton, Colma, Hillsborough, Portola Valley, and Woodside; San Mateo County Flood Control District; and, San Mateo County
Fairfield-Suisun Urban Runoff Management Program (FSURMP)	Cities of Fairfield and Suisun City
Vallejo Permittees	City of Vallejo and Vallejo Flood and Wastewater District

Table 1.1. Regional Monitoring Coalition (RMC) participants.

The goals of the RMC are to:

- 1. Assist Permittees in complying with requirements in provision C.8 (Water Quality Monitoring) of the MRP;
- 2. Develop and implement regionally consistent creek monitoring approaches and designs in the Bay Area, through the improved coordination among RMC participants and other agencies (e.g., Regional Water Board) that share common goals; and
- 3. Stabilize the costs of creek monitoring by reducing duplication of effort and streamlining reporting.

The RMC's monitoring strategy for complying with Creek Status monitoring is described in the RMC Creek Status and Long-Term Trends Monitoring Plan (BASMAA 2012). The strategy includes regional ambient/probabilistic monitoring and local "targeted" monitoring. The combination of these two components allows each individual RMC participating program to assess the status of beneficial uses in local creeks within its jurisdictional area, while also contributing data to answer management questions at the regional scale (e.g., differences between aquatic life condition in urban and non-urban creeks). The current MRP, updated and reissued in 2015, specifically prescribes the probabilistic/targeted approach and most of the other details of the RMC Creek Status and Long-Term Trends Monitoring Plan. Table 1.2 provides a list of which parameters are included in the probabilistic and targeted programs in the 2015 MRP. This report includes data collected in Santa Clara County under both monitoring

components. Data are organized into report Sections that reflect the format of monitoring requirements in the MRP.

Table 1.2. Creek Status Monitoring parameters in compliance with MRP provisions C.8.d (Creek Status Monitoring) and C.8.g (Pesticides & Toxicity Monitoring) and associated monitoring component.

	Monitoring C	omponent	
Monitoring Elements	Regional Ambient (Probabilistic)	Local (Targeted)	Report Section
Creek Status Monitoring (C.8.d)			
Bioassessment & Physical Habitat Assessment	Х	X1	2.0
Nutrients	Х	X1	2.0
General Water Quality (Continuous)		Х	3.0
Temperature (Continuous)		Х	3.0
Pathogen Indicators		Х	4.0
Chlorine	Х	X ²	5.0
Pesticides & Toxicity Monitoring (C.8.g)			
Water Toxicity		Х	6.0
Sediment Toxicity		Х	6.0
Sediment Chemistry		Х	6.0

Notes:

¹ Provision C.8.d.i.(6) allows for up to 20% of sample locations to be selected on a targeted basis.

² Provision C.8.d.ii.(2) provides options for probabilistic or targeted site selection. In WY 2018, chlorine was measured at probabilistic sites.

1.3 Monitoring and Data Assessment Methods

1.3.1 Monitoring Methods

Water quality data were collected in accordance with California Surface Water Ambient Monitoring Program (SWAMP) comparable methods and procedures described in the BASMAA RMC Standard Operating Procedures (SOPs; BASMAA 2016a) and the associated Quality Assurance Project Plan (QAPP; BASMAA 2016b). These documents are updated as needed to maintain their currency and optimal applicability. Where applicable, monitoring data were collected using methods comparable to those specified by the SWAMP Quality Assurance Program Plan (QAPrP)⁶, and were submitted in SWAMP-compatible format to the SFRWQCB. The SOPs were developed using a standard format that describes health and safety cautions and considerations, relevant training, site selection, and sampling methods/procedures, including pre-fieldwork mobilization activities to prepare equipment, sample collection, and demobilization activities to preserve and transport samples.

⁶ The current SWAMP QAPrP is available at: <u>https://www.waterboards.ca.gov/water_issues/programs/swamp/qapp/swamp_QAPrP_2017_Final.pdf</u>

1.3.2 Laboratory Analysis Methods

RMC participants, including SCVURPPP, agreed to use the same laboratories for individual parameters (except pathogen indicators), developed standards for contracting with the labs, and coordinated quality assurance samples. All samples collected by RMC participants that were sent to laboratories for analysis were analyzed and reported per SWAMP-comparable methods as described in the RMC QAPP (BASMAA 2016b). Analytical laboratory methods, reporting limits and holding times for chemical water quality parameters are also described in BASMAA (2016a). Analytical laboratory contractors included:

- BioAssessment Services, Inc. Benthic macroinvertebrate (BMI) identification
- EcoAnalysts, Inc. Algae identification
- CalTest, Inc. Sediment chemistry, nutrients, chlorophyll a, ash free dry mass
- Pacific EcoRisk, Inc. Water and sediment toxicity
- Alpha Analytical Pathogen indicators

1.3.3 Data Analysis Methods

Monitoring data generated during WY 2018 were analyzed and evaluated to identify potential stressors that may be contributing to degraded or impacted biological conditions, including exceedances of water quality objectives (WQOs). Creek Status Monitoring and Pesticides & Toxicity Monitoring data must be evaluated with respect to numeric thresholds (i.e., triggers), specified in the "Followup" sections in provision C.8.d and C.8.g of the MRP (SFRWQCB 2015) that, if not met, require consideration for further evaluation as part of a Stressor/Source Identification project. SSID projects are intended to be oriented toward taking action(s) to alleviate stressors and reduce sources of pollutants. A stepwise process for conducting SSID projects is described in provision C.8.e.iii.

In compliance with provision C.8.e.i of the MRP, all monitoring results exceeding trigger thresholds are added to a list of candidate SSID projects that will be maintained throughout the permit term. Followup SSID projects are selected from this list.

1.4 Setting

1.4.1 Watersheds Monitored by SCVURPPP

There are 13 major watersheds within the SCVURPPP jurisdictional boundaries and these watersheds comprise most of the Santa Clara Basin. The watersheds are mapped in Figure 1.1 and their major characteristics are listed in Table 1.3. The Santa Clara Basin, San Francisco Bay south of the Dumbarton Bridge, and the 840 square miles that drain to it, are bounded by the Diablo Mountains on the east and the Santa Cruz Mountains on the west and south. Elevations range from sea level at the Bay to almost 4,000 feet in the Santa Cruz Mountains. There is a distinct transition in geography and land use at elevations of 600 to 800 feet. Areas above this elevation generally have steeper slopes and are largely forest, rangeland, or open space; below this threshold, an urbanized landscape dominates. Most watersheds have their headwaters in the undeveloped mountains and drain north through urbanized areas to the Bay. Flows in the lower reaches of most watersheds are controlled by the presence of water supply reservoirs that are managed by the Santa Clara Valley Water District (SCVWD) and other agencies. Many of the reservoirs are constructed at the transition between the Santa Clara Valley and the surrounding foothills. Water is captured during the winter rainy season and

released in the spring at managed rates to allow for percolation through the stream bed and to protect fish habitat downstream of the reservoirs. To varying degrees, portions of all watersheds within the urban zone have been engineered or placed within underground culverts. The Sunnyvale East and West Channel watersheds contain no natural creek bed at all; they were constructed in the 1960s to manage flooding.

									Land Use	9	
Watershed	Area (square miles)	Number of Tributary Creeks	Natural Creek Bed (Miles)	Engineered Channel (Miles)	Underground Culvert or Stormdrain (Miles)	Impervious Area	Residential	Industrial/ Commercial	Forest	Rangeland	Other
Adobe	11.0	7	18.8	2.3	12.0	44.7%	46.5%	11.8%	36.3%	2.7%	2.7%
Barron	15.6	5	15.1	7.9	28.6	60.3%	60.5%	20.1%	7.3%	7.0%	5.1%
Calabazas	20.3	6	12.9	14.1	55.5	NA	54.5%	29.4%	8.8%	5.2%	2.1%
Coyote	321	53	670	36.4	146	11.1%	8.6%	3.7%	49.9%	29.6%	8.2%
Guadalupe	171	50	207	45.5	265	37.1%	29.6%	13.6%	34.7%	15.5%	6.6%
Lower Penitencia	28.6	13	29.2	20.8	61.6	42.9%	30.7%	19.0%	1.1%	38.7%	10.5%
Matadero	14.0	3	18	NA	NA	60.3%	57.1%	5.8%	8.9%	8.2%	20%
Permanente	17.3	7	NA	NA	NA	43.9%	46.3%	13.1%	35.0%	2.8%	2.8%
San Francisquito	42.8	25	90.6	4.8	15.3	20.8%	29.6%	5.2%	44.7%	15.0%	5.5%
San Tomas Aquino	44.8	15	50.5	15.5	79.3	60.1%	53.9%	18.8%	23.7%	0.8%	2.8%
Stevens	29.2	12	54.2	1.1	30.0	28.6%	24.5%	9.0%	49.2%	12.5%	4.8%
Sunnyvale East	7.1	0	0	6.2	26.6	82.2%	65.3%	31.8%	0%	0%	2.9%
Sunnyvale West	7.6	0	0	6.7	18.7	72.4%	20.9%	65.2%	0%	0%	13.9%

Table 1.3. Characteristics of major watersheds within SCVURPPP boundary.

Source: http://www.scvurppp-w2k.com/watersheds.shtml

NA - not available

WY 2018 Creek Status and Pesticides and Toxicity Monitoring Stations

The complete list of probabilistic and targeted monitoring sites sampled by SCVURPPP in WY 2018 in compliance with provisions C.8.d (Creek Status Monitoring) and C.8.g (Pesticides and Toxicity Monitoring) is presented in Table 1.4. Monitoring locations with monitoring parameter(s) are mapped in Figure 1.2. Probabilistic station numbers, generated from the RMC Sample Frame, are provided for all bioassessment locations. Targeted stations numbers, based on SWAMP station numbering methods (BASMAA 2016a), are provided for all targeted monitoring sites.

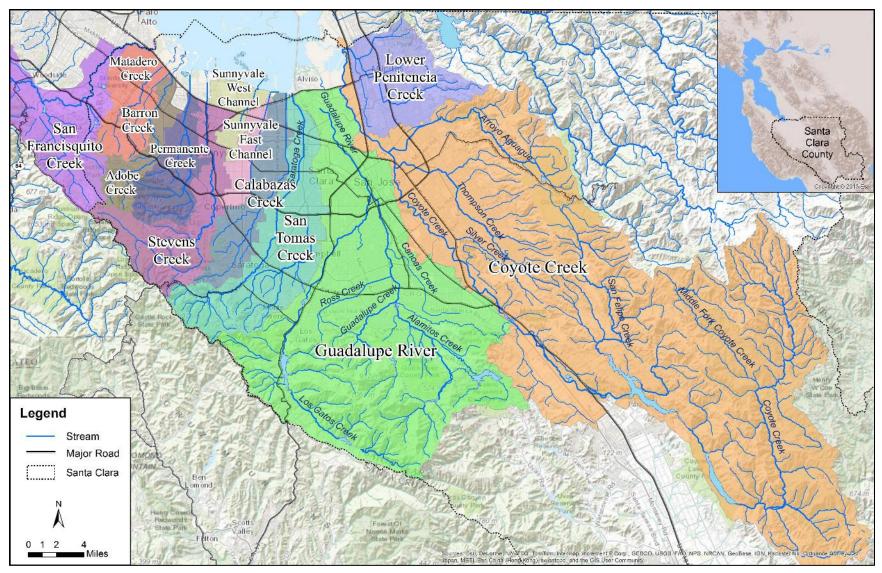


Figure 1.1. Watersheds within SCVURPPP jurisdictional boundaries.

Table 1.4. Sites and parameters monitored in WY 2018 in Santa Clara County.

							Probabilistic		Targeted			
Map ID ¹	Station ID	Watershed	Creek Name	Land Use	Latitude	Longitude	Bioassessment, Nutrients, General WQ	Chlorine	Pesticides & Toxicity	Temp 2	Cont WQ ³	Pathogen Indicators
749	204R00749	Alameda Creek	Smith Creek	NU	37.31672	-121.65057	Х	Х				
746	205R00746	San Tomas Aquino	Saratoga Creek	NU	37.25201	-122.06016	Х	Х				
769	205R00769	Coyote Creek	MF Coyote Creek	NU	37.21998	-121.54206	Х	Х				
3498	205R03498	San Tomas Aquino	Saratoga Creek	U	37.25747	-122.03631	Х	Х				
3562	205R03562	San Tomas Aquino	Saratoga Creek	U	37.25258	-122.04500	Х	Х				
3591	205R03591	San Francisquito Cr	Los Trancos Creek	U	37.35238	-122.19713	Х	Х				
3619	205R03619	San Tomas Aquino	Saratoga Creek	U	37.30297	-121.99653	Х	Х				
3683	205R03683	Permanente Creek	Permanente Creek	U	37.33985	-122.09228	Х	Х				
3699	205R03699	Permanente Creek	Hale Creek	U	37.36703	-121.69869	Х	Х				
3738	205R03738	Coyote Creek	Upper Silver Creek	U	37.28625	-121.77795	Х	Х				
3754	205R03754	San Tomas Aquino	San Tomas Aquino	U	37.25954	-121.99221	Х	Х				
3795	205R03795	Coyote Creek	Lower Silver Creek	U	37.35770	-121.85820	Х	Х				
3825	205R03825	Coyote Creek	Thompson Creek	U	37.28066	-121.75541	Х	Х				
3843	205R03843	San Tomas Aquino	San Tomas Aquino	U	37.38186	-121.96843	Х	Х				
3847	205R03847	San Francisquito Cr	Los Trancos Creek	U	37.38068	-122.19441	Х	Х				
3875	205R03875	Calabazas Creek	Calabazas Creek	U	37.31483	-122.01634	Х	Х				
3907	205R03907	Lower Penitencia	Lower Penitencia	U	37.43624	-121.91424	Х	Х				
4190	205R04190	Guadalupe River	Guadalupe Creek	U	37.23516	-121.89116	Х	Х				
4217	205R04217	Coyote Creek	Upper Penitencia	U	37.40062	-121.74910	Х	Х				
4266	205R04266	Calabazas Creek	Calabazas Creek	U	37.29627	-122.02921	Х	Х				
400	205LGA400	Guadalupe River	Los Gatos Creek	U	37.31830	-122.06197						Х
30	205MAT030	Matadero Creek	Matadero Creek	U	37.41001	-122.13823						Х
64	205STE064	Stevens Creek	Stevens Creek	U	37.25764	-122.03561						Х
225	205GUA225	Guadalupe River	Arroyo Calero	U	37.23878	-121.97094						Х
75	205SAR075	San Tomas Aquino	Saratoga Creek	U	37.21416	-121.83447						Х
190	205GUA190	Guadalupe River	Guadalupe Creek	U	37.24373	-121.87561				Х		
202	205GUA202	Guadalupe River	Guadalupe Creek	U	37.23291	-121.89795				Х		
210	205GUA210	Guadalupe River	Guadalupe Creek	U	37.21746	-121.91039				Х		
218	205GUA218	Guadalupe River	Guadalupe Creek	U	37.2028	-121.88845				Х		
250	205GUA250	Guadalupe River	Alamitos Creek	U	37.23363	-121.87058				Х		
255	205GUA255	Guadalupe River	Alamitos Creek	U	37.22607	-121.85842				Х		
262	205GUA262	Guadalupe River	Alamitos Creek	U	37.22041	-121.84516				Х		
270	205GUA270	Guadalupe River	Alamitos Creek	U	37.20129	-121.82891				Х		

							Probabilistic		Та	argeted		
Map ID ¹	Station ID	Watershed	Creek Name	Land Use	Latitude	Longitude	Bioassessment, Nutrients, General WQ	Chlorine	Pesticides & Toxicity	Temp 2	Cont WQ ³	Pathogen Indicators
279	205GUA279	Guadalupe River	Alamitos Creek	U	37.17409	-121.82409				Х		
235	205COY235	Coyote Creek	Coyote Creek	U	37.3536	-121.87417					Х	
236	205COY236	Coyote Creek	Coyote Creek	U	37.35098	-121.87378					Х	
239	205COY239	Coyote Creek	Coyote Creek	U	37.33722	-121.86953					Х	
18	205CAL018	Calabazas Creek	Calabazas Creek	U	37.38760	-121.98690			Х			
21	205STE021	Stevens Creek	Stevens Creek	U	37.40985	-122.06906			Х			
10	205STQ010	San Tomas Aquino	San Tomas Aquino	U	37.38843	-121.96865			Х			

U = urban, NU = non-urban ¹ Map ID applies to Figure 1.2. ² Temperature monitoring was conducted continuously (i.e., hourly) April through September. ³ Continuous water quality monitoring (temperature, dissolved oxygen, pH, specific conductivity) was conducted during two 2-week periods (spring and late summer).

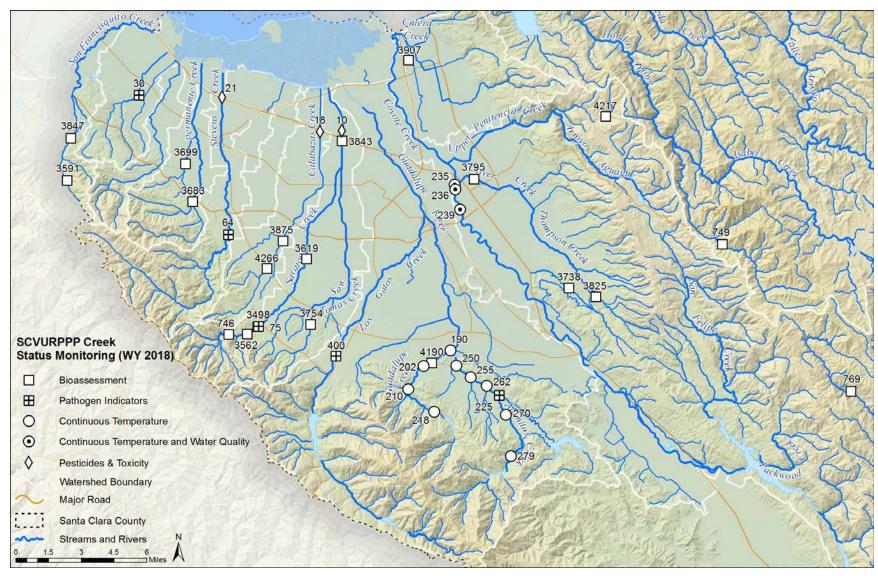


Figure 1.2. Map of SCVURPPP Program Area, major creeks, and sites monitored in WY 2018.

1.4.2 Designated Beneficial Uses

Beneficial Uses in Santa Clara Valley creeks are designated by the SFRWQCB for specific water bodies and generally apply to all its tributaries. Uses include aquatic life habitat, recreation, agriculture, groundwater recharge, and municipal and commercial supply. Table 1.5 lists Beneficial Uses designated by the SFRWQCB (2017) for water bodies monitored by SCVURPPP in WY 2018.

Table 1.5. Creeks monitored by SCVURPPP in WY 2018 and their Beneficial Uses (SFRWQCB 2017).

Waterbody	AGR	MUN	FRSH	GWR	IND	PROC	COMM	SHELL	COLD	EST	MAR	MIGR	RARE	SPWN	WARM	WILD	REC-1	REC-2	NAV
Alamitos Creek			Ε	E					Ε			E	Ε	E	Ε	Ε	Ε	Ε	
Arroyo Calero			Ε						Ε			Е	Е	Е	Ε	Ε	Ε	Ε	
Calabazas Creek	Ε			Ε					Ε						Ε	Ε	Ε	Е	
Guadalupe Creek			Ε	Ε					Е			Е	Ε	Е	Ε	Ε	Ε	Е	
Hale Creek									Ε						Ε	Ε	Ε	Ε	
Los Gatos Creek		Ε	Ε	Ε					Е			Ρ	Ε	Р	Ε	Ε	Ε	Ρ	
Los Trancos Creek									Ε			Е	Ε	Е	Ε	Ε	Ε	Ε	
Lower Penitencia															Ε	Ε	Ε	Е	
Lower Silver Creek															Ε	Ε	Ε	Ε	
Matadero Creek									Ε			Е	Ε	Е	Ε	Ε	Ε	Ε	
MF Coyote Creek1				Ε			Ε		Ε			Е	Ε	E	Ε	Ε	Ε	Ε	
Permanente Creek				Ε					Ε				Е	Е	Ε	Ε	Ε	Ε	
San Tomas Aquino									Ε				Е		Ε	Ε	Ε	Ε	
Saratoga Creek	Ε		Ε	Ε					Ε						Ε	Ε	Ε	Ε	
Smith Creek		Е	Е						Ε						Е	Ε	Е	Е	
Stevens Creek			Е	Ε					Ε			Е	Ε	Е	Е	Ε	Е	Е	
Thompson Creek															Ε	Ε	Ε	Е	
Upper Penitencia			Ε	Ε					Е			Е	Ε	Е	Ε	Ε	Ε	Е	
Upper Silver Creek													Ε		Ε	Ε	Ε	Ε	

Notes:

¹ No Beneficial Uses listed specifically for waterbody, beneficial uses listed are for main stem Coyote Creek (non-tidal).

E = Existing Use, P = Potential Use, L = Limited Use

AGR = Agricultural Supply COLD = Cold Fresh Water Habitat FRSH = Freshwater Replenishment GWR - Groundwater Recharge MIGR = Fish Migration MUN = Municipal and Domestic Water SHELL = Shellfish Harvesting

IND = Industrial Service Supply EST = Estuarine NAV = Navigation RARE= Preservation of Rare and Endangered Species REC-1 = Water Contact Recreation SPWN = Fish Spawning COMM = Commercial, and Sport Fishing REC-2 = Non-contact Recreation WARM = Warm Freshwater Habitat WILD = Wildlife Habitat PROC = Industrial Process Supply MAR = Marine Habitat

1.4.3 Climate

The Santa Clara Valley experiences a Mediterranean-type climate with cool, wet winters and hot, dry summers. The area is characterized by microclimates created by topography, ocean currents, fog exposure, and onshore winds. The wet season typically extends from October through April with local long-term, mean annual precipitation ranging from 15 inches near the Bay to over 55 inches along the highest ridges in the Santa Cruz Mountains (PRISM Climate Group 30-year normals, 1981-2010⁷). Figure 1.3 illustrates the geographic variability of mean annual precipitation in the area. It is important to understand that mean annual precipitation depths are statistically calculated or modeled; actual measured precipitation in a given year rarely equals the statistical average. Figure 1.4 illustrates the temporal variability in annual precipitation measured at the Mineta San José International Airport from WY 1946 to WY 2018. Creek Status Monitoring in compliance with the MRP began in WY 2012 which was the first year of a severe statewide drought that persisted through WY 2016. In WY 2018, rainfall was below average but was preceded by a relatively wet year in WY 2017.

The overall Bay Area climate and the specific conditions within any given year are influenced by global climate change. The Climate Change Assessment report for the Bay Area highlights several impacts of climate change that are already being felt: the Bay Area's average annual maximum temperature increased by nearly 1°C from 1950 – 2005, coastal fog along the coast may be less frequent, sea level in the Bay Area has risen over 8 inches (Ackerly et al. 2018). These changes are projected to increase significantly in the coming decades. As a consequence, heat extremes, high year-to-year variability in precipitation, droughts, intense storms, and other events will also increase.

Climate patterns (e.g., extended droughts) and individual weather events (e.g., extreme storms, hot summers) influence biological communities (i.e., vegetation, wildlife) and their surrounding physical habitat and water quality. They should therefore be considered when evaluating the type of data collected by the Creek Status Monitoring Program. For example, periods of drought (rather than individual dry years) can result in changes in riparian and upland vegetation communities. Long drought periods are associated with increased streambed sedimentation which can persist directly or indirectly for many years, depending on the occurrence and magnitude of flushing flow events. Furthermore, in response to prolonged drought, the relative proportion of pool habitat can increase at the expense of riffle habitat. In addition, during severe droughts, water management agencies (such as the SCVWD) may also decrease the magnitude and duration of reservoir releases.

It is uncertain what effect these factors have on indices of biotic integrity (IBIs) that are calculated using data collected by the Creek Status Monitoring Program, such as benthic macroinvertebrates or algae. A study evaluating 20 years of bioassessment data collected in northern California showed that, although benthic macroinvertebrate taxa with certain traits may be affected by dry (and wet) years and/or warm (and cool) years, IBIs based on these organisms appear to be resilient (Mazor et al. 2009, Lawrence et al. 2010). However, this study did not specifically examine the impact of longer *periods* of extended drought or heat on IBIs, which would require analysis of a dataset with a much longer period of record. The Herbst Lab at the Sierra Nevada Aquatic Research Laboratory, University of California Santa Barbara is currently exploring how changing climate affects Sierra Nevada stream ecosystems.

⁷ http://www.prism.oregonstate.edu/normals/

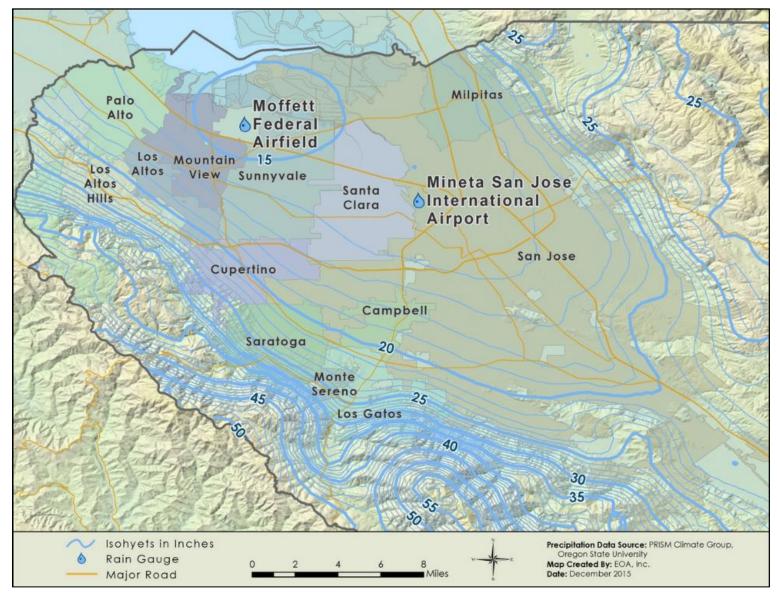


Figure 1.3. Average annual precipitation in Santa Clara Valley, as modeled by the PRISM Climate Group for the period of 1981-2010.

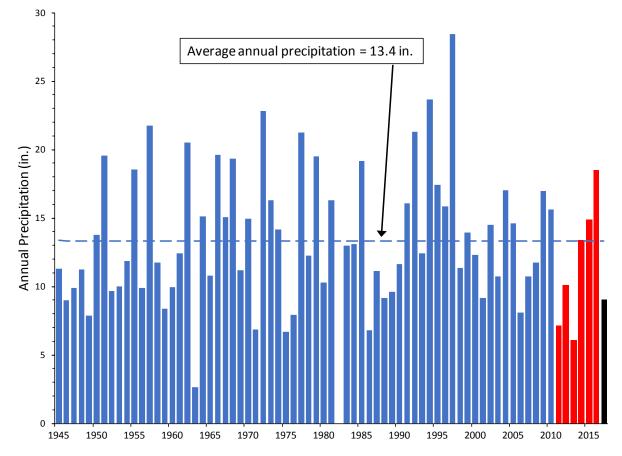


Figure 1.4. Annual rainfall recorded at the San José Airport, WY 1946 - WY 2018.

1.5 Statement of Data Quality

A comprehensive Quality Assurance/Quality Control (QA/QC) program was implemented by SCVURPPP covering all aspects of the probabilistic and targeted monitoring. In general, QA/QC procedures were implemented as specified in the BASMAA RMC QAPP (BASMAA, 2016a), and monitoring was performed according to protocols specified in the BASMAA RMC SOPs (BASMAA, 2016b), and in conformity with methods specified by the SWAMP QAPrP⁸. A detailed QA/QC report is included as Attachment 1.

Based on the QA/QC review, some WY 2018 data were flagged and/or rejected. However, overall, WY 2018 data met QA/QC objectives.

⁸ The current SWAMP QAPrP is available at:

http://www.waterboards.ca.gov/water_issues/programs/swamp/docs/qapp/swamp_qapp_master090108a.pdf

2.0 BIOLOGICAL CONDITION ASSESSMENT

2.1 Introduction

In compliance with Creek Status Monitoring provision C.8.d.i, SCVURPPP conducted bioassessment monitoring in WY 2018. All bioassessment monitoring was performed at sites selected randomly using the probabilistic monitoring design⁹. The probabilistic monitoring design allows each individual RMC participating program to objectively assess overall stream ecosystem conditions within its program area (e.g., County boundary) while contributing data to answer regional management questions about water quality and beneficial use condition in San Francisco Bay Area creeks. The survey design provides an unbiased framework for data evaluation that will allow a condition assessment of ambient aquatic life uses within known estimates of precision. The monitoring design was developed to address the management questions for both RMC participating county and overall RMC area described below:

- 1. What is the condition of aquatic life in creeks in the RMC area; are water quality objectives met and are beneficial uses supported?
 - *i.* What is the condition of aquatic life in the urbanized portion of the RMC area; are water quality objectives met and are beneficial uses supported?
 - *ii.* What is the condition of aquatic life in RMC participant counties; are water quality objectives met and are beneficial uses supported?
 - *iii.* To what extent does the condition of aquatic life in urban and non-urban creeks differ in the RMC area?
 - *iv.* To what extent does the condition of aquatic life in urban and non-urban creeks differ in each of the RMC participating counties?
- 2. What are major stressors to aquatic life in the RMC area?
 - i. What are major stressors to aquatic life in the urbanized portion of the RMC area?
- 3. What are the long-term trends in water quality in creeks over time?

The first question (i.e., *What is the condition of aquatic life in creeks in the RMC area?*) is addressed by assessing indicators of aquatic biological health at probabilistic sampling locations. Once a sufficient number of samples have been collected, ambient biological condition can be estimated for streams at a regional scale. Over the past seven years (WY 2012 through WY 2018), the SCVURPPP and Regional Water Board have sampled 152 probabilistic sites in Santa Clara County, providing a sufficient sample size to estimate ambient biological condition for both urban and non-urban streams countywide.¹⁰

The second question (i.e., *What are major stressors to aquatic life in the RMC area?*) is addressed by the collection and evaluation of physical habitat and water chemistry data collected at the probabilistic sites, as potential stressors to biological health. The stressor levels can be compared to biological indicator data through correlation and relative risk analyses. Assessing the extent and relative risk of stressors can help prioritize stressors at a regional scale and inform local management decisions.

⁹ The option to conduct 20% of bioassessment surveys at targeted sites was not exercised in WY 2018.

¹⁰ For each of the strata, it is necessary to obtain a sample size of at least 30 in order to evaluate the condition of aquatic life within known estimates of precision. This estimate is defined by a power curve from a binomial distribution (BASMAA 2012).

The third question (i.e., *What are the long-term trends in water quality in creeks over time?*) is addressed by assessing the change in biological condition over several years. Changes in biological condition over time can help evaluate the effectiveness of management actions. Although, long-term trend analysis for the RMC probabilistic survey will require more than seven years of data collection, preliminary trend analysis of biological condition may be possible for some stream reaches using a combination of historical targeted data with the probabilistic data.

This report presents biological indicator data and potential stressor data collected at twenty sites in WY 2018. Data are compared to triggers and water quality objectives identified in the MRP.

A more comprehensive evaluation of regional bioassessment data is presented in the BASMAA RMC 5-Year Bioassessment Report (WY 2012 – WY 2016) (Attachment 2). Summary findings from the report are included in Section 7.1.

2.2 Methods

2.2.1 Probabilistic Survey Design

The RMC probabilistic design was created using the Generalized Random Tessellation Stratified (GRTS) approach developed by the United States Environmental Protection Agency (USEPA) and Oregon State University (Stevens and Olson 2004). GRTS offers multiple benefits for coordinating among monitoring entities, including the ability to develop a spatially balanced design that produces statistically representative data with known confidence intervals. The GRTS approach has been implemented in California by several agencies including the statewide Perennial Streams Assessment (PSA) conducted by Surface Water Ambient Monitoring Program (Ode et al. 2011) and the Southern California Stormwater Monitoring Coalition's (SMC) regional monitoring program conducted by municipal stormwater programs in Southern California (SCCWRP 2007).

Sample sites were selected using the GRTS approach from a sample frame consisting of a creek network geographic information system (GIS) data set within the 3,407-square mile RMC area (BASMAA 2012). The sample frame includes non-tidally influenced perennial and non-perennial creeks within five management units representing areas managed by the stormwater programs associated with the RMC (listed in Table 1.1). There is approximately one site for every stream kilometer in the sample frame. The National Hydrography Plus Dataset (1:100,000) was selected as the creek network data layer to provide consistency with both the Statewide PSA and the SMC, and the opportunity for data coordination with these programs.

Once the master draw was performed, the list of sites was classified by county and land use (i.e., urban and non-urban) to allow for comparisons between these strata. Urban areas were delineated by combining urban area boundaries and city boundaries defined by the U.S. Census (2000). Non-urban areas were defined as the remainder of the RMC area. Some sites classified as urban fall near the non-urban edge of the city boundaries and have little upstream development. For the purposes of consistency, these urban sites were not re-classified. Therefore, data values within the urban classification represent a wide range of conditions.

The RMC participants decided to partition their annual sampling efforts so that approximately 80% are in urban areas and 20% in non-urban areas. In addition, between WY 2012 and WY

2015, the SFRWQCB SWAMP conducted 34 bioassessments throughout the RMC region at non-urban sites selected from the sample frame, including 12 sites in Santa Clara County.¹¹

2.2.2 Site Evaluations

Sites identified in the regional sample draw are evaluated by each RMC participant in chronological order using a two-step process described in RMC Standard Operating Procedure FS-12 (BASMAA 2016a), consistent with the procedure described by Southern California Coastal Water Research Project (SCCWRP 2012). Each site is evaluated to determine if it meets the following RMC sampling location criteria:

- 1. The location (latitude/longitude) provided for a site is located on or is within 300 meters of a non-impounded receiving water body;¹²
- 2. Site is not tidally influenced;
- 3. Site is wadeable during the sampling index period;
- 4. Site has sufficient flow during the sampling index period to support standard operation procedures for biological and nutrient sampling.
- 5. Site is physically accessible and can be entered safely at the time of sampling;
- 6. Site may be physically accessed and sampled within a single day;
- 7. Landowner(s) grant permission to access the site.¹³

In the first step, these criteria were evaluated to the extent possible using a "desktop analysis." Site evaluations were completed during the second step via field reconnaissance visits. Based on the outcome of site evaluations, sites were classified into one of three categories:

- Target Target sites were grouped into two subcategories:
 - **Target Sampleable (TS)** Sites that met all seven criteria and were successfully sampled.
 - **Target Non-Sampleable (TNS)** Sites that met criteria 1 through 4, but did not meet at least one of criteria 5 through 7 were classified as TNS.
- Non-Target (NT) Sites that did not meet at least one of criteria 1 through 4 were classified as non-target status.
- **Unknown (U)** Sites were classified with unknown status when it could be reasonably inferred either via desktop analysis or a field visit that the site was a valid receiving water body and information for any of the seven criteria was unconfirmed.

All site evaluation information was documented on field forms and entered into a standardized database. The overall percent of sites classified into the three categories can be evaluated to determine the statistical significance of local and regional average ambient conditions calculated from the multi-year dataset.

¹¹ As of WY 2016, the SFRWQCB SWAMP is no longer conducting RMC-related bioassessment monitoring at probabilistic sites.

¹² The evaluation procedure permits certain adjustments of actual site coordinates within a maximum of 300 meters.

¹³ If landowners did not respond to at least two attempts to contact them either by written letter, email, or phone call, permission to access the respective site was effectively considered to be denied.

2.2.3 Field Sampling Methods

Bioassessment survey methods were consistent with the BASMAA RMC QAPP (BASMAA 2016b) and SOPs (BASMAA 2016a). In accordance with the RMC QAPP (BASMAA 2016b) bioassessments were planned during the spring index period (approximately April 15 – July 15) with the goal to sample a minimum of 30 days after any significant storm (defined as at least 0.5-inch of rainfall within a 24-hour period). The 30-day grace period allows diatom and soft algae communities to recover from peak flows that may scour benthic algae from the bottom of the stream channel.¹⁴ During WY 2018, there was a small, but significant storm on April 8 (0.51 inches in 24-hour period¹⁵). Field sampling was conducted over a period of one month, between April 30 and May 30, 2018. Several sites exhibiting low flow conditions were sampled during the first week of May (i.e., just prior to 30-day grace period after the storm event on April 8). Algae data collected at these sites were flagged.

Each bioassessment sampling site consisted of an approximately 150-meter stream reach that was divided into 11 equidistant transects placed perpendicular to the direction of flow. Benthic macroinvertebrate (BMI) and algae samples were collected at 11 evenly spaced transects using the Reachwide Benthos (RWB) method described in the SWAMP SOP (Ode et al. 2016). The most recent SWAMP SOP (i.e., Ode et al. 2016) combines the BMI and algae methods that are referenced in the MRP (Ode 2007, Fetscher et al. 2009), provides additional guidance, and adds two new physical habitat analytes (assess scour and engineered channels). The full suite of physical habitat data was collected within the sample reach using methods described in Ode et al. (2016).

Immediately prior to biological and physical habitat data collection, water samples were collected at for nutrients, conventional analytes, ash free dry mass, and chlorophyll a analysis using the Standard Grab Sample Collection Method as described in SOP FS-2 (BASMAA 2016a). Water samples were also collected and analyzed in the field for free chlorine and total chlorine residual using a Pocket Colorimeter[™] II and DPD Powder Pillows according to SOP FS-3 (BASMAA 2016a) (see Section 5.0 for chlorine monitoring results). In addition, general water quality parameters (dissolved oxygen, pH, specific conductance and temperature) were measured at or near the centroid of the stream flow using a pre-calibrated multi-parameter probe.

Biological and water samples were sent to laboratories for analysis. The laboratory analytical methods for BMIs followed Woodward et al. (2012), using the Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) Level 1 Standard Taxonomic Level of Effort, with the additional effort of identifying chironomids (midges) to subfamily/tribe instead of family (Chironomidae). Soft algae and diatom samples were analyzed following SWAMP protocols (Stancheva et al. 2015). The taxonomic resolution for all data was compared to the SWAMP master taxonomic list. All taxa identified in samples collected were on the SWAMP Master List and are included in the data submittal for WY 2018.

¹⁴ The BASMAA 30-day grace period is more conservative than the 21-day grace period described in the SWAMP SOP (Ode et al. 2016).

¹⁵ SCVWD rain gage (Alert ID 1453) at Office of Emergency Services, City of San Jose (<u>www.alert.valleywater.org</u>)

2.2.4 Data Analysis

BMI and algae data were analyzed to assess the biological condition (i.e., aquatic life Beneficial Uses) of the sampled reaches using condition index scores. Physical habitat data were used to characterize physical habitat conditions using a newly developed multimetric index scoring tool. Physical habitat and water chemistry data were also evaluated as potential stressors to biological health using triggers and water quality objectives identified in the MRP (see Stressor Variable section below). Data analysis methods are described below.

Biological Indicators

Benthic Macroinvertebrates

The benthic (i.e., bottom-dwelling) macroinvertebrates collected through this monitoring program are organisms that live on, under, and around the rocks and sediment in the stream bed. Examples include dragonfly and stonefly larvae, snails, worms, and beetles (Figure 2.1). Each BMI species has a unique response to water chemistry and physical habitat condition. Some are relatively sensitive to poor habitat and pollution; others are more tolerant. Therefore, the abundance and variety of BMIs in a stream indicates the biological condition of the stream.

The California Stream Condition Index (CSCI) is an assessment tool that was developed by the State Water Resources Control Board (State Water Board) to support the development of California's statewide Biological Integrity Plan¹⁶. The CSCI translates benthic macroinvertebrate data into an overall measure of stream health. The CSCI was developed using a large reference data set that represents the full range of natural conditions in California and site-specific models for predicting biological communities. The CSCI combines two types of indices: 1) taxonomic completeness, as measured by the ratio of observed-to-expected taxa (O/E); and 2) ecological structure and function, measured as a predictive multimetric index (pMMI) that is based on reference conditions. The CSCI score is computed as the average of the sum of the O/E and pMMI.

CSCI scores for each station are calculated using a combination of biological and environmental data following methods described in Rehn et al. (2015). Biological data consist of the BMI data collected and analyzed using the protocols described in the previous section. Environmental predictor data are generated in GIS using drainage areas upstream of each BMI sampling location. The environmental predictors and BMI data were formatted into comma delimited files and used as input for the RStudio statistical package and the necessary CSCI program scripts, developed by Southern California Coastal Water Research Project (SCCWRP) staff (Mazor et al. 2016).

The State Water Board is continuing to evaluate the performance of CSCI in a regulatory context. In the current MRP, the Regional Water Board defined a CSCI score of 0.795 as a threshold for identifying sites with potentially degraded biological condition that may be considered as candidates for a Stressor/Source Identification project.

¹⁶ The Biological Integrity Assessment Implementation Plan has been combined with the Biostimulatory Substances Amendment project. The State Water Board is proposing to adopt a statewide water quality objective for biostimulatory substances (e.g., nitrate) along with a program of implementation. A draft policy document for public review is anticipated in late 2019.

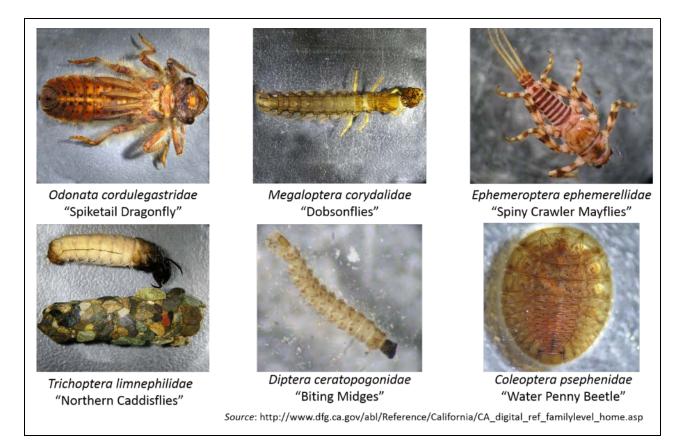


Figure 2.1. Examples of benthic macroinvertebrates.

Benthic Algae

Similar to BMI's, the abundance and type of benthic algae species living on a streambed can indicate stream health. When evaluated with the CSCI, biological indices based on benthic algae can provide a more complete picture of the streams biological condition because algae respond more directly to nutrients and water chemistry. In contrast, BMIs are more responsive to physical habitat. Figure 2.2 shows examples of benthic algae common in Bay Area streams.

The State Water Board and SCCWRP recently developed the draft Algae Stream Condition Index (ASCI) which uses benthic algae data as a measure of biological condition for streams in California (Theroux et al. in prep.). The ASCI is a non-predictive¹⁷ scoring tool that consists of three multimetric indices (MMI) comprised of single-assemblage metrics associated with either diatoms or soft algae, or combinations of metrics representing both assemblages (i.e, "hybrid"). The individual metrics associated with hybrid MMI include five of the six metrics used for the diatom MMI. The soft algae metrics used in the hybrid MMI are different than metrics used in the soft algae MMI.

The ASCI is very similar to the algae Indices of Biological Integrity (IBIs) developed in Southern California (Fetscher et al. 2014), with the exception that metric development and testing was conducted using data collected throughout California. Analysis of the three ASCI tools (i.e., diatom, soft algae, hybrid) conducted by SCCWRP suggests that the hybrid ASCI index is the

¹⁷ Predictive indices (e.g., CSCI) utilize environmental variables that characterize immutable natural gradients as predictors for biological conditions. A predictive O/E and MMI algae model was developed and tested, but ultimately not recommended due to low precision and accuracy.

most responsive algae index, especially for nutrient stressor gradients (Theroux et al. in prep.). Additional study is needed however, to determine the best approach to apply the ASCI tools to evaluate bioassessment data. For example, it is not clear if the ASCI should be used as a second line of evidence to understand CSCI scoring results, or if it would be more effective as an independent indicator to evaluate different types of stressors (e.g., nutrients) to which BMIs are not very responsive. The ASCI is currently under review by the Biostimulatory-Biointegrity Policy Science Advisory Panel and the State Water Board.

The algae data collected at twenty sites in Santa Clara County during 2018 were evaluated using the diatom ASCI, soft algae ASCI, and hybrid ASCI. ASCI scores were generated using the beta version reporting module developed by SCCWRP. These scores are considered provisional until the ASCI has been fully evaluated and finalized.

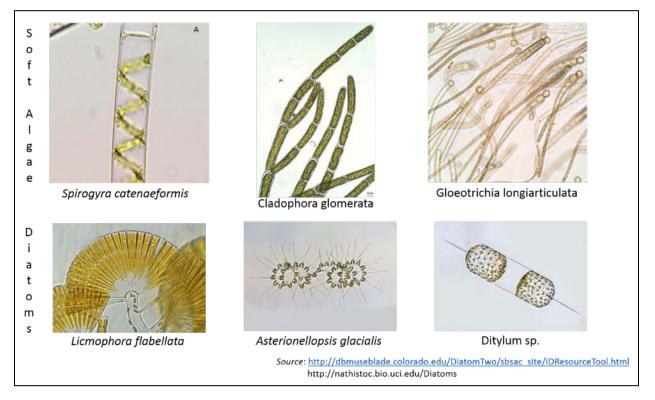


Figure 2.2. Examples of soft algae and diatoms.

Physical Habitat Indicators

The condition of physical habitat is a major contributor to stream ecosystem health. Physical habitat components such as streambed substrate, channel morphology, microhabitat complexity, in-stream cover-type complexity, and riparian vegetation cover contribute to the overall physical and biological integrity of a stream. The physical characteristics of a stream reach are affected by both natural factors (e.g., climate, slope, geology) and human disturbance (e.g., channelization, development, stream crossings, hydromodification).

Physical habitat conditions are generally evaluated using endpoint variables, or metrics, which are calculated using reach-scale averages of transect-based measurements and observations. The State Water Board has developed a SWAMP Bioassessment Reporting Module (SWAMP

RM), a custom Microsoft Access[™] application, that produces approximately 170 different metrics that are based on physical habitat measurements collected using both EPA's Environmental Monitoring and Assessment Program (EMAP) for freshwater wadeable streams (Kaufmann et al. 1999) and the SWAMP "Full" habitat protocol (Ode 2007) that was implemented by SCVURPPP at bioassessment stations. The metrics are classified into five thematic groups representing different physical attributes: substrate, riparian vegetation (including structure and shading), flow habitat variability, in-channel cover, and channel morphology.

The State Water Board recently developed the Index of Physical Habitat Integrity (IPI) as an overall measure of physical habitat condition. Similar to the CSCI, the IPI is calculated using a combination of physical habitat data collected in the field and environmental data generated in GIS following the methods described in Rehn et al. (2018). The IPI is based on five of the metrics generated by the SWAMP RM. The metrics were selected for their ability to discriminate between reference and stressed sites and provide unbiased representation of waterbodies across the different ecoregions of California. Scoring for these metrics were then calibrated using environmental variables that were associated with drainage areas for each sampling location.

Biological and Physical Habitat Condition Thresholds

Existing thresholds for CSCI scores (Mazor 2015) and ASCI scores (Mazor et al. in review) were used to evaluate the BMI and algae data collected in Santa Clara County and analyzed in this report (Table 2.1). Provisional thresholds for IPI scores (Rehn et al 2018) were used to evaluate physical habitat conditions. The thresholds for all three indices were based on the distribution of scores for data collected at reference calibration sites located throughout California. Four condition categories are defined by these thresholds: "likely intact" (greater than 30th percentile of reference site scores); "possibly intact" (between the 10th and the 30th percentiles); "likely altered" (less than the 1st percentile).

Biological Indicator	Tool	Likely Intact	Possibly Intact	Likely Altered	Very Likely Altered
BMI	CSCI	<u>></u> 0.92	<u>></u> 0.79 to < 0.92	<u>></u> 0.63 to < 0.79	< 0.63
Diatoms		<u>></u> 0.92	<u>></u> 0.80 to < 0.92	<u>></u> 0.63 to < 0.80	< 0.63
Soft Algae	ASCI	<u>></u> 0.93	<u>></u> 0.82 to < 0.93	<u>></u> 0.68 to < 0.82	< 0.68
Hybrid		<u>></u> 0.93	<u>></u> 0.83 to < 0.93	<u>></u> 0.70 to < 0.83	< 0.70
Physical Habitat	IPI	<u>></u> 0.94	<u>></u> 0.84 to < 0.94	<u>></u> 0.71 to < 0.83	< 0.70

Table 2.1. Condition categories used to evaluate CSCI, ASCI, and IPI scores.

A CSCI score below 0.795 is referenced in the MRP as a threshold indicating a potentially degraded biological community, and thus should be considered for a SSID Project. The MRP threshold is the division between the "possibly intact" and "likely altered" condition categories described in Mazor (2015). Further investigation is needed to evaluate the applicability of this

threshold to sites in highly urban watersheds and/or modified channels that are frequent throughout the SCVURPPP study area.

Stressor Variables

Physical habitat, landscape characteristics, general water quality, and water chemistry data collected during the bioassessment surveys were compiled and evaluated as potential stressor variables affecting biological condition.

Physical habitat stressor variables include 11 of the metrics developed by the SWAMP RM (described above) that were selected based on their ability to discriminate between reference and stressed sites and also showed little bias among ecoregions (Andy Rehn, personal communication, 2017) (Table 2.2). Additional physical habitat variables include the reachwide qualitative assessment (PHAB) that consists of three separate attributes: channel alteration, epifaunal substrate, and sediment deposition. Each attribute is individually scored on a scale of 0 to 20, with a score of 20 representing good condition. The total PHAB score is the sum of three individual attribute scores with a score of 60 representing the highest possible score.

Туре	Variable Name	Variables used for IPI Score
Channel Morphology	Evenness of Flow Habitat Types	Х
Charmer worphology	Percent Fast Water of Reach	
	Mean Filamentous Algae Cover	
Liphitat Complexity and Cover	Natural Shelter cover - SWAMP	
Habitat Complexity and Cover	Shannon Diversity (H) of Aquatic Habitat Types	Х
	Riparian Cover Sum of Three Layers	Х
Human Disturbance	Combined Riparian Human Disturbance Index - SWAMP	
	Evenness of Natural Substrate Types	
Substrate Size and	Percent Gravel - coarse	
Composition	Percent Substrate Smaller than Sand (<2 mm)	Х
	Shannon Diversity (H) of Natural Substrate Types	Х

Table 2.2. Physical habitat metrics used to assess physical habitat data collected at bioassessment sites in WY 2018. The five metrics used to calculate IPI scores are also shown.

Landscape variables were generated in GIS using three different scales of drainage area upstream of each sampling location: 1 km, 5 km, and entire watershed. Land use and transportation data layers were overlayed with the drainage areas to calculate landscape variables, including percent urban area, percent impervious area, total number of road crossings, and road density.

Water quality stressor variables include the general parameters measured in the field with sondes (i.e., dissolved oxygen, pH, temperature and specific conductivity), free chlorine and total chlorine residual, and water chemistry analyzed at laboratories (nutrients and anions). Additional water quality variables included chlorophyll a and ash free dry mass, both measured from filtration of the benthic algae composite samples.

Some of the water quality stressor variables used in the analysis were calculated or converted from other analytes or units of measurement:

- Conversion of measured total ammonia to the more toxic form of unionized ammonia was calculated to compare with the 0.025 mg/L annual median standard provided in the San Francisco Basin Water Quality Control Plan (Basin Plan) (SFRWQCB 2017). The conversion was based on a formula provided by the American Fisheries Society (AFS; https://fisheries.org/wp-content/uploads/2016/03/Copy-of-pub_ammonia_fwc.xls). The calculation requires total ammonia and field-measured values of pH, temperature, and specific conductance.
- Total nitrogen concentration was calculated by summing nitrate, nitrite, and Total Kjeldahl Nitrogen concentrations.
- The volumetric concentrations (mass/volume) for ash free dry mass and chlorophyll a (as measured by the laboratory) were converted to an area concentration (mass/area). Calculations required using both algae sampling grab size and composite volume.

Another potential stressor is climate. During the first five years of probabilistic sampling (WY 2012 – WY 2016), average precipitation was lower than average. During the drought, low base flow conditions were further impacted by minimal or complete absence of water releases from upstream reservoirs and diversion pipes bringing imported water from other parts of the State. Drought conditions changed with an above average wet season in WY 2017, followed by average season in WY 2018. Comparison of sampling results from recent wet years will provide useful information to evaluate the impacts of drought on biological integrity of the streams.

Stressor Thresholds

In compliance with provision C.8.h.iii.(4), water chemistry data collected at the bioassessment sites during WY 2018 were compared to stressor thresholds and applicable water quality standards (Table 2.3). Thresholds for pH, specific conductance, dissolved oxygen (DO), and temperature (for waters with COLD Beneficial Use only) are listed in provision C.8.d.iv of the MRP. With the exception of temperature and specific conductance, these conform to Water Quality Objectives in the Basin Plan (SFRWQCB 2017). Of the eleven nutrients analyzed synoptically with bioassessments, WQOs only exist for three: ammonia (unionized form), and chloride and nitrate (for waters with MUN Beneficial Use only). Smith Creek (tributary to Alameda Creek) is the only creek sampled in WY 2018 with MUN designated (see Table 1.4).

	Units	Threshold	Direction	Source
Nutrients and lons				
Nitrate as N ^a	mg/L	10	Increase	Basin Plan
Un-ionized Ammonia ^b	mg/L	0.025	Increase	Basin Plan
Chloride ^a	mg/L	250	Increase	Basin Plan
General Water Quality				
Oxygen, Dissolved	mg/L	5.0 or 7.0	Decrease	Basin Plan
рН		6.5 to 8.5		Basin Plan
Temperature, instantaneous maximum ^c	С°	24	Increase	MRP
Specific Conductance ^c	µS/cm	2000	Increase	MRP

Table 2.3. Thresholds for nutrient and general water quality variables.

^a Nitrate and chloride WQOs only apply to waters with MUN designated Beneficial Use

^b This threshold is an annual median value and is not typically applied to individual samples.

^c The MRP thresholds (or triggers) for temperature and specific conductance apply when 20 percent of instantaneous results are in exceedance. Application to individual samples is provisional.

Stressor Assessment

The association of stressors with biological indicator scores was evaluated using simple regression models. Linear regressions were run between variables within each of the stressor data types (e.g., landscape, physical habitat and water chemistry) and biological conditions indicators (i.e., CSCI and ASCI scores). Scatter plots showing trend lines are presented for some of the variables that had the greatest positive or negative correlation. However, the correlations were not expected to be very strong or significant due to the small WY 2018 sample size (n=20). More sophisticated statistical analyses using non-parametric measures of correlation (e.g., random forest models) are applied to the regional WY 2012 – WY 2016 dataset in the RMC 5-Year Report, summarized in Section 7.1 and included as Attachment 2.

2.3 Results and Discussion

The section below summarizes results from bioassessment sampling conducted during WY 2018. Conclusions and recommendations for this section are presented in Section 7.0.

A comprehensive analysis of bioassessment data collected by the Program over a five-year period is presented in the RMC Five-Year Bioassessment Report (5-Year Report) (BASMAA 2019) (Attachment 2). This BASMAA-funded project evaluated bioassessment data collected at all RMC (n=312) and Water Board (n=45) probabilistic monitoring sites sampled between WY 2012 and WY 2016. The data were evaluated to assess overall biological condition of streams within the RMC, as well as the extent and influence of stressor data on biological condition scores. In addition, the 5-Year Report evaluated the RMC Sample Frame and provided potential recommendations for revising the monitoring design in the future. Additional analysis of the full SCVURPPP MRP bioassessment dataset will be conducted for the Integrated Monitoring Report which will be developed following WY 2019 and submitted by March 31, 2020 (the fifth year of the Permit term) in lieu of an annual UCMR.

2.3.1 Site Evaluations

During WY 2018, SCVURPPP conducted site evaluations at a total of 75 potential probabilistic sites in Santa Clara County drawn from the Sample Frame. Of these sites, twenty were sampled in WY 2018 (rejection rate of 73%). Approximately 45 of the evaluated sites (60%) were rejected due to an inability to sample the site (e.g., low/no flow conditions, not wadeable). Ten sites (about 13%) were rejected due to access issues. Three of the twenty sampled sites (15%) were classified as non-urban land use. Land use classification, sampling location, and date for each site sampled during WY 2018 are listed in Table 2.4. Sites are mapped in Figure 1.2.

Station Code	Creek	Sample Date	Land Use	Elevation (m)	Latitude	Longitude
204R00749	Smith Creek	5/9/2018	NU	704	37.31672	-121.65057
205R00746	Saratoga Creek	5/24/2018	NU	214	37.25201	-122.06016
205R00769	MF Coyote Creek	5/10/2018	NU	510	37.21998	-121.54206
205R03498	Saratoga Creek	5/23/2018	U	146	37.25747	-122.03631
205R03562	Saratoga Creek	5/23/2018	U	172	37.25258	-122.04500
205R03591	Los Trancos Creek	5/7/2018	U	218	37.35238	-122.19713
205R03619	Saratoga Creek	5/8/2018	U	67	37.30297	-121.99653
205R03683	Permanente Creek	4/30/2018	U	94	37.33985	-122.09228
205R03699	Hale Creek	4/30/2018	U	54	37.36703	-121.69869
205R03738	Upper Silver Creek	5/1/2018	U	106	37.28625	-121.77795
205R03754	San Tomas Aquino	5/8/2018	U	97	37.25954	-121.99221
205R03795	Lower Silver Creek	5/30/2018	U	25	37.35770	-121.85820
205R03825	Thompson Creek	5/1/2018	U	157	37.28066	-121.75541
205R03843	San Tomas Aquino	5/29/2018	U	8	37.38186	-121.96843
205R03847	Los Trancos Creek	5/7/2018	U	120	37.38068	-122.19441
205R03875	Calabazas Creek	5/2/2018	U	65	37.31483	-122.01634
205R03907	Lower Penitencia	5/30/2018	U	4	37.43624	-121.91424
205R04190	Guadalupe Creek	5/29/2018	U	72	37.23516	-121.89116
205R04217	Upper Penitencia	5/3/2018	U	519	37.40062	-121.74910
205R04266	Calabazas Creek	5/2/2018	U	89	37.29627	-122.02921

Table 2.4. Bioassessment sampling dates and locations in Santa Clara County in WY 2018.

NU = non-urban, U = urban

Since WY 2012, a total of 152 probabilistic sites were sampled by SCVURPPP (n=140) and SWAMP (n=12) in Santa Clara County. During the seven-year sampling period, SCVURPPP sampled 121 urban and 19 non-urban sites and SWAMP sampled 12 non-urban sites.

2.3.2 Biological Condition Assessment

2.3.2.1 Bioassessment Data

A total of 141 unique BMI taxa were identified in samples collected at the 20 bioassessment sites in Santa Clara County during WY 2018. A total of 227 benthic algae taxa were identified in samples collected at the sites, including 164 diatom taxa and 63 soft algae taxa. The total number of BMI, diatom, and soft algae taxa identified at each bioassessment location is presented in Table 2.5. BMIs and diatoms were relatively well represented across all sites, with BMIs ranging from 9 to 53 taxa and diatoms ranging from 18 to 55 taxa. Soft algae taxa were less common across sites, ranging from 1 to 26 taxa. Nine of the sites (45%) had three or less soft algae taxa. Low numbers of soft algae taxa are common in Bay Area streams.

RMC Station	Creek Name	Elevation (m)	Land Use	BMI	Diatoms	Soft Algae
204R00749	Smith Creek	704	NU	53	18	6
205R00746	Saratoga Creek	214	NU	51	38	10
205R00769	MF Coyote Creek	510	NU	37	31	26
205R03498	Saratoga Creek	146	U	49	34	4
205R03562	Saratoga Creek	172	U	48	34	1
205R03591	Los Trancos Creek	218	U	40	31	2
205R03619	Saratoga Creek	67	U	26	25	3
205R03683	Permanente Creek	94	U	31	21	3
205R03699	Hale Creek	54	U	15	55	2
205R03738	Upper Silver Creek	106	U	15	46	4
205R03754	San Tomas Aquino	97	U	32	28	3
205R03795	Lower Silver Creek	25	U	11	43	15
205R03825	Thompson Creek	157	U	22	35	10
205R03843	San Tomas Aquino	8	U	13	37	16
205R03847	Los Trancos Creek	120	U	52	30	1
205R03875	Calabazas Creek	65	U	15	32	3
205R03907	Lower Penitencia	4	U	9	54	5
205R04190	Guadalupe Creek	72	U	40	41	4
205R04217	Upper Penitencia	519	U	39	28	5
205R04266	Calabazas Creek	89	U	24	46	3

Table 2.5. The total number of unique BMI, diatom and soft algae taxa identified in samples collected at 20 bioassessment sites in Santa Clara County during WY 2018.

NU = non-urban, U = urban

The total number of BMI taxa (i.e., BMI richness) was moderately positively correlated with site elevation (r^2 =0.32, p-value = 0.009) (Figure 2.3).¹⁸ In contrast, total taxa for diatoms generally decreased with increasing site elevation (r^2 =0.29, p-value = 0.015). BMI richness was not correlated with diatom or soft algae richness across the 20 bioassessment sites sampled in WY 2018. Similarly, diatom richness did not appear to have a correlation with soft algae richness.

¹⁸ R-squared represents the amount of variance in the dependent variable. The higher the R-square the better the model. The p-value represents the statistical significance of the result. A small p-value (≤ 0.05) indicates strong evidence; a large p-value (> 0.05) indicates weak evidence.

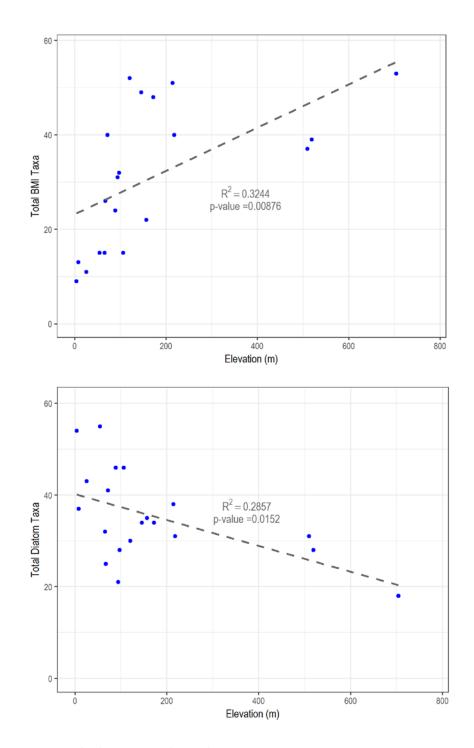


Figure 2.3. Total BMI (top) and diatom (bottom) taxa compared to elevation of the bioassessment sites, SCVURPPP, WY 2018.

Biological condition, as represented by CSCI and ASCI (diatom, soft algae, and hybrid) scores, for the 20 probabilistic sites sampled by SCVURPPP in WY 2018 are listed in Table 2.6 and mapped in Figure 2.6. Scores in the two higher condition categories (i.e., above the 10th percentile of reference sites) for each indicator are highlighted and bold.

Table 2.6. Biological condition scores, presented as CSCI and ASCI (diatom, soft algae and hybrid) for 20 probabilistic sites sampled in Santa Clara during WY 2018. Site characteristics related to percent impervious watershed area, channel modification and flow condition are also presented. Bold highlighted values indicate scores in the two higher condition categories.

		Land	Imperv.	Modified		CSCI		ASCI Sco	re 🛛
Station Code	Creek	Use	Area	Channel ¹	Flow ²	Score	Diatom	Soft Algae	Hybrid
204R00749	Smith Creek	NU	1%	Ν	Р	1.23	1.21	0.78	1.10
205R00746	Saratoga Creek	NU	2%	Ν	Р	1.12	0.96	0.94	0.82
205R00769	MF Coyote Creek	NU	1%	Ν	Р	0.74	1.22	1.01	1.14
205R03498	Saratoga Creek	U	3%	Ν	Р	1.14	1.04	0.71	0.91
205R03562	Saratoga Creek	U	2%	Y	Р	1.08	1.04	0.47	0.91
205R03591	Los Trancos Creek	U	5%	Ν	NP	1.06	0.87	1.02	0.87
205R03619	Saratoga Creek	U	16%	Y	NP	0.63	0.63	0.54	0.47
205R03683	Permanente Creek	U	11%	Ν	Р	0.91	0.69	0.83	0.74
205R03699	Hale Creek	U	26%	Ν	Р	0.46	0.91	0.94	0.81
205R03738	Upper Silver Creek	U	9%	Ν	Р	0.47	0.72	0.58	0.61
205R03754	San Tomas Aquino	U	11%	Ν	Р	0.92	0.77	1.02	0.76
205R03795	Lower Silver Creek	U	25%	Y	Р	0.4	0.58	0.73	0.61
205R03825	Thompson Creek	U	6%	Ν	Р	0.43	0.70	0.46	0.64
205R03843	San Tomas Aquino	U	37%	Y	Р	0.39	0.81	0.33	0.62
205R03847	Los Trancos Creek	U	6%	Ν	NP	1.2	0.82	0.47	0.71
205R03875	Calabazas Creek	U	27%	Ν	NP	0.46	0.58	0.47	0.47
205R03907	Lower Penitencia	U	69%	Y	Р	0.19	0.59	0.88	0.61
205R04190	Guadalupe Creek	U	4%	Ν	Р	0.88	1.03	0.94	0.89
205R04217	Upper Penitencia	U	1%	Ν	NP	1.04	0.82	1.03	0.90
205R04266	Calabazas Creek	U	12%	Ν	NP	0.51	0.89	1.02	0.79

NU = non-urban, U = urban

¹ Highly modified channel is defined as having armored bed and banks (e.g., concrete, gabion, rip rap) for majority of the reach or characterized as highly channelized earthen levee.

² Flow status (P = perennial, NP = non-perennial) was based on visual observations at each site made during fall or spring seasons.

CSCI Scores

The CSCI scores ranged from 0.19 to 1.23 across the 20 bioassessment sites sampled in WY 2018 (Table 2.6). A total often of the 20 bioassessment sites (50%) had CSCI scores in the two higher condition categories - "possibly intact" and "likely intact" condition. These combined classifications are above the MRP trigger threshold value of 0.795. Seven of the 20 sites had scores greater than 1.0, which are considered scores representing reference type conditions. These higher scoring sites were relatively undeveloped, with impervious area ranging between

1% and 6% (Table 2.6). Five of these sites occurred in two creeks: Saratoga Creek (3) and Los Trancos Creek (2).

One site (205R00769) had a CSCI score that ranked as "likely altered" (0.63 - 0.79). This site is located in a remote location of Middle Fork Coyote Creek in Henry Coe State Park. Nine sites (45%) were ranked as "very likely altered" (CSCI < 0.63), indicating highly degraded conditions. Seven of these sites were predominantly urban (impervious area > 10%) and four had modified channels.

Sites with CSCI scores below 0.795 will be considered as candidates for SSID projects.

ASCI Scores

The benthic algae taxa identified in the samples collected in Santa Clara County were used to calculate scores for the provisional statewide ASCI. Scores for three ASCI indices (diatoms, soft algae and hybrid) are shown in Table 2.6.

- **Diatoms.** Twelve of the twenty bioassessment sites had diatom ASCI scores that were classified as "possibly intact" or "likely intact" condition. The higher scoring sites occurred over a wide gradient of urbanization, ranging from 1% to 37% impervious area. Seven of the twelve sites also received CSCI scores that were in two higher condition categories (Table 2.6).
- **Soft Algae**. Ten of the twenty bioassessment sites had soft algae ASCI scores that were classified as "possibly intact" or "likely intact" condition. The higher scoring sites occurred over a wide gradient of urbanization, ranging from 1% to 69% impervious area in the upstream watersheds. Six of the ten sites also received CSCI scores that were in the two higher condition categories (Table 2.6).
- **Hybrid**. Seven of the twenty bioassessment sites had hybrid ASCI scores that were classified as "possibly intact" or "likely intact" condition. The higher scoring sites occurred in drainages with relatively low levels of urbanization, ranging from 1% to 5% impervious area. Six of the seven sites also received CSCI scores that were in two higher condition categories (Table 2.6).

The diatom and hybrid ASCI scores showed moderately positive correlation with the CSCI scores for the twenty bioassessment sites sampled during WY 2018 (Figure 2.4). Soft algae ASCI scores were not correlated with CSCI scores or diatom index scores.

A statewide bioassessment data analysis evaluated the CSCI and the three ASCI indices and concluded that the hybrid ASCI index was the most responsive index¹⁹, especially for nutrient stressor gradients (Theroux et al. in prep.). Additional guidance is needed, however, to determine the best application of the ASCI tool in evaluating bioassessment data. For example, it is not clear if one or more of the ASCI indices should be used to assess biological condition. Furthermore, it is not clear if ASCI should be used as a second line of evidence to the CSCI scoring results, or if it would be more effective as an independent indicator to evaluate different types of stressors (e.g., nutrients).

¹⁹ For the remainder of this report, the hybrid ASCI will be used to evaluate stressor association with biological condition.

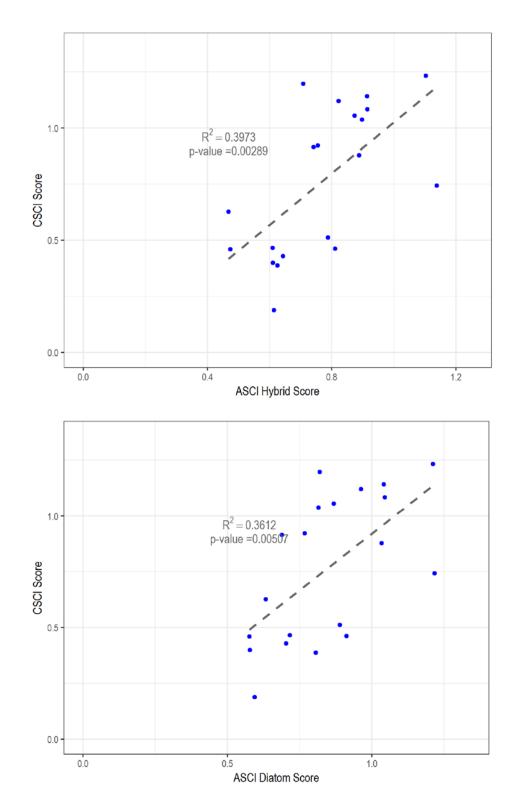


Figure 2.4. CSCI Scores compared to hybrid ASCI (top) and diatom ASCI (bottom) scores for 20 bioassessment sites sampled in Santa Clara County in WY 2018.

IPI Scores

Physical habitat conditions, as represented by IPI scores, are listed in Table 2.7. The qualitative habitat (PHAB) scores, including individual scores for channelization, epifaunal substrate and sedimentation attributes, and total PHAB (sum of the three attributes scores) are also presented in the table. Biological condition scores for CSCI and the hybrid ASCI are included in the table for comparison. The two higher condition categories for all three indices (i.e., above the 10th percentile of reference sites) are shown in shaded cells with bold text.

Station Code	Creek Name	CSCI Score	ASCI Hybrid Score	IPI Score	Channel Alteration	Epifaunal Substrate	Sediment Deposition	Total PHAB Score
204R00749	Smith Creek	1.23	1.10	1.14	20	18	16	54
205R00746	Saratoga Creek	1.12	0.82	1.05	19	15	13	47
205R00769	MF Coyote Creek	0.74	1.14	1.15	20	18	18	56
205R03498	Saratoga Creek	1.14	0.91	1.19	15	12	9	36
205R03562	Saratoga Creek	1.08	0.91	1.14	7	16	10	33
205R03591	Los Trancos Creek	1.06	0.87	1.08	16	16	13	45
205R03619	Saratoga Creek	0.63	0.47	0.99	9	9	10	28
205R03683	Permanente Creek	0.91	0.74	1.08	9	14	11	34
205R03699	Hale Creek	0.46	0.81	1.0	13	9	9	31
205R03738	Upper Silver Creek	0.47	0.61	1.15	17	14	12	43
205R03754	San Tomas Aquino	0.92	0.76	1.06	11	9	10	30
205R03795	Lower Silver Creek	0.40	0.61	0.8	4	7	4	15
205R03825	Thompson Creek	0.43	0.64	1.03	18	10	13	41
205R03843	San Tomas Aquino	0.39	0.62	0.93	3	7	6	16
205R03847	Los Trancos Creek	1.20	0.71	1.12	12	12	8	32
205R03875	Calabazas Creek	0.46	0.47	0.65	12	5	5	22
205R03907	Lower Penitencia	0.19	0.61	0.34	3	2	1	6
205R04190	Guadalupe Creek	0.88	0.89	1.2	17	12	8	37
205R04217	Upper Penitencia	1.04	0.90	0.97	19	17	16	52
205R04266	Calabazas Creek	0.51	0.79	1.04	14	6	10	30

Table 2.7. IPI scores for twenty probabilistic sites in Santa Clara County sampled in WY 2018. Qualitative PHAB scores are also listed. CSCI and hybrid ASCI scores are provided for comparison.

IPI scores, composed of metrics that are primarily based on physical habitat measurements, were positively correlated with the qualitative habitat assessment PHAB scores ($r^2 = 0.50$, p-value = 0.0005) (Figure 2.5). IPI scores were also positively correlated with CSCI scores, and slightly less so with hybrid ASCI scores (Figure 2.5).

Individual physical habitat variables are evaluated as stressors in the next section of the report.

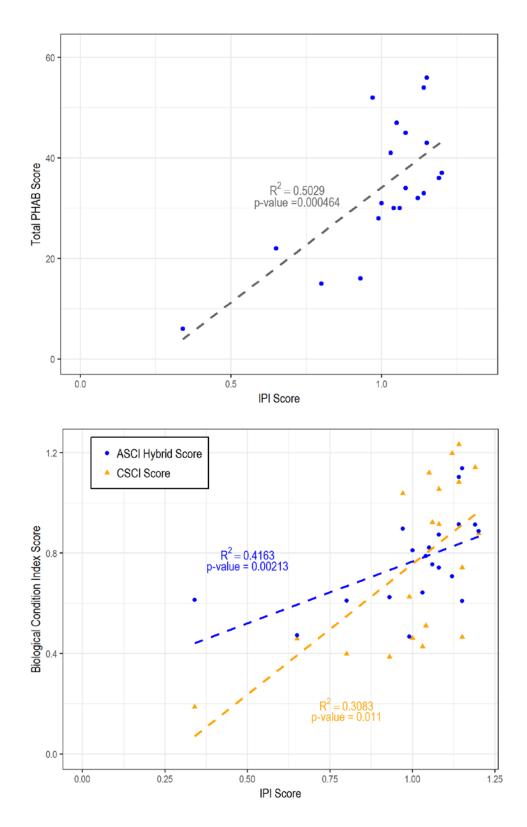


Figure 2.5. Total PHAB scores compared with IPI scores (top) and biological condition scores (CSCI and hybrid ASCI) plotted with IPI scores (bottom) for twenty bioassessment sites sampled In Santa Clara County during WY 2018.

Overall Condition

The condition categories for each site based on two of the biological indicators (CSCI and hybrid ASCI) and the IPI, as presented in Table 2.1, are mapped in Figure 2.6. There were six sites with scores in the two higher condition categories for all three indices (green and yellow symbols in Figure 2.6). Two of the sites are located in upper reaches of Saratoga Creek (sites 205R03562 and 205R03498). The remaining four high-scoring sites are located in Los Trancos Creek at Foothill Park (site 205R03591), Guadalupe Creek at the percolation ponds (site 205R04190), Upper Penitencia Creek upstream of Cherry Flat Reservoir (site 205R04217), and Smith Creek in Joseph Grant County Park (site 204R00749). All six sites were relatively undeveloped (less than < 5% impervious area in the upstream watershed).

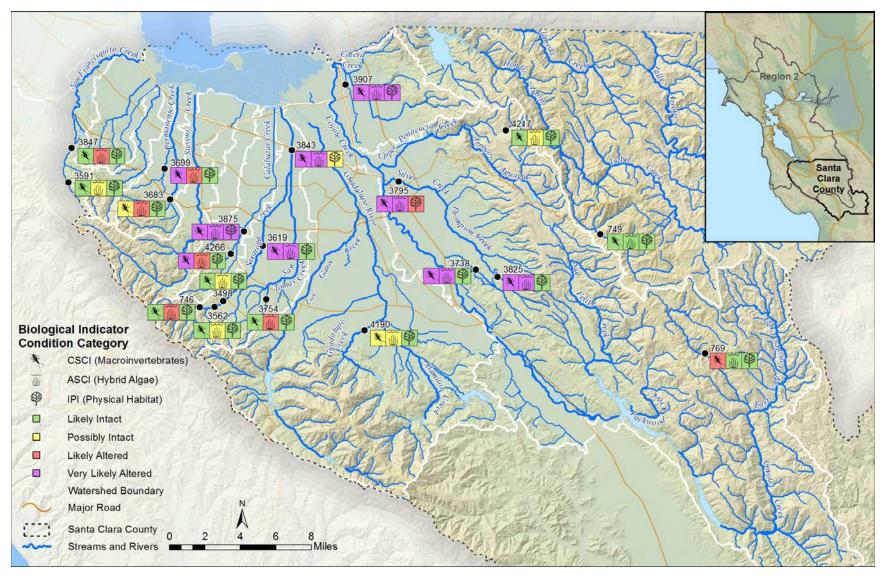


Figure 2.6. Condition category as represented by CSCI, ASCI Hybrid, and IPI scores for 20 probabilistic sites sampled in Santa Clara County during WY 2018.

2.3.3 Stressor Assessment

This section summarizes results for stressor data collected at 20 bioassessment sites during WY 2018. Stressors were evaluated using simple linear regressions between variables within each of the stressor data types (e.g., landscape, physical habitat and water chemistry) and biological conditions indicators (i.e., CSCI and ASCI scores). Scatter plots showing trend lines are presented for some of the variables that had the greatest positive or negative correlation. However, due to small number of samples (n=20), associations with biological condition are not expected to be strong.

General Water Chemistry

General water quality measurements sampled at the twenty bioassessment sites in WY 2018 are listed in Table 2.8. None of the water quality measurements exceeded water quality objectives or MRP trigger thresholds. Nor were any of the water quality measurements well correlated with CSCI or hybrid ASCI scores.

Station Code	Creek Name	Sample Date	Temp (C)	DO (mg/L)	рН	Specific Conductance (uS/cm)
204R00749	Smith Creek	5/9/2018	13.1	10.1	7.8	310
205R00746	Saratoga Creek	5/24/2018	12.2	11.4	8.0	462
205R00769	MF Coyote Creek	5/10/2018	12.9	9.0	7.6	328
205R03498	Saratoga Creek	5/23/2018	13.9	11.3	8.3	507
205R03562	Saratoga Creek	5/23/2018	12.7	11.9	8.0	502
205R03591	Los Trancos Creek	5/7/2018	11.0	11.1	7.8	515
205R03619	Saratoga Creek	5/8/2018	13.8	11.1	7.8	447
205R03683	Permanente Creek	4/30/2018	14.5	9.2	8	1143
205R03699	Hale Creek	4/30/2018	12.0	9.0	8.1	1959
205R03738	Upper Silver Creek	5/1/2018	13.9	8.4	8.1	1443
205R03754	San Tomas Aquino	5/8/2018	16.5	9.3	7.6	626
205R03795	Lower Silver Creek	5/30/2018	19.9	7.7	7.5	1540
205R03825	Thompson Creek	5/1/2018	14.0	8.5	8.1	746
205R03843	San Tomas Aquino	5/29/2018	19.7	7.2	7.8	1020
205R03847	Los Trancos Creek	5/7/2018	14.5	10.3	8.2	718
205R03875	Calabazas Creek	5/2/2018	19.9	9.4	8.3	335
205R03907	Lower Penitencia	5/30/2018	22.6	8.3	8.0	1342
205R04190	Guadalupe Creek	5/29/2018	17.6	11.7	7.2	750
205R04217	Upper Penitencia	5/3/2018	12.6	9.7	7.6	376
205R04266	Calabazas Creek	5/2/2018	16.5	9.5	7.9	321

Table 2.8. General water quality measurements for twenty probabilistic sites in Santa Clara County sampled in WY 2018.

Landscape Variables

Landscape variables associated with the drainage area for each bioassessment site sampled in WY 2018 are presented in Table 2.9. Landscape variables include: percent urban area, percent impervious area, total number of road crossings, and road density (road length/watershed area). The total drainage area and CSCI scores are presented for comparison. Based on the simple regression models, the strongest relationships between CSCI scores and landscape variables were for impervious area ($r^2 = 0.55$, p < 0.0002) and road density ($r^2 = 0.62$, p < 4e-05) (Figure 2.7). The same two landscape variables were not well correlated with the ASCI scores (not shown).

Station Code	Creek Name	CSCI	Drainage Area (km2)	Elevation (m)	Percent Urban Watershed	Percent Impervious Watershed	Road Crossings Watershed	Road Density (km/km²)
204R00749	Smith Creek	1.23	30	704	0%	1%	7	0.4
205R00746	Saratoga Creek	1.12	19	214	2%	2%	16	1.1
205R00769	MF Coyote Creek	0.74	37	510	0%	1%	9	0.2
205R03498	Saratoga Creek	1.14	24	146	9%	3%	22	1.8
205R03562	Saratoga Creek	1.08	22	172	5%	2%	18	1.3
205R03591	Los Trancos Creek	1.06	5	218	13%	5%	0	1.6
205R03619	Saratoga Creek	0.63	34	67	32%	16%	38	4.6
205R03683	Permanente Creek	0.91	11	94	12%	11%	6	1.3
205R03699	Hale Creek	0.46	8	54	83%	26%	25	8.8
205R03738	Upper Silver Creek	0.47	10	106	18%	9%	27	3.4
205R03754	San Tomas Aquino	0.92	9	97	51%	11%	21	5.1
205R03795	Lower Silver Creek	0.4	97	25	49%	25%	130	7.1
205R03825	Thompson Creek	0.43	11	157	13%	6%	16	2.4
205R03843	San Tomas Aquino	0.39	107	8	71%	37%	188	9.1
205R03847	Los Trancos Creek	1.2	14	120	20%	6%	6	2.7
205R03875	Calabazas Creek	0.46	19	65	66%	27%	48	8.4
205R03907	Lower Penitencia	0.19	12	4	96%	69%	27	12.5
205R04190	Guadalupe Creek	0.88	37	72	8%	4%	13	2.3
205R04217	Upper Penitencia Cr	1.04	4	519	0%	1%	0	0
205R04266	Calabazas Creek	0.51	11	89	43%	12%	27	5

Table 2.9. Landscape variables for watershed areas of the 20 bioassessment sites sampling in WY 2018.

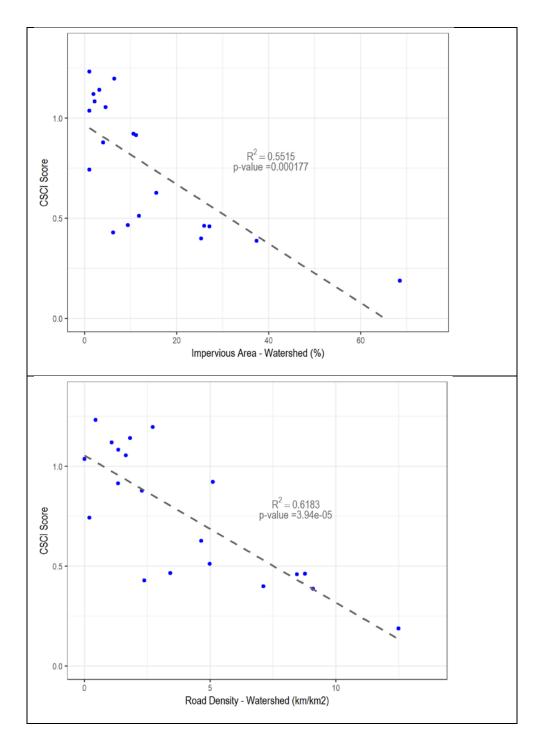


Figure 2.7. CSCI Scores compared to percent impervious (top) and road density (bottom) for 20 bioassessment sites sampled in Santa Clara County in WY 2018.

Physical Habitat

Scores for eleven physical habitat metrics that were generated from the physical habitat data collected at bioassessment sites in WY 2018 are listed in Table 2.10. Based on the simple regression models, the strongest relationships between CSCI scores and physical habitat were for *Smaller than Sand* metric (negatively correlated, $r^2 = 0.5$, p < 0.0005) and the *Substrate Diversity of Natural Substrate Types* metric (positively correlated $r^2 = 0.38$, p < 0.004) (Figure 2.8). The same two landscape variables were less correlated with the ASCI scores (not shown).

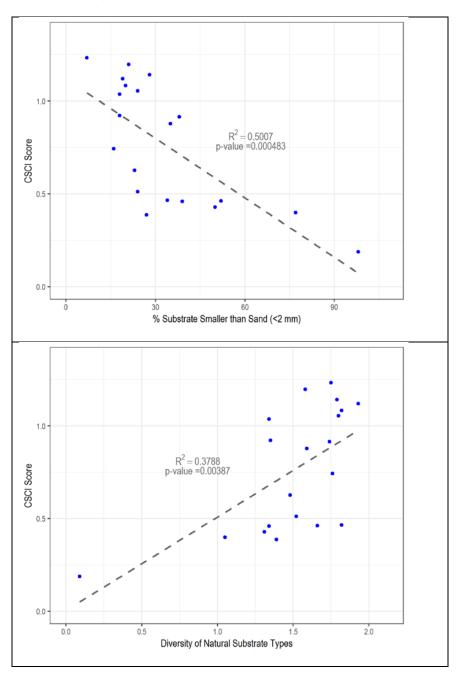


Figure 2.8. CSCI Scores compared to PHAB metrics associated with substrate size and composition (Substrate Smaller than Sand (top) and Diversity of Natural Substrate Types (bottom)) for 20 bioassessment sites sampled in Santa Clara County in WY 2018.

Water Chemistry (Nutrients)

Nutrient and conventional analyte concentrations measured in water samples collected at twenty bioassessment sites in Santa Clara County during WY 2018 are listed in Table 2.11. There were no water quality objective exceedances for water chemistry parameters.

Total nitrogen concentrations ranged from 0.12 to 8.1 mg/L. The two highest nitrogen concentrations were measured at site 205R03795 in Lower Silver Creek (8.1 mg/L) and site 205R03699 (3.1 mg/L) on Hale Creek. Total phosphorus concentrations ranged from <0.001 to 0.22 mg/L. The highest phosphorus concentration was measured at site 205R03699 on Hale Creek. Neither of the nutrient parameters were correlated with CSCI or hybrid ASCI scores.

In an effort to assess whether nutrient concentrations (measured during bioassessments) are affecting indicators of biomass (i.e., chlorophyll a, ash free dry mass, percent algae cover), simple regression models were run. There was slight positive correlation between total nitrogen concentration and percent macroalgal cover ($r^2 = 0.25$, p = 0.024) for the 20 sites sampled in WY 2018 (Figure 2.9). Chlorophyll a and algae cover were moderately positively correlated ($r^2 = 0.34$, p = 0.007). Additional analyses with larger number of samples should be conducted to assess whether percent algae cover provides an accurate estimate for algae biomass (as measured by chlorophyll a and ash free dry mass) at bioassessment sites.

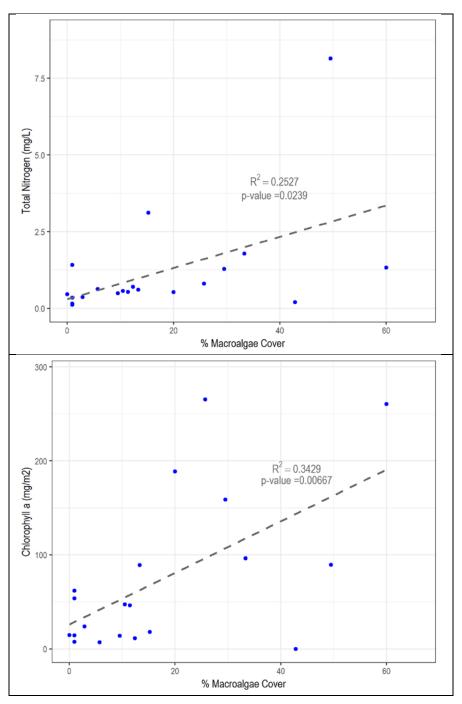


Figure 2.9. Total nitrogen concentrations compared with percent macroalgae cover (top) and chlorophyll a concentrations compared with percent macroalgae cover (bottom), for 20 bioassessment sites sampled in Santa Clara County in WY 2018.

		Chanı Morpho		Н	abitat Com	plexity and Cov	/er	Su	ıbstrate Size ar	nd Compos	ition	Human Disturbance
Station Code	CSCI Score	Evenness of Flow Habitat Types ¹	% Fast Water of Reach	Shannon Diversity - Aquatic Habitat Types ¹	Natural Shelter Cover	Mean Filamentous Algae Cover	Riparian Cover Sum of 3 Layers ¹	Evenness of Natural Substrate Types	Shannon Diversity - Natural Substrate Types ¹	% Gravel Coarse	% Substrate Smaller than Sand (<2 mm) ¹	Riparian Human Disturbance Index
204R00749	1.23	0.9	36	1.7	33	5	113	0.9	1.8	35	7	0.1
205R00746	1.12	0.6	46	1.6	28	5	119	0.9	1.9	19	19	1.6
205R00769	0.74	0.8	26	1.6	44	30	139	0.9	1.8	25	16	0.2
205R03498	1.14	1.0	50	1.9	22	4	142	0.9	1.8	30	28	3.1
205R03562	1.08	0.7	56	1.6	42	4	172	0.8	1.8	15	20	5.7
205R03591	1.06	0.7	56	1.6	31	0	150	0.9	1.8	20	24	1.3
205R03619	0.63	0.4	12	1.8	18	4	126	0.8	1.5	42	23	3.5
205R03683	0.91	0.6	68	1.9	45	17	157	0.8	1.7	21	38	2.2
205R03699	0.46	0.5	24	1.7	47	4	159	0.8	1.7	25	52	3.7
205R03738	0.47	0.9	33	1.9	44	20	153	0.9	1.8	20	34	1.5
205R03754	0.92	0.7	17	1.6	29	0	150	0.7	1.4	53	18	3.3
205R03795	0.4	0.9	0	1.4	29	28	118	0.7	1.1	11	77	4.5
205R03825	0.43	1.0	40	1.6	81	33	153	0.8	1.3	7	50	1.6
205R03843	0.39	0.8	22	1.1	22	35	100	0.8	1.4	38	27	3.3
205R03847	1.2	0.6	20	1.6	17	0	182	0.8	1.6	32	21	3.9
205R03875	0.46	0.1	0	1.7	17	2	70	0.8	1.3	30	39	3.4
205R03907	0.19	0.1	0	1.1	37	5	86	0.1	0.1	0	98	4.6
205R04190	0.88	0.9	41	1.9	51	5	169	0.8	1.6	38	35	2.9
205R04217	1.04	0.2	4	1.4	17	1	160	0.8	1.3	43	18	1.1
205R04266	0.51	0.8	45	1.8	18	0	125	0.9	1.5	40	24	3.1

Table 2.10. Scores for 11 PHAB metrics calculated from physical habitat data collected at twenty probabilistic sites in Santa Clara County during WY 2018.

¹One of the five metrics used for development of the Index for Physical Habitat Integrity (IPI)

Table 2.11. Nutrient and conventional constituent concentrations in water samples collected at 20 sites in Santa Clara County during WY 2018. Physical habitat measurement percent macroalgae cover, is also shown for comparison.

Station Code	Creek	Ammonia as N	Unionized Ammonia (as N)	Chloride	AFDM	Chloro a	Nitrate as N	Nitrite as N	Total Kjeldahl as N	Total Nitrogen	Ortho- Phosphate as P	Phosphorus as P	Silica as SiO2	Macro Algae Cover
		mg/L	mg/L	mg/L	g/m2	mg/m2	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	%
Wate	er Quality Objective:	NA	0.025 ^b	250 a	NA	NA	10 ^a	NA	NA	NA	NA	NA	NA	NA
204R00749	Smith Creek	0.044 J	0.001	6.6	11	54	0.06	< 0.001	0.088 J	0.15	0.007 J	0.007 J	13	1
205R00746	Saratoga Creek	< 0.04	< 0.001	16	38	89	0.21	< 0.001	0.4	0.61	0.072	0.06	23	13
205R00769	MF Coyote Cr	< 0.04	< 0.001	7.9	9	NR	0.07	< 0.001	0.13	0.20	< 0.006	< 0.007	13	43
205R03498	Saratoga Cr	< 0.04	< 0.001	22	106	46	0.14	< 0.001	0.4	0.54	0.06	0.064	20	11
205R03562	Saratoga Creek	< 0.04	< 0.001	21	61	47	0.17	< 0.001	0.4	0.57	0.066	0.046	20	10
205R03591	Los Trancos Cr	< 0.04	< 0.001	18	100	15	0.11	< 0.001	0.35	0.46	0.017	0.018	17	0
205R03619	Saratoga Creek	< 0.04	< 0.001	65	84	14	0.31	< 0.001	0.18	0.49	0.071	0.077	14	10
205R03683	Permanente Cr	< 0.04	< 0.001	30	81	189	0.13	< 0.001	0.4	0.53	0.19	0.035	16	20
205R03699	Hale Creek	0.099 J	0.002	200	74	18	2.00	0.012	1.1	3.11	0.21	0.22	32	15
205R03738	Upper Silver Cr	< 0.04	< 0.001	170	165	159	0.71	0.002 J	0.57	1.28	0.15	0.17	39	30
205R03754	San Tomas Aquino	< 0.04	< 0.001	59	13	7	0.32	< 0.001	0.31	0.63	0.019	0.02	28	6
205R03795	Lower Silver Cr	0.92	0.009	140	305	89	8.00	0.017	0.13	8.15	0.032	< 0.007	27	50
205R03825	Thompson Cr	< 0.04	< 0.001	100	135	96	1.30	< 0.001	0.48	1.78	0.056	0.053	27	33
205R03843	San Tomas Aquino	1.2	0.024	72	228	261	0.57	0.006	0.75	1.33	0.013	0.046	18	60
205R03847	Los Trancos Cr	< 0.04	< 0.001	45	61	14	0.08	< 0.001	< 0.07	0.12	0.029	0.03	24	1
205R03875	Calabazas Cr	0.055 J	0.004	43	23	8	0.22	< 0.001	0.13	0.35	< 0.006	0.062	8.6	1
205R03907	Lower Penitencia	1.1	0.046	120	533	62	0.77	0.027	0.62	1.42	0.028	0.043	20	1
205R04190	Guadalupe Cr	1.0	0.005	34	36	266	0.10	0.001 J	0.7	0.80	0.02	< 0.007	16	26
205R04217	Upper Penitencia	< 0.04	< 0.001	12	102	24	< 0.02	0.001 J	0.35	0.36	0.035	0.034	13	3
205R04266	Calabazas Cr	< 0.04	< 0.001	42	48	11	0.26	0.001 J	0.44	0.70	0.093	0.092	9.5	12

NA = Not Applicable, NR = Not Reported

J = The reported result is an estimate.

^a Chloride and nitrate WQOs only apply to waters with MUN designated Beneficial Uses.

^b This threshold is an annual median value and is not typically applied to individual samples.

3.0 CONTINUOUS WATER QUALITY MONITORING

3.1 Introduction

During WY 2018 water temperature and general water quality were monitored in compliance with Creek Status Monitoring Provisions C.8.d.iii – iv of the MRP. Monitoring was conducted at selected sites using a targeted design based on the directed principle²⁰ to address the following management questions:

- 1. What is the spatial and temporal variability in water quality conditions during the spring and summer season?
- 2. Do general water quality measurements indicate potential impacts to aquatic life?

The first management question is addressed primarily through evaluation of water quality results in the context of existing aquatic life uses. Temperature and general water quality data were evaluated for potential impacts to different life stages and overall population of fish community present within monitored reaches.

The second management question is addressed primarily through the evaluation of targeted data with respect to water quality objectives and thresholds from published literature. Sites where exceedances occur may indicate potential impacts to aquatic life or other beneficial uses and are considered as candidates for future Stressor/Source Identification projects.

3.2 Study Area

In compliance with MRP, temperature was monitored at a minimum of eight sites, and general water quality was monitored at three sites. The targeted monitoring design focuses on sites selected based on the presence of significant fish and wildlife resources as well as historical and/or recent indications of water quality concerns.

3.2.1 Temperature

Continuous (hourly) water temperature measurements were collected from April through September 2018, at nine locations²¹ in two creeks of the Guadalupe River watershed: Alamitos Creek and Guadalupe Creek (Figure 3.1). Both creeks are impounded by large dams located at the base of the Santa Cruz Mountains. The temperature monitoring locations were downstream of the reservoirs in reaches flowing through the Santa Clara Valley. The upper watershed areas for these creeks include rangeland and forested land uses within Almaden Quicksilver County Park and the Sierra Azul Open Space Preserve. The lower watershed areas are primarily residential land uses within the City of San José.

The Almaden Reservoir (1,590 acre-feet) is located in upper Alamitos Creek and the Guadalupe Reservoir (3,415 acre-feet) is located in upper Guadalupe Creek. Both reservoirs are owned and operated by SCVWD. The reservoirs are primarily used for water supply, although they

²⁰ Directed Monitoring Design Principle: A deterministic approach in which points are selected deliberately based on knowledge of their attributes of interest as related to the environmental site being monitored. This principle is also known as "judgmental," "authoritative," "targeted," or "knowledge-based."

²¹ SCVURPPP typically monitors water temperature at more stations than the MRP required minimum of eight to mitigate for potential equipment loss.

also provide some flood protection by containing runoff during the wet season. Releases during the late summer can also benefit the environment by maintaining flow in the creek.

Guadalupe Creek and Alamitos Creek support spawning and rearing habitat for steelhead, although fish are less abundant in the unshaded, warm section of Guadalupe Creek downstream of Camden Avenue (Smith 2013). Seven of the sites were also monitored for temperature as part of Creek Status Monitoring Project during WY 2017. Two temperature monitoring sites that are closer to the reservoirs were added in WY 2018: site 218 on Guadalupe Creek located about 1000 meters downstream of Guadalupe Reservoir, and site 279 on Alamitos Creek located about 1250 meters downstream of Calero Reservoir. These new sites were selected to evaluate water temperatures in reaches closer to the reservoirs.

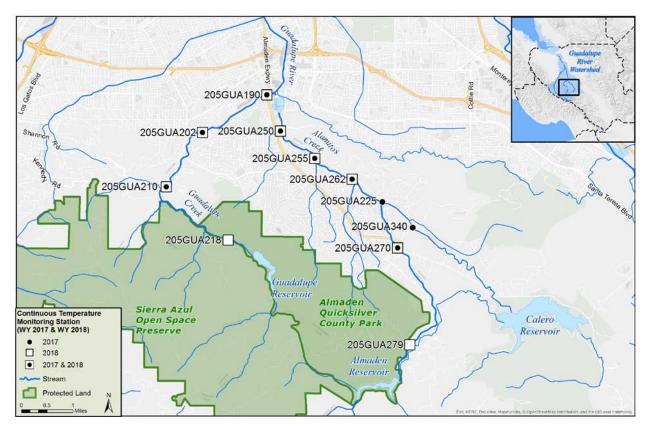


Figure 3.1. Continuous temperature stations in the Guadalupe River watershed, WY 2017 and 2018.

3.2.2 General Water Quality

Continuous (15-minute) general water quality measurements (DO, specific conductance, pH, and temperature) were recorded at three locations on the mainstem of Coyote Creek during two two-week sampling events in WY 2018 (Figure 3.2). The stations include site 205COY235 (Watson Park), site 205COY236 (Julian Street) and site 205COY239 (Williams). The first event was in late May through early June and the second event was in September.

The monitoring stations were previously sampled for continuous water quality in WY 2013 as part of the Coyote Creek Dissolved Oxygen Stressor/Source Identification (Coyote Creek SSID) Project (SCVURPPP 2014) and for MRP Provision C.8.d.iii compliance in WY 2017. The Coyote Creek SSID Project evaluated a range of potential stressors and sources that may cause low dissolved oxygen in the section of Coyote Creek between Watson Park and Williams Park. The Coyote Creek SSID Project measured continuous water quality at six locations between June and September 2013.

WY 2017 monitoring was conducted following an extremely wet winter that resulted in widespread flooding in the urban reaches of Coyote Creek. One of the objectives for sampling these locations was to determine if the high flow events in 2017 may have flushed out the fine sediment and organic matter that was identified as a potentially important factor causing reduced dissolved oxygen levels in the Coyote Creek SSID Project study area.

Creek Status Monitoring results from WY 2017 indicated that dissolved oxygen during the September sampling event was generally higher compared to levels measured in WY 2013. To evaluate inter-annual variability, the same sites were monitored in WY 2018. Data may help assess overall variability in water quality conditions between a year with high rainfall and flooding (WY 2017) and a year with average rainfall (WY 2018).

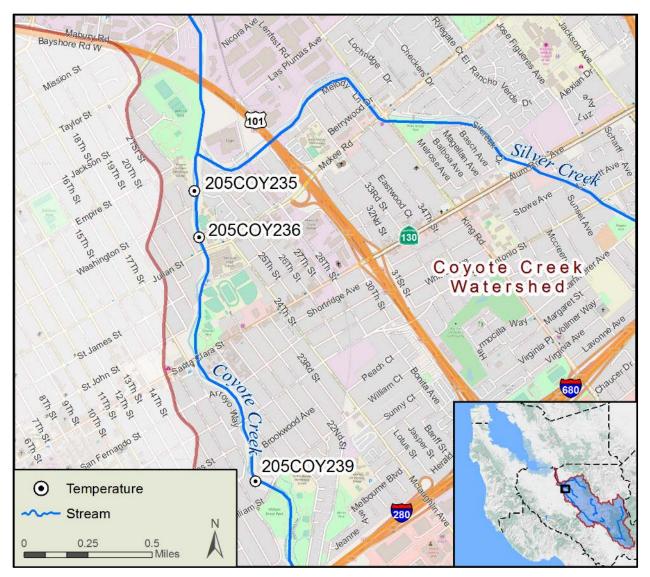


Figure 3.2. Continuous water quality stations in Coyote Creek, WY 2017 and 2018.

3.3 Methods

Water quality data were collected in accordance with SWAMP-comparable methods and procedures described in the BASMAA RMC SOPs (BASMAA 2016a) and associated QAPP (BASMAA 2016b). Data were evaluated with respect to the MRP provision C.8.d "Follow-up" triggers for each parameter.

3.3.1 Continuous Temperature

Digital temperature loggers (Onset HOBO Water Temp Pro V2) were programmed to record data at 60-minute intervals. The loggers were deployed at targeted sites from April 5 through September 27, 2018. Procedures used for calibrating, deploying, programming and downloading data are described in RMC SOP FS-5 (BASMAA 2016a).

3.3.2 Continuous General Water Quality

Water quality monitoring equipment recording dissolved oxygen, temperature, conductivity, and pH (YSI 6600 data sondes) were programmed to record data at 15-minute intervals. The sondes were deployed at targeted sites for two 2-week periods: during spring season (Event 1) and during summer season (Event 2) in 2018. Procedures for calibrating, deploying, programming and downloading data are described in RMC SOP FS-4 (BASMAA 2016a).

3.3.3 Data Evaluation

Continuous temperature and water quality data generated during WY 2018 were analyzed and evaluated to identify potential stressors that may be contributing to degraded or impacted biological conditions, including exceedances of water quality objectives. Provision C.8.d of the MRP identifies trigger criteria as the principal means of evaluating the creek status monitoring data to identify sites where water quality impacts may have occurred. Sites with targeted monitoring results exceeding the trigger criteria are identified as candidate SSID projects. The relevant trigger criteria for continuous temperature and water quality data are listed in Table 3.1.

Monitoring Parameter	Objective/Trigger Threshold	Units	Source				
Temperature	Two or more weekly average temperatures exceed the MWAT of 17.0°C for a Steelhead stream, or when 20% of the results at one sampling station exceed the instantaneous maximum of 24°C.	°C	MRP provision C.8.d.iii.				
General Water Quality Parameters	20% of results at each monitoring site exceet threshold - applies individually to each para		more established standard or				
Conductivity	2000	µS/c m	MRP provision C.8.d.iii.				
Dissolved Oxygen	WARM < 5.0, COLD < 7.0	mg/L	SF Bay Basin Plan Ch. 3, p. 3-4				
рН	> 6.5, < 8.5 ¹	рН	SF Bay Basin Plan Ch. 3, p. 3-4				
Temperature	Same as Temperature (See Above)						

Table 3.1. Water Quality Objectives and thresholds used for trigger evaluation.

¹. Special consideration will be used at sites where imported water is naturally causing higher pH in receiving waters.

3.4 Results and Discussion

The section below summarizes results from continuous temperature and water quality monitoring conducted during WY 2018. Conclusion and recommendations for this section are presented in Section 7.0.

3.4.1 Continuous Temperature

Temperature loggers were deployed at nine sites in the Guadalupe River watershed on April 5, checked and downloaded on June 4, and removed on September 27, 2018 (26 weeks). During retrieval in September, the temperature logger at site 262 was not recovered, and as a result, only 12 weeks of data were recorded at that site.

Summary statistics for continuous water temperature data collected at the nine sites are listed in Table 3.2. The number and percent of measurements from each site that exceed the instantaneous maximum temperature trigger of 24°C is shown in the table. Temperatures greater than 24°C occurred at one site (218) during the month of August, but only for 1% of the total measurements recorded; therefore, the trigger threshold for instantaneous maximum temperature was not exceeded.

Maximum Weekly Average Temperature (MWAT) values were calculated for each of the nine monitoring sites (Table 3.3). Consistent with MRP requirements, the MWAT was calculated for non-overlapping, seven-day periods. The MWAT values across all the sites ranged from 11.0 °C to 16.1°C during the month of April to 19.0 °C to 22.7°C during the month of August. Time series plots of the MWAT values are shown for sites in Guadalupe Creek (Figure 3.3) and Alamitos Creek (Figure 3.4). Similar to the results from WY 2017, the MWAT trigger was exceeded on two or more weeks at all sampling locations in WY 2018. As a result, all nine sites will be added to the list of potential sites considered for SSID projects.

Water temperature data, calculated as a daily average, for monitoring sites in Guadalupe Creek and Alamitos Creek in WY 2018, are shown in Figures 3.5 and 3.6, respectively. Daily average temperatures collected during WY 2017 are also presented for comparison. Water temperatures generally increased throughout the summer months of June through August followed by a slow decline by mid/late September for both years. Water temperatures had similar seasonal patterns between the two years of monitoring, with the exception of higher temperatures observed during the months June and September during WY 2017. The higher water temperatures in September 2017 coincide with a heatwave that exhibited some of the highest air temperatures for that month on record.

Instantaneous water temperatures collected at monitoring sites in Guadalupe Creek and Alamitos Creek for both years, are presented as bean plots in Figures 3.7 and 3.8, respectively. In Guadalupe Creek, water temperatures were relatively consistent for both years, with the median temperature generally increasing with decreasing site elevation (Figure 3.7). However, site 218 (only sampled in 2018), located just below Guadalupe Reservoir, had a higher median temperature than adjacent downstream sites. This pattern suggests that water released from the reservoir (potentially warmed by solar radiation) is gradually cooled by the shaded riparian corridor at sites further downstream. Water temperature gradually increases at sites further downstream that have less shading and more influence from urban runoff and groundwater return flows. A similar pattern was observed in Alamitos Creek sites, with the median temperature lowest in the middle elevation site (262) and increasing at sites located further upstream and downstream of that site (Figure 3.8).

	Site ID	205GUA190	205GUA 202	205GUA 210	205GUA 218	205GUA 250	205GUA 255	205GUA 262	205GUA 270	205GUA 279
	Start Date	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018
	End Date	9/27/2018	9/27/2018	9/27/2018	9/27/2018	9/27/2018	9/27/2018	6/25/2018	9/27/2018	9/27/2018
(C)	Min	12.3	9.7	8.7	9.6	12.7	11.9	12.0	10.7	11.6
	N A 11	19.0	17.8	17.1	19.1	19.1	18.6	16.6	17.9	18.2
Temperature	Mean	18.4	17.2	16.7	18.1	18.7	18.5	16.7	17.5	17.7
mpe	Max	23.4	22.6	22.6	24.9	23.4	23.4	22.2	22.0	23.6
Te	Max 7-day mean	21.0	21.1	20.4	22.7	21.4	21.3	19.2	20.6	21.5
	N (# individual measurements)	4196	3451	4196	4197	4195	4194	1939	4195	4195
#	# Measurements	0	0	0	52	0	0	0	0	0
	> 24°C	0%	0%	0%	1%	0%	0%	0%	0%	0%

Table 3.2. Descriptive statistics for continuous water temperature measured between April 5 and September 27, 2018 at nine sites in the Guadalupe River watershed, Santa Clara County.

Table 3.3. MWAT values for water temperature data collected at nine stations monitored in Guadalupe River watershed, WY 2018. MWAT values that exceed MRP trigger (17°C) are indicated in bold.

		Guadalu	pe Creek		Alamitos Creek					
Station	205GUA190	205GUA202	205GUA210	205GUA218	205GUA250	205GUA255	205GUA262	205GUA270	205GUA279	
Date				Weekly A	verage Tempe	rature (°C)				
4/5/2018	14.6	13.6	12.7	11.5	15.2	15.1	14.9	13.9	12.9	
4/12/2018	13.9	12.0	11.2	11.0	14.6	14.4	14.3	13.0	12.8	
4/19/2018	15.0	13.8	12.7	11.9	16.1	16.0	15.9	14.6	13.7	
4/26/2018	14.8	13.3	12.4	12.3	15.6	15.5	15.5	13.9	13.7	
5/3/2018	15.6	14.8	13.8	13.5	16.7	16.5	16.4	15.1	14.4	
5/10/2018	15.9	15.1	14.1	14.3	16.6	16.4	16.3	15.1	14.8	
5/17/2018	16.1	15.3	14.7	15.1	17.0	16.9	16.8	15.7	15.3	
5/24/2018	16.7	16.3	15.5	16.0	17.5	17.5	17.3	16.4	15.9	
5/31/2018	17.1	16.7	15.7	16.6	17.9	17.9	17.7	16.7	16.2	
6/7/2018	17.5	16.7	16.0	17.3	18.2	18.2	18.1	16.9	16.6	
6/14/2018	18.0	17.5	16.8	18.1	18.8	18.7	18.5	17.5	17.0	
6/21/2018	18.8	19.0	18.1	18.9	19.7	19.6	19.2	18.6	17.6	
6/28/2018	19.0	18.9	18.1	19.3	19.9	19.7		18.6	17.9	
7/5/2018	19.7	19.7	18.9	20.2	20.6	20.4		19.3	18.6	
7/12/2018	20.2	20.6	19.9	21.1	21.1	20.9		20.1	19.2	
7/19/2018	20.7	21.1	20.4	21.6	21.4	21.3		20.6	19.8	
7/26/2018	20.6	20.1	19.6	21.4	19.8	20.6		19.9	19.9	
8/2/2018	20.5	19.2	18.9	21.4	19.8	20.0		19.2	20.0	
8/9/2018	20.9	19.8	19.7	22.3	20.2	20.5		19.9	20.7	
8/16/2018	21.0	19.4	19.6	22.7	20.5	20.2		19.8	21.1	
8/23/2018	20.9	19.5	19.1	22.5	20.6	19.8		19.3	21.2	
8/30/2018	20.8		19.0	22.3	20.3	19.8		19.3	21.5	
9/6/2018	21.0		18.0	21.6	19.8	19.1		18.4	21.0	
9/13/2018	20.0		16.3	20.1	18.7	17.9		17.1	20.0	
9/20/2018	19.9		16.9	20.0	19.2	18.5		17.7	19.9	
9/27/2018	19.4		16.6	19.1	18.2	17.7		17.5	19.3	
Total Weeks	26	21	26	26	26	26	12	26	26	
MWAT >17°C	18	11	12	17	19	19	5	16	15	
% Exceed	69%	52%	46%	65%	73%	73%	42%	62%	58%	
> MRP Trigger	Y	Y	Y	Y	Y	Y	Y	Y	Y	

Figure 3.3. Maximum Weekly Average Temperature (MWAT) values calculated for water temperature collected at four sites in Guadalupe Creek over 26 weeks of monitoring in WY 2018. The MRP trigger (17°C) is shown for comparison.

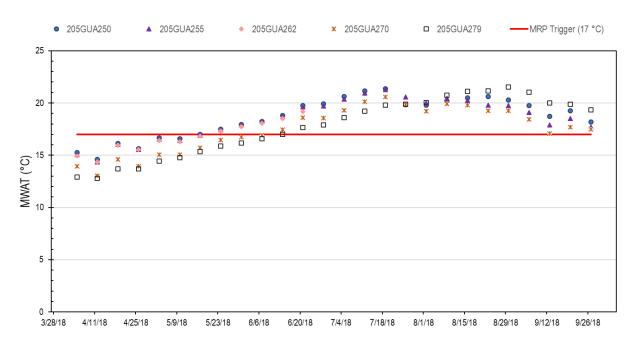


Figure 3.4. Maximum Weekly Average Temperature (MWAT) values calculated for water temperature collected at five sites in Alamitos Creek over 26 weeks of monitoring in WY 2018. The MRP trigger (17°C) is shown for comparison.

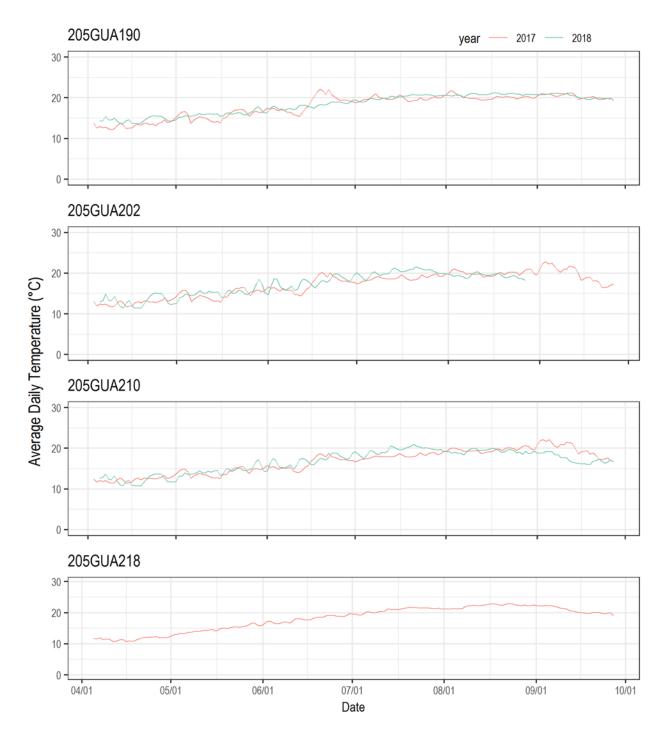


Figure 3.5. Water temperature, shown as daily average, collected between April and September at four sites in Guadalupe Creek during WY 2017 and WY 2018.²²

²² Datalogger at site 202 malfunctioned at the end of August with an abrupt jump in temperature from approximately 17 to 20°C with no diurnal variability; these records were excluded.

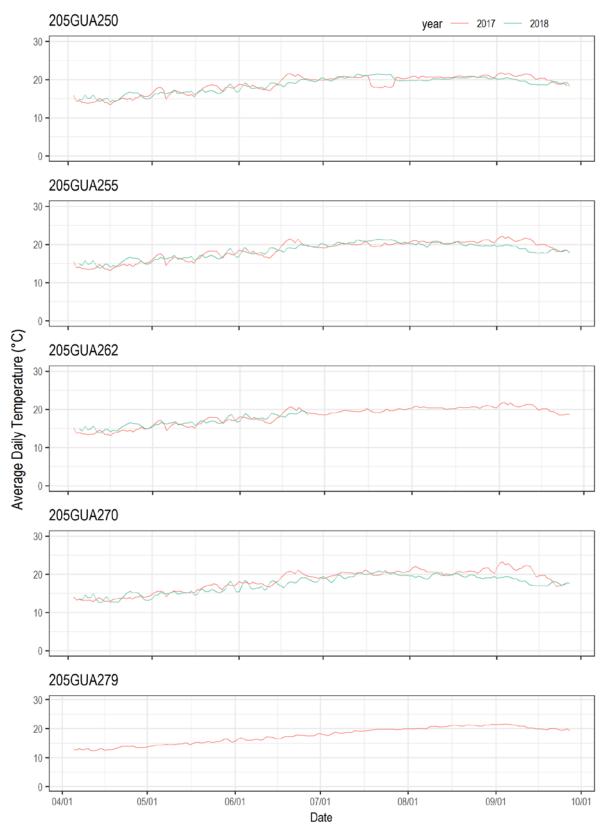


Figure 3.6. Water temperature, shown as daily average, collected between April and September at five sites in Alamitos Creek during WY 2017 and WY 2018.

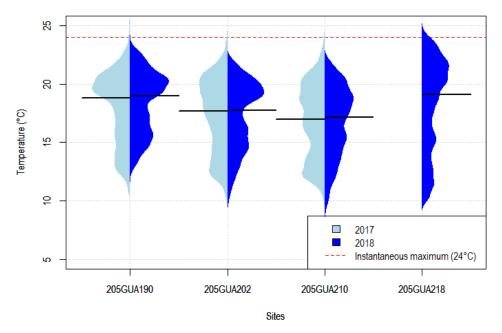


Figure 3.7. Water temperature data, presented as bean plots, collected between April and September, at four sites in Guadalupe Creek during WY 2017 and WY 2018. Solid black lines indicate median temperature.

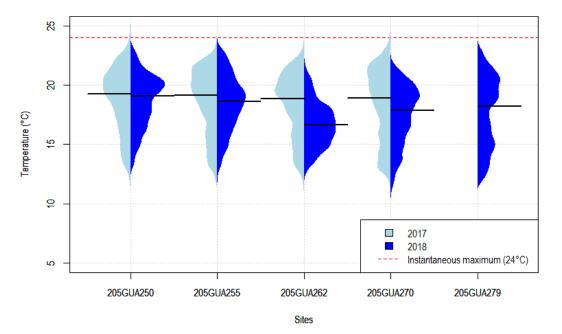


Figure 3.8. Water temperature data, presented as bean plots, collected between April and September, at five sites in Alamitos Creek during WY 2017 and WY 2018. Solid black lines indicate median temperature.

Temperature Trigger Considerations

The Basin Plan (SFRWQCB 2017) designates several Beneficial Uses associated with aquatic life uses, including COLD, WARM, MIGR, SPWN and RARE, for Guadalupe Creek and Alamitos Creek (Table 1.5). Spawning and rearing habitat for juvenile steelhead is present in the reaches of Guadalupe Creek and Alamitos Creek below the reservoirs (Becker et al. 2007). The extent and quality of steelhead rearing habitat is dependent on the amount and timing of releases from the reservoirs. Additional limiting factors to the steelhead population in these creeks include passage barriers, water temperature, riparian cover, sediment, mercury contamination, and predatory warm water fish species (FAHCE 2003).

Since WY 2004, the SCVWD conducted temperature and fisheries monitoring in Guadalupe Creek to meet mitigation monitoring requirements for the Downtown-Guadalupe River Flood Control Project. Most of the temperature monitoring was conducted at stations in the Guadalupe River. Limited data available for Guadalupe Creek showed cooler temperatures further upstream at stations closest to the dam, which is consistent with monitoring results presented in this report. Portions of Guadalupe Creek and Alamitos Creek presently support small population of steelhead/resident rainbow trout, although fish are generally less abundant in the unshaded, warm section of Guadalupe Creek downstream of Camden Avenue (Smith 2013).

Annual fall monitoring conducted by the SCVWD since 2004 indicates juvenile steelhead were typically present in Guadalupe Creek (SCVWD et al. 2016). Steelhead numbers dropped in 2015 due to low flow conditions caused by the drought. In 2016, only two steelhead individuals were documented at one site, which was the lowest count on record. However, a separate study in 2016 documented a total of 26 juvenile and adult steelhead further upstream below the dam for Guadalupe Reservoir (SCVWD et al. 2016). Additional monitoring in 2017 recorded 30 steelhead in a 2.5-mile reach downstream of the dam for Guadalupe Reservoir (SCVWD, personal communication, Clayton Leal). In general, the upper reaches of Guadalupe Creek provide summer refugia for steelhead.

Steelhead were historically found in Alamitos Creek (Leidy et al. 2005); however, no records were available to confirm current presence of steelhead populations in the creek. Smith (2013) reports portions of Alamitos Creek support populations of steelhead.

Providing continuous flow during the dry season would allow steelhead to migrate to more optimal habitat conditions, including reaches with cooler water temperatures. In addition, longitudinal connectivity to areas where food is available can allow juvenile steelhead to increase feeding behavior and maintain optimal body weight to survive periods of warmer temperatures (Smith 2013). Thus, flow in the lower reaches is critically important for sustaining steelhead populations, as well as other Aquatic Life Beneficial Uses.

Although the MRP trigger for temperature (i.e., MWAT >17°C for two or more weeks) was exceeded at all nine stations, it is important to keep in mind that different water temperature thresholds exist that may be more relevant to Santa Clara County streams. NOAA's National Marine Fisheries Service (NMFS) has developed recovery plans for Central Coast steelhead (which includes the Guadalupe River watershed) using the Maximum Weekly Maximum Temperature (MWMT) of 20 °C to evaluate water quality conditions potentially impacting steelhead. The MWMT is calculated using the maximum, not the average, weekly temperatures of nonoverlapping weeks. The MWMT is suggested to better reflect transient water temperature

peaks and any acute effects of the single point maximum temperature. (http://krisweb.com/stream/temp_standards.htm)

3.4.2 General Water Quality

Summary statistics for general water quality measurements collected at the three sites in Coyote Creek during the two sampling events in WY 2018 are listed in Table 3.4. Monitoring was conducted from May 21 through June 24, 2018 (Event 1) and from September 10 through September 19, 2018 (Event 2). Sampling locations are mapped in Figure 3.2. Plots for all water quality parameters collected during Event 1 are shown in Figure 3.9 and for Event 2 in Figure 3.10.

Table 3.4. Descriptive statistics for continuous water temperature, dissolved oxygen, pH, and specific conductance measured at three Coyote Creek sites in Santa Clara County during WY 2018. Data were collected every 15 minutes over two 2-week time periods during May/June (Event 1) and September (Event 2).

		205CC)Y235	205C0	DY236	205C0	DY239
Parameter	Data Type	Event 1 WY18	Event 2 WY18	Event 1 WY18	Event 2 WY18	Event 1 WY18	Event 2 WY18
	Minimum	16.4	16.9	16.8	16.4	16.1	15.9
- ·	Median	18.2	18.0	18.2	17.8	18.3	17.8
Temperature (°C)	Mean	18.4	18.1	18.3	17.9	18.6	17.8
(0)	Maximum	21.3	19.8	21.1	19.4	22.5	20.1
	% > 24	0%	0%	0%	0%	0%	0%
	Minimum	2.7	4.1	0.3	4.5	4.5	6.6
Dissolved	Median	4.2	4.9	4.6	5.2	6.3	7.2
Oxygen	Mean	4.3	4.9	4.2	5.2	6.3	7.3
(mg/L)	Maximum	6.0	5.6	5.9	5.9	7.9	8.3
	% < 7	100%	100%	100%	100%	84%	14%
	Minimum	7.6	7.6	n/a	7.6	7.5	7.7
	Median	7.5	7.8	n/a	7.7	7.5	7.8
рН	Mean	7.6	7.8	n/a	7.7	7.6	7.8
	Maximum	7.7	7.8	n/a	7.8	7.9	7.8
	% < 6.5 or > 8.5	0%	0%	n/a	0%	0%	0%
	Minimum	906	915	898	842	862	807
Specific	Median	967	932	963	863	927	828
Conductivity	Mean	966	938	968	867	931	831
(uS/cm)	Maximum	1067	983	1167	901	1032	861
	% > 2000	0%	0%	0%	0%	0%	0%
Total number	of data points (N)	1357	853	1358	853	1344	851

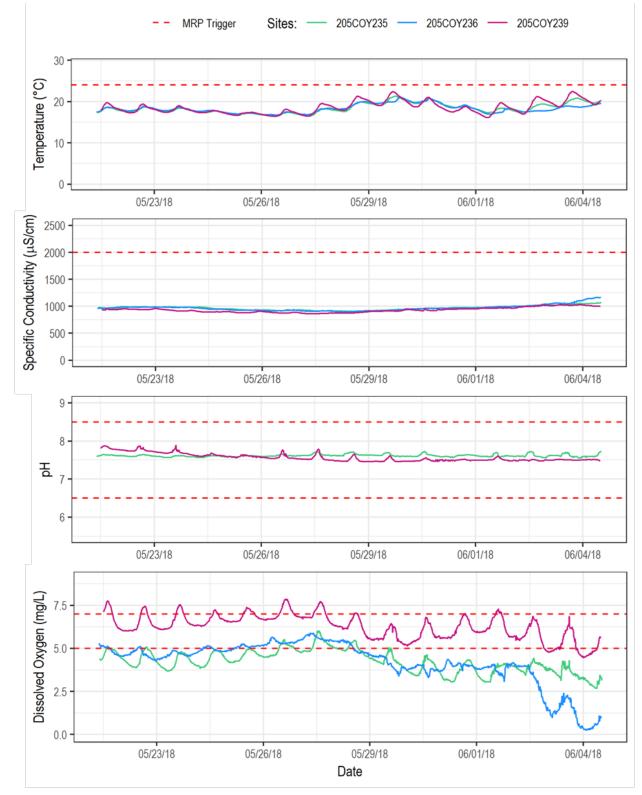
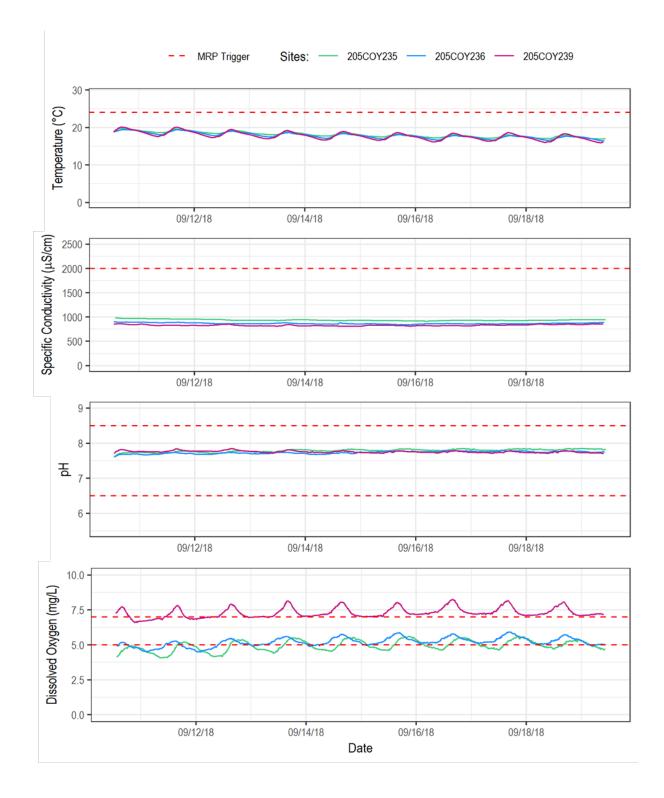



Figure 3.9 Continuous water quality data (temperature, specific conductance, pH²³, and dissolved oxygen) collected at three sites in Coyote Creek in May/June 2018 (Event 1).

²³ pH sensor did not meet data quality objectives for pre- and post-calibration; data were not used for analyses.

Temperature

The water temperature data show a similar pattern for all three sites during both events. Daily patterns are evident in the record with cooler temperatures recorded at night and warmer temperatures in the afternoon. During the May-June sampling event (Event 1), water temperatures showed both cooling and warming trends over the two-week deployment (Figure 3.9). Water temperatures were much more stable (other than diurnal variation) during Event 2. In general, water temperatures showed little variability between sites during each event (Figures 3.9 and 3.10).

Water temperatures never exceeded 24°C, so the MRP trigger for instantaneous maximum temperature was not exceeded at any of the sites for either sampling event (Table 3.4). MWAT was calculated for both two-week events (Table 3.5). The MWAT threshold (17 °C) was exceeded at all three stations during both weeks of both events.

Stat	tion	205COY235	205COY236	205COY239			
Month	Week	Maximum Weekly Average Temperature (°C)					
Moullupo	Week 1	18.1	18.2	18.5			
May/June	Week 2	18.0	18.2	18.1			
Contombor	Week 1	19.3	19.1	19.2			
September	Week 2	19.1	18.8	18.8			

Table 3.5. MWAT values for water temperature data collected at three stations monitored in Coyote Creek, WY 2018.

During the September sample event, the Coyote Creek sites exhibited lower water temperatures in 2018 compared to 2017 and 2013 (Figure 3.10). Overall, the median value and range of water temperature measurements over the three years of monitoring was highly variable. Bean plots of temperature data collected during September events of WY 2013, 2017, and 2018 are shown in Figure 3.11.

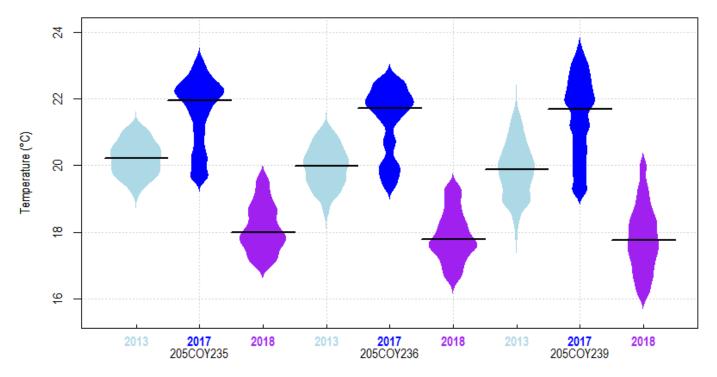


Figure 3.11. Comparison of temperature data collected in September 2017 and 2018 for Creek Status Monitoring with data collected in September 2013 for the Coyote Creek SSID Project.

Specific Conductance

Specific conductance was approximately 900 to 1000 μ S /cm at all three sites during both sampling events, and thus, never exceeded the MRP trigger threshold (2000 μ S/cm). Specific conductance levels followed a similar pattern at all three sites during both events, with very little variability in the record.

<u>рН</u>

The pH data was generally consistent between sites, ranging between 7.5 and 8.0 for both sampling events, and thus never exceeded the MRP trigger. Calibration checks of the sonde that was deployed at station 205COY236 during the spring sampling event showed a drift in the pH sensor of over 0.2 units, which was not consistent with Measurement Quality Objectives in the project QAPP (BASMAA 2016b). Thus, those pH data were rejected and not used in the analyses. The pH probe was replaced prior to the September sampling event.

Dissolved Oxygen

Dissolved oxygen concentrations decreased across all the sites during second week of Event 1 (Figure 3.9). The decrease may be associated with the observed increase in water temperatures that occurred during the same period. The dissolved oxygen data showed a consistent pattern for both sampling events, with median DO levels about 2.0 mg/L lower at the two downstream sites (235, 236) compared to the upstream site (239) (Figure 3.9 and Figure 3.10). In general, the two lowest elevation sites had less diurnal variability compared to the upstream site. The DO levels dropped dramatically at site 236 (Julian Street) (< 1.0 mg/L) during the last few days of deployment during Event 1 (Figure 3.8). The drop may have been

associated with thermal stratification, which was observed in previous data collected for the Coyote Creek SSID Project (SCVURPPP 2014).

Dissolved oxygen data collected during Event 2 was compared to data collected at the same sites during the same time period in WY 2017 (Creek Status Monitoring) and WY 2013 (Coyote Creek Dissolved Oxygen SSID Project). Distribution of the data from all three years, presented as bean distribution plots, are shown in Figure 3.12. The median DO levels increased from 2013 to 2017 (by approximately 1.0 mg/L) and from 2017 to 2018 (by approximately 1.5 mg/L) at all three sites.

One hypothesis for the observed increase in DO levels between 2013 and 2017 may be associated with high stream flows that occurred in Coyote Creek during the winter season of WY 2017. These high flows may have caused an overall reduction in the amount of organic material and sediment at the sites. One of the conclusions of the Coyote Creek SSID project was that accumulated organic material and sediment coupled with slow velocity and low gradient of the channel are likely important factors in the low DO concentrations and the low potential for re-aeriation of the water column.

The dissolved oxygen concentrations in 2018 were below 7.0 mg\L (MRP trigger for cold water fishery stream) at all three sites (Table 3.4 and Figure 3.12). These data results should be interpreted cautiously. Although Coyote Creek is designated as COLD Habitat, Aquatic Life Beneficial Uses associated with cold water fishery, except migration, are generally not supported in the reach where water quality sampling was conducted. The sampling reach of Coyote Creek mainstem may support a WARM water fishery; however, existing habitat and water quality conditions currently do not support a cold water fishery.

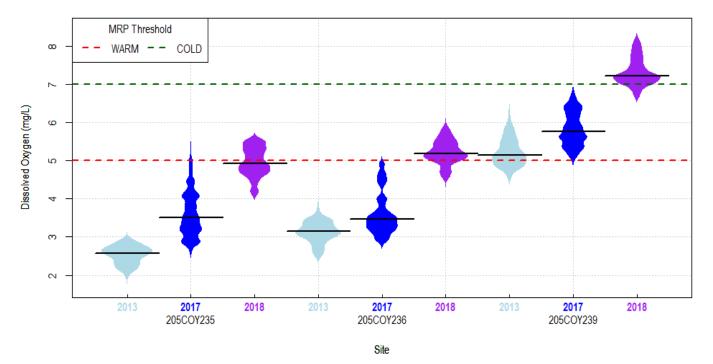


Figure 3.12. Comparison of dissolved oxygen data collected in September 2017 and 2018 for the Creek Status Monitoring Project (WY 2017 and 2018) with data collected in September 2013 for the Coyote Creek SSID Project.

Continuous Water Quality Trigger Summary

The MRP trigger summary for the continuous water quality data is shown in Table 3.6. All three sites exceeded triggers for MWAT and dissolved oxygen; however, decisions to initiate SSID studies will consider the discussions above.

Data Type	MRP Trigger	205COY235 Ma	205COY236 iy/June WY 20	205COY239	205COY235 Sep	205COY236 otember WY 2	205COY239 018
Instantaneous Temperature	20% results > 24°C	No	No	No	No	No	No
MWAT	2 weeks > 17°C	Yes	Yes	Yes	Yes	Yes	Yes
Instantaneous Dissolved Oxygen	20% results < 7 mg/L	Yes	Yes	Yes	Yes	Yes	No
Instantaneous Specific Conductivity	20% results > 2000 µS/cm	No	No	No	No	No	No
Instantaneous pH	20% results > 6.5, < 8.5	No	No	No	No	No	No

Table 3.6. Exceedances of MRP triggers at three sites in Coyote Creek, Santa Clara County, WY 2018.

4.0 PATHOGEN INDICATORS

4.1 Introduction

During WY 2018 pathogen indicators were monitored in compliance with Creek Status Monitoring Provision C.8.d.v of the MRP. Monitoring was conducted at sites selected using a targeted design based on the directed principle to address the following management question: *What are the pathogen indicator concentrations at creek sites where there is potential for water contact recreation to occur?*

This management question is addressed primarily through the evaluation of targeted data with respect to trigger thresholds identified in the MRP. Sites where exceedances occur may indicate potential impacts to aquatic life or other beneficial uses and are considered as candidates for future Stressor/Source Identification projects.

4.2 Study Area

In compliance with Provision C.8.d.v of the MRP, five pathogen indicator samples were collected. Samples were collected during one sampling event (July 27, 2018) at five sites located in municipal parks with good public access to creeks and the potential for recreational water contact (Figure 3.1). One site was located on Arroyo Calero at Singer Park (205GUA225), one was located on Los Gatos Creek at Vasona Park (205LGA400), one on Saratoga Creek at Wildwood Park (205SAR075), one on Stevens Creek at Blackberry Farm (205STE064), and one on Matadero Creek at Cornelis Bol Park (205MAT030). The sample stations for WY 2018 are the same sample stations that were monitored for pathogen indicators in WY 2017. Repeat sampling can provide information (albeit limited) on variability at the sites.

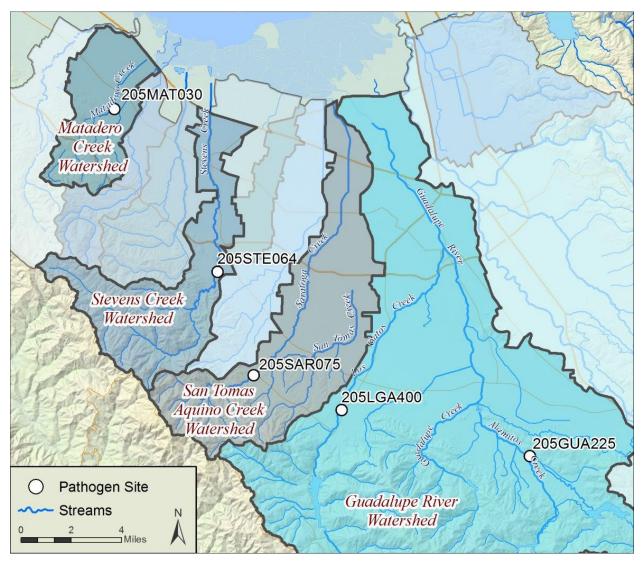


Figure 4.1. Pathogen indicator monitoring sites sampled in Santa Clara County during WY 2017 and WY 2018.

4.3 Methods

Pathogen indicator data were collected during the dry season in accordance with SWAMPcomparable methods and procedures described in the BASMAA RMC SOPs (BASMAA 2016a) and associated QAPP (BASMAA 2016b). Sampling techniques for pathogen indicators (enterococci and *E. coli*) include direct filling of sterile containers and transfer of samples to the analytical laboratory within specified holding time requirements. Procedures for sampling and transporting samples are described in RMC SOP FS-2 (BASMAA 2016a).

Pathogen indicator data generated during WY 2018 were evaluated with respect to MRP Provision C.8.d.v "Follow-up" triggers to identify potential impacts to water contact recreation (REC-1). The relevant trigger criteria for pathogen indicator data is based on USEPA (2012) recommended statistical threshold value for an estimated illness rate of 36 per 1000 primary contact recreators. For *E. coli*, the trigger threshold is 410 cfu/100 mL. For enterococcus, the trigger threshold is 130 cfu/100 mL. Sites with monitoring results exceeding the trigger criteria are identified as candidate SSID projects.

4.4 Results and Discussion

The section below summarizes results from pathogen indicator monitoring conducted during WY 2018. Conclusion and recommendations for this section are presented in Section 7.0.

Pathogen indicator (*E. coli* and enterococci) densities measured in grab samples collected on July 27, 2017 and July 27, 2018 are listed in Table 4.1. Stations are mapped in Figure 4.1. In WY 2018, three samples exceeded the MRP trigger for enterococci (205SAR075, 205STE0064, and 205MAT030). There were no measurements that exceeded the MRP trigger for *E. Coli* in WY 2018.

Pathogen indicator densities were measured at the same site locations for WY 2017 and WY 2018. Although this two-year dataset is insufficient to identify trends, comparisons between both measurements are valuable. All three locations with exceedances of the MRP trigger for enterococci in WY 2018, also had exceedances in WY 2017. Site 205GUA225 had the highest enterococci and *E. coli* levels in WY 2017, but the lowest results in WY 2018. While there were three exceedances of the MRP trigger for *E. coli* in WY 2017, there were none in WY 2018. These results suggest that pathogen indicator densities at the monitoring stations are highly variable.

It is important to recognize that pathogen indicators do not directly represent actual pathogen concentrations and do not distinguish among sources of bacteria. Testing water samples for specific pathogens is generally not practical for a number of reasons (e.g., concentrations of pathogens from fecal contamination may be small and difficult to detect but still of concern, laboratory analysis is often difficult and expensive, and the number of possible pathogens to potentially test for is large). Therefore, the presence of pathogens is inferred by testing for "pathogen indicator" organisms. The USEPA recommends using *E. coli* and enterococci as indicators of fecal contamination based on historical and recent epidemiological studies (USEPA 2012). The USEPA pathogen indicator thresholds were derived based on human recreation at beaches receiving bacteriological contamination from human wastewater, and may not be applicable to conditions in urban creeks which do not receive wastewater treatment plant discharges. Furthermore, although animal fecal waste contributes to the pathogen indicator load, it is much less likely to contain pathogens of concern to human health than human

sources. In most cases, it is the human sources that are associated with REC-1 health risks rather than wildlife or domestic animal sources (USEPA 2012). As a result, the comparison of pathogen indicator results to pathogen indicator thresholds may not be appropriate and should be interpreted cautiously.

The State Water Board recently (August 7, 2018) adopted new WQOs for *E. coli* and enterococci based on USEPA (2012) criteria. The new WQOs, which are based on an estimated illness rate of 32 per 1000 primary contact recreators, will become effective upon approval by the Office of Administrative Law and the USEPA.²⁴ For freshwaters (i.e., salinity is equal to or less than 1 part per thousand (ppth) 95 percent of the year), the six-week rolling geometric mean of *E. coli* must not exceed 100 cfu/100 mL; and the statistical threshold value (STV) of 320 cfu/100 mL must not be exceeded by more than 10 percent of samples collected in a calendar month. For marine and brackish waters (i.e., salinity is greater than 1 ppth more than 5 percent of the year), the STV of 110 cfu/100 mL must not be exceeded by more than 10 percent of an 10 percent of samples collected in a calendar month. These thresholds are included in Table 3.1 for reference.

Site ID	Creek Name	Site Name	Enterococci (cfu/100ml) (MPN/100ml)1	E. Coli (cfu/100ml) (MPN/100ml) ¹	Sample Date
MRP Tr	igger Threshold	l (USEPA 2012; 36 per 1000 recreators)	130	410	
٨	lewly Adopted	NQO (based on 32 per 1000 recreeators)	110	320	
205GUA225	Arroyo	Singer Dark	30	31	7/27/2018
ZUOGUAZZO	Calero	Singer Park	1986	687	7/27/2017
205SAR075	Saratoga	Wildwood Dorl	281	185	7/27/2018
2055AR075	Creek	Wildwood Park	218	517	7/27/2017
	Los Gatos	Masana Dark	87	138	7/27/2018
205LGA400	Creek	Vasona Park	29	55	7/27/2017
	Stevens	Dia aleba yang Garma	548	260	7/27/2018
205STE064	Creek	Blackberry Farm	345	680	7/27/2017
	Matadero	Del Derli	613	159	7/27/2018
205MAT030	Creek	Bol Park	816	248	7/27/2017

Table 4.1. Enterococci and *E. coli* levels measured in Santa Clara County during WY2017 and WY 2018. Values in bold exceeded MRP trigger thresholds.

¹USEPA 2012 water quality criteria are given in cfu/100 mL; whereas, the analytical method used by the Program gives results in MPN/100 mL. These units are used interchangeably in this analysis.

²⁴ See <u>http://www.waterboards.ca.gov/bacterialobjectives/</u> for more information.

5.0 CHLORINE MONITORING

5.1 Introduction

Chlorine is added to potable water supplies and wastewater to kill microorganisms that cause waterborne diseases. However, the same chlorine can be toxic to the aquatic species. Chlorinated water may be inadvertently discharged to the MS4s and/or urban creeks from residential activities, such as pool dewatering or over-watering landscaping, or from municipal activities, such as hydrant flushing or water main breaks.

In compliance with provision C.8.d.ii of the MRP and to assess whether the chlorine in receiving waters is potentially toxic to the aquatic life living there, SCVURPPP field staff measured free chlorine and total chlorine residual in creeks where bioassessments were conducted. Total chlorine residual is comprised of combined chlorine and free chlorine, and is always greater than or equal to the free chlorine residual. Combined chlorine is the chlorine that has reacted with ammonia or organic nitrogen to form chloramines, while free chlorine is the chlorine that remains unbound.

5.2 Methods

In accordance with the BASMAA RMC Creek Status and Long-Term Trends Monitoring Plan (BASMAA 2012), WY 2018 field testing for free chlorine and total chlorine residual was conducted at all twenty probabilistic sites concurrent with spring bioassessment sampling (April - May). Probabilistic site selection methods are described in Section 2.0.

Field testing for free chlorine and total chlorine residual conformed to methods and procedures described in the BASMAA RMC SOPs (BASMAA 2016a), which are comparable to those specified in the SWAMP QAPP. Per SOP FS-3 (BASMAAS 201ab), water samples were collected and analyzed for free and total chlorine using a Pocket Colorimeter[™] II and DPD Powder Pillows, which has a manufacturer reported method detection limit of 0.02 mg/L. If concentrations exceed the MRP trigger criteria of 0.1 mg/L, the site was immediately resampled. Per provision C.8.d.ii(4) of the MRP, "if the resample is still greater than 0.1 mg/L, then Permittees report the observation to the appropriate Permittee central contact point for illicit discharge staff can investigate and abate the associated discharge in accordance with its provision C.5.e – Spill and Dumping Complaint Response Program."

5.3 Results and Discussion

The section below summarizes results from chlorine monitoring conducted during WY 2018. Conclusion and recommendations for this section are presented in Section 7.0.

In WY 2018, SCVURPPP monitored the twenty probabilistic sties for free chlorine and total chlorine residual. These measurements were compared to the MRP trigger threshold of 0.1 mg/L.²⁵ Results are listed in Table 5.1. The trigger thresholds for free chlorine and total chlorine residual were not exceeded during sampling in WY 2018. This indicates that the chlorine levels in the sampled creeks were not of concern during this time frame.

²⁵ For reference, the Statewide General Permit for Drinking Water Discharges (Order WQ 2014-0194-DWQ) uses 0.1 mg/L as a reporting limit (minimum level) for field measurements of total residual chlorine.

For unknown reasons, the free chlorine result was greater than the total residual chlorine result at six stations (Table 5.1). Potential causes for these inverted results include matrix interferences and colorimeter user error. According to Hach, the supplier of the equipment and reagents, the free chlorine could have false positive results due to a pH exceedance of 7.6 and/or an alkalinity exceedance of 250 mg/L. The pH was measured concurrently with the chlorine sample, but alkalinity was not measured. At four of the six stations, the pH exceeded 7.6. It is unlikely that the higher free chlorine readings were caused by user error. The field crew is well trained and aware of potential problems with this testing method, such as wait times between adding reagents and taking the readings and keeping the free chlorine and total residual chlorine samples separate. At more than one station, the field crew immediately resampled the creek in response to the unexpected readings; with the second set of samples having identical results as the first set. Overall, the cause of the inverted free chlorine and total chlorine residual results (compared to expected) is unknown. However, it should be noted that colorimetric field instruments are generally not capable of providing accurate measurements of free chlorine and total chlorine residual below 0.13 mg/L, regardless of the method detection limit provided by the manufacturer. For this reason, the Statewide General Permit for drinking Water Discharges (Order WQ 2014-0194-DWQ) uses 0.1 mg/L as a reporting limit for field measurements of total chlorine residual.

Station Code	Date	Creek	Free Chlorine (mg/L) ^{1,2}	Total Residual Chlorine (mg/L) ^{1,2}	Exceeds Trigger Threshold? (0.1 mg/L) ²
205R03683	4/30/2018	Permanente Creek	<0.02	<0.02	No
205R03699	4/30/2018	Hale Creek	<0.02	<0.02	No
205R03738	5/1/2018	Upper Silver Creek	<0.02	0.02	No
205R03825	5/1/2018	Thompson Creek	<0.02	0.02	No
205R03875	5/2/2018	Calabazas Creek	0.05	0.04	No
205R04266	5/2/2018	Calabazas Creek	0.08	0.04	No
205R04217	5/3/2018	Upper Penitencia	0.03	0.04	No
205R03591	5/7/2018	Los Trancos Creek	<0.02	<0.02	No
205R03847	5/7/2018	Los Trancos Creek	<0.02	<0.02	No
205R03619	5/8/2018	Saratoga Creek	0.08	0.06	No
205R03754	5/8/2018	San Tomas Aquino	0.03	0.02	No
204R00749	5/9/2018	Smith Creek	<0.02	<0.02	No
205R00769	5/10/2018	MF Coyote Creek	<0.02	0.03	No
205R03498	5/23/2018	Saratoga Creek	<0.02	<0.02	No
205R03562	5/23/2018	Saratoga Creek	<0.02	<0.02	No
205R00746	5/24/2018	Saratoga Creek	<0.02	<0.02	No
205R03843	5/29/2018	San Tomas Aquino	0.03	0.03	No
205R04190	5/29/2018	Guadalupe Creek	0.05	<0.02	No
205R03795	5/30/2018	Lower Silver Creek	0.04	0.03	No
205R03907	5/30/2018	Lower Penitencia	0.04	0.04	No

Table 5.1. Summary of SCVURPPP chlorine testing results compared to MRP trigger of 0.1 mg/L, WY 2018.

¹ The method detection limit is 0.02 mg/L; however, the Statewide General Permit for Drinking Water Discharges (Order WQ 2014-

0194-DWQ) uses 0.1 mg/L as a reporting limit (minimum level) for field measurements of total chlorine residual.

² The MRP trigger threshold of 0.1 mg/L applies to both free chlorine and total chlorine residual measurements

A total of 144 stations have been monitored by SCVURPPP for free chlorine and total chlorine residual between WY 2012 and WY 2018 in compliance with MRP 1.0 and MRP 2.0. Occasional exceedances were recorded throughout the years and addressed by the appropriate follow-up process. Figure 4.1 maps of all the samples stations with their associated results. The results exceeding the MRP 2.0 trigger threshold of 0.1 mg/L are shown in red. The results exceeding MRP 1.0 trigger threshold of 0.08 mg/L (but below the MRP 2.0 trigger) are shown in orange. All results equal to or below 0.08 mg/L are shown in green. Trigger exceedances tend to occur in high order streams that have traveled through highly populated areas toward the Bay, such as Lower Penitencia Creek. The values range from non-detectable levels of chlorine to 0.4 mg/L with one outlier of 0.91 mg/L (Lower Silver Creek in WY 2016).

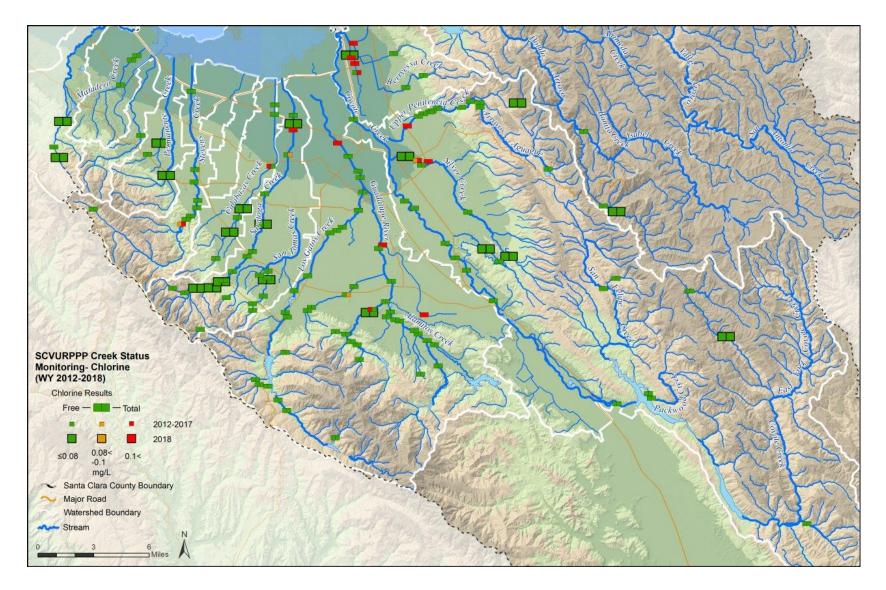


Figure 5.1 Chlorine sample stations and results WY 2012 – WY 2018 in Santa Clara County.

6.0 TOXICITY AND SEDIMENT CHEMISTRY MONITORING

6.1 Introduction

Toxicity testing provides a tool for assessing the toxic effects (acute and chronic) of all chemicals in samples of receiving waters or sediments, and allows the cumulative effect of the pollutants present in the sample to be evaluated. Because different test organisms are sensitive to different classes of chemicals and pollutants, several different organisms are monitored. Sediment and water chemistry monitoring for a variety of potential pollutants is conducted synoptically with toxicity monitoring to provide preliminary insight into the possible causes of toxicity should they be found.

Provision C.8.g of the MRP requires both wet and dry weather monitoring of pesticides and toxicity in urban creeks.

Dry Weather

The Program is required to conduct water toxicity and sediment chemistry and toxicity monitoring at two locations during the dry season, each year of the permit term beginning in WY 2016. The permit provides examples of possible monitoring location types, including sites with suspected or past toxicity results, existing bioassessment sites, or creek restoration sites. Dry weather monitoring includes:

- Toxicity testing in water is required using five species: *Ceriodaphnia* dubia (chronic survival and reproduction), *Pimephales promelas* (larval survival and growth), *Selenastrum capricornutum* (growth), *Hyalella azteca* (survival) and *Chironomus dilutus* (survival).
- Toxicity testing in sediment is required using two species: *Hyella azteca* (survival) and *Chironomus dilutus* (survival).
- Sediment chemistry analytes include pyrethroids, fipronil, carbaryl, total Polycyclic aromatic hydrocarbons (PAHs), metals, Total Organic Carbon (TOC), and sediment grain size.

Wet Weather

The wet weather monitoring requirements include collection of water column samples during storm events for toxicity testing (using the same five organisms required for dry weather toxicity testing) and analysis of pyrethroids, fipronil, imidacloprid and indoxacarb²⁶. The MRP states that monitoring locations should be representative of urban watersheds (i.e., bottom of watersheds).

Provision C.8.g.iii.(3) requires a collective total of ten samples, with at least six samples collected by WY 2018, if the wet weather monitoring is conducted by the RMC on behalf of all Permittees. At the RMC Monitoring Workgroup meeting on January 25, 2016, RMC members agreed to collaborate on implementation of the wet weather monitoring requirements. All ten wet weather samples were collected in WY 2018 during a single storm event on January 8, 2018.

²⁶ Standard analytical methods for indoxacarb are not currently available. Indoxacarb analysis will not be required until the water year following notification by the Executive Officer than a method is available.

SCVURPPP and ACCWP each collected three samples, and SMCWPPP and CCCWP each collected two samples.

6.2 Methods

6.2.1 Site Selection

In WY 2018, in compliance with MRP Provisions C.8.g.i and C.8.g.ii, water and sediment toxicity and sediment chemistry samples were collected from two sites during dry weather: Stevens Creek and San Tomas Aquino Creek (see Figure 6.1). Sites were selected to represent urban watersheds that are not already being monitored for toxicity or pesticides by other programs, such as the SWAMP Stream Pollution Trends (SPoT) program or the California Department of Pesticide Regulation (DPR) Surface Water Protection Program Monitoring (SWPP). Specific stations within the watersheds were identified based on the likelihood that they would contain fine depositional sediments during dry season sampling and would be safe to access during wet weather sampling. SCVURPPP sampled the two stations located in Stevens Creek and San Tomas Aquino Creek during the dry weather events in WY 2016 and WY 2017, and it is anticipated that SCVURPPP will continue to sample these same two stations throughout the permit term with the goal of building a long-term dataset that complements data being gathered through SWAMP SPoT and DPR SWPP.

Additionally, in WY 2018, in compliance with MRP Provision C.8.g.iii, water toxicity and pesticides samples were collected from three sites during wet weather: Stevens Creek, San Tomas Aquino Creek, and Calabazas Creek (see Figure 6.1). The sites on Stevens Creek and San Tomas Aquino Creek were selected because they have been the focus of dry weather monitoring. The station on Calabazas Creek was selected because it is located at the bottom of large urban watershed.

6.2.2 Sample Collection

Water samples for pesticides and toxicity were collected using standard grab sampling methods. The required number of labeled amber glass bottles were filled and placed on ice to cool to < 6C. The laboratory was notified of the impending sampling delivery to meet sample hold times. Procedures used for sampling and transporting water samples are described in SOP FS-2 (BASMAA 2016a).

Before conducting sediment sampling, field personnel surveyed the proposed sampling area for appropriate fine-sediment depositional areas. Personnel carefully entered the stream to avoid disturbing sediment at collection sub-sites. Sediment samples were collected from the top 2 cm at each sub-site beginning at the downstream-most location and continuing upstream. Sediment samples were placed in a compositing container, thoroughly homogenized, and then aliquoted into separate jars for chemical or toxicological analysis using standard clean sampling techniques (see SOP FS-6, BASMAA 2016a).

Samples were submitted to respective laboratories and field data sheets were reviewed per SOP FS-13 (BASMAA 2016a). The laboratory responsible for analyzing water column pesticide samples in WY 2018 (i.e., Physis Laboratory in Anaheim, CA) was selected by the RMC because it is capable of conducting analyses with reporting limits below the maximum threshold specified in MRP Provision C.8.g. iii.(1).

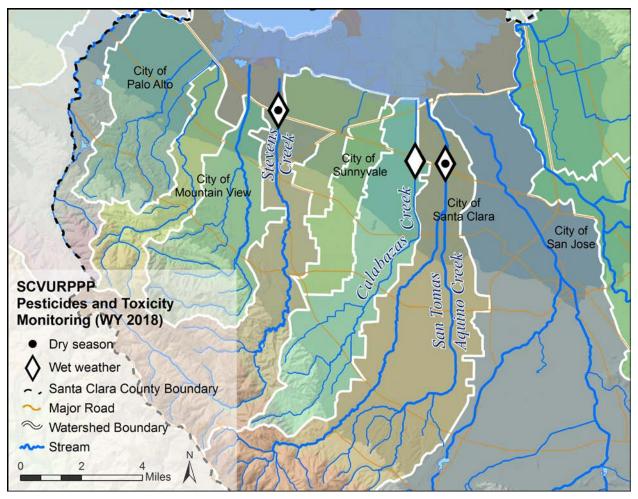


Figure 6.1 Pesticides and toxicity sampling stations in Santa Clara County during WY 2018.

6.2.3 Data Evaluation

Water and Sediment Toxicity

Data evaluation required by the MRP involves first assessing whether the samples are toxic to the test organisms relative to the laboratory control treatment via statistical comparison using the Test of Significant Toxicity (TST) statistical approach. For samples with toxicity (i.e., those that "failed" the TST), the Percent Effect is evaluated. The Percent Effect compares sample endpoints (survival, reproduction, growth) to the laboratory control endpoints. Follow-up sampling is required if any test organism is reported as "fail" via the TST approach *and* the Percent Effect is \geq 50%. Both the TST result and the Percent Effect are determined by the laboratory. If both the initial and follow-up sample are reported as "fail" with \geq 50% Percent Effect, the site is added to the list of candidate SSID projects.

Sediment Chemistry

In compliance with MRP Provision C.8.g.iv, sediment sample results are compared to Probable Effects Concentrations (PECs) and Threshold Effects Concentrations (TECs) as defined by MacDonald et al. (2000). PEC and TEC quotients are calculated as the ratio of the measured concentration to the respective PEC and TEC values from MacDonald et al. (2000). All results

where a PEC or TEC quotient is equal to or greater than 1.0 are identified and added to the list of candidate SSID projects.

PECs and TECs are listed in MacDonald et al. (2000) for total PAHs, rather than the individual PAHs that are reported by the laboratory. Total PAH concentrations were calculated by summing the concentrations of 24 individual PAHs. Concentrations equal to one-half of the respective laboratory method detection limits were substituted for non-detect data so that calculations and statistics could be computed. Therefore, some of the TEC and PEC quotients may be artificially elevated (and contribute to trigger exceedances) due to the method used to account for filling in non-detect data.

The TECs for bedded sediments are very conservative values that do not consider site specific background conditions, and are therefore not very useful in identifying real water quality concerns in receiving waters in the Santa Clara Valley. All sites in Santa Clara County are likely to have at least one TEC quotient equal to or greater than 1.0. This is due to high levels of naturally-occurring chromium and nickel in geologic formations (i.e., serpentinite) and soils that contribute to TEC and PEC quotients. These conditions will be considered when making decisions about SSID projects.

The current MRP does not require consideration of pyrethroid, fipronil, or carbaryl sediment chemistry data for follow-up SSID projects, perhaps because pyrethroids are ubiquitous in the urban environment and little is known about fipronil and carbaryl distribution. However, SCVURPPP computed toxicity unit (TU) equivalents for individual pyrethroid results based on available literature values for pyrethroids in sediment LC50 values.^{27,28} Because organic carbon mitigates the toxicity of pyrethroid pesticides in sediments, the LC50 values were derived on the basis of TOC-normalized concentrations. Therefore, the pesticide concentrations as reported by the lab were divided by the measured total organic carbon (TOC) concentration at each site, and the TOC-normalized concentrations were then used to compute TU equivalents for each constituent. Concentrations equal to one-half of the respective laboratory method detection limits were substituted for non-detect data so that these statistics could be computed, potentially resulting in artificially elevated results.

Water Chemistry

MRP Provision C.8.g.iv requires that chemical pollutant data from water and sediment monitoring is compared to the corresponding water quality objectives in the Basin Plan for each analyte sampled. If concentrations in the samples exceed their water quality objectives, then the site at which the exceedances were observed will be added to the list of candidate SSID projects. However, the Basin Plan does not contain numeric water quality objectives for the chemical analytes encompassed within the wet weather pesticide monitoring.

Due to the lack of numeric thresholds for these analytes, the data collected during the WY 2018 wet weather pesticide monitoring cannot be assessed to identify sites that should be added to the list of candidate SSID projects. However, there exist opportunities to compare and integrate wet weather pesticide monitoring data collected for MRP purposes with other similar data collected throughout the state. Mentioned previously in this document, the DPR SWPP is one of the largest pesticide monitoring and management efforts currently being undertaken in California. Pesticide studies conducted by DPR evaluate the frequency of pesticide detections

²⁷ The LC50 is the concentration of a given chemical that is lethal on average to 50% of test organisms.

²⁸ No LC50 is published for carbaryl in sediment.

at any concentration, and make use of aquatic benchmarks set by the United States Environmental Protection Agency (USEPA) for many pesticide compounds. DPR provides web access to a number of their monitoring reports which contain detailed analyses of USEPA aquatic benchmark exceedance rates. MRP pesticide data were compared to the USEPA benchmarks used by DPR to gain an understanding of how Santa Clara County data compare to the larger dataset being developed by DPR; however, sites with USEPA aquatic benchmark exceedances were not added to the list of candidate SSID projects on that basis alone. DPR also maintains the Surface Water Database (SURF) to provide public access to quantitative pesticide data from a wide array of surface water monitoring studies. This database could be queried in the future to allow the leverage of DPR monitoring data in more complex analyses of MRP pesticide data.

6.3 Results and Discussion

Toxicity and pesticides monitoring results are described in the sections below. Conclusions are provided in section 7.0.

6.3.1 Toxicity

Table 6.1 provides a summary of toxicity testing results for WY 2018 dry weather water and sediment samples. Based on the results, it is not necessary to add the sites to the list of potential SSID projects.

- San Tomas Aquino Creek (205STQ010). The water and sediment samples collected from San Tomas Aquino Creek were not significantly toxic to any of the test organisms.
- Stevens Creek (205STE021). The sediment sample collected from Stevens Creek in July 2017 was not significantly toxic to any of the test organisms; however, the water sample was found to be significantly toxic to C. dilutus (survival). The Percent Effect was not greater than 50%, so no follow-up samples were required.
- The cause of the dry weather water toxicity in Stevens Creek is unknown.

Table 6.2 provides a summary of toxicity testing results for WY 2018 wet weather water samples. Based on the results, it is not necessary to add the sites to the list of potential SSID projects.

- Calabazas Creek (205CAL018). The water sample collected from Calabazas Creek in January 2018 was significantly toxic to *H. azteca*. The Percent Effect was greater than 50%; therefore, a second sample was collected during a storm event in March 2018 and tested for *H. azteca* toxicity. This sample was also found to be significantly toxic, but the Percent Effect was not greater than 50%.
- San Tomas Aquino Creek (205STQ010). The water sample collected from San Tomas Aquino Creek in January 2018 was significantly toxic to *H.* azteca. The Percent Effect was greater than 50%; therefore, a second sample was collected during a storm event in March 2018 and tested for *H. azteca* toxicity. This sample was not found to be significantly toxic.
- Stevens Creek (205STE021). The water sample collected from Stevens Creek in January 2018 was significantly toxic to *H. azteca*. The Percent Effect was not greater than 50%, so no follow-up samples were required.

Table 6.1. Summary of SCVURPPP dry weather toxicity results for WY 2018.
--

				Res	sults			Follow
	Organism	Test Type	Unit	Lab Control	Organism Test	% Effect	TST Value	up needed (TST "Fail" and ≥50%)
	Water				-			
	Ceriodaphnia dubia	Survival	%	100	100	0	NA ¹	No
eek		Reproduction	Num/Rep	23.8	28.6	-20	Pass	No
ت د	Pimephales promelas	Survival	%	97.5	100	-33	Pass	No
010 018		Growth	mg/ind	0.916	0.94	-33	Pass	No
205STO010 mas Aquinc July 17, 2018	Chironomus dilutus Survival		%	95	95	0	Pass	No
155 as / as /	Hyalella azteca	Survival	%	98	98	0	Pass	No
205STQ010 San Tomas Aquino Creek July 17, 2018	Selenastrum capricornutum	Growth	cells/ml	4610000	12400000	-169	Pass	No
Sar	Sediment							
	Chironomus dilutus	Survival	%	82.5	88.8	-88	Pass	No
	Hyalella azteca	Survival	%	92.5	93.8	-1	Pass	No
	Water							
	Cariadanhnia dubia	Survival	%	100	100	0	NA ¹	No
	Ceriodaphnia dubia	Reproduction	Num/Rep	23.8	24.1	-1	Pass	No
× .	Pimephales promelas	Survival	%	97.5	92.5	5	Pass	No
121 reel 018	r intepnales prometas	Growth	mg/ind	0.916	0.934	-2	Pass	No
205STE021 tevens Cree July 17, 201	Chironomus dilutus	Survival	%	95	72.5	24	Fail	No
05S ven ly 1	Hyalella azteca	Survival	%	98	96	2	Pass	No
205STE021 Stevens Creek July 17, 2018	Selenastrum capricornutum	Growth	cells/ml	4610000	7090000	-54	Pass	No
	Sediment							
	Chironomus dilutus	Survival	%	82.5	76.2	88	Pass	No
	Hyalella azteca	Survival	%	92.5	91.3	1	Pass	No

¹ TST analysis is not performed for survival endpoint - a percent effect <25% is considered a "Pass", and a percent effect ≥25% is considered a "Fail"

				Re	sults			Follow
Site	Organism	Test Type	Unit	Lab Control	Organism Test	% Effect	TST Value	up needed (TST "Fail" and ≥50%)
	Water							
~	Ceriodaphnia dubia	Survival	%	100	90	10	NA ¹	No
205CAL018 Calabazas Creek Jan 8, 2018		Reproduction	Num/Rep	35	34.2	2	Pass	No
L01 201 201	Pimephales promelas	Survival	%	100	92.5	8	Pass	No
205CAL018 labazas Cre Jan 8, 2018		Growth	mg/ind	0.791	0.649	18	Pass	No
205 labi	Chironomus dilutus	Survival	%	97.5	9 5	3	Pass	No
Ca	Hyalella azteca	Survival	%	100	40	60	Fail	Yes 🗖
	Selenastrum capricornutum	Growth	cells/ml	2560000	4580000	-79	Pass	No
205CAL018 Calabazas Creek Mar 1, 2018	Hyalella azteca	Survival	%	98	86	12	Fail	No 🔶
	Water							
Q	Cariadanhaia dubia	Survival	%	100	90	10	NA ¹	No
205STQ010 San Tomas Aquino Jan 8, 2018	Ceriodaphnia dubia	Reproduction	Num/Rep	35	35.3	-1	Pass	No
205STQ010 Tomas Aqu Jan 8, 2018	Dimonholos promolos	Survival	%	100	90	10	Pass	No
STC nas 8, 1	Pimephales promelas	Growth	mg/ind	0.791	0.658	17	Pass	No
205 Tor Jan	Chironomus dilutus	Survival	%	97.5	95	3	Pass	No
au	Hyalella azteca	Survival	%	100	44	56	Fail	Yes 🗖
S	Selenastrum capricornutum	Growth	cells/ml	2560000	4360000	-70	Pass	No
205STQ010 San Tomas Aquino Mar 1, 2018	Hyalella azteca	Survival	%	98	94	4	Pass	No 🔶
	Water							
	Coriodanhnia dubia	Survival	%	100	100	0	NA ¹	No
sek 8	Ceriodaphnia dubia	Reproduction	Num/Rep	35	36	-3	Pass	No
205STE021 Stevens Creek Jan 8, 2018	Dimonhalos promotos	Survival	%	100	100	0	Pass	No
STI Sins 8, 3	Pimephales promelas	Growth	mg/ind	0.791	0.657	17	Pass	No
205 eve Jan	Chironomus dilutus	Survival	%	97.5	95	3	Pass	No
, St	Hyalella azteca	Survival	%	100	72	28	Fail	No
	Selenastrum capricornutum	Growth	Cells/ml	2560000	4600000	-79	Pass	No

¹ TST analysis is not performed for survival endpoint - a percent effect <25% is considered a "Pass", and a percent effect <25% is considered a "Fail"

6.3.2 Sediment Chemistry

Sediment chemistry results are evaluated as potential stressors based on TEC quotients and PEC quotients according to criteria in provision C.8.g.iv of the MRP. SCVURPPP also evaluated TU equivalents of pyrethroids and fipronil.

Table 6.3 lists concentrations and TEC quotients for sediment chemistry constituents (metals and total PAHs). TEC quotients are calculated as the measured concentration divided by the highly conservative TEC value, per MacDonald et al. (2000)²⁹. TECs are extremely conservative and are intended to identify concentrations below which harmful effects on sediment-dwelling organisms are unlikely to be observed. Both sites exceeded the relevant trigger criterion from the MRP of having at least one result exceeding the TEC and will be added to the list of potential SSID projects. There were TEC exceedances of nickel in both creeks and of chromium in Stevens Creek as expected in watersheds draining hillsides underlain by serpentinite formations. In Stevens Creek (205STE021), the TEC for copper and total PAHs was also exceeded.

Table 6.4 provides PEC quotients for sediment chemistry constituents (metals and total PAHs). PECs are intended to identify concentrations above which toxicity to benthic-dwelling organisms are predicted to be probable. No PEC quotients were greater than 1.0 in either of the two creeks, however the PEC quotient for nickel in Stevens Creek was equal to 1.0.

	TEC	205STE021	l	205STQ010		
	TEC	Stevens Creek		San Tomas Aquino		
Metals (mg/kg DW)		Concentration	Quotient	Concentration	Quotient	
Arsenic	9.79	3.0	0.3	1.9	0.2	
Cadmium	0.99	0.32	0.3	0.1	0.1	
Chromium	43.4	76	1.8	26	0.6	
Copper	31.6	37	1.2	21	0.7	
Lead	35.8	25	0.7	5.1	0.1	
Nickel	22.7	66	2.9	27	1.2	
Zinc	121	120	1	63	0.5	
PAHs (ug/kg DW)						
Total PAHs	1,610	2577	1.6 ^a	2267	0.1 a	

Table 6.3. Threshold Effect Concentration (TEC) quotients for WY 2018 sediment chemistry constituents. Bolded and shaded values indicate TEC quotient \geq 1.0.

a. Total calculated using 1/2 MDLs.

²⁹ MacDonald et al. (2000) does not provide TEC or PEC values for pyrethroids, fipronil, or carbaryl. Pyrethroids are compared to LC50 values in Table 5.4. However, LC50 values for fipronil and carbaryl in sediment have not been published.

Table 6.4. Probable Effect Concentration (PEC) quotients for WY 2018 sediment chemistry
constituents. Bolded and shaded values indicate PEC quotient \geq 1.0.

	PEC -	205STE02	1	205STQ	010	
	PEC	Stevens Creek		San Tomas Aquino		
Metals (mg/kg DW)		Concentration	Quotient	Concentration	Quotient	
Arsenic	33	3.0	0.1	1.9	0.1	
Cadmium	4.98	0.3	0.1	0.1	0.02	
Chromium	111	76	0.7	26	0.2	
Copper	149	37	0.3	21	0.1	
Lead	128	25	0.2	5.1	0.04	
Nickel	48.6	66	1	27	0.6	
Zinc	459	120	0.3	63	0.1	
PAHs (ug/kg DW)						
Total PAHs	22,800	2577	0.1 a	227	0.01 a	

a. Total calculated using ½ MDLs.

Table 6.5 lists the concentrations of pesticides measured in sediment samples and calculated TOC-normalized TU equivalents for the pesticides for which there are published LC50 values in the literature. Most of the pesticides measured were below method detection limits (MDLs) and are listed as "<MDL" in Table 6.5. Others are J-flagged, meaning that the measured concentration was above the MDL but below the reporting limit. No TU equivalents exceeded 1.0. The highest TU equivalents in both samples were for bifenthrin and deltamethrin. Bifenthrin is considered to be the leading cause of pyrethroid-related toxicity in urban areas (Ruby 2013) and the most-commonly detected insecticide monitored by the DPR SWPP (Ensminger 2017).

	_			205STE021 Stevens Creek	205STQ010 San Tomas Aquino				
	Unit	LC50 d	Concen- tration	Normalized to TOC	TU Equivalent	Concen- tration	Normalized to TOC	TU Equivale	ent
ТОС	%	NA	2.1	NA	NA	2.7	NA	NA	
Pyrethroid									
Bifenthrin	µg/g dw	0.52	0.00128	0.061	0.117 b	0.00127	0.047	0.090	b
Cyfluthrin	µg/g dw	1.08	<0.00059	0.014	0.013 a	<0.00058	0.011	0.010	а
Cypermethrin	µg/g dw	0.38	<0.00053 0.013		0.033 b	<0.00053	0.010	0.026	а
Deltamethrin	µg/g dw	0.79	0.00160	0.076	0.096	<0.00063	0.012	0.015	
Esfenvalerate	µg/g dw	1.54	<0.00069	0.016	0.011 a	<0.00069	0.013	0.008	а
Lambda- Cyhalothrin	µg/g dw	0.45	<0.00032	0.008	0.017 ^a	<0.00032	0.006	0.013	а
Permethrin	µg/g dw	10.83	<0.00059	0.014	0.001 a	<0.00058	0.011	0.001	а
			Sum of	TU equivalents	0.288 a	Sum of T	U equivalents	0.163	а
Other MRP Pesticid	es of Conce	ern							
Carbaryl	mg/Kg dw	NA	<0.53	NA	NA ^c	<0.021	NA	NA	С
Fipronil	ng/g dw	410	<0.53	12.62	0.031 a	<0.53	0.011	0.00003	а
Fipronil Desulfinyl	ng/g dw	NA	<0.53	NA	NA ^c	<0.53	NA	NA	С
Fipronil Sulfide	ng/g dw	NA	<0.53 NA		NA ^c	<0.53	NA	NA	С
Fipronil Sulfone	ng/g dw	NA	<0.53	NA	NA ^c	<0.53	NA	NA	С

Table 6.5. Pesticide concentrations and calculated toxic unit (TU) equivalents, WY 2018.

a. Concentration was below the method detection limit (MDL). TU equivalents calculated using 1/2 MDL.

b. TU equivalents calculated from concentration below the reporting limit (J-flagged).

c. Currently there is no available LC50 value for Carbaryl or Fipronil degradates, however the observed concentrations were below the detection limit.

d. Sources: Amweg et al. 2005 and Maund et al. 2002.

In compliance with the MRP, a grain size analysis was conducted on both of the sediment samples (Table 6.6). The Stevens Creek (205STE021) sample was 23.8% fines (i.e., 6.8% clay and 16.9% silt); whereas the San Tomas Aquino Creek (205STQ010) sample was 25.0% fines (i.e., 3.0% clay and 22.0% silt).

	Grain Size (%)	205STE021 Stevens Creek	205STQ010 San Tomas Aquino Creek
Clay	<0.0039 mm	6.8%	3.0%
Silt	0.0039 to <0.0625 mm	16.9%	22.0%
	V. Fine 0.0625 to <0.125 mm	12.1%	15.1%
	Fine 0.125 to <0.25 mm	21.4%	14.0%
Sand	Medium 0.25 to <0.5 mm	20.2%	18.8%
	Coarse 0.5 to <1.0 mm	13.3%	13.8%
	V. Coarse 1.0 to <2.0 mm	9.3%	13.3%
Granule	2.0 to <4.0 mm	6.4%	8.4%
	Small 4 to <8 mm	5.1%	36.5%
Dobblo	Medium 8 to <16 mm	0.6%	26.7%
Pebble	Large 16 to <32 mm	0%	0%
	V. Large 32 to <64 mm	0%	0%

Note: Sum of grain size values for both sites is greater than 100% due to the laboratory analytical methods used.

6.3.3 Pesticides in Water

The pesticide concentrations measured at the three sites where wet weather pesticide sampling was conducted in WY 2018 are listed in Table 6.7. The concentrations of most pesticides were below the MDL, meaning that these analytes were reported as non-detects. Bifenthrin was found at detectable levels at two of the three sites (Calabazas Creek and Stevens Creek). Additionally, fipronil and its degradation products were found at detectable levels at all three sites.

Table 6.7. Summary of wet weather pesticide concentrations for the three locations sampled in Santa Clara County during WY 2018.

	Unit	205CAL018 Calabazas Creek	205STQ010 San Tomas Aquino Creek	205STE021 Stevens Creek	Lowe USEF Benchm	PA
		Concentration	Concentration	Concentration	Concent	ration
Pyrethroid						
Bifenthrin	µg/L	0.0185	<0.00005 b	0.0063	0.0013	IC
Cyfluthrin	µg/L	<0.00005 b	<0.00005 b	<0.00005 b	0.0074	IC
Cypermethrin	µg/L	<0.00005 b	<0.00005 b	<0.00005 b	0.069	IC
Deltamethrin	µg/L	<0.00005 b	<0.00005 b	<0.00005 b	0.0041	IC
Esfenvalerate	µg/L	<0.00005 b	<0.00005 b	<0.00005 b	0.017	IC
Fenvalerate	µg/L	<0.00005 b	<0.00005 b	<0.00005 b	0.017	IC
Lambda-Cyhalothrin	µg/L	<0.00005 b	<0.00005 b	<0.00005 b	0.002	IC
Permethrin, cis-	µg/L	<0.0002 b	<0.0002 b	<0.0002 b	0.0014	IC
Permethrin, trans-	µg/L	<0.0001 b	<0.0001 b	<0.0001 b	0.0014	IC
Other MRP Pesticides of Concern						
Fipronil	µg/L	0.0175	0.0162	0.0254	0.011	IC
Fipronil Desulfinyl	µg/L	0.0046	0.0052	0.0067	0.54	FC
Fipronil Sulfide	µg/L	0.0006	0.0008	0.0008	0.11	IC
Fipronil Sulfone	µg/L	0.0059	0.0068	0.0066	0.037	IC
Imidacloprid	µg/L	<0.002 b	<0.002 b	<0.002 b	0.01	IC

a. Source: USEPA Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides. IC signifies that the invertebrate chronic USEPA benchmark was the lowest benchmark, while FC signifies that the fish chronic USEPA benchmark was the lowest benchmark.

b. Concentration was below the method detection limit (MDL), and values are displayed as "<MDL".

As previously stated, there are no water quality objectives specified in the San Francisco Bay Basin Plan for water column pesticide analytes. As a result, no in-depth analysis of the wet weather pesticide monitoring data collected in WY 2018 can be performed at this time. However, other studies that quantify pesticide concentrations in water can provide a perspective with which to view the results of the MRP WY 2018 wet weather pesticide monitoring. DPR routinely conducts pesticide monitoring at MS4 and receiving water sites in both Northern and Southern California with the objectives of evaluating pesticide concentrations in water, frequencies with which individual pesticide compounds are detected, and exceedances of USEPA pesticide benchmarks. In WY 2017, DPR monitored locations in Alameda, Contra Costa, Placer, Sacramento, and Santa Clara Counties in Northern California as well as locations in Los Angeles, Orange, and San Diego Counties in Southern California. The pesticide analytes sampled in both studies encompassed the analytes sampled by the MRP wet weather pesticide monitoring.

In the Northern California study, bifenthrin had a detection frequency (DF) of 74%, making it the most frequently detected insecticide. Other pyrethroids sampled during the study were either not detected at all or had significantly lower DF values than bifenthrin. Imidacloprid was the second-most frequently detected insecticide with a DF of 59%. Fipronil, with a DF of 50%, closely followed imidacloprid as the third-most frequently detected insecticide. Fipronil desulfinyl and fipronil sulfone were also detected at rates of 56% and 21%, respectively. Pyrethroid concentrations were generally above their USEPA minimum benchmarks for toxicity to aquatic life with the exception of cyfluthrin, which is generally detected below the USEPA toxicity benchmark. Concentrations of imidacloprid and fipronil were always above their minimum benchmarks when detected by the DPR SWPP. The fipronil degradates were not above their minimum benchmarks except for one fipronil sulfone sample (Ensminger 2017).

In the Southern California study, bifenthrin was the most frequently detected pyrethroid insecticide with a DF of 79%. The other sampled pyrethroids were again either not detected at all or detected significantly less frequently than bifenthrin. Fipronil also had a DF of 79%, and several of its degradates including fipronil sulfone and fipronil desulfinyl were also detected at comparably high concentrations (72 and 70%, respectively). Imidacloprid was the most frequently detected pesticide at a rate of 81% (Budd 2018).

The findings from the WY 2017 Northern and Southern California pesticide monitoring studies are largely comparable to the results of the fipronil and bifenthrin samples collected by SCVURPPP during the MRP WY 2018 wet weather pesticides monitoring. Bifenthrin, fipronil, and fipronil degradates were the only pesticides found at detectable levels during the SCVURPPP wet weather monitoring. Additionally, the minimum USEPA benchmarks for bifenthrin and fipronil concentrations during this monitoring effort were exceeded. It is of note, however, that although imidacloprid was frequently detected in the WY 2017 DPR studies, imidacloprid concentrations were not found at detectable levels during the SCVURPPP wet weather monitoring.

7.0 CONCLUSIONS AND RECOMMENDATIONS

In WY 2018, in compliance with provisions C.8.d and C.8.g of the MRP and the BASMAA RMC Creek Status and Long-Term Trends Monitoring Plan (BASMAA 2012), SCVURPPP continued to implement a two-component monitoring design that was initiated in WY 2012. The strategy includes a regional ambient/"probabilistic" bioassessment monitoring component and a component based on local "targeted" monitoring for general water quality parameters and pesticides/toxicity. The combination of these monitoring designs allows each individual RMC participating program to assess the status of Beneficial Uses in local creeks within its Program (jurisdictional) area, while also contributing data to eventually answer management questions at the regional scale (e.g., differences between aquatic life condition in urban and non-urban creeks).

Conclusions from the MRP Creek Status and Pesticides/Toxicity Monitoring conducted during WY 2018 in Santa Clara County are based on the management questions presented in Section 1.0 of this report:

- 1) Are water quality objectives, both numeric and narrative, being met in local receiving waters, including creeks, rivers, and tributaries?
- 2) Are conditions in local receiving water supportive of or likely supportive of beneficial uses?

The first management question is addressed primarily through the evaluation of probabilistic and targeted monitoring data with respect to the triggers defined in the MRP. A summary of trigger exceedances observed for each site is presented in Table 7.1. Sites where triggers are exceeded may indicate potential impacts to aquatic life or other beneficial uses and are considered for future evaluation of Stressor/Source identification (SSID) projects.

The second management question is addressed primarily by assessing indicators of aquatic biological health using benthic macroinvertebrate and algae data collected at probabilistic sites. The indices of biological integrity based on BMI and algae data (i.e., CSCI and ASCI) are direct measures of aquatic life beneficial uses. Biological condition scores were compared to physical habitat and water quality data collected synoptically with bioassessments to evaluate whether any correlations exist that may explain the variation in biological condition scores. Continuous monitoring data (temperature, dissolved oxygen, pH, and specific conductance) are evaluated with respect to COLD and WARM Beneficial Uses. And pathogen indicator data are used to assess REC-1 (water contact recreation) Beneficial Uses.

7.1 Conclusions

7.1.1 Biological Condition Assessment

Bioassessment monitoring was conducted in compliance with provision C.8.d.i of the MRP. In WY 2018, all bioassessment monitoring was performed at sites selected randomly using the regional probabilistic monitoring design. The probabilistic monitoring design allows each individual RMC participating program to objectively assess stream ecosystem conditions within its program area (e.g., County boundary) while contributing data to answer regional management questions about water quality and beneficial use condition in San Francisco Bay Area creeks. The monitoring design was developed to address the following management questions:

- 1. What is the condition of aquatic life in creeks in the RMC area; are water quality objectives met and are beneficial uses supported?
- 2. What are major stressors to aquatic life in the RMC area?
- 3. What are the long-term trends in water quality in creeks over time?

The first question (i.e., *What is the condition of aquatic life in creeks in the RMC area?*) is addressed by assessing indicators of aquatic biological health at probabilistic sampling locations. Once a sufficient number of samples have been collected (i.e., 30 samples), ambient biological condition can be estimated for streams at countywide and a regional scale within known estimates of precision. Over the past seven years (WY 2012 through WY 2018), SCVURPPP and Regional Water Board have sampled 152 probabilistic sites in Santa Clara County, providing a sufficient sample size to estimate ambient biological condition for both urban and non-urban streams countywide. Analysis of the first five years of regional bioassessment monitoring data (WY 2012 – WY 2016) was conducted by BASMAA in the RMC 5-Year Report.

The second question (i.e., *What are major stressors to aquatic life in the RMC area?*) is addressed by the collection and evaluation of physical habitat and water chemistry data collected at the probabilistic sites, as potential stressors to biological health. The stressor levels can be compared to biological indicator data through correlation and relative risk analyses. Assessing the extent and relative risk of stressors can help prioritize stressors at a regional scale and inform local management decisions.

The third question (i.e., *What are the long-term trends in water quality in creeks over time?*) is addressed by assessing the change in biological condition over several years. Changes in biological condition over time can help evaluate the effectiveness of management actions. Based on review of the first five years of probabilistic data, it appears that long-term trend analysis for the probabilistic survey will require more than seven years of data.

The analyses presented in this report are limited to the WY 2018 dataset which does not contain a statistically significant number of records (i.e., approximately 30 samples). A more comprehensive analysis of the much larger bioassessment dataset from the first five years of MRP monitoring (WY 2012 – WY 2016) was conducted by the BASMAA RMC on a regional and countywide basis. The RMC 5-Year Report is summarized below and included with this report as Attachment 2. Analytical tools that BASMAA (2019) found to be useful in evaluating stressor association with biological condition (i.e., random forest models) may be used by SCVURPPP to evaluate the WY 2012 – WY 2019 dataset in the Integrated Monitoring Report which will be submitted in March 2020.

Bioassessment in Santa Clara County (WY 2018)

Twenty sites were sampled for BMIs, benthic algae, physical habitat, and nutrients using methods consistent with the BASMAA RMC QAPP (BASMAA 2016b) and SOPs (BASMAA 2016a). Stations were randomly selected using a probabilistic monitoring design. Seventeen of the sites were classified as urban and three were classified as non-urban.

The following conclusions are based on the WY 2018 data. An assessment of biological condition is provided, relationships with potential stressors are explored, and potential stressors are compared to applicable WQOs and triggers identified in the MRP. Sites with monitoring

results that exceed WQOs and triggers are considered as candidates for further investigation as SSID projects, consistent with provision C.8.e of the MRP.

Biological Condition Assessment

Stream condition was assessed using three different types of indices/tools: the BMI-based CSCI, the draft benthic algae-based ASCI (diatom, soft algae, and hybrid), and the physical habitat-based IPI. Of these three, the CSCI is the only tool with a MRP trigger threshold for follow-up SSID consideration.

- **CSCI** The diversity and abundance of BMI taxa are evaluated as indicators of biological condition of the stream. Ten of the twenty (50%) bioassessment sites monitored in WY 2018 had CSCI scores in the two higher condition categories "possibly intact" and "likely intact" condition. Seven of these ten sites had scores greater than 1.0. These higher scoring sites were in relatively undeveloped watersheds, with impervious areas ranging between 1% and 6%. Five of these sites were located in two creeks: Saratoga Creek (3) and Los Trancos Creek (2).
 - The ten sites with CSCI scores below the MRP trigger threshold of 0.795 will be considered as candidates for SSID projects.
- ASCI ASCI indices translate benthic algae data (diatoms and soft algae) into overall
 measures of stream health. Three algae indices (developed using statewide data) were
 calculated for diatoms, soft algae, and hybrid (combination of diatoms and soft algae).
 The hybrid ASCI appeared to have the best response to stressor data associated with
 landscape variables (e.g., percent imperviousness), but not with stressors associated
 with nutrients, which was a finding from statewide data analyses (Theroux et al. in
 prep.).
 - Hybrid. Seven of the twenty bioassessment sites had hybrid ASCI scores that were classified as "possibly intact" or "likely intact" condition. The higher scoring sites occurred in drainages with relatively low levels of urbanization, ranging from 1% to 5% impervious area. Six of the seven sites also received CSCI scores that were in two higher condition categories.
- IPI The Index for Physical Habitat Integrity assesses the overall habitat condition of the sampling reach. IPI scores were positively correlated with qualitative habitat assessment Total PHAB scores. IPI scores were least correlated with the "channel alteration" component of the Total PHAB Scores (compared to the "epifaunal substrate" and "sediment deposition" components), indicating that the IPI metric score may not incorporate impacts associated with channel modification that are captured in the "channel alteration" assessment.
 - Seventeen of the twenty sites (85%) had IPI scores in the two upper condition categories. IPI scores were positively correlated with CSCI scores, and slightly less so with hybrid ASCI scores.
- Overall Conditions There were six sites with biological condition scores in the two higher condition categories for all three indices (CSCI, hybrid ASCI, IPI) (Table 2.7, Figure 2.6). Two of the sites are located in upper reaches of Saratoga Creek (sites 205R03562 and 205R03498). The remaining three sites are located in Los Trancos Creek at Foothill Park (site 205R03591), Guadalupe Creek at the percolation ponds (site 205R04190), Upper Penitencia Creek upstream of Cherry Flat Reservoir (site 205R04217), and Smith Creek in Joseph Grant County Park (site 204R00749). All six sites were relatively undeveloped (less than < 5% impervious area).

The number of sites in the top two condition categories varied substantially by index, with as many as 17 of 20 sites for the IPI to as few as 7 of 20 sites for the hybrid ASCI. There was relatively good consistency among the indices for sites in the top two condition categories where lower urbanization (< 5% impervious area) was present. The diatom ASCI, soft algae ASCI, and IPI scores were relatively variable (i.e., both high and low scoring) at sites in more developed/urbanized watersheds. Further evaluation of the newer indices and their association with stressor data is needed to better understand how these indicators can be used to effectively assess site conditions.

Stressor Assessment

Relationships between potential stressors (water chemistry, physical habitat, landscape variables) and biological condition were explored using the WY 2018 dataset. Sites with stressor levels exceeding applicable WQOs and triggers identified in the MRP will be considered as candidates for SSID projects. The correlations between biological conditions and stressors are not expected to be very strong due to the small sample size.

- **General water quality** (pH, temperature, dissolved oxygen, specific conductance). None of the water quality measurements exceeded water quality objectives or MRP trigger thresholds. None of the water quality measurements were correlated with CSCI or hybrid ASCI scores.
- Nutrients and conventional analytes (ammonia, unionized ammonia, chloride, AFDM, chlorophyll a, nitrate, nitrite, total Kjeldahl nitrogen, ortho-phosphate, phosphorus, silica). There were no water quality objective exceedances for water chemistry parameters. Total nitrogen concentrations ranged from 0.12 to 8.1 mg/L. The two highest nitrogen concentrations were measured at site 205R03795 in Lower Silver Creek (8.1 mg/L) and site 205R03699 (3.1 mg/L) on Hale Creek. Total phosphorus concentrations ranged from <0.001 to 0.22 mg/L. The highest concentration of total phosphorus occurred at site 205R03699 on Hale Creek. None of the nutrient parameters were correlated with CSCI or hybrid ASCI scores.
- **Physical habitat metric scores** were generated from the physical habitat data. CSCI scores correlated with metrics associated with substrate size and composition. Hybrid ASCI scores were poorly correlated with all 11 physical habitat metrics.
- Landscape variables were calculated for each of the watershed areas draining into the bioassessment sites. CSCI scores were moderately correlated (negatively) with impervious area and road density.

RMC Five Year Bioassessment Report Summary (WY 2012 – WY 2016)

A comprehensive analysis of bioassessment data collected by the RMC partners is included in the RMC Five-Year Bioassessment Report (5-Year Report) (BASMAA 2019) (Attachment 2). The BASMAA-funded study evaluated bioassessment data collected by the RMC over the first five years of monitoring (WY 2012 – WY 2016). Bioassessment data from 354 sites were compiled and evaluated to address the three study questions:

- 1) What is the biological condition of streams in the region?
- 2) What stressors are associated with poor condition?
- 3) Are conditions changing over time?

The findings of the BASMAA study are intended to help stormwater programs better understand the current condition of wadable streams, prioritize stream reaches in need of protection or restoration, and identify stressors that are likely to pose the greatest risk to the health of streams in the Bay Area.

The BASMAA report also evaluated the existing RMC probabilistic monitoring design and identified a range of potential options for revising the design (if desired) to better address the questions posed. The redesign options are intended to provide considerations for discussion during the planning for reissuance of the Municipal Regional Permit, which is likely to be adopted in 2021.

Biological Conditions

Results of the survey indicate that streams in the RMC area are generally in poor biological condition. As such, aquatic life uses may not be supported at a majority of sites sampled by the RMC. Two biological indicators were used to assess conditions:

- The BMI-based CSCI shows that 58% of the stream length regionwide was ranked in the lowest CSCI condition category ("very likely altered"); 74% of the of the sampled stream length exhibited CSCI scores below 0.795, the MRP trigger for potential follow-up activity.
- The Southern California algae indices for diatoms (D18) and soft algae (S2) were evaluated for biological conditions³⁰. Based on D18 and S2 scores, stream conditions regionwide appear slightly less degraded, with approximately 40% ranked in the lowest algae condition category. The algal indices also had greater stream length in the "likely intact" condition class (19-21%) compared to CSCI score (15%).

These findings should be interpreted with the understanding that the survey focused on urban stream conditions. Approximately 80% of the samples (284 of 354) were collected at urban sites. Although the low non-urban sample size precludes making any definitive comparisons, bioassessment scores in the non-urban area were generally higher than scores in the urban area for each County.

Stressor Assessment

The association between biological indicators (CSCI and D18) and stressor data was evaluated in the RMC 5-Year study using random forest statistical analyses. The results indicate that each of the biological indicators respond to different types of stressors.

- Biological condition, based on CSCI scores, was correlated with physical habitat and land use variables. Overall, the largest influence on CSCI scores in the random forest model was percent impervious area in a 5 km radius.
- Biological condition, based on D18 scores, was moderately correlated with water quality variables and less associated with the physical or landscape variables.

³⁰ The ASCI was not yet available during development of the RMC 5-Year Report.

In general, CSCI scores at urban sites were consistently low, indicating that degraded physical habitat conditions do not support healthy BMI assemblages. D18 scores at urban sites were more variable, indicating that healthy diatom assemblages potentially can occur at sites with poor habitat, but can also indicate poor water quality at sites with degraded habitat.

None of the nutrient variables (e.g., nitrate, total nitrogen, orthophosphate, phosphorus) correlated strongly with CSCI scores, or were highly ranked variables in the CSCI random forest model runs. Phosphorus and ash-free dry mass (which increases in response to biostimulation) were important in predicting D18 scores; however, no statistically significant relationships were observed. This finding suggests that the nutrient targets being developed by the State Water Board as part of the Biostimulatory/Biointegrity Project may not be appropriate in urban streams in the Bay Area.

Trend Assessment

The short time frame of the survey (five years) limited the ability to detect trends. However, the five-year bioassessment dataset does provide a baseline to compare with future assessments.

A potential application of bioassessment monitoring may be to assess stream conditions following implementation of stormwater treatment projects. It is anticipated that peak flow volumes and intensities will be reduced following the implementation of mandatory stormwater treatment via green infrastructure and low impact development (LID). Future creek status monitoring may provide additional insight into the potential positive impacts of green infrastructure and creek restoration to support water quality objectives and beneficial uses in urban creeks as these projects get built.

Assessment of the RMC Monitoring Design

Over the first five years of monitoring, the RMC evaluated about 25% (1455 out of 5740) of the sites in the sample frame to obtain 354 samples. Approximately 46% (873 out of 1896) of the total number of urban sites in the sample frame were evaluated during that time. Based on rejection rates from previous years, the sample frame is anticipated to only last through WY 2019. Revision of the RMC monitoring design could seek to reduce the future rejection rate through re-evaluation of the sample frame to exclude areas of low management interest or regions that would not be candidates for sampling (such as due to lack of permissions or physical barriers to access). This would improve the spatial balance of samples that more closely represents the proportion of the sample frame that can be reliably assessed.

The RMC sample design was created to probabilistically sample all streams within the RMC area, which resulted in a master list of 33% urban sites and 67% non-urban sites. However, because participating municipalities are primarily concerned with runoff from urban areas, the RMC focused sampling efforts on urban sites (80%) over non-urban sites (20%). As a result, non-urban samples are under-represented in the dataset resulting in much lower overall biological condition scores than would be expected for a spatially balanced dataset.

Based on evaluation of data collected during the first five years of the survey, several options to revise the RMC Monitoring Design are presented below:

- 1) Continue to sample new probabilistic sites until the draw is exhausted
- 2) Probabilistic monitoring design for a trends assessment
 - a. Re-visit probabilistic sites using existing RMC Sample Frame

- b. Re-design sample frame that re-weights urban/non-urban sites; over sample list
- 3) Monitor targeted sites for special studies
- 4) Combination of two and three

The RMC will assess these and other options during discussions with Regional Water Board staff during the MRP reissuance process beginning in 2019.

7.1.2 Continuous Monitoring for Temperature and General Water Quality

Continuous monitoring of water temperature and general water quality in WY 2018 was conducted in compliance with provisions C.8.d.iii – Iv of the MRP. Hourly temperature measurements were recorded at nine sites in the Guadalupe River Watershed from April through September. Continuous (15-minute) general water quality measurements (pH, DO, specific conductance, temperature) were recorded at three sites in the Coyote Creek watershed during two 2-week periods in June (Event 1) and September (Event 2). Targeted monitoring stations were deliberately selected using the Directed Monitoring Design Principle and were generally consistent with those monitored in WY 2017.

Conclusions from targeted continuous monitoring in WY 2018 are organized on the basis of the management questions listed in Section 3.0:

- 1. What is the spatial and temporal variability in water quality conditions during the spring and summer season?
- 2. Do general water quality measurements indicate potential impacts to aquatic life?

Sites with targeted monitoring results exceeding the MRP trigger criteria and/or WQOs are identified as candidate SSID projects.

Spatial and Temporal Variability (Temperature)

- **Spatial**. Spatial trends in water temperatures measured at key locations along two tributaries to Guadalupe River were similar. Relatively warm conditions were observed at sites directly below reservoirs (possible influence from solar radiation on reservoir water). Water temperatures then decreased at sites in the middle of the sampled profiles, possibly due to shading from riparian vegetation. Farther downstream, temperatures gradually increased, possibly due to less shading of the creek and greater influence from urban land use and ground water return flows. These patterns were similar to WY 2017 monitoring results; however, the stations directly below the reservoirs, added in WY 2018, help paint a more complete picture of water temperature trends in Guadalupe Creek and Alamitos Creek.
- **Temporal**. Temperatures at all nine sites in the Guadalupe River Watershed increased from June (when the loggers were deployed) through mid-August 2018, followed by a gradual decline through the end of the monitoring period in late September. These patterns were similar to WY 2017 monitoring results at the same stations.

Spatial and Temporal Variability (Water Quality)

• **Spatial**. General water quality parameters measured at three stations along the mainstem of Coyote Creek were similar to each other throughout both monitoring windows, with the exception of dissolved oxygen which was consistently lower at the two downstream sites. The downstream decrease in dissolved oxygen may be associated

with thermal stratification which was observed in that reach during the Coyote Creek SSID Project (SCVURPPP 2014).

• **Temporal**. Water quality at the Coyote Creek stations was relatively consistent between sampling events, with slight changes in dissolved oxygen following a rise in temperature during Event 1. The diurnal pattern was more pronounced at the upstream site (239), and less variable at the two downstream sites (235, 236). Compared to WY 2017 and WY 2013 data collected at the same stations, temperature in WY 2018 was lower and consequently dissolved oxygen was higher.

Potential Impacts to Aquatic Life

- Potential impacts to aquatic life were assessed through analysis of continuous temperature data collected at nine targeted stations in the Guadalupe River watershed from April through September and analysis of continuous general water quality data (pH, dissolved oxygen, specific conductance, and temperature) collected at three targeted stations in Coyote Creek during two two-week periods (June and September).
- All nine temperature stations in the Guadalupe River Watershed exceeded the MRP trigger threshold of having two or more weeks where the Maximum Weekly Average Temperature exceeded 17°C. However, none of the stations exceeded the MRP maximum instantaneous trigger threshold of 24°C for more than 20% of total recorded samples.
 - All stations with MWAT trigger exceedances will be added to the list of candidate SSID projects; however, review of the monitoring data in the context of locallyderived temperature thresholds developed by NMFS (NMFS 2016) suggests that temperature may not be a limiting factor for salmonid habitat (i.e., summer rearing juveniles) in the study reaches, as long as sufficient dam releases maintain longitudinal connectivity and provide cooler water temperatures and potential refugia for juvenile steelhead during the summer.
- Sites on Coyote Creek had no exceedances of the maximum temperature trigger threshold of 24°C but did exceed the MWAT trigger of 17.0 °C for two consecutive weeks during both events and will therefore be added to the list of candidate SSID projects.
- The WQO for dissolved oxygen in waters designated as having cold freshwater habitat (COLD) Beneficial Uses (i.e., 7.0 mg/L) was not met in over 20% of the measurements recorded at all three water quality stations in Coyote Creek. The results were similar to the findings from WY 2017 Creek Status Monitoring. The middle reach of Coyote Creek is a potentially important migration corridor for salmonid fish populations; however, habitat and water quality conditions in this reach are more suitable for a warm water fishery. Steelhead migration is typically during winter season, when flows are much higher and dissolved oxygen levels are expected to be much higher than what was observed during this study.
- Values for pH and specific conductance measured at the three sites in Coyote Creek during WY 2018 did not exceed their respective triggers or water quality objectives during either event.

7.1.3 Pathogen Indicators

Pathogen indicator monitoring in WY 2018 was conducted in compliance with provision C.8.d.v of the MRP. Pathogen indicator grab samples were collected during a sampling event in July at five sites throughout Santa Clara County that coincide with public parks.

- Pathogen indicator densities were measured at five targeted sites during WY 2018. Although none of the stations could be considered "bathing beaches," monitoring locations were selected at city parks or trails that were considered to have a relatively high potential for public access. The *E. coli* concentrations did not exceed the MRP trigger threshold (410 cfu/100 ml) or the newly adopted (but not yet approved) statewide WQO (320 cfu/100 ml) at any of the five sites. Both the MRP threshold (130 cfu/100ml) and newly adopted WQO (110 cfu/100 ml) for enterococcus were exceeded at three sites: Saratoga Creek at Wildwood Park, Stevens Creek at Blackberry Farm, and Matadero Creek at Bol Park. These sites will be added to the list of candidate SSID projects.
- It is important to recognize that pathogen indicator thresholds are based on human recreation at beaches receiving bacteriological contamination from human wastewater, and may not be applicable to conditions found in urban creeks. Pathogen indicators observed at the WY 2018 stations may not be associated with human sources and therefore may not pose a threat to human health. As a result, the comparison of pathogen indicator results to water quality objectives and criteria for full body contact recreation may not be appropriate and should be interpreted cautiously.

7.1.4 Chlorine Monitoring

Free chlorine and total chlorine residual were measured concurrently with bioassessments at the twenty probabilistic sites in compliance with provision C.8.c.ii. While chlorine residual is generally not a concern in Santa Clara Valley urban creeks, prior monitoring results suggest there are occasional free chlorine and total chlorine residual exceedances in the County. Trigger exceedances that are observed are usually the result of a one-time potable water discharges that are difficult to trace. Furthermore, chlorine in surface waters can dissipate from volatilization and reaction with dirt and organic matter. In WY 2018, there were no exceedances of the MRP trigger for chlorine (0.1 mg/L). The Program will continue to monitor chlorine in compliance with the MRP and will follow-up with illicit discharge staff as needed.

7.1.5 Pesticides and Toxicity Monitoring

In WY 2018, SCVURPPP conducted dry weather pesticides and toxicity monitoring at two stations (Stevens Creek and San Tomas Aquino Creek) and wet weather pesticides and toxicity monitoring at three stations (Calabazas Creek, Stevens Creek, and San Tomas Aquino Creek) in compliance with provision C.8.g of the MRP.

Statistically significant toxicity to *C. dilutus* (survival) was observed in the water sample collected from Stevens Creek during dry season sampling in July 2018. However, the magnitude of the toxic effects in this sample did not exceed MRP trigger criteria of 50 Percent Effect. Statistically significant toxicity to *H.* azteca (survival) was also observed in the Calabazas Creek, San Tomas Aquino Creek, and Stevens Creek water samples during wet weather sampling in January 2018. The magnitude of the toxic effects in the Stevens Creek sample did not exceed MRP trigger criteria, while the magnitude of the toxic effects in the Calabazas Creek and San Tomas Aquino Creek samples did exceed the MRP threshold for re-

sampling (i.e., Percent Effect ≥ 50%). In follow-up sampling that was conducted during a storm event in March 2018, statistically significant toxicity was observed in the Calabazas Creek sample. However, the magnitude of the toxic effects was below the MRP threshold. No statistically significant toxicity was observed in the follow-up San Tomas Aquino Creek sample. The cause of the toxicity observations is unknown. Pesticide concentrations in the dry season sediment samples were all very low, most below MDLs, and calculated TU equivalents did not exceed 0.1 in either sample with the exception of bifenthrin in the Stevens Creek sample. Pesticide concentrations in wet weather water samples were also very low, with most values below MDLs.

Sediment chemistry results are evaluated as potential stressors based on TEC quotients and PEC quotients according to criteria in provision C.8.g.iv of the MRP. SCVURPPP also evaluated TU equivalents of pyrethroids and fipronil. TEC and PEC quotients were calculated for all metals and total PAHs measured in sediment samples. Both sites had at least one TEC or PEC quotient exceeding 1.0. In compliance with the MRP, both stations will therefore be placed on the list of candidate SSID projects. Decisions about which SSID projects to pursue should be informed by the fact that most of the TEC and PEC quotient exceedances are related to naturally occurring chromium and nickel due to serpentine soils in the watersheds. No TU equivalents exceeded 1.0. The highest TU equivalents in both samples were for bifenthrin and deltamethrin. Bifenthrin is considered to be the leading cause of pyrethroid-related toxicity in urban areas (Ruby 2013) and the most-commonly detected insecticide monitored by the DPR SWPP (Ensminger 2017).

Pesticide analytes targeted by wet weather monitoring in WY 2018 were generally found at concentrations below the MDL, except for bifenthrin and fipronil compounds. As no water quality objectives are specified in the Basin Plan for these pollutants, they are not currently being used to identify SSID project locations. The wet weather pesticide monitoring data in WY 2018 was compared to pesticide data collected by the DPR SWPP and the USEPA aquatic benchmarks used in DPR SWPP studies to allow for interpretation of the WY 2018 results in the context of larger statewide datasets. However, sites sampled during the WY 2018 wet weather pesticide monitoring where exceedances of the USEPA benchmarks were observed were not added to the list of candidate SSID projects. In future years, data collected by the DPR SWPP and contained on the DPR SURF database can be queried to allow for comparison of MRP pesticide monitoring results.

7.2 Trigger Assessment

The MRP requires analysis of the monitoring data to identify candidate sites for SSID projects. Trigger thresholds against which to compare the data are provided for most monitoring parameters in the MRP and are described in the foregoing sections of this report. Stream condition was assessed based on CSCI scores that were calculated using BMI data. Nutrient data were evaluated using applicable water quality standards from the Basin Plan. Water and sediment chemistry and toxicity data were evaluated using numeric trigger thresholds specified in the MRP. In compliance with provision C.8.e.i of the MRP, all monitoring results exceeding trigger thresholds are added to a list of candidate SSID projects that will be maintained throughout the permit term. Follow up SSID projects will be selected from this list. Table 7.1 lists candidate SSID projects based on WY 2018 Creek Status and Pesticides/Toxicity monitoring data.

Additional data analysis is provided in the foregoing sections of this report and should be considered prior to selecting and defining SSID projects. The analyses include review of physical habitat and water chemistry data to identify potential stressors that may be contributing to degraded or diminished biological conditions. Analyses in this report also include historical and spatial perspectives that help provide context and deeper understanding of the trigger exceedances.

Table 7.1. Summary of SCVURPPP Trigger Threshold Exceedance Analysis, WY 2018. "No" indicates
samples were collected but did not exceed the MRP trigger; "Yes" indicates an exceedance of the MRP
trigger.

Station ID	Creek	Bioassessment ¹	Nutrients ²	Chlorine ³	Water Toxicity ⁴	Sediment Toxicity ⁴	Water Chemistry ⁵	Sediment Chemistry ⁵	Continuous Temperature ⁶	Dissolved Oxygen ⁷	8 Hd	Specific Conductance ⁹	Pathogen Indicators ¹⁰
204R00749	Smith Creek	No	No	No									
205R00746	Saratoga Creek	No	No	No									
205R00769	MF Coyote Creek	Yes	No	No									
205R03498	Saratoga Creek	No	No	No									
205R03562	Saratoga Creek	No	No	No									
205R03591	Los Trancos Creek	No	No	No									
205R03619	Saratoga Creek	Yes	No	No									
205R03683	Permanente Creek	No	No	No									
205R03699	Hale Creek	Yes	No	No									
205R03738	Upper Silver Creek	Yes	No	No									
205R03754	San Tomas Aquino	No	No	No									
205R03795	Lower Silver Creek	Yes	No	No									
205R03825	Thompson Creek	Yes	No	No									
205R03843	San Tomas Aquino	Yes	No	No									
205R03847	Los Trancos Creek	No	No	No									
205R03875	Calabazas Creek	Yes	No	No									
205R03907	Lower Penitencia	Yes	No	No									
205R04190	Guadalupe Creek	No	No	No									
205R04217	Upper Penitencia	No	No	No									
205R04266	Calabazas Creek	Yes	No	No									
205LGA400	Guadalupe River												No
205MAT030	Matadero Creek												Yes
205STE064	Stevens Creek												Yes
205GUA225	Arroyo Calero												No
205SAR075	Saratoga Creek												Yes
205GUA190	Guadalupe Creek								Yes				
205GUA202	Guadalupe Creek								Yes				
205GUA210	Guadalupe Creek								Yes				
205GUA218	Guadalupe Creek								Yes				
205GUA250	Alamitos Creek								Yes				
205GUA255	Alamitos Creek								Yes				
205GUA262	Alamitos Creek								Yes				
205GUA270	Alamitos Creek								Yes				
205GUA279	Alamitos Creek								Yes				
205COY235	Coyote Creek								Yes	Yes	No	No	
205COY236	Coyote Creek								Yes	Yes	No	No	
205COY239	Coyote Creek								Yes	Yes	No	No	
205CAL010	Calabazas Creek				No		No						
205STE021	Stevens Creek				No	No	No	Yes					
205STQ010 Notes:	San Tomas Aquino				No	No	No	Yes					

Notes:

1. CSCI score ≤ 0.795 .

2. Unionized ammonia (as N) \ge 0.025 mg/L, nitrate (as N) \ge 10 mg/L, chloride > 250 mg/L.

3. Free chlorine or total chlorine residual ≥ 0.1 mg/L.

Test of Significant Toxicity = Fail and Percent Effect ≥ 50 %.
 TEC or PEC quotient ≥ 1.0 for any constituent.
 Two or more MWAT ≥ 17.0°C or 20% of results ≥ 24°C.
 DO < 7.0 mg/L in COLD streams or DO < 5.0 mg/L in WARM streams.

DO < 7.0 mg/L in COLD siteans of DO < 3.0 mg/L in WA
 pH < 6.5 or pH > 8.5.
 Specific conductance > 2000 uS.
 Enterococcus ≥ 130 cfu/100ml or *E. coli* ≥ 410 cfu/100ml.

7.3 Recommendations

The following recommendations are based on findings from WY 2018 Creek Status and Pesticides and Toxicity monitoring conducted by SCVURPPP, as well as reflections on other monitoring, data analysis, and policy development projects being conducted in the region (e.g., RMC 5-Year Report) and statewide.

- In WY 2019, the Program will continue to coordinate with RMC partners on implementation of monitoring requirements in MRP provisions C.8.d and C.8.g.
- A major component of the WY 2019 monitoring will be bioassessment surveys and data assessment. In WY 2019, SCVURPPP will conduct biological assessments at both probabilistic and targeted sites. To date, a total of 152 probabilistic sites have been monitored by SCVURPPP (n=140) and SWAMP (n=12). This exceeds the number of samples necessary for a statistically representative dataset. Therefore, SCVURPPP is eligible to select up to 20 percent of sample locations on a targeted basis to evaluate trends or address other aquatic life related concerns.
- In WY 2018, BASMAA funded a study to evaluate five years of regional bioassessment data (WY 2012 WY 2016). Findings from the RMC 5-Year Report are summarized in Section 7.1.1 and the report is included as Attachment 2. In WY 2019, SCVURPPP will apply some of the tools used in the RMC 5-Year Report (i.e., random forest models) to analyze bioassessment data collected in Santa Clara County over all eight years of MRP monitoring (WY 2012 WY 2019). Results of the analyses will be described in the Integrated Monitoring Report (IMR) which will be developed following WY 2019 and submitted by March 31, 2020 (the fifth year of the Permit term) in lieu of an annual UCMR.
- Biological condition and stressor data will also be evaluated in the IMR at finer spatial scales (e.g., watersheds). In addition, historical (pre-MRP) bioassessment data may be incorporated to evaluate spatial and temporal trends of biological condition.
- For the past two years (WY 2017 and WY 2018), SCVURPPP has conducted continuous temperature monitoring in the Guadalupe River Watershed and continuous water quality monitoring on the mainstem of Coyote Creek. During WY 2019, SCVURPPP will collect continuous temperature and water quality (sondes) data at the same locations that were monitored in WY 2017 and WY 2018. Monitoring activities will include continuous temperature monitoring at 4 to 5 sites on Alamitos Creek and 4 sites on Guadalupe Creek and continuous water quality monitoring at 3 sites on Coyote Creek mainstem. A third year of monitoring at these locations will provide additional data to evaluate inter-annual variability in water quality conditions across range of water years.
- Provision C.8.g Pesticides and Toxicity monitoring will be conducted during the dry season at the same two stations targeted in WY 2016, WY 2017, and WY 2018: Stevens Creek and San Tomas Aquino Creek. In WY 2019, the full dataset from these stations (WY 2016 – WY 2019) will be evaluated in the IMR.

7.4 Management Implications

The Program's Creek Status and Pesticides and Toxicity Monitoring programs (consistent with MRP provisions C.8.d and C.8.g, respectively) focus on assessing the water quality condition of

urban creeks in the Santa Clara Valley and identifying stressors and sources of impacts observed. The sample size from WY 2018 (overall n=20; urban n=17) is not sufficient to develop statistically representative conclusions regarding the overall condition of all creeks. A more comprehensive bioassessment data analyses for the entire eight years of monitoring under the MRP (WY 2012 through WY 2019) will be conducted as part of the Integrated Monitoring Report during WY 2019.

Like previous years, WY 2018 data suggest that most urban streams have likely or very likely altered populations of aquatic life indicators (e.g., benthic macroinvertebrates). These conditions are likely the result of long-term changes in stream hydrology, channel geomorphology, instream habitat complexity, and other modifications to the watershed and riparian areas associated with the urban development that has occurred over the past 50 plus years. Additionally, episodic or site-specific increases in temperature (particularly in lower creek reaches or reaches directly below reservoirs) may not be optimal for aquatic life in some local creeks.

The Program and its Co-permittees are actively implementing many stormwater management programs to address these and other stressors and associated sources of water quality conditions observed in local creeks, with the goal of protecting these natural resources. For example:

- In compliance with MRP provision C.3, new and redevelopment projects in the Bay Area are now designed to more effectively reduce water quality and hydromodification impacts associated with urban development. Low impact development (LID) methods, such as rainwater harvesting and use, infiltration and biotreatment are required as part of development and redevelopment projects. In addition, Green Infrastructure planning is now part of all municipal projects. These LID measures are expected to reduce the impacts of urban runoff and associated impervious surfaces on stream health.
- In compliance with MRP provision C.7, the Program and its Co-permittees are implementing stormwater outreach activities through the Watershed Watch Campaign (Campaign) that directly engages citizens and youth to make watershed-friendly choices. Pollution prevention messages are delivered at 8 to 10 community events per year, communicating the value and protection of creeks' natural resources to citizens both in plain non-scientific wording and multiple native languages (e.g., Spanish, Vietnamese, Chinese). Media advertising, such as the Earthquakes' and Sharks' collaborations, teach citizens how to dispose properly of litter, hazardous wastes, and car wash water. The Campaign also conducts numerous activities and sessions to educate children about watersheds and urban runoff pollution prevention through the Don Edwards San Francisco Bay National Wildlife Refuge, including watershed-focused field trips, marsh walks, gardening events, bird watching, and wildlife observation. Additionally, the Campaign supports the musical assembly program. ZunZun that engages students through music and theatre while teaching them about stormwater, watersheds, and pollution prevention topics. These efforts are expected to encourage watershed-positive behavior change in Santa Clara Vallev residents.
- In compliance with MRP provision C.9, the Program and Co-permittees are implementing pesticide toxicity control programs that focus on source control and pollution prevention measures. The control measures include the implementation of integrated pest management (IPM) policies/ordinances, public education and outreach programs, pesticide disposal programs, the adoption of formal State pesticide registration procedures, and sustainable landscaping requirements for new and

redevelopment projects. Through these efforts, it is estimated that the amount of pyrethroids observed in urban stormwater runoff will decrease by 80-90% over time, and in turn significantly reduce the magnitude and extent of toxicity in local creeks.

- Trash loadings to local creeks have been reduced through implementation of new control measures in compliance with MRP provision C.10 and other efforts by Copermittees to reduce the impacts of illegal dumping directly into waterways. These actions include the installation and maintenance of trash capture systems, the adoption of ordinances to reduce the impacts of litter prone items, enhanced institutional controls such as street sweeping, and the on-going removal and control of direct dumping. The MRP establishes a mandatory trash load reduction schedule, minimum areas to be treated by trash full capture systems, and requires development of receiving water monitoring programs for trash.
- In compliance with MRP provisions C.2 (Municipal Operations), C.4 (Industrial and Commercial Site Controls), C.5 (Illicit Discharge Detection and Elimination), and C.6 (Construction Site Controls) Co-permittees continue to implement programs that are designed to prevent non-stormwater discharges during dry weather and reduce the exposure of contaminants to stormwater and sediment in runoff during rainfall events.
- In compliance with MRP provision C.13, copper in stormwater runoff is reduced through implementation of controls such as architectural and site design requirements, prohibition of discharges from water features treated with copper, and industrial facility inspections.
- Mercury and polychlorinated biphenyls (PCBs) in stormwater runoff are being reduced through implementation of the respective TMDL water quality restoration plans. In compliance with MRP provisions C.11 (mercury) and C.12 (PCBs), the Program will continue to identify sources of these pollutants and will implement control actions designed to achieve new minimum load reduction goals. Monitoring activities conducted in WY 2018 that specifically target mercury and PCBs are described in the Pollutants of Concern Monitoring Data Report that is included as Appendix E to the WY 2018 UCMR.

In addition to the Program and Co-permittee controls implemented in compliance with the MRP, numerous other efforts and programs designed to improve the biological, physical and chemical condition of local creeks are underway. For example, the SCVWD's Integrated Water Resources Master Plan (IWRMP) or "One Water Plan" is an ongoing, multi-year process to develop a framework for long-term management of Santa Clara County water resources. The One Water Plan identifies, prioritizes and implements activities at a watershed scale to meet flood protection, water supply, water quality and environmental stewardship goals and objectives. Additionally, SCVURPPP, via a Proposition 1 grant awarded to the SCVWD, continued to develop a Storm Water Resource Plan for the Santa Clara Basin in 2018 that will support the development and implementation of MRP-required Green Stormwater Infrastructure Plans and produce a list of prioritized runoff capture and use projects that will be eligible for future State implementation grant funds. Through the continued implementation of MRPassociated and other watershed stewardship programs, SCVURPPP anticipates that stream conditions and water quality in local creeks will continue to improve over time. In the near term, toxicity observed in creeks should decrease as pesticide regulations better incorporate water quality concerns during the pesticide registration process. In the longer term, control measures implemented to "green" the "gray" infrastructure and disconnect impervious areas constructed over the course of the past 50-plus years will take time to implement. Consequently, it may take several decades to observe the outcomes of these important, large-scale improvements to our watersheds in our local creeks. Long-term creek status monitoring programs designed to detect these changes over time are therefore beneficial to our collective understanding of the condition and health of our local waterways.

8.0 REFERENCES

- Ackerly, D., Jones, A., Stacey, M., Riordan, B. 2018. San Francisco Bay Area Summary Report. California's Fourth Climate Change Assessment. Publication number: CCCA4-SUM-2018-005.
- Amweg, E.L., Weston, D.P., and Ureda, N.M. 2005. Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environmental Toxicology and Chemistry: Volume 24, Issue 4, pages 966-972.
- Bay Area Stormwater Management Agency Association (BASMAA). 2012. Regional Monitoring Coalition Final Creek Status and Long-Term Trends Monitoring Plan. Prepared By EOA, Inc. Oakland, CA. 23 pp.
- Bay Area Stormwater Management Agency Association (BASMAA) Regional Monitoring Coalition (RMC). 2016a. Creek Status and Pesticides & Toxicity Monitoring Standard Operating Procedures, Final Version 3. Prepared for BASMAA by EOA, Inc. on behalf of the Santa Clara Urban Runoff Pollution Prevention Program and the San Mateo Countywide Water Pollution Prevention Program, Applied Marine Sciences on behalf of the Alameda Countywide Clean Water Program, and Armand Ruby Consulting on behalf of the Contra Costa Clean Water Program. 190 pp.
- Bay Area Stormwater Management Agency Association (BASMAA) Regional Monitoring Coalition (RMC). 2016b. Creek Status and Pesticides & Toxicity Monitoring Quality Assurance Project Plan, Final Version 3. Prepared for BASMAA by EOA, Inc. on behalf of the Santa Clara Urban Runoff Pollution Prevention Program and the San Mateo Countywide Water Pollution Prevention Program, Applied Marine Sciences on behalf of the Alameda Countywide Clean Water Program, and Armand Ruby Consulting on behalf of the Contra Costa Clean Water Program. 83 pp plus appendices.
- Bay Area Stormwater Management Agency Association (BASMAA). 2019. BASMAA Regional Monitoring Coalition Five-Year Bioassessment Report, Water Years 2012-2016.
- Becker, G.S., I. Reining, D. Asbury and A. Gunther. 2007. San Francisco Estuary Watersheds Evaluation. Identifying Promising Locations for Steelhead Restoration in Tributaries of the San Francisco Estuary. Prepared by Center for Ecosystem Management and Restoration. Prepared for California State Coastal Conservancy and the Resources Legacy Fund Foundation.
- Budd, R. 2018. Urban Monitoring in Southern California watersheds FY 2016-2017. Prepared by California Department of Pesticide Regulation Environmental Monitoring Branch.
- Ensminger, M. 2017. Ambient Monitoring in Urban Areas in Northern California for FY 2016-2017. Prepared by California Department of Pesticide Regulation Environmental Monitoring Branch.
- FAHCE (Fisheries and Aquatic Habitat Collaborative Effort). 2003. Summary Report: A multi-agency fisheries plan for Coyote Creek, Stevens Creek and Guadalupe River in Santa Clara County.
- Fetscher, A.E, L. Busse, and P.R. Ode. 2009. Standard Operating Procedures for Collecting Stream Algae Samples and Associated Physical Habitat and Chemical Data for Ambient Bioassessments in California. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 002. (Updated May 2010)
- Fetscher, A.E., R. Stancheva, J.P. Kociolek, R.G. Sheath, E. Stein, R.D. Mazo and P. Ode. 2014. Development and comparison of stream indices of biotic integrity using diatoms vs. non-diatom algae vs. a combination. Journal of Applied Phycology 26:433-450.
- Kaufmann, P.R., Levine, P., Robison, E.G., Seeliger, C., and Peck, D.V. 1999. Quantifying Physical Habitat in Streams. EPA.620/R-99/003.
- Lawrence, J.E., Lunde, K.B., Mazor, R.D., Beche, L.A., McElravy, E.P., and Resh, V.H. 2010. Long-term macroinvertebrate responses to climate change: implications for biological assessment Mediterranean-climate streams. Journal of the North Americal Benthological Society, 29(4):1424-1440.

- Leidy, R.A., G.S. Becker, B.N. Harvey. 2005. Historical distribution and current status of steelhead/rainbow trout *(Oncorhynchus mykiss)* in streams of the San Francisco Estuary, California. Center for Ecosystem Management and Restoration, Oakland, CA.
- MacDonald, D.D., C.G. Ingersoll, T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 39, 20-31.
- Maund, S.J., Hamer, M.J., Lane, M.C., Farrelly, C., Rapley, J.H., Goggin, U.M., Gentle, W.E. 2002. Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environmental Toxicology and Chemistry: Volume 21, Issue 1, pages 9-15.
- Mazor, R.D., Purcell, A.H., and Resh, V.H. 2009. Long-term variability in bioassessments: a twenty-year study from two northern California streams. Environmental Management 43:129-1286.
- Mazor, R.D. 2015. Bioassessment of Perennial Streams in Southern California: A Report on the First Five Years of the Stormwater Monitoring Coalition's Regional Stream Survey. Prepared by Raphael D. Mazor, Southern California Coastal water Research Project. Technical Report 844. May 2015.
- Mazor, R., Ode, P.R., Rehn, A.C., Engeln, M., Boyle, T., Fintel, E., Verbrugge, S., and Yang, C. 2016. The California Stream Condition Index (CSCI): Interim instructions for calculating scores using GIS and R. SWAMP-SOP-2015-0004. Revision Date: August 5, 2016.
- Mazor, R.D., A. Rehn, P.R. Ode, M. Engeln, K. Schiff, E. Stein, D. Gillett, D. Herbst, C.P. Hawkins. In review. Bioassessment in complex environments: Designing an index for consistent meaning in different settings.
- National Marine Fisheries Service. 2016. Coastal Multispecies Final Recovery Plan: California Coastal Chinook Salmon ESU, Northern California Steelhead DPS and Central California Coast Steelhead DPS. National Marine Fisheries Service, West Coast Region, Santa Rosa, California. October 2016.
- Ode, P.R. 2007. Standard Operating Procedures for Collection Macroinvertebrate Samples and Associated Physical and Chemical Data for Ambient Bioassessments in California. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 001.
- Ode, P.R., T.M. Kincaid, T. Fleming and A.C. Rehn. 2011. Ecological Condition Assessments of California's Perennial Wadeable Streams: Highlights from the Surface Water Ambient Monitoring Program's Perennial Streams Assessment (PSA) (2000-2007). A Collaboration between the State Water Resources Control Board's Non-Point Source Pollution Control Program (NPS Program), Surface Water Ambient Monitoring Program (SWAMP), California Department of Fish and Game Aquatic Bioassessment Laboratory, and the U.S. Environmental Protection Agency.
- Ode, P.R., Fetscher, A.E., and Busse, L.B. 2016. Standard Operating Procedures (SOP) for the Collection of Field Data for Bioassessments of California Wadeable Streams: Benthic Macroinvertebrates, Algae, and Physical Habitat. SWAMP-SOP-SB-2016-0001.
- Rehn, A.C., R.D. Mazor, P.R. Ode. 2015. The California Stream Condition Index (CSCI): A New Statewide Biological Scoring Tool for Assessing the Health of Freshwater streams. SWAMP-TM-2015-0002. September 2015.
- Rehn, A.C., R.D. Mazor and P.R. Ode. 2018. An index to measure the quality of physical habitat in California wadeable streams. SWAMP Technical Memorandum SWAMP-TM-2018-0005.
- Ruby, A. 2013. Review of pyrethroid, fipronil and toxicity monitoring data from California urban watersheds. Prepared for the California Stormwater Quality Association (CASQA) by Armand Ruby Consulting. 22 p + appendices.
- San Francisco Regional Water Quality Control Board (SFRWQCB). 2009. Municipal Regional Stormwater NPDES Permit. Order R2-2009-0074, NPDES Permit No. CAS612008. 125 pp plus appendices.

- San Francisco Regional Water Quality Control Board (SFRWQCB). 2015. Municipal Regional Stormwater NPDES Permit. Order R2-2015-0049, NPDES Permit No. CAS612008. 152 pp plus appendices.
- San Francisco Regional Water Quality Control Board (SFRWQCB). 2017. Water Quality Control Plan (Basin Plan) for the San Francisco Bay Region. Updated to reflect amendments adopted up through May 4, 2017. <u>http://www.waterboards.ca.gov/sanfranciscobay/basin_planning.shtml</u>.
- Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP). 2013. Local Urban Creeks Status Monitoring Report, Water Year 2012 (October 2011 – September 2012. March 15, 2013.
- Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP). 2014. Integrated Monitoring Report – Part A. Water Quality Monitoring. Water Years 2012 and 2013.
- Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP). 2015. Urban Creeks Monitoring Report. Water Quality Monitoring. Water Year 2014.
- Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP). 2016. Urban Creeks Monitoring Report. Water Quality Monitoring. Water Year 2015.
- Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP). 2017. Urban Creeks Monitoring Report. Water Quality Monitoring. Water Year 2016.
- Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP). 2018. Urban Creeks Monitoring Report. Water Quality Monitoring. Water Year 2017.
- Santa Clara Valley Water District (SCVWD), USACE, and Stillwater Sciences. 2016. Water year 2015 final mitigation monitoring report for the lower, downtown, and upper Guadalupe River projects, San José, California. Prepared by the Santa Clara Valley Water District, U.S. Army Corps of Engineers – San Francisco District, and Stillwater Sciences. San José, CA.
- Smith, J. 2013. Northern Santa Clara County Fish Resources. Unpublished. Department of Biological Sciences. San Jose State University. 2013.
- Southern California Coastal Water Research Project (SCCWRP). 2007. Regional Monitoring of Southern California's Coastal Watersheds. Stormwater Monitoring Coalition Bioassessment Working Group. Technical Report 539.
- Stancheva, R., L. Busse, P. Kociolek, and R. Sheath. 2015. Standard Operating Procedures for Laboratory Processing, Identification, and Enumeration of Stream Algae. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 0003.
- Theroux, S., Mazor, R., Beck, M., Ode, P., Sutula, M. and Stein, E. (in preparation.) A Non-Predictive Algal Index for Complex Environments. Prepared for: Ecological Indicators.
- USEPA. 2012b. Recreational Water Quality Criteria. Office of Water 820-F-12-058. A Non-Predictive Algal Index for Complex Environments.
- Ensminger, M. 2017. Ambient Monitoring in Urban Areas in Northern California for FY 2016-2017. Prepared by California Department of Pesticide Regulation Environmental Monitoring Branch.
- Budd, R. 2018. Urban Monitoring in Southern California watersheds FY 2016-2017. Prepared by California Department of Pesticide Regulation Environmental Monitoring Branch.
- United States Environmental Protection Agency (USEPA). 2016-2017. Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk

ATTACHMENTS

Attachment 1 QA/QC Report

Quality Assurance/Quality Control Report

Prepared by:

EOA, Inc 1410 Jackson Street Oakland, CA 94612

Prepared for:

Urban Runoff Pollution Prevention Program

March 31, 2018

TABLE OF CONTENTS

1.	Intro	luction	5
	1.1.	Data Types Evaluated	5
	1.2.	Laboratories	5
	1.3.	QA/QC Attributes	6
	1.3.1	Representativeness	6
	1.3.2	Comparability	6
	1.3.3		
	1.3.4 1.3.5		
	1.3.6	y	
	1.3.7		
2.	Meth	ods	8
2	2.1.	Representativeness	8
2	2.2.	Comparability	8
2	2.3.	Completeness	8
	2.3.1	Data Collection	8
	2.3.2	Field Sheets	9
	2.3.3		
4	2.4.	Sensitivity	
	2.4.1 2.4.2		
:	2.4.2 2.5.	Chemical Analysis	
-	2.5.1	•	
	2.5.2	•	
	2.5.3	Water Quality Data Collection1	0
2	2.6.	Precision1	0
	2.6.1		
,	2.6.2 2.7.	Chemical Analysis	
3.		lts1	
3	3.1.	Overall Project Representativeness1	
3	3.2.	Overall Project Comparability1	1
3	3.3.	Bioassessments and Physical Habitat Assessments1	1
	3.3.1	Completeness1	1
	3.3.2		
	3.3.3		
	3.3.4 3.3.5		
3	3.4.	Field Measurements	
	3.4.1		
	3.4.2		
	3.4.3		
,	3.4.4		
	3.5.	Water Chemistry1	
	3.5.1		
	3.5.2	Sensitivity1	4

	3.5.3. 3.5.4.	Accuracy1 Precision	5
3.	3.5.5. 6. Path	Contamination1 logen Indicators	-
3.	3.6.1. 3.6.2. 3.6.3. 3.6.4. 3.6.5. 7. Cont	Completeness 1 Sensitivity 1 Accuracy 1 Precision 1 Contamination 1 tinuous Water Quality 1	6 6 6 7
3.	3.7.1. 3.7.2. 3.7.3. 3.7.4. 8. Cont	Completeness 1 Sensitivity 1 Accuracy 1 Precision 1 tinuous Temperature Monitoring 1	7 7 8
3.	3.8.1. 3.8.2. 3.8.3. 3.8.4. 9. Sedi	Completeness 1 Sensitivity 1 Accuracy 1 Precision 1 iment Chemistry 1	8 8 8
3.	3.9.1. 3.9.2. 3.9.3. 3.9.4. 3.9.5. 10. Wet	Completeness 1 Sensitivity 1 Accuracy 1 Precision 2 Contamination 2 Season Pesticides 2	9 9 20 22
3.	3.10.1. 3.10.2. 3.10.3. 3.10.4. 3.10.5. 11. Toxi	Completeness 2 Sensitivity 2 Accuracy 2 Precision 2 Contamination 2 city Testing 2	22 22 23 23
4.		Completeness 2 Sensitivity and Accuracy 2 Precision 2 Contamination 2 ns 2	24 24 25 25
5.	Reference	es2	25

LIST OF TABLES

Table 1. Quality control metrics for taxonomic identification of benthic macroinvertebrates collected in Santa Clara County in WY 2018 compared to measurement quality objectives. 12
Table 2. Field duplicate water chemistry results for sites 205R03591, collected on May 7, 2018 and205R00746, collected May 24, 2018.12
Table 3. Target and actual reporting limits for nutrients analyzed in SCVURPPP creek status monitoring.Data in highlighted rows exceed monitoring quality objectives in RMC QAPP.14
Table 4. Field duplicate water chemistry results for site 205R03591, collected on May 7, 2018. Data inhighlighted rows exceed measurement quality objectives in RMC QAPP
Table 5. Field duplicate water chemistry results for site 205R00746, collected on May 24, 2018. Data inhighlighted rows exceed measurement quality objectives in RMC QAPP
Table 6. Lab and field duplicate pathogen results collected on July 27, 2018
Table 7. Drift measurements for two continuous water quality monitoring events in Santa Clara Valleyurban creeks during WY 2018. Bold and highlighted values exceeded measurement quality objectives. 18
Table 8. Comparison of target and actual reporting limits for sediment analytes where reporting limitsexceeded target limits. Sediment samples were collected in Santa Clara County creeks in WY 2018 19
Table 9. Sediment chemistry duplicate field results for site 204COR010, collected on July 17, 2018 in SanMateo County.Data in highlighted rows exceed monitoring quality objectives in RMC QAPP20
Table 10. Water column pesticides duplicate field results for site 204R01412, collected on January 8,2018 in San Mateo County.Data in highlighted rows exceed monitoring quality objectives in RMC QAPP.23
Table 11. Water and sediment toxicity duplicate results for site 204COR010, collected on July 17, 2018 in San Mateo County. Data in highlighted rows exceed monitoring quality objectives in RMC QAPP24

LIST OF ACRONYMS

BASMAA BMI CDFW DPD DQO EDDs EV KLI LCS	Bay Area Stormwater Management Agencies Association Benthic Macroinvertebrates California Department of Fish and Wildlife Diethyl-p-phenylene Diamine Data Quality Objective Electronic data deliverables Expected Value Kinnetic Laboratories, Inc. Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MPN	Most Probably Number
MQO	Measurement Quality Objective
MRP	Municipal Regional Permit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
MV	Measured Value
ND	Non-detect
NIST	National Institute of Standards and Technology
NPDES	National Pollution Discharge Elimination System
NV	Native Value
PAH	Polycyclic Aromatic Hydrocarbon
PR	Percent Recovery
QA	Quality Assurance
QAPP	Quality Assurance Project Plan
QC	Quality Control
RL	Reporting Limit
RMC	Regional Monitoring Coalition
RPD	Relative Percent Difference
SAFIT	Southwest Association of Freshwater Invertebrate Taxonomists
SCCWRP	Southern California Coastal Water Research Project
SFRWQCB	San Francisco Regional Water Quality Control Board
SCVURPPP	Santa Clara Valley Urban Runoff Pollution Prevention Program
SOP	Standard Operating Procedures
STE	Standard Taxonomic Effort
SV	Spike Value
SWAMP	Surface Water Ambient Monitoring Program
TKN	Total Kjeldahl Nitrogen
WY	Water Year

1. INTRODUCTION

In Water Year 2018 (WY 2018; October 1, 2017 through September 30, 2018), the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP) conducted Creek Status Monitoring in compliance with provision C.8.d and Pesticide & Toxicity Monitoring in compliance with provision C.8.g of the National Pollutant Discharge Elimination System (NPDES) stormwater permit for Bay Area municipalities referred to as the Municipal Regional Permit (MRP). The monitoring strategy includes regional ambient/probabilistic monitoring and local "targeted" monitoring as described in the Bay Area Stormwater Management Agencies Association (BASMAA) Regional Monitoring Coalition (RMC) Creek Status and Long-Term Trends Monitoring Plan (BASMAA 2012). SCVURPPP implemented a comprehensive data quality assurance and quality control (QA/QC) program, covering all aspects of the probabilistic and targeted monitoring. QA/QC for data collected was performed according to procedures detailed in the BASMAA RMC Quality Assurance Project Plan (QAPP) (BASMAA 2016a) and the BASMAA RMC Standard Operating Procedures (SOP; BASMAA 2016b), SOP FS-13 (Standard Operating Procedures for QA/QC Data Review). The BASMAA RMC QAPP and SOPs are based on the QA program developed by the California Surface Water Ambient Monitoring Program (SWAMP; SCCWRP 2008).

Based on the QA/QC review, no WY 2018 data except for the continuous pH data collected in May and June. This data was rejected due to instrument failure. Additionally, some WY 2018 data were flagged due to issues identified in the QA/QC review. Overall, WY 2018 data met QA/QC objectives. Details are provided in the sections below.

1.1. DATA TYPES EVALUATED

During creek status monitoring, several data types were collected and evaluated for quality assurance and quality control. These data types include the following:

- 1. Bioassessment data
 - a. Benthic Macroinvertebrates (BMI)
 - b. Algae
- 2. Physical Habitat Assessment
- 3. Field Measurements
- 4. Water Chemistry
- 5. Pathogen Indicators
- 6. Continuous Water Quality (2-week deployment; 15-minute interval)
 - a. Temperature
 - b. Dissolved Oxygen
 - c. Conductivity
 - d. pH
- 7. Continuous Temperature Measurements (5-month deployment; 1-hour interval)

During pesticide & toxicity monitoring the following data types were collected and evaluated for quality assurance and quality control:

- 1. Water Toxicity (dry weather; MRP Provision C.8.g.i)
- 2. Sediment Toxicity (dry weather; MRP Provision C.8.g.ii)
- 3. Sediment Chemistry (dry weather; MRP Provision C.8.g.ii)
- 4. Water Pesticides (wet weather; MRP Provision C.8.g.iii)
- 5. Water Toxicity (wet weather; MRP Provision C.8.g.iii)

1.2. LABORATORIES

Laboratories that provided analytical and taxonomic identification support to SCVURPPP and the RMC were selected based on demonstrated capability to adhere to specified protocols. Laboratories are certified and are as follows:

- Caltest Analytical Laboratory (nutrients, chlorophyll a, ash free dry mass, sediment chemistry)
- Pacific EcoRisk, Inc. (water and sediment toxicity)
- Alpha Analytical Laboratories, Inc. (pathogen indicators)
- BioAsessment Services (benthic macroinvertebrate (BMI) identification)
- Jon Lee Consulting (BMI identification Quality Control)
- EcoAnalysts, Inc. (algae identification)
- Physis Environmental Laboratories, Inc. (water column pesticides)

1.3. QA/QC ATTRIBUTES

The RMC SOP and QAPP identify seven data quality attributes that are used to assess data QA/QC. They include (1) Representativeness, (2) Comparability, (3) Completeness, (4) Sensitivity, (5) Precision, (6) Accuracy, and (7) Contamination. These seven attributes are compared to Data Quality Objectives (DQOs), which were established to ensure that data collected are of adequate quality and sufficient for the intended uses. DQOs address both quantitative and qualitative assessment of the acceptability of data – representativeness and comparability are qualitative while completeness, sensitivity, precision, accuracy, and contamination are quantitative assessments.

Specific DQOs are based on Measurement Quality Objectives (MQOs) for each analyte. Chemical analysis relies on repeatable physical and chemical properties of target constituents to assess accuracy and precision. Biological data are quantified by experienced taxonomists relying on organism morphological features.

1.3.1. Representativeness

Data representativeness assesses whether the data were collected so as to represent actual conditions at each monitoring location. For this project, <u>all samples and field measurements are assumed to be</u> representative if they are performed according to protocols specified in the RMC QAPP and SOPs.

1.3.2. Comparability

The QA/QC officer ensures that the data may be reasonably compared to data from other programs producing similar types of data. For RMC Creek Status monitoring, individual stormwater programs try to maintain comparability within the RMC. The key measure of comparability for all RMC data is the California Surface Water Ambient Monitoring Program.

1.3.3. Completeness

Completeness is the degree to which all data were produced as planned; this covers both sample collection and analysis. For chemical data and field measurements an overall completeness of greater than <u>90%</u> is considered acceptable for RMC chemical data and field measurements. For bioassessment-related parameters – including BMI and algae taxonomy samples/analysis and associated field measurement – a completeness of <u>95%</u> is considered acceptable.

1.3.4. Sensitivity

Sensitivity analysis determines whether the methods can identify and/or quantify results at low enough levels. For the chemical analyses in this project, sensitivity is considered to be adequate if the reporting limits (RLs) comply with the specifications in RMC QAPP Appendix E: RMC Target Method Reporting Limits. For benthic macroinvertebrate data, taxonomic identification sensitivity is acceptable provided taxonomists use standard taxonomic effort (STE) Level I as established by the Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT). There is no established level of sensitivity for algae taxonomic identification.

1.3.5. Accuracy

Accuracy is assessed as the percent recovery of samples spiked with a known amount of a specific chemical constituent. Chemistry laboratories routinely analyze a series of spiked samples; the results of these analyses are reported by the laboratories and evaluated using the RMC Database QA/QC Testing Tool. Acceptable levels of accuracy are specified for chemical analytes and toxicity test parameters in RMC QAPP Appendix A: Measurement Quality Objectives for RMC Analytes, and for biological measurements in Appendix B: Benthic Macroinvertebrate MQOs and Data Production Process.

1.3.6. Precision

Precision is nominally assessed as the degree to which replicate measurements agree, nominally determined by calculation of the relative percent difference (RPD) between duplicate measurements. Chemistry laboratories routinely analyze a series of duplicate samples that are generated internally. The RMC QAPP also requires collection and analysis of field duplicate samples 5% of all samples for all parameters¹. The results of the duplicate analyses are reported by the laboratories and evaluated using RMC Database QA/QC Testing Tool. Results of the Tool are confirmed manually. Acceptable levels of precision are specified for chemical analytes and toxicity test parameters in RMC QAPP Appendix A: Measurement Quality Objectives for RMC Analytes, and for biological measurements in Appendix B: Benthic Macroinvertebrate MQOs and Data Production Process.

1.3.7. Contamination

For chemical data, contamination is assessed as the presence of analytical constituents in blank samples. The RMC QAPP requires collection and analysis of field blank samples at a rate of 5% for orthophosphate.

¹ The QAPP also requires the collection of field duplicate samples for 10% of biological samples (BMI and algae). However, there are no prescribed methods for assessing the precision of these duplicate samples.

2. METHODS

2.1. REPRESENTATIVENESS

To ensure representativeness, each member of the SCVURPPP field crew received and reviewed all applicable SOPs and the QAPP. Most field crew members also attended a two-day bioassessment and field sampling training session from the California Water Boards Training Academy. The course was taught by California Department of Fish and Wildlife, Aquatic Bioassessment Laboratory staff and covered procedures for sampling benthic macroinvertebrates, algae, and measuring physical habitat characteristics using the applicable SWAMP SOPs. As a result, each field crew member was knowledgeable of, and performed data collection according to the protocols in the RMC QAPP and SOPs, ensuring that all samples and field measurements are representative of conditions in Santa Clara County urban creeks.

2.2. COMPARABILITY

In addition to the bioassessment and field sampling training, SCVURPPP field crew members participated in an inter-calibration exercise with other stormwater programs prior to field assessments at least once during the permit term. During the inter-calibration exercise, the field crews also reviewed water chemistry (nutrient) sample collection and water quality field measurement methods. Close communication throughout the field season with other stormwater program field crews also ensured comparability.

Sub-contractors collecting samples and the laboratories performing analyses received copies of the RMC SOP and QAPP and have acknowledged reviewing the documents. Data collection and analysis by these parties adhered to the RMC protocols and was included in their operating contracts.

Following completion of the field and laboratory work, the field data sheets and laboratory reports were reviewed by the SCVURPPP Program Quality Assurance staff and were compared against the methods and protocols specified in the SOPs and QAPP. Specifically, staff checked for conformance with field and laboratory methods as specified in SOPs and QAPP, including sample collection and analytical methods, sample preservation, sample holding times, etc.

Electronic data deliverables (EDDs) were submitted to the San Francisco Regional Water Quality Control Board (SFRWQCB) in Microsoft Excel templates developed by SWAMP, to ensure data comparability with the SWAMP program. In addition, data entry followed SWAMP documentation specific to each data type, including the exclusion of qualitative values that do not appear on SWAMP's look up lists². Completed templates were reviewed using SWAMP's online data checker³, further ensuring SWAMP-comparability.

2.3. COMPLETENESS

2.3.1. Data Collection

All efforts were made to collect 100% of planned samples. Upon completion of all data collection, the number of samples collected for each data type was compared to the number of samples planned and the number required by the MRP, and reasons for any missed samples were identified. When possible, SCVURPPP staff resampled sites if missing data were identified prior to the close of the monitoring period. Specifically, continuous water quality data were reviewed immediately following deployment, and if data were rejected, samplers were redeployed immediately.

² Look up lists available online at <u>http://swamp.waterboards.ca.gov/swamp_checker/LookUpLists.php</u>

³ Checker available online at <u>http://swamp.waterboards.ca.gov/swamp_checker/SWAMPUpload.php</u>

For bioassessments, the SCVURPPP field crew made all efforts to collect the required number of BMI and algae subsamples per site; in the event of a dry transect, the samples were slid to the closest sampleable location to ensure 11 total subsamples in each station's composite sample.

2.3.2. Field Sheets

Following the completion of each sampling event, the field crew leader/local monitoring coordinator reviewed any field generated documents for completion, and any missing values were entered. Once field sheets were returned to the office, a second SCVURPPP staff member reviewed the field sheets again and noted any missing data.

2.3.3. Laboratory Results

SCVURPPP staff assessed laboratory reports and EDDs for the number and type of analysis performed to ensure all sites and samples were included in the laboratory results.

2.4. SENSITIVITY

2.4.1. Biological Data

Benthic macroinvertebrates were identified to SAFIT STE Level I.

2.4.2. Chemical Analysis

The reporting limits for analytical results were compared to the target reporting limits in Appendix E (RMC Target Method Reporting Limits) of the RMC QAPP. Results with reporting limits that exceeded the target reporting limit were flagged.

2.5. ACCURACY

2.5.1. Biological Data

Ten percent of the total number of BMI samples collected was submitted to a separate taxonomic laboratory, Jon Lee Consulting, for independent assessment of taxonomic accuracy, enumeration of organisms, and conformance to standard taxonomic level. For SCVURPPP, two samples were evaluated for QC purposes. Results were compared to MQOs in Appendix B (Benthic macroinvertebrate MQOs and Data Production Process).

2.5.2. Chemical Analysis

Caltest and Physis evaluated and reported the percent recovery (PR) of laboratory control samples (LCS; in lieu of reference materials) and matrix spikes (MS), which were recalculated and compared to the applicable MQOs set by Appendix A (Measurement Quality Objectives for RMC Analytes) of the RMC QAPP MQOs. If a QA sample did not meet MQOs, all samples in that batch for that particular analyte were flagged.

For reference materials, percent recovery was calculated as:

PR = MV / EV x 100% Where: MV = the measured value EV = the expected (reference) value

For matrix spikes, percent recovery was calculated as:

 $PR = [(MV - NV) / SV] \times 100\%$

Where: MV = the measured value of the spiked sample

NV = the native, unspiked result

SV = the spike concentration added

2.5.3. Water Quality Data Collection

Accuracy for continuous water quality monitoring sondes was assured via continuing calibration verification for each instrument before and after each two-week deployment. Instrument drift was calculated by comparing the instrument's measurements in standard solutions taken before and after deployment. The drift was compared to measurement quality objectives for drift listed on the SWAMP calibration form, included as an attachment to the RMC SOP FS-3.

Temperature data were checked for accuracy by comparing measurements taken by HOBO temperature loggers with NIST thermometer readings in room temperature water and ice water prior to deployment. The mean difference and standard deviation for each HOBO was calculated, and if a logger had a mean difference exceeding 0.2 °C, it is replaced.

2.6. PRECISION

2.6.1. Field Duplicates

For creek status monitoring, duplicate biological samples were collected at 10% (two) of the 20 probabilistic sites and duplicate water chemistry samples were collected at 10% (two) of the probabilistic sites sampled to evaluate precision of field sampling methods. The RPD for water chemistry field duplicates was calculated and compared to the MQO (RPD < 25%) set by Table 26-1 in Appendix A of the RMC QAPP. If the RPD of the two field duplicates did not meet the MQO, the results were flagged.

The RMC QAPP requires collection and analysis of duplicate sediment chemistry and toxicity samples at a rate of 5% of total samples collected for the project. One field duplicate was collected in San Mateo County for dry weather sediment chemistry, sediment toxicity, and water toxicity samples and an additional field duplicate was collected in Contra Costa County for wet weather pesticides to account for the 16 pesticide & toxicity sites collectively monitored by the RMC in WY 2018. The sediment sample and field duplicate were collected together using the Sediment Scoop Method described in the RMC SOP, homogenized, and then distributed to two separate containers. For sediment chemistry and water pesticides field duplicates, the RPD was calculated for each analyte and compared to the MQOs (RPD < 25%) set by Tables 26-7 through 26-11 in Appendix A of the RMC QAPP. For sediment and water toxicity field duplicates, the RPD of the batch mean was calculated and compared to the recommended acceptable RPD (< 20%) set by Tables 26-12 and 26-13 in Appendix A. If the RPD of the field duplicates did not meet the MQO, the results were flagged.

The RPD is calculated as:

 $\begin{aligned} \text{RPD} &= \text{ABS} \left(\left[X1\text{-}X2 \right] / \left[\left(X1\text{+}X2 \right) / 2 \right] \right) \\ \text{Where: } X1 &= \text{ the first sample result} \\ X2 &= \text{ the duplicate sample result} \end{aligned}$

No field duplicate is required for pathogen indicators.

2.6.2. Chemical Analysis

Caltest and Physis evaluated and reported the RPD for laboratory duplicates, laboratory control duplicates, and matrix spike duplicates. The RPDs for all duplicate samples were recalculated and compared to the applicable MQO set by Appendix A of the RMC QAPP. If a laboratory duplicate sample did not meet MQOs, all samples in that batch for that particular analyte were flagged.

2.7. CONTAMINATION

Blank samples were analyzed for contamination, and results were compared to MQOs set by Appendix A of the RMC QAPP. For creek status monitoring, the RMC QAPP requires all blanks (laboratory and field) to be less than the analyte reporting limits. If a blank sample did not meet this MQO, all samples in that batch for that particular analyte were flagged.

3. RESULTS

3.1. OVERALL PROJECT REPRESENTATIVENESS

The SCVURPPP staff and field crew members were trained in SWAMP and RMC protocols, and received significant supervision from the local monitoring coordinator and QA officer. As a result, creek status monitoring data were considered to be representative of conditions in Santa Clara County Creeks.

3.2. OVERALL PROJECT COMPARABILITY

SCVURPPP creek status monitoring data were considered to be comparable to both other agencies in the RMC and to SWAMP due to trainings, use of the same electronic data templates, and close communication.

3.3. BIOASSESSMENTS AND PHYSICAL HABITAT ASSESSMENTS

In addition to algae and BMI taxonomic samples, the SCVURPPP field crew collected chlorophyll a and ash free dry mass samples during bioassessments. The BMI taxonomic laboratory, BioAssessment Services, confirmed that the laboratory QA/QC procedures aligned with the procedures in Appendices B through D of the RMC QAPP and met the BMI MQOs in Appendix B.

3.3.1. Completeness

SCVURPPP completed bioassessments and physical habitat assessments for 20 of 20 planned/required sites for a 100% sampling completion rate. However, physical habitat assessments could not be taken at several transects due to inaccessibility.

3.3.2. Sensitivity

The BMI taxonomic identification met sensitivity objectives; the taxonomy laboratory, BioAssessment Services, and QC laboratory, Jon Lee Consulting, confirmed that organisms were identified to SAFIT STE Level I, with the exception of Chironomidae which was analyzed to SAFIT level 1a.

The analytical RL for ash free dry mass analysis (8 mg/L) was much higher than the RMC QAPP target RL (2 mg/L) due to high concentrations requiring large dilutions. The results were several orders of magnitude higher than the actual and target reporting limit and were not affected by the higher RL. While the chlorophyll a analyses also required large dilutions due to high concentrations within the samples, the chlorophyll a analytical RL was below that of the RMC QAPP target RL.

Note that the target RLs in the RMC QAPP are set by the SWAMP, but there are currently no appropriate SWAMP targets for either ash free dry mass or chlorophyll a. Limits in the RMC QAPP are meant to reflect current laboratory capabilities. At lower analyte concentrations where a dilution would not be necessary, the analytical RLs would have met the target RLs.

3.3.3. Accuracy

The BMI samples that were submitted to an independent QC taxonomic laboratory had three specimen misidentifications and no counting errors. The specimen misidentifications were speculated to be due to sorting errors. The QC laboratory calculated sorting and taxonomic identification metrics, which were compared to the measurement quality objectives in Table 27-1 in Appendix B of the RMC QAPP. All MQOs were met. A comparison of the metrics with the MQOs is shown in Table 1. A copy of the QC laboratory report is available upon request.

There is currently no protocol for evaluating the accuracy of algae taxonomic identification.

Quality Control Metric	MQO	Error Rate	Exceeds MQO?
Recount Accuracy	> 95%	99.84%	No
Taxa ID	≤ 10%	1.85%	No
Individual ID	≤ 10%	0.65%	No
Low Taxonomic Resolution Individual	≤ 10%	0%	No
Low Taxonomic Resolution Count	≤ 10%	0%	No
High Taxonomic Resolution Individual	≤ 10%	0%	No
High Taxonomic Resolution Count	≤ 10%	0%	No

 Table 1. Quality control metrics for taxonomic identification of benthic macroinvertebrates

 collected in Santa Clara County in WY 2018 compared to measurement quality objectives.

3.3.4. Precision

Field blind duplicate chlorophyll a and ash free dry mass samples were collected at two sites in WY 2018 and were sent to the laboratory for analysis.

Duplicate field samples do not provide a valid estimate of precision in the sampling and are of little use to assessing precision, because there is no reasonable expectation that duplicates will produce identical data. Nonetheless, the RPD of the chlorophyll a and ash free dry mass duplicate results were calculated and compared to the MQO (< 25%) for conventional analytes in water (Table 26-1 in Appendix B of the RMC QAPP). Due to the nature of chlorophyll a and ash free dry mass collection, the RPDs for both parameters are expected to exceed the MQO. For site 205R00746, the chlorophyll a RPD exceeded the MQO while the ash free dry mass RPD did not. For site 205R03591, the ash free dry mass RPD exceeded the MQO while the chlorophyll-a RPD did not. The field duplicate results and their RPDs are shown in Table 2.

Again, discrepancies were to be expected due to the potential natural variability in algae production within the reach and the collection of field duplicates at different locations along each transect (as specified in the protocol). As a result, both parameters have frequently exceeded the field duplicate RPD MQOs during past years' monitoring efforts.

		205R03591 May 7, 2018			205R00746 May 24, 2018				
Analyte	Units	Original Result	Duplicate Result	RPD	Exceeds MQO (>25%) ^a	Original Result	Duplicate Result	RPD	Exceeds MQO (>25%)ª
Chlorophyll a	mg/m³	14.6	14.8	2%	No	89.2	68.4	27%	Yes
Ash Free Dry Mass	mg/L	99.6	49.6	67%	Yes	37.9	35.3	7%	No

 Table 2. Field duplicate water chemistry results for site 205R03591, collected on May 7, 2018 and site 205R00746, collected May 24, 2018.

^aIn accordance with the RMC QAPP, if the native concentration of either sample is less than the reporting limit, the RPD is not applicable

Laboratory duplicates were also collected for chlorophyll a and ash free dry mass samples. The RPD for ash free dry mass was below the MQO limit, however the RPD for chlorophyll a was above the limit. As a result, associated chlorophyll a samples were flagged.

3.3.5. Contamination

All field collection equipment was decontaminated between sites in accordance with the RMC SOP FS-8 and CDFW Aquatic Invasive Species Decontamination protocols. As a result, it is assumed that samples were free of biological contamination.

3.4. FIELD MEASUREMENTS

Field measurements of temperature, dissolved oxygen, pH, specific conductivity, and chlorine residual were collected concurrently with bioassessments and water chemistry samples. Chlorine residual was measured using a HACH Pocket Colorimeter[™] II, which uses the DPD method. All other parameters were measured with a YSI Professional Plus or YSI 600XLM-V2-S multi-parameter instrument. All data collection was performed according to RMC SOP FS-3 (Performing Manual Field Measurements).

3.4.1. Completeness

Temperature, dissolved oxygen, pH, specific conductivity, total chlorine residual, and free chlorine residual were collected at all 20 bioassessment sites for a 100% completeness rate.

3.4.2. Sensitivity

Free and total chlorine residual were measured using a HACH Pocket Colorimeter[™] II, which uses the DPD method. For this method, the estimated detection limit for the low range measurements (0.02-2.00 mg/L) was 0.02 mg/L. There is, however, no established method reporting limit. Based on industry standards and best professional judgment, the method reporting limit is assumed to be 0.13 mg/L, which is much lower than the 0.5 mg/L target reporting limit listed in the RMC QAPP for free and total chlorine residual.

There are also no method reporting limits for temperature, dissolved oxygen, pH, and conductivity measurements, but the actual measurements are much higher than target reporting limits in the RMC QAPP, so it is assumed that target reporting limits are met for all field measurements.

3.4.3. Accuracy

Data collection occurred Monday through Thursday, and the multi-parameter instrument was calibrated at most 12 hours prior to the first sample on Monday, with the dissolved oxygen sensor calibrated every morning to ensure accurate measurements. Calibration solutions are certified standards, whose expiration dates were noted prior to use. The chlorine kit is factory-calibrated and is sent into the manufacturer every other year to be calibrated.

Free chlorine was measured to be higher than total chlorine at six of the 20 sites sampled in WY 2018. In past years, free chlorine has also occasionally been measured as higher than total chlorine. Theoretically, the free chlorine measurement should always be less than or equal to the total chlorine measurement, as the total chlorine concentration in water encompasses the free chlorine concentration in addition to any other chlorine species. The reason for free chlorine concentrations exceeding total chlorine concentrations at a sample site has not been definitively established. However, it is suspected that this could be due to inaccuracy of the chlorine meter at concentrations below 0.13 mg/L or varying chlorine concentrations between the water sample used for the total chlorine measurement and the water sample used for the free chlorine measurement. When free chlorine was observed to be higher than total chlorine at a sample site, the free chlorine measurement was retaken with a new water sample and recorded on the field form. It was deemed unnecessary to flag free chlorine measurements that were higher than total chlorine measurements.

3.4.4. Precision

Precision could not be measured as no duplicate field measurements are required or were collected.

3.5. WATER CHEMISTRY

Water chemistry samples were collected by SCVURPPP staff concurrently with bioassessment samples and analyzed by Caltest Analytical Laboratory (Caltest) within their respective holding times. Caltest performed all internal QA/QC requirements as specified in the QAPP and reported their findings to the RMC. Key water chemistry MQOs are listed in RMC QAPP Table 26-2.

3.5.1. Completeness

SCVURPPP collected 100% of planned/required water chemistry samples at the 20 bioassessment sites including two field duplicate samples. Samples were analyzed for all requested analytes, and 100% of results were reported. Water chemistry data were flagged when necessary, but none were rejected.

3.5.2. Sensitivity

Laboratory reporting limits met or were lower than target reporting limits for all nutrients except ammonia, chloride, and nitrate. The reporting limit for all chloride samples exceeded the target reporting limit, but concentrations were much higher than reporting limits, and the elevated reporting limits do not decrease confidence in the measurements.

The reporting limit (0.05 mg/L) and method detection limit (0.02 mg/L) for nitrate samples were higher than the target reporting limit (0.01 mg/L). As a result, one sample was flagged as "detected, not quantified", but it would have been quantified at the lower reporting limit. Additionally, the nitrate concentration at one other site was measured to be below the method detection limit. Due to the reporting limit (0.1 mg/L) and method detection limit (0.04 mg/L) for ammonia samples being higher than the target reporting limit (0.02 mg/L), three samples were flagged as "detected, not quantified", but they would have been quantified at the lower reporting limit. Additionally, the ammonia samples being higher than the target reporting limit (0.02 mg/L), three samples were flagged as "detected, not quantified", but they would have been quantified at the lower reporting limit. Additionally, the ammonia concentrations at 15 other sites were measured to be below the method detection limit. SCVURPPP has discussed the reporting limits with Caltest, and there is the possibility for a lower reporting limit for future analysis. Target and actual reporting limits are shown in Table 3.

Analyte	Target RL	Actual RL
Analyte	mg/L	mg/L
Ammonia	0.02	0.02-0.1
Chloride	0.25	1-10
Total Kjeldahl Nitrogen	0.5	0.1
Nitrate	0.01	0.05
Nitrite	0.01	0.005
Orthophosphate	0.01	0.01
Silica	1	1
Phosphorus	0.01	0.01

Table 3. Target and actual reporting limits for nutrients analyzed in SCVURPPP creek

 status monitoring. Data in highlighted rows exceed monitoring quality objectives in RMC

 QAPP.

3.5.3. Accuracy

Recoveries on all LCS were within the MQO target range of 80-120% recovery, and most MS and matrix spike duplicates (MSD) PRs were within the target range. Fifteen MS/MSD PRs exceeded the MQO range listed in the RMC QAPP for conventional analytes, including ammonia, total Kjeldahl nitrogen (TKN), and chloride. The QA samples affected 14 sites, whose results have been assigned the appropriate SWAMP flag. Though the results were flagged, none of the analytical data were rejected by the local QA officer due to accuracy.

The PR ranges on laboratory reports were 70-130%, 85-115% or 90-110% for some conventional analytes (nutrients) while the RMC QAPP lists the PR as 80-120% for all conventional analytes in water. As a result, some QA samples that exceeded RMC MQOs were flagged by the local QA officer, but not by the laboratory and vice versa.

3.5.4. Precision

The RPD for all laboratory control sample duplicate pairs were consistently below the MQO target of < 25%. However, the RPD for one MS/MSD pair exceeded the target.

Water chemistry field duplicates were collected at two sites in Santa Clara County and were compared against the original samples. For WY 2018, one of the total Kjeldahl nitrogen duplicate samples exceeded the RPD MQO. In past years of sampling, total Kjeldahl nitrogen has been common among the analytes that exceed the field duplicate RPD MQOs. Field crews will continue to make an effort in subsequent years to collect the original and duplicate samples in an identical fashion. The field duplicate water chemistry results and their RPDs are shown in Tables 4 and 5. Because of the variability in reporting limits, values less than the RL were not evaluated for RPD. For those analytes whose RPDs could be calculated and did not meet the RMC MQO, they were assigned the appropriate SWAMP flag.

Analyte Name	Fraction Name	Unit	Original Result	Duplicate Result	RPD	Exceeds MQO (>25%)ª
Ammonia as N	Total	mg/L	ND	ND	N/A	N/A
Chloride	None	mg/L	18	18	0%	No
Nitrate as N	None	mg/L	0.11	0.11	0%	No
Nitrite as N	None	mg/L	ND	ND	N/A	N/A
Nitrogen, Total Kjeldahl	None	mg/L	0.35	ND	N/A	N/A
Orthophosphate as P	Dissolved	mg/L	0.017	0.02	16%	No
Phosphorus as P	Total	mg/L	0.018	0.02	11%	No
Silica as SiO2	Total	mg/L	17	17	0%	No

Table 4. Field duplicate water chemistry results for site 205R03591, collected on May 7, 2018. Data in highlighted rows exceed measurement quality objectives in RMC QAPP.

^aIn accordance with the RMC QAPP, if the native concentration of either sample is less than the reporting limit, the RPD is not applicable

Table 5. Field duplicate water chemistry results for site 205R00746, collected on May 24, 2018. Data in highlighted rows exceed measurement quality objectives in RMC QAPP.

Analyte Name	Fraction Name	Unit	Original Result	Duplicate Result	RPD	Exceeds MQO (>25%) ^a
Ammonia as N	Total	mg/L	ND	ND	N/A	N/A
Chloride	None	mg/L	16	16	0%	No
Nitrate as N	None	mg/L	0.21	0.21	0%	No
Nitrite as N	None	mg/L	ND	ND	N/A	N/A
Nitrogen, Total Kjeldahl	None	mg/L	0.4	0.18	76%	Yes
Orthophosphate as P	Dissolved	mg/L	0.072	0.072	0%	No
Phosphorus as P	Total	mg/L	0.06	0.058	3%	No
Silica as SiO2	Total	mg/L	23	22	4%	No

^aIn accordance with the RMC QAPP, if the native concentration of either sample is less than the reporting limit, the RPD is not applicable

3.5.5. Contamination

None of the target analytes were detected in any of the laboratory blanks at levels above their reporting limit. All analytes were non-detect in the laboratory blanks. The RMC QAPP does not require field blanks to be collected, and possible contamination from sample collection was not assessed. However, the SCVURPPP field crew takes appropriate precautions to avoid contamination, including wearing gloves during sample collection and rinsing sample containers with stream water when preservatives are not needed.

3.6. PATHOGEN INDICATORS

Pathogen indicator samples were collected by SCVURPPP staff and were analyzed by Alpha Analytical Laboratories, Inc for *E. coli* and enterococcus. Samples were collected on July 27, 2018.

3.6.1. Completeness

All five required/planned pathogen indicator samples were collected for a 100% completeness rate. These samples and were received and incubated by the laboratory well within the 8-hour hold time.

3.6.2. Sensitivity

The reporting limits for *E. coli* and enterococcus (1 MPN/100mL and 2 MPN/100m, respectively) met the target RL of 2 MPN/100mL listed in the project QAPP.

3.6.3. Accuracy

Negative and positive laboratory controls were run for microbial media. A negative response was observed in the negative control and a positive response was observed in the positive control required by the project QAPP Table 26-4.

3.6.4. Precision

The RMC QAPP requires one laboratory duplicate to be run per 10 samples or per analytical batch, whichever is more frequent. In WY 2018, one laboratory duplicate was run for the five samples/one batch. However, determining precision for pathogen indicators requires 15 duplicate sets. Due to the small number of samples collected for this project, there were not enough laboratory duplicates to determine precision. In WY 2018, only one laboratory duplicate was run and is not sufficient in determining precision.

The RMC QAPP does not require a field duplicate to be collected for pathogen indicators. However, one field duplicate was collected in WY 2018 at 205STE064. The RPD for *E.coli* was 6% and 29% for enterococcus. Since there is no requirement for pathogen field duplicates, there is no corresponding MQO, and the precision could not be assessed. See Table 6 for the field duplicate results.

Duplicate Type	Analyte	Original Result (MPN/100mL)	Duplicate Result (MPN/100mL)	RPD
Lab Duplicate	E.coli	> 2419.6	> 2419.6	NA
Lab Duplicate	Enterococcus	> 2419.6	> 2419.6	NA
Field Duplicate	E.coli	260.3	275.5	6%
Field Duplicate	Enterococcus	547.5	410.6	29%

Table 6. Lab and field duplicate pathogen results collected on July 27, 2018.

3.6.5. Contamination

One method blank (sterility check) was run in the batch for *E. coli* and enterococcus. No growth was observed in the blank.

3.7. CONTINUOUS WATER QUALITY

Continuous water quality measurements were recorded at three sites during the spring (May/June 2018), concurrent with bioassessments, and again in the summer (September 2018) in compliance with the MRP. Temperature, pH, dissolved oxygen, and specific conductivity were recorded once every 15 minutes for approximately two-weeks using a multi-parameter water quality sonde (YSI 6600-V2).

3.7.1. Completeness

The MRP requires one to two-week deployments, and both deployments exceeded the one week minimum. The first deployment lasted 14 days while the second deployment lasted 9 days. Sondes collected data for 100% of the planned deployments. However, the pH sensor for the sonde deployed at station 205COY236 during the spring deployment failed and associated pH data were rejected.

3.7.2. Sensitivity

There are no method reporting limits for temperature, dissolved oxygen, pH, and conductivity measurements, but the actual measurements are much higher than target reporting limits in the RMC QAPP, so it is assumed that target reporting limits are met for all field measurements.

3.7.3. Accuracy

The SCVURPPP staff conduct pre- and post-deployment sonde calibrations for the three sondes used during monitoring events and calculate the drift during the deployments. A summary of the drift measurements is shown in Table 7. During the first monitoring event, the sonde deployed at 205COY236 exceeded both the pH 7and pH 10 MQOs. The pH results at this site were subsequently flagged and rejected for this deployment.

Parameter	Measurement Quality	205C0	OY235	205C0	DY236	205C	OY239
	Objectives			Event 1	Event 2	Event 1	Event 2
Dissolved Oxygen (mg/l)	± 0.5 mg/L or 10%	-0.20	-0.06	0.21	-0.08	-0.04	-0.20
рН 7.0	± 0.2	0.04	0.13	-0.88	-0.08	0.12	0.02
рН 10.0	± 0.2	-0.05	0.12	-2.78	-0.19	-0.08	-0.07
Specific Conductance (uS/cm)	± 10%	0.0%	7.8%	0.4%	-0.1%	1.6%	0.5%

 Table 7. Drift measurements for two continuous water quality monitoring events in Santa Clara Valley urban creeks during WY 2018. Bold and highlighted values exceeded measurement quality objectives.

3.7.4. Precision

There is no protocol listed in the RMC QAPP for measuring the precision of continuous water quality measurements.

3.8. CONTINUOUS TEMPERATURE MONITORING

Continuous temperature monitoring was conducted from April through September 2018 at nine sites in Santa Clara County. Onset HOBO Water Temperature data loggers recorded one measurement per hour.

3.8.1. Completeness

The MRP requires SCVURPPP to monitor eight stream reaches for temperature each year, but anticipating the potential for a HOBO temperature logger to be lost during such a long deployment, SCVURPPP deployed one extra temperature logger, for a total of nine loggers. In the middle of the deployment, SCVURPPP staff checked the loggers to ensure that they were still present and recording. During the field check, staff also downloaded the existing data and redeployed the loggers. During retrieval of the temperature loggers at the end of the deployment, one logger was missing. Since the other eight loggers recorded 100% of the deployment period, SCVURPPP was still able to achieve a completion rate of 100%.

3.8.2. Sensitivity

There is no target reporting limit for temperature listed in the RMC QAPP, thus sensitivity could not be evaluated for continuous temperature measurements.

3.8.3. Accuracy

A pre-deployment accuracy check was run on the temperature loggers in March 2018. None of the deployed loggers exceeded the 0.2 °C mean difference threshold for either the room temperature bath or the ice bath. The loggers were subsequently deployed, and no flagging of the data was necessary.

3.8.4. Precision

There are no precision protocols for continuous temperature monitoring.

3.9. SEDIMENT CHEMISTRY

The dry season sediment chemistry samples were collected by Kinnetic Laboratories, Inc (KLI) concurrently with the dry season toxicity sample on July 17, 2018. Inorganic and synthetic organic compounds were analyzed by Caltest and grain size distribution was analyzed by Soil Control Laboratories, a subcontractor laboratory. Caltest conducted all QA/QC requirements as specified in the RMC QAPP and reported their findings to the RMC. Key sediment chemistry MQOs are listed in RMC

QAPP Tables 26-9 through 26-11. Sediment chemistry data were flagged when necessary, but none were rejected.

3.9.1. Completeness

The MRP requires a sediment chemistry sample to be collected at two locations each year. In WY 2018, SCVURPPP collected the sediment chemistry sample at 205STE021 and 205STQ010. The laboratories analyzed within the one year holding time for analytes in sediment, set by the RMC SOP, and reported 100% of the required analytes.

3.9.2. Sensitivity

A comparison of target and actual reporting limits for those parameters is shown in Table 8. For sediment chemistry analysis conducted in WY 2018, laboratory reporting limits were higher than RMC QAPP target reporting limits for 20 analytes. Since reporting limits for a sample are dependent on the percent solids of that sample, it is likely that the amount of solids in the sample resulted in these exceedances.

Analyte	Target RL	Actual RL	Unit
Arsenic	0.3	1.1	mg/Kg
Cadmium	0.01	0.08	mg/Kg
Chromium	0.1	1.1	mg/Kg
Copper	0.01	0.42	mg/Kg
Lead	0.01	0.08	mg/Kg
Nickel	0.02	0.08	mg/Kg
Zinc	0.1	0.8	mg/Kg
Bifenthrin	0.33	1.3	ng/g
Cyfluthrin	0.33	1.3	ng/g
Total Lambda-cyhalothrin	0.33	1.3	ng/g
Total Cypermethrin	0.33	1.3	ng/g
Total Deltamethrin	0.33	1.3	ng/g
Total Esfenvalerate/Fenvalerate	0.33	1.3	ng/g
Permethrin	0.33	1.3	ng/g
Carbaryl	30	64	ng/g
Fipronil	0.33	1.3	ng/g
Fipronil Desulfinyl	0.33	1.3	ng/g
Fipronil Sulfide	0.33	1.3	ng/g
Fipronil Sulfone	0.33	1.3	ng/g
Total Organic Carbon	0.01	0.05	% dw

Table 8. Comparison of target and actual reporting limits for sediment analytes where reporting limits exceeded target limits. Sediment samples were collected in Santa Clara County creeks in WY 2018.

3.9.3. Accuracy

Inorganic Analytes

No QA samples exceeded the QAPP MQO for LCS percent recovery (PR) for metals (75-125%), but the MSD sample for lead exceeded the PR MQO. This sample was flagged but not rejected.

Synthetic Organic Compounds

The percent recovery MQO for pyrethroids and other synthetic organic compounds in sediment is 50-150% in the RMC QAPP. However, the PR MQOs listed in the laboratory reports for synthetic organic compounds varied by analyte and were much larger than PR ranges listed in the QAPP. The MQOs ranged from 1 to 275% in certain cases. As a result, several analytes were flagged by the local QA officers, but not by the laboratory.

None of the LCS PRs exceeded the RMC MQO range. However, the MS/MSD PRs exceeded the RMC MQO range for 11 PAHs, two pyrethroids (deltamethrin and bifenthrin), fipronil, fipronil sulfide, and fipronil sulfone. The PAH MS/MSD samples that exceeded the PR MQO include benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(e)pyrene, benzo(g,h,i)perylene, benzo(k)fluoranthene, dibenz(a,h)anthracene, fluoranthene, indeno(1,2,3-c,d)pyrene, perylene, phenanthrene, and pyrene.

3.9.4. Precision

Inorganic Analytes

The RMC QAPP lists the maximum RPD for inorganic analytes (metals) as 25%. All MS/MSD sets for metals were well below the RMC RPD MQO of 25%.

Synthetic Organic Compounds

The maximum RPD for synthetic organics listed in the sediment laboratory report lists ranges from 30 to 50% for most analytes. However, the RMC QAPP lists the MQO as < 25% RPD for most synthetic organics, < 35% for pyrethroids and fipronil, and < 40% for carbaryl. One MS/MSD pair for cypermethrin exceeded the QAPP MQOs for RPD (< 35%). Results for this analyte were flagged by the local QA officer, but not by the laboratory. Twelve of the LCS duplicates exceeded the RPD MQO including acenaphthylene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(e)pyrene, biphenyl, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, methylnaphthalene, 2-, naphthalene, perylene, phenanthrene, and benz(a)anthracene.

Field Duplicates

A sediment sample field duplicate was collected in San Mateo County on July 17, 2018 and evaluated for precision. The field duplicate sample and corresponding RPDs are shown in Table 9. Because of the variability in reporting limits, values less than the RL were not evaluated for RPD. The measured concentrations of a majority of analytes from the original and duplicate samples were below the method detection limit and therefore reported as "ND". As a result, the RPDs were non-calculable. All calculable RPDs were below the MQO limits. Analytes that exceeded the MQO of RPD < 25% were cadmium; chromium; lead; anthracene; benz(a)anthracene; chrysene; dimethylnaphthalene, 2,6-; fluoranthene; methylnaphthalene, 1-; methylnaphthalene, 2-; naphthalene; phenanthrene; and pyrene.

Given the inherent variability associated with field duplicates, the number of analytes with RPDs outside of the MQO limits is acceptable. The method used to collect sediment field duplicates provides more insight to laboratory precision than precision of field methods; however, the results do suggest that field methods are precise.

	Analyte	Unit	Original	Duplicate	RPD	Exceeds MQO? (<25%) ^a
	Clay: <0.0039 mm	%	3.35	3.36	0%	No
tion	Silt: 0.0039 to <0.0625 mm	%	7.38	7.22	2%	No
Distribution	Sand: V. Fine 0.0625 to <0.125 mm	%	4.72	4.78	1%	No
Disti	Sand: Fine 0.125 to <0.25 mm	%	13.39	13.79	3%	No
Size I	Sand: Medium 0.25 to <0.5 mm	%	26.74	27.12	1%	No
n S	Sand: Coarse 0.5 to <1.0 mm	%	27.42	7.42 27.14	1%	No
Grain	Sand: V. Coarse 1.0 to <2.0 mm	%	17.01	16.59	2.5%	No
	Granule: 2.0 to <4.0 mm	%	10.56	9.24	13%	No

 Table 9. Sediment chemistry duplicate field results for site 204COR010, collected on July 17, 2018 in San Mateo

 County.
 Data in highlighted rows exceed monitoring quality objectives in RMC QAPP.

Table 9. Sediment chemistry duplicate field results for site 204COR010, collected on July 17, 2018 in San MateoCounty.Data in highlighted rows exceed monitoring quality objectives in RMC QAPP.

	Analyte	Unit	Original	Duplicate	RPD	Exceeds MQO? (<25%) ^a
	Pebble: Small 4 to <8 mm	%	13.14	12.64	4%	No
	Pebble: Medium 8 to <16 mm	%	ND	6.09	N/A	N/A
	Pebble: Large 16 to <32 mm	%	ND	ND	N/A	N/A
	Pebble: V. Large 32 to <64 mm	%	ND	ND	N/A	N/A
	Arsenic	mg/Kg dw	4.1	4.1	0%	No
	Cadmium	mg/Kg dw	0.12	0.09	2 9 %	Yes
s	Chromium	mg/Kg dw	91	55	49%	Yes
Metals	Copper	mg/Kg dw	25	23	8%	No
Σ	Lead	mg/Kg dw	15	38	87%	Yes
	Nickel	mg/Kg dw	92	74	22%	No
	Zinc	mg/Kg dw	78	75	4%	No
(%	Bifenthrin	ng/g dw	1.2	1.1	9%	No
<35	Cyfluthrin, total	ng/g dw	ND	0.6	N/A	N/A
Pyrethroids (MOO <35%)	Cyhalothrin, Total lambda-	ng/g dw	ND	ND	N/A	N/A
s (N	Cypermethrin, total	ng/g dw	ND	ND	N/A	N/A
oid	Deltamethrin/Tralomethrin	ng/g dw	0.69	ND	N/A	N/A
ethi	Esfenvalerate/Fenvalerate, total	ng/g dw	ND	ND	N/A	N/A
Pyr	Permethrin, Total	ng/g dw	0.81	0.81	0%	No
	Total Organic Carbon	%	0.92	0.93	1%	No
	Carbaryl	mg/Kg dw	ND	ND	N/A	N/A
	Fipronil	ng/g dw	ND	ND	N/A	N/A
Fipronil	Fipronil Desulfinyl	ng/g dw	ND	ND	N/A	N/A
Fipr	Fipronil Sulfide	ng/g dw	ND	ND	N/A	N/A
_	Fipronil Sulfone	ng/g dw	ND	ND	N/A	N/A
	Acenaphthene	ng/g dw	ND	ND	N/A	N/A
	Acenaphthylene	ng/g dw	ND	ND	N/A	N/A
	Anthracene	ng/g dw	3.1	4.1	28%	Yes
	Benz(a)anthracene	ng/g dw	4.1	6.1	<mark>39</mark> %	Yes
	Benzo(a)pyrene	ng/g dw	ND	ND	N/A	N/A
ns	Benzo(b)fluoranthene	ng/g dw	ND	ND	N/A	N/A
Irbo	Benzo(e)pyrene	ng/g dw	ND	ND	N/A	N/A
roca	Benzo(g,h,i)perylene	ng/g dw	ND	ND	N/A	N/A
Hyd	Benzo(k)fluoranthene	ng/g dw	ND	ND	N/A	N/A
tic	Biphenyl	ng/g dw	8.2	10	20%	No
oma	Chrysene	ng/g dw	21	31	38%	Yes
: Ar	Dibenz(a,h)anthracene	ng/g dw	ND	ND	N/A	N/A
Polycyclic Aromatic Hydrocarbons	Dibenzothiophene	ng/g dw	ND	ND	N/A	N/A
lycy	Dimethylnaphthalene, 2,6-	ng/g dw	7.2	20	<mark>9</mark> 4%	Yes
Рс	Fluoranthene	ng/g dw	21	31	38%	Yes
	Fluorene	ng/g dw	ND	ND	N/A	N/A
	Indeno(1,2,3-c,d)pyrene	ng/g dw	ND	ND	N/A	N/A
	Methylnaphthalene, 1-	ng/g dw	7.2	10	33%	Yes
	Methylnaphthalene, 2-	ng/g dw	10	20	67%	Yes
	Methylphenanthrene, 1-	ng/g dw	ND	ND	N/A	N/A

 Table 9. Sediment chemistry duplicate field results for site 204COR010, collected on July 17, 2018 in San Mateo

 County.
 Data in highlighted rows exceed monitoring quality objectives in RMC QAPP.

Analyte	Unit	Original	Duplicate	RPD	Exceeds MQO? (<25%) ^a
Naphthalene	ng/g dw	6.2	10	47%	Yes
Perylene	ng/g dw	ND	ND	N/A	N/A
Phenanthrene	ng/g dw	21	51	83%	Yes
Pyrene	ng/g dw	21	31	38%	Yes

^a MQO for pyrethroids is <35%. In accordance with the RMC QAPP, if the native concentration of either sample is less than the reporting limit, the RPD is not applicable

Laboratory Duplicates

Laboratory duplicates were collected and analyzed for grain sizes and total organic carbon. All RPDs were below the MQO limits except for small (4 to <8 mm) and medium (8 to <16 mm) pebbles in addition to coarse (0.5 to <1.0 mm) and very coarse (1.0 to <2.0 mm) sand. As a result, the associated samples were flagged.

3.9.5. Contamination

Nickel was detected in an instrument (lab) blank at a concentration above the reporting limit. As a result, nickel samples were flagged. None of the other target analytes were detected in any of the blanks.

3.10. WET SEASON PESTICIDES

Wet season pesticide samples were collected by KLI concurrently with the wet season toxicity sample on January 8, 2018. Pesticide compounds were analyzed by Physis Environmental Laboratories, Inc. within the respective hold times for pesticides, including pyrethroids, fipronil, fipronil degradates, and imidacloprid. Physis conducted all QA/QC requirements as specified in the RMC QAPP and reported their findings to the RMC. Key water chemistry MQOs are listed in RMC QAPP Tables 26-9 through 26-11. Water chemistry data were flagged when necessary, but none were rejected.

3.10.1. Completeness

The MRP requires the RMC to collect ten water column pesticides samples over the permit term if sampling is conducted by the RMC on behalf of Permittees. Permittees have decided to collaborate and in WY 2018, three pesticides samples were collected in Santa Clara County at 205CAL018, 205STE021, and 205STQ010. A total of ten samples were collected by the RMC on behalf of Permittees in WY 2018. The laboratories analyzed and reported 100% of the planned/required analytes.

3.10.2. Sensitivity

The reporting limits for wet season pesticide analytes collected in WY 2018 were all below the target reporting limits specified in the RMC QAPP.

3.10.3. Accuracy

The percent recovery MQO for pyrethroids and other synthetic organic compounds in sediment is 50-150% in the RMC QAPP. None of the LCS percent recoveries exceeded the RMC MQO range. However, the MS/MSD percent recovery for fipronil exceeded the RMC MQO range.

3.10.4. Precision

The RPD listed in the laboratory report for water column pesticides is listed as 30%. However, the RMC QAPP lists the MQO as < 25% RPD for most synthetic organics and < 35% for pyrethroids and fipronil. None of the MS/MSD pairs or LCS duplicates exceeded the RPD MQOs.

Field Duplicates

A field duplicate was collected in Contra Costa on January 8, 2018 and evaluated for precision. The field duplicate sample and corresponding RPDs are shown in Table 10. Because of the variability in reporting limits, values less than the Reporting Limit (RL) were not evaluated for RPD. The measured concentrations of a majority of analytes from the original and duplicate samples were below the method detection limit and therefore reported as ND, meaning that the RPDs were non-calculable. All calculable RPDs were below the MQO limits.

Exceeds Unit Original Duplicate RPD Analyte MQO? (<25%)v Bifenthrin 0.017 0.019 8% No ug/L ND Cyfluthrin, total ug/L ND N/A N/A ^oyrethroids (MQO <35%) Cyhalothrin, Total Lambdaug/L ND ND N/A N/A Cypermethrin, total ND ND N/A ug/L N/A Deltamethrin/Tralomethrin ug/L ND ND N/A N/A ND ND Esfenvalerate ug/L N/A N/A Fenvalerate ND ND N/A ug/L N/A Permethrin, cisug/L ND ND N/A N/A Permethrin, trans-ND ND N/A N/A ug/L Imidacloprid 0.050 0.059 16% ug/L No Fipronil 0.024 0.022 8% ug/L No Fipronil Fipronil Desulfinyl 0.009 0.009 1% N/A^b ug/L Fipronil Sulfide 0.002 0.002 9% N/A^b ug/L **Fipronil Sulfone** 0.016 0.015 9% N/A^b ug/L

 Table 10.
 Water column pesticides duplicate field results for site 204R01412, collected on January 8, 2018 in San

 Mateo County.
 Data in highlighted rows exceed monitoring quality objectives in RMC QAPP.

^a MQO for pyrethroids is <35%. In accordance with the RMC QAPP, if the native concentration of either sample is less than the reporting limit, the RPD is not applicable.

^bNo MOO is listed in the RMC QAPP for Fipronil Desulfinyl, Sulfide, or Sulfone.

Laboratory Duplicates

Laboratory duplicates were collected and analyzed for all wet weather pesticides analytes in addition to total organic carbon. All RPDs were below the MQO limits except for imidacloprid. As a result, the imidacloprid samples were flagged.

3.10.5. Contamination

No target analytes were detected in corresponding instrument (lab) blanks at a concentration above their reporting limits. As a result, no samples were flagged.

3.11. TOXICITY TESTING

Dry season water and sediment toxicity samples were collected by KLI concurrently with dry season sediment chemistry samples at two Santa Clara County sites on July 17, 2018. All toxicity tests were performed by Pacific EcoRisk. The water samples were analyzed for toxicity to five organisms (*Selenastrum capricornutum, Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca, and Chronomus dilutus*) and the sediment samples were analyzed for toxicity to *Hyalella azteca* and *Chironomus dilutus*.

Wet season water toxicity samples were collected by KLI concurrently with wet season water column pesticides samples at three Santa Clara County sites on January 8, 2018. Follow-up water toxicity samples were collected by KLI at two of the original Santa Clara County sites on March 1, 2018. All wet season water toxicity tests were also performed by Pacific EcoRisk. The initial samples were analyzed for toxicity to five organisms (*Selenastrum capricornutum, Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca, and Chironomus dilutus*). The follow-up samples were analyzed for toxicity to Hyalella Azteca, as the initial acute toxicity test for this organism was failed.

3.11.1. Completeness

The MRP requires the collection of dry season water and sediment toxicity samples at two sites per year in Santa Clara County. Additionally, the MRP requires ten wet season water toxicity samples to be collected by the RMC participants over the permit term. SCVURPPP staff collected a wet season water toxicity samples in WY 2018. Pacific EcoRisk tested the required organisms for toxicity, and 100% of results were reported.

3.11.2. Sensitivity and Accuracy

Internal laboratory procedures that align with the RMC QAPP, including water and sediment quality testing and reference toxicant testing, were performed and submitted to SCVURPPP. The laboratory data QC checks found that all conditions and responses were acceptable. A copy of the laboratory QC report is available upon request.

3.11.3. Precision

One field duplicate was collected in San Mateo County on behalf of the RMC and tested for toxicity by Pacific EcoRisk. The mean toxicity endpoints of test organisms (mean survival, mean cell count, mean biomass, and mean young per female) for the field duplicates were compared, and the RPD for each toxicity test was calculated. These RPDs are compared to the RMC QAPP MQO of <20% for acute and chronic freshwater toxicity testing (Appendix A, Table 26-12 and 26-13) in Table 8. There is no MQO for sediment toxicity field duplicates listed in the RMC QAPP, so the recommended MQO listed in the RMC QAPP for the water toxicity field duplicates (< 20%) was used as an MQO for the sediment toxicity field duplicates. Samples met the MQO for toxicity testing for all species and endpoints.

5 5			51 5 5				
	Matrix	Organism	Endpoint	Original Sample Mean	Duplicate Sample Mean	RPD	Exceeds Recommended MQO (<20%)?
	Water	Pimephales promelas	% Survival	95	97.5	3%	No
	Water	Pimephales promelas	Biomass (mg/individual)	0.905	0.959	6%	No
	Water	Ceriodaphnia dubia	% Survival	100	100	0%	No
	Water	Ceriodaphnia dubia	Young per female	33	32	3%	Yes

 Table 11. Water and sediment toxicity duplicate results for site 204COR010, collected on July 17, 2018 in San Mateo County.

 Data in highlighted rows exceed monitoring quality objectives in RMC QAPP.

Water	Selenastrum capricornutum	Total Cell Count (cells/mL)	8680000	8960000	3%	No
Water	Hyalella azteca	% Survival	98	100	2%	No
Water	Chironomus dilutus	% Survival	85	85	0%	No
Sediment	Hyalella azteca	% Survival	95	91.3	4%	No
Sediment	Chironomus dilutus	% Survival	88.8	81.2	9%	No

3.11.4. Contamination

There are no QA/QC procedures for contamination of toxicity samples, but staff followed applicable RMC SOPs to limit possible contamination of samples.

4. CONCLUSIONS

Sample collection and analysis followed MRP and RMC QAPP requirements and data that exceeded measurement quality objectives were flagged. Additionally, continuous pH data collected in May and June were rejected due to instrument failure. Overall, WY 2018 data met QA/QC objectives.

5. REFERENCES

- Bay Area Stormwater Management Agency Association (BASMAA). 2012. Regional Monitoring Coalition Final Creek Status and Long-Term Trends Monitoring Plan. Prepared By EOA, Inc. Oakland, CA. 23 pp.
- Bay Area Stormwater Management Agency Association (BASMAA) Regional Monitoring Coalition. 2016a. Creek Status Monitoring Program Quality Assurance Project Plan, Final Draft Version 3. Prepared for BASMAA by EOA, Inc. on behalf of the Santa Clara Urban Runoff Pollution Prevention Program and the Santa Clara Countywide Water Pollution Prevention Program, Applied Marine Sciences on behalf of the Alameda Countywide Clean Water Program, and Armand Ruby Consulting on behalf of the Contra Costa Clean Water Program. 128 pp.
- Bay Area Stormwater Management Agency Association (BASMAA) Regional Monitoring Coalition. 2016b. Creek Status Monitoring Program Standard Operating Procedures Version 3. Prepared for BASMAA by EOA, Inc. on behalf of the Santa Clara Urban Runoff Pollution Prevention Program and the Santa Clara Countywide Water Pollution Prevention Program, Applied Marine Sciences on behalf of the Alameda Countywide Clean Water Program, and Armand Ruby Consulting on behalf of the Contra Costa Clean Water Program. 192 pp.
- Surface Water Ambient Monitoring Program (SWAMP) Quality Assurance Team. 2008. SWAMP Quality Assurance Program Plan, Version 1.0. Prepared for the California State Water Quality Control Board by Moss Landing Marine Laboratories and San Jose State University Research Foundation. 1 September. 108 pp.

Attachment 2 RMC 5-Year Report

BASMAA Regional Monitoring Coalition Five-Year Bioassessment Report

Water Years 2012 - 2016

Prepared for:

Bay Area Stormwater Management Agencies Association

Prepared by:

March 2019

Table of Contents

E:	Executive Summaryiv				
1	Intr	oduction	1		
	1.1	Background	1		
	1.2	Project Goal	1		
	1.3	Bioassessments Programs in California	2		
	1.4	Biostimulatory/Biointegrity Policy Development	3		
2	Me	thods	5		
	2.1	Study Area	5		
	2.2	Survey Design and Sampling Sites	5		
	2.3	Sampling Protocols/Data Collection	6		
	2.4	Data Analyses	8		
3	Res	ults	14		
	3.1	Site Evaluation Results	14		
	3.2	Biological Condition of Bay Area Streams	16		
	3.3	Stressors Associated with Biological Condition	23		
	3.4	Trends	33		
4	Find	dings and Next Steps	37		
	4.1	What are the biological conditions of streams in the RMC Area?	37		
	4.2	What stressors are associated with biological conditions?	39		
	4.3	Are Biological Conditions Changing Over Time?	40		
	4.4	Evaluation of Monitoring Design	41		
	4.5	Possible Next Steps for the RMC Bioassessment Monitoring	42		
5	Ref	erences	44		

List of Tables

Table 1. Number of sites and stream length from the master draw in each post-stratification category	6
Table 2. Biological condition indices, categories and thresholds.	10
Table 3. Biological condition and stressor variable thresholds used for relative risk assessment	12
Table 4. Number of sites per county in each site evaluation class.	14
Table 5. Summary statistics for the CSCI random forest model. Rank of importance of selected stressor variables are colored according to categories: physical habitat (green), land use (brown), and water quality (blue). The correlation coefficient (rho) for each stressor variable is also presented	23
Table 6. Summary statistics for the D18 random forest model. Rank of importance of selected stressor variables are colored according to categories: physical habitat (green), land use (brown), and water quality (blue). The correlation coefficient (rho) for each stressor variable is also presented.	74
Table 7. Sites remaining in RMC sample frame before site evaluation in water year 2019.	41

List of Figures

Figure 1. Distribution of CSCI scores at reference sites with thresholds and condition categories used to
evaluate CSCI scores (from Rehn et al. 2015)
Figure 2. Plot of CSCI score and <i>chlorophyll a</i> concentration at RMC sites
Figure 3. RMC sites evaluated by evaluation class
Figure 4. Annual precipitation at San Francisco Airport (2000-2017)16
Figure 5. Cumulative distribution function (CDF) of CSCI scores at all RMC sites and urban sites
Figure 6. Cumulative distribution function (CDF) of D18 scores at all RMC sites and urban sites
Figure 7. Cumulative distribution function (CDF) of S2 scores at all RMC sites and urban sites
Figure 8. Cumulative distribution functions of CSCI scores at RMC urban sites in each participating Bay Area County
Figure 9. Biological condition of streams in the RMC area based on CSCI scores
Figure 10. CSCI scores for urban and non-urban sites in each County. Sample sizes for each county are included in each boxplot
Figure 11. D18 scores for urban and non-urban sites in each County. Sample sizes for each county are included in each boxplot
Figure 12. S2 scores for urban and non-urban sites in each County. Sample sizes for each county are included in each boxplot
Figure 13. Relationship of CSCI scores to the Human Disturbance Index (HDI) stressor indicator. Red line indicates a reference condition cutoff of 1.5 (Ode et al. 2016)
Figure 14. Relationship of CSCI scores to the percentage of land area in a 5 km radius (km ²) around the site that is impervious
Figure 15. Relationship of CSCI score to the percent of substrate in the stream reach that was smaller than sand
Figure 16. Relationship of D18 score to chloride concentration (mg/L). Note the chloride concentration scale is displayed in log units
Figure 17. Relationship of D18 score to specific conductivity (µS/cm)
Figure 18. Relationship of D18 score to the percent of substrate in the stream reach that was smaller than sand31
Figure 19. Relative risk of poor biological condition (i.e., scores in the lowest two CSCI condition categories) for sites that exceed stressor disturbance thresholds
Figure 20. Distribution of CSCI scores during water years 2012-2016. NU = non-urban, U= urban
Figure 21. Distribution of D18 scores during water years 2012-2016. NU = non-urban, U= urban34
Figure 22. Distribution of S2 scores during water years 2012-2016. NU = non-urban, U= urban
Figure 23. Relationship between median CSCI scores and accumulated annual rainfall in each County during water years 2012-2016. Includes urban and non-urban sites

Executive Summary

Biological assessment (bioassessment) is an evaluation of the biological condition of a water body based on the organisms living within it. In 2009, the Bay Area Stormwater Management Agencies Association's (BASMAA) Regional Monitoring Coalition (RMC) developed a bioassessment monitoring program to answer management questions identified in the Municipal Regional Stormwater National Pollutant Discharge Elimination System (NPDES) Permit (referred to as the Municipal Regional Permit or MRP):

- Are water quality objectives, both numeric and narrative, being met in local receiving waters, including creeks, rivers and tributaries?
- Are conditions in local receiving waters supportive or likely to be supportive of beneficial uses?

Bioassessment data collected over the first five years of RMC monitoring (2012-2016) are included in this report. The RMC's monitoring design addresses these management questions on a regional (Bay Area) scale to monitoring results across the five participating Bay Area counties (Alameda, Contra Costa, San Mateo, Santa Clara and Solano). Three study questions, developed to assist with addressing the management questions described above, including:

- 1) What is the biological condition of perennial and non-perennial streams in the region?
- 2) What stressors are associated with poor condition?
- 3) Are conditions changing over time?

The findings of this study are intended to help stormwater programs better understand the current condition of these water bodies and identify stressors that are likely to pose the greatest risk to the health of streams in the Bay Area. The report evaluates the existing RMC monitoring design and identifies a range of potential options for revising the design (if desired) to better address the questions posed. These options are intended to provide considerations for discussion during the planning for reissuance of the Municipal Regional Permit, which is likely to be adopted in 2020 or 2021.

KEY FINDINGS

- Most streams in the region are in poor biological condition. The biological conditions of streams in the RMC area are assessed using two ecological indicators: benthic macroinvertebrates (BMIs) and algae. Results from 2012 through 2016 study period indicate that streams in the RMC area are generally in poor biological condition. Based on BMIs, over half (58%) of stream length was ranked in the lowest condition category of the California Stream Condition Index (CSCI). For algae indices (D18 and S2), stream conditions appear slightly less degraded, with approximately 40% of the streams ranked in lowest condition category. These findings should be interpreted with the understanding that the survey focused on <u>urban</u> stream conditions, and that these data represent current (baseline) conditions.
- Poor biological conditions are strongly associated with physical habitat and landscape stressors. The associations between biological indicators (CSCI and D18) and stressor data were evaluated using random forest and relative risk analyses. The study results showed that different biological indicators responded to different types of stressors. CSCI scores were strongly influenced by

physical habitat variables (e.g., level of human disturbance at a site) and land use factors (e.g., level of impervious surfaces near the site), while D18 scores were moderately influenced by water quality variables (e.g., dissolved oxygen and conductivity). Together, BMI and algae indices can be used to assess the overall biological condition of water bodies and potentially identify the causes of poor (or good) conditions. In general, CSCI scores at urban sites were consistently low, indicating that degraded physical habitat conditions common in urban settings are impacting biological conditions in streams. In contrast, D18 scores at urban sites were more variable, indicating that healthy diatom (algae) assemblages can occur at sites with poor physical habitat, which may provide valuable information about the overall water quality conditions in urban streams.

- No changes in biological conditions are evident over the 5-year survey. The short time frame of the survey (five years) limited the ability to detect trends. The variability in biological condition observed over the five years of the current analysis may have been associated with annual variation in precipitation, which included drought conditions during the first four years of the survey. A longer time period may be needed to detect trends in biological condition at a regional scale.
- Baseline biological assessment data can assist Bay Area stormwater managers in evaluating the long-term effectiveness of ongoing or planned management actions. Baseline bioassessment monitoring data collected by the RMC provides valuable information about the current status of aquatic life uses in the Bay Area and how RMC streams compare to other regions in the State of California. The baseline dataset provides context for potential future biological integrity policies being developed by the State Water Resources Control Board (State Water Board) and serves as a foundation for evaluating on-going and future watershed management actions that attempt to reduce the impacts of urbanization on creeks and channels. Future creek status monitoring may provide additional insight into the potential positive impacts of actions, such as green stormwater infrastructure and creek restoration, that improve water quality and address other needs of aquatic life uses in urban creeks.
- The RMC monitoring design provides estimates for overall stream conditions in RMC area and urban stream conditions for each county. Because participating municipalities are primarily concerned with stormwater runoff from urban areas, the RMC focused sampling efforts on urban sites (approximately 80%) over non-urban sites (approximately 20%). As a result, non-urban sites are under-represented in the dataset, resulting in lower overall biological condition scores than would be expected for a spatially balanced dataset. Depending on the goals for the RMC moving forward, consideration should be given to developing a new sample draw that establishes a new list of assessment sites that are weighted for specific land uses categories and Program areas of interest. Based on evaluation of data collected during the first five years of the survey, several options to revise the RMC Monitoring Design are presented in the report.

1 INTRODUCTION

1.1 BACKGROUND

The Bay Area Stormwater Management Agencies Association (BASMAA) Regional Monitoring Coalition (RMC) is a consortium of six San Francisco Bay Area municipal stormwater programs that joined together in 2010 to coordinate and oversee water quality monitoring required by the Municipal Regional Stormwater National Pollutant Discharge Elimination System (NPDES) Permit (referred to as the Municipal Regional Permit or "MRP"). The MRP was first adopted in 2009 (Order R2-2009-0074) by the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). The MRP was reissued in 2015 through Order R2-2015-1049. The 2009 and 2015 versions of the MRP are referred to as MRP 1.0 and MRP 2.0, respectively. Both versions of the MRP require bioassessment monitoring in accordance with Standard Operating Procedures (SOPs) established by the California Surface Water Ambient Monitoring Program (SWAMP), including sampling of benthic macroinvertebrates (BMIs), benthic algae (i.e., diatoms and soft algae), and water chemistry, and the characterization of physical habitat.

The MRP identifies two broad management questions that required bioassessment monitoring (and other creek status monitoring requirements) is intended to address:

- Are water quality objectives, both numeric and narrative, being met in local receiving waters, including creeks, rivers and tributaries?
- Are conditions in local receiving waters supportive or likely to be supportive of beneficial uses?

Consistent with the requirements of the MRP, the RMC developed a probabilistic monitoring design to address the management questions on a regional scale and compare monitoring results across stormwater programs. The probabilistic design is based on the Generalized Random Tessellation Stratified (GRTS) approach (Stevens and Olson 2004) for evaluating and selecting sampling stations in perennial and nonperennial streams. A power analysis estimated a minimum sample size of 30 sites to evaluate the condition of aquatic life within a confidence interval of approximately 12%. This was considered sufficient for decision-making in the RMC area. Under the MRP, each municipal Stormwater Program is required to assess a minimum number of stream/channel sites based on their relative population. As a result, the number of sites required each year varies by county: 20 sites for Santa Clara and Alameda counties and 10 sites for San Mateo and Contra Costa counties. Fairfield-Suisun and Vallejo are required to sample 8 and 4 sites, respectively, during each five-year period. In addition, the San Francisco Bay Regional Water Quality Control Board (SF Bay Water Board) collaborated with the RMC by monitoring additional sites in non-urban areas in each of the counties.

1.2 PROJECT GOAL

This goal of this project was to compile and evaluate bioassessment data collected over the first 5-years of bioassessment monitoring conducted by the RMC (2012 - 2016). The evaluation was designed to address three main questions, consistent with the overarching questions in the MRP:

1) What is the biological condition of perennial and non-perennial streams in the region?

- 2) What stressors are associated with poor condition?
- 3) Are conditions changing over time?

The findings of this report are intended to help stormwater programs better understand the current condition of these water bodies, prioritize stream reaches in need of protection or restoration, and identify stressors that are likely to pose the greatest risk to the health of streams in the Bay Area.

This report also provides an evaluation of the existing RMC monitoring design and identifies a range of potential options for revising the design (if desired) in anticipation of the next version of the MRP, which is likely to be adopted in 2020 or 2021. These options can inform the monitoring re-design process as part of a future BASMAA Regional Project.

This project was implemented by a Project Team comprised of EOA, Inc. and Applied Marine Sciences, Inc. (AMS) with technical review provided by the Southern California Coastal Water Research Project (SCCWRP). A BASMAA Project Management Team (PMT) consisting of representatives from BASMAA stormwater programs and municipalities provided oversight and guidance to the Project Team.

Sections of this report are organized according to the following topics:

- Section 1.0 Introduction including summary of other Regional Monitoring Programs using biological assessments, development of State policies that are relevant to bioassessment data collection, and description of the goals for this report;
- Section 2.0 Methods including monitoring survey design, site evaluation procedures, field sampling and data analyses;
- Section 3.0 Results summarizing biological conditions, stressor association with conditions, and trends;
- Section 4.0 Discussion organized by the management questions and goals; and
- Section 5.0 Conclusions and recommendations.

1.3 BIOASSESSMENTS PROGRAMS IN CALIFORNIA

Bioassessment programs are currently implemented on a statewide and regional basis in California. The RMC's monitoring design is consistent with the design used by the statewide Perennial Streams Assessment (PSA) program and is specifically intended to allow for future integration of data between the two monitoring programs. The RMC has also integrated lessons learned from the Stormwater Monitoring Coalition (SMC), which spearheads a similar collaborative monitoring effort in Southern California, in the development of alternatives for potential re-design of the RMC monitoring survey described at the end of this report.

Since 2000, the State of California has conducted probability surveys of its perennial streams and rivers with a focus on biological endpoints. These surveys are managed collectively by the Surface Water Ambient Monitoring Program (SWAMP) under its PSA program. The PSA collects samples for biological indicators (BMIs and algae), chemical constituents (nutrients, major ions, etc.), and physical habitat assessments for both in-stream and riparian corridor conditions. As of 2012, over 1300 unique perennial

stream sites have been monitored by PSA and its partner programs.¹ In 2015, the PSA developed a management memorandum summarizing biological conditions (based on California Stream Condition Index score) and associated stressor data collected at probabilistic sites over a 13-year time period (2000 – 2012) (SWRCB 2015).

The SMC, a coalition of multiple state, federal, and local agencies, initiated a regional monitoring program in 2009. The SMC uses multiple biological indicators to assess ecological health of streams, including BMIs, benthic algae (diatoms and soft algae) and riparian wetland condition. The SMC also collects water chemistry, water column toxicity, and physical habitat data to evaluate potential stressors to biological health. During the first five years of the program (2009 to 2013), the SMC monitored more than 500 probabilistic sites in 15 major watersheds in California's South Coast region, with a focus on perennial streams (Mazor 2015). Evolution of those data suggested that few perennial, wadeable streams in the SMC study area are in good biological condition (Mazor 2015a). Recognizing that perennial streams account for only 25% of stream-miles in the region, in 2015, the SMC expanded its monitoring program to include nonperennial streams, which account for approximately 59% of stream-miles (Mazor 2015b). The SMC program also focused about 30% of the monitoring effort towards revisiting probabilistic sites to provide an estimate of change in condition (Mazor 2015b). The next iteration of the SMC monitoring program will likely include a larger focus on trends monitoring (Rafael Mazor, SCCWRP, personal communication, 2018).

1.4 BIOSTIMULATORY/BIOINTEGRITY POLICY DEVELOPMENT

Bioassessment monitoring conducted by the RMC not only provides information about the condition of aquatic life uses in Bay Area streams and how they compare to other regions (i.e., SMC), it also generates a significant baseline dataset that provides context for potential future biological integrity and biostimulatory policies that are currently under development by the State Water Resources Control Board (State Water Board). The biostimulatory policy will likely develop water quality objectives for biostimulatory substances (e.g., nutrients) along with an implementation program as an amendment to the Water Quality Control Plan for Inland Surface Water, Enclosed Bays and Estuaries of California (ISWEBE Plan).² The biostimulatory substances policy may include a numeric and/or narrative objective(s) that will be applicable to streams in California. The State Water Board plans is expected to establish the implementation plan for the biostimulatory substances policy in three phases, with each phase including a plan that would be unique for each of the three different water body types. The first phase of the Biostimulatory Amendment would be applicable to wadeable streams.

The biostimulatory policy will also include a water quality control policy (i.e., Biointegrity Policy) to establish and implement biological condition assessment methods, scoring tools, and targets aimed at protecting the biological integrity in wadeable streams. The policy will utilize a multi-indicator approach that includes the California Stream Condition Index (CSCI) for benthic macroinvertebrates and statewide

¹ The Stormwater Monitoring Coalition has collected a majority of samples at probabilistic sites in Coastal Southern California watersheds and the US Forest Service has collected PSA-comparable data from sites in National Forests of the Sierra Nevada.

² Information obtained from: https://www.waterboards.ca.gov/water_issues/programs/biostimulatory_substances_biointegrity

algal stream condition index (ACSI), which is currently under development. The State Water Board's plan is to establish "assessment endpoints" as primary lines of evidence to assess beneficial use support in wadeable streams. These endpoints may be used to establish default nutrient objectives or thresholds for California streams, with potential option to refine the thresholds under a "watershed approach."

The State Water Board's biostimulatory/biointegrity project has been delayed due to several unresolved policy issues that need to be addressed prior to development of the policy, including³:

- 1) Consideration of channels in highly developed landscapes (i.e., where assessment endpoints may not be achieved);
- 2) Identify Beneficial Uses;
- 3) Relationship between established biological assessment endpoints and nutrient endpoints; and
- 4) Define process for coordinated watershed approach.

The State Water Board is currently planning to develop draft policy options to present to Stakeholder Advisory and Regulatory Groups in 2019.

³ Information obtained from presentation by Jessie Maxfield, California State Water Board, given at the 2017 California Aquatic Bioassessment Workgroup conference in Davis, California.

2 METHODS

2.1 STUDY AREA

The study area for RMC creek status monitoring consists of the perennial and non-perennial streams, channels and rivers within the portions of the five participating counties (San Mateo, Santa Clara, Alameda, Contra Costa, Solano) that overlap with the San Francisco Bay Regional Water Quality Control Board (Region 2) boundary, and the eastern portion of Contra Costa County that drains to the Central Valley region (Region 5). The RMC creek status sample frame consists of the urban and non-urban portions of the stream network flowing through the RMC area. The source dataset used to create the sample frame was the 1:100,000 National Hydrography Dataset (NHD).

2.2 SURVEY DESIGN AND SAMPLING SITES

Creek status monitoring sites were selected based on a probabilistic survey design consisting of a master draw of 5,740 sites (approximately one site for every stream kilometer in the sample frame). The selection procedure employed the U.S. EPA's Generalized Random Tessellation Stratified (GRTS) survey design methodology (Stevens and Olson, 2004). The GRTS approach generated a spatially-balanced distribution of sites covering the majority of the San Francisco Bay Area. It should be noted that the sample draw of 5,740 sites did not account for land use designations or other emphases (i.e., County) and therefore, the master draw of sample sites was weighted towards commonly occurring conditions (i.e., non-urban sites), with less common conditions (i.e., reference and urban sites) being less represented due to their lower relative abundance in the sample frame.

The RMC sampling design targeted the population of accessible streams with flow conditions suitable for sampling (i.e., adequate flow during spring index period). A random set of potential monitoring sites (i.e., the master draw) was established, with each site having an equal, non-zero weight, proportional to the inverse of its selection probability. Thus, all sites were assumed to have an equal probability of selection throughout the sample frame. The weights represent the amount of stream length encompassed by each site in the overall target population.

Once the master draw was established, the list of monitoring sites was separated into 19 categories to facilitate site evaluations and implement creek status monitoring, including bioassessment (Table 1). The following attributes were used to generate the categories:

- County (n=5): San Mateo, Santa Clara, Alameda, Contra Costa, Solano (source: California Department of Forestry and Fire, 2009);
- Water Quality Control Board Region (n=2): Region 2, Region 5 (source: San Francisco Regional Water Quality Control Board, undated);
- Land use Category (n = 4): Urban or nonurban in all counties, except Solano ('urban_V' and 'urban_FS' in Solano County). Urban land use was defined as a combination of US Census (2000) areas classified as urban, and areas within Census City boundaries. This definition of urban land use results in some relatively undeveloped areas and parks along the fringes of cities to be

classified as urban. Urban sites therefore represent a broad range of developed (i.e., impervious surface) conditions. Non-urban area was defined as all remaining area in the RMC boundary not classified as urban.

	Urban		Non-Urban		Total	
County	Sites	Stream Length (km)	Sites	Stream Length (km)	Sites	Stream Length (km)
San Mateo	222	233.8	528	556.0	750	789.8
Santa Clara	542	570.8	1376	1449.1	1918	2019.8
Alameda	454	478.1	842	886.7	1296	1364.8
Contra Costa (Region 2)	F 0 7	C10 0	363	382.3	845	889.9
Contra Costa (Region 5)	587	618.2	349	367.5	454	478.1
Solano (Vallejo)	12	12.6	386	40C F	477	502.3
Solano (Fairfield-Suisun)	79	83.2	380	406.5	4//	502.3
				Overall Total	5740	6,044.7

Table 1. Number of sites and stream length from the master draw in each post-stratification category.

To maintain a spatially-balanced pool of monitoring sites, sites were evaluated in the order that they appeared in the master draw list (with a few exceptions). Sites were evaluated for sampling using both desktop and field reconnaissance. Field crews attempted to locate a reach suitable for sampling within 300 m of the target coordinates. Sites without a suitable reach were rejected for sampling. Reasons for rejection included physical barriers, lack of flowing water, refusal or lack of response from landowners, unwadeable (i.e., >1 m deep for at least 50% of the reach) and inappropriate waterbody types (e.g., tidally influenced). Sites with temporary inaccessibility, unsafe/hazardous or permission issues (e.g., construction, lack of response from landowners) were re-evaluated for sampling in subsequent years. All program participants were instructed to use a standard set of codes to identify the reason behind exclusion of sites.

In contrast to the PSA and SMC regional monitoring designs, which targeted perennial streams, the RMC sampled both perennial and non-perennial streams. Additionally, at the outset, each countywide Program agreed they would attempt to assess up to 20% of their required sites in non-urban areas.

2.3 SAMPLING PROTOCOLS/DATA COLLECTION

Biological sample collection and processing was consistent with the BASMAA RMC Quality Assurance Project Plan (QAPP)⁴ (BASMAA 2016a) and Standard Operating Protocols (SOPs) (BASMAA 2016b) which

⁴ The RMC QAPP and SOP documents were initially developed in 2012 (Version 1.0), revised in 2013 (Version 2.0) and 2016 (Version 3.0)

were developed to be consistent with the current SWAMP Quality Assurance Program Plan (QAPrP) and SOPs. Bioassessments were conducted during the spring index period (approximately April 15 – June 30) with the goal to sample a minimum of 30 days after any significant storm (defined as at least 0.5-inch of rainfall within a 24-hour period). A 30-day grace period allows diatom and soft algae communities to recover from peak flows that may scour benthic algae from the bottom of the stream channel.

2.3.1 Biological Indicators

Each monitoring site consisted of an approximately 150-meter stream reach that was divided into 11 equidistant transects placed perpendicular to the direction of flow. Benthic macroinvertebrate (BMI) and algae (i.e., diatom and soft algae) samples were collected at each transect using the Reach-wide Benthos (RWB) method described in Ode et al. (2016). The algae composite sample was also used to collect chlorophyll a and ash free dry mass (AFDM) samples following methods described in Ode et al. (2016).

Biological samples were sent to laboratories for analysis. The laboratory analytical methods used for BMIs followed Woodward et al. (2012), using the Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) Level 1a Standard Taxonomic Level of Effort, with the additional effort of identifying chironomids (midges) to subfamily/tribe instead of family (Chironomidae). Soft algae and diatom samples were analyzed following SWAMP protocols (Stancheva et al. 2015). The taxonomic resolution for all data was standardized to the SWAMP master taxonomic list.

2.3.2 Physical Habitat

Both quantitative and qualitative measurements of physical habitat structure were taken at each of the 11 transects and 10 inter-transects at each monitoring site. At the outset of the monitoring program in 2012, Physical habitat measurements followed procedures defined in the "BASIC" level of effort (Ode 2007), with the following exceptions as defined in the "FULL level of effort: stream depth and pebble count + coarse particulate organic matter (CPOM), cobble embeddedness, and discharge measurements. In 2016, the entire "FULL" level of effort for the characterization of physical habitat described in Ode et al. (2016) was adopted, consistent with the reissued MRP 2.0 (SFBRWQCB 2015). Physical habitat measurements include channel morphology (e.g., channel width and depth), habitat features (e.g., substrate size, algal cover, flow types, and in-stream habitat diversity) and human disturbance in the riparian zone (e.g., presence of buildings, roads, vegetation management). In addition, a qualitative Physical Habitat Assessment (PHAB) score was assessed for the entire bioassessment reach. The PHAB score is composed of three characteristics for the reach, including channel alteration, epifaunal substrate, and sediment deposition. Each attribute is individually scored on a scale of 0 to 20, with a score of 20 representing good condition.

2.3.3 Water Quality

Immediately prior to biological and physical habitat data collection, general water quality parameters (dissolved oxygen, pH, specific conductance and temperature) were measured at each site, at or near the centroid of the stream flow using pre-calibrated multi-parameter probes. In addition, water samples were collected for nutrients and conventional analytes analysis using the Standard Grab Sample Collection Method as described in SOP FS-2 (BASMAA 2016b).

2.3.4 Stressor Variables

Physical habitat, land-use, and water quality data were compiled and evaluated as potential stressor variables for biological condition. Land-use variables were calculated in GIS by overlaying the drainage area for sample locations with land use and road data. The variables included percent urbanization, percent impervious, total number of road crossings and road density at three different spatial scales (1 km, 5 km² and entire watershed).

Physical habitat metrics were calculated using the SWAMP Bioassessment Reporting Module (SWAMP RM). The SWAMP RM output includes calculations based on parameters that are measured using EPA's Environmental Monitoring and Assessment Program (EMAP) for freshwater wadeable streams (Kaufmann et al. 1999), as well as parameters collected under the SWAMP protocol (Marco Sigala, personal communication, 2017). The RM produces a total of 176 different metrics based on data collected using the SWAMP "FULL" habitat protocol. Ten of the best performing metrics (Andy Rehn, CDFW, personal communication) were selected based on best professional judgment from the SWAMP RM output to analyze physical habitat data collected by the RMC.

General water quality (e.g., DO, SpCond) and chemistry (e.g., nitrate and phosphorus) data collected at the bioassessment sites were also included. Some of the water chemistry variables were calculated from the analytes that were measured. These include Total Nitrogen (sum of Nitrate, Nitrite and Total Kjeldahl Nitrogen) and Unionized Ammonia (calculated using pH and temperature).

2.3.5 Rainfall Data

For evaluation of trends, a representative rainfall dataset was collated for San Mateo, Santa Clara, Contra Costa, and Alameda counties. The total accumulated rainfall in each water year during the period of 2012-2016 was calculated. The rainfall dataset assembled was derived from: San Jose Airport (Santa Clara), San Francisco Airport (San Mateo), Oakland Airport (Alameda), and Walnut Creek (Contra Costa).

2.4 DATA ANALYSES

All statistical, tabular, and graphical analyses were conducted in R Studio, running R version 3.4.3 (R Core Team 2016). For analyses involving water quality data, censored results (i.e., below the method detection limit) were substituted with 50% of the method detection limit (MDL). Generally, analytical sensitivity was good, with only three variables having > 30% non-detects (Suspended Sediment Concentration, Nitrite, Ammonia). To facilitate use of the data for random forest and relative risk analyses, missing values were subject to an imputation method to fill in data gaps. Seven variables were found to have missing values. Three of these, Suspended Sediment Concentration (SSC), Dissolved Organic Carbon (DOC), and Alkalinity⁵, consisted of more than 50 missing values, and were excluded from further analysis. The remaining four variables (Silica, Ash Free Dry Mass, Chlorophyll a, Nitrate) were subject to imputation using the R-package *mice* (van Buuren and Groothuis-Oudshoorn, 2011). In this method, replacement values were randomly selected from the distribution of observed data. Overall, fewer than 25 values were

⁵ Suspended Sediment Concentration (SSC), Dissolved Organic Carbon (DOC) and alkalinity were not monitored in 2016, due to the removal of these parameters in Provision C.8.c of the reissued MRP.

imputed for any variable (Silica, n = 24; AFDM, n = 4; Nitrate, n = 1; Chl a, n = 1), and thus their influence on the analysis is assumed to be minor.

2.4.1 Biological Condition Indices

The California Stream Condition Index (CSCI) was developed by the State Water Board as a standardized measure of benthic macroinvertebrate assemblage condition in perennial wadeable rivers and streams. The CSCI was developed using a large reference data set representing the range of natural conditions in California (Ode et al. 2016). The CSCI tool (Mazor et al. 2016) translates BMI data into an overall measure of stream health by combining two types of indices: 1) ratio of observed-to-expected taxa (O/E) (used as a measure of taxonomic completeness), and 2) a predictive multi-metric index (pMMI) for reference conditions (used as a measure of ecological structure and function). The CSCI score is computed as the average of the sum of O/E and pMMI.

The CSCI scoring tool was used to assess BMI data collected at both perennial and non-perennial sites in the RMC area. The CSCI scores for RMC sites should be interpreted with caution, as the CSCI tool has not been fully validated at non-perennial sites. Preliminary analyses suggest that the CSCI is valid in certain types of nonperennial streams in southern California, but its validity in nonperennial streams in other regions, such as the Bay Area, remains unknown.

The algae data were analyzed using algal indices of biological integrity (IBIs) that were developed for streams in Southern California (Fetscher 2014). These include a soft algae index (S2), diatom index (D18) and soft algae-diatom hybrid index (H20). The algal indices were calculated using the SWAMP Algae Reporting Module (Algae RM). The interpretation of algae data collected in San Francisco Bay area using IBIs developed in Southern California (SoCal) should be considered preliminary. The State Board and SCCWRP are currently developing and testing a statewide index using benthic algae data as a measure of biological condition for streams in California. The statewide Algae Stream Condition Indices (ASCIs) were not available at the time this project was conducted, but are expected to be available in late 2018 (personal communication, Jessie Maxfield, SWRCB).

2.4.2 Biological Indicator Thresholds

Existing thresholds for biological indicator scores (CSCI, D18, S2) defined in Mazor (2015) were used to evaluate bioassessment data compiled and analyzed in this report (Table 2, Figure 1). The thresholds for each index were based on the distribution of scores for data collected at reference calibration sites in California (BMI) or in Southern California (algae). Four condition categories are defined by these thresholds: "likely intact" (greater than 30th percentile of calibration reference site scores); "possibly altered" (between the 10th and the 30th percentiles); "likely altered" (between the 1st and 10th percentiles); and "very likely altered" (less than the 1st percentile). The probability-based approach to develop the threshold classes was consistent across indices, allowing comparison for all indicators across sites.

The performance of CSCI on a statewide basis is the subject of ongoing review by the State Water Board. In the current MRP, the SF Bay Water Board defined a CSCI score of 0.795 as a threshold for identifying sites with degraded biological condition that should be considered candidates for Stressor Source Identification (SSID) projects. No MRP threshold has been established for any of the algae indices.

Index	Likely Intact	Possibly Altered	Likely Altered	Very Likely Altered	
Benthic Macroin	vertebrates (BMI)				
CSCI Score	<u>></u> 0.92	<u>></u> 0.79 to < 0.92	<u>></u> 0.63 to < 0.79	< 0.63	
Benthic Algae					
S2 Score	<u>></u> 60	<u>></u> 47 to < 60	<u>></u> 29 to < 47	< 29	
D18 Score	<u>></u> 72	<u>></u> 62 to < 72	<u>></u> 49 to < 62	< 49	

Table 2. Biologica	condition indices.	, categories and thresholds.	



Figure 1. Distribution of CSCI scores at reference sites with thresholds and condition categories used to evaluate CSCI scores (from Rehn et al. 2015). Note: colors in this figure differ from other figures in this report.

2.4.3 Estimating Extent of Healthy Streams in SF Bay Area

To estimate overall extent of biological conditions in streams within the RMC area, cumulative distribution functions (CDFs) of biological condition scores were generated. Because the survey focused significantly more effort in urban areas compared to non-urban areas, sample weights were re-calculated as the total stream length in the sample frame, and divided by the stream length evaluated in each land use category. Therefore, sites contribute a proportional amount of stream length to the extent estimates, based on the number of sites assessed in each land use category. Sites without evaluations (6%), primarily non-urban sites, were excluded from the analysis. The adjusted sample weights were used to estimate the proportion of stream length represented by CSCI, D18, and S2 scores both regionwide and for urban

sites only. Estimates for non-urban streams were not calculated separately due to the lower number of monitoring events at non-urban sites and greater width of confidence intervals. Condition estimates and 95% confidence intervals were calculated for all sampled sites in the RMC sample frame and for urban sites only. Post-stratification of the urban sites by County was also performed. However, Solano County was excluded from this assessment, due to the relatively low sample size compared to the other areas. All calculations were conducted using the R-package *spsurvey* (Kincaid and Olsen 2016). See Section 4.4 for further discussion of the RMC sample design.

2.4.4 Evaluating the Importance of Stressors

2.4.4.1 Random Forest Analyses

Stressor association with biological condition scores was evaluated using random forest statistical analyses. Random forest analysis is a non-parametric classification and regression tree (CART) method commonly applied to large datasets of multiple explanatory variables. Recent papers describe their use for stressor identification in stream bioassessment studies (e.g., Maloney et al. 2009, Waite et al. 2012, Mazor et al. 2016). Random forest models use bootstrap averaging to determine splits of numerous trees (Elith et al. 2008) for reducing error and optimizing model predictions. Model outputs provide an ordered list of importance of the explanatory variables that can be applied to a new or validation dataset for prediction.

Random forest models were developed using the R-package *randomForest* to determine a list of explanatory variables related to biological condition scores (CSCI or D18 score). The stressor data consisted of 49 variables, related to (1) water quality; (2) habitat; and (3) land use factors that could potentially influence condition scores (Appendix 1, Table A). Subsequently, the data were partitioned into training (80%) and validation (20%) sets for model testing. A random selection of samples was generated by sub-sampling from within each RMC County to maintain a regional balance of samples within the partitioned datasets. The training dataset had 278 sites, while the validation data encompassed 76 sites across all counties.

First, several iterations of the model procedure were performed with the training data set to optimize the random forests, including tuning the model to the maximum number of predictors per branch, the number of trees to build, and validation of the predictions. Appendix 1 presents the results of initial steps to optimize the random forest model outputs. The final set of models evaluated a maximum of 6 predictor interactions, and 1000 trees. Two variable importance statistics were used to estimate the relative influence of predictor variables: (1) % Increase in MSE = percent increase in mean-square-error of predictions as a result of variable values being permuted; (2) Increase in Node Purity = difference between the residual sum-of-squares before and after a split in the tree. More important variables achieve larger changes in MSE and node purity. K-fold cross validation of the selected models was performed to assess prediction error, by evaluating residual error and R-squared differences.

Random forest models were developed in two steps: (1) random forest models were run with all variables included (N = 49), retaining the top 10 variables in the variable relative importance list ranked by % increase in MSE, and (2) random forest models were re-run with just the top 10 variables from step 1. Subsequently, the variable list was further trimmed by evaluating the corresponding variable importance scores, partial dependency plots, and the change in R² once the variable was excluded. Partial

dependency plots show the predicted biological response based on an individual explanatory variable with all other variables removed. No variable with less than 10% influence on CSCI or D18 predictions was retained in the final models. Finally, random forest models were used to predict biological condition scores for the validation data set. Appendix 1, Figure B presents the observed and predicted values for the validation models with CSCI and D18 in Steps 1 and 2 of the model development.

2.4.4.2 Stressor Thresholds and Relative Risk Assessment

Relative risk analyses were also conducted to evaluate associations between stressors with biological condition scores. From the list of potential stressors discussed in Section 2.3.4, eight variables were selected to conduct a relative risk analyses (Table 3). Six of the stressor thresholds were derived from statewide data collected for the Perennial Streams Assessment (SWAMP 2015). The thresholds were based on the 90th percentile of data collected at bioassessment sites that exhibited good biological condition (i.e., CSCI scores > 0.92, likely intact). The 90th percentile of stressor values at these sites was used to define the most-disturbed thresholds for variables where higher values indicate more disturbance (SWRCB 2015). Similarly, the chlorophyll a threshold (100 mg/m2) used for this report (Table 3) was based on 90th percentile of data that was collected at all RMC sites that had CSCI scores > 0.92 (Figure 2). The threshold for Dissolved Oxygen (7.0 mg/l) was based on Water Quality Objectives (WQOs) for COLD Freshwater Habitat Beneficial Use in the Water Quality Control Plan for the San Francisco Basin (SFBRWQCB 2017).

Variables	Three	holds	Units	Reference	Criteria
Biological Condition	Poor	Good			
CSCI Score	< 0.625	<u>></u> 0.925		Mazor et al. 2016	
Stressor Condition	High	Low			
Dissolved Oxygen (DO)	<7.0	<u>></u> 7.0	mg/L	SF Bay Water Quality Control Plan	WQO
Specific Conductivity (SpCon)	> 1460	<u><</u> 1460	us/cm		
Chloride	> 122	<u><</u> 122	mg/L	SWAMP 2015 90 th Percentile of sites with CSCI score > 0.925	
Total Nitrogen (TotN)	> 2.3	<u><</u> 2.3	mg/L		
Total Phosphorus (TotP)	> 0.122	<u><</u> 0.122	mg/L		
Chlorophyll a (Chla)	> 100	<u><</u> 100	mg/m ²		
Sand and Fines (SaFn)	> 69	<u><</u> 69	%		
Human Disturbance Index (HDI)	> 1.3	<u><</u> 1.3		SWAMP 2015	

Table 3. Biological condition and stressor variable thresholds used for relative risk ass	essment.
---	----------

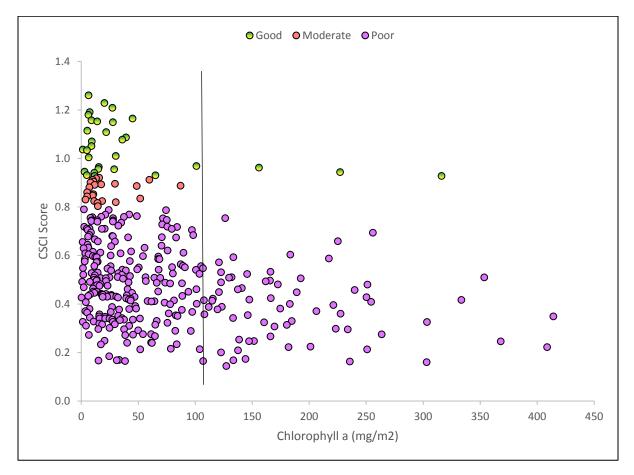


Figure 2. Plot of CSCI score and *chlorophyll a* concentration at RMC sites. Threshold for *chlorophyll a* used for relative risk assessment is shown. Sites classified as "good" include the two highest CSCI condition categories.

The relative risk approach was used to evaluate the association between stressors and biological condition (Van Sickle et al., 2008). The relative risk is a conditional probability representing the likelihood that poor biological condition is associated with high stressor levels and is calculated as follows:

Relative Risk =
$$\frac{Pr (CSCI_p)/S_h}{Pr (CSCI_p)/S_l}$$

The numerator is the probability of finding poor biological condition $(CSCI_p)$ given high stressor scores (S_h) and denominator is the probability of finding poor biological condition given low stressor scores (S_l) . Poor biological conditions were defined as CSCI scores < 0.625. High and low stressor levels are defined in Table 3. In cases where RR is equal to 1, there is no association between stressor and biological indicator score. Where RR > 1, the higher the value, the more likely poor biological condition would occur given high stressor levels.

3 RESULTS

3.1 SITE EVALUATION RESULTS

A total of 354 monitoring sites were sampled in the RMC region between 2012 and 2016. These are identified as "target" sites in Figure 3 and Table 4. Samples were collected at 284 urban sites (80%) and 70 non-urban sites (20%) (Table 4). The greatest number of non-urban sampling locations were in Santa Clara (n=25) and San Mateo Counties (n=19). Samples were collected at 8 or 9 non-urban sites for each of the other counties.

The population of 354 monitored sites was obtained through the evaluation of 1,455 unique sites, which equate to a rejection rate of 76% for entire RMC area over the 5-year period. Solano County had the highest rejection rate (90%) and San Mateo County had the lowest (65%). The most common reason for site rejection (55% of all evaluated sites) was that a site did not present the physical requirements to support monitoring within a 300-meter radius of target coordinates. These "non-target sites" were rejected for several reasons, including lack of flowing water, site was not a stream (e.g., aqueduct or pipeline), tidally influenced, or non-wadeable. The lack of flow was the most common reason for rejection. The extended drought period between 2012 and 2014 may have resulted in an unusually high number of sites with no or low flow conditions during the target index period.

Another reason for site rejection was the inability to obtain access to conduct the sampling (e.g., physical access or obtain private land/permission). These "target non-sampleable" sites comprised 21% of sites that were rejected. These sites were often located on private land in non-urban areas where permissions were not granted and/or where steep, highly-vegetated conditions prevented access. Obtaining access to sites in urban areas was variable by county. For example, most of the streams in the urban area of San Mateo County are privately owned, while most of the urban sites in Santa Clara County are owned by municipal jurisdictions and water district agencies, making permissions more easily obtained.

County	Target Not-Sampleable		Non-Target		Target		Total by
	Non-Urban	Urban	Non- Urban	Urban	Non- Urban	Urban	County
Alameda	12	74	162	91	9	96	444
Contra Costa	12	34	32	89	9	48	224
San Mateo	21	42	9	37	19	41	169
Santa Clara	37	24	74	161	25	87	408
Solano	44	3	109	34	8	12	210
Total RMC	126	177	386	412	70	284	1,455
% of Total RMC	9%	12%	27%	28%	5%	20%	-

Table 4. Number of sites per county in each site evaluation class.

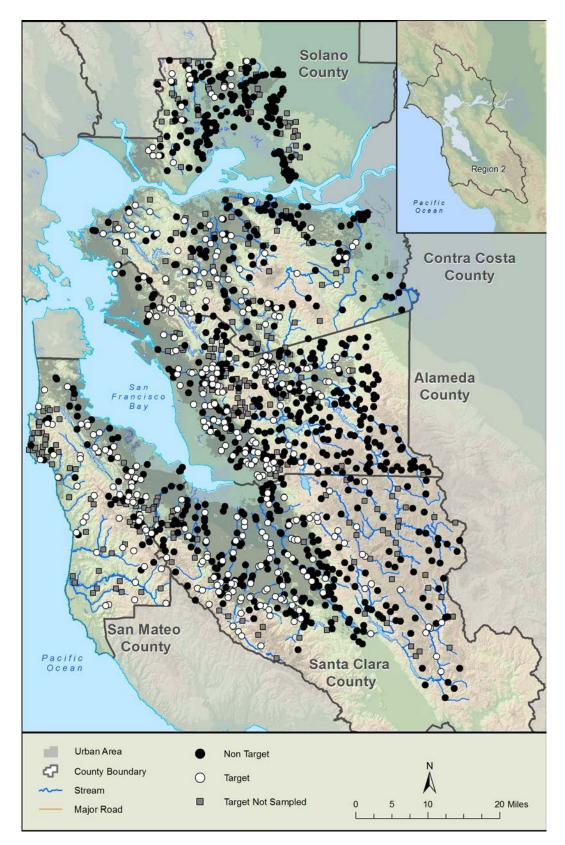


Figure 3. RMC sites evaluated by evaluation class.

Figure 4 presents rainfall for the 2000-2017 time period at the San Francisco Airport. Rainfall was generally below average during the 2012-2016 period, especially in 2014, and therefore, the RMC monitoring occurred in a drier-than-normal period. Because biological condition index scores can vary natural due to multi-year climatic patterns, it is important to note that the 5-year period of monitoring may not be representative of the long-term condition.

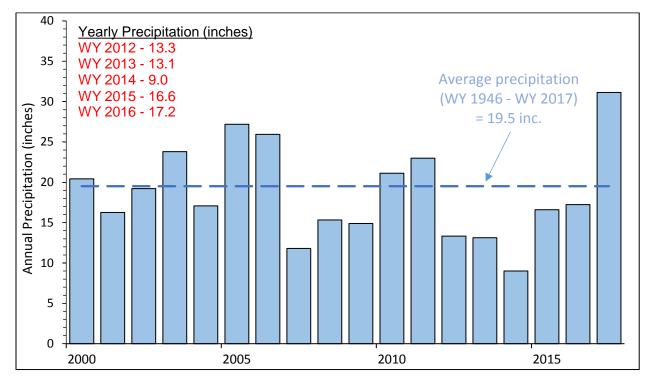


Figure 4. Annual precipitation at San Francisco Airport (2000-2017)

3.2 BIOLOGICAL CONDITION OF BAY AREA STREAMS

3.2.1 Regional Assessment

The distribution of BMI and algae index scores observed during 2012-2016 suggests that the majority of streams in the RMC sample area do not exhibit healthy biological conditions. Figures 5, 6 and 7 show cumulative distribution functions of the biological index scores for the entire regional dataset (i.e., urban and non-urban sites) and the urban dataset. Across all sites, over half (58%) of the stream-length was in the lowest condition class for CSCI (Very Likely Altered) and 15% of the stream-length was in the highest condition class (Likely Intact) (Figure 5).

Both of the algae index scores (D18 and S2) exhibited higher condition scores than CSCI regionally. For D18 (diatoms), 41% of the stream-length in the Bay Area was in the Very Likely Altered condition class and 19% of the stream-length was in the Likely Intact condition class (Figure 6). Similar distribution of

scores was evident with S2 (soft-algae), where less than half (44%) of the stream-length was in the Very Likely Altered condition class and 21% of the stream-length was in the Likely Intact condition class (Figure 7). The higher proportion of sites in the Likely Intact condition for algae indices compared to CSCI suggest that the algae communities in streams may be less degraded than BMI assemblages.

Bay Area wide, urban sites were responsible for the majority of poor CSCI scores. Seventy-nine percent (79%) of the stream length in urban areas was in the Very Likely Altered condition category for CSCI, while only 3.5% was in the Likely Intact class (Figure 5). Additionally, over 80% of the sampled stream length in urban areas was below the MRP trigger for CSCI scores (0.795), where potential follow-up source/stressor identification studies should be considered.

The influence of urban sites on the stream condition of all sites was also apparent for algae scores, although to a lesser degree than for CSCI. For D18, just over half (53%) of the stream length in urban areas was in the Very Likely Altered condition class, compared to 9% in the Likely Intact class (Figure 6). For S2 scores, 65% of stream length in urban areas was in the Very Likely Altered class, and only 7% in the Likely Intact class (Figure 7). These patterns suggest that stressors in the urban landscape may still exert influence on algae condition. Section 4.0 provides additional discussion about the results presented here.

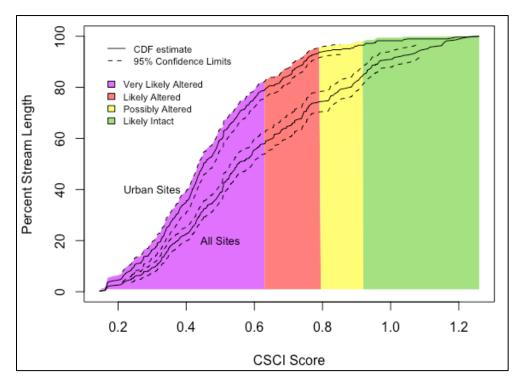


Figure 5. Cumulative distribution function (CDF) of CSCI scores at all RMC sites and urban sites.

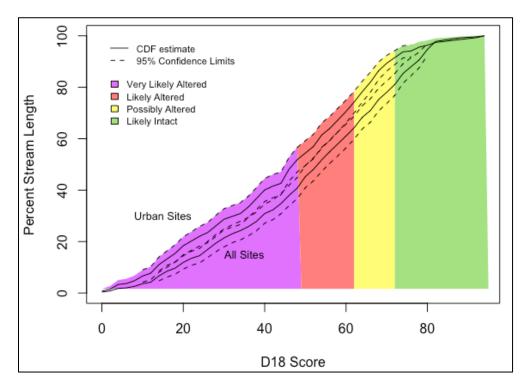


Figure 6. Cumulative distribution function (CDF) of D18 scores at all RMC sites and urban sites.

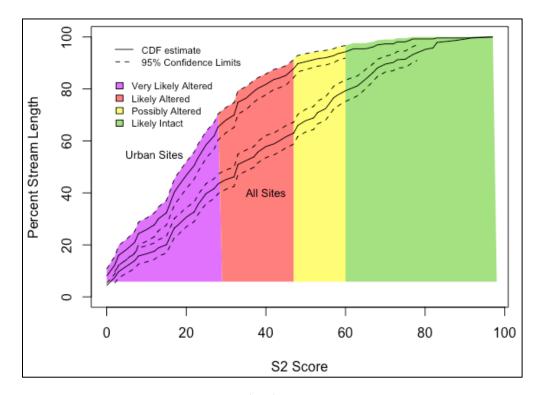
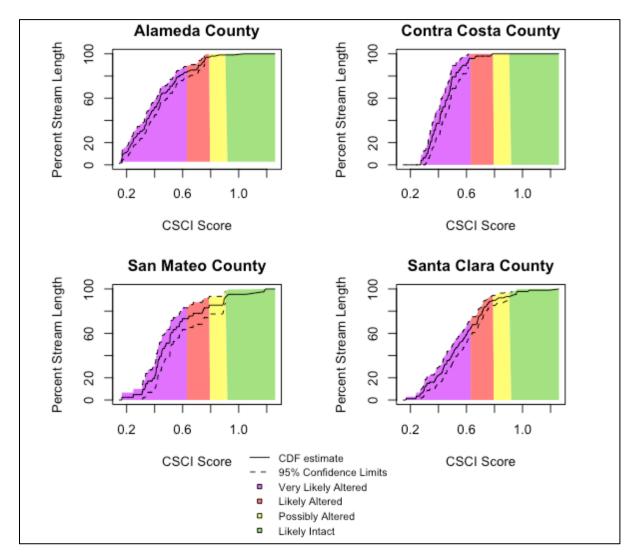



Figure 7. Cumulative distribution function (CDF) of S2 scores at all RMC sites and urban sites.

3.2.2 County Assessment

In addition to Bay Area wide biological condition estimates of streams, post-stratification of the CSCI condition estimates for urban sites in each County (excluding Solano County due to low sample size) suggests that poor condition scores are widespread in each Bay Area county. The proportion of urban stream length in the Very Likely Altered condition class was highest for Contra Costa (96%), followed by Alameda County (83%), San Mateo County (73%), and Santa Clara County (64%) (Figure 8). Less than 10% of the urban stream length in each of the counties was in the Likely Intact condition class. The highest proportion of Likely Intact BMI communities occurred in San Mateo and Santa Clara counties (7% each), followed by Alameda (1%) and Contra Costa (0%) counties. In comparison to the MRP threshold of 0.795, the vast majority of urban streams in each county fall below this threshold.

3.2.3 Biological Condition of Urban and Non-Urban Streams

Figure 9 illustrates CSCI scores (by condition category) for the region and includes county boundaries and urban areas for reference. Maps illustrating the biological condition of stream in each county based on CSCI and D18 scores are included in Appendix 4.

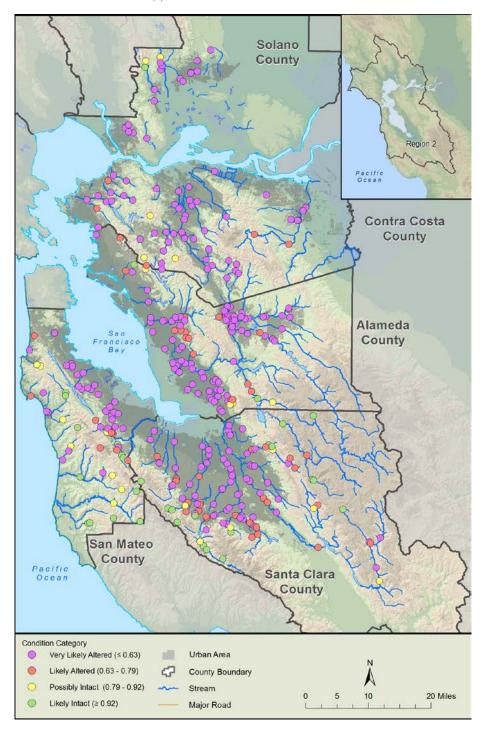


Figure 9. Biological condition of streams in the RMC area based on CSCI scores.

CSCI scores grouped by land use class (urban vs. non-urban) showed that all counties, with the exception of Solano, exhibit higher scores in non-urban areas (Figure 10), which generally span a narrower scoring range than urban sites. Santa Clara and San Mateo counties had the highest median CSCI scores compared to other counties, with several sites in both counties receiving scores greater than 1.0, which typically represent reference conditions. However, non-urban sites for all five counties had CSCI scores below the MRP trigger (0.795), indicating that some sites non-urban areas have degraded biological condition.

Stratification of D18 and S2 scores by land use (urban vs non-urban; Figures 11 and 12) suggests that biological condition scores based on algae metrics generally mirror CSCI scores, which are based on BMIs. Generally, algae scores in the non-urban area were higher than scores for sites in urban areas within each county. The low sample sizes of the non-urban population preclude making any definitive comparisons, however, it was noteworthy that sites in the urban areas may receive similar or higher algae index scores than sites non-urban areas.

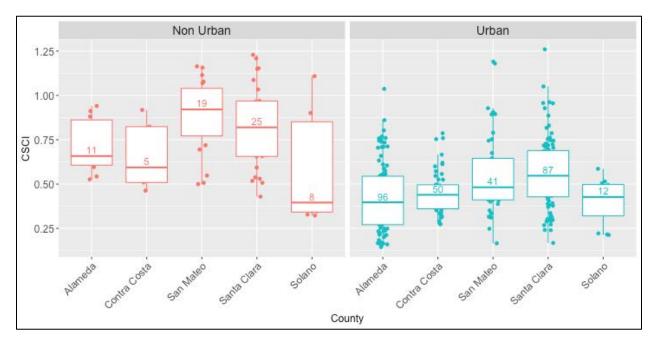


Figure 10. CSCI scores for urban and non-urban sites in each County. Sample sizes for each county are included in each boxplot.

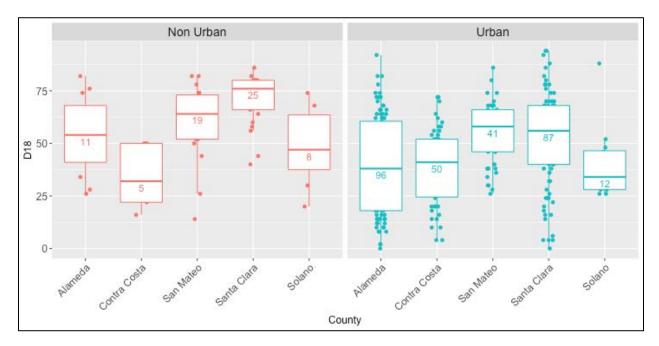


Figure 11. D18 scores for urban and non-urban sites in each County. Sample sizes for each county are included in each boxplot.

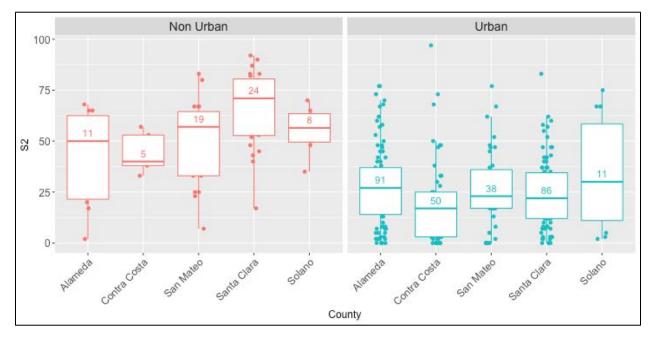


Figure 12. S2 scores for urban and non-urban sites in each County. Sample sizes for each county are included in each boxplot.

3.3 STRESSORS ASSOCIATED WITH BIOLOGICAL CONDITION

3.3.1 Random Forest Model Outputs

To evaluate stressors associated with biological condition within the RMC area, random forest models were developed using the CSCI and D18 index results. A parallel analysis was not performed for the S2 indicator due to the lack of soft algae at many of the assessment sites. Stressor data consisted of 49 variables grouped into three types: (1) water quality; (2) habitat; and (3) land use (Appendix 1, Table A). Model results clearly indicated better relationships between stressors and the CSCI, versus the D18 index. Validation of the final random forest models showed that the CSCI model explained 61% of the variance using eight predictor (stressor) variables, while the D18 model only explained 34% of the variance using six predictors.

The CSCI random forest model indicated that land use and physical habitat variables were most influential to most biological condition (Table 5). Of the eight variables in the final CSCI model, four were landscapebased (HDI, PctImp_5K, PctImp_1K, PctImp), three were habitat associated (PctFines, PctGra, PctFstH2O), and one was a water quality variable (Dissolved Oxygen, DO). There was general consistency amongst the individual variables within each of the landscape and habitat groups. The landscape variables that were most influential to CSCI scores were associated with the degree of human impact/imperviousness and the habitat variables were associated with the characteristics of the sediment substrate and water flow. Overall, the largest influence on the CSCI random forest model was percent impervious area within a 5 km radius (35.2%) of the site. The other seven variables in the final model exerted a lesser, but similar degree of influence (18.8 – 25.3%) on CSCI scores. It was notable that none of the nutrient variables were identified as indicators of biological condition scores using the CSCI model (Appendix 3 Figure A). The same may be true for DO, where the apparent relationship was driven by a few high values (Appendix 3 Figure B).

Stressor Variable	% Increase MSE	Increase Node Purity	Rank Correlation Coefficient (Rho)
Percent Impervious Area in 5km (PctImp_5K)	35.21	4.74	-0.62
Percent Impervious Areas of Reach (PctImp)	25.37	1.03	-0.59
Dissolved Oxygen (DO)	24.43	1.60	0.24
Percent Fast Water of Reach (PctFstH20)	22.52	1.62	0.51
Percent Fines (PctFin)	20.73	1.13	-0.36
Percent Substrate Smaller than Sand (PctSmalSnd)	20.64	1.36	-0.46
Percent Impervious Area in 1km (PctImp_1K)	20.64	2.26	-0.61
Human disturbance Index (HDI)	18.81	1.45	-0.62

Table 5. Summary statistics for the CSCI random forest model. Rank of importance of selected stressor variables are colored according to categories: physical habitat (green), land use (brown), and water quality (blue). The correlation coefficient (rho) for each stressor variable is also presented.

The results of the random forest model for D18 indicated that different variables explained biological condition than the CSCI model. Water quality variables exerted greater influence in the D18 model (Table 6). Of the six variables in the final D18 model, four were water quality variables (SpCond, Chloride, AFDM, Phosphorus), one was a habitat variable (PctSmalSnd), and one was a landscape variable (RdDen_1k). Overall, the variable with the largest influence on the random forest model was specific conductivity (29.5%). The remaining five variables exerted a lesser, but similar influence (12.5% – 22.0%) on the model. The importance of water quality variables in the model suggests that general water quality stress, such as from nutrients, however, appear to be less important to algal community condition on a regionwide scale.

Table 6. Summary statistics for the D18 random forest model. Rank of importance of selected stressor variables are colored according to categories: physical habitat (green), land use (brown), and water quality (blue). The correlation coefficient (rho) for each stressor variable is also presented.

Stressor Variable	% Increase MSE	Increase Node Purity	Rank Correlation Coefficient (Rho)
Specific Conductivity (SpCond)	29.55	35357.81	-0.49
Percent Substrate Smaller than Sand (PctSmalSnd)	21.99	24671.80	-0.46
Phosphorus	21.93	17465.87	-0.33
Chloride	18.53	18873.52	-0.51
Ash Free Dry Mass (AFDM)	15.09	21937.23	-0.44
Road Density in 1km (RdDen_1k)	12.51	16383.17	-0.33

Using the random forest model outputs, plots of individual stressor variables versus observed response values (i.e., CSCI and D18 scores) were developed to illustrate relationships between stressors and biological condition (Figures 13 to 18 and Appendix 2). For the CSCI model output, the plots of habitat and landscape variables indicate patterns of dose-response. For example, the Human Disturbance Index (HDI) stressor variable indicated that poor condition scores are observed when HDI exceeds a value of 2. This pattern was also evident in the regressions of observed CSCI values, relative to HDI and separating out HDI scores by their condition class (Figure 13). It is worth noting that Ode et al. (2016) identified a cutoff of HDI = 1.5 for reference sites (Ode et al. 2016). Based on the analysis conducted on this five-year Bay Area dataset, the range between 1.5 and 2.0 appeared to separate out the urban and non-urban sites, supporting the previous authors' assertion that sites with HDI values below this range exhibit reference conditions.

Similar to HDI, the stressor variables related to imperviousness indicated a threshold-style response with CSCI scores. For the variable 'percent imperviousness in 5km', a value above 10% appeared to correspond to poor CSCI condition scores (Figure 14). All sites that had less than 10% impervious area within 5km were classed as either Possibly Intact or Likely Intact condition. In the case of the habitat variables included in the final model, response patterns were less pronounced than for the landscape variables (Figure 15). For example, the variable 'percent reach habitat smaller than sand', indicated that poor sites spanned a wide-range in stressor values, while sites in the top three condition classes had a much

narrower range in this metric. Biological condition at sites where more than 50% of the stream reach had substrate smaller than sand appeared to be a line of demarcation between the bottom two and top three condition categories.

The results of the D18 model indicated dose-response relationships between biological condition and all four water quality variables (i.e. SpCond, Chloride, AFDM, Phosphorus), however there were less obvious patterns delineating biological condition. For example, the partial dependency plots for D18 scores indicated that poor condition (i.e., bottom two condition categories) was evident when chloride was above 200 mg/L (Figure 16) and specific conductivity was above 1200 μ S/cm⁶ (Figure 17). However, the plots of observed D18 values relative to these variables suggested that only some of the lowest scoring sites could be delineated using these threshold values. Similarly, response patterns of the habitat variables were inconclusive for delineating biological condition. A value of approximately 60% or greater of the stream habitat 'smaller than sand' corresponded to lower D18 scores (Figure 18), but there was considerable variability to this signal.

⁶ This corresponds well with the MRP threshold of 2000 uS/cm² for evaluating continuous monitoring data. Sites with 20% or more of instantaneous specific conductance results greater than 2000 uS/cm² are considered as candidates for SSID projects.

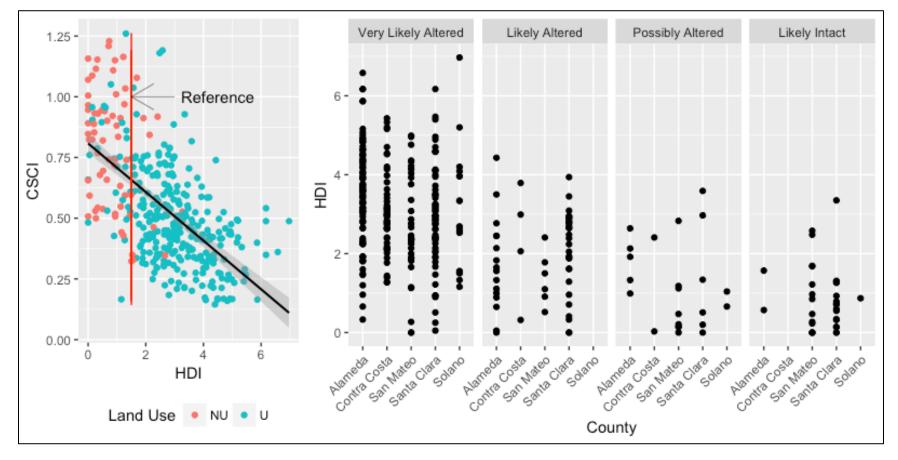


Figure 13. Relationship of CSCI scores to the Human Disturbance Index (HDI) stressor indicator. Red line indicates a reference condition cutoff of 1.5 (Ode et al. 2016).

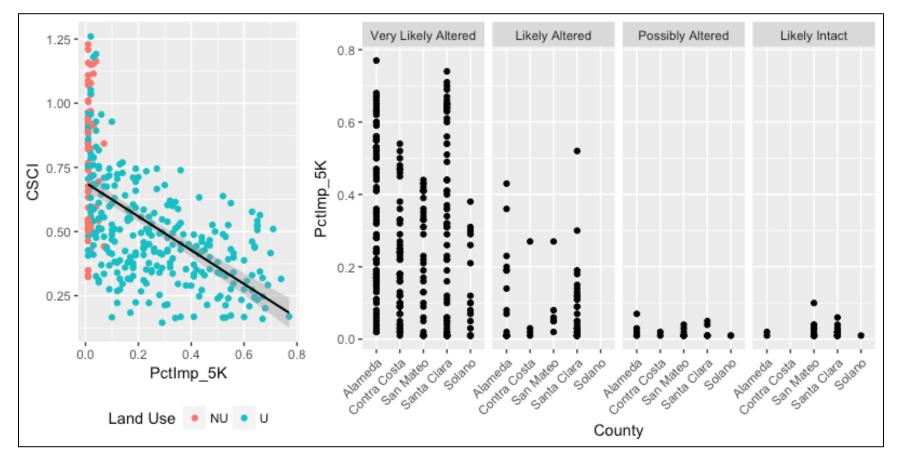


Figure 14. Relationship of CSCI scores to the percentage of land area in a 5 km radius (km²) around the site that is impervious.

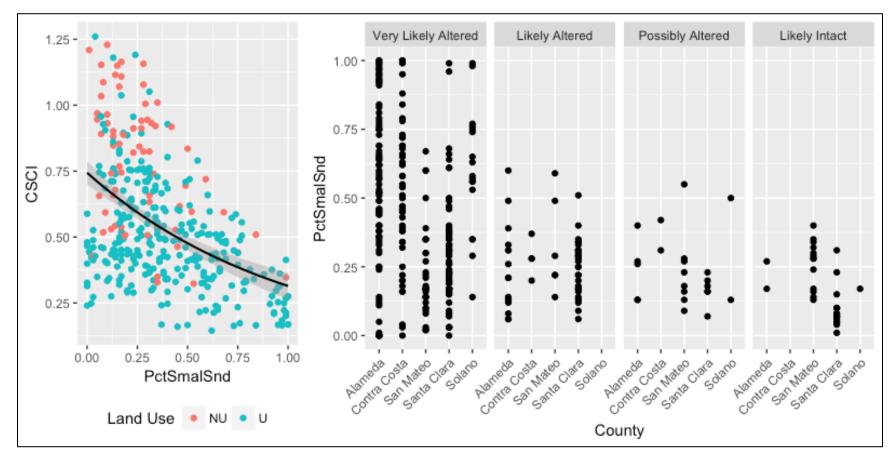


Figure 15. Relationship of CSCI score to the percent of substrate in the stream reach that was smaller than sand.

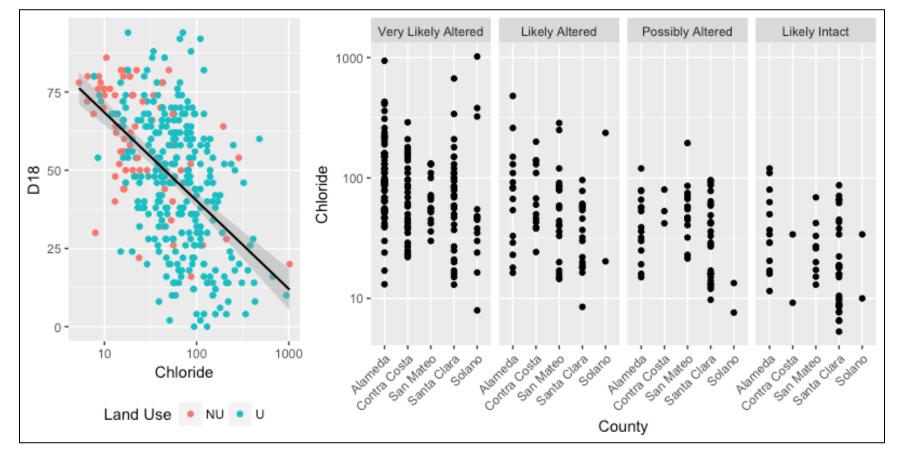


Figure 16. Relationship of D18 score to chloride concentration (mg/L). Note the chloride concentration scale is displayed in log units.

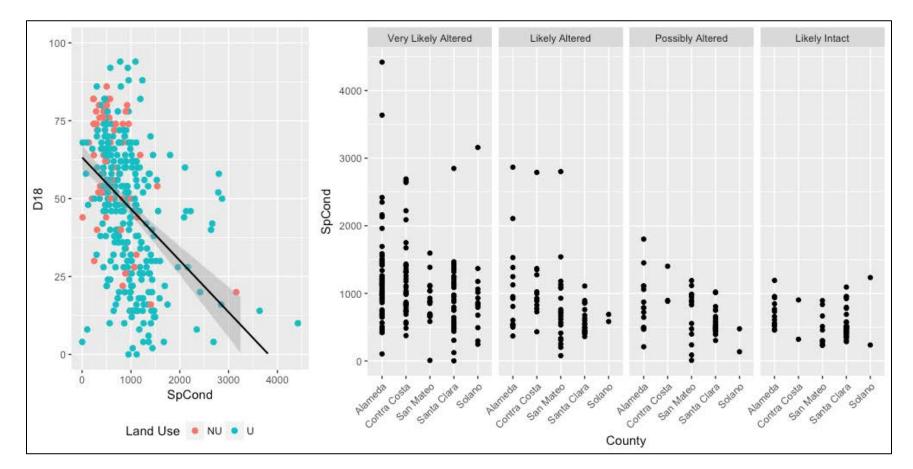


Figure 17. Relationship of D18 score to specific conductivity (μ S/cm).

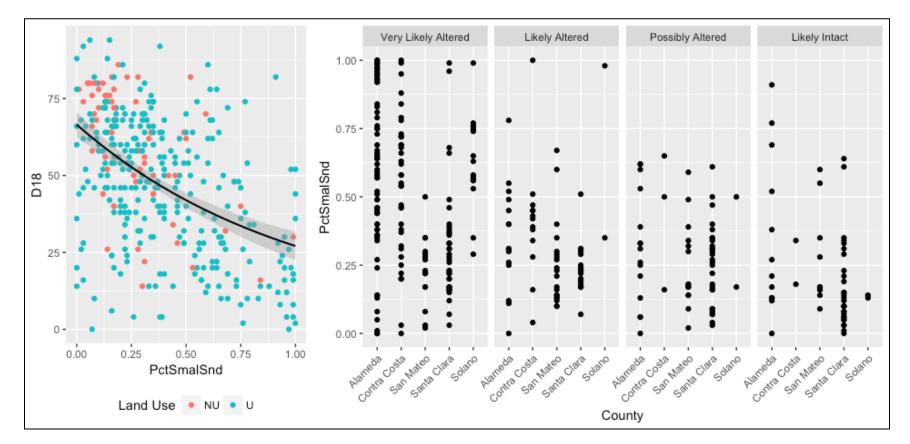


Figure 18. Relationship of D18 score to the percent of substrate in the stream reach that was smaller than sand.

3.3.2 Relative Risk Outputs

The relative risk of several stressors that may impact biological condition (based on CSCI scores) is shown in Figure 19. Definitions of abbreviations and threshold values for relative risk are described in Section 2.4.5. The Human Disturbance Index (HDI) stressor had the strongest relationship (> 3.0) with poor biological condition observed in the RMC dataset. Of the remaining physical habitat stressor variables, percent substrate smaller than sand (SmalSnd) had the strongest relationship (1.56) with poor biological condition. The remaining six stressors evaluated were associated with water quality and water chemistry and had Relative Risk values ranging between 1.26 and 1.51. These results are consistent with the random forest model results presented in the previous section, suggesting that physical habitat variables are more strongly associated with biological condition (based on CSCI scores) in the Bay Area, compared to water quality variables.

The relative risk for the eight stressors evaluated for RMC study were consistent with the results of the relative risk analysis of the same stressors that was conducted by the SMC (Mazor 2015a), with the exception of nutrients. The SMC study showed that relative risk for both Total Nitrogen and Phosphorus slightly under 3.0, while the RMC analysis indicated a much lower relative risk for each of these water quality parameters. The differences in relative risk of nutrients in Northern and Southern California suggest that there may be regional differences in the effects of these water quality parameters on biological condition (based on CSCI). However, it is important to note that the threshold values used by the SMC for Total Nitrogen and Phosphorus were lower than those used in the RMC data analyses.

Please note that the relative risk estimates for the eight stressors illustrated in Figure 19 could not be compared among RMC counties due to the insufficient number of sites with biological conditions above and below stressor thresholds in some counties.

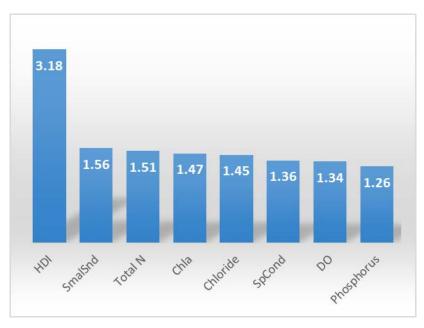


Figure 19. Relative risk of poor biological condition (i.e., scores in the lowest two CSCI condition categories) for sites that exceed stressor disturbance thresholds.

3.4 TRENDS

During the 2012-2016 monitoring period, there was no obvious temporal trend in biological condition, using either the CSCI, D18 or S2 indices. The median annual CSCI score for non-urban sites fluctuated between 0.518 and 0.931, but estimates in three of five years (2012, 2015, 2016) were only based on data collected at ten sites or less. Estimates were particularly imprecise for 2016, where only five non-urban sites were sampled. In urban areas, the median scores for CSCI had a much smaller range (0.408 to 0.510) than scores at non-urban sites. For urban sites, there was a clear lack of temporal trend, with 2016 exhibiting the highest median of the five years monitored (Figure 20).

D18 and S2 scores in each of the water years followed a similar pattern to CSCI scores. Scores in nonurban areas tended to vary widely depending on the water year and number of sites assessed (Figures 21 and 22). However, the urban sites tended to be relatively consistent, with scores generally being within a similar range each year. One observation to note was that S2 scores at urban sites were generally lower in 2016, compared to the preceding years of the survey, while CSCI scores were higher in 2016.

A comparison of median scores for CSCI each year and accumulated rainfall in each County did not reveal clear patterns on a county-by-county basis (Figure 23). Annual rainfall, as measured at San Francisco International Airport, during the five-year survey period was generally below the long-term average (Figure 5). Regional differences in accumulated rainfall additionally contribute to the lack of discernible changes in condition over time at a regional scale.

Contra Costa exhibited the highest range in accumulated rainfall during the monitoring period (10-20 inches) and generally had consistently low median CSCI scores. Alameda and Santa Clara counties, however, experienced a similar range in accumulated rainfall (5-16 inches), but had very different median CSCI scores in each water year. Given the variations in CSCI scores during different water years in some counties, future analyses to evaluate temporal trends in biological conditions will likely need to consider the influence of climatic variation at the county and regional-scales.

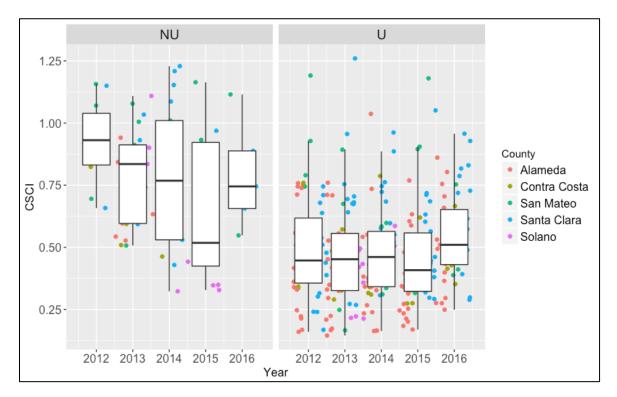


Figure 20. Distribution of CSCI scores during water years 2012-2016. NU = non-urban, U= urban.

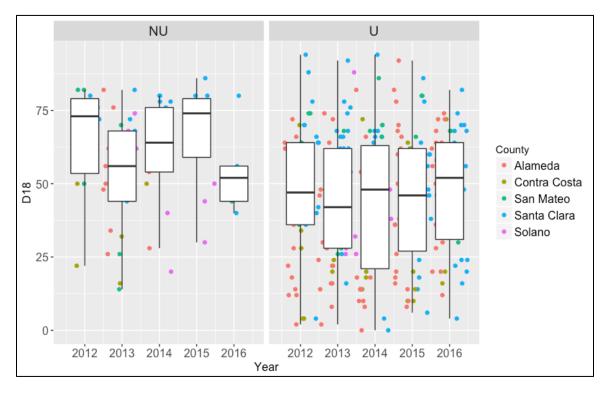


Figure 21. Distribution of D18 scores during water years 2012-2016. NU = non-urban, U= urban.

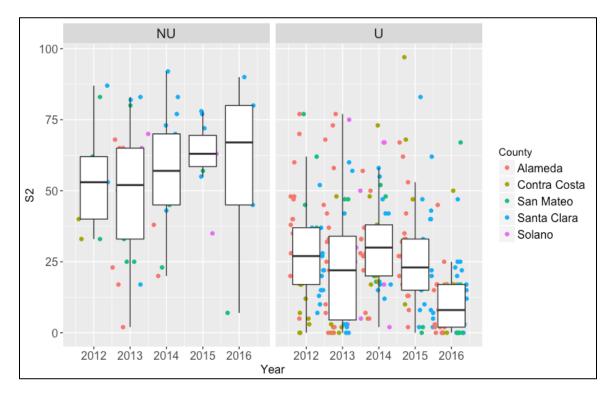


Figure 22. Distribution of S2 scores during water years 2012-2016. NU = non-urban, U= urban.

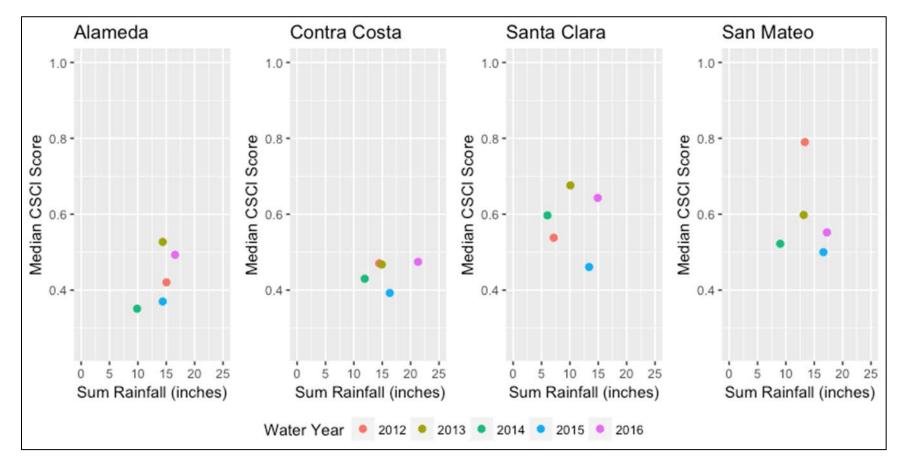


Figure 23. Relationship between median CSCI scores and accumulated annual rainfall in each County during water years 2012-2016. Includes urban and non-urban sites.

4 FINDINGS AND NEXT STEPS

The results and conclusions of the RMC's five-year bioassessment data evaluation are discussed below as they relate to the management questions and goals identified for the project.

4.1 WHAT ARE THE BIOLOGICAL CONDITIONS OF STREAMS IN THE RMC AREA?

Regional Conditions

The biological conditions of streams in the RMC area were assessed using two ecological indicators: BMIs and algae. The probabilistic survey design was developed to provide an objective estimate of biological condition of sampleable streams (i.e., accessible streams with suitable flow conditions) at both the RMC area and countywide scale.⁷ Results of the survey indicate that streams in the RMC area are generally in poor biological condition:

- The CSCI for benthic macroinvertebrates (BMIs) indicates that 58% of stream length in the region are in the lowest CSCI condition category (Very Likely Altered); 74% of the of the sampled stream length exhibited CSCI scores below 0.795, the MRP trigger for potential follow-on activity.
- Using both algae indices (D18 and S2), stream conditions regionwide appear slightly less degraded than when using CSI, with approximately 40% of the streams ranked in the lowest algae condition category (Very Likely Altered). The algal indices also indicate that greater stream lengths (19-21%) are in the highest condition category (Likely Intact) compared to lengths in this category when the CSCI is used (15%).

These findings should be interpreted with the understanding that the survey focused on urban stream conditions. Approximately 80% of the samples (284 of 354) were collected at urban sites. As a result, the overall condition assessment represents the range of conditions found in the urban area, which is defined in the sample frame as areas classified as "urban" in the US Census (2000), plus all areas within city boundaries. Although the low non-urban sample size precludes making any definitive comparisons, bioassessment scores in the non-urban area were higher than scores in the urban area for each of the RMC counties. In general, the biological condition assessment for the RMC area (with a focus on urban sites) was consistent with the statewide assessment of biological conditions at sites located within urban land uses (PSA 2015), which resulted in more than 90% of urban streams rated in the two lowest biological condition categories using CSCI.

Differences Across Counties

One of the goals for the RMC monitoring design was to compare biological conditions of streams between counties. In general, biological conditions, based on CSCI and D18 scores, appeared better in streams located in Santa Clara and San Mateo counties, compared others. However, Santa Clara and San Mateo counties had proportionally more non-urban sites (with higher CSCI and D18 scores) compared to other

⁷ More samples are needed to estimate condition for non-urban land use areas and finer spatial scales (i.e., watersheds).

counties. All counties exhibit higher biological condition scores in the non-urban area compared to the urban area. The difference between urban and non-urban median scores is lower for the D18 index, suggesting that diatoms may respond less to the habitat degradation commonly found at urban sites and may therefore provide better response to changes in water quality conditions.

Higher overall scores in Santa Clara and San Mateo may also be associated with regional differences in rainfall and flow duration. For example, San Mateo County and western Santa Clara County watersheds drain the Santa Cruz mountains, which typically receive higher rainfall, in contrast to Alameda and Contra Costa counties, which primarily contain watersheds that drain the western slopes of the drier Diablo range.

Indicator Tools

The use of multiple indicators provides a broad assessment of ecosystem functions. Streams that show degraded conditions for a single indicator may provide opportunities to identify the stressor and potentially implement management controls to reduce impacts. Alternatively, streams with poor conditions for both indicators (BMI and algae) may have multiple stressors that might be more challenging to address. Watershed managers may also choose to prioritize streams that are in good biological condition, based on both biological indicators, for protection of beneficial uses.

The RMC used existing tools to assess biological condition (CSCI and SoCal Algal IBIs). Although these tools were also used in the regional assessments conducted by the SMC, uncertainty remains as to how well these indices perform for streams within the San Francisco Bay Region:

- The CSCI is a statewide index that was developed for perennial streams. For the RMC project, however, the CSCI was used to evaluate BMI data collected in both perennial and non-perennial streams (note: the RMC assessed flow status by conducting site visits at all sampled sites during the dry season). In addition, CSCI scores appear highly sensitive to physical habitat degradation, which occurs frequently in the many highly modified urban streams monitored by the RMC. It is not clear how well the CSCI tool can show response to stressors associated with water quality, when physical habitat is the primary factor affecting the BMI community.
- For this report, the RMC evaluated algae data using SoCal Algae IBIs for diatoms (D18) and soft algae (S2). The D18 was more responsive to stressor gradients associated with water quality, however, high scores were often found in urban sites with highly degraded physical habitat. The soft algae index (S2) was not a reliable indicator of condition due to overall low taxa richness observed at both disturbed and undisturbed sites throughout the RMC area. In many cases, there was insufficient number of soft algae taxa to calculate S2, resulting in data gaps and lack of utility of the S2 index. Additional testing of soft algae indices is needed to assess the utility of this indicator in the RMC area.

The State Water Board and Southern California Coastal Water Research Project are currently developing and testing a set of statewide indices using benthic algae data as a measure of biological condition for streams in California. The statewide Algae Stream Condition Indices (ASCIs) are expected to be finalized in 2019. It is anticipated that the RMC will apply the ASCIs to analyze algae data when they become available.

4.2 What stressors are associated with biological conditions?

This question was addressed by evaluating the relationships between biological indicators (CSCI and D18) and stressor data through random forest and relative risk analyses. The study results indicate that each of the biological indicators responded to different types of stressors and therefore the two may be best used in combination to assess potential causes of poor (or good) biological conditions in streams:

- Biological condition, based on CSCI scores, is strongly influenced by physical habitat variables and land use within the vicinity of the site. The percent of the land area within a 5 km radius of a site that is impervious appears to have the largest influence on CSCI scores based on the random forest model results. Based on the relative risk analysis, the degree of human disturbance near a site, as observed via the Human Disturbance Index (HDI), appears to have the greatest relationship with poor biological condition of streams.
- Biological condition, based on D18 scores, is moderately correlated with water quality variables and less associated with physical or landscape variables, such as imperviousness or HDI.

In general, CSCI scores at urban sites were consistently low in all RMC counties, indicating that degraded physical habitat conditions in and around streams do not support healthy in-stream biological communities. D18 scores at urban sites were more variable, indicating that healthy diatom assemblages can occur at sites with poor physical habitat and may be important water quality indicator these sites.

No nutrient variables (e.g., nitrate, total nitrogen, orthophosphate, phosphorus) correlated strongly with CSCI scores in the Bay Area, nor were nutrients ranked as important variables explaining CSCI scores via the random forest model. Phosphorus and ash-free dry mass, which increase in response to biostimulation, were important in predicting algae (D18) index scores, although no statistically significant relationships were observed. This finding suggests that nutrient targets currently under development by the State Water Board as part of their Biostimulatory/Biointegrity Project, should be applied in the context of observed biological conditions, not uniformly based solely on broad relationships that may not apply to the Bay Area streams.

Although results show associations between some stressors and biological condition, they do not establish causation. There are several factors that may affect the strength of the correlation between stressors and biological condition:

- Stressors are not independent of one another and may have synergistic or mediating effects on condition. For example, elevated temperatures reduce the amount of oxygen that can be dissolved in the water column and both stressors may result in adverse effects to aquatic biota.
- Potential variability of stressor concentrations over time may not be represented in a single grab sample. For example, dissolved oxygen can have a wide range of concentrations over a 24-hour period. Drops in DO concentrations typically occur in early morning hours, potentially well prior to the timing of measurements during bioassessment events.
- Many of the physical habitat variables can be highly variable throughout the sample reach. For example, a wide range of substrate grain sizes can occur within a single transect. Thus, degraded habitat conditions that may exist at selected transect(s) of the assessment reach may not be well represented in reach-wide averages used as endpoints for the stressor analysis.

- Stressor impacts may be dependent on other factors (possibly not measured) for negative effects to occur. For example, elevated nutrient concentrations do not necessarily result in eutrophication (i.e., excessive plant and algal growth, reduced oxygen levels). Stream locations that have minimal exposure to sunlight, cooler water and higher flow rates may not develop eutrophic conditions, despite presence of elevated concentrations of nutrients.
- Stressors may have natural sources; prevalence and magnitude may vary by watershed or regionally. For example, naturally occurring nitrogen or phosphorus concentrations may be present in minimally disturbed upper watershed areas.

4.3 ARE BIOLOGICAL CONDITIONS CHANGING OVER TIME?

The short timeframe of the survey (five years) limited the ability to detect temporal trends in bioassessment data. Since new sites are surveyed each year, it is expected that a much longer time period is needed to detect trends at a regional scale over time. The variability in biological condition observed over the five years of the current analysis may have been associated with annual variation in precipitation or other factors. Drought conditions were present during the first four years of the survey. Trends in biological condition are more likely to occur on the decadal timescale. That said, the PSA evaluated trends for unique probabilistic sites sampled over a 13-year period and observed no trends (i.e., consistent directional change over time) (PSA 2015).

It is also important to consider these results within the broader context of the progress made over the past decade to reduce the effects of urbanization on creeks and channels through the mandatory treatment of stormwater and reduction of impervious areas via applicable new and redevelopment projects, and the numerous stream restoration projects that have been put into place. The implementation of mandatory stormwater treatment via green stormwater infrastructure (GSI) and low impact development (LID) began prior to the adoption of the MRP in 2005. These requirements reduce the effects of stormwater from impervious surfaces created via new and redevelopment and likely have positive effects on biological condition in streams, although the responses may be delayed. Bay Area municipalities are currently developing GSI Plans, which will result in the strategic and widespread integration of GSI into Capital Improvement Projects and other co-benefit projects like regional stormwater capture projects, creek restoration and flood control and resiliency projects. These efforts are anticipated to further reduce the impacts of stormwater on local streams. Future creek status monitoring may provide additional insight into the potential positive impacts of GSI and creek restoration on water quality and beneficial uses in urban creeks.

The ability to detect trends would be increased if the sample design included re-visiting sites over multiple years. Multiple surveys at individual sites would provide more site-specific detection of changing biological conditions over time. Should RMC participants intend to use BMIs and algae as long-term indicators, analyses should be conducted to identify the minimum number of samples needed over a specified timeframe to detect trends at a site or within a watershed or county, with a specified level of confidence. The analysis could also be used to optimize the monitoring program by evaluating appropriate sample sizes for detecting trends when considering expected variability in condition for different groups of sites, land use types, or areas where management actions are being implemented.

4.4 EVALUATION OF MONITORING DESIGN

The information presented below is intended to provide recommendations on potential revisions RMC monitoring procedures that should be considered for future implementation of bioassessment programs in the Bay Area.

4.4.1 Site Evaluations

Over the first five years of monitoring, the RMC evaluated about 25% (1455 out of 5740) of the sites in the sample frame to assess 354 sites. Approximately 46% (873 out of 1896) of the total number of urban sites in the sample frame were evaluated during that time. Additional sites have subsequently been selected from the sample frame and evaluated for sampling in 2017 and 2018. The number of remaining sites for evaluation in the RMC Sample Frame for each county is presented in Table 7.

County	Urban	Non-urban
Alameda	124	797
Contra Costa (R2)	249	307
Contra Costa (R5)	348	331
Santa Clara	143	1189
San Mateo	67	469
Fairfield-Suisun	37	208
Vallejo	4	208

Table 7. Sites remaining in RMC sample frame before site evaluation in water year 2019.

Based on rejection rates from previous years, the sample frame is anticipated to only last two to three years at which time the urban sites in the frame will be exhausted. Revision of the RMC monitoring design could seek to reduce the future rejection rate through re-evaluation of the sample frame to exclude areas of low management interest or regions that would not be candidates for sampling (such as due to lack of permissions or physical barriers to access). This would improve the spatial balance of samples that more closely represents the proportion of the sample frame that can be reliably assessed.

Each countywide stormwater program managed their site evaluation information independently using a standardized database. The site evaluation data were then compiled to conduct the spatial analysis needed to calculate the regional biological condition estimates presented in this report. During the compilation process, inconsistencies in procedures used to conduct site evaluation (BASMAA 2016a) were identified that affect the statistical certainty of the regional estimates. Some sites in the sample draw were skipped over (e.g., challenges in obtaining permissions from private land owners, lack of flow during period of drought) with the intention to re-evaluate the sites at a future date. The skipped sites created sampling bias that affects the spatial balance of the draw and reduces certainty in the condition estimates.

Another issue was the disproportionate sampling of non-urban sites among the counties. The RMC intended to sample twenty percent of the targeted sites each year. Some Programs had difficulty getting

access to non-urban sites, or decided to focus on urban sites, resulting in a wide range in number of samples collected at non-urban sites across the counties. As a result, biological condition scores at the county-scale tended to be higher in counties that sampled more non-urban sites.

4.4.2 RMC Sample Frame

Consistent with the PSA, the RMC sample design was created to probabilistically sample all streams within the RMC area, which resulted in a master list of 33% urban sites and 67% non-urban sites. However, because participating municipalities are primarily concerned with runoff from urban areas, the RMC focused sampling efforts on urban sites (80%) over non-urban sites (20%). As a result, non-urban samples are under-represented in the dataset resulting in much lower overall biological condition scores than would be expected for a spatially balanced dataset. In addition, the limited number of non-urban samples (2% sample frame assessed thru-2016) prevented statistical confidence in estimates of biological condition for non-urban land use at the regional scale.

Depending on the goals for the RMC moving forward, the RMC may want to consider developing a new sample draw that establishes a new list of sites that is weighted for specific land uses categories and Program areas of interest. Development of a revised sample frame would result in a new list of sites, associated with different length weights for each land use category. The sample draw could also include a list of sites for oversampling (replacements for sites not sampled) to maintain the spatial balance throughout any timeframe of the draw and allow for a much longer time frame before the list is exhausted.

Re-design of the RMC sample frame could also include new strata based on developed channel classifications created by SCCWRP. The classifications are created using a statistical model that predicts likely ranges of CSCI scores based on landscape characteristics (Mazor et al. 2018). These channel classifications could be integrated as strata into the RMC sample frame to allow varying sampling efforts for urbanized streams.

4.5 POSSIBLE NEXT STEPS FOR THE RMC BIOASSESSMENT MONITORING

Based on evaluation of data collected during the five years of the survey, several options to revise the RMC Monitoring Design are presented below:

- 1) Continue to sample new probabilistic sites until the draw is exhausted;
- 2) Re-visit probabilistic sites in support of assessing temporal trends;
- 3) Monitor targeted sites for special studies; or
- 4) Combination of two or more of the above.

Each of these options is discussed in more detail below.

Continue Sampling New Probabilistic Sites

The RMC could continue to sample new probabilistic sites from the current sample frame with the goal to establish baseline conditions over smaller spatial scales. Eventually, statistically significant datasets would be obtained to estimate biological condition for all strata previously considered (i.e., non-urban and countywide), as well as finer scales (e.g., watersheds). Smaller geographic scales of assessments may

provide stronger associations between biological conditions and stressor levels. Watershed-level assessments may provide managers more opportunities to evaluate spatial patterns and temporal trends for specific watersheds.

Exclusively sampling new sites would exhaust sites in the current sample draw. It is anticipated that at the current rate of sampling (at same proportion of urban/non-urban sites), some of the Programs would run out of urban sites in two to three years. Solano County has already depleted urban sites from their sample frame. Sampling effort at new non-urban sites should be also be evaluated. Resources to conduct site evaluations (e.g., permission to access private property) are typically much higher at non-urban sites. In addition, the access to non-urban sites appears to be highly variable by county.

If this option is desired, the RMC could develop a new probabilistic sample draw with a list of oversample sites.

Re-visit Probabilistic Sites to Assess Temporal Trends

Re-visiting probabilistic sites previously sampled may provide trend estimates and more refined information to potentially explain causes of observed trends. The most robust trends scenario would involve sampling the same sites each year; however, given the current level-of-effort, this would only be possible at a relatively small number of sites in each county. Thus, the resulting trends assessment could only answer regional questions. Some sites could be sampled for multiple years to evaluate potential variability related to changes in precipitation; non-urban sites may be particularly sensitive to annual variation in precipitation. Integrating site re-visits into the sample design would have the advantage of extending the life of the sample frame (i.e., reduce number of new sites each year).

Targeted Studies

There are several potential objectives for conducting biological assessments at targeted sites, including:

- 1) Evaluate effectiveness of stream restoration/BMP implementation projects;
- 2) Determine source/stressor at impaired site (i.e., causal assessment);
- 3) Evaluate conditions in selected watersheds;
- 4) Study trends at minimally disturbed sites (e.g., climate change);
- 5) Assess validity of CSCI in nonperennial streams in the Bay Area;
- 6) Investigate variability in biological indicator scores within sampling index period.

Targeted studies could be coordinated among RMC participants to evaluate similar objectives at regional scale or could be done independently by each Program. It is anticipated that targeted studies may require more resources with regards to site selection, data needs, detailed analyses, and reporting. However, targeted monitoring could also leverage requirements that Permittees have for other projects.

Combined Approaches

The RMC may consider implementing a combination of all the approaches described above for the future monitoring design.

5 REFERENCES

- Bay Area Stormwater Management Agencies Association (BASMAA). 2016a. Regional Monitoring Coalition Creek Status Monitoring Standard Operating Procedures. Version 3, March 2016.
- Bay Area Stormwater Management Agencies Association (BASMAA). 2016b. Regional Monitoring Coalition Creek Status Monitoring Program Quality Assurance Project Plan. Version 3, March 2016.
- Elith, J., Leathwick, J. R. and Hastie, T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77.4: 802-813.
- Fetscher, A. E., Stancheva, R., Kociolek, J. P., Sheath, R. G., Stein, E. D., Mazor, R. D., & Busse, L. B. 2014. Development and comparison of stream indices of biotic integrity using diatoms vs. non-diatom algae vs. a combination. Journal of applied phycology, 26(1), 433-450.
- Kincaid, T. M. and Olsen, A. R. 2016. spsurvey: Spatial Survey Design and Analysis. R package version 3.3.
- Maloney, K., Weller, D., Russell, M., Hothorn, T. 2009. Classifying the biological condition of small streams: an example using benthic macroinvertebrates. J North Am Benthol Soc 28(4): 869–884.
- Mazor, R.D. 2015a. Bioassessment of Perennial Streams in Southern California: A Report on the First Five Years of the Stormwater Monitoring Coalition's Regional Stream Survey. SCCWRP Technical Report #844. May 2015.
- Mazor, R.D. 2015b. Bioassessment Survey of the Stormwater Monitoring Coalition. Workplan for Years 2015 through 2019. Version 1.0. SCCWRP Technical Report #849. February 2015.
- Mazor R.D., Rehn A.C., Ode P.R., Engeln M., Schiff K.C., Stein E.D., Gillett DJ, Herbst D.B., Hawkins C.P. 2016. Bioassessment in complex environments: designing an index for consistent meaning in different settings. Freshwater Science 35(1):249-71.
- Mazor, R., Ode, P.R., Rehn, A.C., Engeln, M., Boyle, T., Fintel, E., Verbrugge, S., and Yang, C. 2016. The California Stream Condition Index (CSCI): Interim instructions for calculating scores using GIS and R. SWAMP-SOP-2015-0004. Revision Date: August 5, 2016.
- Mazor, R., M. Beck, and J. Brown. 2018. 2017 Report on the Stormwater Monitoring Coalition Regional Stream Survey. SCCWRP Technical Report #1029. Southern California Coastal Water Research Project. Costa Mesa, CA.
- Ode, P.R., Fltscher, A.E. and Busse, L.B. 2016. Standard Operating Procedures for the Collection of Field Data for Bioassessments of California Wadeable Streams: Benthic Macroinvertebrates, Algae, and Physical Habitat. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 004.
- R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (https://www.R-project.org/).
- Rehn, A.C., Mazor, R.D. and Ode, P.R. 2015. The California Stream Condition Index (CSCI): A new statewide biological scoring tool for assessing the health of freshwater streams. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) TM-2015-0002. September 2015.
- State Water Resources Control Board (SWRCB). 2015. Surface Water Ambient Monitoring Program (SWAMP) Perennial Stream Assessment Management Memo. SWAMP-MM-2015-0001. June 2015.
- Stevens, D.L., Jr., and Olsen, A.R. 2004. Spatially-balanced sampling of natural resources. Journal of the American Statistical Association 99: 262-278.

- San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). 2017. San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan). Incorporating all amendments approved by the OAL as of May 4, 2017.
- San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). 2015. California Regional Water Quality Control Board San Francisco Bay Region Municipal Regional Stormwater NPDES Permit (MRP 2.0). Order No. R2-2015-0049. NPDES Permit No. CAS612008. November 19, 2015.
- San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). 2009. California Regional Water Quality Control Board San Francisco Bay Region Municipal Regional Stormwater NPDES Permit (MRP 1.0). Order No. R2-2009-0049. NPDES Permit No. CAS612008. October 14, 2009.
- van Buuren, S. and Groothuis-Oudshoorn, K. 2011. mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1–67.
- Waite, I. R., Kennen, J. G., May, J. T., Brown, L. R., Cuffney, T. F., Jones, K. A. and Orlando, J. L. 2012. Comparison of Stream Invertebrate Response Models for Bioassessment Metrics. JAWRA Journal of the American Water Resources Association, 48: 570-583.

APPENDICES

- 1. Random Forest Analysis
- 2. Partial Dependency Plots
- 3. CSCI-Stressor Plots
- 4. Additional Figures

APPENDIX 1 RANDOM FOREST ANALYSIS

Table 1-A. Variable group, variable code, and description of response variables (condition indices) and explanatory environmental variables (landscape, habitat, and water quality) used for random forest model development.

Variable Group	Variable Code	Description
Response	CSCI	California Stream Condition Index
Response	D18	Soft algae condition score
Habitat	AvAlgCov	Mean Filamentous Algae Cover
Habitat	AvBold	Mean Boulders cover
Habitat	AvWetWd	Mean Wetted Width/Depth Ratio
Habitat	AvWoodD	Mean Woody Debris <0.3m cover
Habitat	ChanAlt	Channel Alteration Score
Habitat	EpiSub	Epifaunal Substrate Score
Habitat	FlowHab	Evenness of Flow Habitat Types
Habitat	NatShelt	Natural Shelter cover - SWAMP
Habitat	NatSub	Evenness of Natural Substrate Types
Habitat	PctBold_L	Percent Boulders - large
Habitat	PctBold_LS	Percent Boulders - large & small
Habitat	PctBold_S	Percent Boulders - small
Habitat	PctFin	Percent Fines
Habitat	PctFstH20	Percent Fast Water of Reach
Habitat	PctGra	Percent Gravel - coarse
Habitat	PctSlwH20	Percent Slow Water of Reach
Habitat	PctSmalSnd	Percent Substrate Smaller than Sand (<2 mm)
Habitat	PctSnd	Percent Sand
Habitat	ShD.AqHab	Shannon Diversity (H) of Aquatic Habitat Types
Habitat	ShD.NatSub	Shannon Diversity (H) of Natural Substrate Types

Variable Group	Variable Code	Description
Land Use	HDI	Combined Riparian Human Disturbance Index - SWAMP
Land use	PctImp	Percent Impervious Area of Reach
Land use	PctImp_1K	Percent Impervious Area in 1km
Land use	PctImp_5K	Percent Impervious Area in 5km
Land use	PctUrb	Percent Urban Area of Reach
Land use	PctUrb_1K	Percent Urban Area in 1km
Land use	PctUrb_5K	Percent Urban Area in 5km
Land use	RdCrs_5K	Number Road Crossings in 5km
Land use	RdCrs_W	Number Road Crossings in watershed
Land use	RdDen_1K	Road Density in 1km
Land use	RdDen_5K	Road Density in 5km
Land use	RdDen_W	Road Density in watershed
Land use	RoadCrs_1K	Number Road Crossings in 1km
Water Quality	AFDM.sub	Ash Free Dry Mass
Water Quality	Ammonia.sub	Ammonia
Water Quality	Chla.sub	Chlorophyll a
Water Quality	Chloride	Chloride
Water Quality	DO	Dissolved oxygen
Water Quality	Nitrate.sub	Nitrate
Water Quality	Nitrite.sub	Nitrite
Water Quality	OP.sub	Orthophosphate
Water Quality	рН	рН
Water Quality	Phosphorus.sub	Phosphorus
Water Quality	Silica	Silica
Water Quality	SpCond	Specific conductivity
Water Quality	Temp	Temperature
Water Quality	TKN.sub	Total Kjeldahl Nitrogen

Variable Group	Variable Code	Description
Water Quality	Total N	Total Nitrogen
Water Quality	UIA.sub	Unionized Ammonia

Table 1-B. Model and cross-validation statistics for random forest models with CSCI and D18 scores using the final set of model variables (Table 2, Table 3)

Index	Model Dataset	Model Statistic	
CSCI	Training	R ²	0.95
	Validation	R ²	0.61
CSCI	Training	CV R ²	0.66
	Validation	CV R ²	0.52
D18	Training	R ²	0.92
	Validation	R ²	0.34
D18	Training	CV R ²	0.35
	Validation	CV R ²	0.33

Training and validation models run with the same variables, $*R^2$ = adjusted R-squared, CV R^2 = Cross validation R^2

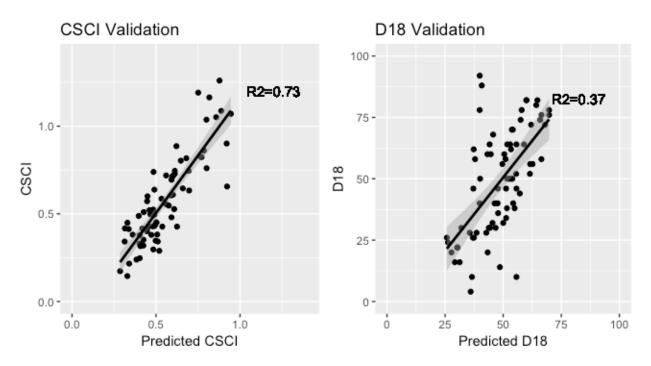


Figure 1-A. Relationship of observed to predicted CSCI and D18 scores in the validation dataset using all 49 explanatory variables in Step 1 of the random forest trial

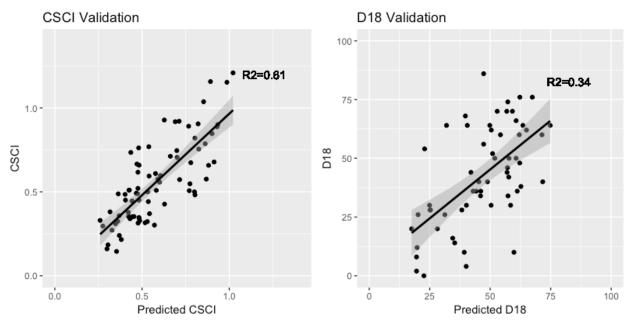


Figure 1-B. Relationship of observed to predicted CSCI and D18 scores in the validation dataset using the final, selected list of explanatory variables in Step 2 of the random forest trial

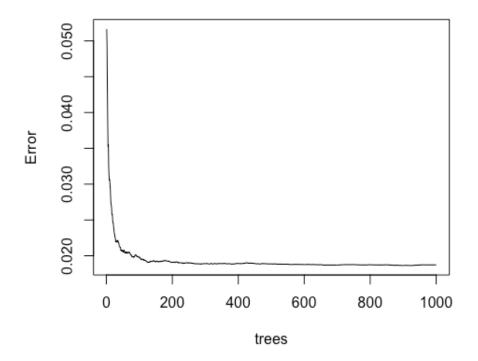
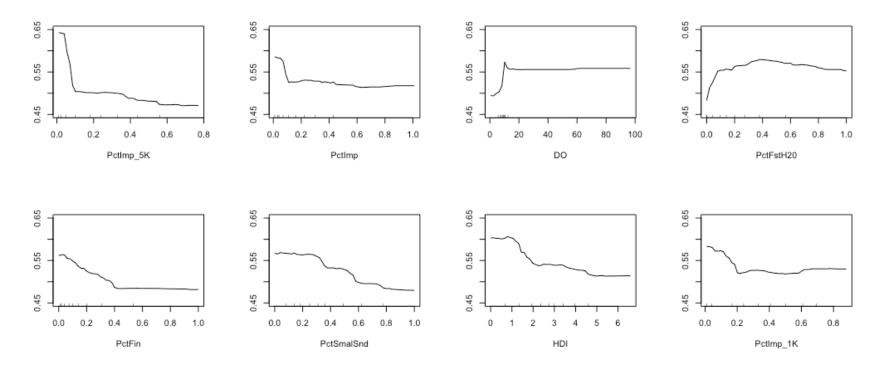



Figure 1-C. Prediction error vs. number of trees in the CSCI model with 49 stressor variables

APPENDIX 2 PARTIAL DEPENDENCY PLOTS

Figure 2-A. Partial dependency plots for stressor variables in random forest model of CSCI condition. Plots show the predicted response of CSCI (y-axis) based on the effect of individual explanatory variables (x-axis) with the response of all other variables removed in the training data set.

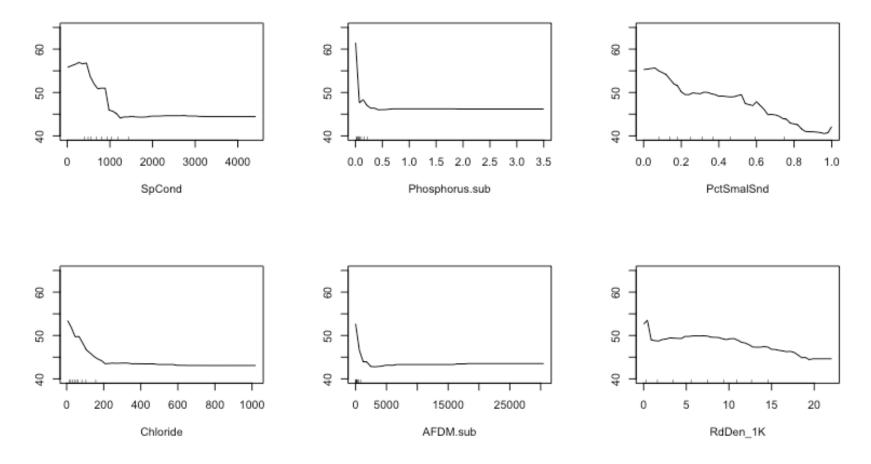


Figure 2-B. Partial dependency plots for stressor variables in random forest model of D18 condition. Plots show the predicted response of D18 (y-axis) based on the effect of individual explanatory variables (x-axis) with the response of all other variables removed in the training data set.

APPENDIX 3 CSCI-STRESSOR PLOTS

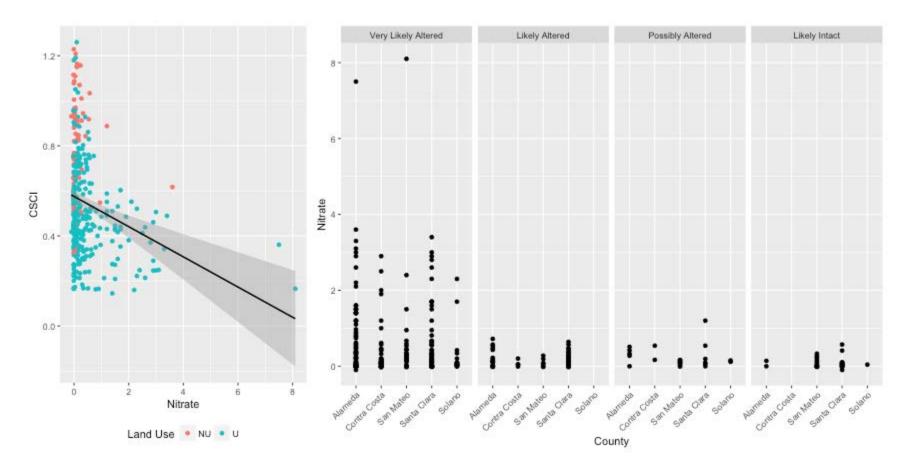


Figure 3-A. Relationship of Nitrate concentration to CSCI scores

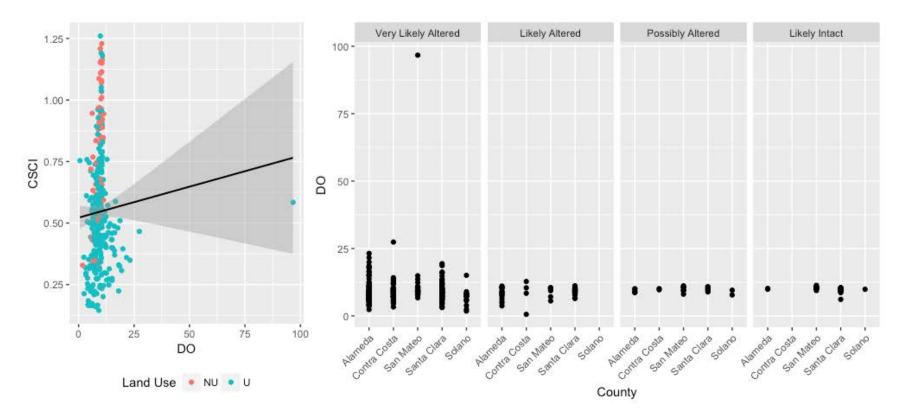


Figure 3-B. Relationship of Dissolved Oxygen values to CSCI scores

APPENDIX 4 ADDITIONAL FIGURES

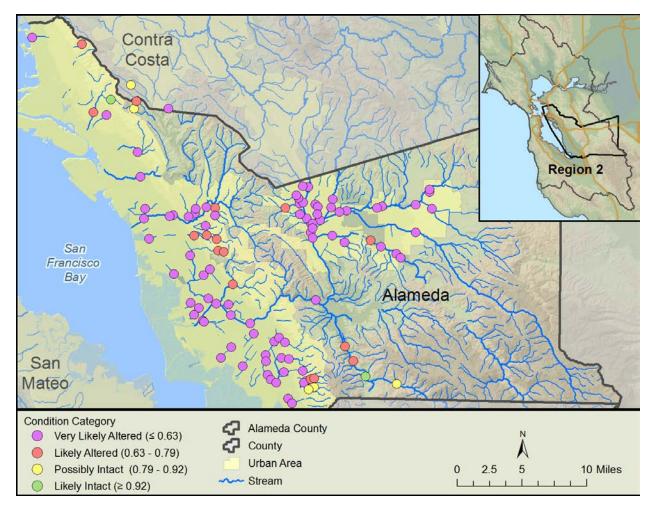


Figure 4-A. Biological condition based on CSCI scores in Alameda County.

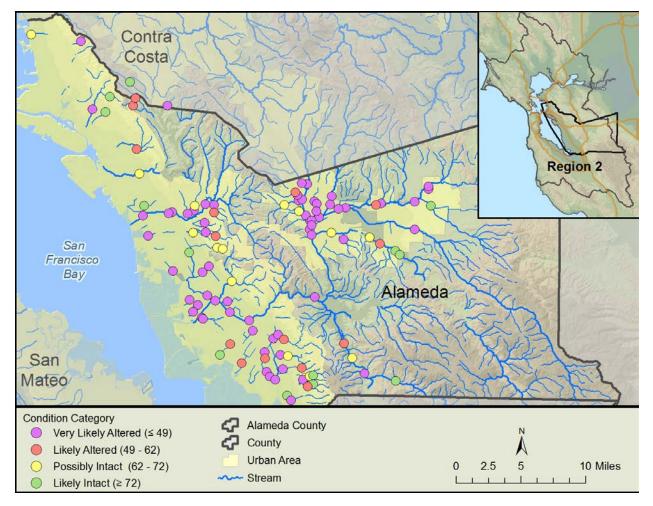


Figure4-B. Biological condition based on D18 scores in Alameda County.

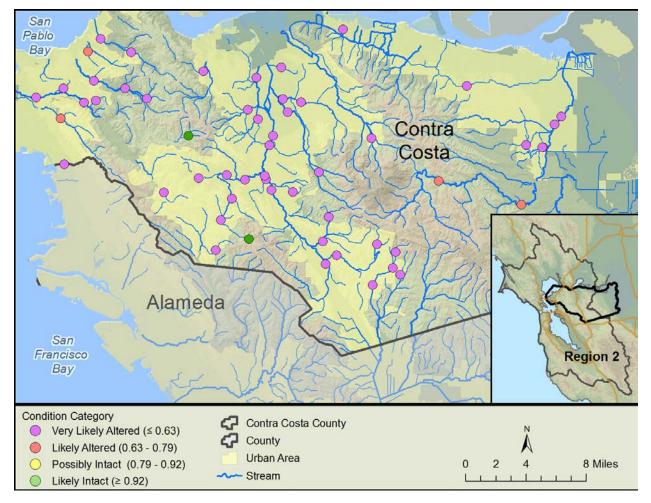


Figure 4-C. Biological condition based on CSCI scores in Contra Costa County.

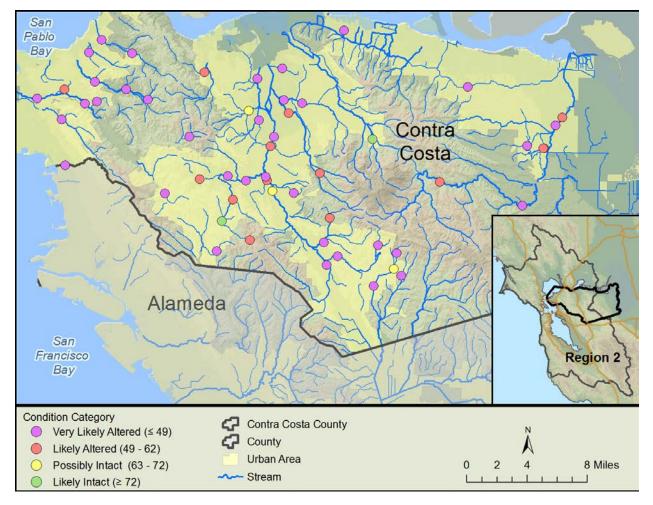


Figure 4-D. Biological condition based on D18 scores in Contra Costa County.

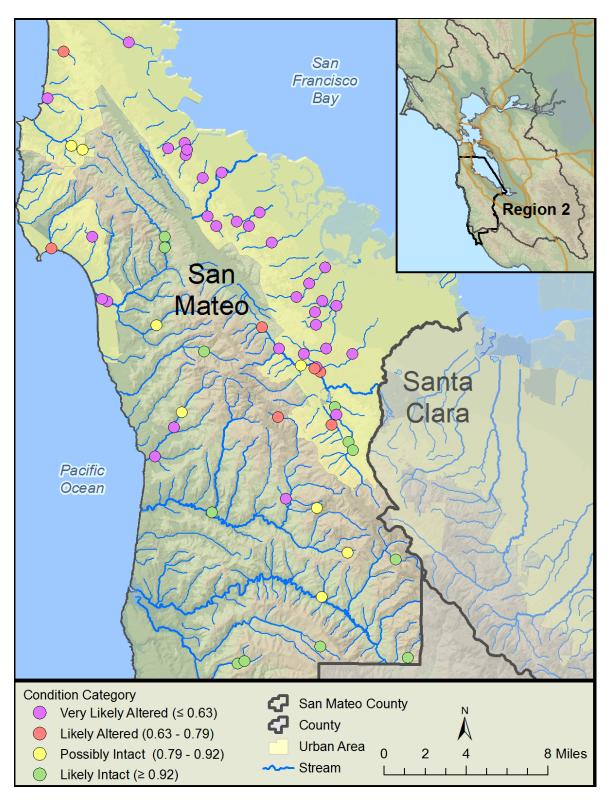


Figure 4-E. Biological condition based on CSCI scores in San Mateo County.

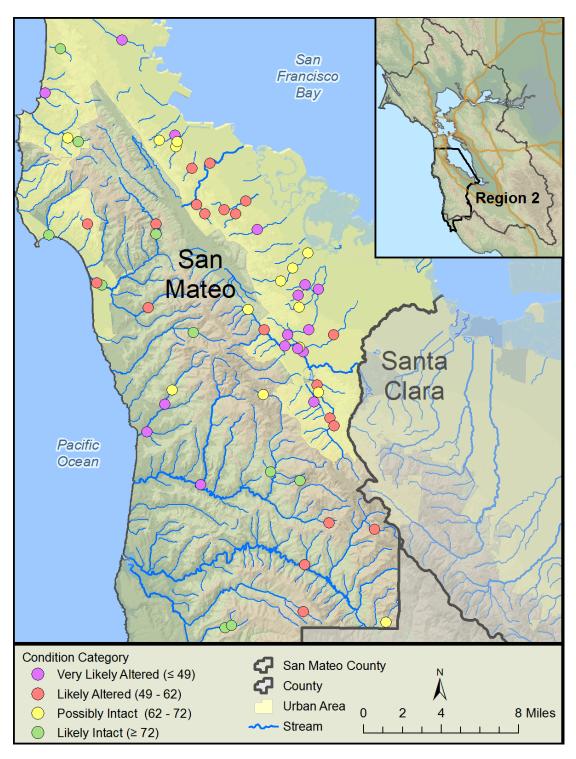


Figure 4-F. Biological condition based on D18 scores in San Mateo County.

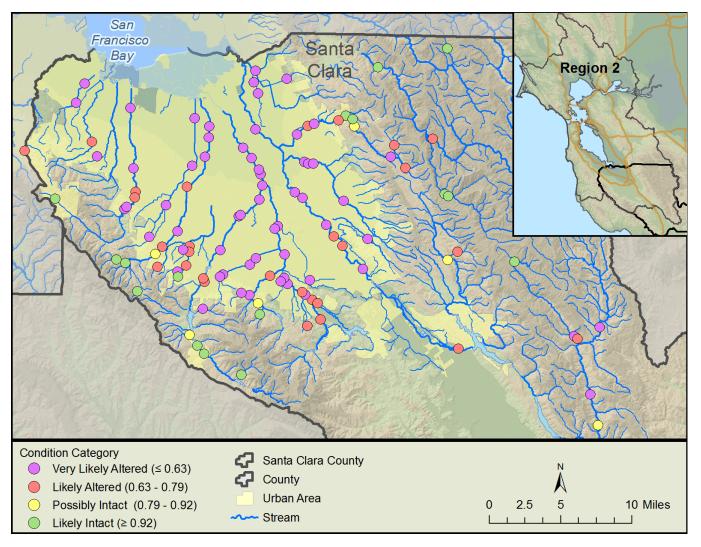


Figure 4-G. Biological condition based on CSCI scores in Santa Clara County.

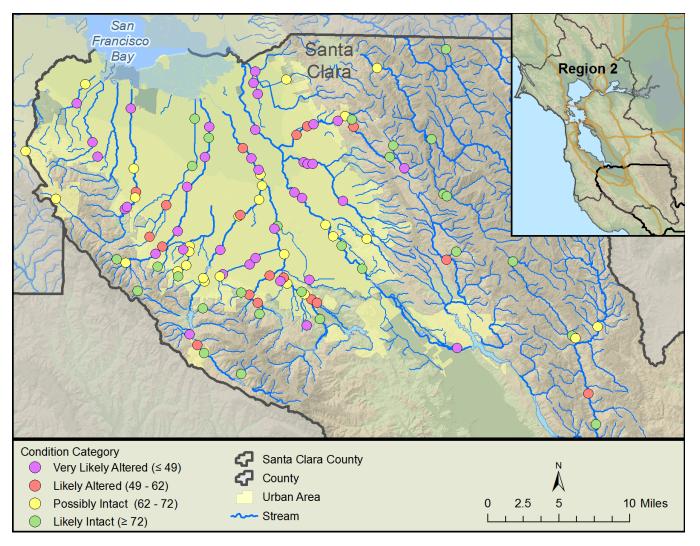


Figure 4-H. Biological condition based on D18 scores in Santa Clara County.

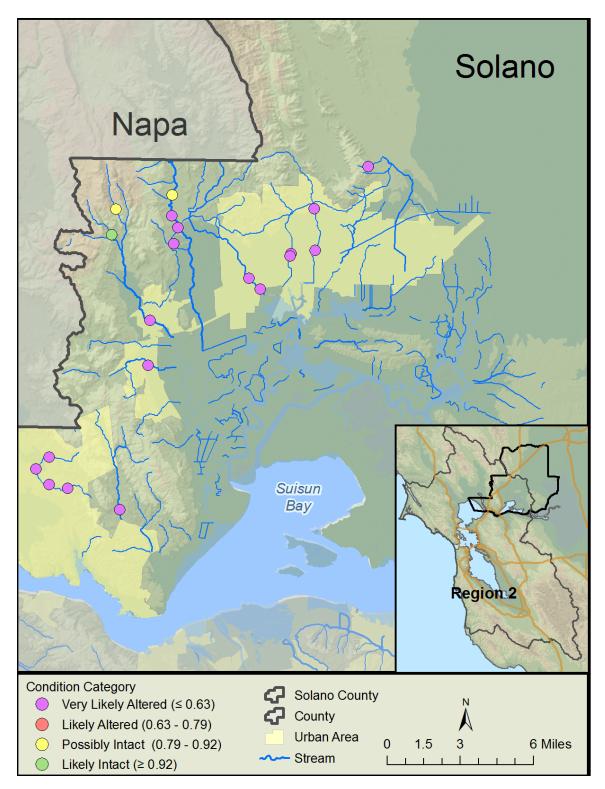


Figure 4-I. Biological condition based on CSCI scores in Solano County.

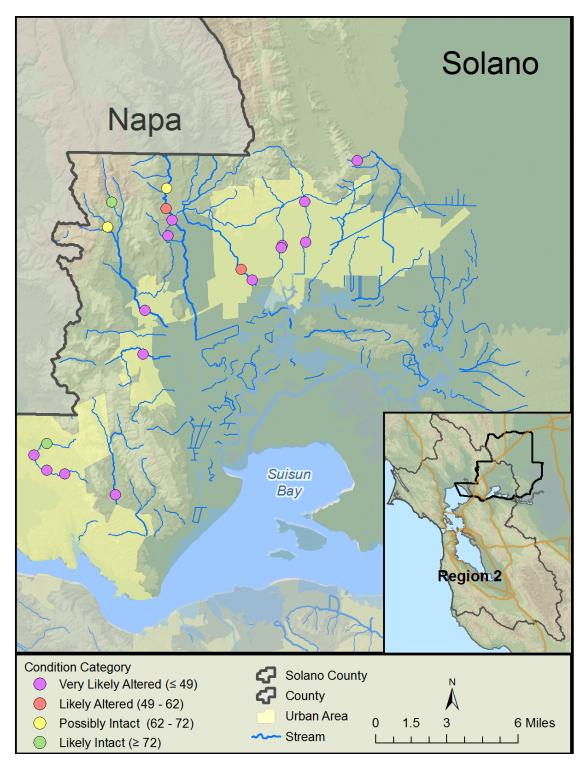


Figure 4-J. Biological condition based on D18 scores in Solano County.

Appendix **B**

Regional Stressor/Source Identification (SSID) Report

BASMAA Regional Monitoring Coalition

Regional Stressor/Source Identification (SSID) Report, prepared in compliance with Municipal Regional Stormwater NPDES Permit (MRP; Order No. R2-2015-0049) Provision C.8.e.ii(1) MRP 2.0 SSID Project Locations, Rationales, Status

Updated March 2019

SSID			Creek/	Site		Prima	ary Ind	icator(s) Trigg	ering S	tresso	r/Sourc	e ID P	Proje	ct			Current Status of SSID	EO Concurrence
Project ID	Date Updated	County/ Program	Channel Name	Code(s) or Other Site ID	Project Title	Bioassess	General WQ	Chlorine	Temp	Water Tox	Sed Tox	Sed Chem	Pathogen	Indicators Other		Indicator Result Summary	Rationale for Proposing/Selecting Project	Project or Date Completed	of project completion (per C.8.e.iii.(b))
AL-1	1/14/19	ACCWP	Palo Seco Creek		Exploring Unexpected CSCI Results and the Impacts of Restoration Activities	x										sites, including sites on Palo Seco Creek upstream of the Sausal	The project will provide additional data to aid consideration of unexpected and unexplained CSCI results from previous water year sampling on Palo Seco Creek, enable a more focused study of monitoring data collected over many years in a single watershed, and allow analysis of before and after data at sites upstream and downstream of previously completed restoration activities.	The work plan was submitted in August 2018. WY 2018 sampling and monitoring took place April – September and the data are currently being processed.	
AL-2	3/5/19	ACCWP	Arroyo Las Positas		Arroyo las Positas Stressor Source Identification Project	x										CSCI scores below the threshold were recorded on Arroyo Las Positas in WYs 2016 and 2017. In 2017, one site exceeded the Basin Plan threshold for chloride. The creek is also listed on the 303(d) list for eutrophication and has an approved TMDL for Diazinon.	ACCWP is exploring a potential SSID project on Arroyo las Positas. The Water Board is conducting sampling in the watershed as part of their TMDL development efforts and an SSID project may combine well with those efforts and generate a better overall picture of stressors impacting the waterbody.	The SSID project is under development. The Final SSID project may end up focusing on a different waterbody depending on the outcome of communications with Water Board staff and analysis of WY 2018 triggers.	
CC-1	1/2/19	CCCWP	Lower Marsh Creek		Marsh Creek Stressor Source Identification Study										x	been identified.	This SSID study addresses the root causes of fish kills in Marsh Creek. Monitoring data collected by CCCWP and other parties are being used to investigate multiple potential causes, including low dissolved oxygen, warm temperatures, daily pH swings, fluctuating flows, physical stranding, and pesticide exposure.	The CCCWP SSID work plan was submitted in 2018 and is currently being implemented. The Year 1 Status Report is included in this WY 2018 UCMR.	
SC-1	1/12/19	SCVURPPP	Coyote Creek	NA	Coyote Creek Toxicity SSID Project						Х					The SWRCB recently added Coyote Creek to the 303(d) list for toxicity.	This SSID study is investigating sources of toxicity to sediments in Coyote Creek. Results of sediment toxicity and chemistry monitoring conducted during the WY 2018 dry season were inconclusive. Sediment chemistry results were inconclusive and toxicity results too inconsistent to proceed with a TIE study. The WY 2018 results support earlier	The work plan was submitted with SCVURPPP's WY 2017 UCMR. A project report describing the results of the WY 2018 and WY 2019 monitoring will be	

BASMAA Regional Monitoring Coalition

Regional Stressor/Source Identification (SSID) Report, prepared in compliance with Municipal Regional Stormwater NPDES Permit (MRP; Order No. R2-2015-0049) Provision C.8.e.ii(1) MRP 2.0 SSID Project Locations, Rationales, Status

Updated March 2019

SSID			Creek/	Site		Prima	ary Ind	licator(s) Trigg	ering S	tresso	r/Sourc	e ID P	oject		Rationale for Proposing/Selecting Project	Current Status of SSID	EO Concurrence
Project ID	Date Updated	County/ Program	Channel Name	Code(s) or Other Site ID	Project Title	Bioassess	General WQ	Chlorine	Temp	Water Tox	Sed Tox	Sed Chem	Pathogen	Other	Indicator Result Summary		Project or Date Completed	of project completion (per C.8.e.iii.(b))
																findings from SCVURPPP and SPoT that toxicity and pesticide concentrations in Coyote Creek are sporadic. Additional monitoring will be conducted in WY 2019 to confirm the findings.	submitted with the WY 2019 UCMR.	
SC-2	2/19/19	SCVURPPP	TBD	TBD	TBD										TBD	тво	Project options currently under discussion by Monitoring Ad Hoc Task Group	
SM-1	1/12/19	SMCWPPP	Pillar Point / Deer Creek / Denniston Creek	NA	Pillar Point Harbor Bacteria SSID Project								x		FIB samples from 2008, 2011-2012 exceeded WQOs.	A grant-funded Pillar Point Harbor MST study conducted by the RCD and UC Davis in 2008, 2011-2012 pointed to urban runoff as a primary contributor to bacteria at Capistrano Beach and Pillar Point Harbor. The study, however, did not identify the specific urban locations or types of bacteria. This SSID project is investigating bacteria contributions from the urban areas within the watershed. In WY 2018, Pathogen indicator and MST monitoring was conducted at 14 freshwater sites during 2 wet and 2 dry events. Very few samples contained "controllable" source markers (i.e., human and dog). Additional field studies are being conducted in WY 2019 to understand hydrology and specific source areas.	The work plan was submitted with SMCWPPP's WY 2017 UCMR. A project report describing the results of the WY 2018 and WY 2019 investigations will be submitted with the WY 2019 UCMR.	
FSV-1	2/4/2019	City of Vallejo in assoc. with FSURMP	Rindler Creek	207R03504	Rindler Creek Bacteria and Nitrogen Study								x		E. coli result of 2800 MPN/100mL in Sept., 2017.	A source identification study is warranted in Rindler Creek due to the elevated FIB result, other (non-RMC) monitoring indicating elevated ammonia levels, and the presence of a suspected pollutant source upstream of the data collection point. Rindler Creek is a highly urbanized and modified creek that originates in open space northeast of the City of Vallejo. Monitoring is conducted just downstream of the creek crossing under Columbus Parkway; upstream of this site there is City-owned land that is grazed by cattle roughly from December-June.	Project planning is proceeding in FY 2018- 19. Follow-up monitoring is being performed during early 2019 to verify the spatial and temporal extent of the water quality issues during the grazing period.	

BASMAA Regional Monitoring Coalition

Regional Stressor/Source Identification (SSID) Report, prepared in compliance with Municipal Regional Stormwater NPDES Permit (MRP; Order No. R2-2015-0049) Provision C.8.e.ii(1) MRP 2.0 SSID Project Locations, Rationales, Status

Updated March 2019

SSID		County/ Program	Creek/	Site) or Project Title	Primary Indicator(s) Triggering Stressor/Source ID Project								Proje	ect			Current Status of SSID	EO Concurrence
Project ID	Date Updated		Channel Name	Code(s) or Other Site ID		Bioassess	General WQ	Chlorine	Temp	Water Tox	Sed Tox	Sed Chem	Pathogen	Indicators	Other	Indicator Result Summary	Rationale for Proposing/Selecting Project	Project or Date Completed	of project completion (per C.8.e.iii.(b))
RMC-1	1/12/19	RMC/ Regional	NA (entire RMC area)	NA	Regional SSID Project: Electrical Utilities as a Potential PCBs Source to Stormwater in the San Francisco Bay Area										x	Fish tissue monitoring in San Francisco Bay led to the Bay being designated as impaired on the CWA 303(d) list and the adoption of a TMDL for PCBs in 2008. POC monitoring suggests diffuse PCBs sources throughout region.	PCBs were historically used in electrical utility equipment, some of which still contain PCBs. Although much of the equipment has been removed from services, ongoing releases and spills may be occurring at levels approaching the TMDL waste load allocation. This regional SSID project will investigate opportunities for BASMAA RMC partners to work with RWQCB staff to: 1) improve knowledge about the extent and magnitude of PCB releases and spills, 2) improve the flow of information from utility companies, and 3) compel cooperation from utility companies to implement improved control measures.	A work plan is currently under development and is anticipated for submittal with the WY 2018 UCMRs.	

Appendix C

SCVURPPP Pollutants of Concern Data Report, Water Year 2018

Pollutants of Concern Monitoring - Data Report

Water Year 2018

Submitted in compliance with Provision C.8.h.iii of NPDES Permit # CAS612008 (Order No. R2-2015-0049)

March 31, 2019

This report is submitted by the agencies participating in the

City of Campbell City of Cupertino City of Los Altos Town of Los Altos Hills Town of Los Gatos City of Milpitas City of Monte Sereno City of Mountain View City of Palo Alto City of San Jose City of Santa Clara City of Saratoga City of Sunnyvale County of Santa Clara Santa Clara Valley Water District

Prepared for:

Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP)

Prepared by:

EOA, Inc. 1410 Jackson St., Oakland, CA 94612

LIST OF ACRONYMS

AFR	Alternative Flame Retardant
BASMAA	Bay Area Stormwater Management Agency Association
вмр	Best Management Practice
BSM	Bioretention Soil Media
CASQA	California Stormwater Quality Association
CEC	Contaminants of Emerging Concern
CEDEN	California Environmental Data Exchange Network
DQO	Data Quality Objective
ECWG	Emerging Contaminants Work Group
EDD	Electronic Data Deliverable
HDS	Hydrodynamic Separator
MRP	Municipal Regional Permit
MS4	Municipal Separate Storm Sewer System
NA	Not Applicable
NMS	San Francisco Bay Nutrient Management Strategy
NNE	Nutrient Numeric Endpoints
NPDES	National Pollution Discharge Elimination System
PBDEs	Polybrominated Diphenyl Ethers
PCBs	Polychlorinated Biphenyls
PFAS	Perfluoroalkyl Sulfonates
PFOS	Perfluorooctane Sulfonates
POC	Pollutant of Concern
POTW	Publicly Owned Wastewater Treatment Works
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
RAA	Reasonable Assurance Analysis
RMP	Regional Monitoring Program for Water Quality in the San Francisco Bay
RWSM	Regional Watershed Spreadsheet Model
SAP	Sampling and Analysis Plan
SCVURPPP	Santa Clara Valley Urban Runoff Pollution Prevention Program
SFEI	San Francisco Estuary Institute
SMCWPPP	San Mateo Countywide Water Pollution Prevention Program
SOP	Standard Operating Procedures
SPoT	Statewide Stream Pollutant Trend Monitoring
SSC	Suspended Sediment Concentration
STLS	Small Tributary Loading Strategy
ΤΚΝ	Total Kjeldahl Nitrogen
TOC	Total Organic Carbon
UCMR	Urban Creeks Monitoring Report
USEPA	US Environmental Protection Agency
WMA	Watershed Management Area
WQO	Water Quality Objective
WY	Water Year

TABLE OF CONTENTS

LIST OF ACRONYMSiii
LIST OF FIGURESv
LIST OF TABLESv
LIST OF ATTACHMENTSv
1.0 INTRODUCTION1
1.1 POC Monitoring Requirements1
1.2 BASMAA Monitoring
1.3 Third-Party Data
2.0 POC MONITORING RESULTS
2.1 Statement of Data Quality
2.2 PCBs and Mercury
2.2.1 Comparison with Region-wide Storm Sampling Results
2.2.2 WMA Update
2.2.3 Source Property Identification
2.3 Copper 17
2.4 Nutrients
2.5 Emerging Contaminants
3.0 COMPARISON TO APPLICABLE WATER QUALITY STANDARDS
4.0 CONCLUSIONS AND RECOMMENDATIONS
5.0 REFERENCES

LIST OF FIGURES

Figure 1. SCVURPPP and Third-Party POC Monitoring Stations in WY 2018. (BASMAA regional project	
sample locations are not mapped.)	8
Figure 2. SCVURPPP current Watershed Management Area (WMA) map showing catchments sampled in W	Y
2018	1
Figure 3. PCB concentrations for water samples collected in large MS4s and receiving waters in the Bay	
Area1	4
Figure 4. PCB particle ratios for water samples collected in MS4s and receiving waters (i.e., creeks/rivers)	
draining to the Bay	5

LIST OF TABLES

Table 1. MRP Provision C.8.f Pollutants of Concern monitoring requirements	3
Table 2. SCVURPPP and Third-Party POC Monitoring Accomplishments in WY 2018.	7
Table 3. POC monitoring stations in Santa Clara County, WY 2018.	9
Table 4. PCB, mercury, and suspended sediment concentrations in water samples collected by SCVURPF	P and
STLS, WY 2018	12
Table 5. Descriptive statistics of PCB and mercury concentrations in water and particle ratios	13
Table 6. Total and dissolved copper concentrations in water samples collected by SCVURPPP, WY 201	817
Table 7. Nutrient concentrations (mg/L) in water samples collected by SCVURPPP, WY 2018	18
Table 8. Comparison of WY 2018 Monitoring Data to the Copper WQO.	22

LIST OF ATTACHMENTS

Attachment 1. Pollutants of Concern Monitoring Quality Assurance/Quality Control Report, WY 2018

1.0 INTRODUCTION

This Pollutants of Concern Monitoring - Data Report (POC Data Report) was prepared by the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP or Program) on behalf of its 15 member agencies (13 cities/towns, the County of Santa Clara, and the Santa Clara Valley Water District) subject to the National Pollutant Discharge Elimination System (NPDES) stormwater permit for Bay Area municipalities, referred to as the Municipal Regional Permit (MRP). The MRP was reissued by the San Francisco Regional Water Quality Control Board (Regional Water Board) on November 19, 2015 as Order R2-2015-0049. This report fulfills the requirements of Provision C.8.h.iii of the MRP for reporting a summary of MRP provision C.8.f POC Monitoring conducted during Water Year (WY) 2018.¹

This report builds on the POC Monitoring Report that was submitted to the Regional Water Board on October 15, 2018 (SCVURPPP 2018a). In accordance with Provision C.8.h.iv, the POC Monitoring Report listed WY 2018 POC monitoring locations, number and types of samples collected, purpose of sampling (i.e., Management Questions addressed), and analytes measured (SCVURPPP 2018a). The October 15, 2018 POC Monitoring Report also described the allocation of sampling effort for POC monitoring planned for WY 2019. Similar POC Monitoring Reports and POC Data Reports describing WY 2017 and WY 2016 monitoring efforts and data results were previously submitted (SCVURPPP 2018b, SCVURPPP 2017a, SCUVRPPP 2017b).

This POC Data Report is included as an appendix to the WY 2018 Urban Creeks Monitoring Report (UCMR). Consistent with MRP Provision C.8.h.ii, POC monitoring data generated from sampling of receiving waters (e.g., creeks) were submitted to the San Francisco Bay Area Regional Data Center for upload to the California Environmental Data Exchange Network (CEDEN).²

1.1 POC Monitoring Requirements

Provision C.8.f of the MRP requires monitoring of several POCs including polychlorinated biphenyls (PCBs), mercury, copper, emerging contaminants³, and nutrients. POC monitoring is conducted on a Water Year (WY) basis. Provision C.8.f specifies yearly (i.e., WY) and total (i.e., permit term) minimum numbers of samples for each POC. In addition, POC monitoring must address the five priority management information needs (i.e., Management Questions) identified in C.8.f:

- 1. **Source Identification** identifying which sources or watershed source areas provide the greatest opportunities for reductions of POCs in urban stormwater runoff;
- Contributions to Bay Impairment identifying which watershed source areas contribute most to the impairment of San Francisco Bay beneficial uses (due to source intensity and sensitivity of discharge location);
- 3. Management Action Effectiveness providing support for planning future management actions or evaluating the effectiveness or impacts of existing management actions;
- 4. Loads and Status providing information on POC loads, concentrations or presence in local tributaries or urban stormwater discharges; and

¹ Most hydrologic monitoring occurs for a period defined as a water year, which begins on October 1 and ends on September 30 of the named year. For example, water year 2018 (WY 2018) began on October 1, 2017 and concluded on September 30, 2018.

 $^{^2}$ CEDEN has historically only accepted and shared data collected in streams, lakes, rivers, and the ocean (i.e., receiving waters). In late-2016, SCVURPPP was notified that there were changes to the types of data that CEDEN would accept and share. However, there is still some uncertainty and until the changes are clarified, SCVURPPP will continue to submit only receiving water data to CEDEN.

³ Emerging contaminant monitoring requirements will be met through participation in the Regional Monitoring Program for Water Quality in the San Francisco Estuary (RMP) special studies. The special studies will account for relevant Contaminants of Emerging Concern (CECs) in stormwater and will address at least PFOS, PFAS, and alternative flame retardants being used to replace PBDEs.

5. **Trends** – providing information on trends in POC loading to the Bay and POC concentrations in urban stormwater discharges or local tributaries over time.

The MRP specifies the minimum number of samples that must be collected and analyzed for each POC. For example, over the first five years of the permit, a minimum total of 80 PCBs samples must be collected and analyzed and at least eight PCB samples must be collected each year. The MRP also specifies the minimum number of samples for each POC that must address each Management Question. For example, by the end of Year Four⁴ of the permit term, each of the five Management Questions must be addressed with at least eight PCB samples. It is possible that a single sample can address more than one Management Question. POC Monitoring requirements are summarized in Table 1.

Other MRP provisions require studies or have information needs that could be addressed through Provision C.8.f (POC Monitoring) and for which related samples will count towards POC monitoring requirements. These other Permit provisions and their associated timelines are listed below.

- Provisions C.11.a.iii and C.12.a.iii require that Permittees provide a list of management areas (referred to in this report as Watershed Management Areas, or WMAs) in which new mercury and PCB control measures will be implemented during the permit term, as well as the monitoring data and other information used to select the watersheds. Progress toward developing the list was reported on April 1, 2016 and a more complete list with identified control measures is provided with each Annual Report, beginning with the 2016 Annual Report that was submitted on September 30, 2016. Provision C.8.f (POC Monitoring) is intended to support C.11/12 requirements by requiring monitoring directed toward source identification (i.e., identifying which sources or watershed source areas provide the greatest opportunities for implementing cost-effective controls to reduce loads of POCs in urban stormwater runoff).
- Provision C.12.e requires that Permittees collect at least 20 composite samples (region-wide) of the caulks and sealants used in storm drains or roadway infrastructure in public rights-of-way. To achieve compliance with this provision, MRP Permittees agreed to collectively conduct this sampling via the Bay Area Stormwater Management Agencies Association (BASMAA). The Final Study Design was approved by the BASMAA Project Management Team (PMT) in June 2017, sample collection was conducted in November and December 2017, and a report summarizing results of the study was submitted to the Regional Water Board with the 2017/18 Annual Reports on September 30, 2018. The project report, Evaluation of PCBs in Caulk and Sealants in Public Roadway and Storm Drain Infrastructure (EOA, SFEI, KLI 2018) is summarized in SCVURPPP's WY 2018 UCMR.
- Provisions C.11.c and C.12.c require that Permittees submit a Reasonable Assurance Analysis to demonstrate quantitatively that mercury reductions of at least 10 kg/yr and PCBs reductions of at least 3 kg/yr will be realized by 2040 through implementation of green infrastructure projects. Although these provisions will be met through modeling, POC monitoring focused on management action effectiveness may help inform the models. To learn more about the effectiveness of selected stormwater treatment controls, MRP Permittees are collectively conducting monitoring studies through BASMAA.

⁴ Note that the minimum sampling requirements addressing information needs must be completed by the end of year four of the permit; whereas, the minimum number of total samples does not need to be met until the end of year five of the permit.

Pollutant of Concern	Media	Total Samples d	Yearly Minimum	Minimum # of Samples that Must be Collected for Each Information Need by the End of Year Four				
				Source Identification	Contributions to Bay Impairment	Management Action Effectiveness	Loads and Status	Trends
PCBs	Water or sediment	80	8	8	8	8	8	8
Total Mercury	Water or sediment	80	8	8	8	8	8	8
Total & Dissolved Copper	Water	20	2				4	4
Nutrients a	Water	20	2				20	
Emerging Contaminants ^b								
Ancillary Parameters ^c								

a. Ammonium⁵, nitrate, nitrite, total Kjeldahl nitrogen, orthophosphate, total phosphorus (analyzed concurrently in each nutrient sample).

b. Must include perfluorooctane sulfonates (PFOS, in sediment), perfluoroalkyl sulfonates (PFAS, in sediment), alternative flame retardants. The Permittee shall conduct or cause to be conducted a special study that addresses relevant management information needs for emerging contaminants. The special study must account for relevant Contaminants of Emerging Concern (CECs) in stormwater and would address at least PFOS, PFAS, and alternative flame retardants being used to replace PBDEs.

^{c.} Total Organic Carbon (TOC) should be collected concurrently with PCBs data when normalization to TOC is deemed appropriate. Suspended sediment concentration (SSC) should be collected in water samples used to assess loads, loading trends, or Best Management Practice (BMP) effectiveness. Hardness data are used in conjunction with copper concentrations collected in fresh water.

d. Total samples that must be collected over the five-year Permit term.

⁵ There are several challenges to collecting samples for "ammonium" analysis. Therefore, samples are analyzed for total ammonia which is the sum of un-ionized ammonia (NH3) and ionized ammonia (ammonium, NH4+). Ammonium concentrations are calculated by subtracting the calculated concentration of un-ionized ammonia from the measured concentration of total ammonia. Un-ionized ammonia concentrations are calculated using a formula provided by the American Fisheries Society that includes field pH, field temperature, and specific conductance. This approach was approved by Regional Water Board staff in an email dated June 21, 2016.

1.2 BASMAA Monitoring

In WY 2018, SCVURPPP participated in the BASMAA "POC Monitoring Project for Source Identification and Management Action Effectiveness" project. This regional project includes two (somewhat independent) monitoring studies designed during WY 2017 and implemented during WY 2018. As one of four Countywide Programs subject to provision C.8.f POC Monitoring requirements, SCVURPPP's POC monitoring accomplishments include ¹/₄ of the total number of samples collected through this regional project (Table 2).

- The PCBs in Infrastructure Caulk Study was developed to satisfy the provision C.12.e requirement to collect 20 composite caulk/sealant samples throughout the MRP permit area and evaluate (at a screening level) whether PCBs are present in right-of-way infrastructure caulk and sealants in the Bay Area. This study also addresses Management Question #1 (Source Identification). In WY 2018, the BASMAA project team collected 54 samples of caulk/sealant materials from ten types of roadway and storm drain infrastructure. The individual samples were grouped by structure type and sample appearance (color and texture) into 20 composites and analyzed for the RMP 40 PCB congeners using a modified method EPA 8270C. The final project report was included with the Program's Fiscal Year 2017/18 Annual Report, submitted to the Regional Water Board on September 30, 2018 (EOA, SFEI, KLI 2018).
- The Best Management Practices (BMP) Effectiveness Study was developed to satisfy provision C.8.f requirements to collect at least eight PCBs and mercury samples (per county) that address Management Question #3 (Management Action Effectiveness). A major consideration of the study was collection of data in support of conducting the Reasonable Assurance Analysis (RAA) that is required by provision C.12.c.iii.(3) and must be submitted to the Regional Water Board with the 2020 Annual Report (September 30, 2020). In WY 2018, the BASMAA project team collected a total of 34 samples. Results of the study are summarized in two reports that are submitted (as appendices) with the Program's WY 2018 Urban Creeks Monitoring Report.
 - Column Study Report. Twenty-six samples consisting of influent/effluent pairs from column tests of biochar-enhanced bioretention soil media (BSM) were analyzed. Stormwater from two sites during two storm events was run through six columns with five different biochar-enhanced BSM mixes and one standard BSM as a control to evaluate which mix was most effective at removing PCBs and mercury. Dilutions were run on two columns to assess removal efficiencies with decreasing influent pollutant concentrations. Samples were analyzed for the RMP 40 PCB congeners (method EPA 1668C), total mercury (method EPA 1631E, SSC (method ASTM D3977-97), and total organic carbon (method EPA 9060). The project report is included as Appendix D to the Program's WY 2018 Urban Creeks Monitoring Report.
 - HDS Study Report. Eight samples consisting of sediment and leaf debris were collected from hydrodynamic separator (HDS) unit sumps during regularly scheduled cleanouts to evaluate the PCBs and mercury load reduction effectiveness of these units. The HDS unit samples were analyzed for the RMP 40 PCB congeners (method EPA 1668C), total mercury (method EPA 1631E), and total solids⁶ (method EPA 160.4M). The project report is included as Appendix E to the Program's WY 2018 Urban Creeks Monitoring Report.

1.3 Third-Party Data

The Program strives to work collaboratively with water quality monitoring partners to develop mutually

⁶ Samples were analyzed for total solids so that dry weight calculations could be made.

beneficial monitoring approaches. Provision C.8.a.iii of the MRP allows Permittees to use data collected by third-party organizations to fulfill monitoring requirements, provided the data are demonstrated to meet the required data quality objectives. For example, samples collected in Santa Clara County through the Regional Monitoring Program for Water Quality in the San Francisco Bay (RMP) and the State's Stream Pollution Trends (SPoT) Monitoring Program may supplement the Program's efforts towards achieving Provision C.8.f monitoring requirements. Third party monitoring conducted by the RMP and SPoT also provide context for reviewing and interpreting SCVURPPP monitoring results.

RMP STLS

The RMP's Small Tributary Loading Strategy (STLS) Team typically conducts annual monitoring for POCs on a region-wide basis. SCVURPPP is an active participant in the STLS and works with other Bay Area municipal stormwater programs to identify opportunities to direct RMP funds and monitoring activities towards addressing both short- and long-term municipal stormwater permit management questions. During WY 2013 – WY 2014 POC monitoring activities by the STLS focused on pollutant loading monitoring at six region-wide stations including two stations in Santa Clara County. In WY 2015, the loading stations were discontinued and STLS monitoring shifted to wet weather characterization in catchments of interest. In WYs 2016, 2017, and 2018, the STLS Team continued wet weather characterization sampling using a similar approach to the PCBs and mercury sampling that was implemented by the Program. In Santa Clara County, the STLS sampled two catchments for PCBs and mercury in WY 2018, two catchments in WY 2017, six catchments in WY 2016, and eight catchments in WY 2015. STLS wet weather characterization data are described in Gilbreath et al. (2019, in preparation) (Appendix F to the Program's WY 2018 Urban Creeks Monitoring Report).

SPoT Monitoring Program

The goal of the SPoT program is to monitor trends in sediment toxicity and sediment contaminant concentrations in selected large rivers throughout California, and relate contaminant concentrations and toxicity to watershed land uses. SPoT monitoring staff reported that both Coyote Creek (205COY060) and Guadalupe River (205GUA020) were monitored in June 2018. Sediment samples from both stations were analyzed for mercury, copper, pesticides, organic pollutants, and toxicity, but not PCBs. Results of the WY 2018 SPoT monitoring are not yet available. Results from these large catchment stations provide context for the monitoring conducted by the Program. The most recent technical report prepared by SPoT program staff was published in 2016 and describes seven-year trends from the initiation of the program in 2008 through 2014 (Phillips et al. 2016). An update to the report is anticipated in mid-2019.

2.0 POC MONITORING RESULTS

In compliance with Provision C.8.f of the MRP, the Program conducted POC monitoring in WY 2018 for PCBs, mercury, copper, and nutrients. The MRP-required yearly minimum number of samples was met or exceeded for all POCs. The total number of samples collected for each POC, the agency conducting the monitoring, and the Management Questions addressed are listed in Table 2. Specific monitoring stations are listed in Table 3 and illustrated in Figure 1. The sections below describe the results of the monitoring accomplished in WY 2018. Compliance with applicable water quality standards is described in Section 3.0.

2.1 Statement of Data Quality

A comprehensive Quality Assurance/Quality Control (QA/QC) program was implemented by SCVURPPP covering all aspects of POC monitoring.

Monitoring for PCBs, mercury, and copper in water was performed according to protocols specified or referenced in the WY 2016 POC Sampling and Analysis Plan (SAP) (SCVURPPP 2015). The POC SAP references the Clean Watersheds for a Clean Bay (CW4CB) Quality Assurance Project Plan (QAPP; BASMAA 2013) as the basis for (QA/QC) procedures. Monitoring for nutrients in water was performed according to protocols specified in the BASMAA Standard Operating Procedures (SOPs) (BASMAA 2016a) and QAPP (BASMAA 2016b).

Data were assessed for seven data quality attributes, which include (1) Representativeness, (2) Comparability, (3) Completeness, (4) Sensitivity, (5) Contamination, (6) Accuracy, and (7) Precision. These seven attributes are compared to Data Quality Objectives (DQOs), which were established to ensure that data collected are of adequate quality and sufficient for the intended uses. Overall, the results of the QA/QC review suggest that most of the POC monitoring data generated during WY 2018 were of sufficient quality. Although, some data were flagged in the project database, including one dissolved copper sample with a questionable value, none were rejected according to DQOs. Attachment 1 contains a report summarizing the results of the data validation.
 Table 2. SCVURPPP and Third-Party POC Monitoring Accomplishments in WY 2018.

		Management Question Addressed a					
Pollutant of Concern/ Agency	Number of Samples (WY 2018)	1. Source Identification	2. Contributions to Bay Impairment	3. Management Action Effectiveness	4. Loads and Status	5. Trends	Sample Type and Comments
PCBs & Mercury							
SCVURPPP	8	8	8		8	2	Stormwater runoff samples to characterize high interest catchments
SCVURPPP via BASMAA	8 b			8			Regional HDS unit & biochar effectiveness study
SCVURPPP via BASMAA	5 b	5					Regional public infrastructure caulk/sealant samples
RMP STLS	2	2	2		2		Stormwater runoff repeat samples to characterize high interest catchments
SPoT (Mercury only) ^c	2					2	Sediment samples to assess trends at long- term monitoring station
Copper							
SCVURPPP	6	NA	NA	NA	6	6	Creek water samples collected during storm event and subsequent dry season
SPoT	2	NA	NA	NA		2	Sediment sample to assess trends at long-term monitoring station
Nutrients							
SCVURPPP	6	NA	NA	NA	6	NA	Creek water samples collected during storm event and subsequent dry season

NA = not applicable

a. Individual samples can address more than one Management Question simultaneously.

b. The overall total number of BASMAA BMP effectiveness samples was 32 and the overall total number of caulk samples was 20. Each participating Program is given credit for 1/4 of the total study samples.

c. The SPoT program did not analyze samples for PCBs in WY 2018.

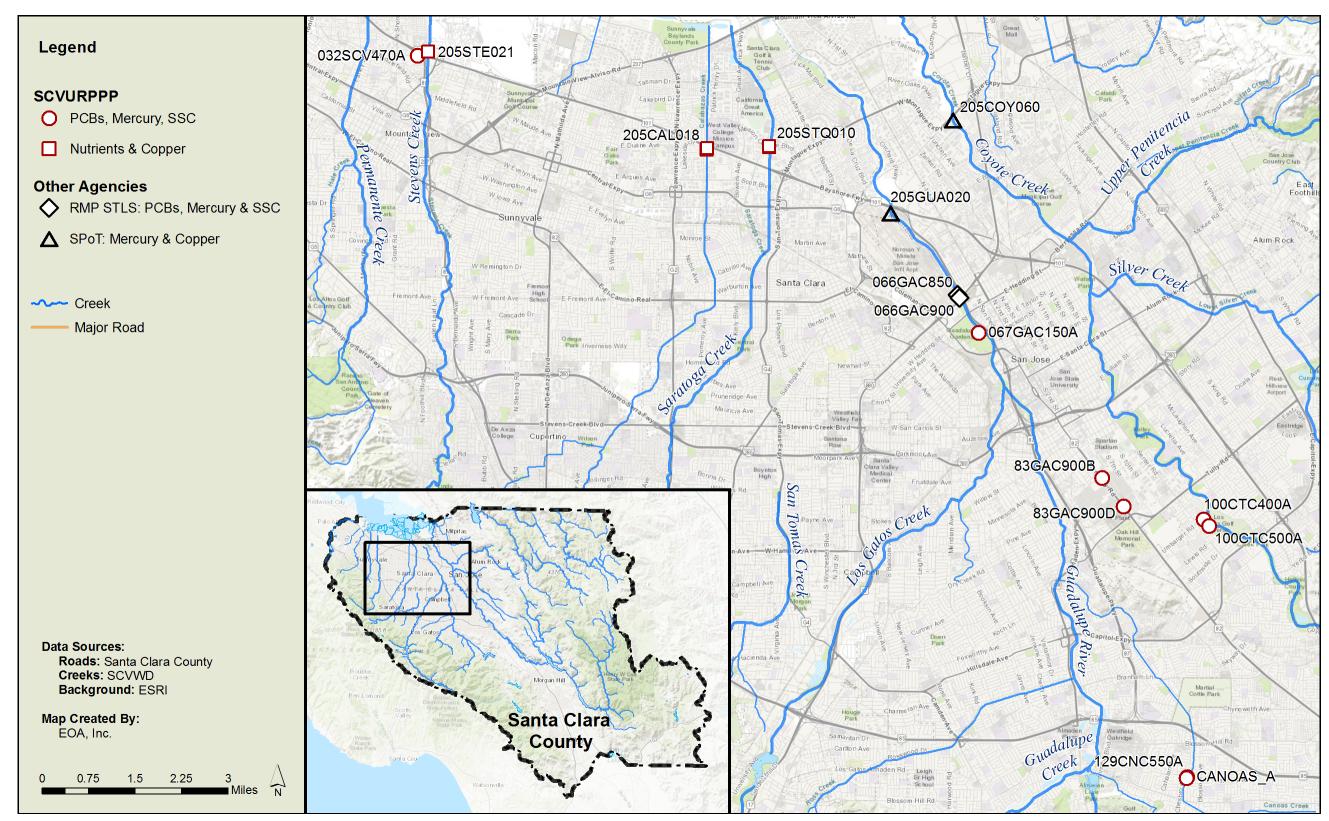


Figure 1. SCVURPPP and Third-Party POC Monitoring Stations in WY 2018. (BASMAA regional project sample locations are not mapped.)

Table 3. POC monitoring stations in Santa Clara County, WY 2018.

Agency	Station Code	Sample Date	Latitude	Longitude	Matrix	PCBs	Mercury	Suspended Sediment Concentration	Total Copper	Dissolved Copper	Hardness as CaCO3	Nutrients ^b
SCVURPPP												
SCVURPPP	032SVC470A	11/16/2017	37.40855	-122.07205	water	х	х	x				
SCVURPPP	100CTC400A	11/16/2017	37.30304	-121.83985	water	x	х	x				
SCVURPPP	100CTC500A	11/16/2017	37.30149	-121.83815	water	x	х	x				
SCVURPPP	129CNC550A	1/8/2018	37.24280	-121.84350	water	x	х	x				
SCVURPPP	CANOAS_A	1/8/2018	37.24250	-121.84370	water	х	х	x				
SCVURPPP	067GAC150A	4/6/2018	37.34586	-121.90647	water	х	х	x				
SCVURPPP	083GAC900B	4/6/2018	37.31239	-121.86973	water	х	х	x				
SCVURPPP	083GAC900D	4/6/2018	37.30583	-121.86319	water	х	х	x				
SCVURPPP	205STE021	1/8/2018	37.40950	-122.06900	water				х	x	х	x
SCVURPPP	205STQ010	1/8/2018	37.38850	-121.96860	water				х	х	х	x
SCVURPPP	205CAL018	1/8/2018	37.38760	-121.98690	water				х	x	х	x
SCVURPPP	205STE021	5/21/2018	37.40944	-122.06904	water				х	x	х	x
SCVURPPP	205STQ010	5/21/2018	37.38868	-121.96870	water				х	х	х	x
SCVURPPP	205CAL018	5/21/2018	37.38796	-121.98683	water				х	x	х	x
Third Party O	rganizations											
RMP STLS	066GAC850	4/7/2018	37.35469	-121.91279	water	х	x	x				
RMP STLS	066GAC900	4/7/2018	37.35392	-121.91223	water	х	х	x				
SPoT	205GUA020	June 2018 ª	37.3734	-121.9328	sediment		x		x			
SPoT	205COY060	June 2018 ª	37.3954	-121.9148	sediment		х		х			

a. Specific sample dates have not yet been provided by the SPoT program.

b. Ammonia (for ammonium), nitrate, nitrite, total Kjeldahl nitrogen, orthophosphate, and total phosphorus are analyzed concurrently in each nutrient sample.

2.2 PCBs and Mercury

The primary goal of the Program's WY 2018 PCBs and mercury monitoring was to identify Watershed Management Areas where cost-effective control measures could be implemented to comply with MRP PCBs and mercury load reduction requirements. This is the same goal that the Program has worked toward since WY 2015.

During WY 2018, the Program collected eight wet weather water samples from municipal separate storm sewer system (MS4) outfalls or receiving waters for PCBs and mercury analysis. An additional two samples were collected in Santa Clara County by the RMP's Small Tributary Loading Strategy (STLS) at similar types of stations using similar methods. These combined 10 samples address POC Management Questions #1 (Source Identification) and #2 (Contributions to Bay Impairment). Data may also be used to improve calibration of the Regional Watershed Spreadsheet Model (RWSM) which is a land use based planning tool for estimation of overall POC loads from small tributaries to San Francisco Bay at a regional scale (i.e., Management Question #4 – Loads and Status). Two of the SCVURPPP samples (083GAC900B and 083GAC900D) were collected in a previously sampled catchment and therefore address Management Question #5 (Trends) in addition to contributing data towards the other management questions.

WMAs are land areas where PCBs and mercury control measures are or will be implemented. These areas have been delineated mostly at the catchment level using topographic and storm drain maps. To help identify where the most cost-effective PCBs/mercury load reduction benefit can be achieved, the Program has focused monitoring efforts over the past several years on identifying WMAs where elevated PCBs and mercury concentrations are observed. These WMAs are then targeted for source investigations to identify specific source properties that can potentially be referred to the Regional Water Board for further investigation and potential abatement.

WMA prioritization monitoring conducted by the Program was performed in accordance with the Water Year 2016 Pollutant of Concern Monitoring - Sampling and Analysis Plan (SCVURPPP 2015). The primary goal of the monitoring, as described in the SAP, is to provide information to identify WMAs that disproportionately contribute PCBs and/or mercury to stormwater. Monitoring is focused on collection of storm composite samples from high interest WMAs that may contain PCB and/or mercury source properties. High interest WMAs were identified and prioritized for sampling by evaluating several types of data, including: PCBs and mercury concentrations from prior sediment and water sampling efforts, land use data showing old industrial parcels (especially, municipal storm drain data showing pipelines and access points (e.g., manholes, outfalls, pump stations), catchment areas delineated from municipal storm drain data, and logistical/safety considerations (SCVURPPP 2015).

Specific monitoring stations targeted in WY 2018 were selected from the prioritized list of high interest WMAs. Because a large percentage of the costs to collect storm samples is due to labor charges, paired stations are often sampled to take advantage of the presence of a field crew in the area during a storm event. The paired stations may be lower on the list of priorities and/or may characterize a different mix of land uses. For example, Canoas Creek (station CANOAS_A) was targeted due to its proximity to station 129CNC550A and to characterize the old residential land uses that comprise the majority of its catchment area. Canoas Creek is an engineered channel that was created to drain a wetland during development of the area in the 1960s.

The current WMA map is illustrated in Figure 2. This map shows the 10 catchments that were sampled in WY 2018 by the Program and RMP STLS, as well as the status of all other WMAs, including those sampled in prior years. Some WMAs contain "confirmed source properties," with two having already been referred to agency staff for follow-up abatement. Some WMAs are identified as having "known high source areas." These are WMAs with water and/or sediment sampling results showing elevated concentrations of PCBs that are currently under source property investigation or where an investigation is planned for the near future. The remainder of the WMAs/catchments delineated in Figure 2 are of interest and may have been sampled, but elevated concentrations were not observed. All other land areas within a city that do not fit into one of the "high interest catchments" are lumped into a single city-wide WMA (that is not necessarily

spatially contiguous). These city-wide WMAs are not shown in Figure 2.

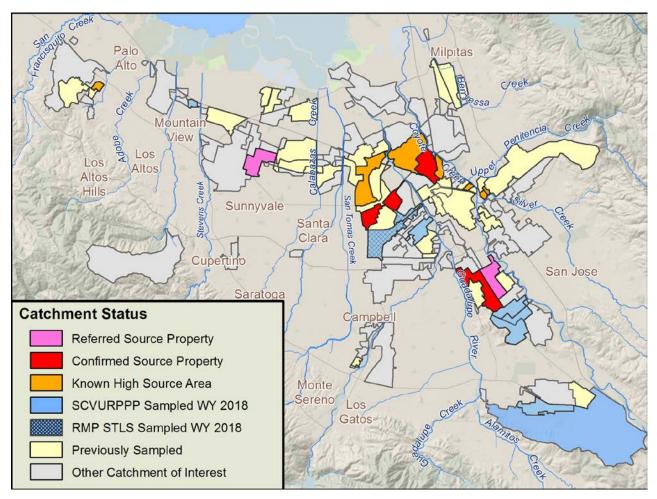


Figure 2. SCVURPPP current Watershed Management Area (WMA) map showing catchments sampled in WY 2018.

Composite samples consisting of four to eight aliquots collected during the rising limb and peak of the storm hydrograph (as determined through field observations) were analyzed for the "RMP 40" PCB congeners⁷ (method EPA 1668C), total mercury (method EPA 1631E), and suspended sediment concentration (SSC) (method ASTM D3977-97).

Table 4 summarizes PCBs, mercury, and SSC monitoring results collected by SCVURPPP and the RMP STLS in WY 2018⁸. "Total PCBs" were calculated as the sum of the RMP 40 congeners. The "PCB Particle Ratio" and "Hg Particle Ratio" are calculated by dividing Total PCBs and Total Mercury by SSC. Particle Ratios address the fact that these pollutants are generally bound to sediment. Water concentrations and particle ratios are compared to countywide and regional datasets in order to "rank" monitoring stations and the WMAs they characterize. High ranking WMAs are flagged for future source property investigations which typically include property records review, aerial photography interpretation, public right-of-way surveys, facility site visits, and sediment sampling.

⁷ The RMP 40 PCB congeners include: PCB-8, PCB-18, PCB-28, PCB-31, PCB-33, PCB-44, PCB-49, PCB-52, PCB-56, PCB-60, PCB-66, PCB-70, PCB-74, PCB-87, PCB-95, PCB-97, PCB-99, PCB-101, PCB-105, PCB-110, PCB-118, PCB-128, PCB-132, PCB-138, PCB-141, PCB-149, PCB-151, PCB-153, PCB-156, PCB-158, PCB-170, PCB-174, PCB-177, PCB-180, PCB-183, PCB-187, PCB-194, PCB-195, PCB-201, PCB-203.

⁸ RMP STLS results are also reported separately by the San Francisco Estuary Institute (SFEI) in Gilbreath et al. (2019, in preparation).

For the eight samples that were collected by SCVURPPPP in WY 2018, total PCB concentrations ranged from 0.15 ng/L to 57.3 ng/L, and PCB particle ratios from 4.0 ng/g to 623 ng/g. Total mercury concentrations ranged from 1.07 ng/L to 31.6 ng/L, and mercury particle ratios from 27.6 ng/g to 344 ng/g. PCB monitoring results within the context of other water samples analyzed for PCBs in Santa Clara County and region-wide are described below.

Station Code	Sample Date	SSC (mg/L)	Total PCBs (ng/L) ª	PCB Particle Ratio (ng/g) ^b	Hg (ng/L)	Hg Particle Ratio (ng/g) ^b
SCVURPPP Samples						
032SVC470A	11/16/2017	40.4	6.95	172	13.4	332
100CTC400A	11/16/2017	72.1	4.41	61	9.73	135
100CTC500A	11/16/2017	81.3	5.89	73	7.55	93
129CNC550A	1/8/2018	18.3	1.31	72	3.81	208
CANOAS_A	1/8/2018	38.8	0.15	4.0	1.07	28
067GAC150A	4/6/2018	82.2	1.87	23	5.21	63
083GAC900B	4/6/2018	92.0	57.3	623	31.6	344
083GAC900D	4/6/2018	54.9	1.60	29	7.24	132
RMP STLS Samples						
066GAC850	4/7/2018	149	6.63	45	16	107
066GAC900	4/7/2018	27	3.36	125	17	644

 Table 4. PCB, mercury, and suspended sediment concentrations in water samples collected by SCVURPPP and STLS, WY 2018.

° Total PCBs calculated as sum of RMP 40 congeners.

^b PCB and Hg Particle Ratios calculated by dividing Total PCBs and Hg concentrations by SSC.

2.2.1 Comparison with Region-wide Storm Sampling Results

The current available storm sample dataset now includes samples collected from 127 MS4 catchments and 28 receiving waters throughout the Bay Area.⁹ The MS4 catchment sites include storm drain manholes, outfalls, pump stations, and artificial channels.¹⁰ The 28 sites in receiving waters have watersheds ranging in size from less than 3,000 acres (i.e., Lower Penitencia Creek) to the entire Sacramento–San Joaquin River Delta watershed (i.e., Mallard Island). Many of the sites have been sampled more than once and/or have multiple sample results reported for individual storm events. A total of 15 of the 28 receiving water sites have multiple sample results (3 to 126 samples). A total of 12 of the 127 MS4 sites also have multiple sample results (2 to 80 samples). For sites with more than one sample, the particle ratio is calculated by dividing the sum of PCB concentrations by the sum of suspended sediment concentrations. Performing the calculation in this way is effectively the equivalent of compositing all the individual samples that have been collected at a site. This is consistent with the RMP STLS approach to data evaluation (Gilbreath et al. 2019, in preparation).

Table 5 lists descriptive statistics for PCB (n=155) and mercury concentrations (n=100) for the Bay Area stormwater dataset. The median concentration of PCBs in water is 6.63 ng/L, and the mean is 18.6 ng/L. The median PCB particle ratio is 114 ng/g, and the mean is 323 ng/g. As can be seen in Figures 3 and 4,

⁹ This dataset includes samples collected by SCVURPPP, the San Mateo Countywide Water Pollution Prevention Program (SMCWPPP), and the RMP's STLS.

¹⁰ Stormwater samples have also been collected from inlets and/or LID systems as part of special studies. However, those were not included in this analysis.

there are a few catchments with highly elevated samples that increase the mean (i.e., average) concentration statistic over the median (i.e., 50th percentile). Both SCVURPPP and the RMP are continuing to collect stormwater composite samples in WY 2019 in an effort to grow this dataset. In future years, it may be informative to correlate measured concentrations to various factors such as storm size, rainfall intensity, antecedent dry weather, land use characteristics, and age of development.

	PCBs (ng/L) ª	Hg (ng/L)	SSC (mg/L)	PCB Particle Ratio (ng/g) ^b	Hg Particle Ratio (ng/mg) ^b
Ν	155	100	155	155	100
Min	ND	0.44	3.20	ND	7.89
10th Percentile	1.56	4.10	16.0	15.5	108
25th Percentile	2.76	7.37	31.0	47.1	194
50th Percentile	6.63	15.4	55.8	114	331
75th Percentile	14.5	36.9	111	230	529
90th Percentile	41.7	70.7	266	745	772
Max	448	1,053	2,630	8,222	5,290
Mean	18.6	41.7	130	323	446

Table 5. Descriptive statistics of PCB and mercury concentrations in water and particle ratios.

^a Total PCBs calculated as sum of RMP 40 congeners.

^b PCB and Hg Particle Ratios calculated by dividing Total PCBs and Hg concentrations by SSC.

PCB concentrations in water samples for the Bay Area dataset (n=155) are plotted in Figure 3. PCB particle ratios are plotted in Figure 4. Figures 3 and 4 symbolize samples according to three categories: collected in Santa Clara County in WY 2018 (n=10), collected in Santa Clara County in other years (n=49), and collected elsewhere in the Bay Area (n=96). Of the 59 sites in Santa Clara County, 10 were sampled by SCVURPPP in WY 2018, 17 in WY 2017, and nine in WY 2016. Two sites were sampled by RMP STLS in WY 2017 and WY 2018, nine in WY 2016, and thirteen in WY 2015. Eight sites were sampled multiple times by the RMP in prior water years.

Overall, Santa Clara County has relatively low PCB concentrations and PCB particle ratios compared to the other three counties in the region (Alameda, Contra Costa, and San Mateo). However, some of the highest water concentrations and particle ratios measured in the Bay Area to-date have been observed in Santa Clara County, including site 083GAC900B sampled in WY 2018. The highest PCB concentrations in Santa Clara County have been measured at:

- Sunnyvale East Channel (96.6 ng/L; sampled WYs 2011-14),
- 067CTC250A (Yard Court San Jose) (57.6 ng/L; sampled WY 2017),
- 083GAC900B (Monterey Road at Phelan) (57.3 ng/L; sampled WY 2018),
- 051CTC400A (Ridder Park Dr Storm Drain) (55.5 ng/L; sampled WY 2015),
- 067SCL080A (Outfall to Lower Silver Creek) (44.6 ng/L; sampled WY 2015), and
- 067SCL120A (Las Plumas Ave San Jose) (27.1 ng/L; sampled WY 2017).

The sites with the highest PCB particle ratios are:

- 031SCH250A (Hansen Way Palo Alto) (1,070 ng/g; sampled WY 2017),
- 067SCL080A (Outfall to Lower Silver Creek) (783 ng/g; sampled WY 2015),
- 083GAC900B (Monterey Road at Phelan) (623 ng/g; sampled WY 2018),
- 050GAC020A (Rincon 2 PS San Jose) (530 ng/g; sampled WY 2017),
- 051CTC400A (Ridder Park Dr Storm Drain) (488 ng/g; sampled WY 2015), and
- 067SCL120A (Las Plumas Ave San Jose) (485 ng/g; sampled WY 2017).

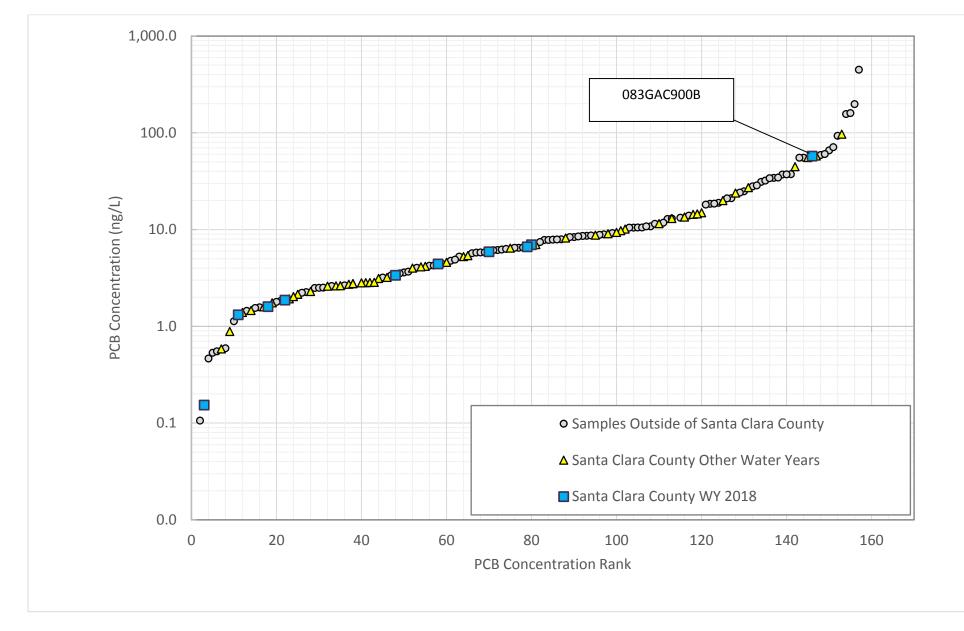


Figure 3. PCB concentrations for water samples collected in large MS4s and receiving waters in the Bay Area

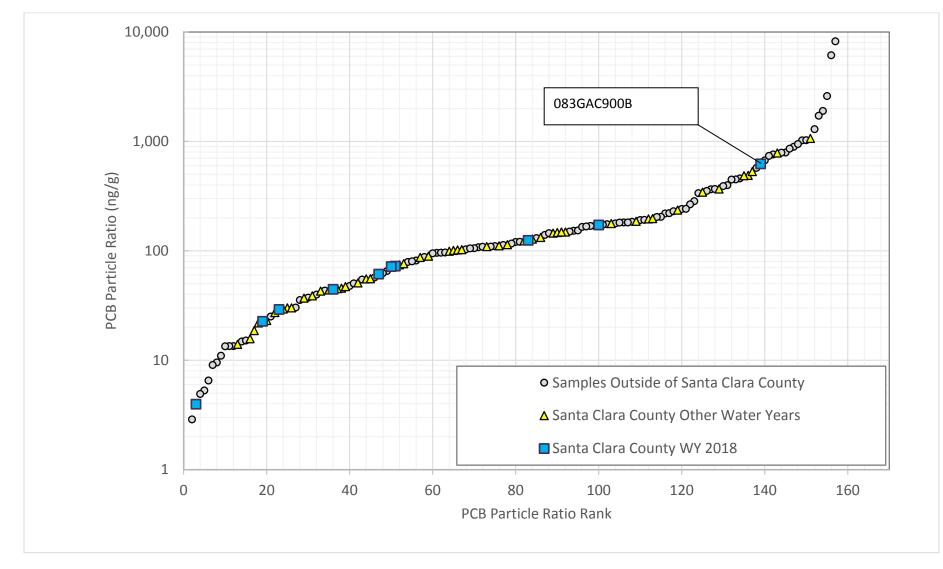


Figure 4. PCB particle ratios for water samples collected in MS4s and receiving waters (i.e., creeks/rivers) draining to the Bay.

2.2.2 WMA Update

PCB and mercury sampling data are used to identify specific source properties and/or WMAs where control measures will be implemented. There are currently no thresholds established for classifying or prioritizing PCB or mercury concentrations in stormwater. Therefore, the Program is currently focusing on PCBs and applying the BASMAA RMC sediment concentration thresholds to PCB particle ratio data which can be expressed in the same units (mg/kg). A PCB particle ratio greater than 0.5 mg/kg (or 500 ng/g) is used as a preliminary threshold for classifying water samples as high, 0.2 - 0.5 mg/kg (200 - 500 ng/g) is moderate, and less than 0.2 mg/kg (200 ng/g) is low.

Sites are also ranked within the regional dataset (n=155) based on two parameters: concentrations in water and particle ratios. The sites typically have a different ranking depending on which list is reviewed. A sample that has a relatively low concentration in water but a high particle ratio may suggest that the storm that was sampled was relatively small, and the rainfall was not enough to mobilize much sediment. A larger storm may mobilize more sediment and PCBs, so catchments with an elevated concentration or particle ratio may be considered for a source investigation.

Based on WY 2018 sampling of the eight catchments that were sampled for the first time, no additional WMAs were identified as "known high source areas" where source investigations should be considered. However, based on WY 2018 review of WY 2017 monitoring and investigations, the status of three catchments changed to "confirmed source property," as additional source properties were identified, but not yet referred. Additionally, the status of catchment 001SFC100A, located in downtown Palo Alto, was changed from "known high source area" to "other catchment of interest" based on sampling results having low concentrations of PCBs and the high rate of redevelopment/green stormwater infrastructure (GSI) occurring in the catchment. Seven catchments remain with a status of "known high source area" and will continue to be targeted by source property investigations. Many of the catchments shown in Figure 2 with a status of "other catchment of interest" have been sampled, but the samples had low PCB concentrations, suggesting that either no PCB sources exist in the catchment or the sample is a "false negative." False negatives could be the result of low runoff/rainfall rates failing to mobilize sources, high runoff diluting the sample, the well-known high variability of PCBs in sediments and runoff, poor sample station locations, and/or numerous other causes. As more information is gathered, many of these WMAs will be removed from further consideration.

2.2.3 Source Property Identification

One strategy to reduce PCBs and mercury loadings to the Bay is to identify properties that disproportionately contribute these pollutants to the MS4 and then refer these properties to appropriate agencies for further investigation and potential abatement. At least seven potential PCB or mercury source properties have been identified to-date in priority WMAs in Santa Clara County. Two properties have already been referred to the Regional Water Board, and at least five additional properties could potentially be referred as a result of investigations over the previous two years. If WY 2019 sampling results in the identification of additional source properties, the Program will work with local municipalities to cleanup and abate the properties, and/or refer these properties to Regional Water Board for follow up action.

Source investigations are continuing in high priority catchments including catchment 083GAC900 where two storm samples were collected in WY 2018 and many samples in the past have shown the area to have high concentrations of PCBs. Part of the investigation in this catchment and others will include a paired sampling approach where a storm sample will be collected both upstream and downstream of the suspected source area. In WY 2018, sample 083GAC900B was collected downstream of a suspected source area. This sample had a relatively high PCB concentration (57.3 ng/L); whereas sample 083GAC900B, located upstream of the suspected source area had a relatively low PCB concentration (1.60 ng/L). In spite of these findings, identifying the exact source property(ies) is challenging due to the complicated nature of the public and private storm drain network and multiple suspected source properties where the PCBs could be originating. Investigation in catchment 083GAC900 will continue in WY 2019.

2.3 Copper

In WY 2018, SCVURPPP collected a total of six samples for copper analysis. Three bottom-of-the-watershed stations (Stevens Creek, San Tomas Aquino Creek, and Calabazas Creek) were sampled during a large storm event on January 8, 2018, concurrent with nutrient monitoring and Provision C.8.g.iii Wet Weather Pesticides and Toxicity Monitoring. The three sites were sampled again on May 21, 2018 during spring baseflows. The goal of this approach is to address Management Question #5 (Trends) by comparing copper concentrations during different seasons. Management Question #4 (Loads and Status) is also addressed by characterizing copper concentrations in mixed-use watersheds. These data are supplemented by the two SPoT sediment samples collected in June 2018 from Coyote Creek and Guadalupe Creek and analyzed for copper to assess long-term trends (Management Question #5).

All Program samples were analyzed for total copper, dissolved copper¹¹, and hardness. Results are listed in Table 6. Comparisons to freshwater water quality objectives are described in Section 3.0.

Station Code	Creek	Total Copper (µg/L)	Dissolved Copper (µg/L)	Hardness as CaCO3 (mg/L)					
January 8, 2018 (storm event)									
205STE021	Stevens Creek	12	4.3	60					
205STQ010	San Tomas Aquino Creek	14	30 *	46					
205CAL018	Calabazas Creek	14	4.1	50					
May 21, 2018 (spring baseflow)								
205STE021	Stevens Creek	0.59	0.22	440					
205STQ010	San Tomas Aquino Creek	1.2	0.85	390					
205CAL018	Calabazas Creek	0.82	0.46	460					

Table 6. Total and dissolved copper concentrations in water samples collected by SCVURPPP, WY 2018.

* The dissolved copper concentration from the Jan. 8, 2018 205STQ010 sample was flagged as questionable. Dissolved copper, by definition, must be \leq total copper, which is not the case in this sample. The data validation process did not find any other concerns with the copper results. It is possible that contamination was introduced during the laboratory filtration process for this sample.

Based on the laboratory results, the following findings are noted:

- As expected, dissolved copper concentrations are lower than total copper concentrations. The dissolved portion of the total copper concentration is higher in the spring base flow samples compared to the storm samples. This finding illustrates coppers affinity to suspended sediment which is higher during storm events.
- Copper concentrations were higher in the storm samples compared to the spring baseflow samples. Conversely, hardness concentrations were lower in the storm samples compared to the spring baseflow samples.
- Copper concentrations were similar (i.e., within the same order of magnitude) in all three creeks sampled. There do not appear to be localized sources of copper.

¹¹ In order to simplify the field effort and reduce the risk of sample contamination, the analytical laboratory was asked to conduct the sample filtration required for dissolved copper analysis.

2.4 Nutrients

Nutrients were included in the POC monitoring requirements to support Regional Water Board efforts to develop nutrient numeric endpoints (NNE) for the San Francisco Bay Estuary. The "San Francisco Bay Nutrient Management Strategy" (NMS) is part of a statewide initiative to address nutrient over-enrichment in State waters (Regional Water Board 2012). Its goal is to lay out a well-reasoned and cost-effective program to generate the scientific understanding needed to fully support major management decisions such as establishing/revising objectives for nutrients and dissolved oxygen, developing/implementing a nutrient monitoring program, and specifying nutrient limits in NPDES permits. The NMS monitoring program currently focuses on stations located within San Francisco Bay rather than freshwater tributaries.

The suite of nutrients required in MRP Provision C.8.f (i.e., ammonium, nitrate, nitrite, total Kjeldahl nitrogen (TKN), orthophosphate, and total phosphorus) closely reflects the list of analytes measured by the RMP and BASMAA partners at the six regional loading stations (including Santa Clara County stations in Guadalupe River and the Sunnyvale East Channel) monitored in WY 2012 - WY 2014. The prior data collected in freshwater tributaries to San Francisco Bay were used by the Nutrient Strategy Technical Team to develop and calibrate nutrient loading models.

In WY 2018, POC monitoring for nutrients in Santa Clara County was conducted during a large storm event on January 8, 2018 at three bottom-of-the-watershed stations on Stevens Creek, San Tomas Aquino Creek, and Calabazas Creek, concurrent with copper monitoring and Provision C.8.g.iii Wet Weather Pesticides and Toxicity Monitoring. Follow up monitoring at all three stations was conducted during the dry season concurrent with spring bioassessment monitoring on May 21, 2018. Nutrient POC monitoring addresses Management Question #4 (Loads and Status). Results are listed in Table 7. Comparisons to applicable freshwater water quality objectives are described in Section 3.0.

Date/Station	Nitrate as N	Nitrite as N	Total Kjeldahl Nitrogen (TKN)	Ammonia as N	Un-ionized Ammonia as N ¹	Ammonium ²	Total Nitrogen ³	Dissolved Orthophosphate as P	Phosphorus as P
January 8, 2018 (storm event)									
205STE021 (Stevens Creek)	0.22	0.017	1.1	0.13	0.002	0.128	1.34	0.11	0.24
205STQ010 (San Tomas Aquino)	0.23	0.017	0.97	0.20	0.003	0.197	1.22	0.18	0.34
205CAL018 (Calabazas Creek)	0.22	0.016	1.1	0.13	0.002	0.128	1.34	0.13	0.28
May 21, 2018 (spring baseflow	v)								
205STE021 (Stevens Creek)	1.4	0.007	0.57	0.034	0.001	0.033	1.98	0.024	0.025
205STQ010 (San Tomas Aquino)	< 0.02	0.0016	0.66	0.053	0.007	0.046	0.67	<0.006	0.16
205CAL018 (Calabazas Creek)	3.2	0.011	0.35	0.040	0.015	0.025	3.56	0.038	0.019

Table 7. Nutrient concentrations (mg/L) in water samples collected by SCVURPPP, WY 2018.

All constituents reported as mg/L.

¹ Un-ionized ammonia calculated using formula provided by the American Fisheries Society Online Resources (<u>https://fisheries.org/books-journals/online-resources/</u>). Formula requires field measurements of temperature, pH, and specific conductance, which were not recorded for the January 8, 2018 event. Specific conductance and pH values for Jan. 8 samples were estimated based on laboratory intake measurements reported for the concurrent toxicity samples. Temperature was estimated to be 14°C.

² Ammonium = ammonia – un-ionized ammonia.

³ Total nitrogen = TKN + nitrate + nitrite. Non-detects valued at $\frac{1}{2}$ method detection limit in calculation.

Based on the laboratory results, the following findings are noted:

- Concentrations of all nutrients were similar at all three stations during the January event. In contrast, there was high variability among the stations during the May event, particularly for nitrate and phosphorus which varied by an order of magnitude.
- Inorganic nitrogen (nitrate and nitrite) concentrations were higher in May compared to the January storm event (with the exception of San Tomas Aquino Creek) and organic nitrogen (TKN) concentrations were lower in May compared to the January storm event.
- Organic nitrogen (TKN) made up a greater proportion of the total nitrogen concentration during the January storm event compared to the May event. It is likely that organically-bound nitrogen washed off surfaces during the January storm had not yet had time to cycle through the ammonification and nitrification processes before samples were collected.
- Phosphorus concentrations were higher during the January storm runoff sampling event compared to
 the May baseflow event. This finding is consistent with the draft conceptual model developed by the
 NMS which suggests that nutrient loads to San Francisco Bay from creeks are highest during the wet
 season, although considerably less than loads from publicly owned wastewater treatment works
 (POTWs) (Senn and Novick 2014). However, nitrogen concentrations (primarily nitrate) were higher
 during the baseflow event at two of the three stations. The nitrate patterns were not consistent with
 the NMS model but were consistent with SCVURPPP POC monitoring conducted in WY 2017 in Silver
 Creek.

2.5 Emerging Contaminants

Emerging contaminant monitoring is being addressed through the Program's participation in the RMP. The RMP has investigated Contaminants of Emerging Concern (CECs) since 2001 and established the RMP Emerging Contaminants Work Group (ECWG) in 2006. The purpose of the ECWG is to identify CECs that might impact beneficial uses in the Bay and to develop cost-effective strategies to identify, monitor, and minimize impacts. The RMP published a CEC Strategy "living" document in 2013 and completed a full revision in 2017 (Sutton et al. 2013; Sutton and Sedlak 2015; Sutton et al. 2017) and made minor updates in 2018 (Lin et al. 2018). The CEC Strategy document guides RMP special studies on CECs using a tiered risk and management action framework.

Provision C.8.f of the MRP identifies three emerging contaminants that must be addressed through POC monitoring: Perflourooctane Sulfonate Substances (PFOS), Perfluoroalkyl and Polyfluoroalkyl Sulfonate Substances (PFAS), and Alternative Flame Retardants (AFRs). PFAS is a broad class of chemicals used in industrial applications and consumer goods primarily for their ability to repel oil and water. PFOS are a subgroup within the PFAS umbrella and are identified in the CEC Strategy as "moderate" concern due to Bay occurrence data suggesting a high probability of a low-level effect on Bay wildlife. Other PFAS and AFRs are identified as "possible" concern due to uncertainties in measured or predicted Bay concentrations or in toxicity thresholds. RMP staff recently published reports summarizing PFOS and PFAS monitoring results (Houtz et al. 2016; Sedlak et al. 2017; Sedlak et al. 2018).¹²

AFRs came into use following state bans and nationwide phase-outs of polybrominated diphenyl ether (PBDE) flame retardants in the early 2000's. They include many categories of compounds, including organophosphate esters. In 2018 the RMP STLS and ECWG worked together to conduct a special study to inform ECWG's planning activities related to AFRs. The special study compiled and reviewed available data and previously developed conceptual models for PBDE to support a stormwater-related AFR conceptual model being developed by the ECWG. Organophosphate esters were prioritized for further investigation due to their increasing use, persistent character, and ubiquitous detections at concentrations exceeding PBDE concentrations in the Bay. Limited stormwater data from two watersheds in Richmond and Sunnyvale suggest that urban

¹² The Emerging Contaminants Workgroup is also conducting monitoring on a number of other emerging contaminants that are not identified in the MRP. These include microplastics, ethoxylated surfactants, and fipronil.

runoff may be an important source of these compounds. Additional monitoring and modeling was recommended. Results of the AFR special study were published in a Technical Report in 2018 (Lin and Sutton 2018).

In 2018, the RMP's ECWG also developed a special study proposal to analyze stormwater samples collected from urban watersheds for a large suite of CECs. The list of CECs to be analyzed is based on recent work conducted in Puget Sound streams and is intended to target urban runoff constituents rather than those found in wastewater (e.g., pharmaceuticals). The list includes PFOSs, PFASs, and AFRs. Pilot sampling will begin in WY 2019 in close coordination with the STLS.

These RMP special studies satisfy the POC monitoring requirement for CECs within provision C.8.f.

3.0 COMPARISON TO APPLICABLE WATER QUALITY STANDARDS

MRP provision C.8.h.i requires RMC participants to assess all data collected pursuant to Provision C.8 for compliance with applicable water quality standards. In compliance with this requirement POC data collected in WY 2018 by SCVURPPP were compared to applicable numeric water quality objectives (WQOs) included in the SF Bay Water Quality Control Plan.

When conducting a comparison to applicable WQOs/criteria, certain considerations should be taken into account to avoid the mischaracterization of water quality data:

Discharge vs. Receiving Water – WQOs apply to receiving waters, not discharges. WQOs are designed to represent the maximum amount of pollutants that can remain in the water column without causing any adverse effect on organisms using the aquatic system as habitat, on people consuming those organisms or water, and on other current or potential beneficial uses. Five of the six PCBs and mercury samples collected by the Program were within the engineered storm drain network, not receiving waters. Dilution is likely to occur when the MS4 discharges urban stormwater (and non-stormwater) runoff into the local receiving water. Therefore, it is unknown whether discharges that exceed WQOs result in exceedances in the receiving water itself, the location where there is the potential for exposure by aquatic life.

Freshwater vs. Saltwater - POC monitoring data were collected in freshwater, above tidal influence and therefore comparisons were made to freshwater WQOs/criteria.

Aquatic Life vs. Human Health - Comparisons were primarily made to objectives/criteria for the protection of aquatic life, not objectives/criteria for the protection of human health to support the consumption of water or organisms. This decision was based on the assumption that water and organisms are not likely being consumed from the stations monitored.

Acute vs. Chronic Objectives/Criteria – All monitoring for PCBs and mercury was conducted during episodic storm events and results do not likely represent long-term (chronic) concentrations of monitored constituents. The same is true for one of the two copper and nutrient sampling events. Storm monitoring data were therefore compared to "acute" WQOs/criteria for aquatic life that represent the highest concentrations of an analyte to which an aquatic community can be exposed briefly (e.g., 1-hour) without resulting in an unacceptable effect. Spring baseflow monitoring data were also compared to "chronic" WQOs/criteria.

Of the analytes monitored by SCVURPPP at POC stations in WY 2018, WQOs or criteria for the protection of aquatic life have only been promulgated for total mercury, dissolved copper, and un-ionized ammonia. In WY 2018, there were no exceedances of applicable water quality standards for these analytes in samples collected in receiving waters. Details of the analyses are provided below.

- **Total Mercury**. All mercury concentrations measured in SCVURPPP samples in WY 2018 were well below the freshwater acute objective for mercury of 2.4 ug/L (see Table 4).
- Nutrients. All un-ionized ammonia concentrations calculated for SCVURPPP samples were below the annual median objective for un-ionized ammonia of 0.025 mg/L (see Table 7).
- Dissolved Copper. Acute (1-hour average) and chronic (4-day average) WQOs for copper are expressed in terms of the dissolved fraction of the metal in the water column and are hardness dependent¹³. The copper WQOs were calculated using the exponential functions described in the California Toxics Rule (40 CFR 131.38) which apply hardness values measured at the sample station. Dissolved copper concentrations measured at those stations were compared to the calculated WQOs. In general, dissolved copper concentrations were below calculated acute and chronic WQOs (Table 8). One dissolved copper sample (205STQ010 on Jan. 8, 2018) exceeded the calculated WQOs. Because the total copper concentration from this sample was much lower (14

¹³ The current copper standards for freshwater in California do not account for the effects of pH or natural organic matter and can be overly stringent or underprotective (or both, at different times). Therefore, the California Stormwater Quality Association (CASQA) has asked the USEPA to considering updating the California Toxics Rule for copper using the Biotic Ligand Model (BLM) which accounts for the effect of water chemistry in addition to hardness (i.e., temperature, pH, dissolved organic carbon, major cations and anions).

ug/L) than the dissolved copper concentration (30 ug/L), this result has been flagged as questionable in the electronic data deliverable (EDD). It is possible that contamination was introduced during the laboratory filtration process.

Station Code	Sample Date	Dissolved Copper (µg/L)	Hardness as CaCO3 (mg/L)	Acute WQO for Dissolved Copper at Measured Hardness (µg/L)	Chronic WQO for Dissolved Copper at Measured Hardness (µg/L)
205STE021	1/8/2018	4.3	60	8.3	5.8 (NA)
205STQ010	1/8/2018	30 *	46	6.5	4.6 (NA)
205CAL018	1/8/2018	4.1	50	7.0	5.0 (NA)
205STE021	5/21/2018	0.22	440	54	31
205STQ010	5/21/2018	0.85	390	48	29
205CAL018	5/21/2018	0.46	460	57	33

Table 8. Comparison of WY 2018 Monitoring Data to the Copper WQO.

NA = Not applicable. Chronic WQOs are not applicable to storm event grab samples.

* The dissolved copper concentration measured at 205STQ010 is likely the result of laboratory contamination during filtration. This assumption is based on the total copper concentration from the same sample which was much lower (14 ug/L). This result has been flagged as questionable in the electronic data files.

4.0 CONCLUSIONS AND RECOMMENDATIONS

In WY 2018, SCVURPPP collected and analyzed POC samples in compliance with Provision C.8.f of the MRP. Yearly minimum requirements were met for all monitoring parameters. In addition, SCVURPPP continued to work with the RMP's STLS to supplement WY 2018 monitoring accomplishments.

Conclusions from WY 2018 POC monitoring include the following:

- SCVURPPP collected eight wet weather samples from high interest catchments for PCBs and mercury analysis. Results from SCVURPPP monitoring were compiled with results from RMP STLS monitoring (two samples) to potentially identify new high interest WMAs in which new PCB or mercury source investigations should be considered. Based on the monitoring results, no new WMAs were added to the list of catchments warranting source property investigations.
- In WY 2018, SCVURPPP continued to review PCB monitoring data that had been collected over the past few years. Based on these review, one WMA was removed from the list of "catchments of interest" (001SFC100A). The status of three additional catchments was changed from "known high source area" to "confirmed source property" as specific source properties were identified and referrals are currently under development.
- Samples for copper analyses were collected from three bottom-of-the-watershed locations during two monitoring events: a January storm event and during spring baseflow. Copper concentrations were higher in the storm samples compared to the baseflow samples. Similar concentrations at all three sites suggest a lack of local point sources. The one dissolved copper sample that exceeded applicable water quality standards was flagged as questionable and may have been had elevated concentrations as a result of laboratory contamination.
- Samples for nutrient analyses were collected from three bottom-of-the-watershed locations during two monitoring events: a January storm event and during spring baseflow. None of the samples exceeded applicable water quality objectives.
- SCVURPPP participated in a BASMAA monitoring study that satisfied the provision C.12.e requirement to collect 20 composite caulk/sealant samples throughout the MRP permit area. The final project report was included with the Program's Fiscal Year 2017/18 Annual Report, submitted to the Regional Water Board on September 30, 2018 (EOA, SFEI, KLI 2018).
- SCVURPPP participated in a the BASMAA Regional Best Management Practices (BMP) Effectiveness Study which was developed to satisfy provision C.8.f requirements to collect at least eight PCBs and mercury samples that address Management Question #3 (Management Action Effectiveness). The study investigated the effectiveness of hydrodynamic separator (HDS) units and various types of biochar-amended bioretention soil media (BSM) at removing PCBs and mercury from stormwater. Results of the study are summarized in two reports that will be submitted by March 31, 2019 with the Program's WY 2018 Urban Creeks Monitoring Report. Findings will also be used to support development of the Reasonable Assurance Analysis (RAA) that is required by provision C.12.c.iii.(3) of the MRP and which must be submitted with the 2020 Annual Report (September 30, 2020).

Recommendations for WY 2019 POC monitoring include the following:

- SCVURPPP and the RMP STLS will continue to conduct PCB and mercury monitoring with the goal of identifying WMAs and specific source properties where new PCB and mercury control measures can be implemented during the permit term.
- SCVURPPP will continue to participate in the STLS Trends Strategy Team. Initiated in WY 2015, the STLS Trends Strategy Team is currently developing a regional monitoring design to assess trends in POC loading to San Francisco Bay from small tributaries (see Section 5.2.3). The STLS Trends Strategy will initially focus on PCBs and mercury, but will not be limited to those POCs. Analysis of

recent and historical data collected at region-wide loadings stations suggests that PCB concentrations are highly variable. Therefore, a monitoring design to detect trends with statistical confidence may require more samples than is feasible with current financial resources. The STLS Trends Strategy Team is continuing to evaluate available data from the Guadalupe River watershed to explore more economical monitoring opportunities. The Team is also considering modeling options that could be used in concert with monitoring to detect and predict trends in POC loadings. A Trends Strategy Road Map is currently being developed.

- SCVURPPP will continue to work with the SPoT Program to address Management Question #5 (Trends). The SPoT Monitoring Program conducts annual dry season monitoring (subject to funding constraints) of sediments collected from a statewide network of large rivers. The goal of the SPoT Program is to investigate long-term trends in water quality (Management Question #5 Trends). Sites are targeted in bottom-of-the-watershed locations with slow water flow and appropriate micromorphology to allow deposition and accumulation of sediments, including two stations in Santa Clara County (Coyote Creek and Guadalupe River). In most years, sediments are analyzed for PCBs, mercury, other metals, toxicity, pesticides, and organic pollutants (Phillips et al. 2014).
- A minimum of two copper samples will be collected from old industrial catchments concurrent with PCBs and mercury storm composite samples.
- A minimum of two nutrient samples will be collected from mixed land use watersheds during baseflow to address Management Question # 4 (Loads and Status).
- SCVURPPP will continue to participate in the RMP's STLS and the RMP's CEC Strategy.

5.0 REFERENCES

- BASMAA. 2013. Quality Assurance Project Plan. Clean Watersheds for a Clean Bay Implementing the San Francisco Bay's PCB and Mercury TMDL with a Focus on Urban Runoff. Revision Number 1. EPA San Francisco Bay Water Quality Improvement Fund Grant # CFDA 66.202. Prepared for Bay Area Stormwater Management Agencies Association (BASMAA) by Applied Marine Sciences (AMS). August 2013.
- BASMAA. 2016a. Creek Status Monitoring Program Standard Operating Procedures, Final Version 3. Prepared for BASMAA by EOA, Inc. on behalf of the Santa Clara Urban Runoff Pollution Prevention Program and the San Mateo Countywide Water Pollution Prevention Program, Applied Marine Sciences on behalf of the Alameda Countywide Clean Water Program, and Armand Ruby Consulting on behalf of the Contra Costa Clean Water Program. March 2016
- BASMAA. 2016b. Creek Status Monitoring Program Quality Assurance Project Plan, Final Version 3. Prepared for BASMAA by EOA, Inc. on behalf of the Santa Clara Urban Runoff Pollution Prevention Program and the San Mateo Countywide Water Pollution Prevention Program, Applied Marine Sciences on behalf of the Alameda Countywide Clean Water Program, and Armand Ruby Consulting on behalf of the Contra Costa Clean Water Program. March 2016
- EOA, Inc., San Francisco Estuary Institute, Kinnetic Laboratories, Inc. (EOA, SFEI, KLI). 2018. Evaluation of PCBs in Caulk and Sealants in Public Roadway and Storm Drain Infrastructure. Consulting report prepared for Bay Area Stormwater Management Agencies Association. August 16, 2018.
- Gilbreath, A.N., Hunt, J. and McKee, L.J.. 2019 (in preparation). Pollutants of concern reconnaissance monitoring progress report, water years 2015-2018. A technical report prepared for the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP). Contribution No. XXX. San Francisco Estuary Institute, Richmond, California.
- Houtz, E.F., Sutton, R., Park, J-S., and Sedlak, M. (2017). Poly- and perfluoroalkyl substances in wastewater: Significance of unknown precursors, manufacturing shifts, and likely AFFF impacts. Water Research v. 95, pp. 142-149.
- Lin, D. Sutton, R., Shimabuku, I., Sedlak, M., Wu, J., and Holleman, R. 2018. Contaminants of Emerging Concern in San Francisco Bay: A Strategy for Future Investigations 2018 Update. SFEI Contribution No. 873. San Francisco Estuary Institute, Richmond, CA.
- Lin, D. and Sutton, R. 2018. Alternative Flame Retardants in San Francisco Bay: Synthesis and Strategy. SFEI Contribution No. 885. San Francisco Estuary Institute, Richmond, CA.
- Phillips, B.M., Anderson, B.S., Siegler, K., Voorhees, J., Tadesse, D., Webber, L., Breuer, R. 2014. Trends in Chemical Contamination, Toxicity and Land Use in California Watersheds: Stream Pollution Trends (SPoT) Monitoring Program. Third Report – Five-Year Trends 2008-2012. California State Water Resources Control Board, Sacramento, CA.
- Phillips, B.M., Anderson, B.S., Siegler, K., Voorhees, J., Tadesse, D., Webber, L., Breuer, R. 2016. Spatial and Temporal Trends in Chemical Contamination and Toxicity Relative to Land Use in California Watersheds: Stream Pollution Trends (SPoT) Monitoring Program. Fourth Report – Seven-Year Trends 2008-2014. California State Water Resources Control Board, Sacramento, CA.
- Regional Water Board. 2012. Nutrient Management Strategy for San Francisco Bay. November 2012.
- Regional Water Board. 2015. San Francisco Bay Region Municipal Regional Stormwater NPDES Permit. Order R2-2015-0049, NPDES Permit No. CAS612008. November 19, 2016. 152 pp plus Attachments A-G.
- SCVURPPP. 2015. Water Year 2016 Pollutant of Concern Monitoring. Sampling and Analysis Plan. November 16, 2015.
- SCVURPPP. 2017a. Pollutants of Concern Monitoring Report Water Year 2017 Accomplishments and Water Year 2018 Planned Allocation of Effort. October 15, 2017.
- SCVURPPP. 2017b. Pollutants of Concern Monitoring Data Report. Water Year 2016. March 31, 2017.
- SCVURPPP. 2017b. Stormwater Control Measures Plan for PCBs and Mercury in the Santa Clara Valley. Version 2.0 (2016-2020). September 2017.

- SCVURPPP. 2018a. Pollutants of Concern Monitoring Report Water Year 2018 Accomplishments and Water Year 2019 Planned Allocation of Effort. October 15, 2018.
- SCVURPPP. 2018b. Pollutants of Concern Monitoring Data Report. Water Year 2017. March 31, 2018.
- Sedlak, M.D., Benskin, J.P., Wong, A., Grace, R., and Greig, D.J. 2017. Per and polyfluoroalkyl substances (PFASs) in San Francisco Bay wildlife: Temporal trends, exposure pathways, and notable presence of precursor compounds. Chemosphere v. 185, pp. 1217-1226.
- Sedlak, M.D., Sutton, R., Wong, A., Lin, D. 2018. Per and polyfluoroalkyl substances (PFASs) in San Francisco Bay: Synthesis and Strategy. San Francisco Estuary Institute, Richmond, CA. Contribution # 867. 130 pages.
- Senn, D.B. and Novick, E. 2014. Scientific Foundation for the San Francisco Bay Nutrient Management Strategy. Draft FINAL. October 2014.
- Sutton, R. and Sedlak, M. 2015. Contaminants of Emerging Concern in San Francisco Bay: A Strategy for Future Investigations. 2015 Update. San Francisco Estuary Institute, Richmond, CA. Contribution # 761.
- Sutton, R., Sedlak, M., Sun, J., and Lin, D. 2017. Contaminants of Emerging Concern in San Francisco Bay: A Strategy for Future Investigations. 2017 Revision. San Francisco Estuary Institute, Richmond, CA. Contribution # 851.
- Sutton, R., Sedlak, M., and Yee, D. 2013. Contaminants of Emerging Concern in San Francisco Bay: A Strategy for Future Investigations. San Francisco Estuary Institute, Richmond, CA. Contribution # 700.

Attachment 1

Quality Assurance/Quality Control Report

Pollutants of Concern Monitoring - Quality Assurance/Quality Control Report, WY 2018

1.0 INTRODUCTION

The Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP) conducted Pollutants of Concern (POC) Monitoring in Water Year (WY) 2018 to comply with Provision C.8.f (Pollutants of Concern Monitoring) of the National Pollutant Discharge Elimination Program (NPDES) Municipal Regional Permit for the San Francisco Bay Area (i.e., MRP). Monitoring included analysis for polychlorinated biphenyls (PCBs), total mercury, total and dissolved copper, suspended sediment concentration (SSC), and nutrients (i.e., ammonia, nitrate, nitrite, total Kjeldahl nitrogen, orthophosphate, and total phosphorus).

This project utilized the Clean Watersheds for Clean Bay Project (CW4CB) Quality Assurance Project Plan (QAPP; BASMAA 2013) as a basis for Quality Assurance and Quality Control (QA/QC) procedures. Missing components were supplemented by the Bay Area Stormwater Management Agencies Association (BASMAA) Regional Monitoring Coalition (RMC) QAPP (BASMAA 2016) and the QAPP for the California Surface Water Ambient Monitoring Program (SWAMP), specifically for nutrient and copper samples, respectively. Data were assessed for seven data quality attributes, which include (1) Representativeness, (2) Comparability, (3) Completeness, (4) Sensitivity, (5) Contamination, (6) Accuracy, and (7) Precision. These seven attributes were compared to Data Quality Objectives (DQOs), which were established to ensure that data collected are of adequate quality and sufficient for the intended uses. DQOs address both quantitative and qualitative assessment of the acceptability of data – representativeness and comparability are qualitative while completeness, sensitivity, precision, accuracy, and contamination are quantitative assessments. Specific DQOs are based on Measurement Quality Objectives (MQOs) for each analyte.

The MQOs for each of the POC analytes are summarized in Table 1 for water and Table 2 for sediment. As there was no reporting limit listed in the QAPP for copper, results were compared to the SWAMP recommended reporting limits for inorganic analytes in freshwater. Overall, the results of the QA/QC review suggest that the data generated during this study were of sufficient quality for the purposes of the project. However, the copper results collected during the May sampling event at 205STQ010 were flagged as questionable due to the concentration of total copper being significantly less than the dissolved copper concentration. This scenario is not possible due to the nature of the analyte types. Additional data were flagged based on the MQOs and DQOs identified in the QAPPs, but no data were rejected. Further details regarding the QA/QC review are provided in the sections below.

Table 1. Measurement quality objectives for analytes in water from the Clean Watersheds for a Clean
Bay (CW4CB) Quality Assurance Project Plan (BASMAA 2013) and BASMAA RMC Quality Assurance
Project Plan (BASMAA 2016)

Sample	Nutrients ¹	Hardness ¹	SSC ²	Copper ²	Mercury ²	PCBs ²
Laboratory Blank	< RL	<rl< td=""><td>< RL</td><td>< RL</td><td>< RL</td><td>< RL</td></rl<>	< RL	< RL	< RL	< RL
Reference Material (Laboratory Control Sample) Recovery	90-110%	80-120%	NA	75-125%	75-125%	50-150%
Matrix Spike Recovery	80-120%	80-120%	NA	75-125%	75-125%	50-150%
Duplicates (Matrix Spike, Field, and Laboratory) ³	RPD < 25%	RPD < 25%	RPD < 25%	RPD < 25%	RPD < 25%	RPD < 25%
Reporting Limit	0.01mg/L for all except: Ammonia (0.02mg/L) TKN ⁴ (0.5mg/L)	1 mg/L ⁵	0.5 mg/L	0.10 μg/L ⁶	0.0002 μg/L (0.2 ng/L)	0.002 μg/L (2000 pg/L)

RL = Reporting Limit; RPD = Relative Percent Difference

 $^{\rm 1}\,{\rm From}$ the BASMAA QAPP

² From the CW4CB QAPP

³ NA if native concentration for either sample is less than the reporting limit

⁴ TKN = Total Kjeldahl Nitrogen

⁵ No hardness RL listed in either QAPP. Value is from SWAMP-recommended reporting limits for conventional analytes in freshwater. (https://www.waterboards.ca.gov/water_issues/programs/swamp/docs/tools/19 tables fr water/1 conv fr water.pdf)

⁶No copper RL listed in either QAPP. Value is from SWAMP-recommended reporting limits for inorganic analytes in freshwater. (http://www.waterboards.ca.gov/water issues/programs/swamp/docs/tools/19 tables fr water/4 inorg fr water.pdf)

Sample	Total Solids	Mercury	PCBs
Laboratory Blank	< RL	< RL	< RL
Reference Material (Laboratory Control Sample) Recovery	N/A	75-125%	50-150%
Matrix Spike Recovery	N/A	75-125%	50-150%
Duplicates ¹ (Matrix Spike, Field, and Laboratory)	RPD < 25%	RPD < 25%	RPD < 25% ²
Reporting Limit	0.1% ³	30 µg/kg 0.03 mg/kg 30,000 ng/kg	0.2 μg/kg 0.0002 mg/kg 200 ng/kg

Table 2. Measurement quality objectives for analytes in sediment from the Clean Watersheds for a Clean Bay (CW4CB) Quality Assurance Project Plan (BASMAA 2013).

RL = Reporting Limit; RPD = Relative Percent Difference

 $^{\rm 1}$ NA if native concentration for either sample is less than the reporting limit

² Only applicable for matrix spike duplicates. Method specific for field and laboratory duplicates

³ RL for total solids in water

2.0 REPRESENTATIVENESS

Data representativeness assesses whether the data were collected so as to represent actual conditions at each monitoring location. For this project, <u>all samples were assumed to be representative</u> if they were collected and analyzed according to protocols specified in the CW4CB QAPP and RMC QAPP. All field and laboratory personnel received and reviewed the QAPPs, and followed prescribed protocols including laboratory methods.

3.0 COMPARABILITY

The QA/QC officer ensures that the data may be reasonably compared to data from other programs producing similar types of data. For POC monitoring, individual stormwater programs try to maintain comparability within in RMC. The key measure of comparability for all RMC data is the California Surface Water Ambient Monitoring Program.

Electronic data deliverables (EDDs) were submitted to the San Francisco Bay Regional Water Quality Control Board (SFRWQCB) in Microsoft Excel templates developed by SWAMP, to ensure data comparability with SWAMP. In addition, data entry followed SWAMP documentation specific to each data type, including the exclusion of qualitative values that do not appear on SWAMP's look up lists¹. Completed templates were reviewed using SWAMP's online data checker², further ensuring SWAMP-comparability.

¹ Look up lists available online at http://swamp.waterboards.ca.gov/swamp_checker/LookUpLists.php.

² Checker available online at http://swamp.waterboards.ca.gov/swamp_checker/SWAMPUpload.php

All WY 2018 data were considered comparable to SWAMP data and other RMC data except for the copper results for the sample collected in May at station 205STQ010. The total copper concentration for this sample was significantly less than the dissolved copper concentration. Since dissolved copper is a component of total copper, this scenario is not possible. The total copper concentration for this sample was comparable to the other samples collected in WY 2018, while the dissolved concentration was much higher than others. Both total and dissolved copper concentrations were flagged as questionable.

4.0 COMPLETENESS

Completeness is the degree to which all data were produced as planned; this covers both sample collection and analysis. For chemical data and field measurements an overall completeness of greater than <u>90%</u> is considered acceptable for RMC chemical data and field measurements.

During WY 2018, SCVURPPP collected 100% of planned samples. Six aqueous samples were collected and analyzed for nutrients (ammonia, nitrate, nitrite, total Kjeldahl nitrogen, phosphorus, and orthophosphate), copper, and hardness. A total of 8 aqueous samples were collected in WY 2018 and analyzed for PCBs, mercury, and SSC.

5.0 SENSITIVITY

Sensitivity analysis determines whether the methods can identify and/or quantify results at low enough levels. For the aqueous chemical analyses in this project, sensitivity is considered to be adequate if the reporting limits (RLs) comply with the specifications in RMC QAPP Appendix E (RMC Target Method Reporting Limits) and the CW4CB QAPP Appendix B (CW4CB Target Method Reporting Limits).

A summary of the target and actual reporting limits for each analyte is shown in Table 3. The reporting limits for all nitrate, suspended sediment concentration (SSC), copper, hardness, and mercury samples, plus the ammonia samples collected in January, exceeded their respective target reporting limits.

Analyte	Unit	Target	Actual	Exceeds Target RL?
Ammonia	mg/L	0.02	0.02-0.1	Yes
Nitrate	mg/L	0.01	0.1	Yes
Nitrite	mg/L	0.01	0.005	No
Total Kjeldahl Nitrogen	mg/L	0.5	0.1	No
Phosphorus	mg/L	0.01	0.01-0.02	No
Orthophosphate	mg/L	0.01	0.01	No
Suspended Sediment Concentration	mg/L	0.5	0.99-1.1	Yes
Copper	μg/L	0.1	0.5	Yes
Hardness	mg/L	1	5-10	Yes
Mercury	ng/L	0.2	0.5	Yes
PCBs	pg/L	2000	20-250	No

Table 3. Target and actual reporting limits for SCVURPPP pollutants of concernmonitoring in water in WY 2018

6.0 CONTAMINATION

For chemical data, contamination is assessed as the presence of analytical constituents in blank samples.

Several laboratory and equipment (filter) blanks were run during the nutrient, copper, and hardness analyses. All associated blanks were non-detect. Analytes were detected in laboratory blanks for mercury and several PCBs above the method detection limit, but all values were below the reporting limit. The PCBs that were detected in laboratory blanks include the following:

- PCB 011
- PCB 52
- PCB 44/47/65
- PCB 147/149
- PCB 129/138/163PCB 153/168
- PCB 156/157
- PCB 187
- Total Di-PCB
- Total Tetra-PCB
- Total Hexa-PCB
- Total Hepta-PCB
- Total PCBs

7.0 ACCURACY

Accuracy is assessed as the percent recovery of samples spiked with a known amount of a specific chemical constituent. The analytical laboratory evaluated and reported the Percent Recovery (PR) of Laboratory Control Samples (LCS; in lieu of reference materials) and Matrix Spikes (MS)/Matrix Spike Duplicates (MSD), which were recalculated and compared to the target ranges in the RMC and CW4CB QAPPs. If a QA sample did not meet MQOs, all samples in that batch for that analyte were flagged.

All laboratory LCS and MS/MSD samples for nutrients, hardness, copper, mercury, and suspended sediment concentration were within their respective MQOs except for one total Kjeldahl nitrogen and two nitrite matrix spikes in January, in addition to two suspended sediment concentration laboratory control samples in May. The associated samples were consequently flagged. Eighty-nine (89) laboratory control samples exceeded the MQOs for PCBs, and all associated samples were flagged. No MS/MSD samples were analyzed for PCB congeners in water. However, the analytical laboratory affirmed that laboratory control and duplicate laboratory control samples were analyzed in lieu of matrix spike and duplicate matrix spike samples for the PCBs. In this case, it is acceptable to compare the percent recoveries calculated from the laboratory control samples to the MQOs for matrix spike percent recoveries. Given that the MQOs are the same in both cases, no other exceedances were found.

8.0 PRECISION

Precision is the repeatability of a measurement and is quantified by the Relative Percent Difference (RPD) of two duplicate samples. Three measures of precision were used for this project – matrix spikes duplicates, laboratory duplicates, and field duplicates. The MQO for RPD specified by both the CW4CB QAPP and the BASMAA QAPP is <25%.

8.1. Laboratory Duplicates

Matrix spike duplicates and laboratory control sample duplicates for all analytes were well below the targeted range of < 25%. As previously stated, duplicate laboratory control samples were analyzed in place of duplicate matrix spike samples to assess precision in the measurement of PCB concentrations. Given that the RPD MQOs are the same in both cases, no other exceedances were found.

8.2. Field Duplicates

Two nutrient field duplicates were collected during WY 2018 creek status monitoring and are considered representative of nutrient sampling for POC monitoring. The field duplicate samples met the MQO for RPD for all analytes except for total Kjeldahl nitrogen and ammonia. Refer to the SCVURPPP Creek Status Monitoring QA/QC Report for more information.

Field duplicates were collected for copper, nutrients, and hardness during the January event in San Mateo County on behalf of SCVURPPP and the May event in Santa Clara County. The duplicate samples collected in January met the RPD MQO for all analytes except ammonia. Similarly, the duplicate samples collected in May met the RPD MQO for all analytes except ammonia and phosphorous. Additionally, a field duplicate was collected for aqueous mercury, PCBs, and SSC during the January event in Santa Clara County. The RPDs met the MQO for all PCB congeners except PCBs 164, 190, and 195.

9.0 REFERENCES

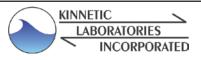
- Bay Area Stormwater Management Agency Association (BASMAA). 2013. Quality Assurance Project Plan. Clean Watersheds for a Clean Bay – Implementing the San Francisco Bay's PCB and Mercury TMDL with a Focus on Urban Runoff. Revision Number 1. EPA San Francisco Bay Water Quality Improvement Fund Grant # CFDA 66.202. Prepared for Bay Area Stormwater Management Agencies Association (BASMAA) by Applied Marine Sciences (AMS). August 2013.
- Bay Area Stormwater Management Agency Association (BASMAA) Regional Monitoring Coalition.
 2016. Creek Status Monitoring Program Quality Assurance Project Plan, Final Draft Version
 3. Prepared for BASMAA by EOA, Inc. on behalf of the Santa Clara Urban Runoff Pollution
 Prevention Program and the Santa Clara Countywide Water Pollution Prevention Program,
 Applied Marine Sciences on behalf of the Alameda Countywide Clean Water Program and
 the Contra Costa Clean Water Program. 128 pp.
- Surface Water Ambient Monitoring Program (SWAMP). 2018. Quality Assurance Program Plan. May 2018. 140 pp.

Appendix D

BASMAA Pollutant Removal from Stormwater with Biochar Amended BSM

Pollutant Removal from Stormwater with Biochar Amended Bioretention Soil Media (BSM)

Project Report


Prepared for:

Prepared by:

Final

February 8, 2019

DISCLAIMER

Information contained in Bay Area Stormwater Management Agencies Association (BASMAA) products is to be considered general guidance and is not to be construed as specific recommendations for specific cases. BASMAA is not responsible for the use of any such information for a specific case or for any damages, costs, liabilities or claims resulting from such use. Users of BASMAA products assume all liability directly or indirectly arising from use of the products.

The mention of commercial products, their source, or their use in connection with information in BASMAA products is not to be construed as an actual or implied approval, endorsement, recommendation, or warranty of such product or its use in connection with the information provided by BASMAA.

This disclaimer is applicable to all BASMAA products, whether information from the BASMAA products is obtained in hard copy form, electronically, or downloaded from the Internet.

TABLE OF CONTENTS

LIST OF FIGURES	iv
LIST OF TABLES	v
LIST OF ACRONYMS	vi
EXECUTIVE SUMMARY	1
Methods	1
Results	2
Conclusions	2
Recommendations	3
1 INTRODUCTION	4
1.1 Background	4
1.2 Study Goals	5
2 METHODS	7
2.1 Study Approach	7
2.2 Initial Media Selection and Blends	7
2.3 Biochar Selection	7
2.4 Hydraulic Testing	7
2.5 Column Setup and Seasoning Runs	8
2.6 Stormwater Collection	9
2.7 Sampling Runs	10
2.8 Constituents and Laboratory Methods	12
2.9 Analysis and Statistical Testing	12
3 RESULTS	13
3.1 Biochar Characteristics, Hydraulic Conductivity, and Selection	13
3.2 Quality Assurance and Quality Control	14
3.2.1 PCBs	14
3.2.2 Total Mercury (Hg), TOC, and SSC	14
3.3 Column Test Runs	15
3.3.1 PCBs	16
3.3.2 Mercury	24
3.3.3 Other Constituents	26
3.4 Statistical Tests	30

4	CONCLUSIONS AND RECOMMENDATIONS						
4	1.1	Conclusions	1				
4	1.2	Recommendations	1				
	4.2.	1 Biochar Selection	2				
	4.2.2	2 Site Selection	2				
	4.2.3	3 Outlet Control	2				
	4.2.4	4 Saturated Hydraulic Conductivity Testing Requirements	2				
5	REFI	ERENCES	3				
Appendix A: Monitoring Study Design A-1							
Appendix B: Sampling and Analysis Plan and Quality Assurance Project PlanB-1							
Appendix C: Proposed Biochar Selection FactorsC-1							
Appendix D: Hydraulic Test Results D-1							
Appendix E: Biochar Particle Size DistributionE-1							
Appendix F: Column Test Observation FormsF-1							
Appendix G: Water Quality Data G-1							

LIST OF FIGURES

Figure 1. Cumulative Frequency Distribution of Total PCB Influent Concentrations for Bioretention Mea with and without Biochar from CW4CB (BASMAA, 2017a)	
Figure 2. Column test setup at Sacramento State showing five of six columns	
Figure 3. Teflon Column Cap with Drainage Veins and Holes (left) and Stainless Steel Throttling Screws	
(right)	
Figure 4. Column Test Setup	
Figure 5. Total PCB Concentrations over Time	17
Figure 6. Observed Total PCB Concentrations for Undiluted Influent Runs and Column Test Media	
Effluent	
Figure 7. Ce/Ci Total PCB Concentrations for Column Test Media	20
Figure 8. Total PCB Concentrations for CW4CB Pilot Sites Influent, Undiluted Influent Runs, CW4CB BSI	М
Effluent, and Column Test BSM Effluent, CW4CB Biochar-amended Effluent, and Column Test Biochar-	
amended Effluent	21
Figure 9. Ce/Ci Total PCB Concentrations for CW4CB Pilot Sites and All Biochar Test Media	22
Figure 10. Ce/Ci Total PCB Concentrations for CW4CB Biochar Pilot Site and BioChar Solutions Test	
Media	23
Figure 11. Total PCB Concentrations for all Study Effluent versus Influent	24
Figure 12. Mercury Concentrations over Time	25
Figure 13. Comparison of Total PCB to SSC Concentrations	27
Figure 14. Comparison of Mercury to TOC Concentrations	28
Figure 15. Ce/Ci TOC Concentrations for Column Test Media	28
Figure 16. Ce/Ci SSC Concentrations for Column Test Media	29
Figure 17. Average Turbidity versus Consecutive Hydraulic Loading (Sampling Runs are labeled 1, 3, 4,	
and 6 and Seasoning Loading are labeled 2 and 3)	30

LIST OF TABLES

Table 1. Selected Aqueous Constituents for Media Testing in Laboratory Columns	12
Table 2. Characteristics for Biochar Considered for Water Quality Testing	13
Table 3. Influent Descriptions, PCB and Mercury Concentrations, and Columns Dosed for each Sam	pling
Run	15
Table 4. Infiltration Rates and PCB, Mercury, TOC, and SSC Results for each Sampling Run	16

LIST OF ACRONYMS

BASMAA	Bay Area Stormwater Management Agencies Association
BMP	Best Management Practices
BSM	Bioretention Soil Media
CW4CB	Clean Watersheds for a Clean Bay
DQO	Data Quality Objective
EPA	Environmental Protection Agency
In/hr	Inches per hour
KLI	Kinnetic Laboratories, Inc.
K _{sat}	Saturated Hydraulic Conductivity
LCS	Laboratory Control Sample
MDD	Maximum Dry Density
MDL	Method Detection Limit
MQO	Measurement Quality Objectives
MRP	Municipal Regional Permit
MS/MSD	Matrix Spike/Matrix Spike Duplicate
MS4	Municipal Separate Storm Sewer System
ND	Non-detect
NPDES	National Pollutant Discharge Elimination System
OWP	Office of Water Programs
PCBs	Polychlorinated Biphenyls
PG&E	Pacific Gas and Electric Company
ΡΜΤ	Project Management Team
POC	Pollutants of Concern
ppb	parts per billion
ppm	parts per million
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
RL	Reporting Limit
RMP	Regional Monitoring Program
RPD	Relative Percent Difference
SAP	Sampling and Analysis Plan
SFEI	San Francisco Estuary Institute
SSC	Suspended Sediment Concentration

TMDL Total Maximum Daily Loads

TOC Total Organic Carbon

EXECUTIVE SUMMARY

The Bay Area Stormwater Management Agencies Association (BASMAA) implemented this regional study to evaluate the effectiveness of biochar-amended bioretention soil media (BSM) to remove polychlorinated biphenyls (PCBs) and mercury from stormwater collected from storm drains within the area covered by the Municipal Regional Permit (MRP; Order R2-2015-0049)¹ that are known to be impacted by diffuse PCB sources. The MRP requires that permittees² provide information to support the implementation of the wasteload allocations for mercury and PCB total maximum daily loads (TMDLs) as described in MRP Provisions C.11 and C.12. This study also contributes to implementation of MRP Provision C.8.f (Pollutant of Concern (POC) Monitoring) Priority #3, "Management Action Effectiveness," which focuses on monitoring the effectiveness of specific management actions in reducing or avoiding loads of mercury and PCBs in municipal separate storm sewer system (MS4) discharges.

A prior BASMAA study, the Clean Watershed for a Clean Bay (CW4CB) project, found that BSM amended with biochar substantially improved PCBs removal compared to the standard BSM specified in MRP Provision C.3 at the same location (BASMAA 2017). The BSM contained 60 percent sand and 40 percent compost. The amended BSM contained 75 percent BSM and 25 percent biochar, which equates to 45 percent sand, 30 percent compost, and 25 percent biochar. Only one biochar source was tested, so it was unknown whether there would be substantial performance differences among differing biochar sources.

The goal of this study was to identify biochar media amendments that improve PCB and mercury load removal by bioretention BMPs. The primary management question supporting that goal was: "Are there readily available biochar-amended BSM that provide significantly better PCB and mercury load reductions than standard BSM and meet MRP infiltration rate requirements?" And the particular purpose of the laboratory testing in this study was: "screen alternative biochar-amended BSM and identify the most promising for further field testing." (Monitoring Study Design, Appendix A)

The study was carried out by a project team comprised of the Office of Water Programs at Sacramento State (OWP), EOA Inc., Kinnetic Laboratories, Inc. (KLI), the San Francisco Estuary Institute (SFEI), and ALS Environmental (ALS). A BASMAA project management team (PMT) consisting of representatives from BASMAA stormwater programs and municipalities provided oversight and guidance to the project team throughout the monitoring study. Stormwater was collected in March and April of 2018, and the BSM testing was conducted in April and May of 2018.

METHODS

This study compared the removal of PCBs and mercury from stormwater in laboratory column tests of five locally-available biochars produced from a variety of feedstock and methods admixed at a 1-to-3 ratio by volume with BSM. The biochars used in this study were compared against each other and against a standard BSM. Due to availability, the BSM contained 65 percent sand and 35 percent

¹ http://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/stormwater/Municipal/R2-2015-0049.pdf

² A total of 76 cities, towns, unincorporated counties, and flood control and water conservation districts covered by the MRP.

compost, which is still within the acceptable range specific in the MRP Provision C.3 and the BASMAA specification (BASMAA 2016). The BSM-biochar blend ratio matched the CW4CB study (75% BSM and 25%). The resulting amended BSM contained 49 percent sand, 26 percent compost, and 25 percent biochar. Each of the test biochars was mixed with the standard BSM and placed in 7.5-inch-diameter glass columns to a depth of 18 inches, typical of standard field installations. One additional column was prepared as a control and filled with 18 inches of standard BSM. The stormwater used for all tests was collected during two storms from two sites that were located in the portion of the San Francisco Bay Area subject to the MRP and that had previously observed elevated levels of PCBs. Four sampling runs were performed on the columns, three runs using undiluted stormwater on all columns and the fourth run using stormwater diluted at a one-to-nine ratio to test removal effectiveness at lower influent concentrations on two³ columns. Column influent and effluent samples were collected during each test run and analyzed for PCBs, total mercury, total organic carbon (TOC), suspended solids concentration (SSC), and turbidity.

RESULTS

Influent concentrations of PCBs (9,860 to 19,600 picograms/liter or pg/L) were consistent with samples previously taken at the sampling sites during the CW4CB study (BASMAA 2017). The standard BSM control column had effluent concentrations of PCBs similar to the standard BSM tested alongside biochar in the CW4CB study. Two of the five biochar-amended BSM columns, Phoenix and Agrosorb, exhibited lower effluent concentrations of PCBs than the standard BSM column for all test runs. A third column, BioChar Solutions, produced three effluents with lower concentrations and a single effluent sample at a slightly higher concentration than that produced by the standard BSM. The remaining two biochar-amended BSM columns had one or two effluent samples that were much higher than those from the standard BSM, and one sample showed a substantial export of PCBs. However, these high PCB concentrations corresponded to unusually high infiltration rates compared to the testing conditions for all other data, suggesting channelizing or otherwise insufficient compaction of media within the column and so these data are not used in analysis and graphs. The remaining results collected for those two biochars under typical infiltration conditions exhibited PCB removal, and at least half of those results were superior to BSM.

Mercury influent concentrations (9.9-10.2 ng/L) were very similar across all samples. Mercury removal across all test runs occurred in two biochar-amended BSM columns, Phoenix and Agrosorb. The other columns showed variable treatment, including some export of mercury (the worst of which corresponds to a sample removed from the dataset due to abnormally high infiltration rates). The standard BSM column was the only column to export mercury for all test runs.

CONCLUSIONS

All five biochar-BSM blends showed evidence of overall improved PCB and mercury performance compared to the standard BSM. The results support these additional observations:

• Phoenix, Sunriver, BioChar Solutions, and Agrosorb appear to offer improved PCB removal compared to standard BSM and the other biochar-amended BSM.

³ The effluent of one column (CO6) in the dilution run could not be analyzed by the lab at the time of this study report so it is presumed lost.

- Phoenix and Agrosorb appear to offer improved mercury removal compared to standard BSM and the other biochar-amended BSM.
- Biochar may decrease performance variability from variable influent concentrations compared to standard BSM.
- Based on a single run on one column to explore removal at lower influent concentrations, biochar-amended BSM provided removal of PCBs at an influent concentration of 2,100 pg/L.
 BSM performance at this lower influent concentration could not be reported due to the sample being lost. Neither BSM nor biochar-amended BSM provided removal of mercury at an influent concentration of 3.00 ng/L.
- High initial infiltration rates correlated to poor performance (higher rates are associated with short-circuiting and higher pore velocities).
- Saturated hydraulic conductivity was poorly correlated to the falling head infiltration rates estimated during the water quality sampling runs, so biochars that were eliminated from column testing based on saturated hydraulic conductivity tests may be candidates for future testing.

RECOMMENDATIONS

Based on this study, biochar shows promise in marginally increasing performance; however, increased benefit relative to increased cost was not analyzed. With such limited data, benefit/cost analysis may be more appropriate after collection of substantial field data. Because of the marginal increase in performance, standard BSM should be a component of future side-by-side testing of biochar-amended BSM. If further biochar testing is pursued, the following recommendations should be considered.

If selecting biochar for PCB removal, the best-performing biochars were Phoenix, Sunriver, BioChar Solutions, and Agrosorb. If mercury removal is a design consideration, Phoenix and Agrosorb should be further studied. Because there was no correlation between performance and cost, less costly biochars that were not tested here (including those that were eliminated from this study based on possible inappropriate use of saturated hydraulic conductivity test procedures) might be considered for further field testing alongside one or more biochars from this study.

Site selection should consider the collective experience in this and other studies on irreducible minimum concentrations. This study suggests that value may be around 1,000 pg/L for PCBs. It is unclear for total mercury. Watersheds likely to have concentrations near or below irreducible concentrations should be avoided.

The most substantial enhancement to performance may be the use of outlet controls to increase contact time with biochar-amended BSM. Outlet controls should be considered for further study of both biochar-amended and standard BSM.

And finally, further development of procedures for laboratory tests of hydraulic conductivity or infiltration rate is recommended. Improving correlation between field-measured infiltration rates and laboratory test procedures for hydraulic conductivity may avoid screening out BSM blends and amendments based on tests that do not relate to field conditions.

1 INTRODUCTION

1.1 BACKGROUND

PCBs and mercury are pollutants of concern in the San Francisco Bay Area and removal of both from stormwater runoff using BSM amended with biochar has shown some promise in a previous investigation (BASMAA 2017).

Biochar is a highly porous, granular charcoal produced from a variety of organic materials and primarily marketed as a soil amendment. The majority of biochar research conducted to date has focused on agricultural applications, where biochar has been shown to improve plant growth, soil fertility, and soil water holding, especially in sandier soils. But investigation of stormwater treatment benefit is limited, especially for removal of mercury or PCBs.

A recent laboratory study on the effect of biochar addition to contaminated sediments showed that biochar is one to two orders of magnitude more effective at removing PCBs from soil pore water than natural organic matter, and may be effective at removing methylmercury but not total mercury (Gomez-Eyles et al. 2013). A laboratory column test study to determine treatment effectiveness of 10 media mixtures showed that a mixture of 70% sand/20% coconut coir/10% biochar was one of the top performers and less expensive than similarly effective mixtures using activated carbon (Kitsap County 2015). Liu et al. (2016) tested 36 different biochars for their potential to remove mercury from aqueous solution and found that concentrations of total mercury decreased by >90% for biochars produced at >600°C and by 40–90% for biochars produced at 300°C.

A prior BASMAA study, the CW4CB project (BASMAA 2017), examined whether BSM amended with biochar would substantially improve PCBs removal compared to the standard BSM specified in MRP Provision C.3. In the CW4CB study, the effect of adding a biochar to BSM was evaluated using data collected from two bioretention cells (LAU 3 and LAU 4) that treat roadway runoff just outside the Richmond Pacific Gas and Electric (PG&E) Substation at 1st Street and Cutting Boulevard. At this site, a standard bioretention cell (LAU 3) contains standard BSM (60 percent sand and 40 percent compost) while an enhanced bioretention cell (LAU 4) contains a mix of 75 percent standard BSM and 25 percent pine wood-based biochar (by volume), which equates to 45 percent sand, 30 percent compost, and 25 percent biochar. The results suggest that the addition of biochar to BSM is likely to increase removal of PCBs in bioretention best management practices (BMPs; BASMAA 2017).

Figure 1 shows a cumulative frequency plot of influent and effluent concentrations of PCBs for the two CW4CB bioretention cells. Although influent concentrations at the two cells were generally similar, effluent concentrations were much lower for the biochar enhanced bioretention cell (LAU 4) compared to those for the standard bioretention cell (LAU 3). The results for total mercury were different from those for PCBs, with both cells demonstrating little difference between influent and effluent concentrations. These CW4CB monitoring results suggest that the addition of biochar to BSM may increase removal of PCBs from stormwater. There was little effect on total mercury.

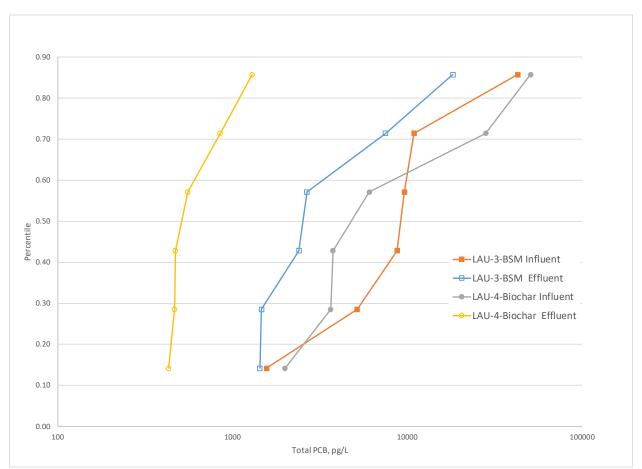


Figure 1. Cumulative Frequency Distribution of Total PCB Influent Concentrations for Bioretention Media with and without Biochar from CW4CB (BASMAA, 2017a)

Monitoring of the two bioretention cells at the CW4CB pilot site showed greater PCBs removal for a biochar-amended BSM than for standard BSM. However, to date, sampling has been limited to one test site and one biochar amendment. Besides the CW4CB study, there are no published literature studies on field PCBs and mercury removal from stormwater using biochars. Additional field testing can confirm the effectiveness of biochar in bioretention, but very little data is available on the selection of biochar for further field study. Laboratory testing of different biochars using actual stormwater from the Bay Area is a cost-effective tool to screen biochar media to identify good candidates for PCBs removal in future field testing.

1.2 STUDY GOALS

The goal of this study, as identified in the Monitoring Study Design (Appendix A), was to identify biochar media amendments that improve PCB and mercury load removal by bioretention BMPs. The primary management question supporting that goal was: "Are there readily available biochar-amended BSM that provide significantly better PCB and mercury load reductions than standard BSM and meet MRP infiltration rate requirements?" And the particular purpose of the laboratory testing in this study was: "screen alternative biochar-amended BSM and identify the most promising for further field testing."

The MRP requires that permittees provide information to support the implementation of the wasteload allocations for mercury and PCB total maximum daily loads (TMDLs) as described in MRP Provisions C.11 and C.12. This study also contributes to implementation of MRP Provision C.8.f (POC Monitoring) Priority #3, "Management Action Effectiveness," which focuses on monitoring the effectiveness of specific management actions in reducing or avoiding loads of mercury and PCBs in MS4 discharges.

The MRP infiltration rate requirements are described in Provision C.3.c of the MRP. This provision states: "Biotreatment (or bioretention) systems shall be designed to have a surface area no smaller than what is required to accommodate a 5 inches/hour stormwater runoff surface loading rate, infiltrate runoff through biotreatment soil media at a minimum of 5 inches per hour, and maximize infiltration to the native soil during the life of the Regulated Project." In addition to the 5 inches per hour MRP requirement, for any application that uses a non-standard BSM, the recently updated BASMAA specification requires "certification from an accredited geotechnical testing laboratory that the bioretention soil has an infiltration rate between 5 and 12 inches per hour" (BASMAA 2016).

To accomplish the purpose of this study, the following tasks were identified:

- 1. Collect all readily available west coast biochar;
- 2. Test each biochar-amended BSM and select those for water quality testing that meet infiltration requirements using saturated hydraulic conductivity tests;
- 2. Compare performance among select media mixes with biochar using influent-effluent column tests with Bay Area stormwater for PCBs and mercury removal;
- 3. Estimate whether PCBs and mercury reduction can occur at lower concentrations by using influent-effluent column tests for the best mix with diluted Bay Area stormwater

Because the purpose of the study design is to screen biochars for further field testing, the number of samples was spread out over as many biochars as possible while still producing enough data points for each biochar to distinguish large performance differences between biochars and BSM similar to what was observed in the CW4CB study.

This report presents the results of the BSM testing study conducted from March through May, 2018. The study was implemented by a project team comprised of the Office of Water Programs (OWP), EOA Inc., Kinnetic Laboratories, Inc. (KLI), the San Francisco Estuary Institute (SFEI), and ALS Environmental (ALS). A BASMAA project management team (PMT) consisting of representatives from BASMAA stormwater programs and municipalities provided oversight and guidance to the project team throughout the study.

The Methods section explains the study approach and methods used to complete this study. This is followed by the Results section that includes PCBs and mercury removal data. The Conclusions and Recommendations section summarizes the findings of this study and gives brief recommendations for media selection for future field sites. Appendices include the Monitoring Study Plan, Sampling and Analysis Plan and Quality Assurance Project Plan, Proposed Biochar Selection Factors, Hydraulic Test Results, Biochar Particle Size Distribution, and Water Quality Laboratory Reports.

2 METHODS

2.1 STUDY APPROACH

The study approach called for: 1. Gathering biochar products that are readily available locally (west coast) at the time of the study; 2. Collecting product information, including feedstock, pyrolysis temperature; 3. Testing saturated hydraulic conductivity of each biochar blended into standard BSM at a 1-to-3 ratio; 4. Selecting five biochars; and 5. Performing three runs through side-by-side column tests alongside a standard BSM serving as a control using Bay Area stormwater; and 5. Performing a single run on two columns⁴ using diluted Bay Area stormwater. Details and adjustments to this approach are described below.

2.2 INITIAL MEDIA SELECTION AND BLENDS

A total of nine samples from all identified locally available biochar producers were gathered. The samples were mixed at a ratio of one-to-three by volume with standard BSM to match the CW4CB biochar-amended pilot project amendment ratio. All biochars used in this study were unmodified (i.e., the biochars were not sieved, rinsed, or chemically treated in any way; all were used as received from their manufacturers). When blending the biochar-amended BSM, care was taken to use a representative subsample of the biochar. The BSM vendor was L.H.Voss Materials, and the BSM consisted of 65% sand and 35% compost by volume. These percentages are slightly different from the CW4CB study (60% sand and 40% compost), but still within the requirements of the MRP Provision C.3 and BASMAA standard. A precise match could not be accommodated due to the project schedule and approaching stormwater sampling opportunities.

2.3 BIOCHAR SELECTION

Primary biochar selection factors included availability in the Western United States, to ensure any biochar tested would likely be available for use in the San Francisco Bay Area, and acceptable hydraulic conductivity. Initially, the goal of hydraulic testing was to identify biochar-BSM blends that had a hydraulic conductivity in an acceptable range of 5 to 12 in/hr (Appendix C). However, destruction of biochar during the Modified Proctor compaction procedure required adjustments in procedures that made the 5 to 12 in/hr an inappropriate comparison. Instead, biochar-BSM blends that provided the most consistent hydraulic conductivity relative to the standard BSM were selected for testing. Secondary biochar selection factors included a range of pyrolysis temperatures and costs. Up to five biochars could be tested under limitations of timing, resources, and desired minimum samples per column (Appendix A).

2.4 HYDRAULIC TESTING

The BASMAA specification for alternatives to BSM requires testing of saturated hydraulic conductivity (k_{sat}) at a compaction of 85% maximum dry density (MDD) using the Modified Proctor method (BASMAA 2016). Because of the observation that the standard level of compaction was crushing the biochar particles, and thus changing their characteristics, it was decided to compact to 85% MDD using the Standard Proctor method, which uses reduced energy. Before hydraulic testing, a compaction curve was developed by the Standard Proctor method to determine MDD for each biochar-amended BSM.

⁴ One column was not analyzed due to a sample that is presumed lost after being shipped to the water chemistry laboratory.

Hydraulic testing was used as a screening tool to select the five media for the columns from the nine media tested. This testing, using deionized water that was de-gassed under vacuum and agitation overnight, was performed according to ASTM D2434 Standard Test Method for Permeability of Granular Soils (Constant Head) using a six-inch-diameter permeameter. All test equipment was purchased from the Humboldt Manufacturing Company.

2.5 COLUMN SETUP AND SEASONING RUNS

Six columns were constructed for this study, each column consisting of a 36-inch-long glass pipe with an internal diameter of 7.5 inches (Figure 2). Each column was capped with a Teflon plate that was milled to create a circular channel to nest the pipe in and make a water tight seal. Seven drainage holes were milled through each plate. To create flow paths for draining water to each of the seven drainage holes, each plate had additional drainage veins milled in the top side of each plate. To match each biocharamended BSM column flow rate to the control BSM flow rate (i.e., outlet control), stainless steel screws were used to block the drainage holes (Figure 3). To create a water tight seal between Teflon cap and glass pipe without an adhesive or caulking (which could adsorb PCBs), ratcheting straps were used to apply force to the top of the glass columns to keep them firmly seated in their Teflon caps. Plugging the drainage holes and filling the empty column with water proved the seal was sufficient. Stainless steel mesh screen (number 40, opening size nominally 0.42 mm) was cut to shape and placed on top of the Teflon cap to keep media from filling the drainage channels and exiting the column. A two-inch layer of sand was placed on top of the stainless steel screen, followed by 18 inches of either the standard BSM control media or one of the five biochar-amended BSM.

Figure 2. Column test setup at Sacramento State showing five of six columns

Figure 3. Teflon Column Cap with Drainage Veins and Holes (left) and Stainless Steel Throttling Screws (right)

Initial attempts at media placement and top-down hydro-compaction failed to achieve adequate infiltration rates so a wet placement technique was used to introduce water from the bottom of the column via a water supply cap fitted to the invert column cap. While placing the media in 1- to 2-inch lifts, water was slowly introduced and allowed to flow up through the media. As the previous lift was saturated and water reached the surface, an additional lift of media was placed. This technique allowed the air in the pore space of the media to be pushed out of a relatively thin overlying layer of media. Once all 18 inches of media were placed, the water was allowed to continue rising above the surface of the media until six inches of ponded water was achieved. Once this occurred, the water supply cap at the bottom of the column was removed and the water was allowed to drain. This draining of the six inches of ponded water served to hydraulically compact the media. An additional volume of water—equivalent to a depth of 18 inches of water—was added slowly to the top of the column to maintain the six inches of ponded water until the column was fully drained.

After the columns were filled with media and hydraulically compacted, the media was tested again to verify that infiltration rates were similar to field conditions. Columns were saturated and a falling head test was performed. The standard BSM had the slowest drain time and many of the biochar-amended columns had much faster drain times. Once the drain times had stabilized, a minimum level of outlet control was used on five columns so that the drain time in each column was more consistent with the slowest draining column.

During the first sampling run it was observed that all column effluents had high turbidity. To further stabilize the columns, two "seasoning" runs were performed. Turbidity was the only water quality measurement taken during these seasoning runs. Each run applied 18 inches of stormwater to the column. These seasoning runs were successful in decreasing turbidity in the effluent. Because stormwater was used, additional pollutant loading to the columns occurred during these two runs.

2.6 STORMWATER COLLECTION

Stormwater used during the seasoning and sampling runs was collected during storm events at two sites within the area covered by the MRP that were identified in previous studies as having consistently elevated concentrations of PCBs in the runoff (BASMAA 2017). Both sites were tree well locations that

were installed in Oakland, CA, and tested during the CW4CB project. In addition to being previously monitored, tree well 2 (Ettie St and 28th NW) and tree well 6 (Poplar and 26th SW) were considered safe locations to conduct stormwater monitoring. To collect the necessary volume of stormwater for the study, OWP staff accompanied KLI staff to each site during two storm events and pumped stormwater directly from the street gutter into clean five-gallon glass carboys. These were then transported back to OWP in Sacramento, CA, by OWP staff and stored at room temperature until use. Stormwater had to be collected before the columns were ready for experimental runs. Complications in acquiring suitable BSM, hydraulic testing, and preparing columns delayed the experiment for three months, far enough into the wet season that the likelihood of ample rain events was quickly diminishing. To hedge against a lack of late-season rain events, sufficient stormwater was collected from two storm events to perform all sampling runs and seasoning runs. The weather was tracked in hopes of sampling a third storm event, but additional storm events failed to materialize. Nine carboys were filled from each sampling location during each monitored storm event. The preference was to use the stormwater within 72 hours of collection, but additional time was needed to finish the construction and initial seasoning of the columns. The stormwater was stored for four days before the first run. The stormwater for the dilution run was used two weeks after collection. The stormwater for a replacement run (required as a result of bottle breakage during shipping) was used four weeks after collection. This was not a concern for PCB analysis because of the stability of PCBs, though particle agglomeration likely occurred causing associated pollutants to be more easily removed. This was counteracted by using high-sheer mixing as described below.

2.7 SAMPLING RUNS

Following the purpose to screen as many biochars as possible for further study (see Appendix A), only three sampling runs were performed for all six columns using undiluted stormwater. A fourth run was conducted on one biochar-amended BSM column (CO4; BioChar Solutions) and the standard BSM control column⁵ (CO6; Control) using stormwater diluted at a one-to-nine ratio. A single replacement run was performed for the first undiluted run for one column (CO1; Sunriver) due to loss of a sample bottle that was damaged in transit between laboratories. A unique influent had to be generated for this replacement run. Each run applied 18 inches of water to each column to simulate the hydraulic loading from storm events near typical water quality design storms. For example, if bioretention is sized to 4 percent of a drainage area that has a volumetric runoff coefficient of 0.8, a 0.9-inch storm size would generate 18 inches of hydraulic loading to the bioretention surface.

A variety of influent concentrations was desired, however, all runs were performed within a period of 30 days so water quality analysis from the first run was not known when performing later runs. Consequently, the selection of which stormwater source (sampling location) and which storm event to use for each run was based on past data from the sampling locations (Table 3). Additionally, each run was sequentially dosed directly from a subset of carboys from each storm. Because all carboys were not used in a run, the visual quality of the stormwater in each carboy was used to select carboys with the most sediment for each run. The dosing sequence is described below.

At the start of each sample run, six cleaned and empty carboys were labeled for effluent collection for all columns and one clean and empty carboy was labeled for influent doses. All sample bottles were labeled to associate them with the collection carboys. Stormwater in the five-gallon storage carboys

⁵ As previously explained, this sample was not analyzed.

were vigorously agitated before each dose with a stainless steel paddle mixer until all sediment was suspended. A glass beaker marked for the level of a single dose was filled from the carboy and used to dose each column in turn. The dose was sized to be equivalent to one inch of water depth inside the 7.5-inch-diameter column. Each column and the carboy collecting influent received 18 total doses. If the stormwater storage carboy did not have sufficient volume for a complete round of dosing (six column doses and one influent dose), additional water was added to the carboy from the next carboy selected for dosing. This assured that the same batch of stormwater was used for a single dose to each column and influent carboy. Dosing the influent carboy for each round of column dosing allowed a single influent sample from the influent carboy at the end of all 18 doses to represent the composite influent of all columns for that run. If at any time during dosing a column had more than six inches of ponded water the dosing would stop until the water drained to a height of three inches. Figure 4 presents the column test setup.

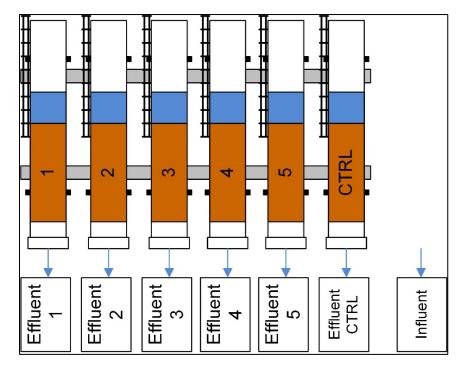


Figure 4. Column Test Setup

Column test observation forms were kept for each column and the time at which each dose was applied and the height of ponded water in the column was recorded. By recording the height of the water in the column at regular time intervals, it was possible to calculate an infiltration rate at each time step over the course of the sampling run. Three times during the dosing of the columns a grab sample was taken from the effluent of each column and tested using on-site meters to measure pH, temperature, and turbidity. At the midpoint of each sampling run, as specified in the sampling protocol to achieve ultralow detection limits, mercury samples were collected directly from the effluent stream of the column into a preserved sample bottle. Direct collection eliminated losses that would occur if collecting from the effluent carboy. One person was able to handle bottle filling without the aid of a second pair of hands because the sampling person did not have to touch anything while handling the bottle because flow was collected at the air gap as water fell between the column and the effluent carboy. After all influent water was applied, the columns were allowed to drain until no water was visible in the pore spaces of the soil and the effluent discharge had slowed to a drip. Once the columns drained, the carboy that received influent doses and the effluent carboys of each column were agitated with their own stainless steel paddle mixer before filling all required sample bottles. Sample bottles were refrigerated for up to two days then packed in blue ice and shipped overnight via FedEx to ALS for analysis.

Additional details are presented in Appendix B.

2.8 CONSTITUENTS AND LABORATORY METHODS

As specified in the study design (Appendix A) and Sampling and Analysis Plan (Appendix B), total PCBs⁶ and total mercury were analyzed for all samples. Constituents for analysis of water samples must be consistent with Table 8.3 of the MRP. Table 1 lists the constituents and test methods for this study.

In addition to PCBs and total mercury, the other constituents selected for influent and effluent analysis were suspended solids concentration (SSC), turbidity, and total organic carbon (TOC). Suspended solids concentration was selected for measurement rather than total suspended solids (TSS) because the method more accurately characterizes larger-sized fractions within the sample by avoiding subsampling, while turbidity was selected because it is an inexpensive and quick test to describe treatment efficiency where a strong correlation to other pollutants has been established. As with the SSC analysis, TOC was included because it is a MRP Provision C.8.f POC monitoring parameter and is useful in cases where methylation is a concern.

Constituent	Test Method	Reporting Limit		
SSC	ASTM D3977-97	1 mg/L		
Turbidity	Field meter	1 NTU		
TOC	EPA 9060	2 mg/L		
Total Mercury	EPA 1631E	0.5 ng/L		
Total PCBs (Sum of RMP 40 congeners) in	EPA 1668C	190-220 pg/L		
Water				

2.9 ANALYSIS AND STATISTICAL TESTING

Effluent and influent concentrations are presented independently and in chronological order to observe potential trends with loading. Additional analysis was performed for PCBs. Effluent concentration is also presented normalized by influent concentration for comparison to CW4CB study results. Normalization allows caparisons where influent concentrations vary between studies and where effluent concentration is dependent on influent concentration. In addition to traditional graphical or tabular comparisons, statistical testing was performed for PCBs using the Mann-Whitney U test (a rank sum test) on columns showing the greatest differentiation of performance. Correlations between PCB and SSC, and total mercury and TOC were also examined. Comparing total PCBs to suspended solids indicates whether suspended solids have a consistent quantity of associated PCBs.

⁶ The 40 individual congeners routinely quantified by the Regional Monitoring Program (RMP) for Water Quality in San Francisco Bay include: PCBs 8, 18, 28, 31, 33, 44, 49, 52, 56, 60, 66, 70, 74, 87, 95, 97, 99, 101, 105, 110, 118, 128, 132, 138, 141, 149, 151, 153, 156, 158, 170, 174, 177, 180, 183, 187, 194, 195, 201, and 203. The sum of these congeners are referred to as the PCBs or RMP 40 throughout this report.

3 RESULTS

3.1 BIOCHAR CHARACTERISTICS, HYDRAULIC CONDUCTIVITY, AND SELECTION

The study design called for water quality column testing of five biochars. Nine biochars produced in the Western United States were identified as potential candidates (Table 2). Hydraulic tests of the nine biochar-BSM blends produced a wide range of results. More details of the hydraulic conductivity calculations and particle size distributions are presented in Appendices D and E, respectively. Pulverization⁷ of biochar during the compaction process could be a contributing factor to the range of the observed results, even when using the lower-energy Standard Proctor method. The five biochar-BSM blends that provided the most consistent hydraulic conductivity compared to the standard BSM were selected for further testing. The selected biochar are highlighted in Table 2, and include Sunriver, Rogue, Phoenix, BioChar Solutions (also used in CW4CB), and Agrosorb. Their associated conductivity measurements were within 4 in/hr of the standard BSM, except for Agrosorb, which was 4.3 in/hr above the value for standard BSM. The selected biochar cover a range of pyrolysis temperatures and costs, but all were manufactured at 500 °C or above. Contrary to expectations, cost did not correlate with pyrolysis temperature.

Biochar ^a	Ksat ^ь (in/hr)	Texture ^c	Cost (\$/yd ³)	Pyrolysis Temp (°C)	Supplier Location
Blacksorb	2.56	Variable size, 3mm to fines	250	900	CA
Sonoma	5.11	Variable size, 1 cm chips to sand size particles, lots of fines	240	1315	CA
Pacific	5.41	Variable size, 1 cm chips to sand size particles, some fines	90	700	CA
Sunriver	7.67	Variable size, mostly pine needles with some small twigs and chips, 2 cm, little fines	500	500 500	
Rogue	7.85	Uniform size, 4mm, little to no fines	250	700	OR
Phoenix	10.4	chips, 15 cm, little to no fines	254	700	CA
Control – Standard BSM from Voss	10.8	Organics and sand	40	N/A	CA
Biochar Solutions Large	11.0	Chips, 2.5 cm, lots of fines	225	700	CO
Agrosorb	15.1	Large chips, 2 cm, lots of fines	250	900	CA
Biochar Now Medium	17.2	Uniform size, 3mm to 26 mesh, little to no fines	· · · · · · · · · · · · · · · · · · ·		CO

Table 2. Characteristics for Biochar Considered for Water Quality Testing

a. Biochars are sorted by Ksat and the five biochars closest to BSM were selected for column tests (shaded).b. Ksat values are at 85% maximum dry density using standard Proctor. Computations are presented in Appendix D.

c. Particle Size Distribution of each biochar is presented in Appendix E.

⁷ Hydraulic compaction was used in the water quality testing columns to avoid pulverization.

3.2 QUALITY ASSURANCE AND QUALITY CONTROL

Data quality assurance (QA) and quality control (QC) was performed in accordance with the project's SAP/QAPP (Appendix B). The SAP/QAPP established data quality objectives (DQOs) to ensure that data collected are sufficient and of adequate quality for their intended use. These DQOs include both quantitative and qualitative assessments of the acceptability of data. The qualitative goals include representativeness and comparability, and the quantitative goals include completeness, sensitivity (detection and quantization limits), precision, accuracy, and contamination. Measurement quality objectives (MQOs) are the acceptance thresholds or goals for the data. The quality assurance summary is presented for PCBs followed by total mercury, TOC, and SSC.

3.2.1 PCBs

The column water dataset included 26 field samples (including 1 field replicate), with 3 blanks, 5 laboratory control samples (LCSs), and one matrix spike/matrix spike duplicate (MS/MSD) pair reported for the RMP 40 PCB analytes (with their coeluters, yielding 38 unique analytes). This met the minimum number of QC samples required. All samples were analyzed within 30 days, less than the recommended hold time of 1 year. Three of the analytes had poor recovery (>70% deviation from target values in MS samples) and were rejected as were 2 analytes that had individual field sample results <3x higher than blanks. Overall 91% of the field sample results were reportable. Two PCBs were non-detect (ND) in 100% of the samples, but all the rest had detects in more than half the samples. However, a large percentage of results were below the lab's reporting limit, and 17 analytes had relative percent differences (RPDs) in the field replicates below 100%, and thus 62% of all results were flagged as estimated. Additionally 25 of the 38 unique analytes had recoveries between 35–70% above target values, so they were flagged as qualified. Nearly half of the data is flagged as estimated (i.e., below the reporting limit (RL) but above the method detection limit (MDL)) or qualified (not compliant with project SAP/QAPP), and approximately 5% of the data were rejected for the reasons mentioned above. Thus individual results are not quantitative at the target levels of confidence (+/- 30%) and thus the data should not be used to draw conclusions regarding attainment of set performance or water quality thresholds. However, the primary management question in this study is answered using the relative comparison of results within this study. Consequently, the data quality is satisfactory for the purpose of this study and all data were used.

3.2.2 Total Mercury (Hg), TOC, and SSC

All field sample results in the Hg/TOC/SSC dataset for water were reportable. The column water dataset included 25 field samples for Hg and SSC, and 1 field replicate for SSC, with 23 samples reported for TOC. All TOC results were analyzed at least in duplicate (some 3 or 4 times). Blanks were reported for all analytes, MS/MSDs for Hg and TOC, and LCSs for SSC and TOC, meeting the minimum number of QC samples required (1 per 20 or per batch of blank, precision, and recovery sample types). Samples were all analyzed within their respective hold times (28 days for Hg and TOC, 7 days for SSC). No results were non-detect, although a few Hg and TOC were DNQ (detected not quantified). Mercury was detected in blanks averaging 2-3x MDL in the two batches, but field sample results were all over 3x higher than blanks, so all results were flagged for blank contamination, but no results were censored. Precision was acceptable, averaging <10% RPD for SSC, <5% for TOC, and <20% for Hg, so no precision qualifiers were added. Similarly, average recovery deviated <10% from target values for all analytes, so no recovery flags were added. Overall, data quality is satisfactory for the purpose of this study and all data were used.

3.3 COLUMN TEST RUNS

Five sampling runs were performed and influent concentrations and stormwater collection characteristics for each run are presented in Table 3. Not all stormwater collected at one location during one storm was used in a single run, so extra water was available for later runs as described in Table 3. In each run, the storage carboys with more sediment (visual judgement) were preferred in early runs. Consequently, water remaining for later runs had less sediment. Infiltration rates and influent and effluent concentrations grouped by column and run are presented in Table 4. Graphical comparisons and discussion is presented in the following sections.

				Influent Concentrations				
		Storm ID: No		PCB	Total			
Influent		Location ^a - Collection	Column	(pg/L)	Hg	TOC	SSC	Columns
ID	Run Type	Date	Run Date		(ng/L)	(mg/L)	(mg/L)	Loaded
Influent 1	no dilution	Storm 2 - TW2 - 4/6/18	4/10/2018	19600	9.99	5.39	19.4	all
Influent 2	no dilution	Storm 1 - TW2 - 3/1/18	4/13/2018	18600	10.2	1.71	40.2	all
Influent 3	no dilution	Storm 2 - TW6 - 4/6/18	4/17/2018	9860	9.86	1.64	16.3	all
Influent 4	9X dilution	Storm 1 - TW2 -	4/19/2018	2100	3	NA	1.9	CO4,
		3/1/18 ^b						CO6
Influent 5	no dilution	Mix of Storm 1 and 2 -	5/9/2018	8160	NA	NA	NA	CO1
		TW2 - 3/1/18 and						
		4/6/18°						

Table 3. Influent Descriptions, PCB and Mercury Concentrations, and Columns Dosed for each Sampling Run

a. Stormwater collection locations were at two sites in West Oakland: TW2 is the influent to the Tree Well Site 2 (TW2) on Poplar at 26th and TW6 is the influent to Tree Well Site 6 (TW6) on Ettie St. near 28th

b.TW2 selected because CW4CB indicated it had lower concentrations and was selected to avoid dilution of a high-concentration sample (in this study TW2 had higher concentrations but those results were not available at the time)

c. The dirtiest (visually) of the remaining storage carboys from storms 1 and 2 that were not used in previous runs were selected to get a concentration near what was dosed in Run 1 because this was a makeup for Run 1.

			Inf.	PCBs		Total Mercury		тос		SSC	
Column ID	Biochar	Test Runs	Rate (in/hr)	Influent (pg/L)	Effluent (pg/L)	Influent (ng/L)	Effluent (ng/L)	Influent (mg/L)	Effluent (mg/L)	Influent (mg/L)	Effluent (mg/L)
	Control	Run 1	6.7	19600	2920	9.99	14	5.39	32.9	19.4	118
	(BSM	Run 2	6.0	18600	4680	10.2	13.1	1.71	15.9	40.2	35
	only)	Run 3	3.7	9860	960	9.86	11.3	1.64	17.2	16.3	26.7
		Run 4	N/A	2100	NA ^a	3	7.41	NA	10.9	1.9	11.1
CO1	Sunriver	Run 1	>20	19600	NA ^a	9.99	24.4 ^b	5.39	26.7 ^b	19.4	116 ^b
		Run 2	>12	18600	32000 ^b	10.2	9.68 ^b	1.71	12.3 ^b	40.2	21.9 ^b
		Run 3	5.7	9860	383	9.86	9.74	1.64	12.1	16.3	12.5
		Run 5	N/A	8160	662	NA	NA ^c	NA	NA	NA	NA
CO2	Rogue	Run 1	>20	19600	19400 ^b	9.99	16.3 ^b	5.39	11 ^b	19.4	104 ^b
		Run 2	3.2	18600	926	10.2	8.58	1.71	5.72	40.2	13.3
		Run 3	5	9860	4510	9.86	2.17	1.64	5.12	16.3	8.4
CO3	Phoenix	Run 1	8	19600	2000	9.99	6.77	5.39	42	19.4	50.3
		Run 2	7.3	18600	2270	10.2	5.69	1.71	19.1	40.2	14.5
		Run 3	3.8	9860	411	9.86	6.02	1.64	21.6	16.3	19.3
CO4	BioChar Solutions	Run 1	8.5	19600	3270	9.99	15.2	5.39	28.9	19.4	89.1
		Run 2	>12	18600	2310	10.2	11.2	1.71	13.8	40.2	17
		Run 3	3.7	9860	839	9.86	7.58	1.64	14.4	16.3	16.5
		Run 4	5.5	2100	782	3	5.26	NA	NA	1.9	9.7
CO5	Agrosorb	Run 1	8.4	19600	2160	9.99	7.57	5.39	27.7	19.4	78
		Run 2	4.9	18600	2920	10.2	4.53	1.71	12.5	40.2	17.3
		Run 3	5.2	9860	586	9.86	7.36	1.64	12	16.3	11.7

Table 4. Infiltration Rates and PCB, Mercury, TOC, and SSC Results for each Sampling Run

a. Lost sample

b. Values are not used in further analysis due to unusually high initial infiltration rates

c. No Hg for Run 5 because three samples were successfully analyzed and only PCB required a replacement run.

3.3.1 PCBs

Both qualified and estimated influent and effluent PCBs concentrations are presented chronologically in Figure 5. The first two runs had similar influent concentrations and effluent quality was generally similar, despite sediment and turbidity increases in the first run. Effluent concentrations were generally lower for the third run, but influent concentration for the third run was nearly half that of the previous runs. The fourth run is the dilution run for only two columns. The fifth run is the replacement run for the first Sunriver run, which could not be analyzed for PCBs due to a broken sample bottle. All columns reduced concentrations of PCBs. This is expected because PCBs are largely bound to particles and media filters work well to remove these particles. Biochar-amended BSM seems to have improved treatment when compared to the control BSM (CO6), but a more explicit comparison is presented later in this report.

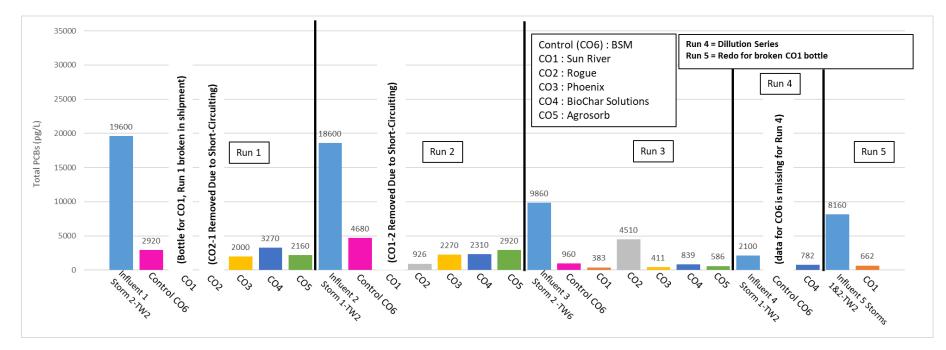


Figure 5. Total PCB Concentrations over Time

The data from Sunriver biochar-amended BSM (CO1) for test runs one and two, and the Rogue biocharamended BSM (CO2) for test run one have been censored because both of these columns experienced unusually high initial infiltration rates that is indicative of short-circuiting of the media. The infiltration rates were so high that water did not remain in the column at the beginning of a subsequent dose when water level and time would be recorded. To drain this fast, the Sunriver column would have had an infiltration rate above 12 inches per hour and the Rogue column above 20 inches per hour. Because the occurrence of high infiltration rates are not successively repeated for later runs or in the initial runs of other columns, these two measurements have been deemed not representative of a properly compacted media and are not included in further analysis in this report. All other runs had had initial infiltration rates of 3 to 9 in/hr. Run 2 for BioChar Solutions (CO4) exceeded 12 in/hr, but that data was used because the first run was in an acceptable range, signifying that the variation in hydraulic performance could not be attributed to a lack of media seasoning or insufficient compaction. Consequently, later hydraulic variability could be an important longer-term characteristic of the media that would be important to consider in the study.

Despite initial seasoning that fully saturated the media, small air pockets were observed in some columns and it is probable that none of the columns were fully saturated during runs, so infiltration values are not representative of saturated hydraulic conductivity. Air pockets were not fully removed during the sampling runs because, unlike the initial seasoning and hydraulic compaction, water was introduced from the top of the columns.

Figure 6 displays the influent and effluent concentrations for PCBs grouped by column, along with means. There are four influent values because run 5 for Sunriver (CO1) required a unique influent (8,160 pg/L) which replaced the run 1 influent value (19,600 pg/L). Mean effluent concentrations for all biochar-amended BSM are lower than the mean effluent concentration of the control BSM (CO6), with the Rogue biochar-amended BSM (CO2) average just under the control BSM average.

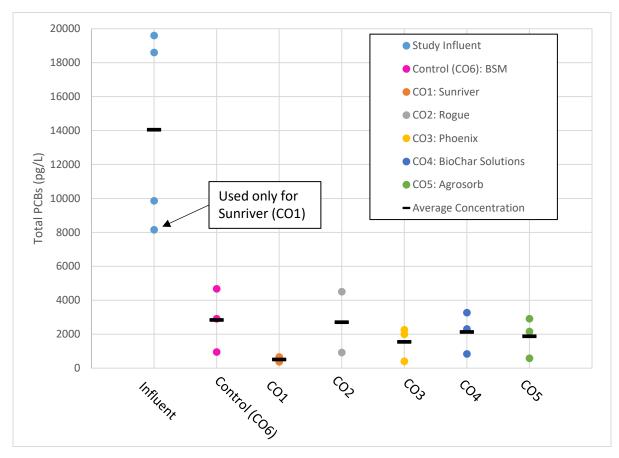


Figure 6. Observed Total PCB Concentrations for Undiluted Influent Runs and Column Test Media Effluent

Dividing each column effluent concentration by the paired influent concentration (Ce/Ci) normalizes the data to the influent and aids in comparison. In Figure 7, a red line has been placed at the mean value for the control BSM data. The noticeable difference between the Ce/Ci graph and the concentrations graph is that Rogue biochar-amended BSM (CO2) now has a higher mean than that of the control, while the average means for all other biochar-amended BSM are below the control. This is because each column had similar effluent values (4,680 and 4,510 pg/L, for the control and Rogue, respectively), but the influent concentration was substantially different (18,600 and 9,860 pg/L). This analysis indicates that all biochar may outperform the standard BSM mix with the possible exception of Rogue, but the data are limited. Further, the duplicate sample of run 3 for Rogue indicates it has better performance than the control but more data would be needed to show the primary sample was an outlier. The dilution run is not included in the analysis presented in Figure 6 because the lower influent concentration was not applied across all columns.

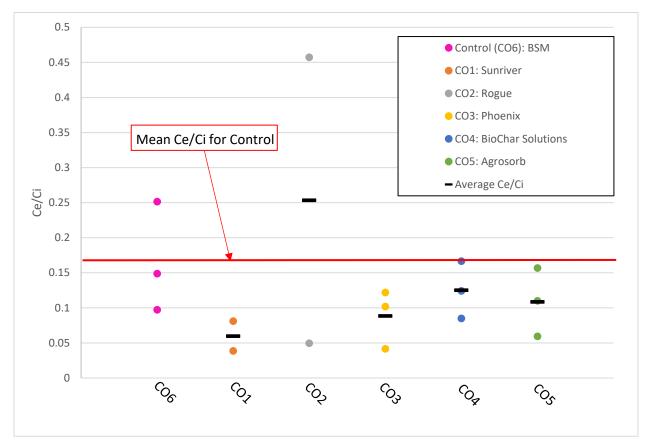


Figure 7. Ce/Ci Total PCB Concentrations for Column Test Media

Figure 8 compares the concentrations from this study to those from the CW4CB pilot site that tested BSM next to BSM with biochar. For ease of comparison, the influent concentrations from both field site influents are combined into one dataset under the label CW4CB Combined Influent. All five of the biochar-amended BSM columns are combined into one dataset under the label Study Biochar.

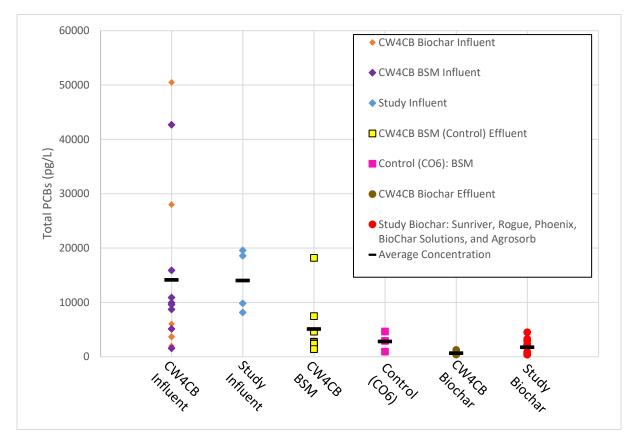


Figure 8. Total PCB Concentrations for CW4CB Pilot Sites Influent, Undiluted Influent Runs, CW4CB BSM Effluent, and Column Test BSM Effluent, CW4CB Biochar-amended Effluent, and Column Test Biochar-amended Effluent

The PCB concentrations in stormwater used in this study were within the range of PCB concentrations in influent at the CW4CB location that compared BSM and biochar-amended BSM. The range of influent concentrations for this study (9,860 pg/L to 19,600 pg/L) was narrower than the ranges of influent concentrations for both the CW4CB BSM site (1,560 pg/L to 42,700 pg/L) and the CW4CB biochar-amended site (1,990 pg/L to 50,500 pg/L). The range of influent concentrations from this study overlapped the middle range of the CW4CB grouped influent concentrations with the influent mean concentration from this study lower by 116 pg/L (less than 1% difference). The Control BSM effluent concentrations. However, the biochar-amended BSM effluent concentrations from this study were higher than the biochar-amended CW4CB study. As before, normalized effluent is examined for the case that effluent has some dependence on influent.

Figure 9 compares effluent concentrations normalized by their paired influent concentrations for the CW4CB BSM, study BSM, the CW4CB biochar, and all study biochars combined.

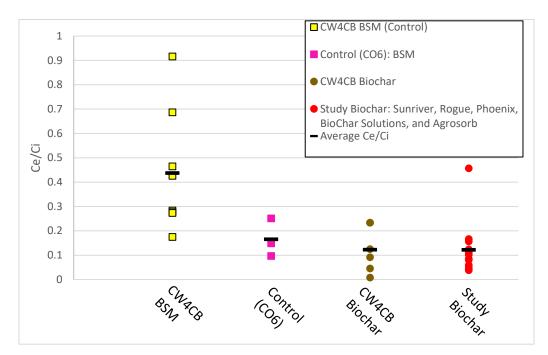


Figure 9. Ce/Ci Total PCB Concentrations for CW4CB Pilot Sites and All Biochar Test Media

Results from both CW4CB and this study indicate that PCB removal by biochar-amended BSM is less sensitive to influent concentrations than standard BSM. The influent-normalized performance (Ce/Ci) for the standard BSM (control) in this study appeared slightly improved compared to the CW4CB control BSM pilot site. In contrast, BioChar Solutions (CO4) influent-normalized performance (Ce/Ci) in this study was similar to the CW4CB biochar-amended pilot site (also using BioChar Solutions).

The improved performance suggests that conditions in the column tests were more ideal, or at least not worse, than field conditions. The normalized biochar data showed better agreement, but a secondary control to the field condition was planned to allow a more direct comparison between the same biochar. This was accomplished by using the same biochar (BioChar Solutions, CO4) as was used at the CW4CB site. The CW4CB biochar site and the column constructed with the same biochar (CO4) are compared in Figure 10, including the dilution run. Though data are limited, it appears that the CW4CB performance is slightly superior, which is in contrast to the comparison of standard BSM. This suggests that there are performance factors influencing the CW4CB site that were not replicated in this study, and there may be differences, besides biochar, contributing to the improvement of performance of the CW4CB biochar over the standard BSM. The CW4CB biochar site also tested a wider range of influent concentrations (Figure 8), which may be another cause for differing results.

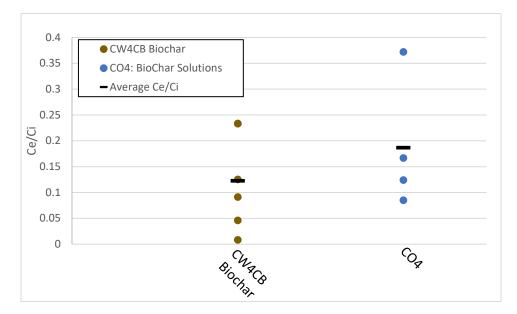


Figure 10. Ce/Ci Total PCB Concentrations for CW4CB Biochar Pilot Site and BioChar Solutions Test Media

All effluent concentrations are plotted against influent concentrations in Figure 11, and all media show removal of PCBs as evidenced by all points appearing under the 1:1 line representing no treatment. The effluent data appears stacked due to the common influent for three of the five runs. Overall, the data may be indicating an irreducible concentration somewhere around 300 pg/L (select Run 3 effluent concentrations) to 800 pg/L (Run 4 dilution effluent concentration), but only a single data point represents the lower end of the influent range.

The dilution run gives a rough estimation of whether biochar-amended BSM would be effective in treatment of concentrations that are lower than the sampled watershed. The single run was performed with stormwater diluted at a one-to-nine ratio to assess one biochar-amended BSM (BioChar Solutions) and the control BSM (The control BSM analysis is not available). The biochar-amended BSM continued to show reduction potential, but the removal relative to influent was not as great, indicating that the influent value may be approaching an irreducible concentration. Even though this analysis is on the most limited basis, the data indicate that biochar may also show benefits at lower concentrations. However, the variation in water column concentration is much larger than that tested in this study. The range of the total PCBs concentration of influent samples was compared to the range found in a summary of water column PCBs concentration data in the Bay Area (McKee et al. 2015). Of 31 locations sampled over several years, seven had concentrations lower than the range of the media study, 16 were within the range, and eight were above. Most of these monitoring locations were in-channel rather than higher upstream in the drainage system where BSM is more traditionally used. Consequently, actual concentrations at upstream BSM locations could vary even more since discrete PCB source areas should get diluted as other cleaner water and sediment combine downstream. Gilbreath et al. (2018) reported a maximum of 160,000 pg/L, a minimum of 533 pg/L, and a median stormwater concentration of 8,923 pg/L, but that is also based on many of the same in-channel monitoring locations. As a result, the biochars that show some promise for further field testing were exposed to a fairly small range of concentrations that would likely be found at random green infrastructure locations.

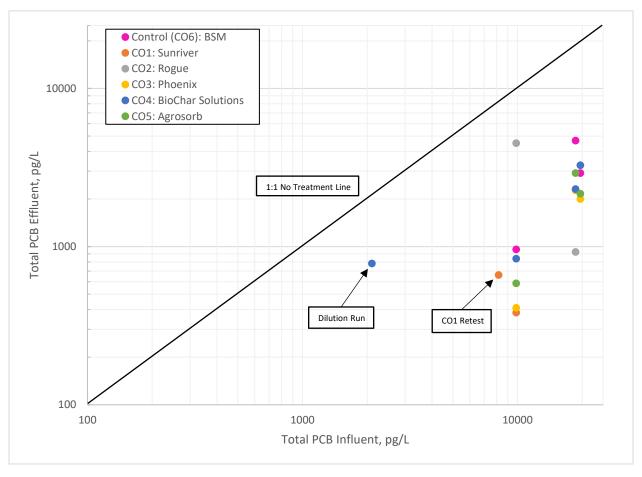


Figure 11. Total PCB Concentrations for all Study Effluent versus Influent

3.3.2 Mercury

Figure 12 shows mercury concentrations for all four test runs in chronological order. Phoenix (CO3) and Agrosorb (CO5) biochar-amended BSM show mercury removal across all three test runs. All biocharamended BSM shows improved treatment over the standard BSM, except for BioChar Solutions (CO4) in the first and second run.

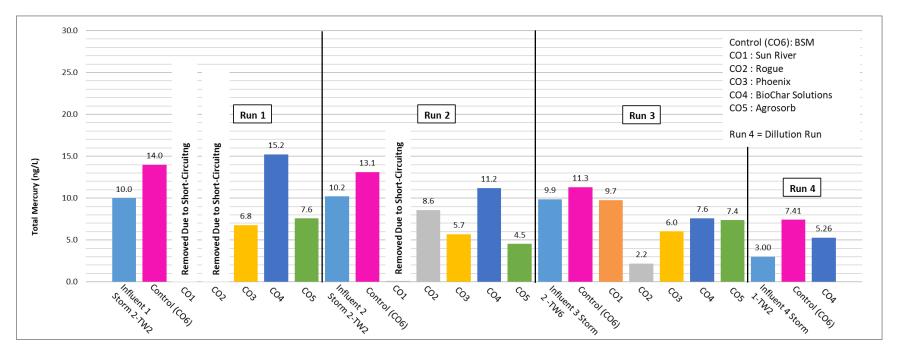


Figure 12. Mercury Concentrations over Time

As stated in the PCB results section, Sunriver biochar-amended BSM (CO1) had unusually high infiltration rates for the first and second test runs and Rogue biochar-amended BSM (CO2) had high rates for the first test run. These data points were removed from the total PCBs dataset for all analyses and were also removed from the mercury dataset.

The mercury export by the control BSM (CO6) for all test runs could indicate that the media itself is releasing mercury. Biochar-amended BSM contain less BSM by volume, which may partially explain the lower mercury concentrations for those columns. Mercury export will likely decrease at locations with higher influent concentrations, and mercury removal is possible if the influent concentration is substantially higher than the export concentration. Gilbreath et al. (2018) reported a median stormwater concentration of 29.2 ng/L, which is almost three times the influent concentration in the three primary test runs.

3.3.3 Other Constituents

Total PCB and mercury concentrations were compared to SSC and TOC respectively. Turbidity was collected during sampling and seasoning runs to provide immediate insight into the performance of the filters throughout the experiment.

Figure 13 shows the relationship between total PCBs and SSC divided into two groups, Influent and Effluent samples.

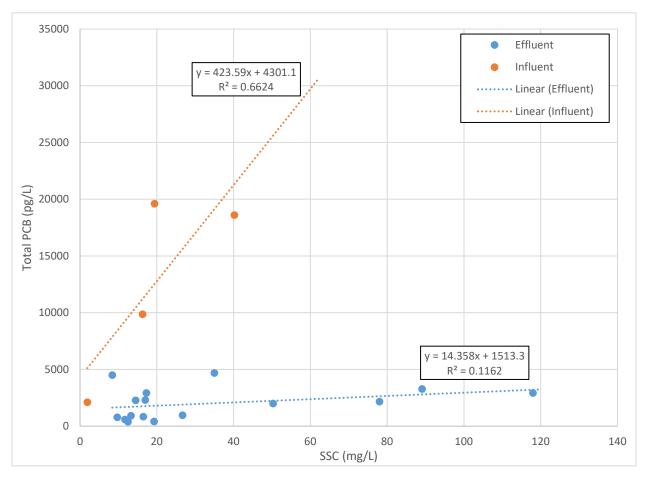


Figure 13. Comparison of Total PCB to SSC Concentrations

Figure 13 confirms the relationship between PCBs and SSC in influent samples (R² value of 0.66). The effluent samples have a much shallower regression line with a very low R² value of 0.116. This poor correlation is also evidence of contribution of solids from the media rather than the passing of influent solids through the media to the effluent sample, assuming low PCB concentration in the media.

There is no expected correlation between TOC and mercury. It is presented for consideration in cases where methylation is a concern. Figure 14 presents total mercury versus TOC. Normalizing the TOC effluent concentrations by dividing them by influent concentrations shows that TOC at least doubles from influent to effluent, with more typical increases around eight times (Figure 15). This increase is likely from both loss of BSM and leaching of dissolved organic content. Figure 16 shows normalized SSC effluent, which demonstrates substantial export of media, but not as much as TOC. The higher export of TOC is likely due to TOC analysis accounting for particulate and dissolved organic content, while SSC only measures particulates. SSC and TOC increases in these column tests should not be construed as representing field performance. To minimize the concentration reduction in the underdrain, a thin (2-inch) layer of washed coarse sand was used. This underlying coarse sand layer may have exacerbated loss of media solids and consequential increase in TOC and SSC compared to a traditional underdrain with more depth, more fines, and more restriction to infiltration rate.

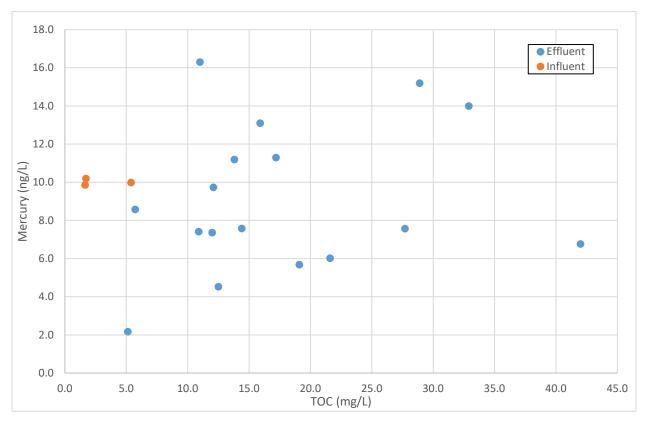


Figure 14. Comparison of Mercury to TOC Concentrations

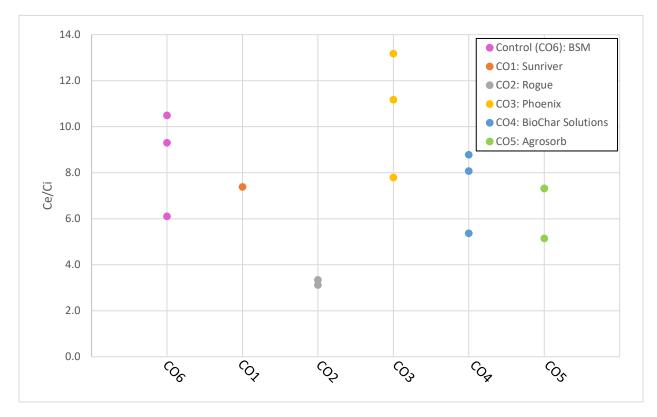


Figure 15. Ce/Ci TOC Concentrations for Column Test Media

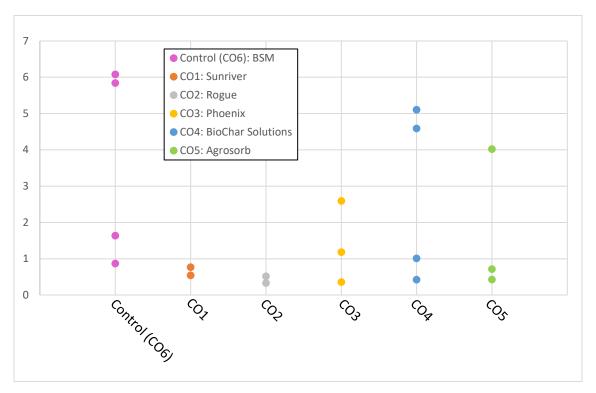
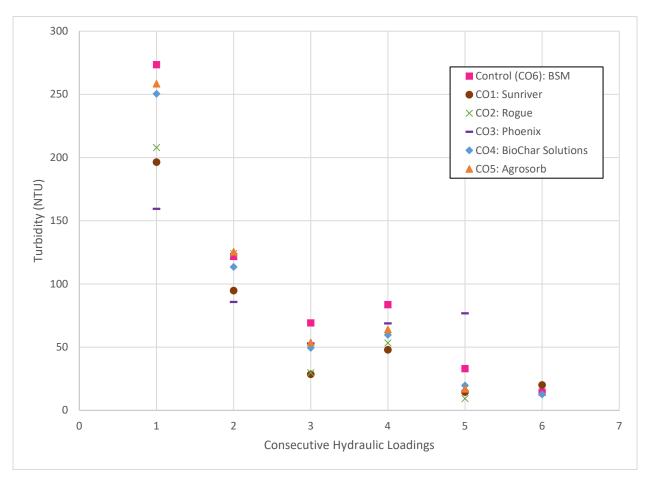
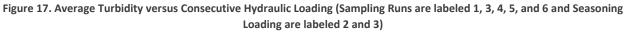




Figure 16. Ce/Ci SSC Concentrations for Column Test Media

Figure 17 shows turbidity measurements for all columns in chronological order over all runs (sampling and seasoning). During the first sampling test run, it was observed that the effluents of all columns had high turbidity and were not representative of a well-established media (see Table 4 for all concentrations). Two seasoning runs were performed next, and the effluent turbidity of all columns stabilized by the end of the second run. Turbidity data is in Appendix F.

3.4 STATISTICAL TESTS

The statistical analysis (Mann-Whitney U test) on normalized effluent PCB concentrations was unable to establish statistical significance at 90% confidence among media type due to the small sample size, even when grouped by class (e.g., with biochar and without). This also held for mercury. Consequently, further statistical tests were not pursued.

4 CONCLUSIONS AND RECOMMENDATIONS

The goal of this study, as identified in the Monitoring Study Design (Appendix A), was to identify biochar media amendments that improve PCB and mercury load removal by bioretention BMPs. The primary management question supporting that goal was: "Are there readily available biochar-amended BSM that provide significantly better PCB and mercury load reductions than standard BSM and meet MRP infiltration rate requirements?" And the particular purpose of the laboratory testing in this study was: "screen alternative biochar-amended BSM and identify the most promising for further field testing." This study's use of bench scale column testing suggests that there may be some utility in pre-testing materials before use in field applications to ensure that they are likely to meet infiltration requirements

at the project site, as well as provide some preliminary evidence of improved or at least equivalent pollutant removal as standard BSM.

4.1 CONCLUSIONS

Nine biochar were readily available from suppliers in the Western United States, and five were tested in this study to compare their impacts on PCBs and mercury concentrations in effluent. All five biochar-BSM blends showed evidence of overall improved PCB and mercury performance compared to the standard BSM for influent concentrations ranging from 9,860 pg/L to 19,600 pg/L⁸. Though performance varied, no biochars could be conclusively eliminated from consideration in future field study. The results support the following observations:

- Phoenix, Sunriver, BioChar Solutions, and Agrosorb appear to offer improved PCB removal compared to standard BSM and the other biochar-amended BSM.
- Phoenix and Agrosorb appear to offer improved mercury removal compared to standard BSM and the other biochar-amended BSM.
- Based on a single run on one column to explore removal at lower influent concentrations, biochar-amended BSM provided removal of PCBs at an influent concentration of 2,100 pg/L. BSM performance at this lower influent concentration could not be reported due to the sample being lost. Neither BSM nor biochar-amended BSM provided removal of mercury at an influent concentration of 3.00 ng/L.
- High initial infiltration rates (associated with short-circuiting and higher pore velocities) correlated to poor performance. Three of four runs with high infiltration rates correlated with poor reduction of PCBs and mercury. All three runs with poor performance (two of which were on one column) occurred prior to a run with a moderate infiltration rate (< 12 in/hr).
- Saturated hydraulic conductivity had poor correlation to the falling head infiltration rates estimated during the water quality sampling runs so biochar that were eliminated from column testing based on saturated hydraulic conductivity tests may be candidates for future testing.

Because the study was a screening level analysis of biochars for potential further study, the limited data for each biochar did not allow for exploration of several factors that are presented in the following section for consideration in development of future study designs.

4.2 RECOMMENDATIONS

Based on this study, biochar shows promise in marginally increasing performance for PCB and mercury removal, however, increased benefit relative to increased cost was not analyzed. With such limited data, meaningful benefit-cost analysis may require collection of substantial field data. Because of the marginal increase in performance, standard BSM should be a component of future side-by-side testing of biochar-amended BSM. Sample size should be selected to provide suitable statistical power to better understand and qualify the performance differences. Other study considerations include long-term performance, media life expectancy, performance for other pollutants, impacts to plant health and water use, and maintenance ramifications. The study team developed the following recommendations for potential biochar testing.

⁸ The lowest influent concentration for Sunriver (CO1) was 8,160 pg/L.

4.2.1 Biochar Selection

For enhanced PCB removal, biochar candidates for further field testing are Phoenix, Sunriver, BioChar Solutions, or Agrosorb. If mercury removal is a design consideration, Phoenix and Agrosorb should be selected over Sunriver and BioChar Solutions. All biochar-amended BSM have falling head drain times in the column tests that were faster than the control BSM, so hydraulic performance should not influence selection. Other factors, such as cost and local sourcing should be considered in final biochar selection. Due to a lack of differentiation of performance and a lack of correlation between performance and cost, less expensive biochar that were not tested here may offer higher benefit/cost. Column tests could provide data for an indication of benefit/cost prior to field testing, but more data is recommended to quantify performance than what was specified in this study for screening-level analysis.

4.2.2 Site Selection

The results of this study could also have implications on site selection for future study. As a general principal, study locations should represent concentrations typical of watersheds that will be receiving green infrastructure, unless those concentrations are below the irreducible concentration. The data indicate that irreducible PCBs concentrations may be occurring around 1,000 pg/L. It is unclear for total mercury. Data from other studies in the San Francisco Bay Area should be consulted to develop a better estimate of irreducible concentrations so future study can avoid areas that are too clean for the technology to be effective for these pollutants.

4.2.3 Outlet Control

Outlet control may be the most important factor in performance. Outlet controls minimize shortcircuiting (preferential flow paths) and they increase contact time. Elevated outlets can also increase contact time in between storm events, but this may also affect mercury speciation by providing an anoxic environment where methylation may occur. Further study should control for both contact time and presence of biochar to determine which has the greatest effect in field conditions. Further investigation into contact time (i.e., infiltration rates) and underdrain behavior at the CW4CB biochar location may also be helpful in development of future study plans.

4.2.4 Saturated Hydraulic Conductivity Testing Requirements

The representativeness and utility of the saturated hydraulic conductivity test under typical compaction conditions for highly organic and friable material may be a matter worth discussion within the appropriate BASMAA bioretention working groups. Use of outlet control could obviate the verification of the upper-end conductivity. A lower-end conductivity may still be recommended to assure that the outlet control governs flow rather than the media.

5 REFERENCES

BASMAA. 2016. Specification of soils for Biotreatment of Bioretention Facilities. Bay Area Stormwater Management Agencies Association.

BASMAA. 2017. Clean Watersheds for a Clean Bay Project Report, Final Report. Bay Area Stormwater Management Agencies Association. May 2017.

Gilbreath, A.N., Wu, J., Hunt, J.A., and McKee, L.J., 2018. Pollutants of concern reconnaissance monitoring final progress report, water years 2015, 2016, and 2017. A technical report prepared for the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP). Contribution No. 840. San Francisco Estuary Institute, Richmond, California.

Gomez-Eyles, J. L., C. Yupanqui, B. Beckingham, G. Riedel, C. Gilmour, and U. Ghosh. 2013. "Evaluation of Biochars and Activated Carbons for In Situ Remediation of Sediments Impacted with Organics, Mercury, and Methylmercury." *Environ. Sci. Technol.*, 47, 13721–13729.

Kitsap County. 2015. Analysis of Bioretention Soil Media for Improved Nitrogen, Phosphorus and Copper Retention, Final Report. Kitsap County Public Works, Washington.

McKee, L.J. Gilbreath, N., Hunt, J.A., Wu, J., and Yee, D., 2015. Sources, Pathways and Loadings: Multi-Year Synthesis with a Focus on PCBs and Hg. A technical report prepared for the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP), Sources, Pathways and Loadings Workgroup (SPLWG), Small Tributaries Loading Strategy (STLS). SFEI Contribution No. 773. San Francisco Estuary Institute, Richmond, CA.

SFB Regional Water Board. 2015. Municipal Regional Stormwater NPDES Permit, Order No. R2-2015-0049. NPDES Permit No. CAS612008. November 19, 2015

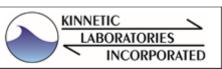
POC Monitoring for Management Action Effectiveness

Monitoring Study Design Final, September 2017

Prepared for:

Bay Area Stormwater Management Agencies Association

Prepared by:


1410 Jackson Street Oakland, California 94612

WATER PROGRAMS SACRAMENTO STATE

6000 J Street Sacramento, California 95819

4911 Central Avenue Richmond, California 94804

307 Washington Street Santa Cruz, California 95060

Contents

	List of Tables	3
	List of Figures	3
1.	Introduction	
2.	Problem Definition	5
	2.1 HDS Units	5
	2.2 Bioretention	7
3.	Study Goals	
	3.1 Primary Management Questions	
	3.2 Secondary Management Questions	
	3.3 Level of Confidence	
4.	Study Design Options	
	4.1 Influent-Effluent Monitoring	
	4.2 Sediment Sampling	
	4.3 Before-After Monitoring	
5.	Primary Data Objectives	
-	5.1 Data Objective 1: Annual Loads Captured by HDS Units	
	5.2 Data Objective 2: Loads Reduced by Biochar-Amended BSM	
6.	BMP Processes and Key Study Variables	
	6.1 HDS Units	
	6.2 Bioretention	
7.	Monitoring and Sampling Options	
	7.1 HDS Units	
	7.1.1 Influent Quality	
	7.1.2 BMP Design and Hydraulic Loading	
	7.1.3 Operation and Maintenance	
	7.2 Enhanced Bioretention	
	7.2.1 Influent Quality	
	7.2.2 BMP Design and Hydraulic Loading	
	7.2.3 Media Type and Properties	
	7.2.4 Operation and Maintenance Parameters	
	7.3 Uncontrolled Variables and Study Assumptions	
8.	Final Study Design	
	8.1 Statistical Testing & Sample Size	
	8.2 Constituents for Sediment Analysis	
	1 – Only total mercury analyzed. Methyl mercury is not	
	relevant for SF Bay TMDL.	
	8.3 Constituents for Water Quality Analysis	
	1 – Only total mercury analyzed. Methyl mercury is not	
	relevant for SF Bay TMDL.	
	8.4 Budget and Schedule	
	8.5 Optimized Study Design	
	8.6 Adequacy of Study Design	
9.	Recommendations for Sampling and Analysis Plans	

	9.1	HDS Monitoring	39
		Enhanced Bioretention Media Testing	
		Data Quality Objectives	
10.		ences	

List of Tables

Table 2.1	Summary of Data Collected from Leo Avenue HDS during October, 2014	Annual
Cleanout Event		6
Table 2.2	Summary of Bay Area Drain Inlet Sediment Concentration Data	6
Table 7.1	HDS Sampling Design based on Watershed Land Use	22
Table 7.2	Percent of Land Use in HDS Watershed Areas	23
Table 7.3	HDS Sampling Design based on Predominant Land Use	24
Table 7.4	HDS Sampling Design based on Predominant Land Use and HDS Size	25
Table 7.5	Example Sampling Design for Laboratory Column Experiments	28
Table 8.1	Selected Constituents for HDS Sediment Monitoring	32
Table 8.2	Selected Aqueous Constituents for Media Testing in Laboratory Column	s 33
Table 8.3	HDS Monitoring Study Design	35
Table 8.4	Enhanced BSM Testing Study Design	

List of Figures

Figure 2.1 Cumulative Frequency Distribution of Total PBCs Influent Concentrations for	r
Bioretention Media with and without Biochar	8
Figure 4.1 Typical BMP system and pollutant pathways	. 12
Figure 4.2 Comparison of two hypothetical non-overlapping BMP regressions	. 14
Figure 7.1 Land Use based PCB and Mercury Loading based on BASMAA Integrated	
Monitoring Reports (SFEI, 2015)	. 22

1. Introduction

Discharges of PCBs and mercury in stormwater have caused impairment to the San Francisco Bay estuary. In response, the Regional Water Board adopted total maximum daily loads (TMDLs) to address these pollutants of concern (POC) (SFBRWQCB, 2012). Provisions C.11 and C.12 the Municipal Regional Stormwater NPDES Permit, MRP (SFBRWQCB, 2015) implement the Mercury and PCB Total Maximum Daily Loads (TMDLs) for the San Francisco Bay Area. These provisions require mercury and PCB load reductions and the development of a Reasonable Assurance Analysis (RAA) demonstrating that control measures will be sufficient to attain the TMDL waste load allocations within specified timeframes. Provision C.8.f of the MRP supports implementation of the mercury and PCB TMDLs provisions by requiring that Permittees conduct pollutants of concern (POC) monitoring to address the five priority information needs listed below.

1. *Source Identification* – identifying which sources or watershed source areas provide the greatest opportunities for reductions of POCs in urban stormwater runoff;

2. *Contributions to Bay Impairment* – identifying which watershed source areas contribute most to the impairment of San Francisco Bay beneficial uses (due to source intensity and sensitivity of discharge location);

3. *Management Action Effectiveness* – providing support for planning future management actions or evaluating the effectiveness or impacts of existing management actions;

4. *Loads and Status* – providing information on POC loads, concentrations, and presence in local tributaries or urban stormwater discharges; and

5. *Trends* – evaluating trends in POC loading to the Bay and POC concentrations in urban stormwater discharges or local tributaries over time.

Table 8.2 of Provision C.8.f identifies the minimum number of samples that each MRP Countywide Program (i.e., Santa Clara, San Mateo, Alameda, and Contra Costa) must collect and analyze to address each monitoring priority. Although individual Countywide monitoring programs can meet these monitoring requirements, some requirements can be conducted more efficiently and will likely yield more valuable information if coordinated and implemented on a regional basis. The minimum of eight (8) PCB and mercury samples required by each Program to address information priority #3 is one such example. Findings from a regionallycoordinated monitoring effort would better support development of the RAA.

This Study Design describes monitoring and sample collection activities designed to meet the requirements of information priority #3 of Provision C.8.f of the MRP. The activities planned include field sampling of hydrodynamic separators and laboratory experiments with amended bioretention soils. Study planning is important to ensure that the right type of data are collected and there is a sufficient sample size and power to help address the management questions within the available time and budget constraints. Essential components of the study plan include describing problems, defining study goals, identifying important study parameters, specifying methodologies, and validating and optimizing the study design.

2. Problem Definition

Studies conducted to date have identified PCB source areas in the Bay Area where pollutant management options may be feasible and beneficial. Enhanced municipal operational PCB management options (e.g., street sweeping, storm drain line cleanout) have the advantage of being familiar and well-practiced, address multiple benefits, and the cost-benefit may exceed that for stormwater treatment (BASMAA, 2017a). Site-specific stormwater treatment via bioretention, however, is now commonly implemented to meet new and redevelopment (MRP Provision C.3) requirements. An added benefit of redevelopment is that PCB-laden sediment sources can be immobilized. However, many areas where certain land uses or activities generate higher PCB concentrations in runoff are unlikely to undergo near-term redevelopment, and instead may only be subject to maintenance operations or stormwater BMP retrofit projects implemented by the municipality. Consequently it is valuable to maximize cost effective PCB removal benefit of both operations and maintenance, and stormwater treatment.

Two treatment options that have the potential to reduce PCB discharges include hydrodynamic separators (HDS units) and enhanced bioretention filters. These options were pilot-tested in the Clean Watersheds for a Clean Bay (CW4CB) Project (BASMAA, 2017a). HDS units are being implemented for trash control throughout the Bay Area and collect sediment to some extent along with trash and other debris. Quantifying PCB mass removed by these units will help MRP Permittees account for the associated load reductions. For these and other control measures, an Interim Accounting Methodology has been developed based on relative mercury and PCBs yields from different land use categories (BASMAA, 2017c). Bioretention is a common treatment practice for new development and redevelopment in the San Francisco Bay Area, so enhancing the performance of bioretention is also attractive.

At this time reducing mercury loads in stormwater runoff is a lower priority than PCBs load reduction. The assumption during the MRP 2.0 permit term is that actions taken to reduce PCBs loads in stormwater runoff are generally sufficient to address mercury. Therefore, optimizing stormwater controls for PCBs is the primary focus in this study.

2.1 HDS Units

Limited CW4CB monitoring conducted at two HDS sites was used to calculate the mass of PCBs in trapped sediment (BASMAA, 2017a). The two sites sampled were Leo Avenue in San Jose and City of Oakland Alameda and High Street. The Leo Avenue HDS unit treats runoff from approximately 178 acres of watershed with a long history of industrial land uses, including auto repair and salvage yards, metal recyclers, and historic rail lines. The City of Oakland Alameda and High Street HDS has a tributary drainage area of approximately 35 acres with a high concentration of old industrial and commercial land uses, including historic rail lines.

Sampling of the two CW4CB HDS units was opportunistic and associated with scheduled cleanouts. Two sump cleanout events took place in August 2013, one at the Leo Avenue HDS unit and one at the Alameda and High Street HDS unit. However, due to a lack of captured sediment the samples collected were aqueous phase samples instead of sediment samples. An additional cleanout took place at Leo Avenue in October 2014. A sump sediment sample

collected and analyzed during this cleanout contained total PCB concentrations of 1.5 mg/kg and mercury concentrations of 0.33 mg/kg for sediment less than 2 mm in size, and estimated annual total PCB and mercury removals were 375 mg and 82.4 mg, respectively (Table 2.1). The HDS sediment concentrations are comparable to previous Leo Avenue watershed measurements in sediments from piping assessed via manholes, drop inlets/catch basins, streets/gutters, and private properties (ND to 27 mg/kg for PCBs and 0.089 to 6.2 mg/kg for mercury) (BASMAA, 2014). At the Alameda and High Street HDS unit, tidal influences of Bay water prevented additional monitoring.

Parameter	Result	Units
Volume of Sediment Removed	4	Cubic yards
Total PCBs Concentration	1.5	mg/Kg
Mercury Concentration	0.33	mg/Kg
Bulk density	0.67	g/cm ³
Percent solids	39	%
Particle Size (< 2 mm)	31	%

Table 2.1 Summary of Data Collected from Leo Avenue HDS during October, 2014 Annual Cleanout Event

There are no known published studies characterizing HDS sediment for PCBs or mercury, so the Leo Avenue results are compared to relevant drain inlet/catch basin sediment studies. In the Bay Area, different municipalities have collected and analyzed drain inlet cleaning sediment samples. The analytical results for these drain inlet sediment samples are summarized in Table 2.2 (BASMAA, 2014). As can be seen from Table 2.2, the Leo Avenue sediment PCB concentrations are higher than those measured in Bay Area drain inlet sediment by up to an order-of-magnitude, but mercury concentrations are comparable.

		PCBs Mercury				
Municipality	No. Drain Inlet Sediment Samples	Mean PCB DI Sediment Concentrati on (mg/Kg)	Median PCB DI Sediment Concentrati on (mg/Kg)	No. Drain Inlet Sediment Samples	Mean Mercury DI Sediment Concentrati on (mg/Kg)	Median Mercury DI Sediment Concentrati on (mg/Kg)
Fairfield & Suisun	8	0.244	0.055	16	0.510	0.228
San Mateo County Municipalities	29	0.318	0.123	28	0.160	0.147
San Carlos	22	0.267	0.129	25	0.167	0.147
Alameda County Municipalities	47	0.294	0.122	75	0.384	0.204
Berkeley	8	0.147	0.122	11	0.343	0.241
Oakland	24	0.402	0.155	28	0.539	0.297
San Leandro	11	0.219	0.106	21	0.230	0.151
Contra Costa County						
Municipalities	46	0.515	0.168	48	0.413	0.308
Richmond	31	0.736	0.482	28	0.460	0.349

 Table 2.2 Summary of Bay Area Drain Inlet Sediment Concentration Data

 (Based on readily available data; see BASMAA (2016b) for additional summaries for street and storm drain sediment)

Notes:

Mean and median drain inlet sediment concentrations were calculated from the SFEI database (SFEI 2010, KLI and EOA 2002; City of San Jose and EOA 2003).

Monitoring by the City of Spokane, Washington, showed total PCBs in catch basin sediment ranged between 0.025 mg/kg and 1.7 mg/kg for an industrial area with known PCB contamination (City of Spokane, 2015). A City of San Diego study characterized sediments in eight catch basins in a 9.5 acre area of downtown San Diego classified as high density mixed use with roads, sidewalks, and parking lots (City of San Diego, 2012). Concentrations of common aroclors in the catch basin sediments varied from about 0.040 to over 0.9 mg/kg. Monitoring by the City of Tacoma showed PCB concentrations in stormwater sediment traps varied from nondetect to a maximum near 2 mg/kg (City of Tacoma, 2015). The highest PCB concentrations in catch basin sediments ranged from 16 mg/kg in downtown Tacoma to 18 mg/kg in East Tacoma. These published drain inlet/catch basin studies show that PCB and mercury concentrations can vary substantially in storm drain sediments depending on the characteristics of the watershed.

Sampling of captured sediment at the Leo Avenue HDS in San Jose highlighted the potential of HDS maintenance as a management practice for controlling PCB and mercury loads. The BASMAA Interim Accounting Methodology that is currently being used to calculate load reductions assumes a default 20% reduction of the area-weighted land-used based pollutant yields for a given catchment. This default value was based on average percent removal of TSS from HDS units based on analysis of paired influent/effluent data. However, significant data gaps remain in determining the effectiveness of this practice and expected load reductions. HDS sediment sampling has been limited to a few samples. PCB concentrations in the Leo Avenue HDS sample were much higher than average concentrations in Bay Area drain inlet sediment. Drain inlet/catch basin sediment sampling by others suggests that sediment PCB and mercury concentrations can vary substantially from watershed to watershed. The monitoring performed to date is not sufficient to characterize pollutant concentrations of sediment captured in HDS units that drain catchments with different loading scenarios (e.g., land-uses, stormwater volumes, etc.), nor to estimate the percent removal based on the pollutant load captured by the HDS unit. Additional sampling is needed to better quantify the PCB and mercury loads capture by these devices, and calculate the percent removal achieved. Consequently, guantification of PCBs removed at other HDS locations and evaluation of the percent load reduction achieved is needed to provide better estimates of PCB load reductions from existing HDS unit maintenance practices.

2.2 Bioretention

The results of monitoring the performance of bioretention soil media (BSM) amended with biochar at one CW4CB pilot site suggest that the addition of biochar to BSM is likely to increase removal of PCBs in bioretention BMPs. Biochar is a highly porous, granular material similar to charcoal. In the CW4CB study, the effect of adding biochar to BSM was evaluated using data collected from two bioretention cells (LAU 3 and LAU 4) at the Richmond PG&E Substation 1st and Cutting site. At this site, cell LAU 3 contains standard engineered soil mix (60% sand and 40% compost) while cell LAU 4 contains a mix of 75% standard engineered soil and 25% pine wood-based biochar (by volume).

Figure 2.1 shows a cumulative frequency plot of influent and effluent PCB concentrations for the two bioretention cells. Although influent PCB concentrations at the two cells were generally similar, effluent PCB concentrations were much lower for the enhanced bioretention

cell (LAU 4) compared to those for the standard bioretention cell (LAU 3). The results for total mercury were different from those for PCBs, with both cells demonstrating little difference between influent and effluent concentrations. These CW4CB monitoring results suggest that the addition of biochar to BSM may increase removal of PCBs but not mercury from stormwater. However, analysis of methylmercury indicated that BSM may encourage methylation while biochar may mitigate the effect such that there is no substantial transformation of mercury to methylmercury. Tidal influences at 1st and Cutting also may be a contributing factor that should be controlled in future study.

The majority of biochar research conducted to date has focused on agricultural applications, where biochar has been shown to improve plant growth, soil fertility, and soil water holding, especially in sandier soils. Only a handful of field-scale projects have investigated the effects of biochar in stormwater treatment and no known field studies have investigated removal of mercury or PCBs from stormwater by biochar-amended media.

A recent laboratory study on the effect of biochar addition to contaminated sediments showed that biochar is one to two orders of magnitude more effective at removing PCBs from soil pore water than natural organic matter, and may be effective at removing methylmercury but not total mercury (Gomez-Eyles et al., 2013). A laboratory column testing study to determine treatment effectiveness of 10 media mixtures showed that a mixture of 70% sand/20% coconut coir/10% biochar was one of the top performers and cheaper than similarly effective mixtures using activated carbon (Kitsap County, 2015). Liu et al (2016) tested 36 different biochars for their potential to remove mercury from aqueous solution and found that concentrations of total mercury decreased by >90% for biochars produced at >600°C but about 40–90% for biochars produced at 300°C.

Figure 2.1 Cumulative Frequency Distribution of Total PBCs Influent Concentrations for Bioretention Media with and without Biochar

Monitoring of two bioretention cells at the Richmond PG&E Substation 1st and Cutting pilot site showed greater PCB removal for a biochar-amended BSM than that for standard BSM.

However, to date sampling has been limited to one test site and one biochar amendment, and the operational life of the amended media is unknown. **Besides the CW4CB study, there are no published literature studies on field PCB and mercury removal for biochars. Additional field testing can confirm the effectiveness of bioretention implementation in more typical conditions, and laboratory testing is recommended as an initial screening to help identify potential biochars for field testing.** Laboratory testing using actual stormwater from the Bay Area can be a cost-effective screening tool to identify biochar media that are effective for PCB removal, do not exacerbate mercury problems or even improve mercury removal, and meet operational requirements, including an initial maximum infiltration rate of 12 in/h and a minimum long-term infiltration capacity of 5 in/h.

3. Study Goals

The goals of this study identified from the problem statements are as follows:

- 1. Quantify annual PCB and mercury load removals during maintenance (cleanout) of HDS units
- 2. Identify biochar media amendments that improve PCB and mercury load removal by bioretention BMPs

To reach these goals, the following management questions are prioritized as primary or secondary management questions.

3.1 Primary Management Questions

A properly conceived study will address the study goals in a manner that supports planning for future management actions or evaluating the effectiveness or impacts of existing management actions. The resulting primary management questions focus on performance and are:

- 1. What are the average annual PCB and mercury loads captured by existing HDS units in Bay Area urban watersheds?
- 2. Are there readily available biochar-amended BSM that provide significantly better PCB and mercury load reductions than standard BSM and meet MRP infiltration rate requirements?

The MRP infiltration rate requirements are described in Provision C.3.c of the MRP (SFBRWQCB, 2015). This provision states the following: "Biotreatment (or bioretention) systems shall be designed to have a surface area no smaller than what is required to accommodate a 5 inches/hour stormwater runoff surface loading rate, infiltrate runoff through biotreatment soil media at a minimum of 5 inches per hour, and maximize infiltration to the native soil during the life of the Regulated Project. In addition to the 5 inches/hour MRP requirement, for non-standard BSM the recently updated BASMAA specification requires "certification from an accredited geotechnical testing laboratory that the bioretention soil has an infiltration rate between 5 and 12 inches per hour" (BASMAA, 2016a).

3.2 Secondary Management Questions

Secondary management questions are helpful, but they are not critical to the usefulness of the study. Study scope, budget, and schedule constraints limit the extent to which they can be addressed. Possible secondary management questions include the following:

HDS

- 1. How does sizing of HDS units affect annual PCB and mercury loads captured in HDS sediment?
- 2. Do design differences between HDS units (e.g., single vs multiple chambers) result in significant differences in pollutant capture?
- 3. How does the frequency of cleanout of HDS units affect load capture?

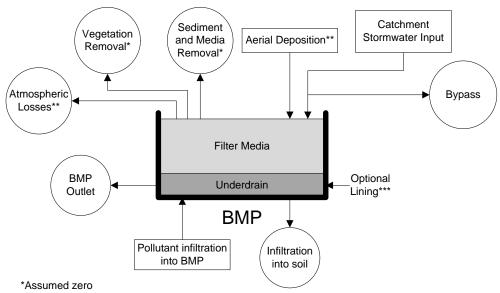
- 4. If present, does washout of HDS sediment depend on remaining sediment volume capacity?
- 5. Are there significant concentrations of PCBs in the pore (interstitial) water of HDS sediment?
- 6. Are PCBs and mercury removal correlated to removal of better-studied surrogate constituents, such as TSS?
- 7. Is there evidence of increased methylation within HDS sediment chambers?

Enhanced Bioretention

- 1. How does biochar performance vary with feedstock?
- 2. How does biochar performance vary with manufacturing method?
- 3. Should the biochar be mixed with the BSM or provided as a separate layer below the standard BSM?
- 4. Does biochar have leaching issues or require conditioning before use?
- 5. How long does the improved performance of biochar-amended BSM last?
- 6. Does the promising media increase methylation of mercury?
- 7. What is the expected increase in BSM costs due to inclusion of media amendment?
- 8. Does knowledge of the association of PCBs and mercury to specific particle sizes improve understanding of performance?
- 9. Is mass removal comparable to that expected from a conceptual understanding of removal mechanisms?

The above secondary management questions are provided as examples, and the questions answered will depend on budget, schedule, and actual data collected.

3.3 Level of Confidence


The level of confidence in the answers to the above management questions depends on sample representativeness and size. Samples are considered representative if they are derived from sites or test conditions that are representative of the watershed or treatment being considered. A power analysis can be used after monitoring commences or at the end of a study to determine if sample size is sufficient to draw statistically valid conclusions at a pre-selected level of confidence. Power analysis can also be used prior to study commencement, but its usefulness in estimating sample size requirements may be limited by lack of knowledge of variability in the biochar-amended BSM data to be collected.

Level of confidence can also be assessed in terms of consistency of treatment (e.g., a particular biochar consistently shows better removals than other biochars for a variety of stormwaters), which can be assessed with non-parametric approaches such as a sign-rank test.

Data analysis approaches are discussed in Section 8.5.

4. Study Design Options

An overview of the available study designs is presented here to understand the methods, value, and constraints of each design. This information is helpful in identifying which study designs are appropriate for the various management questions. To answer the primary management questions, the mass of pollutants captured must be quantified. This is accomplished by monitoring pollutant input and export for each HDS unit or media option, or directly quantifying captured pollutant. For example, the typical input and output pathways for a stormwater treatment measure (i.e., BMP) are illustrated in **Error! Reference source not found.**4.1. This overview describes how data are collected and how they are used to answer the primary study questions.

** Assumed minor (usually unmeasured)

*** Lining, when present, helps prevent losses and gains from interaction with surrounding soils and water.

Figure 4.1 Typical BMP system and pollutant pathways

The study designs discussed here address major inputs and losses, but not all. Selection of study design is based on the management questions, the type of BMP(s), the study constraints, and the current and historic conditions of the study area. Each type of study has associated strengths and weaknesses as described below:

- Influent-effluent monitoring
 - Influent and effluent monitoring tests water going into and discharging from a selected BMP or treatment option for a particular storm event. This approach is typically used to assess BMP effectiveness. An advantage of this approach is its ability to discern differences in limited data sets. A weakness of this approach is that measured load reductions may not be representative of true load reductions if there is infiltration to the native soil, baseflow entering the BMP, or bypass flows that are not monitored

Sediment sampling

Sediment sampling occurs within the BMP or treatment option and is used to estimate cumulative load removed over several storms. Sediment sampling can occur in dry periods.

• Before-after monitoring

Before-after monitoring occurs at the same location. In the before-after approach, data are collected at some location, a change is made (i.e., a BMP is implemented or modified), and additional data are then collected at the same location. This introduces variability because in field monitoring the storms monitored before BMP implementation may not have the same characteristics as those after implementation.

• Paired watershed monitoring

Paired watershed attempts to characterize two watersheds that are as similar as possible, except one has BMP treatment (e.g., an HDS unit). The paired watershed approach is typically used when monitoring the influent of the BMP is infeasible. While the storms monitored are the same, inevitable differences in the watersheds often lead to unexplainable variability.

Paired watershed monitoring is not discussed further because it is not applicable to this study. The scope of work does not require influent monitoring at field sites or monitoring of paired sites without BMPs.

Volume measurement is critical to estimating load removal efficiency for BMPs that have volume losses. Volumes can be measured at influent, effluent, and bypass locations and within the BMP for individual storms or over a longer period.

The following subsections provide more detail on each monitoring approach.

4.1 Influent-Effluent Monitoring

Comparison of influent and effluent water quality and load is the method most often used in studies of treatment BMPs. This method is used to estimate the pollutant removal capability of field devices such as individual BMPs or a series of in-line BMPs (i.e., a treatment train) or laboratory treatment systems such as filter media columns. This type of study results in paired samples. Paired samples are beneficial because fewer samples are needed to show statistically significant levels of pollutant reduction compared to unpaired samples. This can result in substantial cost savings for sample collection and sample analysis.

Comparison of performance among BMPs may not be possible if there are only a limited number of locations because of different influent qualities. This is illustrated in **Error! Reference source not found.** for two non-overlapping BMP data sets, which show confidence intervals for effluent estimates (vertical dashed and dotted lines with arrows) expand as the distance between the hypothetical influent *x*-value and the mean *x*-value of the data increases. Although the effluent estimates at a common influent concentration (solid black square and diamond) may reflect true effluent qualities, confidence in these predictions is low because of this extrapolation and the performance of the two BMPs may not be statistically distinguishable. A better study design is one that selects sites with similar influent

characteristics or ensures collection of a sufficient number of samples at or close to the common influent level.

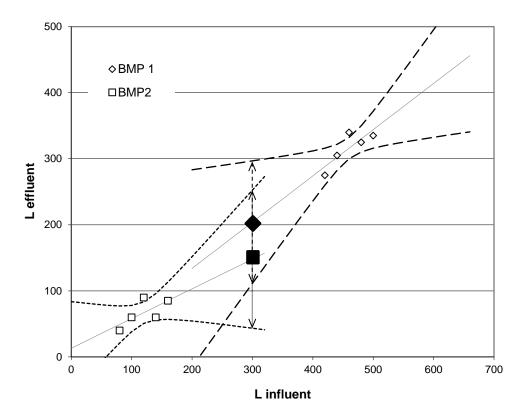


Figure 4.2 Comparison of two hypothetical non-overlapping BMP regressions

4.2 Sediment Sampling

Sediment sampling involves taking samples of actual sediment captured in a BMP in lieu of influent and effluent monitoring. Analysis of the accumulated sediment can provide estimates of the total mass of conservative pollutants removed¹. An advantage of sediment sampling is reduced cost because expensive storm event sampling is not required. Another advantage is that the measure of pollutants is direct and it is not possible to obtain negative results as in the case of sampling highly variable influent/effluent.

There are a number of limitations to sediment sampling. Annual sediment sampling during a maintenance interval generates fewer data points than influent-effluent sampling throughout a storm season, so comparisons among BMP factors (design, loading, etc.) may require a greater number of monitoring sites. Another limitation is that influent monitoring data are not available to describe how the mass removal estimates may be sensitive to influent loading, and influent monitoring may be required in addition to sediment sampling to

¹ In the context of sediment sampling, "conservative pollutants" are those that are not substantially lost to volatilization or plant uptake in between periods of sediment analysis. Sediment analysis underestimates performance where volatilization or plant uptake is substantial.

characterize pollutant loading. This limitation is addressed in this study during the data analysis by using model estimates of stormwater flows and pollutant loads from each HDS unit catchment to provide estimates of the influent and associated percent removals achieved.

Another limitation of sediment sampling is the potential error resulting in nonhomogeneous pollutant distribution within the sediment. Compositing multiple samples will better characterize the sediment, much as the collection of several aliquots throughout a stormwater runoff event can better represent the total volume of water. Mixing the removed sediment before compositing can provide samples that are more homogeneous.

Consequently, the effectiveness of sediment sampling depends on the type of BMP. HDS are the best candidates for sediment sampling. The sumps are cleaned and empty at the start of the study, and the entire mass of retained sediment is removed at each maintenance event (sump cleanout). Conversely, bioretention has background sediment (planting media) that obscure pollutant accumulation. Since pollutants tend to accumulate on the surface of media (typically within the first few inches), surface sediments should be targeted when sampling these systems. Coring these systems and compositing the core sediments will most likely result in further dilution of the PCBs retained in the media, making quantification more difficult. For all systems, larger pieces of litter and vegetation may be difficult to include in the analysis. A conservative approach is to exclude larger material and assume these have little association with PCBs.

4.3 Before-After Monitoring

Pollutant removal can also be estimated by monitoring discharge quality for treatment devices before and after installation. This may be attractive for green street projects that have multiple BMPs with multiple influent and effluent locations. Monitoring all of these individual systems is almost impossible because of space constraints. Note that since the data from before/after implementation are unpaired, variability is expected to be larger and the number of samples required to show significant removal much higher than for paired samples.

Before-after monitoring is also applicable to laboratory test systems in which water quality is measured before and after a change is made. For example, the rate of adsorption or the adsorptive capacity of media can be determined by measuring the water quality before and after addition of a known quantity of media.

5. Primary Data Objectives

The study design options discussed previously are matched to the primary management questions. The primary management questions require two data objectives: determine annual mass captured by HDS units and load removal by biochar-amended BSM. The primary management questions are:

- 1. What are the **annual PCB and mercury loads captured** by existing HDS units in Bay Area urban watersheds?
- 2. Are there readily available biochar-amended BSM that provide significantly better **PCB and mercury load reductions** than standard BSM and meet MRP infiltration rate requirements?

Monitoring to address the first management question should at minimum provide the average annual PCB and mercury loads captured by HDS units.

5.1 Data Objective 1: Annual Loads Captured by HDS Units

Determined by influent-effluent monitoring for individual storm events over one or more seasons or filter media/sediment sampling at end of each season.

Options:

- Influent-effluent monitoring. Requires monitoring of as many storms as possible over a season and flow measurement in addition to water quality sampling. Flow measurement is a critical component for estimating stormwater volumes treated, retained, and bypassed, and is often associated with additional measurements such as water depth within a BMP to estimate bypass and retention.
- Filter media/sediment sampling. Requires sampling at end of season but does not require influent/effluent water quality or flow measurement. Sediment sampling has a high value for estimating annual mass removal because a single composite sample of retained sediment over a season can yield an estimate of load removal for the constituents analyzed. However, influent characterization would also help explain mass removal performance. This method is most appropriate when applied to HDS systems because they can isolate retained sediment.

5.2 Data Objective 2: Loads Reduced by Biochar-Amended BSM

Determined by influent-effluent monitoring or filter media/sediment sampling for individual events until sufficient data are available for statistical analysis.

Options:

Influent-effluent monitoring. Requires monitoring of multiple individual events and flow measurement in addition to water quality sampling. Accurate flow measurement in BMPs is difficult because flows can vary an order of magnitude during individual events and measurements may be required at multiple locations within a device because of bypass, infiltration etc. (see Figure 4.2). This complexity introduces a great degree of variability in the monitored data that can substantially increase the number of data points required to show statistically significant load removals, particularly for BMPs such as HDS units that show relatively small differences between influent and effluent load reductions. This option is most appropriate for testing filter media, for example in laboratory experiments, in which accurate flow measurements are possible and sampling of accumulated sediment is infeasible.

 Filter media/sediment sampling. Requires sampling after individual events but does not require influent/effluent water quality or flow measurement. This method is not feasible for filter media because the retained sediment cannot be isolated from the filter media.

6. BMP Processes and Key Study Variables

The treatment mechanisms that occur in a BMP help inform selection and control of the study variables. These treatment mechanisms, also called *unit processes*, may include physical, chemical, or biological processes. The primary physical, chemical, and biological processes that are responsible for removing contaminants include the following:

- Sedimentation The physical process by which suspended solids and other particulate matter are removed by gravity settling. Sedimentation is highly sensitive to many factors, including size of BMP, flow rate/regime, particle size, and particle concentration, and it does not remove dissolved contaminants. Treated water quality is less consistent compared to other mechanisms due to high dependence on flow regime, particle characteristics, and scour potential.
- Flocculation Flocculation is a process by which colloidal size particles come out of suspension in the form of larger flocs either spontaneously or due to the addition of a flocculating agent. The process of sedimentation can physically remove flocculated particles.
- Filtration The physical process by which suspended solids and other particulate matter are removed from water by passage through layers of porous media. Filtration provides physical screening of particles and trapping of particles within the porous media. Filtration depends on a number of factors, including hydraulic loading and head, media type and physical properties (composition, media depth, grain size, permeability), and water quality (proportion of dissolved contaminants, particle size, particle size distribution). Compared to sedimentation, filtration provides a more consistent treated quality over a wider range of contaminant concentrations.
- Infiltration The physical process by which water percolates into underlying soils. Infiltration is similar to filtration except it results in overall volume reduction.
- Screening The physical process by which suspended solids and other particulate matter are removed by means of a screen. Unlike filtration, screening is used to occlude and remove relatively larger particles and provide little or no removal for particles smaller than the screen opening size and for dissolved contaminants.
- Sorption The processes of absorption and adsorption occur when water enters a
 permeable material and contaminants are brought into contact with the surfaces of
 substrate media, plant roots, and sediments, resulting in short-term retention or longterm immobilization of contaminants. The effectiveness of sorptive processes depends on
 many factors, including the properties of the water (contaminant concentration, particle
 concentration, organic matter, proportion of dissolved contaminants, particle size, pH,
 particle size and charge), media type (surface charge, absorptive capacity), and contact
 time.

- Chemical Precipitation The conversion of contaminants in the influent stream, through contact with the substrate or root zone, to an insoluble solid form that settles out. Consistent performance often depends on controlling other parameters such as pH.
- Aerobic/Anaerobic Biodegradation The metabolic processes of microorganisms, which play a significant role in removing organic compounds and nitrogen in filters.
- Phytoremediation The uptake, accumulation, and transpiration of organic and inorganic contaminants, especially nutrients, by plants.

The relative importance of individual treatment mechanisms depend to a large extent on the chemical and physical properties of the contaminant(s) to be removed i.e. the influent quality. The two contaminants of interest in this study are PCBs and mercury. PCBs are relatively inert hydrophobic compounds that have very limited solubility and a strong affinity for organic matter. They are often associated with fine and medium-grained particles in stormwater runoff, making them subject to removal through gravitational settling or filtering through sand, soils, media or vegetation. Most of the mercury in water, soil, and sediments is in the form of inorganic mercury salts and organic forms of mercury such as methylmercury that are strongly adsorbed to organic matter (e.g., humic materials). In general, mercury is most strongly associated with fine particles while PCBs are generally associated with relatively larger and/or heavier particles. It is therefore expected that sedimentation, flocculation, and related processes will be less effective for mercury removal than for removal of PCBs (Yee and McKee, 2010).

The following subsections provide a brief description of the BMP types being evaluated in this study, the unit processes involved in each, and key variables that indicate possible data collection approaches. The final selection of the quantity and type of data to collect is presented in the "Optimized Study Design" section.

6.1 HDS Units

Hydrodynamic separators rely on sedimentation and screening as the primary removal mechanism for sediment and particulate pollutants. Treatment performance is highly dependent on the following:

- Influent quality (contaminant concentration, proportion of dissolved contaminants, particle size, particle size distribution, and particle density)
- BMP design and hydraulic loading/flow regime (size of unit versus catchment area)
- Operational factors (remaining sediment capacity)

HDS effluent quality is highly variable, particularly for contaminants such as mercury that are associated with fine particles that are not as effectively removed in HDS. These devices are expected to require a relatively large number of influent-effluent samples to demonstrate statistically significant reductions in pollutant concentrations. Therefore, analysis of retained sediment is an appropriate alternative to influent-effluent sampling for determining pollutant mass captured. Sediment can be analyzed when the device is cleaned.

6.2 Bioretention

Bioretention is a slow-rate filter bed system. It is planted with macrophytes (typically shrubs and smaller non-woody vegetation). The major sediment removal mechanism is physical filtration through the planting media. When retention time is sufficient, dissolved constituents can be removed by sorption to plant roots in the planting media, which typically contains clays and organics to enhance sorption. Treatment performance is highly dependent on the following variables:

- Influent quality (contaminant concentration, particle concentration, organic matter, proportion of dissolved contaminants, particle size, particle size distribution)
- BMP design and hydraulic loading rate/head (size of the unit in relation to catchment area and storm character)
- Media type and properties (composition, grain size, grain size distribution, adsorptive properties, and hydraulic conductivity)
- Volume reduction by infiltration
- Operational factors (surface clogging, short-circuiting)

The effluent quality from bioretention and enhanced bioretention is expected to be consistently higher than for sedimentation-type BMPs. These devices are expected to require a relatively fewer number of samples than HDS units to demonstrate statistically significant reduction because of better treatment of fine particles and dissolved contaminants.

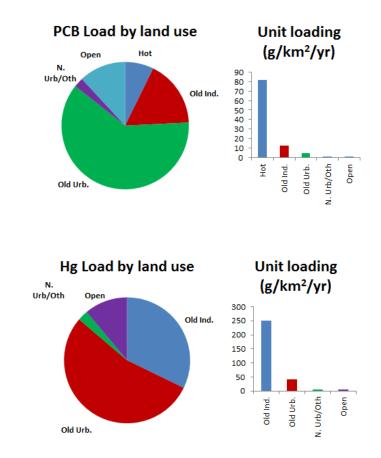
It is important to note that laboratory and not field bioretention systems are of interest in this study. These laboratory systems, essentially cylindrical columns filled with the media being tested, attempt to simulate most, but not all, of the chemical, biological, and physical processes that occur in field devices. For example, volume reductions due to infiltration are not simulated in laboratory column experiments. The advantages of using media columns as proxies for field devices include improved control over operation, monitoring, and sample collection in ways that would be impractical in the field. This improved control makes it possible to test a large number of potential media and identify the most promising for future field testing.

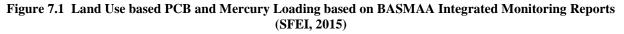
7. Monitoring and Sampling Options

Key variables that affect water quality and sediment quality data are identified from knowledge of treatment processes. The following lists the process variables identified through knowledge of the treatment processes:

- Influent quality (contaminant concentration, particle concentration, organic matter, proportion of dissolved contaminants, particle size, particle size distribution, particle density)
- BMP design and hydraulic loading (flow rate, hydraulic head, flow regime)
- Media type and properties (composition, grain size, grain size distribution, adsorptive properties, and hydraulic conductivity)
- Operational factors (surface clogging, short-circuiting, remaining sediment capacity)

Some of the above variables can be controlled and others are measured to determine their effect on water quality and sediment quality. Inevitably, some variables will be beyond the control of the study but their expected impact should be considered based on theory, past experience, models, or observations from other studies.


7.1 HDS Units


7.1.1 Influent Quality

The location of the BMP can greatly affect influent water quality such as pollutant concentrations and particle characteristics because land use and land cover affect sediment mobilization and pollutant concentrations within the sediments. Land use is often used as an indicator of pollutant loading. The land uses of the areas of interest include industrial, commercial/mixed use, roads/rail, institutional, and residential. Because of past use of PCB and past PCB and mercury handling practices, age of the land use is also important, with generally higher concentrations from older industrial, commercial, and transportation areas, and lower concentrations from newer residential areas. However, PCB analysis by the San Francisco Estuary Institute (SFEI) showed that PCB concentration patterns were patchy within larger urban watersheds with higher concentrations. This finding indicates that mass reductions of PCBs may require site-specific sampling of influent loads or site-specific quantification of mass removed. Mercury data suggest areas with higher mercury concentrations are not as pronounced although generally where there is PCB contamination there is also high to moderate Hg contamination (Yee and McKee, 2010).

Since HDSs are primarily installed for trash capture, their distribution within the study area is assumed to be random. However, the primary interest is in watersheds with relatively high pollutant loads that are most likely to result in significant removal in HDSs (e.g., the Leo Avenue watershed). Land use or land use based pollutant yields can be used to represent average influent water quality when influent monitoring is not conducted.

Figure 7.1 shows the land use based PCB and mercury loadings for key designated land use types. It can be seen that unit PCB loading from watersheds with higher PCB concentrations and mercury loading from old industrial watersheds are substantially higher than the other land uses. Assuming particle size, particle size distribution, and other stormwater characteristics are similar for the different land uses, HDSs in higher concentration watersheds or old industrial watersheds are expected to capture much higher pollutant loads than those in other watersheds.

A preliminary land use based study design could categorize HDS sites as show in Table 7.1.

Land Use	HDS Samples
Higher Concentration	X, X, X ¹
Old Industrial	X, X, X ¹
Old Urban	X, X, X ¹

Table 7.1 HDS Sampling Design based on Watershed Land Use

The above design is appropriate if HDS units can be categorized easily into one of the three land use categories. A review of the land uses within HDS watersheds indicates that most HDS units are in predominantly old urban watersheds, and it is unclear how many HDSs are within areas with higher PCB concentrations (Table 7.2).

HDS Catchment ID	New Urban	Old Industrial	Old Urban	Open Space	Other
287; Sonora Ave		16	84	1	
27A	15	50	34	2	
996; Parkmoor Ave		1	98	1	
1084; Oswego		0	89	0	10
600; Edwards Ave		33	39	28	
611; Balfour		14	55	30	
1082; Melody/33rd		0	97	3	
612; Lewis			93	7	
604; Sunset			96		4
1012; Blossom Hill/Shadowcrest			100	0	
1083; Lucretia		0	98	1	1
1002; Selma Olinder		10	86	5	
995; Dupont St.		9	91	0	
9-A; 73rd Ave and International Blvd		0	94	6	
475; 7th		68	29	3	
509; Coyote	22		77	1	
47			99	1	
8-A; Alameda Ave near Fruitvale	1	40	57	4	
575; Bulldog		6	93	1	
601; W. Virginia		7	90	3	
1504; Phelps			100	0	
390; Remillard		4	87	10	
Tennyson at Ward Creek		1	97	2	
W Meadow Dr		2	97	1	
Leland and Fair Oaks		1	99		
Ward and Edith			100	0	
5-D; 22nd and Valley		1	99	0	
8-C; High St @ Alameda Bridge		67	32	0	
5-G; Perkins & Bellvue (Nature Center)			100		
999; William	1	0	95	5	
Main St and Hwy 1	1		85	15	
Central Expy at Fair Oaks	1	11	89	0	
393; Wool Creek	1	11	78	4	
5-C; 27 St & Valdez Ave	1	2	98	· · · · · · · · · · · · · · · · · · ·	
998; Pierce	1	1	96	3	
Maple and Ebensburg	1	-	98	2	
Ventura Ave	1		99	1	
Golden Gate and St Patrick			100	0	
5-A; Euclid Ave @ Grand Ave			100	y i	
5-H; Lake Merritt (SD Outfall 11)			100		
5-B; Staten Ave & Bellvue			100		
Central Expy at De la Cruz		33	67		
· ·		33	100		
5-I; Lake Merritt (SD Outfall 26)	+	0			
Mathilda overpass project CDS2		0	100	~	
Mathilda overpass project CDS1	<u> </u>	10	84	7	

 Table 7.2 Percent of Land Use in HDS Watershed Areas

(Based on FY 2015-16 Co-permittee Annual Reports, Section 10 - Trash Load Reduction. Source: Chris Sommers Personal Communication)

Given the few sites in categories other than old urban, an alternative study design based on mixed land uses may be more appropriate (Table 7.3).

Predominant Land Use	HDS Samples
Higher Concentration/Old Industrial	X, X, X ¹
Old Urban/Old Industrial	X, X, X ¹
New Urban/Old Urban	X, X, X ¹

Table 7.3 HDS Sampling Design based on Predominant Land Use

1-``X'' represents a sample from a selected HDS unit in the specified land use category.

The sampling design in Table 7.3 assumes that at least three HDS units are available for sampling in each PCB land use category. The sampling design may need to be modified further if there are an insufficient number of units available for sampling. For example, any site with more than 30% old industrial may be considered especially if it is a mixed zoned watershed (with industrial, commercial, residential and transportation land uses). The range of values in each land use category can be determined upon review of the most recent information. The design in Table 7.3 assumes that the characteristics of the runoff (e.g., particle sizes) are similar for the different land uses and only the yield is different.

Only sediment sampling is proposed for HDS. Since HDS influent-effluent monitoring is not required, variables such as proportion of dissolved contaminants, particle size, particle size distribution, and particle density are not measured or controlled, but their effect on influent quality and treatment is accounted for by randomly selecting HDSs within each land use category.

7.1.2 BMP Design and Hydraulic Loading

BMP design and hydraulic loading, which depends on the size of the BMP, can have a substantial impact on effluent water quality and the quantity of sediment retained in a BMP. Consequently, a full range of BMP designs and sizes are of interest. Properly sized, BMPs infrequently exceed their design capacity. However, BMPs are not always sized to standard specification, especially in retrofit environments in which typical hydraulic loading is much higher due to space constraints.

HDS units are typically proprietary and designs and sizing vary widely. Sediment capture may vary because of design differences such as number of chambers and design of overflow weirs and baffles, as well as different sizing criteria that can greatly affect both hydraulic loading and flow regime. The purpose of the study is to characterize sediment in HDS units in the study area. Since BMP design and sizing are important factors affecting HDS performance, it is necessary to include a range of HDS units in the study design and not just randomly select HDS units. A randomized blocked study design is therefore considered more appropriate than a completely random one that may result in an insufficient number of HDS units of a certain size.

In a randomized design, one factor or variable is of primary interest (e.g., land use), but there are one or more other confounding variables that may affect the measured result but are not of primary interest (e.g., HDS design, HDS size). Blocking is used to remove the effects of one or more of the most important confounding variables and randomization within blocks is then used to reduce the effects of the remaining confounding variables. An appropriate sampling design could therefore be land use as the primary factor and HDS size as the blocking factor. Since the population of HDS units in the land use categories of interest is limited, only two size blocks are used ($\leq 50^{\text{th}}$ percentile, > 50th percentile), and other variables such as design differences are accounted for by random selection within each block (Table 7.4).

I 8 8		
Predominant Land Use	HDS Size	
	≤50th percentile	>50th percentile
Higher Concentration/Old Industrial	X, X, X ¹	X, X, X ¹
Old Urban/Old Industrial	X, X, X ¹	X, X, X ¹
New Urban/Old Urban	X, X, X ¹	X, X, X ¹

 Table 7.4 HDS Sampling Design based on Predominant Land Use and HDS Size

1 - "X" represents a sample from a selected HDS unit in the specified land use category.

For the sampling design in Table 7.4, an HDS size factor is required to differentiate the two types of sizes that are of interest. In controlled field study of 4 different proprietary HDS units and laboratory testing of 2 other units, Wilson et al. (2009) developed a *performance function* (treatment factor) that reasonably predicted the removal efficiency of a given hydrodynamic separator. The performance function explained particle removal efficiency in terms of a Péclet number, P_e , which accounts for particle settling and turbulent diffusion. In the following equation, V_s is the particle settling velocity, h is the settling depth in the device, d is the device diameter, and Q is the flow through the device:

$$P_e = \frac{V_s h d}{Q}$$

The above Péclet number (Wilson et al's performance function) can be used in the sampling design as the HDS size factor. For grouping the available HDS units into the two blocks, information is required on the particle diameter and design parameters for each device (settling depth, diameter, and design flow). Particle diameter can be assumed to be 75 µm, which is the critical size used for partitioning PCB fractions in Yee and McKee (2010), and is also approximately the size separating silt and fine sand size particles. The design flow can be calculated from knowledge of the drainage area to the device and a standard design storm. Note that the design flow should not be based on manufacturer guidance because different manufacturers use different sizing criteria and device sizing may not always follow manufacturer guidance.

The final sampling design may need revision depending on the monitoring approach, availability of HDSs, information on watershed land use and sizing, and the level of participation from municipalities.

7.1.3 Operation and Maintenance

Maintenance frequency can greatly impact BMP performance. For sedimentation BMPs such as HDS, sediment levels may exceed the sediment capacity of the BMP, decreasing the volume for sedimentation and increasing scour.

Operation and maintenance (e.g., cleanout frequency) are not of direct interest in this study and their effect on treatment is not being tested. However, these are confounding variables that need to be excluded. In the HDS sediment sampling design, HDS units that are considered at capacity or will reach capacity during the study should be excluded from the population of interest. Field observations are required to make this determination (e.g., whether the screen is blocked). These units can be cleaned out and sampled in a subsequent year. For each selected HDS unit, maintenance schedules (past and current) will need to be reviewed to determine the time period over which sediment accumulated.

7.2 Enhanced Bioretention

7.2.1 Influent Quality

The purpose of the laboratory testing is to screen alternative biochar-amended BSM and identify the most promising for further field testing. The laboratory testing requires influent-effluent monitoring. Influent water characteristics can vary depending on the source of the test water. PCB and mercury loading is largely a result of historic activities that result in accumulation in sediments of pervious areas. Mobilization of these sediments may require exceeding site-specific intensity and volume thresholds. Storm intensity is critical to detach and mobilize particles and storm volume must exceed any depression storage within the pervious areas. However, the precise effect of storm intensity and volume on the mobilization of PCB-contaminated and mercury-contaminated sediments has not been established. Influent water characteristics also depend greatly on drainage area characteristics including traffic and industrial and commercial activity.

Since the purpose of the laboratory study is to screen alternative biochar-amended BSM that can be used throughout the Bay Area, collection and use of stormwater from one or more representative watersheds is preferred. A preliminary review of available Bay Area stormwater runoff monitoring data from 27 sites (Table 7 of SFEI 2015) suggests median PCB concentration is about 9 ng/L. Therefore, one or more previously monitored watersheds with mean PCB concentrations well above 10 ng/L may be appropriate for collection of stormwater for the laboratory testing. Since the relative treatment performance of the various media at even lower concentrations may be different, additional tests with diluted stormwater may be required to confirm study results.

Storms from the representative watershed should be targeted randomly without bias, thereby accounting for the effects of storm intensity and ensuring variability in contaminant concentration, proportion of dissolved contaminants, particle size, particle size distribution, and particle density. To achieve this, minimal mobilization criteria should be used to ensure predicted storm intensity and runoff volume are likely to yield the desired volume.

7.2.2 BMP Design and Hydraulic Loading

The design variables in the enhanced bioretention testing laboratory study include media type, media depth, and media configuration. Media type is a key variable that is discussed further below. Testing the effect of different media depths or media configurations is not a research objective of the laboratory study, so these can be fixed for all experiments. Typical bioretention media depth in the Bay Area is 18 inches, so all column experiments should use 18 inches of BSM. In the Richmond PG&E Substation 1st and Cutting enhanced BSM testing, the biochar was not installed as a separate layer but was instead mixed with the standard BSM. It is unclear how treatment is affected by these two media configurations, but for consistency with previous field work the biochar and standard BSM should be mixed.

Hydraulic loading is a controlled variable that can be kept constant for all columns. Since the laboratory study is attempting to replicate field bioretention, the hydraulic loading can be the design loading for bioretention. Bioretention designs in the Bay Area typically have a maximum ponding depth of 6 inches, so a loading of 6 inches could be used for the column tests. There are two options for loading the columns: pump and manual. Peristaltic pumps are ideal for controlled loading, but in this study manual loading (batch loading) is more appropriate because of the potential for PCBs and mercury to stick to tubing, pump parts, etc. For manual loading, up to 10 inches of stormwater may be needed each time to ensure sufficient sample volume.

7.2.3 Media Type and Properties

Media type and properties have a substantial effect on the treatment performance of filtration devices. This group of variables include composition, grain size, grain size distribution, adsorptive properties such as surface area, and hydraulic conductivity. Media composition is a primary variable that accounts for differences in the biochars used and the proportion of each biochar in the amended BSM mix. The other variables (grain size, grain size distribution, adsorptive properties, and hydraulic conductivity) are not of direct interest in this study and are assumed to vary randomly or are controlled through screening experiments that limit their variability.

Biochar is produced from nearly any biomass feedstock, such as crop residues (both field residues and processing residues such as nut shells, fruit pits, and bagasse); yard, food, and forestry wastes; animal manures, and solid waste. Biochar feedstock and production conditions can vary widely and significantly affect biochar properties and performance in different applications, making it difficult to compare performance results from one study to another (BASMAA, 2017a). A laboratory study that characterized the physical properties of six different waste wood derived biochars found particle sizes ranging from over 20mm to fine powder and surface areas ranging from 0.095 to 155.1 m²/g (Yargicoglu et al., 2015). The variability in biochar types and properties is expected to result in large variation in treatment efficiency and infiltration rates. Given the large number of potential biochars that could be tested and the need to meet an initial maximum 12 in/h infiltration rate and a minimum long-term infiltration rate of 5 in/h, a phased study design is appropriate. In such a phased study, promising readily available biochars are first identified through a review of the literature, and hydraulic screening experiments are performed on biochar-BSM media mixes to ensure infiltration rates are met

prior to performance testing. This approach is expected to be the most cost-effective because it reduces analytical costs.

There is little information on hydraulic properties of bioretention media amended with biochar, and it is not clear what percentage of the amended BSM should be biochar to maximize treatment benefit. Given the variable physical size of the biochar media, relatively fine biochars could result in a mix that does not meet the initial 12 in/h maximum infiltration rate or minimum 5 in/h long-term infiltration rate. Kitsap County (2015) tested a BSM mix containing 60% sand, 15% Compost, 15% Biochar, and 10% shredded bark, and found that the biochar mix had an infiltration rate of only 6.0 in/h. One conclusion of the study was that the reduction in infiltration rate with the biochar additive was most likely because of fines in the biochar. To overcome this, hydraulic screening experiments are required in which the infiltration rate for each media mix is measured prior to water quality testing to ensure that both the maximum and minimum rates are met. Initially, each biochar can be mixed with standard BSM at a rate of 25% biochar by volume (the same as that at the CW4CB Richmond PG&E Substation 1st and Cutting site). Hydraulic conductivity can be determined using the method stated in the BASMAA soil specification, method ASTM D2434, which requires measurement of water levels and drain times. If a mix does not meet the infiltration requirements, the percentage of biochar is adjusted and the new mix tested. Amended mixes that do not meet the infiltration rate requirements are removed from further consideration (i.e. the effect of hydraulic conductivity is controlled by screening).

The final phase of the laboratory study can be column testing to identify the most effective amended BSM mixes for field testing. An influent-effluent monitoring design is typically used in column testing and media effectiveness is assessed on a storm-to-storm basis with real stormwater collected in the Bay Area. Only media mixes that have passed the hydraulic screening should be tested. All media columns should be sufficiently large or replicated to account for or minimize the impact of variability in media installation and experimental technique. Standard BSM should be used as a control since the primary interest is to identify media mixes that perform significantly better than standard BSM. An example of the column sampling design for 5 new media mixes and one standard BSM control is shown in Table 7.5. The key variable of interest in the sampling design in Table 7.5 is the media mix (composition).

Biochar/BSM Mix	Column Samples
A Mix	X, X, X ¹
B Mix	X, X, X ¹
C Mix	X, X, X ¹
D Mix	X, X, X ¹
E Mix	X, X, X ¹
Control Mix	X, X, X ¹

Table 7.5 Example Sampling Design for Laboratory Column Experiments

1 – "X" represents an influent or effluent sample.

7.2.4 Operation and Maintenance Parameters

Operational life depends on the capacity to pass the minimum required stormwater flows. Like media life, operational life is important because it determines the frequency and cost of maintenance requirements. Maintenance frequency can greatly impact BMP performance, and lack of maintenance can lead to surface clogging and sediment clogging in the inlets which reduces treatment capacity and increases bypass and overflow. Operation and maintenance are not of direct interest in this study and their effect on treatment is not being tested. However, these are confounding variables that need to be excluded.

Media mixes that do not meet the maximum 12 in/h and minimum 5 in/h infiltration rates can be excluded by hydraulic screening experiments (discussed above). As well as meeting the maximum 12 in/h initial infiltration rate requirement, these screening experiments help ensure that the BSM mixes do not fail during the laboratory testing. However, operational performance in laboratory experiments is not expected to be representative of that in the field because of differences in influent quality, variability in loading, effects of vegetation, etc. Therefore, laboratory estimates of long term infiltration rate are of little use and field testing is required to confirm that selected media mixes meet the long-term minimum infiltration rate of 5 in/h. The laboratory testing, however, can provide relative comparisons of hydraulic performance that can be used to decide and screen out media mixes that are likely to hydraulically fail in the field.

7.3 Uncontrolled Variables and Study Assumptions

The following assumptions were adapted from the Caltrans PSGM (Caltrans, 2009):

- Site Assumptions
 - HDS sediment concentrations are representative of the land use within the watershed, i.e. there are no sources of sediment from adjoining watersheds, from illicit discharges, or from construction activities
 - HDS sediment or influent is not affected by base flow, groundwater, or saltwater intrusion
 - Differences in storm patterns throughout the Bay Area are not sufficient to change the HDS performance measurements
 - Water quality of stormwater collected for laboratory testing is representative of that observed in Bay Area urban watersheds
- BMP Operation Assumptions
 - Sampled HDS units operated as designed (e.g., no significant scouring)
 - Volatilization of pollutants is negligible
 - > There is no short-circuiting of flows in laboratory column studies
- Media Selection Assumptions
 - > The readily available biochars selected are representative of all biochars
 - Selected media do not leach contaminates and media conditioning (e.g., washing) is not required
- Monitoring Assumptions

- Data collected from a few sites over a relatively short time span will accurately represent sediment at all HDS sites over longer time frames
- There are minimal contaminant losses in collecting and transporting water for laboratory experiments
- Water quality of stormwater for laboratory tests does not change significantly during each test
- Stormwater loading of laboratory columns is representative of loading in the field
- > Long-term infiltration performance of biochar mixes is to be tested in the field

8. Final Study Design

The study design is optimized to answer the primary management questions within the available budget. The design used prioritizes sampling of HDS units, but allocates sufficient funding for minimum sampling requirements for the laboratory media testing study. Monitoring that does not relate directly to the primary management questions is considered lower priority.

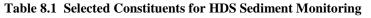
8.1 Statistical Testing & Sample Size

In a traditional test of a treatment, the null hypothesis is that there is no difference between the influent and effluent of a treatment (i.e., the treatment does not work). In the case of HDS sampling, influent-effluent sampling is not required, and interest is only in determining if HDS units remove PCBs and mercury and how the sediment concentrations and load removals vary for different land uses, and for different rainfall and stormwater flow characteristics. Statistical testing in the HDS study is therefore limited to testing if there is a difference in the concentrations and loads captured by HDS units in different watersheds. This testing will require sampling of a sufficient number of HDS units in each land use category associated with differing pollutant load yields.

In the laboratory study, influent-effluent sampling is required and traditional statistical tests can be used depending on sample size.

As well as traditional statistical testing, confidence in the conclusions can be established by comparing total PCB and mercury performance to that for other constituents that directly affect it (e.g., suspended solids, total organic carbon) or have similar chemistry (e.g., other organics). As stated previously, total PCB and mercury concentrations are expected to correlate to some extent with particulates and organics. Comparisons to other constituents are particularly useful for studies in which treatment is expected to be low and the corresponding sample size requirements very high.

Sample size requirements are smaller for paired sampling designs (i.e., influent and effluent sampling for the same storm event) than for independent sampling designs. Paired sampling is not possible for the HDS sampling study that has no influent-effluent monitoring, but is possible in the laboratory media testing study. Additionally, the number of samples required to show significant treatment are generally fewer for filtration-type BMPs than sedimentation-type BMPs because of their better and more consistent treatment.


8.2 Constituents for Sediment Analysis

Constituents selected for HDS sediment analysis must meet the data objectives discussed previously in "Primary Data Objectives", and be consistent with Table 8.3 of the MRP (SFRWQCB, 2015). Sediment samples will be screened using a 2 mm screen prior to analysis. Table 8.1 lists the constituents for sediment quality analysis. Total organic carbon (TOC) is included because it is a MRP requirement and can be useful for normalizing PCBs data collected for the sediment.

The primary objective of sediment analysis is quantification of the mass of PCBs and mercury accumulating within HDS units. Consequently, PCBs and total mercury are analyzed

for all screened sediment samples. The secondary objective is to establish a relationship between total PCBs, mercury, and particle size. Correlating total PCBs and mercury to particle sizes will complement past studies and provide insight into the type of BMPs that are appropriate to achieve the most cost-effective mass removal.

Analysis of PCBs at the CW4CB Leo Avenue HDS showed that PCBs in the water above the sediment may be minor when compared to sediment-associated PCBs (BASMAA, 2017b). PCB concentrations in overlying water are expected to be low and sampling of this water is not included in this study design.

Constituent
тос
Total Mercury ¹
PCBs (40 congeners) in Sediment
Particle Size Distribution
Bulk Density
1 - Only total mercury analyzed. Methyl mercury is not
relevant for SF Bay TMDL.

8.3 Constituents for Water Quality Analysis

Constituents for analysis of water samples must meet the data objectives discussed previously in "Primary Data Objectives", and be consistent with Table 8.3 of the MRP (SFRWQCB, 2015). Table 8.2 lists the constituents for the laboratory media testing studies. The list of water quality constituents must provide data to address the primary management question to quantify total PCB and mercury reduction, so PCBs and total mercury are analyzed for all samples. Secondary management questions relate to understanding removal performance for total PCB and mercury.

In addition to PCBs and total mercury, the other constituents selected for influent and effluent analysis are SSC, turbidity, and TOC. SSC was selected because it more accurately characterizes larger size fractions within the water column, while turbidity was selected because it is an inexpensive and quick test to describe treatment efficiency where strong correlation to other pollutants has been established. As with the sediment analysis, TOC is included because it is a MRP requirement and can be useful for normalizing PCBs data collected for water samples.

Constituent
SSC
Turbidity
ТОС
Total Mercury ¹
PCBs (40 congeners) in Water
1 - Only total mercury analyzed. Methyl mercury is not
relevant for SF Bay TMDL.

 Table 8.2 Selected Aqueous Constituents for Media Testing in Laboratory Columns

8.4 Budget and Schedule

The monitoring budget for the study is approximately \$200,000. A contingency of 10 percent of the water quality monitoring budget is recommended to account for unforeseen costs such as equipment failure. Another constraint is that all sampling will occur in one wet season.

8.5 Optimized Study Design

The optimized study designs are presented in Tables 8.3 and 8.4 for the HDS Monitoring and Enhanced Bioretention studies, respectively. Several iterations were analyzed and the study designs shown are based on best professional judgment to allocate the budget to the various data collection options.

The final design for the HDS monitoring study is based on selection and sampling of 9 HDS units in key land use areas. The number of units that can be sampled is limited because sampling is expected to be opportunistic as part of regular maintenance programs. Therefore, a simple design with 9 units is appropriate. The data analysis will evaluate the percent removal achieved for each HDS unit during the time period of interest (i.e., the time period between the date of the previous cleanout, and the current cleanout date for each HDS unit sampled) by incorporating modeled estimates of stormwater volumes and associated pollutant loads for each HDS unit catchment. Because HDS units are sized to treat stormwater runoff from storms of a given size and intensity, excess flows for storms exceeding the design capacity will bypass the unit and are not treated. Storm by storm analysis of rainfall data during the time period of interest will allow estimation of the total stormwater volume and pollutant load to the catchment during each storm, as well as the volume and pollutant load that bypassed the HDS unit and was not treated. This information will then be combined with the measured pollutant mass captured by each HDS unit to quantify the percent removal of PCBs and mercury from the total catchment flow, and the percent removal of PCBs and mercury from the treated flow. For each HDS unit sampled in the study, the total and treated pollutant mass removed will be calculated using the following equations.

(1) Total Pollutant Mass Removed (%) =	[M _{HDS-i} /M _{Catchment-i}] x 100%
(2) Treated Pollutant Mass Removed (%) =	[M _{HDS-i} /(M _{Catchment-i} - M _B)] x 100%

Where:

M _{HDS-i}	the total POC mass captured in the sump of HDS Unit i over the time period of interest
$M_{Catchment-i}$	the total POC mass discharged from Catchment-A (the catchment draining to HDS unit A) over the time period of interest
	draining to TDS unit A) over the time period of interest
MB	the total POC mass that bypassed HDS unit A over the time period of
	interest

The following inputs will be measured or modeled for the time period of interest for use in the equations above:

- Total PCBs and mercury mass captured by a given HDS unit. This is the mass measured in each HDS unit during this project.
- The total stormwater volume and associated PCBs and mercury load from the HDS unit catchment. This will be modeled on a storm by storm basis using available rainfall data, catchment runoff coefficients, and assumed pollutant stormwater concentrations.
- The stormwater volume and associated PCBs and mercury load that bypassed the HDS unit. The bypass volume (and associated pollutant load) during each storm (if any) will be calculated based on the design criteria for a given HDS unit.
- The total PCBs and mercury load treated by a given HDS unit. This will be determined by subtracting the bypass load (if any) from the total pollutant load for the catchment.

The corresponding design for the enhanced BSM study is based on testing of readily available biochars in hydraulic screening experiments followed by column testing of up to five promising BSM mixes as well as a standard BSM control mix. The final number of BSM mixes will depend on availability and media properties (e.g., expected hydraulic conductivity). The optimized designs will yield 33 data points for the key data objectives, 9 from the HDS monitoring study and 24 from the enhanced BSM media testing column study.

	Table 8.5 HDS Monitoring Stu	aj Design			
Primary Management Question(s)	What are the annual PCB and mercury loads captured by existing HDS units in Bay Area urban watersheds and the associated percent removal?				
Type of Study	Sediment monitoring; modeling stormwater volume and pollutant load				
Data Objective(s)	Annual PCB and mercury mass captured in	HDS units and perce	ent removal		
Description of Key Treatment Processes	 Sedimentation, Flocculation & Screening Removal by gravity settling and physical screening of particulates Effectiveness depends on water quality, BMP design and hydraulic loading/flow regime, and operational factors 				
Key Variables	 Sediment quality and quantity Influent quantity and quality (contaminant concentration,) BMP design and hydraulic loading/flow regime BMP maintenance (remaining sediment capacity) 				
Monitoring Needs	Monitored variables: sediment quality, sediment mass Controlled variables: influent quality, BMP maintenance (remaining sediment capacity) Uncontrolled variables: HDS design, hydraulic loading, flow regime				
Monitoring Approach	Influent quantity and quality: based on rainfall/runoff characteristics and on land use pollutant yield (old urban, new urban, etc.) Hydraulic loading: base on HDS size (diameter and settling depth) and flow (design flow for known watershed size) BMP maintenance: base on remaining sump capacity				
Sampling Design	Sampling DesignSampling expected to be opportunistic as part of regular maintenance programs.Targeted predominant land uses for HDS selection and corresponding data generation				
	Predominant Land Use	HDS Samples	No. Samples (Total 9)		
	Higher Concentration/Old Industrial	X, X, X ¹	3		
	Old Urban/Old Industrial	X, X, X ¹	3		
	New Urban/Old Urban	X, X, X ¹	3		
	 1 – "X" represents a sample from a select determined during site selection. Exclude units at full sump capacity (clear possible) 				
Constituent List	TOC, total mercury, PCBs (40 congeners) in sediment, particle size distribution, and bulk density				
Data Analysis	Independent (unpaired) samples. Present is concentrations measured and mass remove Model estimates of catchment stormwater loads combined with the measured mass ca removal.	ed/area treated. An volumes and PCB a	alyze using ANOVA. nd mercury stormwater		

		Sivi Testing Study Desi	~		
Primary Management Question(s)	Are there readily available biochar-amended BSM that provide significantly better PCB and mercury load reductions than standard BSM and meet MRP infiltration rate requirements?				
Type of Study	Influent-effluent monitoring				
Data Objective(s)	PCB and mercury load removal				
Description of	Filtration and Adsorption				
Key Treatment	Removal by physical screening, trapping in media, and retention on media surface				
Processes	• Effectiveness depends on influent water quality, BMP design and hydraulic loading/flow regime, media type and properties, and operational factors				
Key Variables	Influent and effluent quality (PCB concentration, particle concentration, organic mat				
	proportion of dissolved contam		ticle size distribution)		
	BMP design (media depth) and				
	Media type and properties (cor		distribution, adsorptive		
	properties, hydraulic conductiv				
	BMP maintenance (surface clog				
Monitoring	Monitored variables: Influent and		-		
Needs		on, organic matter, surfa			
	Controlled variables: media depth, hydraulic loading/head, media composition and				
		adsorptive properties, hydraulic conductivity			
	Uncontrolled variables: Influent and effluent proportion of dissolved contaminants, particle size, particle size distribution, short-circuiting				
Monitoring					
Approach	Phased approach because of number of media/need to ensure MRP infiltration rates 1. Hydraulic tests to ensure amended media meet infiltration requirements				
Approach	 Influent-effluent column tests 				
	 Influent-effluent column tests for best mix with Bay Area stormwater at lower 				
	concentrations	,			
Sampling Design	Phase I Hydraulic Tests:				
	- Determine infiltration rates for media mixes with 25% biochar by volume				
	 If MRP infiltration rates not met, adjust biochar proportion and retest 				
	- Target infiltration rate of 5 -	12 in/h for all mixes, atte	empt to control rate to +/- 1 in/hr		
	Phase II Influent-Effluent Column	Tests with Bay Area Stor	mwater (up to 5 mixes)		
	Biochar/BSM Mix	Column Samples	No. Samples (Total 21)		
	A Mix	X, X, X	3		
	B Mix	X, X, X X, X, X	3		
	C Mix	X, X, X	3		
	D Mix	X, X, X	3		
	E Mix	X, X, X	3		
	Control Mix	X, X, X	3		
	Influent	X, X, X	3		
	Phase III Influent-Effluent Column	Tests for Select Mix with	n Diluted Bay Area Stormwater		
	- Perform tests with diluted stormwater, if necessary, to confirm effectiveness at				
	concentrations representative of New Urban and New Industrial land				
	- Test at one dilution (1 influer	nt and 1 mix and 1 contro	ol effluent) (3 samples)		
Constituent List	SSC, turbidity, TOC, total mercury, PCBs (40 congeners) in water				
Data Analysis	Dependent (paired) samples. Present range of total PCB and mercury concentrations				
	measured and mass removal efficiencies. Analyze using ANOVA and regressions of				
	influent/effluent quality. Perform sign-rank test to compare consistency in relative				
	performance among the columns.				

Table 8.4 Enhanced BSM Testing Study Design

8.6 Adequacy of Study Design

The primary management questions are reviewed in this section in light of the budgeted data collection efforts. The primary management questions are restated and followed by an analysis of the adequacy of the data collection effort.

1. What are the annual PCB and mercury loads captured by existing HDS units in Bay Area urban watersheds?

Table 8.3 lists the number of data points that are anticipated for the HDS monitoring study.

This selected design will provide 9 data points for each of the following: PCB sediment concentration, mercury sediment concentration, and sediment mass. This design will not be able to assess the effect of HDS size and hydraulic loading on pollutant removal, and may not be able to statistically differentiate load capture between different land uses because of the small sample count for each land use (3). However, this design is selected because of the lack of information available on HDS sizing and the opportunistic nature of the sampling which limits the number of HDS units that can be sampled. The effect of maintenance is eliminated by ensuring that samples are not collected from units that have no remaining sump capacity.

The HDS study design collects independent (unpaired) samples since each HDS unit is sampled independently and there is no relationship between the various HDS units. This limits ability to discern differences due to land use or HDS size, especially when sample size is relatively low and there is considerable variability in the data collected. Although the study design yields 9 data points for each data objective, it may not be sufficient to <u>draw</u> statistically<u>based conclusions</u>. However, the study will provide point estimates of loads removed during cleanouts and how they vary for different land uses (e.g., X g of PCBs are removed per unit area of Y land use). This is the metric used for effectiveness of HDS cleanouts, so the study will provide a practical improvement in knowledge that can be applied to future HDS effectiveness estimates.

In addition, modeled stormwater flows and associated POC loads to each HDS unit catchment during the time period between cleanouts will be developed. These modeled estimates will be used along with the measured mass captured in the HDS unit between cleanouts to quantify the percent removal for each unit during the study.

2. Are there readily available biochar-amended BSM that provide significantly better PCB and mercury load reductions than standard BSM and meet MRP infiltration rate requirements?

Table 8.4 lists the number of data points that are anticipated for the enhanced BSM testing study. The sampling design will yield 19 data points for each of the following: effluent PCB concentration, effluent mercury concentration. Including influent analysis, a total of 24 samples will be analyzed. The purpose of this study is to identify the best biochar amended BSM mixes for field testing and not test the effect of confounding variables such as influent quality and hydraulic loading on load removals. The study design accounts for these confounding variables by either ensuring their effect is randomized (e.g., influent water quality) or keeps them fixed (e.g., hydraulic loading). To ensure influent stormwater concentrations are representative of typical Bay Area concentrations, an additional column test with diluted

stormwater is performed on an effective media mix. Standard BSM controls are used for each column run so that removal by biochar amended mixes can be compared directly to removal by standard BSM. Infiltration experiments are performed prior to the column testing to ensure media selected for final column testing will meet the MRP infiltration rate requirements.

The enhanced BSM column study design collects dependent (paired) samples since each effluent sample is related to a corresponding influent sample. Additionally, standard BSM controls are used for each run which makes it possible to directly compare effluent quality for each amended BSM to standard BSM. The paired sampling design, use of standard BSM controls, and ability to control or fix many of the variables that effect load removal increase the ability to discern differences in treatment. Therefore, only 3 column runs are proposed, and available budget is instead used in initial hydraulic screening experiments to ensure selected media mixes meet MRP infiltration rate requirements. The study design may not be sufficient to <u>draw</u> statistically-<u>based conclusions</u> because it yields only 3 data points for each biochar mix tested. <u>However, the study will enable direct comparisons of effluent quality and treatment</u> <u>between mixes for individual events and consistency of treatment between events. The information provided by the study is expected to be sufficient to identify the most promising biochar mixes for field testing.</u>

The study designs for the HDS monitoring and enhanced bioretention studies meet MRP sample collection requirements. The sampling design for the HDS monitoring study will yield a minimum of 9 PCB and mercury data points, while the sampling design for the enhanced bioretention laboratory study will yield 24 PCB and mercury data points (including influent analysis). The minimum number of PCB samples for this study plan is 33 (9+24). Because 3 of the 32 BMP effectiveness samples required by the current MRP have already been collected, the minimum number required for this project is 29. This study must yield 29 of the 32 permit-required samples, per Provision C.8.f of the MRP. To ensure that at least 29 samples are collected to meet the MRP requirement, additional samples will be collected during the laboratory media testing runs if fewer than 5 HDS units are available for sampling.

9. Recommendations for Sampling and Analysis Plans

This section presents specific recommendations for the development of SAPs. More detailed information is available in Section 6 of the Caltrans Monitoring Guidance Manual (Caltrans, 2015) and in the Urban Stormwater BMP Performance Monitoring (WERF 2009). Analysis of constituents should follow the CW4CB Quality Assurance Project Plan (BASMAA 2013).

9.1 HDS Monitoring

The following SAP recommendations are based on the lessons learned from sampling the Leo Avenue HDS site (BASMAA, 2017b):

- Include equipment to determine sump capacity before sampling. The study design does not require sampling of units that are full (i.e., have no remaining sump capacity). The depth of the unit can make it difficult to inspect for sump basin contents, and use of a "sludge judge" or other similar equipment may not be possible because of difficulty penetrating through compacted organic materials.
- The sampling is expected to be opportunistic sampling during regular cleanouts. Since it coincides with regular maintenance patterns, the occurrence of a clean and empty vactor truck from which samples of the sediment can be taken is unlikely. To obtain representative samples, multiple grab samples that extend from the top of the sediment layer to the bottom of the sump will need to be collected and composited prior to analyses.
- Sediment samples will require screening to remove coarse particles, trash, etc. In the CW4CB study (BASMAA, 2007b), only sediment less than 2 mm in size was analyzed.

It is unclear how samples of the HDS sediment were taken in the Leo Avenue HDS sampling. Appropriate sampling methods should be developed to ensure the samples collected are representative of the sediment in the HDS units.

HDS sediment sampling is not expected to require additional handling/safety precautions beyond normal drain cleaning safety procedures. Human health criteria for PCBs are for exposure via ingestion or vapor intake and not for contact. OSHA directive STD 01-04-002 state that "repeated skin contact hazards with all PCB's could be addressed by the standards 1910.132 and 1910.133". Both 1910.132 and 1910.133 OSHA standards require use of personal protective equipment, including eye and face protection.

9.2 Enhanced Bioretention Media Testing

The following SAP recommendations are based on past experience and specific guidance provided in DEMEAU (2014):

• The enhanced BSM testing will use real stormwater for the column experiments to account for the effect of influent water quality on load removal. A stormwater

collection site will need to be identified in a watershed with typical PCB concentrations to ensure PCB concentrations are representative of those expected in Bay Area urban watersheds. Also, guidance will need to be developed on mobilization to ensure storms are targeted randomly.

- Stormwater properties are known to change significantly with time due to natural flocculation and settling of particles. Appropriate procedures should be developed to ensure collected stormwater is well mixed at all times, and experiments are performed in a timely manner to insure the stormwater used is representative.
- PCBs can readily attach to test equipment, including the inside of tubing that may be used for pumps and the inside of PVC columns. Alternatives should be considered that eliminate the need for pumping equipment and reduce attachment within columns (e.g., by use of glass columns).
- The results of column experiments can be affected by channeling and wall effects. Use a column diameter to particle diameter ratio greater than about 40 to minimize these.
- How media is packed in columns will affect infiltration rates and treatment performance. Therefore, detailed procedures should be developed for the packing of media in columns to ensure consistency between columns and between experiments.

9.3 Data Quality Objectives

Data quality objectives (DQOs) should follow standard stormwater monitoring protocols and be described in detail in individual SAPs. Both sampling and laboratory data quality objectives should be included. For sampling, the SAP should specify sediment and water collection procedures and equipment as well as sample volume and handling requirements. For laboratories, numeric DQOs are appropriate for sample blanks, duplicates (or field splits), and matrix spike recovery.

10. References

BASMAA, 2013. Quality Assurance Project Plan (QAPP). Clean Watersheds for a Clean Bay – Implementing the San Francisco Bay's PCBs and Mercury TMDLs with a Focus on Urban Runoff. August 15, 2013.

BASMAA, 2014. Integrated Monitoring Report Part B: PCB and Mercury Loads Avoided and Reduced via Stormwater Control Measures. Bay Area Stormwater Management Agencies Association.

BASMAA, 2016a. Regional Biotreatment Soil Specification: Specification of Soils for Biotreatment or Bioretention Facilities. Bay Area Stormwater Management Agencies Association.

BASMAA, 2016b. Interim Accounting Methodology for TMDL Loads Reduced. Bay Area Stormwater Management Agencies Association.

BASMAA, 2017a. Clean Watersheds for a Clean Bay Project Report, Final Report May 2017. Bay Area Stormwater Management Agencies Association.

BASMAA, 2017b. Clean Watersheds for a Clean Bay Task 5: Stormwater Treatment Retrofit Pilot Projects Stormwater Treatment Retrofit - 7th Street Hydrodynamic Separator Unit draining the Leo Avenue Watershed, San Jose, CA. Bay Area Stormwater Management Agencies Association.

BASMAA, 2017c. Bay Area Reasonable Assurance Analysis Guidance Document. Project Number: WW2282, June 2017. Bay Area Stormwater Management Agencies Association.

Caltrans, 2009. BMP Pilot Study Guidance Manual. Document No. CTSW-RT-06-171.02.1. California Department of Transportation, Sacramento.

Caltrans, 2015. Caltrans Stormwater Monitoring Guidance Manual, November 2015. Document No. CTSW-OT-15-999.43.01. California Department of Transportation, Sacramento.

City of San Diego, 2012. Catch Basin Inlet Cleaning Pilot Study Final Report, June 2012. The City of San Diego, California.

City of Spokane, 2015. PCB Characterization of Spokane Regional Vactor Waste Decant Facilities, Prepared for the Spokane River Regional Toxics Taskforce September, 2015. City of Spokane RPWRF Laboratory.

City of Tacoma, 2015. East Tacoma PCB Investigation: Results & Next Steps. November 20, 2013. City of Tacoma Environmental Services.

City of Tacoma PCB Presentation. Last Assessed May 28, 2017.

DEMEAU, 2014. Guidelining protocol for soil-column experiments assessing fate and transport of trace organics. Demonstration of promising technologies to address emerging pollutants in water and waste water project. European Union Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement No. 308330.

Gomez-Eyles, J. L., C. Yupanqui, B. Beckingham, G. Riedel, C. Gilmour, and U. Ghosh, 2013. Evaluation of Biochars and Activated Carbons for In Situ Remediation of Sediments Impacted with Organics, Mercury, and Methylmercury. *Environ. Sci. Technol.*, 47, 13721–13729.

Kitsap County, 2015. Analysis of Bioretention Soil Media for Improved Nitrogen, Phosphorus and Copper Retention, Final Report. Kitsap County Public Works, Washington.

Liu, P., C. J. Ptacek, D. W. Blowes, and R. C. Landis, 2015. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy. *Journal of Hazardous Materials*, 308 (2016) 233–242.

SFBRWQCB, 2012. San Francisco Bay Regional Water Quality Control Board. Total Maximum Daily Loads (TMDLs) and the 303(d) List of Impaired Water Bodies. 2012.

SFBRWQCB, 2015. Municipal Regional Stormwater NPDES Permit, Order No. R2-2015-0049. NPDES Permit No. CAS612008. November 19, 2015

SFEI, 2015. Sources, Pathways and Loadings: Multi-Year Synthesis with a Focus on PCBs and Hg. Report for Regional Monitoring Program for Water Quality in San Francisco Bay (RMP), Sources Pathways and Loadings Workgroup (SPLWG), Small Tributaries Loading Strategy (STLS). 2015.

WERF, 2009. Urban Stormwater BMP Performance Monitoring. Water Environment Research Foundation.

<u>Urban Stormwater BMP Performance Monitoring</u>. Last accessed August 6, 2012.

Wilson M. A., O. Mohseni, J. S. Gulliver, R. M. Hozalski, and H. G. Stefan, 2009. Assessment of Hydrodynamic Separators for Storm-Water Treatment. *J. Hydraul. Eng.*, 2009, 135(5): 383-392.

Yargicoglu, E. N. and K. R. Reddy, 2015. Characterization and Surface Analysis of Commercially Available Biochars for Geoenvironmental Applications. IFCEE2015, San Antonio, TX, March 17-21, 2015.

Yee, D., and L. J. McKee, 2010. Task 3.5: Concentrations of PCBs and Hg in soils, sediments and water in the urbanized Bay Area: Implications for best management. A technical report of the Watershed Program. SFEI Contribution 608. San Francisco Estuary Institute, Oakland CA.

APPENDIX B: SAMPLING AND ANALYSIS PLAN AND QUALITY ASSURANCE PROJECT PLAN

BASMAA Regional Monitoring Coalition

Pollutants of Concern Monitoring for Source Identification and Management Action Effectiveness, 2017-2018

Sampling and Analysis Plan and Quality Assurance Project Plan

Prepared for:

The Bay Area Stormwater Management Agencies Association (BASMAA)

1410 Jackson Street Oakland, CA 94612

6000 J Street Sacramento, CA 95819

4911 Central Avenue Richmond, CA 94804 KINNETIC LABORATORIES INCORPORATED

307 Washington Street Santa Cruz, CA 95060

Version 2 September 29, 2017

Title and Approval Sheet

Program Title	Pollutants of Concern (POC) Monitoring for Source Identification		
	and Management Action Effectiveness		
Lead Organization	Bay Area Stormwater Management Agencies Association (BASMAA)		
	P.O. Box 2385, Menlo Park, CA 94026, 510-622-2326		
	info@basmaa.org		
Primary Contact	Geoff Brosseau		
Effective Date	September 29, 2017		
Revision Number	Version 2		

Approval Signatures:

A signature from the BASMAA Executive Director approving the BASMAA POC Monitoring for Source Identification and Management Action Effectiveness is considered approval on behalf of all Program Managers.

Geoff Brosseau

Date

TABLE OF CONTENTS

TITL	E AND APPROVAL SHEET	2
AP	PROVAL SIGNATURES:	
1.	PROBLEM DEFINITION/BACKGROUND	0
1 .		
1.1		
2.	DISTRIBUTION LIST AND CONTACT INFORMATION	
3.	PROGRAM ORGANIZATION	
3.1		
3.2	2. BASMAA PROJECT MANAGER (BASMAA-PM)	
3.3		
3.4	, ()	
3.5	5. QUALITY ASSURANCE OFFICER (QA OFFICER)	
3.6		
3.7		
3.8	, ()	
3.1	. Report Preparer	
4.	MONITORING PROGRAM DESCRIPTION	
4.1		
4.2		
	4.2.1. Task 1 - Caulk/Sealant samples	
	4.2.2. Task 2 - Sediment samples from HDS Units	
	4.2.3. Task 3 - Storm Water and Column Test Samples	
4.3	3. Schedule	
4.4	- GEOGRAPHICAL SETTING	
4.5	5. Constraints	
5.	MEASUREMENT QUALITY OBJECTIVES (MQO)	18
5 .1		
5.2		
5.3		
5.4		
5.5		
5.6		
6.	SPECIAL TRAINING NEEDS / CERTIFICATION	
	-	
7.	PROGRAM DOCUMENTATION AND REPORTING	
7.1		
	7.1.1. Sampling Plans, COCs, and Sampling Reports	
	7.1.2. Data Sheets	
	7.1.3. Photographic Documentation	
7.2		
	7.2.1. Data Reporting Format	
	7.2.2. Other Laboratory QA/QC Documentation	
7.3		
	7.3.1. SAP/QAPP	
	7.3.2. Program Information Archival	
7.4	REPORTING	

8.	SAMPLING PROCESS DESIGN	25
8.1.	CAULK/SEALANT SAMPLING	25
8.2.	SEDIMENT QUALITY SAMPLING	25
8.3.	WATER QUALITY SAMPLING	
8.4.	SAMPLING UNCERTAINTY	
9.	SAMPLING METHODS	26
9. 9.1.	CAULK/SEALANT SAMPLING (TASK 1)	
	1.1. Sample Site Selection	
	1.1. Sumple Site Selection	
	1.2. Field Cleaning Protocol	
	1.3. Pleta Cleaning Protocol	
	1.5. Caulk/Sealant Collection Procedures	
9.2.	1.6. Sample ID Designation HDS UNIT SAMPLING PROCEDURES (TASK 2)	
	2.1. Sample Site Selection 2.2. Field Eauipment and Cleanina	
	2.3. Soil / Sediment Sample Collection	
	2.4. Sample ID Designation	
9.3.	C C C C C C	
	3.1. Sample Site Selection	
	3.2. Field Equipment and Cleaning	
	3.3. Water Sampling Procedures	
	3.4. Hydraulic Testing	
	3.5. Column Testing Procedures	
	3.6. Sample ID Designations	
9.4.	COLLECTION OF SAMPLES FOR ARCHIVING	
9.5.	WASTE DISPOSAL	
	5.1. Routine Garbage	
	5.2. Detergent Washes	
	5.3. Chemicals	
9.1.	RESPONSIBILITY AND CORRECTIVE ACTIONS	
9.2.	STANDARD OPERATING PROCEDURES	
10.	SAMPLE HANDLING AND CUSTODY	
10.1	. SAMPLING CONTAINERS	
10.2	. SAMPLE PRESERVATION	
10.3	PACKAGING AND SHIPPING	
10.4	. Commercial Vehicle Transport	
10.5	. SAMPLE HOLD TIMES	
11.	FIELD HEALTH AND SAFETY PROCEDURES	30
12.	LABORATORY ANALYTICAL METHODS	
12.1	- /	
	2.1.1. XRF Chlorine analysis	
	2.1.2. Selection of Samples for PCB analysis and Compositing	
	2.1.3. Sample Preparation	
	2.1.4. PCBs Analysis	
12.2		
12.3		
12.4	. Method Failures	41

12.5	5. SAMPLE DISPOSAL	42
12.6	5. LABORATORY SAMPLE PROCESSING	42
13	ΟΠΑΓΙΤΥ CONTROL	42
-	•	
13		
13	3.2.3. Initial Calibration Verification	45
13		
13	3.2.5. Laboratory Blanks	
13	3.2.6. Reference Materials and Demonstration of Laboratory Accuracy	
13		
	1	
	i p	
 13. QUALITY CONTROL. 13.1. FIELD QUALITY CONTROL. 13.1.1. FIELD QUALITY CONTROL. 13.1.3. Field Blanks 13.1.3. Field Corrective Action. 13.2. LABORATORY QUALITY CONTROL. 13.2.1. Calibration and Working Standards. 13.2.2. Instrument Calibration Verification. 13.2.3. Initial Calibration Verification. 13.2.4. Continuing Calibration Verification. 13.2.5. Laboratory Blanks 13.2.6. Reference Materials and Demonstration of Laboratory Accuracy		
	,	
13		
14.	INSPECTION/ACCEPTANCE FOR SUPPLIES AND CONSUMABLES	56
15.	NON DIRECT MEASUREMENTS, EXISTING DATA	
16		
-		
-		
-		
17.3	3. LABORATORY DATA REVIEWS	
18.	INSTRUMENT/EQUIPMENT TESTING, INSPECTION AND MAINTENANCE	58
18.1		
18.2	2. LABORATORY EQUIPMENT	58
19.	INSTRUMENT/EOUIPMENT CALIBRATION AND FREQUENCY	
19.2		
19	9.2.1. In-house Analysis – XRF Screening	59
19		
20.	DATA REVIEW, VERIFICATION, AND VALIDATION	60
21.	VERIFICATION AND VALIDATION METHODS	61

Version 2, September 2017

22.	RECONCILIATION WITH USER REQUIREMENTS	. 61
23.	REFERENCES	. 62
24.	APPENDIX A: FIELD DOCUMENTATION	. 63
25.	APPENDIX B: LABORATORY STANDARD OPERATING PROCEDURES (SOPS)	. 69

List of Tables

TABLE 2-1. BASMAA SAP/QAPP DISTRIBUTION LIST.	11
TABLE 3-1. SAN FRANCISCO BAY AREA STORMWATER PROGRAMS AND ASSOCIATED MRP PERMITTEES PARTICIPAT	TING IN THE
BASMAA Monitoring Program	12
TABLE 7-1. DOCUMENT AND RECORD RETENTION, ARCHIVAL, AND DISPOSITION	24
TABLE 7-2. MONITORING PROGRAM FINAL REPORTING DUE DATES.	25
TABLE 7-2. MONITORING PROGRAM FINAL REPORTING DUE DATES. TABLE 9-1 FIELD EQUIPMENT FOR HDS UNIT SAMPLING.	
TABLE 9-2 STATION CODES FOR STORMWATER INFLUENT SAMPLES AND COLUMN TESTS.	35
TABLE 9-3. LIST OF BASMAA RMC SOPS UTILIZED BY THE MONITORING PROGRAM	
TABLE 10-1 SAMPLE HANDLING FOR THE MONITORING PROGRAM ANALYTES BY MEDIA TYPE.	
TABLE 12-1. LABORATORY ANALYTICAL METHODS FOR ANALYTES IN SEDIMENT	41
TABLE 12-2. LABORATORY ANALYTICAL METHODS FOR ANALYTES IN WATER	41
TABLE 13-1. MEASUREMENT QUALITY OBJECTIVES - PCBS.	50
TABLE 12-2. LIBORT ON TAULT TOTAL TOTAL TABLE 13-1. MEASUREMENT QUALITY OBJECTIVES - PCBS. TABLE 13-2. MEASUREMENT QUALITY OBJECTIVES – INORGANIC ANALYTES.	51
TABLE 13-3 MEASUREMENT QUALITY ORIECTIVES – CONVENTIONAL ANALYTES	52
TABLE 13 - 4. TARGET MRLs FOR SEDIMENT QUALITY PARAMETERS.	52
TABLE 13-5. TARGET MRLs FOR PCBs IN WATER, SEDIMENT AND CAULK	53
TABLE 13-6. SIZE DISTRIBUTION CATEGORIES FOR GRAIN SIZE IN SEDIMENT	54
TABLE 13-7. TARGET MRLS FOR TOC, SSC, AND MERCURY IN WATER	54
TABLE 13-8. CORRECTIVE ACTION – LABORATORY AND FIELD QUALITY CONTROL.	55
TABLE 14-1. INSPECTION / ACCEPTANCE TESTING REQUIREMENTS FOR CONSUMABLES AND SUPPLIES	56

List of Acronyms

ACCWP	Alameda Countywide Clean Water Program
ALS	ALS Environmental Laboratory
BASMAA	Bay Area Stormwater Management Agencies Association
BSM	Bioretention Soil Media
CCCWP	Contra Costa Clean Water Program
CCV	continuing calibration verification
CEDEN	California Environmental Data Exchange Network
CEH	Center for Environmental Health
COC	Chain of Custody
Consultant-PM	Consultant Team Project Manager
CRM	Certified Reference Material
CSE	Confined Space Entry
ECD	Electron capture detection
EDD	Electronic Data Deliverable
EOA	Eisenberg, Olivieri & Associates, Inc.
EPA	Environmental Protection Agency (U.S.)
FD	Field duplicate
Field PM	Field Contractor Project Manager
FSURMP	Fairfield-Suisun Urban Runoff Management Program
GC-MS	Gas Chromatography-Mass Spectroscopy
IDL	Instrument Detection Limits
ICV	initial calibration verification
KLI	Kinnetic Laboratories Inc.
LCS	Laboratory Control Samples
Lab-PM	Laboratory Project Manager
MS/MSD	Matrix Spike/Matrix Spike Duplicate
MDL	Method Detection Limit
MQO	Measurement Quality Objective
MRL	Method Reporting Limit
MRP	Municipal Regional Permit
NPDES	National Pollutant Discharge Elimination System
OWP-CSUS	Office of Water Programs at California State University Sacramento
PCB	Polychlorinated Biphenyl
PM	Project Manager
PMT	Project Management Team
POC	Pollutants of Concern
QA	Quality Assurance
QA Officer	Quality Assurance Officer
QAPP	Quality Assurance Project Plan
QC	Quality Control
ROW	Right-of-way
RPD	Relative Percent Difference
RMC	Regional Monitoring Coalition
RMP	Regional Monitoring Program for Water Quality in the San Francisco Estuary
SFRWQCB	San Francisco Regional Water Quality Control Board (Regional Water Board)
SAP	Sampling and Analysis Plan
SCCVURPP	Santa Clara Valley Urban Runoff Pollution Prevention Program
SCVWD	Santa Clara Valley Water Department
SFEI	San Francisco Estuary Institute

SMCWPPP	San Mateo County Water Pollution Prevention Program
SOP	Standard Operating Procedure
SWAMP	California Surface Water Ambient Monitoring Program
TOC	Total Organic Carbon
TMDL	Total Maximum Daily Load
VSFCD	Vallejo Sanitation and Flood Control District

1. Problem Definition/Background

The Bay Area Stormwater Management Agencies Association (BASMAA) member agencies will implement a regional monitoring program for Pollutants of Concern (POC) Monitoring for Source Identification and Management Action Effectiveness (Monitoring Program). The Monitoring Program is intended to fulfill components of the Municipal Regional Stormwater NPDES Permit (MRP; Order No. R2-2015-0049), which implements the polychlorinated biphenyls (PCBs) and Mercury Total Maximum Daily Loads (TMDLs) for the San Francisco Bay Area. Monitoring for <u>Source Identification</u> and <u>Management Action Effectiveness</u> are two of five monitoring priorities for POCs identified in the MRP. Source identification monitoring is conducted to identify the sources or watershed source areas that provide the greatest opportunities for reductions of POCs in urban stormwater runoff. Management action effectiveness or impacts of existing management actions.

BASMAA developed two study designs to implement each component of the Monitoring Program. The *Evaluation of PCBs Presence in Public Roadway and Storm Drain Infrastructure Caulk and Sealants Study Design* (BASMAA 2017a) addresses the source identification monitoring requirements of Provision C.8.f, as well as requirements of Provision C.12.e to investigate PCBs in infrastructure caulk and sealants. The *POC Monitoring for Management Action Effectiveness Study Design* (BASMAA 2017b) addresses the management action effectiveness monitoring requirements of Provision C.8.f. The results of the Monitoring Program will contribute to ongoing efforts by MRP Permittees to identify PCB sources and improve the PCBs and mercury treatment effectiveness of stormwater control measures in the Phase I permittee area of the Bay Area. This Sampling and Analysis Plan and Quality Assurance Project Plan (SAP/QAPP) was developed to guide implementation of both components of the Monitoring Program.

1.1. Problem Statement

Fish tissue monitoring in San Francisco Bay (Bay) has revealed bioaccumulation of PCBs and mercury. The measured fish tissue concentrations are thought to pose a health risk to people consuming fish caught in the Bay. As a result of these findings, California has issued an interim advisory on the consumption of fish from the Bay. The advisory led to the Bay being designated as an impaired water body on the Clean Water Act "Section 303(d) list" due to PCBs and mercury. In response, the California Regional Water Quality Control Board, San Francisco Bay Region (Regional Water Board) has developed TMDL water quality restoration programs targeting PCBs and mercury in the Bay. The general goals of the TMDLs are to identify sources of PCBs and mercury to the Bay and implement actions to control the sources and restore water quality.

Since the TMDLs were adopted, Permittees have conducted a number of projects to provide information that supports implementation of management actions designed to achieve the wasteload allocations described in the Mercury and PCBs TMDL, as required by Provisions of the MRP. The Clean Watersheds for a Clean Bay project (CW4CB) was a collaboration among BASMAA member agencies that pilot tested various stormwater control measures and provided estimates of the PCBs and mercury load reduction effectiveness of these controls (BASMAA, 2017c). However, the results of the CW4CB project identified a number of remaining data gaps on the load reduction effectiveness of the control measures

that were tested. In addition, MRP Provisions C.8.f. and C.12.e require Permittees to conduct further source identification and management action effectiveness monitoring during the current permit term.

1.2. Outcomes

The Monitoring Program will allow Permittees to satisfy MRP monitoring requirements for source identification and management action effectiveness, while also addressing some of the data gaps identified by the CW4CB project (BASMAA, 2017c). Specifically, the Monitoring Program is intended to provide the following outcomes:

- 1. Satisfy MRP Provision C.8.f. requirements for POC monitoring for source identification; and Satisfy MRP Provision C.12.e.ii requirements to evaluate PCBs presence in caulks/sealants used in storm drain or roadway infrastructure in public ROWs;
 - a. Report the range of PCB concentrations observed in 20 composite samples of caulk/sealant collected from structures installed or rehabilitated during the 1970's;
- 2. Satisfy MRP Provision C.8.f. requirements for POC monitoring for management action effectiveness;
 - a. Quantify the annual mass of mercury and PCBs captured in HDS Unit sumps during maintenance; and
 - b. Identify bioretention soil media (BSM) mixtures for future field testing that provide the most effective mercury and PCBs treatment in laboratory column tests.

The information generated from the Monitoring Program will be used by MRP Permittees and the Regional Water Board to better understand potential PCB sources and better estimate the load reduction effectiveness of current and future stormwater control measures.

2. Distribution List and Contact Information

The distribution list for this BASMAA SAP/QAPP is provided in Table 2-1.

Project Group	Title	Name and Affiliation	Telephone No.
BASMAA	BASMAA Project	Reid Bogert, SMCWPPP	650-599-1433
Project	Manager, Stormwater		
Management	Program Specialist		
Team	Program Manager	Jim Scanlin, ACCWP	510-670-6548
	Watershed Management	Lucile Paquette, CCCWP	925-313-2373
·	Planning Specialist		025 212 2042
	Program Manager	Rachel Kraai, CCCWP	925-313-2042
	Technical Consultant to ACCWP and CCCWP	Lisa Austin, Geosyntec Inc. CCCWP	510-285-2757
	Supervising Environmental Services Specialist	James Downing, City of San Jose	408-535-3500
	Senior Environmental Engineer	Kevin Cullen, FSURMP	707-428-9129
	Pollution Control Supervisor	Doug Scott, VSFCD	707-644-8949 x269
Consultant Project Manager		Bonnie de Berry, EOA Inc.	510-832-2852 x123
Team	Assistant Project Manager SAP/QAPP Author and Report Preparer	Lisa Sabin, EOA Inc.	510-832-2852 x108
	Technical Advisor	Chris Sommers, EOA Inc.	510-832-2852 x109
	Study Design Lead and Report Preparer	Brian Currier, OWP-CSUS	916-278-8109
	Study Design Lead and Report Preparer	Dipen Patel, OWP-CSUS	
	Technical Advisor	Lester McKee, SFEI	415-847-5095
	Quality Assurance Officer	Don Yee, SFEI	510-746-7369
	Data Manager	Amy Franz, SFEI	510-746-7394
	Field Contractor Project Manager	Jonathan Toal, KLI	831-457-3950
Project Laboratories	Laboratory Project Manager	Howard Borse, ALS	360-430-7733
XRF Laboratory Project Manager		Matt Nevins, CEH	510-655-3900 x318

Table 2-1. BASMAA SAP/QAPP Distribution List.

3. Program Organization

3.1. Involved Parties and Roles

BASMAA is a 501(c)(3) non-profit organization that coordinates and facilitates regional activities of municipal stormwater programs in the San Francisco Bay Area. BASMAA programs support implementation of the MRP (Order No. R2-2015-0049), which implements the PCBs and Mercury TMDLs for the San Francisco Bay Area. BASMAA is comprised of all 76 identified MRP municipalities and special districts, the Alameda Countywide Clean Water Program (ACCWP), Contra Costa Clean

Water Program (CCCWP), the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP), the San Mateo Countywide Water Pollution Prevention Program (SMCWPPP), the Fairfield-Suisun Urban Runoff Management Program (FSURMP), the City of Vallejo and the Vallejo Sanitation and Flood Control District (VSFCD) (Table 3-1).

MRP Permittees have agreed to collectively implement this Monitoring Program via BASMAA. The Program will be facilitated through the BASMAA Monitoring and Pollutants of Concern Committee (MPC). BASMAA selected a consultant team to develop and implement the Monitoring Program with oversight and guidance from a BASMAA Project Management Team (PMT), consisting of representatives from BASMAA stormwater programs and municipalities (Table 3-1).

Stormwater Programs	MRP Permittees
Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP)	Cities of Campbell, Cupertino, Los Altos, Milpitas, Monte Sereno, Mountain View, Palo Alto, San Jose, Santa Clara, Saratoga, Sunnyvale, Los Altos Hills, and Los Gatos; Santa Clara Valley Water District; and, Santa Clara County
Alameda Countywide Clean Water Program (ACCWP)	Cities of Alameda, Albany, Berkeley, Dublin, Emeryville, Fremont, Hayward, Livermore, Newark, Oakland, Piedmont, Pleasanton, San Leandro, and Union City; Alameda County; Alameda County Flood Control and Water Conservation District; and, Zone 7 Water District
Contra Costa Clean Water Program (CCCWP)	Cities of, Clayton, Concord, El Cerrito, Hercules, Lafayette, Martinez, , Orinda, Pinole, Pittsburg, Pleasant Hill, Richmond, San Pablo, San Ramon, Walnut Creek, Danville, and Moraga; Contra Costa County; and, Contra Costa County Flood Control and Water Conservation District
San Mateo County Wide Water Pollution Prevention Program (SMCWPPP)	Cities of Belmont, Brisbane, Burlingame, Daly City, East Palo Alto, Foster City, Half Moon Bay, Menlo Park, Millbrae, Pacifica, Redwood City, San Bruno, San Carlos, San Mateo, South San Francisco, Atherton, Colma, Hillsborough, Portola Valley, and Woodside; San Mateo County Flood Control District; and, San Mateo County
Fairfield-Suisun Urban Runoff Management Program (FSURMP)	Cities of Fairfield and Suisun City
Vallejo Permittees (VSFCD)	City of Vallejo and Vallejo Sanitation and Flood Control District

 Table 3-1. San Francisco Bay Area Stormwater Programs and Associated MRP Permittees

 Participating in the BASMAA Monitoring Program.

3.2. BASMAA Project Manager (BASMAA-PM)

The BASMAA Project Manager (BASMAA-PM) will be responsible for directing the activities of the below-described PMT, and will provide oversight and managerial level activities, including reporting status updates to the PMT and BASMAA, and acting as the liaison between the PMT and the Consultant Team. The BASMAA PM will oversee preparation, review, and approval of project deliverables, including the required reports to the Regional Water Board.

3.3. BASMAA Project Management Team (PMT)

The BASMAA PMT will assist the BASMAA-PM and the below described Consultant Team with the design and implementation of all project activities. PMT members will assist the BASMAA-PM and Consultant Team to complete project activities within scope, on-time, and within budget by having specific responsibility for planning and oversight of project activities within the jurisdiction of the BASMAA agency that they represent. In addition, the PMT will coordinate with the municipal project partners and key regional agencies, including the Regional Water Board. The PMT is also responsible for reviewing and approving project deliverables (e.g., draft and final project reports).

3.4. Consultant Team Project Manager (Consultant-PM)

The Consultant Team Project Manager (Consultant-PM) will be responsible for ensuring all work performed during the Monitoring Program is consistent with project goals, and provide oversight of all day-to-day operations associated with implementing all components of the Monitoring Program, including scheduling, budgeting, reporting, and oversight of subcontractors. The Consultant-PM will ensure that data generated and reported through implementation of the Monitoring Program meet measurement quality objectives (MQOs) described in this SAP/QAPP. The Consultant -PM will work with the Quality Assurance Officer as required to resolve any uncertainties or discrepancies. The Consultant -PM will also be responsible for overseeing development of draft and final reports for the Monitoring Program, as described in this SAP/QAPP.

3.5. Quality Assurance Officer (QA Officer)

The role of the Quality Assurance Officer (QA Officer) is to provide independent oversight and review of the quality of the data being generated. In this role, the QA Officer has the responsibility to require data that is of insufficient quality to be flagged, or not used, or for work to be redone as necessary so that the data meets specified quality measurements. The QA Officer will oversee the technical conduct of the field related components of the Monitoring Program, including ensuring field program compliance with the SAP/QAPP for tasks overseen at the programmatic level.

3.6. Data Manager (DM)

The Data Manager will be responsible for receipt and review of all project related documentation and reporting associated with both field efforts and laboratory analysis. The Data Manager will also be responsible for storage and safekeeping of these records for the duration of the project.

3.7. Field Contractor Project Manager (Field-PM)

The Field Contractor Project Manager (Field-PM) will be responsible for conduct and oversight of all field monitoring- and reporting-related activities, including completion of field datasheets, chain of custodies, and collection of field measurements and field samples, consistent with the monitoring methods and procedures in the SAP/QAPP. The Field-PM will also be responsible for ensuring that personnel conducting monitoring are qualified to perform their responsibilities and have received appropriate training. The Field-PM will be responsible for initial receipt and review of all project related documentation and reporting associated with both field efforts and laboratory analysis.

The Field-PM will also be responsible for receiving all samples collected opportunistically by participating municipalities, including all caulk/sealant samples, initial review of sample IDs to ensure there are no duplicate sample IDs, and shipping the samples under COC to the appropriate laboratory (CEH for the caulk/sealant samples; ALS for all other samples). Participating municipalities should ship all samples they collect to the Field PM at the following address:

Jon Toal Kinnetic Laboratories, Inc. 307 Washington Street Santa Cruz, CA 95060 Reference: BASMAA POC Monitoring Project (831)457-3950

3.8. Laboratory Project Manager (Lab-PM)

The Laboratory Project Manager (Lab-PM) and chemists at each analytical laboratory will be responsible for ensuring that the laboratory's quality assurance program and standard operating procedures (SOPs) are consistent with this SAP/QAPP, and that laboratory analyses meet all applicable requirements or explain any deviations. Each Lab-PM will also be responsible for coordinating with the Field-PM and other staff (e.g., Consultant -PM, Data Manager, QA Officer) and facilitating communication between the Field-PM, the Consultant -PM, and analytical laboratory personnel, as required for the project.

The Center for Environmental Health (CEH) will provide chlorine content screening of all caulk/sealant samples collected using X-Ray Fluorescence (XRF) technology to assist in selection of samples for further laboratory analysis of PCBs. This XRF-screening will also provide additional information on the utility of XRF in prioritizing samples for chemical PCBs analyses.

All other laboratory analyses will be provided by ALS Environmental.

3.1. Report Preparer

The Report Preparer (RP) will be responsible for developing draft and final reports for each of the following components of the Monitoring Program: (1) Source identification; and (2) Management action effectiveness. All draft reports will be submitted to the PMT for review and input prior to submission for approval by the BASMAA Board of Directors (BOD).

4. Monitoring Program Description

4.1. Work Statement and Program Overview

The Monitoring Program consists of the following three major tasks, each of which has a field sampling component:

• Task 1. Evaluate presence and possible concentrations of PCBs in roadway and storm drain infrastructure caulk and sealants. This task involves analysis of 20 composite samples of caulk/sealant collected from public roadway and storm drain infrastructure throughout the permit

area to investigate PCB concentrations. The goal of this task is to evaluate, at a limited screening level, whether and in what concentrations PCBs are present in public roadway and storm drain infrastructure caulk and sealants in the portions of the Bay Area under the jurisdiction of the Phase I Permittees identified in Table 3-1 (Bay Area).

- Task 2. Evaluate Annual mass of PCBs and mercury captured in Hydrodynamic Separator (HDS) Unit sumps during maintenance. This task involves collecting sediment samples from the sumps of public HDS unit during maintenance cleanouts to evaluate the mass of PCBs and mercury captured by these devices. The goal of this task is to provide data to better characterize the concentrations of POCs in HDS Unit sump sediment and improve estimates of the mass captured and removed from these units during current maintenance practices for appropriate TMDL load reduction crediting purposes.
- Task 3. Bench-scale testing of the mercury and PCBs removal effectiveness of selected BSM mixtures enhanced with biochar. This task involves collecting stormwater from the Bay Area that will then be used to conduct laboratory column tests designed to evaluate the mercury and PCBs treatment effectiveness of various biochar-amended BSM mixtures. Real stormwater will be used for the column tests to account for the effect of influent water quality on load removal. The goal of this task is to identify BSM mixtures amended with biochar that meet operational infiltration requirements and are effective for PCBs and mercury removal for future field testing.

All monitoring results and interpretations will be documented in BASMAA reports for submission to the Regional Water Board according to the schedule in the MRP.

4.2. Sampling Detail

The Monitoring Program includes three separate sampling tasks that involve collection and analysis of the following types of samples: caulk/sealants (Task 1); sediment from HDS units (Task 2); and stormwater collected and used for column tests in the lab (Task 3). Additional details specific to the sampling design for each task are provided below.

4.2.1.Task 1 - Caulk/Sealant samples

The PMT will recruit municipal partners from within each stormwater program to participate in this task. All caulk/sealant samples will be collected from locations within public roadway or storm drain infrastructure in the participating municipalities. Exact sample sites will be identified based on available information for each municipal partner, including: age of public infrastructure; records of infrastructure repair or rehabilitation (aiming for the late 1960s through the 1970s); and current municipal staff knowledge about locations that meet the site selection criteria identified in the study design (BASMAA, 2017a). Field crews led by the Field-PM and/or municipal staff will conduct field reconnaissance to further identify specific sampling locations and if feasible, will collect caulk/sealant samples during these initial field visits. Follow-up sampling events will be conducted for any sites that require additional planning or equipment for sample collection (e.g., confined space entry, parking controls, etc.). Sample locations will include any of the following public infrastructure where caulk/sealant are present: roadway or sidewalk surfaces, between expansion joints for roadways, parking garages, bridges, dams, or storm drain pipes, and/or in pavement joints (e.g., curb and gutter). Sampling will only occur during periods of dry weather when urban runoff flows through any structures that will be sampled are minimal, and do not

present any safety hazards or other logistical issues during sample collection. Sample collection methods are described further in Section 9.

As opportunities arise, municipal staff will also collect samples following the methods and procedures described in this SAP/QAPP during ongoing capital projects that provide access to public infrastructure locations with caulk/sealant that meet the sample site criteria. All samples collected by participating municipal staff will be delivered to the Field PM under COC. The Field-PM will be responsible for storing all caulk/sealant samples and shipping the samples under COC to CEH for XRF screening analysis.

All caulk/sealant samples collected will be screened for chlorine content using XRF technology described in Section 9. Samples will be grouped for compositing purposes as described in the study design (BASMAA, 2017a). Up to three samples will be included per composite and a total of 20 composite caulk/sealant samples will be analyzed for the RMP 40 PCB congeners¹. All compositing and PCBs analysis will be conducted blind to the location where each sample was collected. Laboratory analysis methods must be able to detect a minimum PCBs concentration of 200 parts per billion (ppb, or μ g/Kg). Laboratory analytical methods are described further in Section 12. The range of PCB concentrations found in caulk based on this documented sampling design will be reported to the Regional Water Board within the Permittees' 2018 Annual Reports.

4.2.2. Task 2 - Sediment samples from HDS Units

The PMT will recruit municipal partners that maintain public HDS units to participate in this task. All sediment samples will be collected from the sump of selected HDS units during scheduled cleaning and maintenance. Selection of the HDS units for sampling will be opportunistic, based on the units that are scheduled for maintenance by participating municipalities during the project period. Field crews led by the Field-PM and municipal maintenance staff will coordinate sampling with scheduled maintenance events. As needed, municipal staff will dewater the HDS unit sumps prior to sample collection, and provide assistance to field crews with access to the sump sediment as needed (e.g., confined space entry, parking controls, etc.). All sump sediment samples will be collected following the methods and procedures described in this SAP/QAPP. Sampling will only occur during periods of dry weather when urban runoff flows into the HDS unit sumps are minimal, and do not present any safety hazards or other logistical issues during sample collection. Sample collection methods are described further in Section 9.

All sediment samples collected will be analyzed for the RMP 40 PCB congeners, total mercury, total organic carbon (TOC), particle size distribution (PSD), and bulk density. Laboratory analytical methods are described further in Section 12. The range of PCB and mercury concentrations observed in HDS Unit sump sediments and the annual pollutant masses removed during cleanouts will be reported to the Regional Water Board in March 2019.

4.2.3.Task 3 - Storm Water and Column Test Samples

This task will collect stormwater from Bay Area locations that will then be used as the influent for column tests of biochar-amended BSM. Bay Area stormwater samples will be collected from locations

¹ The 40 individual congeners routinely quantified by the Regional Monitoring Program (RMP) for Water Quality in the San Francisco Estuary include: PCBs 8, 18, 28, 31, 33, 44, 49, 52, 56, 60, 66, 70, 74, 87, 95, 97, 99, 101, 105, 110, 118, 128, 132, 138, 141, 149, 151, 153, 156, 158, 170, 174, 177, 180, 183, 187, 194, 195, 201, and 203

within public roadway or storm drain infrastructure in participating municipalities. Field personnel lead by the Field PM will collect stormwater samples during three qualifying storm events and ensure all samples are delivered to the lab of OWP at CSUS within 24-hours of collection. Stormwater will be collected from one watershed that has a range of PCB concentrations and is considered representative of Bay Area watersheds (e.g. the West Oakland Ettie Street Pump Station watershed). Storms from the representative watershed should be targeted randomly without bias, thereby accounting for the effects of storm intensity and ensuring variability in contaminant concentration, proportion of dissolved contaminants, particle size, particle size distribution, and particle density. To achieve this, minimal mobilization criteria should be used to ensure predicted storm intensity and runoff volume are likely to yield the desired volume. Sample collection methods are described further in Section 9.

The stormwater collected will be used as the influent for column tests of various BSM mixtures amended with biochar. These tests will be implemented in three phases. First, hydraulic screening tests will be performed to ensure all amended BSM mixtures meet the MRP infiltration rate requirements of 12 in/h initial maximum infiltration or minimum 5 in/h long-term infiltration rate. Second, column tests will be performed using Bay Area stormwater to evaluate pollutant removal. Third, additional column tests will be performed using lower concentration (e.g., diluted) Bay Area stormwater to evaluate relative pollutant removal performance at lower concentrations. Further details about the column testing are provided in Section 9.3.

All influent and effluent water samples collected will be analyzed for the RMP 40 PCB congeners, total mercury, suspended sediment concentrations (SSC), TOC, and turbidity. Laboratory analytical methods are described further in Section 12. The range of PCB and mercury concentrations observed in influent and effluent water samples and the associated pollutant mass removal efficiencies for each BSM mixture tested will be reported to the Regional Water Board in March 2019.

4.3. Schedule

Caulk/sealant sampling (Task 1) will be conducted between July 2017 and December 2017. HDS Unit sampling (Task 2) will be conducted between July 2017 and May 2018. Stormwater sample collection and BSM column tests (Task 3) will occur between October 2017 – April 2018.

4.4. Geographical Setting

Field operations will be conducted across multiple Phase I cities in the San Francisco Bay region within the counties of San Mateo, Santa Clara, Alameda, and Contra Costa, and the City of Vallejo.

4.5. Constraints

Caulk/sealant sampling and HDS unit sampling will only be conducted during dry weather, when urban runoff flows through the sampled structures are minimal and do not present safety hazards or other logistical concerns. Caulk/sealant sampling will be limited to the caulk/sealant available and accessible at sites that meet the project site criteria (described in the Study Design, BASMAA 2017a). HDS unit sampling will be limited by the number of public HDS units that are available for maintenance during the project period. Extreme wet weather may pose a safety hazard to sampling personnel and may therefore impact wet season sampling.

5. Measurement Quality Objectives (MQO)

The quantitative measurements that estimate the true value or concentration of a physical or chemical property always involve some level of uncertainty. The uncertainty associated with a measurement generally results from one or more of several areas: (1) natural variability of a sample; (2) sample handling conditions and operations; (3) spatial and temporal variation; and (4) variations in collection or analytical procedures. Stringent Quality Assurance (QA) and Quality Control (QC) procedures are essential for obtaining unbiased, precise, and representative measurements and for maintaining the integrity of the sample during collection, handling, and analysis, as well and for measuring elements of variability that cannot be controlled. Stringent procedures also must be applied to data management to assure that accuracy of the data is maintained.

MQOs are established to ensure that data collected are sufficient and of adequate quality for the intended use. MQOs include both quantitative and qualitative assessment of the acceptability of data. The qualitative goals include representativeness and comparability, and the quantitative goals include completeness, sensitivity (detection and quantization limits), precision, accuracy, and contamination.

MQOs associated with representativeness, comparability, completeness, sensitivity, precision, accuracy, and contamination are presented below in narrative form.

5.1. Representativeness and Comparability

The representativeness of data is the ability of the sampling locations and the sampling procedures to adequately represent the true condition of the sample sites. The comparability of data is the degree to which the data can be compared directly between all samples collected under this SAP/QAPP. Field personnel, including municipal personnel that collect samples, will strictly adhere to the field sampling protocols identified in this SAP/QAPP to ensure the collection of representative, uncontaminated, comparable samples. The most important aspects of quality control associated with chemistry sample collection are as follows:

- Field personnel will be thoroughly trained in the proper use of sample collection equipment and will be able to distinguish acceptable versus unacceptable samples in accordance with pre-established criteria.
- Field personnel are trained to recognize and avoid potential sources of sample contamination (e.g., dirty hands, insufficient field cleaning).
- Samplers and utensils that come in direct contact with the sample will be made of noncontaminating materials, and will be thoroughly cleaned between sampling stations.
- Sample containers will be pre-cleaned and of the recommended type.
- All sampling sites will be selected according to the criteria identified in the project study design (BASMAA, 2017a)

Further, the methods for collecting and analyzing PCBs in infrastructure caulk and sealants will be comparable to other studies of PCBs in building material and infrastructure caulk (e.g., Klosterhaus et al., 2014). This SAP/QAPP was also developed to be comparable with the California Surface Water Ambient Monitoring Program (SWAMP) Quality Assurance Program Plan (QAPrP, SWAMP 2013). All sediment

and water quality data collected during the Monitoring Program will be performed in a manner so that data are SWAMP comparable².

5.2. Completeness

Completeness is defined as the percentage of valid data collected and analyzed compared to the total expected to being obtained under normal operating conditions. Overall completeness accounts for both sampling (in the field) and analysis (in the laboratory). Valid samples include those for analytes in which the concentration is determined to be below detection limits.

Under ideal circumstances, the objective is to collect 100 percent of all field samples desired, with successful laboratory analyses on 100% of measurements (including QC samples). However, circumstances surrounding sample collections and subsequent laboratory analysis are influenced by numerous factors, including availability of infrastructure meeting the required sampling criteria (applies to both infrastructure caulk sampling and HDS Unit sampling), flow conditions, weather, shipping damage or delays, sampling crew or lab analyst error, and QC samples failing MQOs. An overall completeness of greater than 90% is considered acceptable for the Monitoring Program.

5.3. Sensitivity

Different indicators of the sensitivity of an analytical method to measure a target parameter are often used including instrument detection limits (IDLs), method detection limits (MDLs), and method reporting limits (MRLs). For the Monitoring Program, MRL is the measurement of primary interest, consistent with SWAMP Quality Assurance Project Plan (SWAMP 2013). Target MRLs for all analytes by analytical method provided in Section 13.

5.4. Precision

Precision is used to measure the degree of mutual agreement among individual measurements of the same property under prescribed similar conditions. Overall precision usually refers to the degree of agreement for the entire sampling, operational, and analysis system. It is derived from reanalysis of individual samples (laboratory replicates) or multiple collocated samples (field replicates) analyzed on equivalent instruments and expressed as the relative percent difference (RPD) or relative standard deviation (RSD). Analytical precision can be determined from duplicate analyses of field samples, laboratory matrix spikes/matrix spike duplicates (MS/MSD), laboratory control samples (LCS) and/or reference material samples. Analytical precision is expressed as the RPD for duplicate measurements:

RPD = ABS ([X1 - X2] / [(X1 + X2) / 2])

Where: X1=the first sample resultX2=the duplicate sample result.

 $^{^2}$ SWAMP data templates and documentation are available online at

http://waterboards.ca.gov/water_issues/programs/swamp/data_management_resources/templates_docs.shtml

Precision will be assessed during the Monitoring Program by calculating the RPD of laboratory replicate samples and/or MS/MSD samples, which will be run at a frequency of 1 per analytical batch for each analyte. Target RPDs for the Monitoring Program are identified in Section 13.

5.5. Accuracy

Accuracy describes the degree of agreement between a measurement (or the average of measurements of the same quantity) and its true environmental value, or an acceptable reference value. The "true" values of the POCs in the Monitoring Program are unknown and therefore "absolute" accuracy (and representativeness) cannot be assessed. However, the analytical accuracy can be assessed through the use of laboratory MS samples, and/or LCS. For MS samples, recovery is calculated from the original sample result, the expected value (EV = native + spike concentration), and the measured value with the spike (MV):

% Recovery = $(MV-N) \times 100\% / (EV-N)$

Where: MV		the measured value
EV	=	the true expected (reference) value
Ν	=	the native, unspiked result

For LCS, recovery is calculated from the concentration of the analyte recovered and the true value of the amount spiked:

% Recovery = (X/TV) x 100% Where: X = concentration of the analyte recovered TV = concentration of the true value of the amount spiked

Surrogate standards are also spiked into samples for some analytical methods (i.e., PCBs) and used to evaluate method and instrument performance. Although recoveries on surrogates are to be reported, control limits for surrogates are method and laboratory specific, and no project specific recovery targets for surrogates are specified, so long as overall recovery targets for accuracy (with matrix spikes) are achieved. Where surrogate recoveries are applicable, data will not be reported as surrogate-corrected values.

Analytical accuracy will be assessed during the Monitoring Program based on recovery of the compound of interest in matrix spike and matrix spike duplicates compared with the laboratory's expected value, at a frequency of 1 per analytical batch for each analyte. Recovery targets for the Monitoring Program are identified in Section 13.

5.6. Contamination

Collected samples may inadvertently be contaminated with target analytes at many points in the sampling and analytical process, from the materials shipped for field sampling, to the air supply in the analytical laboratory. When appropriate, blank samples evaluated at multiple points in the process chain help assure that compound of interest measured in samples actually originated from the target matrix in the sampled environment and are not artifacts of the collection or analytical process.

Method blanks (also called laboratory reagent blanks, extraction blanks, procedural blanks, or preparation blanks) are used by laboratory personnel to assess laboratory contamination during all stages of sample preparation and analysis. The method blank is processed through the entire analytical procedure in a manner identical to the samples. A method blank concentration should be less than the RL or should not exceed a concentration of 10% of the lowest reported sample concentration. A method blank concentration greater than 10% of the lowest reported sample concentration will require corrective action to identify and eliminate the source(s) of contamination before proceeding with sample analysis. If eliminating the blank contamination is not possible, all impacted analytes in the analytical batch shall be flagged. In addition, a detailed description of the likely contamination source(s) and the steps taken to eliminate/minimize the contaminants shall be included in narrative of the data report. If supporting data is presented demonstrating sufficient precision in blank measurement that the 99% confidence interval around the average blank value is less than the MDL or 10% of the lowest measured sample concentration, then the average blank value may be subtracted.

A field blank is collected to assess potential sample contamination levels that occur during field sampling activities. Field blanks are taken to the field, transferred to the appropriate container, preserved (if required by the method), and treated the same as the corresponding sample type during the course of a sampling event. The inclusion of field blanks is dependent on the requirements specified in the relevant MQO tables or in the sampling method.

6. Special Training Needs / Certification

All fieldwork will be performed by contractor staff that has appropriate levels of experience and expertise to conduct the work, and/or by municipal staff that have received the appropriate instruction on sample collection, as determined by the Field PM and/or the PMT. The Field-PM will ensure that all members of the field crew (including participating municipal staff) have received appropriate instructions based on methods described in this document (Section 9) for collecting and transporting samples. As appropriate, sampling personnel may be required to undergo or have undergone OSHA training / certification for confined space entry in order to undertake particular aspects of sampling within areas deemed as such.

Analytical laboratories are to be certified for the analyses conducted at each laboratory by ELAP, NELAP, or an equivalent accreditation program as approved by the PMT. All laboratory personal will follow methods described in Section 13 for analyzing samples.

7. Program Documentation and Reporting

The Consultant Team in consultation with the PMT will prepare draft and final reports of all monitoring data, including statistical analysis and interpretation of the data, as appropriate, which will be submitted to the BASMAA BOD for approval. Following approval by the BASMAA BOD, Final project reports will be available for submission with each stormwater program's Annual Report in 2018 (Task 1) or in the March 31, 2019 report to the Regional Water Board (Tasks 2 and 3). Procedures for overall management of project documents and records and report preparation are summarized below.

7.1. Field Documentation

All field data gathered for the project are to be recorded in field datasheets, and scanned or transcribed to electronic documents as needed to permit easy access by the PMT, the consultant team, and other appropriate parties.

7.1.1.Sampling Plans, COCs, and Sampling Reports

The Field-PM will be responsible for development and submission of field sampling reports to the Data Manager and Consultant-PM. Field crews will collect records for sample collection, and will be responsible for maintaining these records in an accessible manner. Samples sent to analytical laboratories will include standard Chain of Custody (COC) procedures and forms; field crews will maintain a copy of originating COCs at their individual headquarters. Analytical laboratories will collect records for sample receipt and storage, analyses, and reporting. All records, except lab records, generated by the Monitoring Program will be stored at the office of the Data Manager for the duration of the project, and provided to BASMAA at the end of the project.

7.1.2.Data Sheets

All field data gathered by the Monitoring Program will be recorded on standardized field data entry forms. The field data sheets that will be used for each sampling task are provided in Appendix A.

7.1.3.Photographic Documentation

Photographic documentation is an important part of sampling procedures. An associated photo log will be maintained documenting sites and subjects associated with photos. If an option, the date function on the camera shall be turned on. Field Personnel will be instructed to take care to avoid any land marks when taking photographs, such as street signs, names of buildings, road mile markers, etc. that could be used later to identify a specific location. A copy of all photographs should be provided at the conclusion of sampling efforts and maintained for project duration.

7.2. Laboratory Documentation

The Monitoring Program requires specific actions to be taken by contract laboratories, including requirements for data deliverables, quality control, and on-site archival of project-specific information. Each of these aspects is described below.

7.2.1.Data Reporting Format

Each laboratory will deliver data in electronic formats to the Field-PM, who will transfer the records to the Data Manager, who is responsible for storage and safekeeping of these records for the duration of the project. In addition, each laboratory will deliver narrative information to the QA Officer for use in data QA and for long-term storage.

The analytical laboratory will report the analytical data to the Field-PM via an analytical report consisting of, at a minimum:

- 1. Letter of transmittal
- 2. Chain of custody information
- 3. Analytical results for field and quality control samples (Electronic Data Deliverable, EDD)
- 4. Case narrative

5. Copies of all raw data.

The Field-PM will review the data deliverables provided by the laboratory for completeness and errors. The QA Officer will review the data deliverables provided by the laboratory for review of QA/QC. In addition to the laboratory's standard reporting format, all results meeting MQOs and results having satisfactory explanations for deviations from objectives shall be reported in tabular format on electronic media. SWAMP-formatted electronic data deliverable (EDD) templates are to be agreed upon by the Data Manager, QA Officer, and the Lab-PM prior to onset of any sampling activities related to that laboratory.

Documentation for analytical data is kept on file at the laboratories, or may be submitted with analytical results. These may be reviewed during external audits of the Monitoring Program, as needed. These records include the analyst's comments on the condition of the sample and progress of the analysis, raw data, and QC checks. Paper or electronic copies of all analytical data, field data forms and field notebooks, raw and condensed data for analysis performed on-site, and field instrument calibration notebooks are kept as part of the Monitoring Program archives for a minimum period of eight years.

7.2.2. Other Laboratory QA/QC Documentation

All laboratories will have the latest version of this Monitoring Program SAP/QAPP in electronic format. In addition, the following documents and information from the laboratories will be current, and they will be available to all laboratory personnel participating in the processing of samples:

- 1. Laboratory QA plan: Clearly defines policies and protocols specific to a particular laboratory, including personnel responsibilities, laboratory acceptance criteria, and corrective actions to be applied to the affected analytical batches, qualification of data, and procedures for determining the acceptability of results.
- 2. Laboratory Standard Operation Procedures (SOPs): Contain instructions for performing routine laboratory procedures, describing exactly how a method is implemented in the laboratory for a particular analytical procedure. Where published standard methods allow alternatives at various steps in the process, those approaches chosen by the laboratory in their implementation (either in general or in specific analytical batches) are to be noted in the data report, and any deviations from the standard method are to be noted and described.
- 3. Instrument performance information: Contains information on instrument baseline noise, calibration standard response, analytical precision and bias data, detection limits, scheduled maintenance, etc.
- 4. Control charts: Control charts are developed and maintained throughout the Program for all appropriate analyses and measurements for purposes of determining sources of an analytical problem or in monitoring an unstable process subject to drift. Control charts serve as internal evaluations of laboratory procedures and methodology and are helpful in identifying and correcting systematic error sources. Control limits for the laboratory quality control samples are ±3 standard deviations from the certified or theoretical concentration for any given analyte.

Records of all quality control data, maintained in a bound notebook at each workstation, are signed and dated by the analyst. Quality control data include documentation of standard calibrations, instrument

maintenance and tests. Control charts of the data are generated by the analysts monthly or for analyses done infrequently, with each analysis batch. The laboratory quality assurance specialist will review all QA/QC records with each data submission, and will provide QA/QC reports to the Field-PM with each batch of submitted field sample data.

7.3. Program Management Documentation

The BASMAA-PM and Consultant-PM are responsible for managing key parts of the Monitoring Program's information management systems. These efforts are described below.

7.3.1.SAP/QAPP

All original SAP/QAPPs will be held by the Consultant-PM. This SAP/QAPP and its revisions will be distributed to all parties involved with the Monitoring Program. Copies will also be sent to the each participating analytical laboratory's contact for internal distribution, preferably via electronic distribution from a secure location.

Associated with each update to the SAP/QAPP, the Consultant-PM will notify the BASMAA-PM and the PMT of the updated SAP/QAPP, with a cover memo compiling changes made. After appropriate distributions are made to affected parties, these approved updates will be filed and maintained by the SAP/QAPP Preparers for the Monitoring Program. Upon revision, the replaced SAP/QAPPs will be discarded/deleted.

7.3.2. Program Information Archival

The Data Manager and Consultant-PM will oversee the actions of all personnel with records retention responsibilities, and will arbitrate any issues relative to records retention and any decisions to discard records. Each analytical laboratory will archive all analytical records generated for this Program. The Consultant-PM will be responsible for archiving all management-level records.

Persons responsible for maintaining records for this Program are shown in Table 7-1.

Туре	Retention (years)	Archival	Disposition
Field Datasheets	8	Data Manager	Maintain indefinitely
Chain of Custody Forms	8	Data Manager	Maintain indefinitely
Raw Analytical Data	8	Laboratory	Recycling
Lab QC Records	8	Laboratory	Recycling
Electronic data deliverables	8	Data Manager	Maintain indefinitely
Reports	8	Consultant-PM	Maintain indefinitely

 Table 7-1. Document and Record Retention, Archival, and Disposition

As discussed previously, the analytical laboratory will archive all analytical records generated for this Program. The Consultant-PM will be responsible for archiving all other records associated with implementation of the Monitoring Program.

All field operation records will be entered into electronic formats and maintained in a dedicated directory managed by the BASMAA-PM.

7.4. Reporting

The Consultant team will prepare draft and final reports for each component of the Monitoring Program. The PMT will provide review and input on draft reports and submit to the BASMAA BOD for approval. Once approved by the BASMAA BOD, the Monitoring Program reports will be available to each individual stormwater program for submission to the Regional Water Board according to the schedule outlined in the MRP and summarized in Table 7.2.

Monitoring Program Component	Task	MRP Reporting Due Date
Source Identification	Task 1 - Evaluation of PCB concentrations in roadwayand storm drain infrastructure caulk and sealants	September 30, 2018
Management Action Effectiveness	Task 2 - Evaluation of the annual mass of PCBs and mercury captured in HDS Unit sump sediment	March 31, 2019
	Task 3 - Bench-scale testing of the mercury and PCBs removal effectiveness of selected BSM mixtures.	

8. Sampling Process Design

All information generated through conduct of the Monitoring Program will be used to inform TMDL implementation efforts for mercury and PCBs in the San Francisco Bay region. The Monitoring Program will implement the following tasks: (1) evaluate the presence and concentrations of PCB in caulk and sealants from public roadway and stormdrain infrastructure; (2) evaluate mass of PCBs and mercury removed during HDS Unit maintenance; and (3) evaluate the mercury and PCBs treatment effectiveness of various BSM mixtures in laboratory column tests using stormwater collected from Bay Area locations. Sample locations and the timing of sample collection will be selected using the directed sampling design principle. This is a deterministic approach in which points are selected deliberately based on knowledge of their attributes of interest as related to the environmental site being monitored. This principle is also known as "judgmental," "authoritative," "targeted," or "knowledge-based." Individual monitoring aspects are summarized further under Field Methods (Section 9) and in the task-specific study designs (BASMAA 2017a,b).

8.1. Caulk/Sealant Sampling

Caulk/sealant sampling will support the Monitoring Program's Task 1 to evaluate PCBs in roadway and stormdrain infrastructure caulk/sealant, as described previously (see Section 4). Further detail on caulk/sealant sampling methods and procedures are provided under Field Methods (Section 9).

8.2. Sediment Quality Sampling

Sediment sampling will support the Monitoring Program's Task 2 to evaluate the mass of mercury and PCBs removed during HDS unit maintenance, as described previously (see Section 4). Further detail on

sediment sampling methods and procedures are provided under Field Methods (Section 9).

8.3. Water Quality Sampling

Water sampling will support the Monitoring Program's Task 3 to evaluate the mercury and PCBs treatment effectiveness of various BSM mixtures, as described previously (see Section 4). Further detail on water sampling methods and procedures are provided under Field Methods (Section 9).

8.4. Sampling Uncertainty

There are multiple sources of potential sampling uncertainty associated with the Monitoring Program, including: (1) measurement error; (2) natural (inherent) variability; (3) undersampling (or poor representativeness); and (4) sampling bias (statistical meaning). Measures incorporated to address these areas of uncertainty are discussed below:

(1) Measurement error combines all sources of error related to the entire sampling and analysis process (i.e., to the measurement system). All aspects of dealing with uncertainty due to measurement error have been described elsewhere within this document.

(2) Natural (inherent) variability occurs in any environment monitored, and is often much wider than the measurement error. Prior work conducted by others in the field of stormwater management have demonstrated the high degree of variability in environmental media, which will be taken into consideration when interpreting results of the various lines of inquiry.

(3) Under- or unrepresentative sampling happens at the level of an individual sample or field measurement where an individual sample collected is a poor representative for overall conditions encountered given typical sources of variation. To address this situation, the Monitoring Program will be implementing a number of QA-related measures described elsewhere within this document, including methods refined through implementation of prior, related investigations.

(4) Sampling bias relates to the sampling design employed and whether the appropriate statistical design is employed to allow for appropriate understanding of environmental conditions. To a large degree, the sampling design required by the Monitoring Program is judgmental, which will therefore incorporate an unknown degree of sampling bias into the Project. There are small measures that have been built into the sampling design to combat this effect (e.g., homogenization of sediments for chemistry analyses), but overall this bias is a desired outcome designed to meet the goals of this Monitoring Program, and will be taken into consideration when interpreting results of the various investigations.

Further detail on measures implemented to reduce uncertainty through mobilization, sampling, sample handling, analysis, and reporting phases are provided throughout this document.

9. Sampling Methods

The Monitoring Program involves the collection of three types of samples: Caulk/sealants; sediment from HDS unit sumps; and water quality samples. Field collection will be conducted by field contractors or municipal staff using a variety of sampling protocols, depending on the media and parameter monitored. These methods are presented below. In addition, the Monitoring Program will utilize several field

sampling SOPs previously developed by the BASMAA Regional Monitoring Coalition identified in Table 9-3 (RMC, BASMAA, 2016).

9.1. Caulk/Sealant Sampling (Task 1)

Procedures for collecting caulk and sealant samples are not well established. Minimal details on caulk or sealant sample collection methodologies are available in peer-reviewed publications. The caulk/sealant sampling procedures described here were adapted from a previous study examining PCBs in building materials conducted in the Bay Area (Klosterhaus et al., 2014). The methods described by Klosterhaus et al. (2014) were developed through consultation with many of the previous authors of caulk literature references therein, in addition to field experience gained during the Bay Area study. It is anticipated that lessons will also be learned during the current study.

9.1.1.Sample Site Selection

Once a structure has been identified as meeting the selection criteria and permission is granted to perform the testing or collection of sealant samples, an on-site survey of the structure will be used to identify sealant types and locations on the structure to be sampled. It is expected that sealants from a number of different locations on each structure may sampled; however, inconspicuous locations on the structure will be targeted.

9.1.2. Initial Equipment Cleaning

The sampling equipment that is pre-cleaned includes:

- Glass sample jars
- Utility knife, extra blades
- Stainless-steel forceps

Prior to sampling, all equipment will be thoroughly cleaned. Glass sample containers will be factory precleaned (Quality Certified[™], ESS Vial, Oakland, CA) and delivered to field team at least one week prior to the start of sample collection. Sample containers will be pre-labeled and kept in their original boxes, which will be transported in coolers. Utility knife blades, forceps, stainless steel spoons, and chisels will be pre-cleaned with Alconox, Liquinox, or similar detergent, and then rinsed with deionized water and methanol. The cleaned equipment will then be wrapped in methanol-rinsed aluminum foil and stored in clean Ziploc bags until used in the field.

9.1.3.Field Cleaning Protocol

Between each use the tool used (utility knife blade, spoon or chisel) and forceps will be rinsed with methanol and then deionized water, and inspected to ensure all visible sign of the previous sample have been removed. The clean tools, extra blades, and forceps will be kept in methanol-rinsed aluminum foil and stored in clean Ziploc bags when not in use.

9.1.4.Blind Sampling Procedures

The intention of this sampling is to better determine whether sealants in road and storm drain infrastructure contain PCBs at concentrations of concern, and to understand the relative importance of PCBs in this infrastructure among the other known sources of PCBs that can affect San Francisco Bay. At this phase of the project, we are not seeking to identify specific facilities requiring mitigation (if PCBs are identified, this could be a future phase). Therefore, in this initial round of sampling, we are not identifying sample locations, but instead implementing a blind sampling protocol, as follows:

- All samples will be collected without retaining any information that would identify structure locations. The information provided to the contractor on sampling locations will not be retained. Structure location information will not be recorded on any data sheets or in any data spreadsheets or other electronic computer files created for the Project. Physical sealant samples collected will be identified only by a sample identification (ID) designation (Section 4). Physical sealant sample labels will contain only the sample ID (see Section 4 and example label in Appendix A). Samples will be identified only by their sample ID on the COC forms.
- As an added precaution and if resources allow, oversampling will occur such that more samples will be collected than will be sent to the laboratory for compositing and analysis. In this case, the Project team would select a subset of samples for PCB analysis based on factors such as application type and/or chlorine content, but blind to the specific location where each sample was collected.
- Up to three individual sealant samples will be composited by the laboratory prior to analysis for PCBs, following instructions from the Consultant PM. This further ensures a blind sampling approach because samples collected at different locations will be analyzed together.

9.1.5.Caulk/Sealant Collection Procedures

At each sample location, the Field-PM, and/or municipal staff, will make a final selection of the most accessible sampling points at the time of sampling. From each point sampled, a one inch strip (aiming for about 10 g of material) of caulk or sealant will be removed from the structure using one of the following solvent-rinsed tools: a utility knife with a stainless-steel blade, stainless steel spoon to scrape off the material, or a stainless steel chisel. The Field-PM or municipal staff at the site will select the appropriate tool based on the conditions of the caulk/sealant at each sample point. Field personnel will wear nitrile gloves during sample collection to reduce potential sample collected, field personnel will fill out a field data sheet at the time of sample collection, which includes the following information:

- Date and time of sample collection,
- sample identification designation,
- qualitative descriptions of relevant structure or caulk/sealant features, including use profile, color and consistency of material collected, surface coating (paint, oily film, masonry residues etc.)
- crack dimensions, the length and/or width of the caulk bead sampled, spacing of expansion joints in a particular type of application, and
- a description of any unusual occurrences associated with the sampling event (especially those that could affect sample or data quality).

Appendix A contains an example field data sheet. All samples will be kept in a chilled cooler in the field (i.e., at $4 \text{ }^{\circ}\text{C} \pm 2 \text{ }^{\circ}\text{C}$), and kept refrigerated pending delivery under COC to the Field PM at KLI. Further, the field data sheets will remain with the samples when they are shipped to KLI, and will then be maintained by the Field PM at KLI.

As needed, the procedure for replacement of the caulk/sealant will be coordinated with the appropriate municipal staff to help ensure that the sampling does not result in damage to the structure.

9.1.6.Sample ID Designation

Every sample must have a unique sample ID to ensure analytical results from each sample can be differentiated from every other sample. This information should follow the sample through the COC, analytical, and interpretation and reporting processes. For the infrastructure caulk/sealant samples, the sample ID must not contain information that can be used to identify where the sample was collected. The following 2-step process will be followed to assign sample IDs to the caulk/sealant samples.

1. Upon collection, the sample will be labeled according to the following naming convention:

MMDDYYYY-TTTT-##		
Where:		
MM	2 digit month of collection	
DD	2 digit date of collection	
YYYY	4 digit year of collection	
TTTT	4 digit time of collection (military time)	
##	Sequential 2-digit sample number (i.e., 01, 02, 03etc.)	

For example, a sample collected on September 20, 2017 at 9 AM could be assigned the following sample ID: 09202017-0900-01.

2. This second step was added to avoid issues that could arise due to duplicate sample IDs, while maintaining the blind sampling approach. While the sample naming system identified above is unlikely to produce duplicate sample IDs, there is a chance that different groups may collect samples simultaneously. This second step will be implemented by the Field PM at KLI upon receipt of caulk/sealant samples from participating municipalities. The Field PM at KLI will review the sample IDs on the COC forms for all samples and compare the sample IDs to all caulk samples for this project already in storage at KLI. If any two samples have the same sample IDs, the Field PM will add a one-digit number to the end of one of the sample IDs, selected at random. This extra number will be added to the sample container label, the field data sheet, and the COC form for that sample.

9.2. HDS Unit Sampling Procedures (Task 2)

9.2.1.Sample Site Selection

Sample site selection will be opportunistic, based on the public HDS units that participating municipalities schedule for cleaning during the project. The project team will coordinate with participating municipalities to schedule sampling during HDS unit cleanouts.

9.2.2.Field Equipment and Cleaning

A list of potential sampling equipment for soil/sediment is presented in Table 5. The equipment list should be reviewed and tailored by field contractors to meet the needs of each individual sampling site. Appropriate sampling equipment is prepared in the laboratory a minimum of four days prior to sampling. Prior to sampling, all equipment will be thoroughly cleaned. Equipment is soaked (fully immersed) for three days in a solution of Alconox, Liquinox, or similar phosphate-free detergent and deionized water. Equipment is then rinsed three times with deionized water. Equipment is next rinsed with a dilute solution

(1-2%) of hydrochloric acid, followed by a rinse with reagent grade methanol, followed by another set of three rinses with deionized water. All equipment is then allowed to dry in a clean place. The cleaned equipment is then wrapped in aluminum foil or stored in clean Ziploc bags until used in the field.

Description of Equipment	Material (if applicable)
Sample scoops	Stainless steel or Kynar coated
Sample trowels	Stainless steel or Kynar coated
Compositing bucket	Stainless steel or Kynar coated
Ekman Dredge (as needed)	Stainless steel
Sample containers (with labels)	As coordinated with lab(s)
Methanol, Reagent grade (Teflon squeeze bottle with refill)	
Hydrochloric acid, 1-2%, Reagent grade (Teflon squeeze bottle)	
Liquinox detergent (diluted in DI within Teflon squeeze bottle)	
Deionized / reverse osmosis water	
Plastic scrub brushes	
Container for storage of sampling derived waste, dry	
Container for storage of sampling derived waste, wet	
Wet ice	
Coolers, as required	
Aluminum foil (heavy duty recommended)	
Protective packaging materials	Bubble / foam bags
Splash proof eye protection	
PPE for sampling personnel, including traffic mgmt as required	
Gloves for dry ice handling	Cotton, leather, etc.
Gloves for sample collection, reagent handling	Nitrile
Field datasheets	
COC forms	
Custody tape (as required)	
Shipping materials (as required)	
GPS	

Table 9-1 Field Equipment for HDS Unit Sampling.

9.2.3.Soil / Sediment Sample Collection

Field sampling personnel will collect sediment samples from HDS unit sumps using methods that minimize contamination, losses, and changes to the chemical form of the analytes of interest. The samples will be collected in the field into pre-cleaned sample containers of a material appropriate to the analysis to be conducted. Pre-cleaned sampling equipment is used for each site, whenever possible and/or when necessary. Appropriate sampling technique and measuring equipment may vary depending on the location, sample type, sampling objective, and weather. Additional safety measures may be necessary in some cases; for example, if traffic control or confined space entry is required to conduct the sampling.

Ideally and where a sufficient volume of soil/sediment allows, samples are collected into a composite container, where they are thoroughly homogenized, and then aliquoted into separate jars for chemical analysis. Sediment samples for metals and organics are submitted to the analytical laboratories in separate jars, which have been pre-cleaned according to laboratory protocol. It is anticipated that soil / solid media will be collected for laboratory analysis using one of two techniques: (1) Remote grab of submerged sediments within HDS unit sumps using Ekman dredge or similar; or (2) direct grab sampling of

sediments after dewatering HDS unit sumps using individual scoops, push core sampling, or similar. Each of these techniques is described briefly below.

- Soil and Sediment Samples, Submerged. Wet soil and sediment samples may be collected from within HDS unit sumps. Sample crews must exercise judgment on whether submerged samples can be collected in a manner that does not substantially change the character of the soil/sediment collected for analysis (e.g., loss of fine materials). It is anticipated that presence of trash within the sumps may interfere with sample collection by preventing complete grab closure and loss of significant portion of the sample. Field crews will have the responsibility to determine the best method for collection of samples within each HDS Unit sump. If sampling personnel determine that sample integrity cannot be maintained throughout collection process, it is preferable to cancel sampling operations rather than collect samples with questionable integrity. This decision making process is more fully described in Section 11, Field Variances.
- Soil and Sediment Samples, Dry. Soils / sediments may be collected from within the HDS unit sump after dewatering. Field crews will have the responsibility to identify areas of sediment accumulation within areas targeted for sampling and analysis, and determine the best method for collection of samples with minimal disturbance to the sampling media.

After collection, all soil/sediment samples for PCBs and mercury analyses will be homogenized and transferred from the sample-dedicated homogenization pail into factory-supplied wide-mouth glass jars using a clean trowel or scoop. The samples will be transferred to coolers containing double-bagged wet ice and chilled to 6°C immediately upon collection.

For each sample collected, field personnel will fill out a field data sheet at the time of sample collection. Appendix A contains an example field data sheet. All samples will be kept in a chilled cooler in the field, and kept refrigerated pending delivery under COC to the field-PM. The Field PM will be responsible for sending the samples in a single batch to CEH for XRF analysis under COC. Following XRF analysis, CEH will deliver the samples under COC to the Consultant-PM. The Consultant-PM will be responsible for working with the project team to group samples for compositing, and sending those samples to the analytical laboratory under COC.

9.2.4.Sample ID Designation

Every sample must have a unique sample ID so that the analytical results from each sample can be differentiated from every other sample. This information should follow the sample through the COC, analytical, and interpretation and reporting processes. Each sediment/soil sample collected from HDS units will be labeled according to the following naming convention:

where:	
MMM	Municipal Abbreviation (i.e., SJC=San Jose; OAK=Oakland; SUN=Sunnyvale).
UUU	HDS Unit Catchment ID; this is the number provided by the municipality for a specific HDS unit.
##	Sequential Sample Number (i.e., 01, 02, 03etc.)

9.3. Water Quality Sampling and Column Testing Procedures (Task 3)

For this task, monitoring will be conducted during three storm events. The stormwater collected during these events will then be used as the influent for the laboratory column tests of amended BSM mixtures. Four influent samples (i.e., one sample of Bay Area stormwater from each of the three monitored storm events plus one diluted stormwater sample) and 20 effluent samples from the column tests that includes 3 tests for each of the six columns, plus one test with the diluted stormwater in two columns (one test column and one control column) will be collected and analyzed for pollutant concentrations.

9.3.1.Sample Site Selection

Two stormwater collection sites have been selected based on influent PCB concentrations measured during CW4CB (BASMAA, 2017c). Both sites are near tree wells located on Ettie Street in West Oakland. The first site is the influent to tree well #6 (station code = TW6). During CW4CB, influent stormwater concentrations at this location were average to high, ranging from 30 ng/L to 286 ng/L. Stormwater collected from this site will be used as the influent for one of the main column tests and some water will be reserved for the dilution series column tests. The amount of dilution will be determined after results are received from the lab from the first run. The second site is the influent to tree well #2 (station code=TW2). During CW4CB, influent stormwater concentrations at this location were low to average, ranging from 6 ng/L to 39 ng/L. Stormwater collected from this site will be used for the remaining two main column tests..

9.3.2. Field Equipment and Cleaning

Field sampling equipment includes:

- 1. Borosilicate glass carboys
- 2. Glass sample jars
- 3. Peristaltic pump tubing

Prior to sampling, all equipment will be thoroughly cleaned. Glass sample containers and peristaltic pump tubing will be factory pre-cleaned. Prior to first use and after each use, glass carboys (field carboys and effluent collection carboys) will be washed using phosphate-free laboratory detergent and scrubbed with a plastic brush. After washing the carboy will be rinsed with methylene chloride, then de-ionized water, then 2N nitric acid, then again with de-ionized water. Glass carboys will be cleaned after each sample run before they are returned to the Field PM for reuse in the field.

9.3.3. Water Sampling Procedures

During each storm event, stormwater will be collected in six, five-gallon glass carboys. To fill the carboys, the Field PM will create a backwater condition in the gutter before the drain inlet at each site and use a peristaltic pump to pump the water into glass carboys. Field personnel will wear nitrile gloves during sample collection to prevent contamination. Carboys will be stored and transported in coolers with either wet ice or blue ice, and will be delivered to OWP within 24 hours of collection.

9.3.4.Hydraulic Testing

Based on the literature review and availability, the best five biochars will be mixed with the standard BSM to create biochar amended BSMs. Initially, each biochar will be mixed with standard BSM at a rate of 25% biochar by volume (the same as that at the CW4CB Richmond PG&E Substation 1st and Cutting

site). Hydraulic conductivity can be determined using the method stated in the BASMAA soil specification, method ASTM D2434.

- 1. Follow the directions for permeability testing in ASTM D2434 for the BSM.
- 2. Sieve enough of the sample biochar to collect at least 15 in³ on a no. 200 sieve.
- 3. Mix the sieved biochar with standard BSM at a 1 to 4 ratio.
- 4. Thoroughly mix the soil.
- 5. Follow the directions for permeability testing in ASTM D2434.
- 6. If the soil mix is more than 1 in/hr different from the BSM, repeat steps 1-4 but on step 3, adjust the ratio as estimated to achieve the same permeability as the BSM.
- 7. Repeat steps 2-6 for each biochar.

9.3.5.Column Testing Procedures

Column Setup: Up to five biochar amended BSMs and one standard BSM will be tested (based on performance and availability of biochars). Six glass columns with a diameter of eight inches and a height of three feet will be mounted to the wall with sufficient height between the bottom of the columns and the floor to allow for effluent sample collection. Each column will be capped at the bottom and fitted with a spigot to facilitate sampling. Soil depth for all columns will be 18" after compaction, which is a standard depth used in bay area bioretention installations (see Figure 9-1 below). To retain soil the bottom of the soil layer will be contained by a layer of filter fabric on top of structural backing. Behind each column, a yardstick will be mounted to the wall so that the depth of water in the column can be monitored.

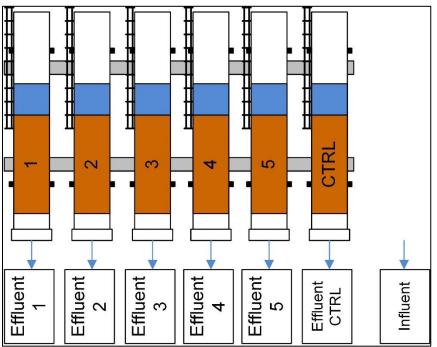


Figure 9-1. Column Test Setup

Dilution Run Column Setup: One of the existing biochar-amended BSM column and the standard BSM will be tested using diluted stormwater.

Testing procedure pre run setup: Before a sampling run begins a clean glass carboy will be placed under each soil column and labeled to match, this carboy will be sized to collect the full effluent volume

of the sample run. A glass beaker will also be assigned and labeled for each column of sufficient volume to accurately measure a single influent dose equivalent to 1 inch of depth in the column. An additional beaker will be prepared and labeled influent.

<u>Media conditioning</u>: Within 24 to 72 hours prior to the first column test run, pre-wet each column with a stormwater matrix collected from the CSUS campus by filling each column from the invert until water ponds above the media. Drain the water after 3 hours.

Sampling run: When the six glass carboys are delivered:

- 1. Inspect each carboy and fill out the Sample Receiving worksheet.
- 2. The runs will begin within 72 hours of delivery.
- 3. Select one carboy at random and fully mix it using a portable lab mixer for five minutes.
- 4. Turn off and remove the mixer, allow the sample to rest for one minute to allow the largest particles to settle to the bottom.
- 5. Fill each of the six dosing beakers and the one influent sample jar.
- 6. Pour each aliquot beaker into its respective column; record the time and height of water in each column.
- 7. Repeat steps 3-6 for each of the remaining carboys until a total of 18 inches of water is applied to each column. Before pouring an aliquot record the height of water in each column and the time. Pour each successive aliquot from the carboy when all columns have less than three inches of water above the soil surface. The water level should never be above 6 inches in any column at any time (6 inches is a standard ponding depth used in the bay area). Pour all aliquots from a single carboy into the columns at the same time.
- 8. Collect turbidity samples from the effluent of each column at the beginning, middle, and end of the sampling run. Fill the cuvettes for turbidity measurement directly from the effluent stream of each column and dispose of them after testing.
- 9. Collect mercury samples from the effluent of each column at the middle of the sample run using pre-labeled sample containers provided by the lab for that purpose.
- 10. Fill a pre-labeled sample jar from each columns effluent. The jar will be obtained from the laboratory performing the PCB analysis.
- 11. Pack each jar in ice and complete the lab COCs.
- 12. Ship the samples to the lab for analysis.

9.3.6.Sample ID Designations

Every sample must have a unique sample identification to ensure analytical results from each sample can be differentiated from every other sample. This information should follow the sample through the COC, analytical, and interpretation and reporting processes. Each influent and effluent water quality sample will be labeled according to the following naming convention:

SSS-TT-MMDDYYYY-##

Where:	
SSS	Station code (see Table 9-2 for station codes)
TT	Sample Type (IN=influent; EF=Effluent)
MM	2 digit month of collection
DD	2 digit date of collection
YYYY	4 digit year of collection
##	Sequential 2-digit sample number (i.e., 01, 02, 03etc.)

For example, a sample collected at the West Oakland Tree Well #2 site on October 20, 2017 and used for the influent sample for run #3 could be assigned the following sample ID: TW2-IN-09202017-03.

Station Code	Station Description
TW2	Stormwater sample collected from the West Oakland Tree Well #2
TW6	Stormwater sample collected from the West Oakland Tree Well #6
CO1	Effluent sample collected from column number 1
CO2	Effluent sample collected from column number 2
CO3	Effluent sample collected from column number 3
CO4	Effluent sample collected from column number 4
CO5	Effluent sample collected from column number 5
CO6	Effluent sample collected from column number 6

 Table 9-2 Station Codes for Stormwater Influent Samples and Column Tests.

9.4. Collection of Samples for Archiving

Archive samples will not be collected for this Monitoring Program. The sample size collected will be enough to support additional analyses if QA/QC issues arise. Once quality assurance is certified by the QA Officer, the laboratory will be instructed to dispose of any leftover sample materials.

9.5. Waste Disposal

Proper disposal of all waste is an important component of field activities. At no time will any waste be disposed of improperly. The proper methods of waste disposal are outlined below:

9.5.1.Routine Garbage

Regular garbage (paper towels, paper cups, etc.) is collected by sampling personnel in garbage bags or similar. It can then be disposed of properly at appropriate intervals.

9.5.2. Detergent Washes

Any detergents used or detergent wash water should be collected in the field in a water-tight container and disposed of appropriately.

9.5.3.Chemicals

Methanol, if used, should be disposed of by following all appropriate regulations. It should always be collected when sampling and never be disposed in the field.

9.1. Responsibility and Corrective Actions

If monitoring equipment fails, sampling personnel will report the problem in the comments section of their field notes and will not record data values for the variables in question. Actions will be taken to replace or repair broken equipment prior to the next field use.

9.2. Standard Operating Procedures

SOPs associated with sampling and sample handling expected to be used as part of implementation of The Monitoring Program are identified in Table 9-3. Additional details on sample container information, required preservation, holding times, and sample volumes for all Monitoring Program analytes are listed

in Table 10-1 of Section 10.

RMC	RMC SOP	Source
SOP #		
FS-2	Water Quality Sampling for Chemical Analysis, Pathogen Indicators,	BASMAA 2016
	and Toxicity	
FS-3	Field Measurements, Manual	BASMAA 2016
FS-4	Field Measurements, Continuous General Water Quality	BASMAA 2016
FS-5	Temperature, Automated, Digital Logger	BASMAA 2016
FS-6	Collection of Bedded Sediment Samples for Chemical Analysis and	BASMAA 2016
	Toxicity	
FS-7	Field Equipment Cleaning Procedures	BASMAA 2016
FS-8	Field Equipment Decontamination Procedures	BASMAA 2016
FS-9	Sample Container, Handling, and Chain of Custody Procedures	BASMAA 2016
FS-10	Completion and Processing of Field Datasheets	BASMAA 2016
FS-11	Site and Sample Naming Convention	BASMAA 2016

 Table 9-3. List of BASMAA RMC SOPs Utilized by the Monitoring Program.

In addition, contractor-specific plans and procedures may be required for specific aspects of the Monitoring Program implementation (e.g., health and safety plans, dry ice shipping procedures).

10. Sample Handling and Custody

Sample handling and chain of custody procedures are described in detail in RMC SOP FS-9 (Table 9-3) (BASMAA 2016). The Field-PM or designated municipal staff on site during sample collection will be responsible for overall collection and custody of samples during field sampling. Field crews will keep a field log, which will consist of sampling forms for each sampling event. Sample collection methods described in this document and the study designs (BASMAA 2017a, b) will be followed for each sampling task. Field data sheets will be filled out for each sample collected during the project. Example field data sheets are provided in Appendix A, and described further in Section 9.

The field crews will have custody of samples during field sampling, and COC forms will accompany all samples from field collection until delivery to the analyzing laboratory. COC procedures require that possession of samples be traceable from the time the samples are collected until completion and submittal of analytical results. Each laboratory will follow sample custody procedures as outlined in its QA plans.

Information on sampling containers, preservation techniques, packaging and shipping, and hold times is described below and summarized in Table 10.1.

10.1. Sampling Containers

Collection of all sample types require the use of clean containers. Factory pre-cleaned sample containers of the appropriate type will be provided by the contracted laboratory and delivered to field team at least one week prior to the start of sample collection. Individual laboratories will be responsible for the integrity of containers provided. The number and type of sample containers required for all analytes by media type for each sampling task are provided in Table 10.1.

10.2. Sample Preservation

Field Crews will collect samples in the field in a way that neither contaminates, loses, or changes the chemical form of the analytes of interest. The samples will be collected in the field into pre-cleaned sample containers of a material appropriate to the analysis to be conducted. Pre-cleaned sampling equipment is used for each site, whenever possible and/or when necessary. Appropriate sampling technique and measurement equipment may vary depending on the location, sample type, sampling objective, and weather.

In general, all samples will be packed in sufficient wet ice or frozen ice packs during shipment, so that they will be kept between 2 and 4° C (Table 10.1). When used, wet ice will be double bagged in Zip-top bags to prevent contamination via melt water. Where appropriate, samples may be frozen to prevent degradation. If samples are to be shipped frozen on dry ice, then appropriate handling procedures will be followed, including ensuring use of appropriate packaging materials and appropriate training for shipping personnel.

10.3. Packaging and Shipping

All samples will be handled, prepared, transported, and stored in a manner so as to minimize bulk loss, analyte loss, contamination, or biological degradation. Sample containers will be clearly labeled with an indelible marker. All caps and lids will be checked for tightness prior to shipping. Ice chests will be sealed with packing tape before shipping. Samples will be placed in the ice chest with enough ice or frozen ice packs to maintain between 2 and 4° C. Additional packing material will be added as needed. COC forms will be placed in a zip-top bag and placed inside of the ice chest.

10.4. Commercial Vehicle Transport

If transport of samples to the contracted laboratories is to be by commercial carriers, pickup will be prearranged with the carrier and all required shipping forms will be completed prior to sample pickup by the commercial carrier.

10.5. Sample Hold Times

Sample hold times for each analyte by media type are presented in Table 10-1.

Analyte	Sample Media	Sample Container	Minimum Sample / Container Size ^a	Preservative	Hold Time (at 6° C)
PCBs (40-RMP Congeners)	Caulk or sealant	Pre-cleaned 250-mL glass sample container (e.g., Quality Certified™, ESS Vial, Oakland, CA)	10 g	Cool to 6° C within 24 hours, then freeze to \leq -20° C	1 year at -20° C; Samples must be analyzed within 14 days of collection or thawing.
	Sediment	Pre-cleaned 250-mL I- Chem 200 Series amber glass jar with Teflon lid liner	500 mL (two jars)	Cool to 6° C within 24 hours, then freeze to \leq -20° C	1 year at -20° C; Samples must be analyzed within 14 days of collection or thawing.
	Water	1000-mL I-Chem 200- Series amber glass bottle, with Teflon lid- liner	1000 mL/per individual analyses	Cool to 6° C in the dark.	1 year until extraction, 1 year after extraction
Total Mercury	Sediment	Pre-cleaned 250-mL I- Chem 200 Series amber glass jar with Teflon lid liner	100 g	Cool to 6° C and in the dark	1 year at -20° C; Samples must be analyzed within 14 days of collection or thawing.
	Water	250-mL glass or acid- cleaned Teflon bottle	250 mL	Cool to 6° C in the dark and acidify to 0.5% with pre-tested HCl within 48 hours	6 months at room temperature following acidification
Bulk Density	Sediment	250-mL clear glass jar; pre-cleaned	250 mL	Cool to 6° C	7 days
Grain Size and TOC	Sediment	250-mL clear glass jar; pre-cleaned	250 mL	Cool to 6° C, in the dark up to 28 days ²	28 days at $\leq 6 \circ C$; 1 year at $\leq -20 \circ C$
SSC	Water	125-mL amber glass jar or Polyethylene Bottles	125 mL	Cool to 6° C and store in the dark	7 days
Turbidity	Water				
Total Solids	Water	1 L HDPE	1 L	Cool to ≤6 ∘C	7 days
TOC	Water	40-mL glass vial	40 mL	Cool to 6° C and store in the dark. If analysis is to occur more than two hours after sampling, acidify (pH < 2) with HCl or H ₂ SO ₄ .	28 days
Particle Size Distribution	Water	1 L HDPE	2 L	Cool to 6° C and store in the dark	7 days

Table 10-1 Sam	ole Handling for the	Monitoring Program	Analytes by media type.

^aQC samples or other analytes require additional sample bottles.

11. Field Health and Safety Procedures

All field crews will be expected to abide by their employer's (i.e., the field contractor's) health and safety programs. Additionally, prior to the fieldwork, field contractors are required to develop site-specific Health and Safety plans that include the locations of the nearest emergency medical services.

Implementation of the Monitoring Program activities may require confined space entry (CSE) to accomplish sampling goals. Sampling personnel conducting any confined space entry activities will be expected to be certified for CSE and to abide by relevant regulations.

12. Laboratory Analytical Methods

12.1. Caulk/Sealant Samples (Task 1)

12.1.1. XRF Chlorine analysis

XRF technology will be used in a laboratory setting to rank samples for chlorine content before sending the samples to the project laboratory for chemical analysis. Procedures for testing caulk or sealants using X-Ray fluorescence (XRF) and collecting caulk and sealant samples are not well described, and minimal detail on caulk or sealant sample collection is available in peer-reviewed publications. Sealant sampling procedures were adapted from the previous study examining PCBs in building materials (Klosterhaus et al., 2014).

An XRF analyzer will be used at the Center for Environmental Health (CEH) as a screening tool to estimate the concentration of chlorine (Cl) in collected caulk and sealant samples from various structures. Settings for the analyzer will be 'standardized' using procedures developed/ recommended by CEH each time the instrument is turned on and prior to any measurement. European plastic pellet reference materials (EC680 and EC681) will be used as 'check' standards upon first use to verify analyzer performance. A 30 second measurement in 'soil' mode will be used. CEH personnel will inspect the caulk/sealant surfaces and use a stainless steel blade to scrape off any paint, concrete chips, or other visible surface residue. The caulk/sealant surface to be sampled will then be wiped with a laboratory tissue to remove any remaining debris that may potentially interfere with the XRF analysis. At least two XRF readings will be collected from each sample switching the orientation or position of the sample between readings. If Cl is detected, a minimum of four additional readings will be collected on the same material to determine analytical variability. Each individual Cl reading and its detection limit will be recorded on the data sheet. After XRF analysis, all samples will be returned to their original sample container. Results of the XRF analysis will be provided to the project team as a table of ranked Cl screening results for possible selection for chemical (PCBs) analysis.

12.1.2. Selection of Samples for PCB analysis and Compositing

Once samples have been ranked for their chlorine content, primarily samples with the highest Cl will preferentially be selected for chemical analysis. About 75% of samples to be analyzed should be selected from samples with the top quartile Cl content. The remaining 25% should be selected from samples with medium (25 to 75th percentile) Cl, as the previous study using XRF screening showed inconsistent correlation between total Cl and PCB. Although samples with very low Cl seldom had much PCBs, samples with medium Cl on occasion had higher PCBs than samples with high Cl, and within the high Cl group, Cl content was not a good predictor of their ranks of PCB concentration.

In addition to Cl content, other factors about each sample that were recorded on the field data sheets at the time of sample collection, including the color or consistency of the sample, the type and/or age of the structure that was sampled, or the type of caulk or sealant application will be considered in selecting the samples that will be sent to the laboratory for PCBs analysis, as well as how the samples will be grouped for compositing purposes. Those factors are described in more detail in the study design (BASMAA, 2017a).

The Consultant PM will work with the project team to identify up to three samples for inclusion in each composite. A common composite ID will then be assigned to each sample that will be composited together (i.e., all samples the lab should composite together will be identified by the common composite ID). The composite ID will consist of a single letter designation and will be identical for all samples (up to 3 total) that will be composited together. The Consultant PM will add the composite ID to each sample container label, to each sample ID on all COC forms, and to each field data sheet for all samples prior to sending the samples to the laboratory for PCBs analysis.

12.1.3. Sample Preparation

The project laboratory will composite the samples prior to extraction and PCBs analysis according to the groupings identified by the common composite ID. Sample preparation will include removal of any paint, concrete chips, or other surface debris, followed by homogenization of the caulk/sealant material and compositing up to three samples per composite. Each sample will have a composite ID that will be used to identify which samples should be composited together. Samples with the same composite ID will be combined into a single composite sample. For example, all samples with composite ID = "A" will be composited together; all samples with composite ID = "B" will be composited together, etc. Sample preparation and compositing will follow the procedures outlined in the laboratory SOPs (Appendix B). After compositing, each composite sample will be assigned a new sample ID using the following naming convention:

X-MMDDYYYY

Where:

where.	
Х	the single letter Composite ID that is common to all samples included in a given
	composite.
MM	2 digit month of composite preparation
DD	2 digit date of composite preparation
YYYY	4 digit year of composite preparation

For example, if three samples with the composite ID= "A" are combined into a single composite sample on December 12, 2017, the new (composite) sample ID would be the following: A-12122017.

12.1.4. PCBs Analysis

All composite caulk/sealant samples will be extracted by Method 3540C, and analyzed for the RMP-40 PCB congeners³ using a modified EPA Method 8270C (GC/MS-SIM), in order to obtain positive

³ The 40 individual congeners routinely quantified by the Regional Monitoring Program (RMP) for Water Quality in the San Francisco Estuary include: PCBs 8, 18, 28, 31, 33, 44, 49, 52, 56, 60, 66, 70, 74, 87, 95, 97, 99, 101, 105, 110, 118, 128, 132, 138, 141, 149, 151, 153, 156, 158, 170, 174, 177, 180, 183, 187, 194, 195, 201, and 203

identification and quantitation of PCBs. PCB content of these material covers an extremely wide range, so the subsampling of material should include sufficient material for quantification assuming that the concentration is likely to be around the median of previous results. There may be samples with much higher concentrations, which can be reanalyzed on dilution as needed. Method Reporting Limits (MRLs) for each of the RMP-40 PCB Congeners are $0.5 \mu g/Kg$.

12.2. Sediment Samples Collected from HDS Units (Task 2)

All sediment samples collected from HDS units under Task 2 will be analyzed for TOC, grain size, bulk density, total mercury, and PCBs (RMP 40 Congeners1) by the methods identified in Table 12-1. All sediment samples (with the exception of grain size) will be sieved by the laboratory at 2 mm prior to analysis.

Analyte	Sampling Method	Recommended Analytical Method	Reporting Units
Total Organic Carbon (TOC)	Grab	EPA 415.1, 440.0, 9060, or ASTM D4129M	%
Grain Size	Grab	ASTM D422M/PSEP	%
Bulk Density	Grab	ASTM E1109-86	g/cm3
Mercury	Grab	EPA 7471A, 7473, or 1631	µg/kg
PCBs (RMP 40 Congeners)	Grab	EPA 1668	µg/kg

Table 12-1. Laboratory Analytical Methods for Analytes in Sediment

12.3. Water Samples – Stormwater and Column Tests (Task 3)

All water samples submitted to the laboratory will be analyzed for SSC, TOC, total mercury and PCBs (RMP-40 congeners) according to the methods identified in Table 12-2.

Table 12-2. Laboratory Analytical Methods for Analytes in Water

Analyte	Sampling Method	Recommended Analytical Method	Reporting Units
Suspended Sediment Concentration (SSC)	Grab	ASTM D3977-97 (Method C)	mg/L
Total Organic Carbon (TOC)	Grab	EPA 415.1 or SM 5310B	%
Mercury (Total)	Grab	EPA 1631	μg/L
PCBs (RMP 40 Congeners)	Grab	EPA 1668	ng/L

12.4. Method Failures

The QA Officer will be responsible for overseeing the laboratory implementing any corrective actions that may be needed in the event that methods fail to produce acceptable data. If a method fails to provide acceptable data for any reason, including analyte or matrix interferences, instrument failures, etc., then the involved samples will be analyzed again if possible. The laboratory in question's SOP for handling these types of problems will be followed. When a method fails to provide acceptable data, then the laboratory's

SOP for documenting method failures will be used to document the problem and what was done to rectify it.

Corrective actions for chemical data are taken when an analysis is deemed suspect for some reason. These reasons include exceeding accuracy or precision ranges and/or problems with sorting and identification. The corrective action will vary on a case-by-case basis, but at a minimum involves the following:

- A check of procedures.
- A review of documents and calculations to identify possible errors.
- Correction of errors based on discussions among analysts.
- A complete re-identification of the sample.

The field and laboratory coordinators shall have systems in place to document problems and make corrective actions. All corrective actions will be documented to the FTL and the QA Officer.

12.5. Sample Disposal

After analysis of the Monitoring Program samples has been completed by the laboratory and results have been accepted by QA Officer and the Field-PM, they will be disposed by laboratory staff in compliance with all federal, state, and local regulations. The laboratory has standard procedures for disposing of its waste, including left over sample materials

12.6. Laboratory Sample Processing

Field samples sent to the laboratories will be processed within their recommended hold time using methods agreed upon method between the Lab-PM and Field-PM. Each sample may be assigned unique laboratory sample ID numbers for tracking processing and analyses of samples within the laboratory. This laboratory sample ID (if differing from the field team sample ID) must be included in the data submission, within a lookup table linking the field sample ID to that assigned by the lab.

Samples arriving at the laboratory are to be stored under conditions appropriate for the planned analytical procedure(s), unless they are processed for analysis immediately upon receipt. Samples to be analyzed should only be removed from storage when laboratory staff are ready to proceed.

13. Quality Control

Each step in the field collection and analytical process is a potential source of contamination and must be consistently monitored to ensure that the final measurement is not adversely affected by any processing steps. Various aspects of the quality control procedures required by the Monitoring Program are summarized below.

13.1. Field Quality Control

Field QC results must meet the MQOs and frequency requirements specified in Tables 13-1 – 13-4 below.

13.1.1. Field Blanks

A field blank is collected to assess potential sample contamination levels that occur during field sampling activities. Field blanks are taken to the field, transferred to the appropriate container, preserved (if required by the method), and treated the same as the corresponding sample type during the course of a sampling event. The inclusion of field blanks is dependent on the requirements specified in the relevant MQO tables or in the sampling method or SOP.

Collection of caulk or sealant field blank samples has been deemed unnecessary due to the difficulty in collection and interpretation of representative blank samples and the use of precautions that minimize contamination of the samples. Additionally, PCBs have been reported to be present in percent concentrations when used in sealants; therefore any low level contamination (at ppb or even ppm level) due to sampling equipment and procedures is not expected to affect data quality because it would be many orders of magnitude lower than the concentrations deemed to be a positive PCB signal.

For stormwater samples, field blanks will be generated using lab supplied containers and clean matrices. Sampling containers will be opened as though actual samples were to be collected, and clean lab-supplied matrix (if any) will be transferred to sample containers for analysis.

13.1.2. Field Duplicates

Field samples collected in duplicate provide precision information as it pertains to the sampling process. The duplicate sample must be collected in the same manner and as close in time as possible to the original sample. This effort is to attempt to examine field homogeneity as well as sample handling, within the limits and constraints of the situation. These data are evaluated in the data analysis/assessment process for small-scale spatial variability.

Field duplicates will not be collected for caulk/sealant samples (Task 1), as assessment of within-structure variability of PCB concentrations in sealants is not a primary objective of the Project. Due to budget limitations, PCBs analysis of only one caulk/sealant sample per application will be targeted to maximize the number of Bay Area structures and structure types that may be analyzed in the Project. The selected laboratory will conduct a number of quality assurance analyses (see Section 13), including a limited number of sample duplicates, to evaluate laboratory and method performance as well as variability of PCB content within a sample.

For all sediment and water samples, 5% of field duplicates and/or column influent/effluent duplicates will be collected along with primary samples in order to evaluate small scale spatial or temporal variability in sample collection without specifically targeting any apparent or likely bias (e.g. different sides of a seemingly symmetrical unit, or offset locations in making a composite, or immediately following collection of a primary water sample would be acceptable, whereas collecting one composite near an inlet and another near the outlet, or intentionally collecting times with vastly different flow rates, would not be desirable).

13.1.3. Field Corrective Action

The Field PM is responsible for responding to failures in their sampling and field measurement systems. If monitoring equipment fails, personnel are to record the problem according to their documentation protocols. Failing equipment must be replaced or repaired prior to subsequent sampling events. It is the combined responsibility of all members of the field organization to determine if the performance

requirements of the specific sampling method have been met, and to collect additional samples if necessary. Associated data is to be flagged accordingly. Specific field corrective actions are detailed in Table 13-8.

13.2. Laboratory Quality Control

Laboratories providing analytical support to the Monitoring Program will have the appropriate facilities to store, prepare, and process samples in an ultra-clean environment, and will have appropriate instrumentation and staff to perform analyses and provide data of the required quality within the time period dictated by the Monitoring Program. The laboratories are expected to satisfy the following:

- 1. Demonstrate capability through pertinent certification and satisfactory performance in interlaboratory comparison exercises.
- 2. Provide qualification statements regarding their facility and personnel.
- 3. Maintain a program of scheduled maintenance of analytical balances, laboratory equipment and instrumentation.
- 4. Conduct routine checking of analytical balances using a set of standard reference weights (American Society of Testing and Materials Class 3, NIST Class S-1, or equivalents). Analytical balances are serviced at six-month intervals or when test weight values are not within the manufacturer's instrument specifications, whichever occurs first.
- 5. Conduct routine checking and recording the composition of fresh calibration standards against the previous lot. Acceptable comparisons are within 2% of the precious value.
- 6. Record all analytical data in bound (where possible) logbooks, with all entries in ink, or electronically.
- 7. Monitor and document the temperatures of cold storage areas and freezer units on a continuous basis.
- 8. Verify the efficiency of fume/exhaust hoods.
- 9. Have a source of reagent water meeting specifications described in Section 8.0 available in sufficient quantity to support analytical operations.
- 10. Label all containers used in the laboratory with date prepared, contents, initials of the individual who prepared the contents, and other information as appropriate.
- 11. Date and safely store all chemicals upon receipt. Proper disposal of chemicals when the expiration date has passed.
- 12. Have QAPP, SOPs, analytical methods manuals, and safety plans readily available to staff.
- 13. Have raw analytical data readily accessible so that they are available upon request.

In addition, laboratories involved in the Monitoring Program are required to demonstrate capability continuously through the following protocols:

- 1. Strict adherence to routine QA/QC procedures.
- 2. Regular participation in annual certification programs.
- 3. Satisfactory performance at least annually in the analysis of blind Performance Evaluation Samples and/or participation in inter-laboratory comparison exercises.

Laboratory QC samples must satisfy MQOs and frequency requirements. MQOs and frequency requirements are listed in Tables 13-1 – 13-3. Frequency requirements are provided on an analytical batch

level. The Monitoring Program defines an analytical batch as 20 or fewer samples and associated quality control that are processed by the same instrument within a 24-hour period (unless otherwise specified by method). Target Method Reporting Limits are provided in Tables 13.4 - 13.8. Details regarding sample preparation are method- or laboratory SOP-specific, and may consist of extraction, digestion, or other techniques.

13.2.1. Calibration and Working Standards

All calibration standards must be traceable to a certified standard obtained from a recognized organization. If traceable standards are not available, procedures must be implemented to standardize the utilized calibration solutions (*e.g.*, comparison to a CRM – see below). Standardization of calibration solutions must be thoroughly documented, and is only acceptable when pre-certified standard solutions are not available. Working standards are dilutions of stock standards prepared for daily use in the laboratory. Working standards are used to calibrate instruments or prepare matrix spikes, and may be prepared at several different dilutions from a common stock standard. Working standards are diluted with solutions that ensure the stability of the target analyte. Preparation of the working standard must be thoroughly documented such that each working standard is traceable back to its original stock standard. Finally, the concentration of all working standards must be verified by analysis prior to use in the laboratory.

13.2.2. Instrument Calibration

Prior to sample analysis, utilized instruments must be calibrated following the procedures outlined in the relevant analytical method or laboratory SOP. Each method or SOP must specify acceptance criteria that demonstrate instrument stability and an acceptable calibration. If instrument calibration does not meet the specified acceptance criteria, the analytical process is not in control and must be halted. The instrument must be successfully recalibrated before samples may be analyzed.

Calibration curves will be established for each analyte covering the range of expected sample concentrations. Only data that result from quantification within the demonstrated working calibration range may be reported unflagged by the laboratory. Quantification based upon extrapolation is not acceptable; sample extracts above the calibration range should be diluted and rerun if possible. Data reported below the calibration range must be flagged as estimated values that are Detected not Quantified.

13.2.3. Initial Calibration Verification

The initial calibration verification (ICV) is a mid-level standard analyzed immediately following the calibration curve. The source of the standards used to calibrate the instrument and the source of the standard used to perform the ICV must be independent of one another. This is usually achieved by the purchase of standards from separate vendors. Since the standards are obtained from independent sources and both are traceable, analyses of the ICV functions as a check on the accuracy of the standards used to calibrate the instrument. The ICV is not a requirement of all SOPs or methods, particularly if other checks on analytical accuracy are present in the sample batch.

13.2.4. Continuing Calibration Verification

Continuing calibration verification (CCV) standards are mid-level standards analyzed at specified intervals during the course of the analytical run. CCVs are used to monitor sensitivity changes in the instrument during analysis. In order to properly assess these sensitivity changes, the standards used to perform CCVs must be from the same set of working standards used to calibrate the instrument. Use of a

second source standard is not necessary for CCV standards, since other QC samples are designed to assess the accuracy of the calibration standards. Analysis of CCVs using the calibration standards limits this QC sample to assessing only instrument sensitivity changes. The acceptance criteria and required frequency for CCVs are detailed in Tables 13-1 through 13-3. If a CCV falls outside the acceptance limits, the analytical system is not in control, and immediate corrective action must be taken.

Data obtained while the instrument is out of control is not reportable, and all samples analyzed during this period must be reanalyzed. If reanalysis is not an option, the original data must be flagged with the appropriate qualifier and reported. A narrative must be submitted listing the results that were generated while the instrument was out of control, in addition to corrective actions that were applied.

13.2.5. Laboratory Blanks

Laboratory blanks (also called extraction blanks, procedural blanks, or method blanks) are used to assess the background level of a target analyte resulting from sample preparation and analysis. Laboratory blanks are carried through precisely the same procedures as the field samples. For both organic and inorganic analyses, a minimum of at least one laboratory blank must be prepared and analyzed in every analytical batch or per 20 samples, whichever is more frequent. Some methods may require more than one laboratory blank with each analytical run. Acceptance criteria for laboratory blanks are detailed in Tables 13-1 through 13-3. Blanks that are too high require corrective action to bring the concentrations down to acceptable levels. This may involve changing reagents, cleaning equipment, or even modifying the utilized methods or SOPs. Although acceptable laboratory blanks are important for obtaining results for low-level samples, improvements in analytical sensitivity have pushed detection limits down to the point where some amount of analyte will be detected in even the cleanest laboratory blanks. The magnitude of the blanks must be evaluated against the concentrations of the samples being analyzed and against project objectives.

13.2.6. Reference Materials and Demonstration of Laboratory Accuracy

Evaluation of the accuracy of laboratory procedures is achieved through the preparation and analysis of reference materials with each analytical batch. Ideally, the reference materials selected are similar in matrix and concentration range to the samples being prepared and analyzed. The acceptance criteria for reference materials are listed in Tables 13-1 - 13-3. The accuracy of an analytical method can be assessed using CRMs only when certified values are provided for the target analytes. When possible, reference materials that have certified values for the target analytes should be used. This is not always possible, and often times certified reference values are not available for all target analytes. Many reference materials have both certified and non-certified (or reference) values listed on the certificate of analysis. Certified reference values are clearly distinguished from the non-certified reference values on the certificate of analysis.

13.2.7. Reference Materials vs. Certified Reference Materials

The distinction between a reference material and a certified reference material does not involve how the two are prepared, rather with the way that the reference values were established. Certified values are determined through replicate analyses using two independent measurement techniques for verification. The certifying agency may also provide "non-certified or "reference" values for other target analytes. Such values are determined using a single measurement technique that may introduce bias. When available, it is preferable to use reference materials that have certified values for all target analytes. This is not always an option, and therefore it is acceptable to use materials that have reference values for these

analytes. Note: Standard Reference Materials (SRMs) are essentially the same as CRMs. The term "Standard Reference Material" has been trademarked by the National Institute of Standards and Technology (NIST), and is therefore used only for reference materials distributed by NIST.

13.2.8. Laboratory Control Samples

While reference materials are not available for all analytes, a way of assessing the accuracy of an analytical method is still required. LCSs provide an alternate method of assessing accuracy. An LCS is a specimen of known composition prepared using contaminant-free reagent water or an inert solid spiked with the target analyte at the midpoint of the calibration curve or at the level of concern. The LCS must be analyzed using the same preparation, reagents, and analytical methods employed for regular samples. If an LCS needs to be substituted for a reference material, the acceptance criteria are the same as those for the analysis of reference materials..

13.2.9. Prioritizing Certified Reference Materials, Reference Materials, and Laboratory Control Samples

Certified reference materials, reference materials, and laboratory control samples all provide a method to assess the accuracy at the mid-range of the analytical process. However, this does not mean that they can be used interchangeably in all situations. When available, analysis of one certified reference material per analytical batch should be conducted. Certified values are not always available for all target analytes. If no certified reference material exists, reference values may be used. If no reference material exists for the target analyte, an LCS must be prepared and analyzed with the sample batch as a means of assessing accuracy. The hierarchy is as follows: analysis of a CRM is favored over the analysis of a reference material, and analysis of a reference material is preferable to the analysis of an LCS. Substitution of an LCS is not acceptable if a certified reference material or reference material is available, contact the Project Manager and QAO for approval before relying exclusively on an LCS as a measure of accuracy.

13.2.10.Matrix Spikes

A MS is prepared by adding a known concentration of the target analyte to a field sample, which is then subjected to the entire analytical procedure. The MS is analyzed in order to assess the magnitude of matrix interference and bias present. Because these spikes are often analyzed in pairs, the second spike is called the MSD. The MSD provides information regarding the precision of measurement and consistency of the matrix effects. Both the MS and MSD are split from the same original field sample. In order to properly assess the degree of matrix interference and potential bias, the spiking level should be approximately 2-5x the ambient concentration of the spiked sample. To establish spiking levels prior to sample analysis, if possible, laboratories should review any relevant historical data. In many instances, the laboratory will be spiking samples blind and will not meet a spiking level of 2-5x the ambient concentration. In addition to the recoveries, the relative percent difference (RPD) between the MS and MSD is calculated to evaluate how matrix affects precision. The MQO for the RPD between the MS and MSD is the same regardless of the method of calculation. These are detailed in Tables 13-1-13-3. Recovery data for matrix spikes provides a basis for determining the prevalence of matrix effects in the samples collected and analyzed. If the percent recovery for any analyte in the MS or MSD is outside of the limits specified in Tables 13-1-13-3, the chromatograms (in the case of trace organic analyses) and raw data quantitation reports should be reviewed. Data should be scrutinized for evidence of sensitivity shifts (indicated by the results of the CCVs) or other potential problems with the analytical process. If associated QC samples (reference materials or LCSs) are in control, matrix effects may be the source of

the problem. If the standard used to spike the samples is different from the standard used to calibrate the instrument, it must be checked for accuracy prior to attributing poor recoveries to matrix effects.

13.2.11.Laboratory Duplicates

In order to evaluate the precision of an analytical process, a field sample is selected and prepared in duplicate. Specific requirements pertaining to the analysis of laboratory duplicates vary depending on the type of analysis. The acceptance criteria for laboratory duplicates are specified in Tables 13-1-13-3.

13.2.12.Laboratory Duplicates vs. Matrix Spike Duplicates

Although the laboratory duplicate and matrix spike duplicate both provide information regarding precision, they are unique measurements. Laboratory duplicates provide information regarding the precision of laboratory procedures at actual ambient concentrations. The matrix spike duplicate provides information regarding how the matrix of the sample affects both the precision and bias associated with the results. It also determines whether or not the matrix affects the results in a reproducible manner. MS/MSDs are often spiked at levels well above ambient concentrations, so thus are not representative of typical sample precision. Because the two concepts cannot be used interchangeably, it is unacceptable to analyze only an MS/MSD when a laboratory duplicate is required.

13.2.13.Replicate Analyses

The Monitoring Program will adopt the same terminology as SWAMP in defining replicate samples, wherein replicate analyses are distinguished from duplicate analyses based simply on the number of involved analyses. Duplicate analyses refer to two sample preparations, while replicate analyses refer to three or more. Analysis of replicate samples is not explicitly required.

13.2.14.Surrogates

Surrogate compounds accompany organic measurements in order to estimate target analyte losses or matrix effects during sample extraction and analysis. The selected surrogate compounds behave similarly to the target analytes, and therefore any loss of the surrogate compound during preparation and analysis is presumed to coincide with a similar loss of the target analyte. Surrogate compounds must be added to field and QC samples prior to extraction, or according to the utilized method or SOP. Surrogate recovery data are to be carefully monitored. If possible, isotopically labeled analogs of the analytes are to be used as surrogates.

13.2.15.Internal Standards

To optimize gas chromatography mass spectrometry (GC-MS) analysis, internal standards (also referred to as "injection internal standards") may be added to field and QC sample extracts prior to injection. Use of internal standards is particularly important for analysis of complex extracts subject to retention time shifts relative to the analysis of standards. The internal standards can also be used to detect and correct for problems in the GC injection port or other parts of the instrument. The analyst must monitor internal standard retention times and recoveries to determine if instrument maintenance or repair or changes in analytical procedures are indicated. Corrective action is initiated based on the judgment of the analyst. Instrument problems that affect the data or result in reanalysis must be documented properly in logbooks and internal data reports, and used by the laboratory personnel to take appropriate corrective action. Performance criteria for internal standards are established by the method or laboratory SOP.

13.2.16.Dual-Column Confirmation

Due to the high probability of false positives from single-column analyses, dual column confirmation should be applied to all gas chromatography and liquid chromatography methods that do not provide definitive identifications. It should not be restricted to instruments with electron capture detection (ECD).

13.2.17.Dilution of Samples

Final reported results must be corrected for dilution carried out during the process of analysis. In order to evaluate the QC analyses associated with an analytical batch, corresponding batch QC samples must be analyzed at the same dilution factor. For example, the results used to calculate the results of matrix spikes must be derived from results for the native sample, matrix spike, and matrix spike duplicate analyzed at the same dilution. Results derived from samples analyzed at different dilution factors must not be used to calculate QC results.

13.2.18.Laboratory Corrective Action

Failures in laboratory measurement systems include, but are not limited to: instrument malfunction, calibration failure, sample container breakage, contamination, and QC sample failure. If the failure can be corrected, the analyst must document it and its associated corrective actions in the laboratory record and complete the analysis. If the failure is not resolved, it is conveyed to the respective supervisor who should determine if the analytical failure compromised associated results. The nature and disposition of the problem must be documented in the data report that is sent to the Consultant-PM. Suggested corrective actions are detailed in Table 13-9.

Laboratory Quality Control	Frequency of Analysis	Measurement Quality Objective
Tuning ²	Per analytical method	Per analytical method
Calibration	Initial method setup or when the calibration verification fails	Correlation coefficient (r ² >0.990) for linear and non-linear curves
		 If RSD<15%, average RF may be used to quantitate; otherwise use equation of the curve
		 First- or second-order curves only (not forced through the origin)
		Refer to SW-846 methods for SPCC and CCC criteria ²
		 Minimum of 5 points per curve (one of them at or below the RL)
Calibration Verification	Per 12 hours	
		Expected response or expected concentration ±20%
		• RF for SPCCs=initial calibration ⁴
Laboratory Blank	Per 20 samples or per analytical batch, whichever is more frequent	<rl analytes<="" for="" target="" th=""></rl>
Reference Material	Per 20 samples or per analytical batch	70-130% recovery if certified; otherwise, 50-150% recovery
Matrix Spike	Per 20 samples or per analytical batch, whichever is more frequent	50-150% or based on historical laboratory control limits (average±3SD)
Matrix Spike Duplicate	Per 20 samples or per analytical batch, whichever is more frequent	50-150% or based on historical laboratory control limits (average±3SD); RPD<25%
Surrogate	Included in all samples and all QC samples	Based on historical laboratory control limits (50-150% or better)
Internal Standard	Included in all samples and all QC samples (as available)	Per laboratory procedure
Field Quality Control	Frequency of Analysis	Measurement Quality Objective
Field Duplicate	5% of total Project sample count (sediment and water samples only)	RPD<25% (n/a if concentration of either sample <rl)< th=""></rl)<>
Field Blank	Not required for the Monitoring Program	<rl analytes<="" for="" target="" th=""></rl>

Table 13-1. Measurement Quality Objectives - PCBs.

Laboratory Quality Control	Frequency of Analysis	Measurement Quality Objective
Calibration Standard	Per analytical method or manufacturer's specifications	Per analytical method or manufacturer's specifications
Continuing Calibration Verification	Per 10 analytical runs	80-120% recovery
Laboratory Blank	Per 20 samples or per analytical batch, whichever is more frequent	<rl analyte<="" for="" target="" td=""></rl>
Reference Material	Per 20 samples or per analytical batch, whichever is more frequent	75-125% recovery
Matrix Spike	Per 20 samples or per analytical batch, whichever is more frequent	75-125% recovery
Matrix Spike Duplicate	Per 20 samples or per analytical batch, whichever is more frequent	75-125% recovery ; RPD<25%
Laboratory Duplicate	Per 20 samples or per analytical batch, whichever is more frequent	RPD<25% (n/a if concentration of either sample <rl)< td=""></rl)<>
Internal Standard	Accompanying every analytical run when method appropriate	60-125% recovery
Field Quality Control	Frequency of Analysis	Measurement Quality Objective
Field Duplicate	5% of total Project sample count	RPD<25% (n/a if concentration of either sample <rl), unless<br="">otherwise specified by method</rl),>
Field Blank, Equipment Field, Eqpt Blanks	Not required for the Monitoring Program	Blanks <rl analyte<="" for="" target="" td=""></rl>

Laboratory Quality Control	Frequency of Analysis	Measurement Quality Objective			
Calibration Standard	Per analytical method or manufacturer's specifications	Per analytical method or manufacturer's specifications			
Laboratory Blank	Total organic carbon only: one per 20 samples or per analytical batch, whichever is more frequent (n/a for other parameters)	80-120% recovery			
Reference Material	One per analytical batch	RPD<25% (n/a if native concentration of either sample <rl)< th=""></rl)<>			
Laboratory Duplicate	(TOC only) one per 20 samples or per analytical batch, whichever is more frequent (n/a for other parameters)	80-120% recovery			
Field Quality Control	Frequency of Analysis	Measurement Quality Objective			
Field Duplicate	5% of total Project sample count	RPD<25% (n/a if concentration of either sample <rl)< th=""></rl)<>			
Field Blank, Travel Blank, Field Blanks	Not required for the Monitoring Program analytes	NA			

Consistent with SWAMP QAPP and as applicable, percent moisture should be reported with each batch of sediment samples. Sediment data must be reported on a dry weight basis.

Table 13-4. Target MRLs for Sediment Quality Parameters.

Analyte	MRL
Sediment Total Organic Carbon	0.01% OC
Bulk Density	n/a
%Moisture	n/a
%Lipids	n/a
Mercury	30 µg/kg

Congener	Water MRL (µg/L)	Sediment MRL (µg/kg)	Caulk/Sealant MRL (µg/kg)
PCB 8	0.002	0.2	0.5
PCB 18	0.002	0.2	0.5
PCB 28	0.002	0.2	0.5
PCB 31	0.002	0.2	0.5
PCB 33	0.002	0.2	0.5
PCB 44	0.002	0.2	0.5
PCB 49	0.002	0.2	0.5
PCB 52	0.002	0.2	0.5
PCB 56	0.002	0.2	0.5
PCB 60	0.002	0.2	0.5
PCB 66	0.002	0.2	0.5
PCB 70	0.002	0.2	0.5
PCB 74	0.002	0.2	0.5
PCB 87	0.002	0.2	0.5
PCB 95	0.002	0.2	0.5
PCB 97	0.002	0.2	0.5
PCB 99	0.002	0.2	0.5
PCB 101	0.002	0.2	0.5
PCB 105	0.002	0.2	0.5
PCB 110	0.002	0.2	0.5
PCB 118	0.002	0.2	0.5
PCB 128	0.002	0.2	0.5
PCB 132	0.002	0.2	0.5
PCB 138	0.002	0.2	0.5
PCB 141	0.002	0.2	0.5
PCB 149	0.002	0.2	0.5
PCB 151	0.002	0.2	0.5
PCB 153	0.002	0.2	0.5
PCB 156	0.002	0.2	0.5
PCB 158	0.002	0.2	0.5
PCB 170	0.002	0.2	0.5
PCB 174	0.002	0.2	0.5
PCB 177	0.002	0.2	0.5
PCB 180	0.002	0.2	0.5
PCB 183	0.002	0.2	0.5
PCB 187	0.002	0.2	0.5
PCB 194	0.002	0.2	0.5
PCB 195	0.002	0.2	0.5
PCB 201	0.002	0.2	0.5
PCB 203	0.002	0.2	0.5

 Table 13-5. Target MRLs for PCBs in Water, Sediment and Caulk

Wentworth Size Category	Size	MRL
Clay	<0.0039 mm	1%
Silt	0.0039 mm to <0.0625 mm	1%
Sand, very fine	0.0625 mm to <0.125 mm	1%
Sand, fine	0.125 mm to <0.250 mm	1%
Sand, medium	0.250 mm to <0.5 mm	1%
Sand, coarse	0.5 mm to < 1.0 mm	1%
Sand, very coarse	1.0 mm to < 2 mm	1%
Gravel	2 mm and larger	1%

Table 13-6. Size l	Distribution	Categories for	Grain Siz	e in Sediment
		Current for the tot		

Table 13-7. Target MRLs for TOC, SSC, and Mercury in Water

Analyte	MRL
Total Organic Carbon	0.6 mg/L
Suspended Sediment Concentration	0.5 mg/L
Mercury	0.0002 µg/L

Laboratory	Recommended Corrective Action
Quality Control	
Calibration	Recalibrate the instrument. Affected samples and associated quality control must be reanalyzed following successful instrument recalibration.
Calibration Verification	Reanalyze the calibration verification to confirm the result. If the problem continues, halt analysis and investigate the source of the instrument drift. The analyst should determine if the instrument must be recalibrated before the analysis can continue. All of the samples not bracketed by acceptable calibration verification must be reanalyzed.
Laboratory Blank	Reanalyze the blank to confirm the result. Investigate the source of contamination. If the source of the contamination is isolated to the sample preparation, the entire batch of samples, along with the new laboratory blanks and associated QC samples, should be prepared and/or re- extracted and analyzed. If the source of contamination is isolated to the analysis procedures, reanalyze the entire batch of samples. If reanalysis is not possible, the associated sample results must be flagged to indicate the potential presence of the contamination.
Reference Material	Reanalyze the reference material to confirm the result. Compare this to the matrix spike/matrix spike duplicate recovery data. If adverse trends are noted, reprocess all of the samples associated with the batch.
Matrix Spike	The spiking level should be near the midrange of the calibration curve or at a level that does not require sample dilution. Reanalyze the matrix spike to confirm the result. Review the recovery obtained for the matrix spike duplicate. Review the results of the other QC samples (such as reference materials) to determine if other analytical problems are a potential source of the poor spike recovery.
Matrix Spike Duplicate	The spiking level should be near the midrange of the calibration curve or at a level that does not require sample dilution. Reanalyze the matrix spike duplicate to confirm the result. Review the recovery obtained for the matrix spike. Review the results of the other QC samples (such as reference materials) to determine if other analytical problems are a potential source of the poor spike recovery.
Internal Standard	Check the response of the internal standards. If the instrument continues to generate poor results, terminate the analytical run and investigate the cause of the instrument drift.
Surrogate	Analyze as appropriate for the utilized method. Troubleshoot as needed. If no instrument problem is found, samples should be re-extracted and reanalyzed if possible.
Field Quality Control	Recommended Corrective Action
Field Duplicate	Visually inspect the samples to determine if a high RPD between results could be attributed to sample heterogeneity. For duplicate results due to matrix heterogeneity, or where ambient concentrations are below the reporting limit, qualify the results and document the heterogeneity. All failures should be communicated to the project coordinator, who in turn will follow the process detailed in the method.
Field Blank	Investigate the source of contamination. Potential sources of contamination include sampling equipment, protocols, and handling. The laboratory should report evidence of field contamination as soon as possible so corrective actions can be implemented. Samples collected in the presence of field contamination should be flagged.

Table 13-8. Corrective Action – Laboratory and Field Quality Control

14. Inspection/Acceptance for Supplies and Consumables

Each sampling event conducted for the Monitoring Program will require use of appropriate consumables to reduce likelihood of sample contamination. The Field-PM will be responsible for ensuring that all supplies are appropriate prior to their use. Inspection requirements for sampling consumables and supplies are summarized in Table 14-1.

Project- related Supplies	Inspection / Testing Specifications	Acceptance Criteria	Frequency	Responsible Person Sampling Containers		
Sampling supplies	Visual	Appropriateness; no evident contamination or damage; within expiration date	Each purchase	Field Crew Leader		

Table 14-1. Inspection / Acceptance Testing Requirements for Consumables and Supplies

15. Non Direct Measurements, Existing Data

No data from external sources are planned to be used with this project.

16. Data Management

As previously discussed, the Monitoring Program data management will conform to protocols dictated by the study designs (BASMAA 2017a, b). A summary of specific data management aspects is provided below.

16.1. Field Data Management

All field data will be reviewed for legibility and errors as soon as possible after the conclusion of sampling. All field data that is entered electronically will be hand-checked at a rate of 10% of entries as a check on data entry. Any corrective actions required will be documented in correspondence to the QA Officer.

16.2. Laboratory Data Management

Record keeping of laboratory analytical data for the proposed project will employ standard recordkeeping and tracking practices. All laboratory analytical data will be entered into electronic files by the instrumentation being used or, if data is manually recorded, then it will be entered by the analyst in charge of the analyses, per laboratory standard procedures.

Following the completion of internal laboratory quality control checks, analytical results will be forwarded electronically to the Field-PM. The analytical laboratories will provide data in electronic format, encompassing both a narrative and electronic data deliverable (EDD).

17. Assessments and Response Actions

17.1. Readiness Reviews

The Field-PM will review all field equipment, instruments, containers, and paperwork to ensure that everything is ready prior to each sampling event. All sampling personnel will be given a brief review of the goals and objectives of the sampling event and the sampling procedures and equipment that will be used to achieve them. It is important that all field equipment be clean and ready to use when it is needed. Therefore, prior to using all sampling and/or field measurement equipment, each piece of equipment will be checked to make sure that it is in proper working order. Equipment maintenance records will be checked to ensure that all field instruments have been properly maintained and that they are ready for use. Adequate supplies of all preservatives, bottles, labels, waterproof pens, etc. will be checked before each field event to make sure that there are sufficient supplies to successfully support each sampling event, and, as applicable, are within their expiration dates. It is important to make sure that all field activities and measurements are properly recorded in the field. Therefore, prior to starting each field event, necessary paperwork such as logbooks, chain of custody record forms, etc. will be checked to ensure that sufficient amounts are available during the field event. In the event that a problem is discovered during a readiness review it will be noted in the field log book and corrected before the field crew is deployed. The actions taken to correct the problem will also be documented with the problem in the field log book. This information will be communicated by the Field-PM prior to conducting relevant sampling. The Field-PM will track corrective actions taken.

17.2. Post Sampling Event Reviews

The Field-PM will be responsible for post sampling event reviews. Any problems that are noted will be documented along with recommendations for correcting the problem. Post sampling event reviews will be conducted following each sampling event in order to ensure that all information is complete and any deviations from planned methodologies are documented. Post sampling event reviews will include field sampling activities and field measurement documentation in order to help ensure that all information is complete. The reports for each post sampling event will be used to identify areas that may be improved prior to the next sampling event.

17.3. Laboratory Data Reviews

The Field-PM will be responsible for reviewing the laboratory's data for completeness and accuracy. The data will also be checked to make sure that the appropriate methods were used and that all required QC data was provided with the sample analytical results. Any laboratory data that is discovered to be incorrect or missing will immediately be reported to the both the laboratory and Consultant-PM. The laboratory's QA manual details the procedures that will be followed by laboratory personnel to correct any invalid or missing data. The Consultant-PM has the authority to request re-testing if a review of any of the laboratory data is found to be invalid or if it would compromise the quality of the data and resulting conclusions from the proposed project.

18. Instrument/Equipment Testing, Inspection and Maintenance

18.1. Field Equipment

Field measurement equipment will be checked for operation in accordance with manufacturer's specifications. All equipment will be inspected for damage when first employed and again when returned from use. Maintenance logs will be kept and each applicable piece of equipment will have its own log that documents the dates and description of any problems, the action(s) taken to correct problem(s), maintenance procedures, system checks, follow-up maintenance dates, and the person responsible for maintaining the equipment.

18.2. Laboratory Equipment

All laboratories providing analytical support for chemical or biological analyses will have the appropriate facilities to store, prepare, and process samples. Moreover, appropriate instrumentation and staff to provide data of the required quality within the schedule required by the program are also required. Laboratory operations must include the following procedures:

- A program of scheduled maintenance of analytical balances, microscopes, laboratory equipment, and instrumentation.
- Routine checking of analytical balances using a set of standard reference weights (American Society of Testing and Materials (ASTM) Class 3, NIST Class S-1, or equivalents).
- Checking and recording the composition of fresh calibration standards against the previous lot, wherever possible. Acceptable comparisons are < 2% of the previous value.
- Recording all analytical data in bound (where possible) logbooks, with all entries in ink, or electronic format.
- Monitoring and documenting the temperatures of cold storage areas and freezer units once per week.
- Verifying the efficiency of fume hoods.
- Having a source of reagent water meeting ASTM Type I specifications (ASTM, 1984) available in sufficient quantity to support analytical operations. The conductivity of the reagent water will not exceed 18 megaohms at 25°C. Alternately, the resistivity of the reagent water will exceed 10 mmhos/cm.
- Labeling all containers used in the laboratory with date prepared, contents, initials of the individual who prepared the contents, and other information, as appropriate.
- Dating and safely storing all chemicals upon receipt. Proper disposal of chemicals when the expiration date has passed.
- Having QAPP, SOPs, analytical methods manuals, and safety plans readily available to staff.
- Having raw analytical data, such as chromatograms, accessible so that they are available upon request.

Laboratories will maintain appropriate equipment per the requirements of individual laboratory SOPs and will be able to provide information documenting their ability to conduct the analyses with the required level of data quality. Such information might include results from interlaboratory comparison studies, control charts and summary data of internal QA/QC checks, and results from certified reference material analyses.

19. Instrument/Equipment Calibration and Frequency

19.1. Field Measurements

Any equipment used should be visually inspected during mobilization to identify problems that would result in loss of data. As appropriate, equipment-specific SOPs should be consulted for equipment calibration.

19.2. Laboratory Analyses

19.2.1. In-house Analysis – XRF Screening

A portable XRF analyzer will be used as a screening tool to estimate the chlorine concentration in each caulk sample. Since caulk often contains in excess of 1% PCBs and detection limits of portable XRF may be in the ppm range, the portable XRF may be able to detect chlorine within caulk containing PCBs down to about 0.1%. The analysis will be performed on the field samples using a test stand. The analyzer will be calibrated for chlorine using plastic pellet European reference materials (EC680 and EC681) upon first use, and standardized each time the instrument is turned on and prior to any caulk Cl analysis. The standardization procedure will entail a calibration analysis of the materials provided/recommended with the XRF analyzer. Analyses will be conducted in duplicate on each sample and notes kept. The mean will be used for comparison to GC–MS results.

19.2.2. Contract Laboratory Analyses

The procedures for and frequency of calibration will vary depending on the chemical parameters being determined. Equipment is maintained and checked according to the standard procedures specified in each laboratory's instrument operation instruction manual.

Upon initiation of an analytical run, after each major equipment disruption, and whenever on-going calibration checks do not meet recommended DQOs (see Section 13), analytical systems will be calibrated with a full range of analytical standards. Immediately after this procedure, the initial calibration must be verified through the analysis of a standard obtained from a different source than the standards used to calibrate the instrumentation and prepared in an independent manner and ideally having certified concentrations of target analytes of a CRM or certified solution. Frequently, calibration standards are included as part of an analytical run, interspersed with actual samples.

Calibration curves will be established for each analyte and batch analysis from a calibration blank and a minimum of three analytical standards of increasing concentration, covering the range of expected sample concentrations. Only those data resulting from quantification within the demonstrated working calibration range may be reported by the laboratory.

The calibration standards will be prepared from reference materials available from the EPA repository, or from available commercial sources. The source, lot number, identification, and purity of each reference material will be recorded. Neat compounds will be prepared weight/volume using a calibrated analytical balance and Class A volumetric flasks. Reference solutions will be diluted using Class A volumetric glassware. Individual stock standards for each analyte will be prepared. Combination working standards will be prepared by volumetric dilution of the stock standards. The calibration standards will be stored at - 20° C. Newly prepared standards will be compared with existing standards prior to their use. All solvents

used will be commercially available, distilled in glass, and judged suitable for analysis of selected chemicals. Stock standards and intermediate standards are prepared on an annual basis and working standards are prepared every three months.

Sampling and analytical logbooks will be kept to record inspections, calibrations, standard identification numbers, the results of calibrations, and corrective action taken. Equipment logs will document instrument usage, maintenance, repair and performance checks. Daily calibration data will be stored with the raw sample data

20. Data Review, Verification, and Validation

Defining data review, verification, and validation procedures helps to ensure that Monitoring Plan data will be reviewed in an objective and consistent manner. Data review is the in-house examination to ensure that the data have been recorded, transmitted, and processed correctly. The Field-PM will be responsible for initial data review for field forms and field measurements; QA Officer will be responsible for doing so for data reported by analytical laboratories. This includes checking that all technical criteria have been met, documenting any problems that are observed and, if possible, ensuring that deficiencies noted in the data are corrected.

In-house examination of the data produced from the proposed Monitoring Program will be conducted to check for typical types of errors. This includes checking to make sure that the data have been recorded, transmitted, and processed correctly. The kinds of checks that will be made will include checking for data entry errors, transcription errors, transformation errors, calculation errors, and errors of data omission.

Data generated by Program activities will be reviewed against MQOs that were developed and documented in Section 13. This will ensure that the data will be of acceptable quality and that it will be SWAMP-comparable with respect to minimum expected MQOs.

QA/QC requirements were developed and documented in Sections 13.1 and 13.2, and the data will be checked against this information. Checks will include evaluation of field and laboratory duplicate results, field and laboratory blank data, matrix spike recovery data, and laboratory control sample data pertinent to each method and analytical data set. This will ensure that the data will be SWAMP-comparable with respect to quality assurance and quality control procedures.

Field data consists of all information obtained during sample collection and field measurements, including that documented in field log books and/or recording equipment, photographs, and chain of custody forms. Checks of field data will be made to ensure that it is complete, consistent, and meets the data management requirements that were developed and documented in Section 13.1.

Lab data consists of all information obtained during sample analysis. Initial review of laboratory data will be performed by the laboratory QA/QC Officer in accordance with the lab's internal data review procedures. However, upon receipt of laboratory data, the Lab-PM will perform independent checks to ensure that it is complete, consistent, and meets the data management requirements that were developed and documented in Section 13.2. This review will include evaluation of field and laboratory QC data and also making sure that the data are reported in compliance with procedures developed and documented in Section 7.

Data verification is the process of evaluating the completeness, correctness, and conformance / compliance of a specific data set against the method, procedural, or contractual specifications. The Lab-PM and Data Manager will conduct data verification, as described in Section 13 on Quality Control, in order to ensure that it is SWAMP-comparable with respect to completeness, correctness, and conformance with minimum requirements.

Data will be separated into three categories for use with making decisions based upon it. These categories are: (1) data that meets all acceptance requirements, (2) data that has been determined to be unacceptable for use, and (3) data that may be conditionally used and that is flagged as per US EPA specifications.

21. Verification and Validation Methods

Defining the methods for data verification and validation helps to ensure that Program data are evaluated objectively and consistently. For the proposed Program many of these methods have been described in Section 20. Additional information is provided below.

All data records for the Monitoring Program will be checked visually and will be recorded as checked by the checker's initials as well as with the dates on which the records were checked. Consultant Team staff will perform an independent re-check of at least 10% of these records as the validation methodology.

All of the laboratory's data will be checked as part of the verification methodology process. Each contract laboratory's Project Analyst will conduct reviews of all laboratory data for verification of their accuracy.

Any data that is discovered to be incorrect or missing during the verification or validation process will immediately be reported to the Consultant-PM. If errors involve laboratory data then this information will also be reported to the laboratory's QA Officer. Each laboratory's QA manual details the procedures that will be followed by laboratory personnel to correct any invalid or missing data. The laboratory's QA Officer will be responsible for reporting and correcting any errors that are found in the data during the verification and validation process.

If there are any data quality problems identified, the QA Officer will try to identify whether the problem is a result of project design issues, sampling issues, analytical methodology issues, or QA/QC issues (from laboratory or non-laboratory sources). If the source of the problems can be traced to one or more of these basic activities then the person or people in charge of the areas where the issues lie will be contacted and efforts will be made to immediately resolve the problem. If the issues are too broad or severe to be easily corrected then the appropriate people involved will be assembled to discuss and try to resolve the issue(s) as a group. The QA Officer has the final authority to resolve any issues that may be identified during the verification and validation process.

22. Reconciliation with User Requirements

The purpose of the Monitoring Program is to comply with Provisions of the MRP and provide data that can be used to identify sources of PCBs to urban runoff, and to evaluate management action effectiveness in removing POCs from urban runoff in the Bay Area. The objectives of the Monitoring Program are to provide the following outcomes:

1. Satisfy MRP Provision C.8.f. requirements for POC monitoring for source identification;

- 2. Satisfy MRP Provision C.12.e.ii requirements to evaluate PCBs presence in caulks/sealants used in storm drain or roadway infrastructure in public ROWs;
- 3. Report the range of PCB concentrations observed in 20 composite samples of caulk/sealant collected from structures installed or rehabilitated during the 1970's;
- 4. Satisfy MRP Provision C.8.f. requirements for POC monitoring for management action effectiveness;
- 5. Quantify the annual mass of mercury and PCBs captured in HDS Unit sumps during maintenance; and
- 6. Identify BSM mixtures for future field testing that provide the most effective mercury and PCBs treatment in laboratory column tests.

Information from field data reports (including field activities, post sampling events, and corrective actions), laboratory data reviews (including errors involving data entry, transcriptions, omissions, and calculations and laboratory audit reports), reviews of data versus MQOs, reviews against QA/QC requirements, data verification reports, data validation reports, independent data checking reports, and error handling reports will be used to determine whether or not the Monitoring Program's objectives have been met. Descriptions of the data will be made with no extrapolation to more general cases.

Data from all monitoring measurements will be summarized in tables. Additional data may also be represented graphically when it is deemed helpful for interpretation purposes.

The above evaluations will provide a comprehensive assessment of how well the Program meets its objectives. The final project reports will reconcile results with project MQOs.

23. References

California Regional Water Quality Control Board, San Francisco Bay Region. *Municipal Regional Stormwater NPDES Permit Order R2-2015-0049 NPDES Permit No. CAS612008.* November 19, 2015.

BASMAA. 2016. BASMAA Regional Monitoring Coalition Creek Status and Toxicity and Pesticide Monitoring Standard Operating Procedures. Prepared for Bay Area Stormwater Management Agencies Association. Version 3, March 2016.

BASMAA 2017a. The Evaluation of PCBs Presence in Public Roadway and Storm Drain Infrastructure Caulk and Sealants Study Design. Prepared by EOA Inc. and the San Francisco Estuary Institute (SFEI). June 2017.

BASMAA 2017b. POC Monitoring for Management Action Effectiveness Study Design. Prepared by the Office of Water Programs, Sacramento State, CA, EOA Inc., and the San Francisco Estuary Institute (SFEI). July 2017.

BASMAA, 2017c. Clean Watershed for a Clean Bay (CW4CB) Final Report. Prepared for Bay Area Stormwater Management Agencies Association. Prepared by Geosyntec and EOA, Inc., May 2017.

Klosterhaus, S. McKee, L.J. Yee, D., Kass, J.M., and Wong, A. 2014. Polychlorinated Biphenyls in the Exterior Caulk of San Francisco Bay Area Buildings, California, USA. Environment International 66, 38-43.

Surface Water Ambient Monitoring Program Quality Assurance Team, 2013. SWAMP Quality Assurance Project Plan. Prepared for the California State Water Quality Control Board. 2013.

24. Appendix A: Field Documentation

Caulk/Sealant Sampling Field Data Sheet			Composite ID:			Contractor: Pg			Pg of Pgs		
Sample ID:			Date (mi	m/dd/yyyy):			Personnel:			Failure Reason	
			ArrivalTime:		Departure	Time:					
Photos (Y / N)											
Photo Log Identifier			Land-	Use at the Sa	mple Locat	tion:	Comr	nercial (pre-1980; pos	st 1980)	Open Space	
						80)	Resid	dential (pre 1980; pos	t 1980)	Other:	
Description of Structure: (Do not include a	ny information on th	ne locatio	n of the struc	ture)			Diagram of Structure (if needed) to identify where caulk/sealants were located in/on structure			
Structure Type:	Storm Drain Catch Basin	Roadway Surf	ace	Sidewalk	Curb/G	utter	Bridge				
	Other:										
Structure Material:	Concrete	Asphalt	Other:								
Condition of Structure:	Good	Fair	Poor	Other:							
Year of Strucu	tre Construction		•								
	Year of Repair										
Description of Caulk or Sea	alant Sample Col	lected:									
		caulk between adjo	oing surfa	ces of same n	naterial (e.	g., conci	rete-cond	crete); Describe:			
	Caulk	caulk between adjoining surfaces of different types of material (e.g., concrete-asphalt); Describe:									
Application or Usage		Other:									
	Sealant	Crack Repair (describe):									
	bealant	Other:									
Color		•		-							
Texture	Hard/brittle	Soft/pliabl	e	Other:							
Condition	Good (in	itact/whole)	Poor (cr	umbling/disir	ntegrating)	Other	:				
Location	Surface	Between Join	nts	Submerged	Exposed	At stre	et level	Below street level	Other:		
Amount of Caulk/Sealant	Crack dimensior					Spacing	of expar	nsion joints			
observed on structure Length&width of caulk bead sampled:								Other:			
Samples Taken											
COLLECTION DEVICE:					Equiptme	nt type ι	used:				
SITE/SAMPLING DESCRIPTI	ON AND COMME	ENTS:									

HDS Unit Sampling Field Data Sheet (Sediment Chemistry)							Contractor: Pg of				of Pgs	
City:			Date (mm/dd/yyyy):		1	/	*Contractor:	actor:				
HDS Catchment ID:			ArrivalTime: DepartureTime			ne:	*SampleTime (1st sample):				Failure Reas	on
			Personnel:									
Photos (Y / N)	Lat (dd	l.ddddd)	ddddd) Long (ddd.ddddd)			Address, Location, and Sketches (if needed)						
Photo Log Identifier			Target (if known):									
			*Actual:									
			GPS Device:									
Estima	ate of Volu	me of Sedime	ent in the HDS unit s	ump prior	to cleanout:							
Estimate of Volume of	Sediment	REMOVED fro	m the HDS unit sum	np during tl	ne cleanout:							
Env. Conditions	Env. Conditions				WIND DIRECTION (from):	N ₩ 4∯ ►E S						
SITE ODOR:	None,Sulfi	des,Sewage,Pe	etroleum,Smoke,Other		(monij).							
SKY CODE:	Clear, Part	ly Cloudy, Over	cast, Fog, Smoky, Ha	zy								
PRECIP:	None, Fog	, Drizzle, Rain										
PRECIP (last 24 hrs):	Unknow n, <1", >1", None											
SOILODOR:	None, Sulf	ides, Sew age,	Petroleum, Mixed, Oth	er								
SOILCOLOR:	Colorless,	Green, Yellow,	Brown									
SOILCOMPOSITION:	Silt/Clay, S	and, Gravel, Co	obble, Mixed, Debris									
SOILPOSITION	Submerge	d, Exposed										
Samples Taken (3	digit ID n	os. of conta	iners filled)		Field Dup a	t Site? YES /	NO: (create se	eparate datashee	et for FDs, with	unique IDs (i	.e., blind sample	⇒s)
COLLECTION DE	VICE:	Equiptment t	ype used: Scoop (SS	/ PC / PE), C	ore (SS / PC /	PE), Grab (V	an Veen / Ecl	kman / Petite P	onar), Broom	(nylon, na	atural fiber)	
Sample ID (City- Catchment ID-Sample	Depth	Collec (cm)	Composite / Gra	b (C / G)	Grain Size	PCBs	Hg	Bulk Density	тос	OTHER		
SITE/SAMPLING DESCRIPTION AND COMMENTS:							9	•	a			

Stormwater Field Data Sheet (Water Chemistry)									Entered in d-base (initial/date) Pg of					Pgs
*Station Code:				*Date (mm/dd/yyyy):		/ /			*PurposeFail		lure: *Agency:			
Personnel:				ArrivalTime:		DepartureTime:						*Protocol:		
			*GPS/DGPS	Lat (dd	.ddddd)	Long (ddd.ddddd)					544		č	
GPS Device:				Target:			-		OCCUPA NO	N METHOD: V	vaik-in Bridg	je R∕V		_ Other
Datum: NAD83 Accuracy (ft / m):		*Actual:				-		Sampling Location (e.g., gutter at SW corner of 10th Street)						
Habitat Observations (CollectionMethod = I			Habitat_generic)		WADEABILITY:	BEAUFORT								
SITE ODOR: None,Sulfides,Sew age,Pe			troleum,Smok	e,Other	Y/N/Unk	SCALE (see attachment)								
SKY CODE:		Clear, Partly C	Cloudy, Over	cast, Fog, Smoky, Hazy		WIND DIRECTION	N W ∢ ∳►E	,	B & LB assigned when facing					
OTHER PRESENCE:		Vascular,Nonvascular,OilySheen,Foam,Trash,Other_				ŝ	downstream;RENAME to StationCode_yyyy_mm_dd_uniquecod			1: (RB / LB /	BB / US / D	S / ##)		
DOMINANT SUBSTRATE: Bedrock, Concrete, Cobbl		e, Boulder, Gr	avel, Sand, M	/ud, Unk, Oth	r									
WATERCLARITY:		Clear (see bottom), Cloudy (>4" vis), Murky (<4" vis)			PRECIP	ITATION:	None, Fog, D	, Drizzle, Rain, Snow		2: (RB / LB /	BB/US/D	S / ##)		
WATERODOR:		None, Sulfides, Sew age, Petroleum, Mixed, Other			PRECIP	ITATION (last	24 hrs):	4 hrs): Unknow n, <1", >1", None						
WATERCOLOR:		Colorless, Gre	een, Yellow ,	Brown			_				3: (RB / LB /	BB/US/D	S / ##)	
OVERLAND	RUNOFF (La	st 24 hrs): r	none, light, r	moderate / he	avy, unknow	n								
OBSERVE	D FLOW:	NA, Dry Wat	erbody Bed,	No Obs Flo	w, Isolated	Pool, Trickle	e (<0.1cfs), ().1-1cfs, 1-5	icfs, 5-20cf	s, 20-50cfs,	50-200cfs,	>200cfs		
Field Sampl	les (Recor	d Time Sam	ple Colle	cted)										
Carboy ID #	Start Sa	nple Time End Sam		Sample Type nple Time Integrat			Collection Depth (m)	Field Dup			tle (by hand, by pole, by bucket); T ing; Kemmer; Pole & Beaker; Other			
COMMENTS:	x				<u>s</u>		5	5		c.				

Stormwater Influent Samples – Office of Water Programs

Sample Receiving						
Date (mm/dd/yy):		Time (24 hr) :			Team Member's Initial:	
Carboy	Temperatur e	рН	Obs	ervati	ons	
1						
	T		r			
2						
3						
4						
5						
6						
7						

Stormwater Column Tests – Office of Water Programs

Sampling Run			
Date (mm/dd/yy):	Time (24 hr) :	Team Member's Initials:	Column ID:

During Test - Timed Measurements

Time	Water Depth	Media Condition	Other Observations

Grab Sample - Beginning of Run

Time	Water Depth	Turbidity (NTU)	Temp	рΗ	Other Observations

Grab Sample - Middle of Run

Time	Water Depth	Turbidity (NTU)	Тетр	рΗ	Other Observations

Grab Sample - End of

Run

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations

Grab Sample -

Time	Water Depth	Turbidity (NTU)	Temp	рΗ	Other Observations

25. Appendix B: Laboratory Standard Operating Procedures (SOPs)

The primary goal of this study is to select a biochar and bioretention soil mix (BSM) for field testing which will be conducted to assess improved removal of PCBs and mercury. The selection for field tests will be informed by column tests performed by this study. This memorandum contains a review of known biochar available in the Western United States. Five biochars are needed for column tests; nine biochars will be obtained and mixed with BSM at a ratio of 75 percent BSM and 25 percent biochar. These mixes will be tested hydraulically according to the alternative BSM specification to see which mixes pass the hydraulic requirement of an infiltration rate of 5-12 inches per hour. If more than five biochar mixes pass the hydraulic test then five will be chosen based on probable treatment efficiency and cost. Factors that will be used to determine probable treatment efficiency are pH, surface area, source material, pyrolysis method, and hydrophobicity.

Feasibility Criteria

Three criteria were chosen to screen potential biochars for sample gathering. All nine of the biochars selected for initial hydraulic testing have met reasonable expectations of cost, availability, and consistency.

Cost

Generally, biochar is a byproduct of the lumber industry or more recently household yard waste and tree trimmings. This byproduct is cheap and plentiful in certain regions especially when compared to more costly adsorbents commonly used to treat stormwater such as zeolite, activated alumina, activated carbon, or proprietary engineered media. Because even a relatively expensive biochar can be considered inexpensive when compared to other soil additives, biochars will not be excluded based solely on cost.

Availability

The selection process for the different biochars ensures that local soil suppliers have consistent access to the tested biochar in commercial quantities. To ensure availability, producers that are well established and offer biochar in commercial quantities in stock year round were prioritized.

Consistency

Biochar can be made from a variety of feedstocks and processed at various temperatures, which will produce biochars with varying properties and treatment capacities. To ensure that the biochars tested in this study will be available with the same properties, only suppliers who use a consistent feedstock and process will be considered.

Performance Criteria

Hydraulic Conductivity

A current requirement of alternative BSM is to have an infiltration rate between 5 and 12 inches per hour with a long-term infiltration rate of at least 5 inches per hour. In a previous study, the hydraulic conductivity of a biochar was studied before and after having the fines removed by sieving. The sample with fines removed had a hydraulic conductivity nearly four times higher than the one with fines (Yargicoglu et al., 2015). Any biochar amended BSM that does not achieve 5 to 12 inches per hour infiltration rate will be removed from the study.

Soil pH

There is a correlation between increased pyrolysis temperatures and increased pH, though there is a large variation between feedstocks (Cantrell et al., 2012). If the pH is raised enough it could affect plant health as several key nutrients required by plants can be immobilized in high pH soils. Ideally the biochars chosen should have a pH as close to seven as possible.

Surface Area

Surface area is arguably the most important characteristic for treatment performance. Adsorption capacity is directly related to available surface area of the adsorbent. Some biochars have been lab tested to measure surface area via N_2 adsorption but not many. From literature, a correlation between pyrolysis temperature and surface area is established, pyrolysis temperatures of 600-700 C show much higher surface areas than those produced at 500 C or less (Ahmad et al., 2014).

Hydrophobicity

Hydrophobicity is important to our study because hydrophobic substances, like PCBs, in a water solution are attracted to hydrophobic surfaces like biochar where they are adsorbed and removed from the water. Hydrophobicity is a difficult characteristic to measure, requiring either specialized equipment or lengthy experimentation. However, it has been well documented that hydrophobicity in biochar decreases as pyrolysis temperature increases (Zimmerman, 2010). The hydrophobicity in biochar is likely due to hydrophobic substances that are not completely volatilized at lower temperatures (Gray et al., 2014). Hydrophobicity in biochar will decline over time as these hydrophobic substances are consumed by microbes or oxidized, eventually making the biochar hydrophilic (Zimmerman, 2010). This is a concern for long-term treatment effectiveness if treatment depends on hydrophobicity.

Source Material and Pyrolysis Method

Many studies have compared the physical and chemical properties of biochar produced using different feedstocks and different methods of pyrolysis. However, because we have chosen to only study biochars that meet our availability requirements we do not have the option to make source material a primary selection criteria. Most of the biochars that meet our selection requirements are produced from woodchips and other industrial forestry residues. Consequently, biochars will be ordered by pyrolysis temperature. A range of pyrolysis temperatures are recommended since low temperatures tend to produce more hydrophobic biochars and higher temperatures produce biochars with more surface area (Zimmerman, 2010).

Probable Treatment Efficiency

From literature there are many factors that will affect overall treatment efficiency in a biochar. To simplify the selection process, pyrolysis temperature was chosen as the factor to represent treatment efficiency. Because pyrolysis temperature affects both surface area and hydrophobicity directly, biochars will be chosen that are produced at a wide range of temperatures. This will ensure biochars with the greatest surface area, the greatest hydrophobicity, and combinations of the two will be tested.

Table 1.	Biochar	Selection	Table
----------	---------	-----------	-------

Biochar Name	Cost (\$/yd ³)	Pyrolysis Temp (Degrees C)
1. Pacific	\$ 90.00	700
2. Sonoma Biochar	\$ 240.00	1315
3. Rogue Biochar	\$ 249.50	700
4. BioChar Now - Medium	\$ 350.00	600
5. Sunriver High Porosity Biochar	\$ 500.00	500
6. Biochar Solutions (CW4CB)	\$ 225.00	700
7. Agrosorb	\$ 250.00	900
8. BlackSorb	\$ 250.00	900
9. Cool Terra CF-11	\$ 700.00	600
10. Phoenix	\$ 254.00	700

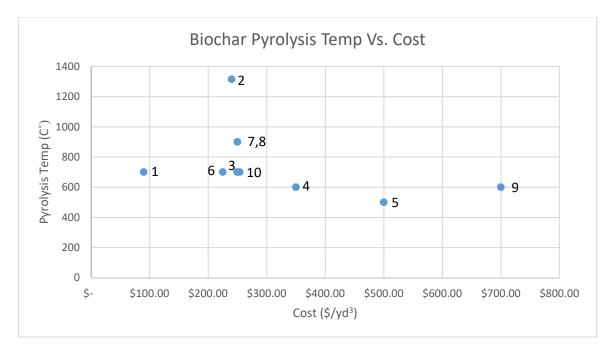


Figure 1. Biochar Pyrolysis Temperature Vs. Cost

References

Yargicoglu, E.N., Sadasivam, B.Y., Reddy, K.R., Spokas, K., Physical and Chemical Characterization of Waste Wood Derived Biochars, Waste Management, Volume 36, February 2015, Pages 256-268, ISSN 0956-053X, <u>https://doi.org/10.1016/j.wasman.2014.10.029</u>.

Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang M., Bolan N., Mohan D., Vithanage M., Lee S.S., Ok Y.S., Biochar as a Sorbent for Contaminant Management in Soil and Water: a Review, in Chemosphere, Volume 99, 2014, Pages 19-33, ISSN 0045-6535, <u>https://doi.org/10.1016/j.chemosphere.2013.10.071</u>.

Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., Ro, K.S., Impact of Pyrolysis Temperature and Manure Source on Physicochemical Characteristics of Biochar, in Bioresource Technology, Volume 107, 2012, Pages 419-428, ISSN 0960-8524, <u>https://doi.org/10.1016/j.biortech.2011.11.084</u>.

Zimmerman, A.R, Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon (Biochar), Environmental Science & Technology, Volume 44, January 2010, Pages 1295-1301, <u>http://pubs.acs.org/doi/abs/10.1021/es903140c</u>.

Gray, M., Johnson, M.G., Dragila, M.I., Kleber, M., Water Uptake in Biochars: The Roles of Porosity and Hydrophobicity, In Biomass and Bioenergy, Volume 61, 2014, Pages 196-205, ISSN 0961-9534, https://doi.org/10.1016/j.biombioe.2013.12.010.

Blacksorb biochar-amended BSM Compacted to 85% MDD of Standard Proctor

Length	15.2	cm
Area	182.3222	cm2

	Manor	neters									
Η1		H2	head	Q	t	Q/At	h/L	Temp	k cm/s	k corrected	k in/hr
	43.7	35.1	8.6	46	240	0.001051	0.565789	19.9	0.001858	0.00186303	2.640514
	42.75	27.6	15.15	49.5	150	0.00181	0.996711	19.9	0.001816	0.00182084	2.580724
	42.3	24.7	17.6	49.5	135	0.002011	1.157895	19.9	0.001737	0.00174153	2.468306
										Average K	2.563181

Sonoma biochar-amended BSM Compacted to 85% MDD of Standard Proctor

Length	15.2	cm
Area	182.3222	cm2

	Manor	neters									
Η1		H2	head	Q	t	Q/At	h/L	Temp	k cm/s	k corrected	k in/hr
	43.98	37.1	6.88	48.8	165	0.001622	0.452632	20	0.003584	0.00358473	5.080723
	43.25	32.3	10.95	48	100	0.002633	0.720395	20	0.003655	0.00365541	5.1809
	42.65	28.05	14.6	47	75	0.003437	0.960526	20	0.003578	0.00357926	5.072965
										Average K	5.111529

Pacific biochar-amended BSM Compacted to 85% MDD of Standard Proctor

Length	15.2	cm
Area	182.3222	cm2

	Manor	meters									
H1		H2	head	Q	t	Q/At	h/L	Temp	k cm/s	k corrected	k in/hr
	42.2	38.1	4.1	43.5	225	0.00106	0.269737	20.5	0.003931	0.0038846	5.505762
	42.1	38	4.1	43	225	0.001048	0.269737	20.5	0.003886	0.00384	5.442478
	40.4	34.2	6.2	43	150	0.001572	0.407895	20.5	0.003855	0.003809	5.398587
	35.2	24.15	11.05	45	90	0.002742	0.726974	20.5	0.003772	0.0037276	5.283264
										Average K	5.407523

Sunriver biochar-amended BSM Compacted to 85% MDD of Standard Proctor

Length	15.2	cm
Area	182.3222	cm2

Mano	meters									
H1	H2	head	Q	t	Q/At	h/L	Temp	k cm/s	k corrected	k in/hr
43.2	40.7	2.5	47	280	0.000921	0.164474	21.5	0.005598	0.005399934	7.65345
42.8	39.6	3.2	47.5	210	0.001241	0.210526	21.5	0.005893	0.005684771	8.057156
41.7	36.6	5.1	46	128	0.001971	0.335526	21.5	0.005875	0.005667171	8.032211
39.85	32.2	7.65	48	90	0.002925	0.503289	21.5	0.005812	0.00560694	7.946844
39.4	31.8	7.6	46.5	90	0.002834	0.5	21.5	0.005668	0.005467458	7.749154
34.5	22.5	12	200	255	0.004302	0.789474	21.5	0.005449	0.005256507	7.450167
33.4	22.3	11.1	200	255	0.004302	0.730263	21.5	0.005891	0.00568271	8.054234
33.1	22.2	10.9	200	305	0.003597	0.717105	21.5	0.005015	0.004838294	6.857425
32.5	22.15	10.35	200	305	0.003597	0.680921	21.5	0.005282	0.005095402	7.221829
									Average K	7.669163

Rogue biochar-amended BSM Compacted to 85% MDD of Standard Proctor

Length	15.2	cm	viscosity at	20	1.0034
Area	182.3222	cm2	viscosity at	22	0.955
			Ratio		0.951764

	Manor	neters									
Η1		H2	head	Q	t	Q/At	h/L	Temp	k cm/s	k corrected	k in/hr
	44.65	42.5	2.15	40	270	0.000813	0.141447	22	0.005745	0.005476319	7.761713
	43.5	35.75	7.75	48.5	90	0.002956	0.509868	22	0.005797	0.005526225	7.832444
	43.3	34.75	8.55	45	75	0.003291	0.5625	22	0.00585	0.005577199	7.904691
	42.6	31.5	11.1	46.5	60	0.004251	0.730263	22	0.005821	0.005548936	7.864634
	42	28.75	13.25	41.7	45	0.005083	0.871711	22	0.005831	0.005558258	7.877845
	43	34.95	8.05	50.5	90	0.003078	0.529605	22	0.005811	0.005539671	7.851503
										Average K	7.848805

Phoenix biochar-amended BSM Compacted to 85% MDD of Standard Proctor

Length	15.2	cm
Area	182.3222	cm2

	Manor	neters									
Η1		H2	head	Q	t	Q/At	h/L	Temp	k cm/s	k corrected	k in/hr
	42.58	39.9	2.68	49	210	0.00128	0.176316	19.5	0.007258	0.007349893	10.41717
	40.3	34.9	5.4	47.5	100	0.002605	0.355263	19.5	0.007333	0.007425726	10.52465
	38.9	31.65	7.25	49.2	80	0.003373	0.476974	19.5	0.007072	0.007161041	10.14951
										Average K	10.36378

Voss Compacted to 85% MDD of Standard Proctor

Length	15.2	cm	viscosity at	20	1.0034
Area	182.3222	cm2	viscosity at 21		0.979
			Ratio		0.975683

	Manor	neters									
H1		H2	head	Q	t	Q/At	h/L	Temp	k cm/s	k corrected	k in/hr
	40.2	37.35	2.85	44.5	165	0.001479	0.1875	21	0.007889	0.007702247	10.91657
	39.81	33.45	6.36	43	75	0.003145	0.418421	21	0.007515	0.007337301	10.39932
	39.55	30.8	8.75	46	58	0.00435	0.575658	21	0.007557	0.00737748	10.45627
	39	27.5	11.5	203	176	0.006326	0.756579	21	0.008362	0.008163413	11.57019
										Average K	10.83559

BioChar Solutions biochar-amended BSM Compacted to 85% MDD of Standard Proctor

Length	15.2	cm
Area	182.3222	cm2

	Manor	meters									
Η1		H2	head	Q	t	Q/At	h/L	Temp	k cm/s	k corrected	k in/hr
	44.2	41.7	2.5	49.5	220	0.001234	0.164474	20	0.007503	0.00750502	10.63704
	43.5	39.05	4.45	49.5	120	0.002262	0.292763	20	0.007728	0.00772989	10.95575
	42.7	36.48	6.22	49.5	85	0.003194	0.409211	20	0.007805	0.00780738	11.06558
	42.3	35.4	6.9	46.5	70	0.003643	0.453947	20	0.008026	0.00802814	11.37847
	41.45	32.7	8.75	47.8	58	0.00452	0.575658	20	0.007852	0.00785419	11.13192
										Average K	11.03375

Agrosorb biochar-amended BSM Compacted to 85% MDD of Standard Proctor

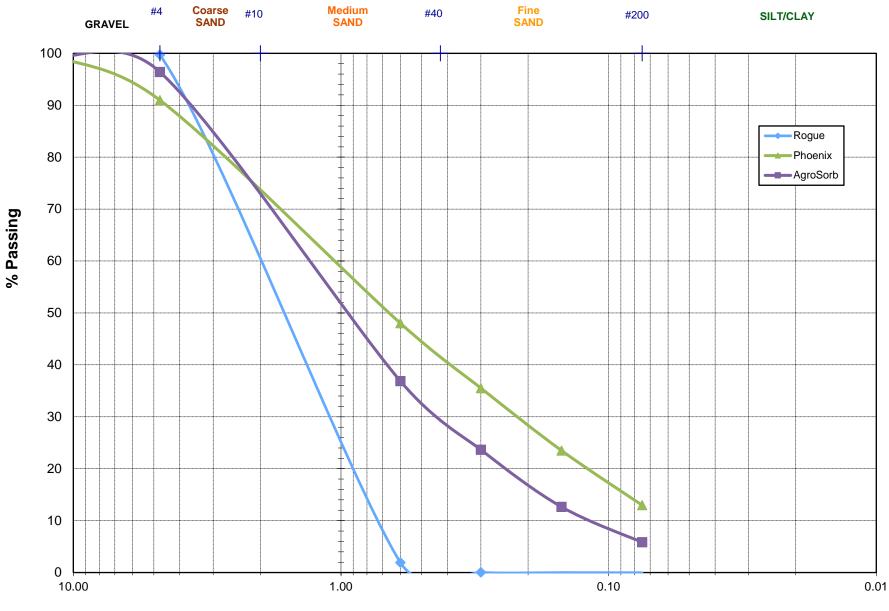
Length	15.2	cm	viscosity at	20	1.0034
Area	182.3222	cm2	viscosity at	22	0.955
			Ratio		0.951764

	Manor	neters									
H1		H2	head	Q	t	Q/At	h/L	Temp	k cm/s	k corrected	k in/hr
	44.23	40.58	3.65	47	100	0.002578	0.240132	20.4	0.010735	0.0106337	15.07137
	43.09	36.4	6.69	45.2	50	0.004958	0.440132	20.4	0.011265	0.0111589	15.81576
	43.05	36.3	6.75	45.4	50	0.00498	0.444079	20.4	0.011215	0.0111086	15.74453
	41.82	32.2	9.62	51.2	40	0.007021	0.632895	20.4	0.011093	0.0109879	15.57337
	41.82	32.09	9.73	38	30	0.006947	0.640132	20.4	0.010853	0.0107505	15.23692
	40.85	28.58	12.27	39.1	25	0.008578	0.807237	20.4	0.010627	0.0105262	14.91901
	40.85	28.5	12.35	39	25	0.008556	0.8125	20.4	0.010531	0.0104313	14.78446
	44	39.9	4.1	41.8	85	0.002697	0.269737	20.4	0.009999	0.009905	14.03852
										Average K	15.14799

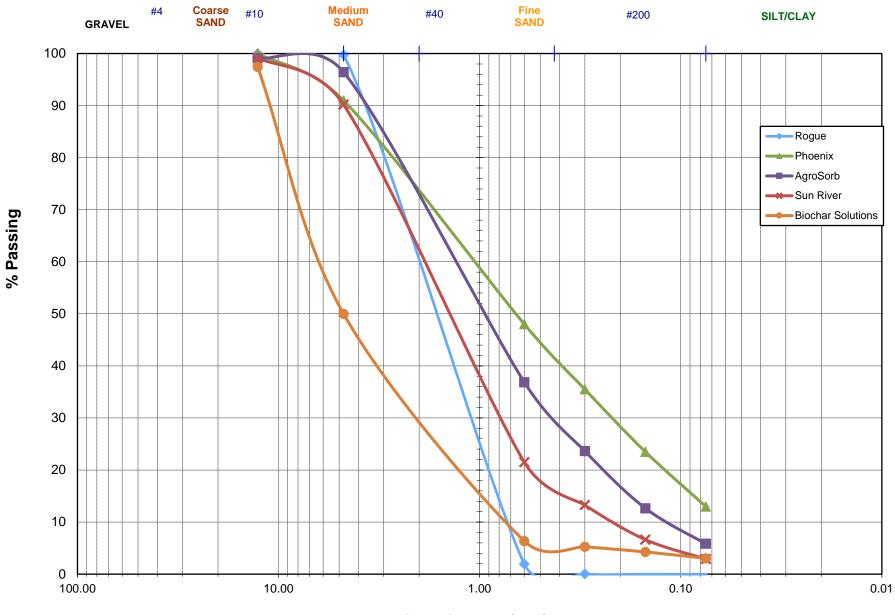
Biochar Now biochar-amended BSM Compacted to 85% MDD of Standard Proctor

Length	15.2	cm
Area	182.3222	cm2

	Manor	meters									
H1		H2	head	Q	t	Q/At	h/L	Temp	k cm/s	k corrected	k in/hr
	44.3	40.8	3.5	48	90	0.002925	0.230263	21	0.012704	0.01240272	17.57866
	44	39.3	4.7	49	70	0.003839	0.309211	21	0.012417	0.01212234	17.18127
	43.5	36.85	6.65	49.5	50	0.00543	0.4375	21	0.012411	0.01211713	17.17389
	42.85	34.25	8.6	45.1	35	0.007068	0.565789	21	0.012491	0.01219541	17.28483
	42.15	31.35	10.8	200	128	0.00857	0.710526	21	0.012061	0.01177559	16.68981
										Average K	17.18169


				nalysis Da M D422-63(2			
Project	Name:		7.01	Tested By:		Date:	7/10/2018
-	cation:			Checked By:		Date:	
	ing No:			Test Number:		-	
	-			Gnd Elev.:		-	
Sample	Deptn.			Gha Elev		-	
			Biochar Type:		BioChar	Solutions	
N	leight of	f Container (g):	52.4		Weight of Cont	ainer & Soil (g):	97.0
We	ight of I	Dry Sample (g):	44.6				
Sieve N	lumber	Diameter (mm)	Mass of Container (g)	Mass of Container & Soil (g)	Soil Retained (g)	Soil Retained (%)	Soil Passing (%)
0.	.5	12.70	13.9837	15.1551	1.2	2.6	97.4
4	1	4.75	13.9837	35.5409	21.6	47.4	50.0
3		0.60	13.9837	33.8176	19.8	43.6	6.4
5		0.30	13.9837	14.4764	0.5	1.1	5.3
10		0.15	13.9837 0.7018	14.4401 1.2622	0.5 0.6	1.0 1.2	4.3 3.0
Pa		0.075	0.7018	2.0797	1.4	3.0	0.0
			0.1010	TOTAL:	45.4	100.0	0.0
100	GRAVE	EL #4 Coarse #	10 Medium I SAND	#40	Fine #2 SAND	00 SIL	T/CLAY
90 80 60 50 40 30							
20							
10							
0 1	10.00	+ + + +	1.00 F	Particle Diam	0.10 eter (mm)	*+ + + +	0.01
Grain S	Size Dis	stribution Curv	ve Results:				
		% Gravel:	2.6	D ₁₀ :		C:	
		% Sand:	94.4	D ₃₀ :		C _{c:}	0.94
		% Fines:	3	D ₆₀ :	6.2	_	

				M D422-63(2	ta Sheet		
Proje	ect Name:			Tested By:	RH & JB	Date:	7/10/2018
	Location:			Checked By:		Date:	
В	Boring No:			Test Number:			
Samp	ole Depth:			Gnd Elev.:			
			Biochar Type:		Agro	osorb	
	Weight of	Container (g):	3.2		Weight of Conta	ainer & Soil (g):	175.3
١	Weight of D	ory Sample (g):	172.1				
Sieve	e Number	Diameter (mm)	Mass of Container (g)	Mass of Container & Soil (g)	Soil Retained (g)	Soil Retained (%)	Soil Passing (%)
	0.5	12.70	1.5896	3.1261	1.5	0.9	99.1
	4	4.75	1.5896	6.1437	4.6	2.7	96.4
	30	0.60	3.1792	104.6093	101.4	59.6	36.9
	50	0.30	1.5896	24.1144	22.5	13.2	23.6
	100 200	0.15	1.5896 1.5896	20.3184 13.1978	18.7 11.6	11.0 6.8	12.7
	Pan	0.075	1.5896	11.5284	9.9	5.8	5.8 0.0
				TOTAL:	170.3	100.0	
1	GRAVE	L #4 Coarse # SAND	t10 Medium SAND	#40	Fine #2 SAND	00 SIL	T/CLAY
	90						
	80						
<u>in</u>	70 60						
as	50						
%	40						
			++++				
	30						
	30						
	20						
	20						
	20		1.00		0.10		0.01
	20 10 0 10.00		F	Particle Diam			0.01
	20 10 0 10.00	tribution Curv % Gravel: % Sand:	F		eter (mm) 0.11	C _u : C _c :	10.9


		AST	M D422-63(2	,		
-			-	RH & JB	Date:	7/10/2018
Location:			Checked By:		Date:	
Boring No:			Test Number:		_	
ple Depth:			Gnd Elev.:			
-						
		Biochar Type:		Pho	enix	
Weight of	Container (q):	2.8		Weight of Cont	ainer & Soil (q):	241.2
-				U		
ve Number	Diameter	Mass of	Mass of Container &	Soil Retained	Soil Retained	Soil Passing
0.5	. ,		Soil (g)			(%)
						100.0 91.0
						48.0
50	0.30	1.5896	33.2888	31.7	12.5	35.5
100	0.15	1.5896	32.0522	30.5	12.0	23.5
200	0.075	1.5896	28.2517	26.7	10.5	13.0
Pan		1.5896				0.0
	H4 Coarse _# L I SAND	#10 Medium I SAND	#40	Fine #2		T/CLAY
90						
		+ + + + + +				
80		++				
70						
70						
70 60						
70 60 50 40						
70 60 50 40 30						
70 60 50 40						
70 60 50 40 30						
70 60 50 40 30 20 10						
70 60 50 40 30 20		1.00		0.10		0.01
70 60 50 40 30 20 10 0			Particle Diame			0.01
70 60 50 40 30 20 10 0 10.00	tribution Curv	P ve Results:				
70 60 50 40 30 20 10 0 10.00	tribution Curv % Gravel: % Sand:	P ve Results: 0	Particle Diamo		Cu: Cc:	
	Boring No: ple Depth: Weight of Weight of D e Number 0.5 4 30 50 100 200 Pan	Location: Boring No: ple Depth: Weight of Container (g): Weight of Dry Sample (g): Weight of Dry Sample (g): Pan Container (mm) 0.5 12.70 4 4 4.75 30 0.60 50 0.30 100 0.15 200 0.075 Pan Coarse # SAND	Location:	Location: Checked By: Test Number: Bioring No: Test Number: gle Depth: Gnd Elev.: Biochar Type:	Location: Checked By: Boring No: Test Number: ple Depth: Gnd Elev.: Biochar Type: Pho Weight of Container (g): 2.8 Weight of Dry Sample (g): 238.4 e Number Diameter (mm) Mass of Container (g) Soil Retained (g) 0.5 12.70 0.7018 0.7018 0.0 4 4.75 0.7018 235505 22.8 30 0.60 13.9837 122.8911 108.9 50 0.30 1.5896 33.2888 31.7 100 0.15 1.5896 28.2517 26.7 Pan 1.5896 34.4933 32.9 TOTAL: 253.5 100 440 Fine #2	Location: Checked By: Date: Boring No: Test Number: Test Number: Date: ple Depth: Gnd Elev.: Phoenix Weight of Container (g): 2.8 Weight of Dry Sample (g): 238.4 Weight of Container & Soil (g): e Number Diameter (mm) Mass of Container (g) Soil Retained Soil (g) Soil Retained (g) Soil Retained (%) 0.5 12.70 0.7018 0.7018 0.0 0.0 4 4.75 0.7018 23.5505 22.8 9.0 30 0.60 13.9837 122.8911 108.9 43.0 50 0.30 1.5896 32.0522 30.5 12.0 200 0.075 1.5896 28.2517 26.7 10.5 Pan 1.5896 34.4933 32.9 13.0 TOTAL: 253.5 100.0 SIL

		Sieve An	M D422-63(2			
Project Name):		Tested By:	,	Date:	7/10/2018
Location			Checked By:		Date:	
Boring No):		Test Number:		-	
Sample Depth	n:		Gnd Elev.:		-	
		Biochar Type:		RO	gue	
Weight	of Container (g):	52.3		Weight of Conta	ainer & Soil (g):	173.8
Weight of	f Dry Sample (g):	121.5				
Sieve Numbe	r Diameter (mm)	Mass of Container (g)	Mass of Container & Soil (g)	Soil Retained (g)	Soil Retained (%)	Soil Passing (%)
0.5	12.70	1.5896	1.5896	0.00	0.00	100.00
4	4.75	1.5896	1.9089	0.32	0.27	99.73
30	0.60	3.1792	119.5292	116.35	97.79	1.94
50 100	0.30	1.5896 1.5896	3.8304 1.6583	2.24 0.07	1.88 0.06	0.05 0.00
200	0.075	1.5896	1.6115	0.02	0.00	-0.02
Pan		1.5896	1.5635	-0.03	-0.02	0.00
GRA	VEL #4 Coarse a	#10 Medium SAND	#40	Fine #2	00 SIL	T/CLAY
100 90 80 70 60 50 40 30 20				SAND		
100 90 80 70 60 50 40 30						
100 90 80 70 60 50 40 30 20		1.00	Particle Diam	0.10		0.01
100 90 80 70 60 50 40 30 20 10 0 10.00	istribution Curv % Gravel: % Sand:	1.00 P ve Results:	Particle Diam	0.10		0.01

Project Name: Tested By: RH & JB Date: 7/10/2018 Boring No:					halysis Da M D422-63(2			
Boring No: Test Number: Sample Depth: Gnd Elev.: Biochar Type: Sun River Weight of Container (g): 52.3 Weight of Container & Soil (g): 153.2 Sieve Number Diameter Container (g): 52.3 Weight of Container & Soil (g): 153.2 Sieve Number Diameter Container (g) 52.3 Weight of Container & Soil (g): 153.2 Sieve Number Diameter Container (g) 50.1 Retained Soil Passing (%) 0.5 12.70 1.5896 70.5872 69.0 68.7 21.5 50 0.30 1.5896 9.8777 8.3 8.2 13.3 100 0.15 1.5896 6.2566 6.7 6.6 6.6 200 0.075 1.5896 4.5286 2.9 2.9 0.0 100 0.10 SAND #00 Fine #200 SiltT/CLAY 90 90 90 90 90 90 90 90 90	Proje	ect Name:					Date:	7/10/2018
Sample Depth: Gnd Elev.: Biochar Type: Sun River Weight of Container (g): 52.3 Weight of Container & Soil (g): 153.2 Sieve Number Diameter Mass of Container (g) Soil Retained Soil (g) Soil Retained (g) Soil Retained (%) Soil Passing (%) 0.5 12.70 1.5896 2.422 0.8 0.8 99.2 4 4.75 1.5896 10.6182 9.0 9.0 90.2 30 0.60 1.5896 70.5872 69.0 68.7 21.5 50 0.30 1.5896 5.3083 3.7 3.7 2.9 Pan 1.5896 5.3083 3.7 3.7 2.9 Pan 1.5896 5.3083 3.7 3.7 2.9 Pan 1.5896 1.5286 2.90 9.0 0.0 00 0.15 1.5896 5.3083 3.7 3.7 2.9 Pan 0.0 0.0 0.0 0.0 0.0 0.0		Location:			Checked By:		Date:	
Biochar Type: Sun River Weight of Container (g): 52.3 Weight of Container & Soil (g): 153.2 Sieve Number Diameter Mass of Container & Soil (g) Soil Retained (g) Soil Retained (g) Soil Retained (%) Soil Passing (%) 0.5 12.70 1.5896 2.4228 0.8 0.8 99.2 30 0.60 1.5896 10.6182 9.0 90.2 13.3 100 0.15 1.5896 70.6872 69.0 68.7 21.5 50 0.30 1.5896 5.3083 3.7 3.7 2.9 Pan 1.5896 5.3083 3.7 3.7 2.9 0.0 TOTAL: 100.5 100.0 10.5 100.0 0.0 0.0 0.0 0.0 0.0 00 0.0 1.0 SAND #200 SILT/CLAY 0.0 0.0 0.0 0.0 0.0 TOTAL: 100.5 100.0 0.0 0.0 0.0 0.0	В	oring No:			Test Number:		-	
Weight of Container (g): 52.3 Weight of Container & Soil (g): 153.2 Sieve Number Diameter (mm) Mass of Container (g) Soil Retained Soil (g) Soil Retained (%) Soil Passing (%) 0.5 12.70 1.5896 2.4228 0.8 0.8 99.2 30 0.60 1.5896 70.5872 69.0 68.7 21.5 50 0.30 1.5896 9.2566 6.7 6.6 6.6 200 0.075 1.5896 5.3083 3.7 3.7 2.9 Pan 1.5896 5.3083 3.7 3.7 2.9 0.0 00 0.15 1.5896 5.3083 3.7 3.7 2.9 0.0 TOTAL: 100.5 100.0 0 0 0 0 0.0 0.0 90 0.0 0.0 0.0 0.0 0.0 0 0.0 90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Samp	ole Depth:			Gnd Elev.:			
Weight of Dry Sample (g): 100.9 Sieve Number Diameter (mm) Mass of Container (g) Soil Retained Soil (g) Soil Retained (%) Soil Passing (%) 0.5 12.70 1.5896 2.4228 0.8 0.8 99.2 4 4.75 1.5896 70.5872 69.0 68.7 21.5 50 0.30 1.5896 9.82566 6.7 6.6 6.6 200 0.075 1.5896 5.3083 3.7 3.7 2.9 Pan 1.5896 5.3083 3.7 3.7 2.9 Pan 1.5896 5.3083 3.7 3.7 2.9 0.0 0.075 1.5896 5.3083 3.7 3.7 2.9 0.0 0.075 1.5896 5.3083 3.7 3.7 2.9 0.0 0.0 TOTAL: 100.5 100.0 SILT/CLAY 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <		_		Biochar Type:		Sun	River	
Weight of Dry Sample (g): 100.9 Sieve Number Diameter (mm) Mass of Container (g) Soil Retained Soil (g) Soil Retained (%) Soil Passing (%) 0.5 12.70 1.5896 2.4228 0.8 0.8 99.2 4 4.75 1.5896 70.5872 69.0 68.7 21.5 50 0.30 1.5896 9.82566 6.7 6.6 6.6 200 0.075 1.5896 5.3083 3.7 3.7 2.9 Pan 1.5896 5.3083 3.7 3.7 2.9 Pan 1.5896 5.3083 3.7 3.7 2.9 0.0 0.075 1.5896 5.3083 3.7 3.7 2.9 0.0 0.075 1.5896 5.3083 3.7 3.7 2.9 0.0 0.0 TOTAL: 100.5 100.0 SILT/CLAY 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <								
Sieve Number Diameter (mm) Mass of Container (g) Soil Retained Soil (g) Soil Retained (%) Soil Passing (%) 0.5 12.70 1.5896 2.4228 0.8 0.8 99.2 30 0.60 1.5896 70.5872 69.0 68.7 21.5 50 0.30 1.5896 9.82777 8.3 8.2 13.3 100 0.15 1.5896 9.8276 69.0 68.7 21.5 50 0.30 1.5896 8.2566 6.7 6.6 6.6 200 0.075 1.5896 4.5286 2.9 2.9 0.0 TOTAL: 100.5 100.0 TOTAL: 100.5 100.0 Out the same #10 Same #10 Same #200 SILT/CLAY 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 <td></td> <td>-</td> <td>,</td> <td></td> <td></td> <td>Weight of Conta</td> <td>ainer & Soil (g):</td> <td>153.2</td>		-	,			Weight of Conta	ainer & Soil (g):	153.2
Sieve Number Diameter (mm) Mass of Container (g) Container & Soil (g) Soil Retained (g) Soil Retained (%) Soil Retained (%) Soil Retained (%) Soil Retained (%) 0.5 12.70 1.5896 2.4228 0.8 0.8 99.2 4 4.75 1.5896 10.6182 9.0 9.0 90.2 30 0.60 1.5896 9.8777 8.3 8.2 13.3 100 0.15 1.5896 5.3063 3.7 3.7 2.9 Pan 1.5896 4.5286 2.9 2.9 0.0 TOTAL: 100.5 100.0 100.0 100.0 100.0 SILT/CLAY 90 6 6.7 8.00 9.0 9.0 10.0 10.0 0.0 90 6 8.00 #40 Fine #200 SILT/CLAY 90 0 0.00 0.00 0.10 0.01 0.01 91 0 0.00 0.00 0.10 0.10 <th>I I</th> <th>Weight of L</th> <th>Dry Sample (g):</th> <th>100.9</th> <th></th> <th></th> <th></th> <th></th>	I I	Weight of L	Dry Sample (g):	100.9				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sieve	e Number			Container &			-
30 0.60 1.5896 70.5872 69.0 68.7 21.5 50 0.30 1.5896 9.8777 8.3 8.2 13.3 100 0.15 1.5896 8.2566 6.7 6.6 6.6 200 0.075 1.5896 4.5286 2.9 2.9 0.0 TOTAL: 100.5 100.0 TOTAL: 100.5 100.0 TOTAL: 100.5 SILT/CLAY SAND #40 Fine #200 SILT/CLAY SAND #0.0 0.0 0.0 Pan 0.0 0.0 TOTAL: 100.5 100.0 SAND #200 SILT/CLAY SAND #200 SILT/CLAY SAND #200 SILT/CLAY Particle Diameter (mm) Grain Size Distribution Curve Results: % Gravel: 0.8 D ₁₀ : 0.22 C ₁ : 8.18 % Gravel: 0.8 D ₁₀ : 0.78<					2.4228		0.8	
50 0.30 1.5896 9.8777 8.3 8.2 13.3 100 0.15 1.5896 8.2566 6.7 6.6 6.6 200 0.075 1.5896 5.3083 3.7 3.7 2.9 Pan 1.5896 4.5286 2.9 2.9 0.0 TOTAL: 100.5 100.0 TOTAL: 100.5 SILT/CLAY 90 0 0 5 SILT/CLAY 90 0 0 0 5 SILT/CLAY 90 0 0 0 0 0 0 90 0 0 0 0 0 0 0								
100 0.15 1.5896 8.2566 6.7 6.6 6.6 200 0.075 1.5896 5.3083 3.7 3.7 2.9 Pan 1.5896 4.5286 2.9 2.9 0.0 TOTAL: 100.5 100.0 TOTAL: 100.5 100.0 GRAVEL #4 Coarse #10 Medium #40 SAND #40 SAND #200 SILT/CLAY 90 0 0 50 50 0 0 90 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 90 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
200 0.075 1.5896 5.3083 3.7 3.7 2.9 Pan 1.5896 4.5286 2.9 2.9 0.0 TOTAL: 100.5 100.0 SILT/CLAY Image: Sand of the sand								
Pan 1.5896 4.5286 2.9 2.9 0.0 TOTAL: 100.5 100.0 SILT/CLAY 00 90								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			01010					
10.00 1.00 0.10 0.01 Particle Diameter (mm) Grain Size Distribution Curve Results: % Gravel: 0.8 D ₁₀ : 0.22 C _u : 8.18 % Sand: 96.3 D ₃₀ : 0.78 C _c : 1.54	% Passing	00 90 90 80 70 60 50 40 30 20	L #4 Coarse # SAND	SAND	#40			
Particle Diameter (mm) Grain Size Distribution Curve Results: 0.8 D ₁₀ : 0.22 C _u : 8.18 % Gravel: 06.3 D ₃₀ : 0.78 C _c : 1.54				+ + + + + 1.00		0.10		0.01
% Gravel: 0.8 D_{10} : 0.22 C_u : 8.18 % Sand:96.3 D_{30} : 0.78 C_c : 1.54					Particle Diam			0.01
% Sand: 96.3 D_{30} : 0.78 C_c : 1.54	Grai	n Size Dis	tribution Curv	ve Results:				
							C _{c:}	1.54

Particle Diameter (mm)

Particle Diameter (mm)

Appendix F: Column Test Observation Forms

4/10/18 First Kun

Stormwater Column Tests - Office of Water Programs

Sampling Run			
Date (mm/dd/yy):	Time (24 hr) :	Team Member's Initials:	Column ID: 🕜

During Test - Timed Measurements

Time	Water Depth	Media Condition	Other Observations
			/
_			
		and the second sec	

Grab Sample - Beginning of Run

Time Water Depth	Turbidity (NTU)	Temp	рН	Other Observations
4:25 24	206			

Grab Sample - Middle of Run

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations
5119	11	187			

Grab Sample - End of

Run

×.

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations

Grab Sample -

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations

Stormwater Column Tests – Office of Water Programs

Sampling Run			
Date (mm/dd/yy):	Time (24 hr) :	Team Member's Initials:	Column ID: (C)

During Test - Timed Measurements

Time	Water Depth	Media Condition	Other Observations
-			

Grab Sample - Beginning of Run

Time Water Depth	Turbidity (NTU)	Temp	pН	Other Observations
4.2 6)"	210			

Grab Sample - Middle of Run

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations
5:49	$\Theta^{\prime\prime}$	201			
		Ý			

Grab Sample - End of

Run

÷

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations

Grab Sample -

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations

Stormwater Column Tests - Office of Water Programs

Sampling Run			
Date (mm/dd/yy):	Time (24 hr) :	Tcam Member's Initials:	Column ID: COS

During Test - Timed Measurements

Time	Water Depth	Media Condition	Other Observations

Grab Sample - Beginning of Run

Time Water Depth	Turbidity (NTU)	Temp	рН	Other Observations
4.26 211	13,8			

Grab Sample - Middle of Run

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations
5:41	A (1	181			

Grab Sample - End of

Run

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations

Grab Sample -

Time	Water Depth	Turbidity (NTU)	Temp	pН	Other Observations

Stormwater Column Tests - Office of Water Programs

Sampling Run			
Date (mm/dd/yy):	Time (24 hr) :	Team Member's Initials:	Column ID: COC

During Test - Timed Measurements

Time	Water Depth	Media Condition	Other Observations
_			
_			

Grab Sample - Beginning of Run

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations
4,28	\bigcirc	289			

Grab Sample - Middle of Run

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations
5:42	11	212			

Grab Sample - End of

Run

÷.

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations

Grab Sample -

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations

Stormwater Column Tests - Office of Water Programs

Sampling Run			
Date (mm/dd/yy):	Time (24 hr) :	Team Member's Initials:	Column ID: COS

During Test - Timed Measurements

Time	Water Depth	Media Condition	Other Observations
_			

Grab Sample - Beginning of Run

Time	Water Depth	Turbidity (NTU)	Temp	pН	Other Observations
4.31	211	285			

Grab Sample - Middle of Run

Time	Water Depth	Turbidity (NTU)	Тетр	рН	Other Observations
5.52	24	234			

Grab Sample - End of

Run

÷

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations

Grab Sample -

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations

Stormwater Column Tests – Office of Water Programs

Sampling Run			
Date (mm/dd/yy):	Time (24 hr) :	Team Member's Initials:	Column ID: COG

During Test - Timed Measurements

Time	Water Depth	Media Condition	Other Observations
{			

Grab Sample - Beginning of Run

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations
ADK.	14	202			

Grab Sample - Middle of Run

Time	Water Depth	Turbidity (NTU)	Temp	pН	Other Observations
5:55	311	335			

Grab Sample - End of

Run

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations

Grab Sample -

Time	Water Depth	Turbidity (NTU)	Temp	pH	Other Observations

Stormwater Column Tests – Office of Water Programs

Sampling Run				
Date (mm/dd/yy):	Time (24 hr) :	Team Member's Initials:	Column ID:	EN Fluent

During Test - Timed Measurements

Time	Water Depth	Media Condition	Other Observations

Grab Sample - Beginning of Run

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations
4.1	x —	24			

Grab Sample - Middle of Run

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations
5.56	L	21.4			

Grab Sample - End of

Run

10

Time	ne Water Depth Turbidity (NTU)		Temp	pH Other Observations	

Grab Sample -

Time	Water Depth	Turbidity (NTU)	Temp	рН	Other Observations

' Technician_____ Appendix F: Sampling: Sheetvation Forms Column ID: TWZ Date: 4/10/18

Column Description Influent

Sample Run 1

Water 22

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	×.			
2	X			
3	X -	JStort	A (am)	11.10
4	78	×	· · · ·	7
5	X			,
6	V.			
7	X			
8	3:41			
9	3:50	all a c		
10	4:18	Iurb		
11	4:11			
12	Sida			
13	6129			
14	X			
15	5:36			
16	5			
17	5:40			
18	7.12	•		

Observations:

Technician_____ Appendix F: Sampling: Sheet ation Forms Column ID: OD Date: 4/10/18

Roque **Column Description**

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	2:45			
2	2:48			
3	520			
4	Fidh			
5	7.30			
6	3:34			
7	3:41			1
8	3:44			
9	3:48			
10	41.15			
11	4:20	1014		
12	4:42			
13	44,50	Merculi	/	
14	5:21			
15	5.31			
16	5:31	,5?		
17	5:41			
18	5.51			

'Technician

4

Appendix F: Sampling Societyation Forms Column ID: 01 Date: 4/10/18

Column Description Sun Giver

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	3:45		· ·	_
2	2:48			
3	3110			
4	3.26	Shorter	alordi as	1
5	3:30	シート	MALA	next four
6	7:33	21	1 1/	×.
7	3:40	11		
8	3:44	17511		
9	3:47	KI 3	dry be	a next pa
10	4:15		on [P]	
11	Uig	TUCh		
12	WENT	- V		
13	Nill 8	MARCON	y Grat	
14	5:20	1.0.10	/ / -	
15	5.40			
16	5:30	, 15		
17	5:40			
18	5:40			

Technician______ Appendix F: Sampling Sugervation Forms Column ID: 203 Date: 4/10/18

Column Description Phoenix

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	2:45			
2	2:49			
3	3:20	Bading		
4	3.27	/		
5	5.70	1.5"		
6	2:34	2.54		
7	(M)	2.0 1		
8	FICIS	2.0		
9	3:49	275		
10	4:15	1)1		
11	61:20	1.5	Turb	
12	11:43			
13	4,52	Marinn	/	
14	5:25	114		Υ
15	5:22	<u>у</u> ,і		
16	5.38	Λ		
17	5:211	1.5"		
18	5151			

Observations:

1

Column Description Biochar Solutions

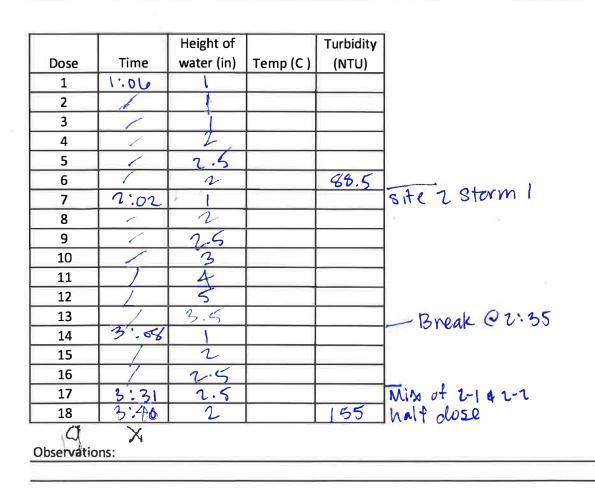
	1			
		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	3:45			
2	3:49			
3	3.21			
4	31/8	9		
5	3:31	11		
6	3: 14	1511		
7	3:42	911		
8	3:45	1.04		
9	3:50	217		
10	411	X		
11	4.21	Turh		
12	4:44	517		
13	4.58	Marin	N	
14	Sizi	10	7	
15	5:33	is TI		
16	Cize			
17	5:42	21		
18	5,51			

Column Description Black Sorb

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	3:45			
2	3:50	01		
3	3:22	Knobie		
4	3:28	11)		
5	P'31	1.25		
6	2.34	2175"		
7	3:42	1.5		
8	3:46	2"		
9	3,50	2.75		
10	4:17	-111		
11	9/122	7.5"	Turb	
12	7:44	111		
13	5:02	I IC		
14	5:26	,757		
15	5.34	1.54		
16	5:39			
17	5:013	311-		
18	5.53	1.5"		

¥,

'Technician_____ Appendix F: Sampling: State Vation Forms Column ID: COL Date: 4/10/18


Column Description Control

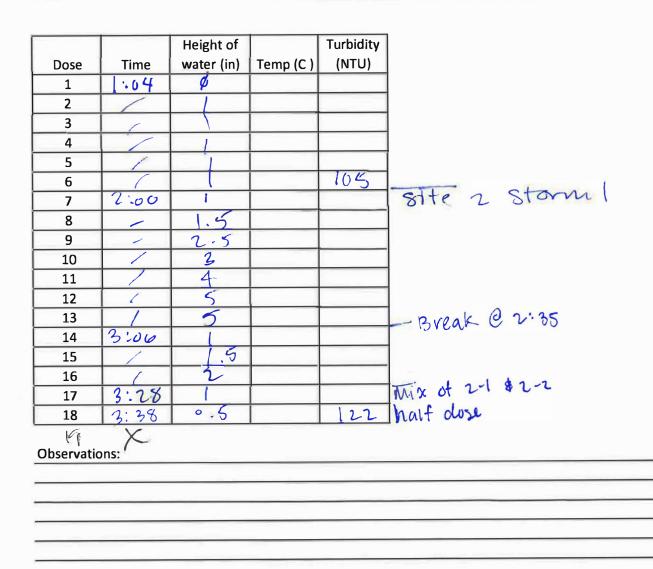
					ç.
		Height of		Turbidity	
Dose	Time	water (in)	Temp (C)	(NTU)	
1	2:45				
2	2:51	0			
3	3:20	Yandr 17			
4	3'28	1 3			
5	3:32	1.754			
6	3:135	2511			
7	3:43	2,7511		1	
8	7:46	ろ、ぐり			
9	3:50	CIII.			
10	9:18	1.75			coller 10 d
11	Clida	211	Tush ->	chappe	1 to O" before nex + Som pla
12	4:45	10	1	71	
13	55:03	111			
14	5:29	1			
15	6:34	1.51			
16	Sille				
17	Sicle	2.511			
18	SIGU	3.51			

Technician Michelle

Appendix F: Column Test Observation Forms Column ID: 6 Date 4/11/18

Column Description w/2-2 P media Hushing ----

Technician_Michaele	Appendix F: Column Test Observation Forms	Column <u>ID: 5</u>	Date: 4/11/18_
Column Description Media Hushing of	2-2		


1.00

Dose Time 1 : 0 × 2 - 3 - 4 - 5 - 6 - 7 2 : 0 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 -		Temp (C)	(NTU)	Site 2 Storm 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1\\ 1\\ 1\\ 2\\ 2\\ 1\\ 1\\ 1\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$		91.1	Site 2 Storm 1
3 / 4 / 5 / 6 / 7 2.0 8 / 9 / 10 / 11 / 12 / 13 / 14 3.0° 15 /	1 1 2.5 3		91.1	Site 2 Storm 1
4 5 6 7 2.0 8 9 10 11 12 13 14 3.6* 15	1 1 2.5 3		91.1	Site 2 Storm 1
5 / 6 / 7 2 '.0 8 / 9 / 10 / 11 / 12 / 13 / 14 3 '.0' 15 /	1 1 2.5 3		91.1	site 2 Storm 1
6 / 7 2 :0 8 / 9 / 10 / 11 / 12 / 13 / 14 3 :0 15 /	1 1 2.5 3		91.1	Site 2 Storm 1
7 2 :0 8 - 9 / 10 / 11 - 12 / 13 / 14 3 : 6* 15 /	1 1 2.5 3		91.1	site 2 Storm 1
8 - 9 / 10 / 11 - 12 - 13 / 14 3:0 15 /	2.5 3			site i Storm I
9 / 10 / 11 / 12 / 13 / 14 3/:6* 15 /	2.5]
10 11 12 13 14 35	3]
11 12 13 14 15	3			
12 13 14 15	4			1
13 / 14 3/:0* 15 /]
14 3.0° 15 /	4.5			1
15 🦯	3			Break @ 2:35
	1 0			1 11eur (0.00
16 /]
	2			
17 3:-7	9 1			Mix of 2-1 \$ 2-2 half dose
رد : ر 18			160	half dose
IG X				
Observations:				

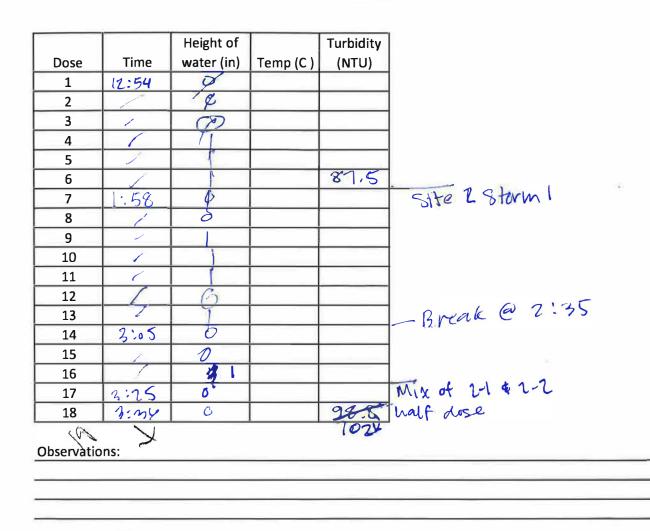
.

Appendix F: Sampling Speetvation Forms Column ID: 4 Date: 4-/11/18

Column Description Media Flushing v/ 2-2

Technician <u>Michelle</u>		Column ID: Dat	:e: 4/11/18
Column Description	12-2		_

		Height of		Turbidity	
Dose	Time	water (in)	Temp (C)	(NTU)	
1	12:56	ø			
2	-	1			
3	//	F]
4	1	1-5]
5	/	1.5			
6	6			75.4	
7	7:00				Site 2 Storm 1
8		1.5			1
9	//	2.5			
10	/	3			1
11	1	4			1
12	1	5			
13		5			Break @ 2:35
14	3:05	l			break C C V
15		1.5			
16	17	2.5			
17	3:27	2			Mix of 2-1 & 2-2 half dose
18	3:38	2 1.5		96.1	half dose
ja	ons: X				


. _____Technician_______Appendix F: Sampling: Sheetvation Forms Column ID: _____ Date: ____/1/2

Column Description with History w/22

		Height of		Turbidity	
Dose	Time	water (in)	Temp (C)	(NTU)	
1	12:55	Ø			
2					
3	1	l			
4	6				
5	/				
6	/			105	
7	1:59				Siter Staml
8	1				
9	/	2			
10	(2.5			
11		3			
12		4			
13	1	4			Break @ 2:35
14	3:05	1			
15	1				
16	4				
17	3:27				Mix of 2-1 \$ 2-2
18	3:37	0		143	Mix of 2-1 \$ 2-2 half dose
्न् Observatio	ns:				

Technician_Michelle_____ Appendix F: Sampling Street vation Forms Column ID:____ Date:_4/11/18

Column Desc	ription							
Media	flusting	2/	2-2	Site	2	Storm	2	
	J	/		-				

<u>Technician Jessice Andrey</u> ppendix F: Sampling Sheet Vation Forms Column ID: <u>CO1</u> Date: <u>4/18</u> <u>Column Description Media Mushing</u>

		Height of		Turbidity	
Dose	Time	water (in)	Temp (C)	(NTU)	
1	12:45				
2	THE .				
3		1			
4	[2			
5	1	2.2			
6	1:14	2.8		16,5	
7	1:33	1,9			
8	A A A A A A A A A A A A A A A A A A A	2.8			
9	/	. 3			
10		4			
11	7	4.4		21.6	1
12	2:31	T			
13					
14	an and a second	4			1
15	-	2			
16	and all the	2,4			
17	2	2.4			1
18	×	4		41.7	

Technician Jessica Andrey Appendix F: Sampling Sheet Column Forms Column ID: CA2 Date: 4/10/18

Column Description

		Height of		Turbidity	
Dose	Time	water (in)	Temp (C)	(NTU)	
1	12:45				1
2	li li	1			
3	1	1.5	I		19
4	1	2.2			
5		2.5			
6	1-15	3		15.4	
7	1:34	2)S	
8	1	2.2			
9	1	3			- An
10		4			REFE
11	1	4.3		28.3	PREAK
12	2:31	Æ			/
13	~	1.75			
14	-5	2.5			
15	~	3,4			
16	*	4.0			
17	-	4.9			/
18	3:114	4		-45.6	

Technician Jessica / Aubrey

Appendix F: Column Test Observation Forms Column ID: (0.3 Date: 4/1)/18

Column Description

ŵ.

					1
		Height of		Turbidity	
Dose	Time	water (in)	Temp (C)	(NTU)	
1	12:45				
2	1	1			
3	1	1			
4	1	1			
5	1	1.5			
6	1:15	1.6		34.4	
7	1:24	- 1			
8	1	1.6			
9	1	1.5			Note
10	1	1.8			BREAK
11	1	2.2		61.1	11
12	2:31]			
13	_	1.5		5	1
14	¥	2			/
15	-	3			/
16	(3.4			1.
17	-	s.y			
18	3.14	1.7		63.7	

Technician Jessi Ca / Audvey Appendix F: Column Test Observation Forms Column ID: CO4. Date: 4/10/18

Column Description

ï

		Height of		Turbidity	1
Dose	Time	water (in)	Temp (C)	(NTU)	
1	12:45				
2	17]
3		1			
4		2.2			
5	1	1,7			
6	1:16	2		33.1	
7	1:36	2			Sher
8		1,2			6R
9		2			APU.
10	1	2.5			
11		2.9		48.0	$V \mid$
12	2:32				
13	*	1			
14	ø.	1,3			
15		2			
16	Y	2.8			
17	-	2,8			1
18	3:14	l		67.2	

Technician Lessica Andreyppendix F: Sampling Sheet Column Forms Column ID: (25 Date: 4/1/18)

Column Description

	1	Height of		Turbidity	1
Dose	Time	water (in)	Temp (C)	(NTU)	
1	12:45				
2	1]
3	1	13]
4	1	2			
5	1	2.8			
6	1:10	3.3		32.4	1
7	1:36	2]
8	1	2.5			
9	1	3			BRETT
10	1	3.3			200
11	17	4.2		48.3	14
12	2:32	¢			
13	2	1.2			
14	-	1,9			
15	1	2.3			
16	-	2.5			
17		3			V
18	3.16	1		80,5	

Technician_)essice/Audswy Appendix F: Sampling Sheet Column ID: (1) Date: 4/1/18

Column Description

		Height of		Turbidity	1
Dose	Time	water (in)	Temp (C)	(NTU)	
1	17:45				
2					
3	[1.5			
4	1	1.75			
5	j	2			
6	1:17	2.75		29.3	1
7	1:37	١]
8	1	1.0			
9	1	2.1			240
10	1	3			Pit
11	1:53	3.6		76.5	-BREPIL
12	2:32				
13	2	1,75			
14	-	2			
15	6	2 3			
16	5	3.5			
17	_	4			/
18	-	1,8		102	

ž Technician Top

Sampling Sheet Appendix F: Column Test Observation Forms

Column Description

		Height of		Turbidity	Sample Kur
Dose	Time	water (in)	Temp (C)	(NTU)	
1	4.05				
2	9:10			1/	
3	9:50				
4	9:40		ài		
5	9:48				
6	9:51				
7	(0:3)				
8	10,31			1	
9	10.112				
10	101EL				
11	1 sk				
12	11:49				
13	11:53				
14	11:57				-> poulding
15	51.00		_		J
16	1203		ļ		
17	1.09				
18	1412		206		

Technician______

Appendix F: Column Test Observation Forms Column ID: _____ Date: ______

Column Description

r

		Height of		Turbidity	
Dose	Time	water (in)	Temp (C)	(NTU)	
1	1:0				
2	9:08				
3	0.21				
4	9:38				
5	a:16	-			
6	41.19	,54			
7	10'20	-			
8	10:311			1	
9	010			\checkmark	
10	(nºll	h			
11	11.12				
12	1142				
13	11:50				
14	11.55				
15	12:00				D Barga
16	12:59				
17	1997				
18	1 1:11	1,75			

Observations:

19.20C & PH=7.66

Technician

į.

Appendix F: Column Test Observation Forms Column ID: CO2 Date: 0///3/18

Column Description

	,		·		1
		Height of		Turbidity	
Dose	Time	water (in)	Temp (C)	(NTU)	
1	9:05) (Stend
2	9:09	1"		Stappe	B Staining, nor Furb Sample
3	9:27	1.25			
4	(i:38	2.			
5	9,46	2.75			
6	9:43	3.25"		-	7 removed & Screws - 3 Abu Sk.1.
7	10:29	1.1."			
8	10:35	175			
9	10:40	2.5		V	
10	1349	535			
11	11:30	0			
12	11:42				
13	11:50				
14	11:55				1
15	12:008				- Dentyng
16	1.00	a set			
17	1:15	1, 817			
18	1112	2.25	1		
bservatio	ons: 1 /en	claul	lie Kin.	Vour	lear effluent
	0.7		12 10.17	- y c	
		- Temp			
	the set	week.	10.		

*	
Technician	1001

Column Description

		Height of		Turbidity	1
Dose	Time	water (in)	Temp (C)	(NTU)	
1	9.04			30	
2	19:09				
3	91,28				
4	9,39	1"			
5	9:47	1.250			
6	9:49	1,75			
7	10:31				
8	10:35	· · ·		1	
9	10:41	1.75		rd.	
10	10:50	2.1			
11	11:3				
12	11:43				
13	11:51				
14	11:55				
15	12:010				> pondy
16	1119	1	·		
17	1:04	1.35"			
18	1B	1.751			

Observations:

Tamp: 19.20 PH= 7.65

Technician______Appendix F: Column Test Observation Forms Column ID: COL Date: 1// 2/18

Column Description

Dose	Time	Height of water (in)	Temp (C)	Turbidity (NTU)	
1	9.041	water (iii)		(İ
2	9.09			e	İ
3	9:28				ĺ
4	9:39	0.75			
5	9448	- ~			
6	9:49	1,5			
7	10:31				
8	10.56				
9	10:41	1		V	
10	10:53	20			
11	1:21				
12	11:43				
13	11:51				
14	11:56				
15	12:020				
16	(40)				
17	1:06	1 cm			
18	1114	1 24,70	1		

4

Technician ______ Appendix F: Column Test Observation Forms Column ID: 05 Date: 0113/18

Column Description

		Height of		Turbidity	
Dose	Time	water (in)	Temp (C)	(NTU)	
1	9:04			1	
2	G:10			V	
3	9'28				
4	9:40				
5	91.4.8	4"			2 2 2 2 2 2
6	9:50	1.75			Vernore 3 Stews
7	10:31				
8	10:36	11			
9	10:018	$ 1\rangle \zeta$			
10	01.5	1.75			
11	11:35				
12	11:44				
13	11.52				
14	11:56]
15	12:020				-> Pondlug
16	1.02	1.00]
17	1:07	11]
18	1:15	2"]
bservatio	ons: pH=	7.77	Teny)≈ (9,5°C	

Technician Joe.

Appendix F: Column Test Observation Forms Column ID: OC Date: 4/13/18

Column Description

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	9721			1
2	9,10	_		1/
3	0:29			
4	9:40	.75"		
5	6.48	1.5"		
6	9:50	271		
7	10.32			
8	10:30	11'		
9	10.42	1.5		V
10	10:56	1.511		
11	11:36			
12	11:44			
13	1:53			
14	11:57			
15	12-030			
16	1:03			
17	1:08	11		
18	1.1	151		

Observations: p.K. 7.94 Teng: 19.5°C

۲

Appendix F: Column Test Observation Forms Column ID: COL Date: 4/17/8

Column Description

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	10:14			
2	1.0'14	0		
3	10:20	1.50		10.5
4	ro: sc			¥.
5	10:45			
6	11:27	0		
7	11:32	0.50		
8	135	1:25		1
9	11:00	1.75	\checkmark	V
10	12:18			
11	12:25	1.75		
12	12:35	1.25		
13	12:39	2.25		
14	12:47	274		2.4
15	42:50	2,40		
16	12:53	425		
17	1:02	4.00		
18	1:04	4,50		

_

12

Sample Run 3

10

Technician Seel

Appendix F: Countries Sheet Ap

Column Description

ł

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	10:14	0.25		
2	10:14	0.75		
3	10.20	1.5		
4	10:36	175		
5	10:45	2.50		227
6	11:27	0.75		
7	11:32	1.5		
8	11:35	2.25		30
9	11:91	2.75		\checkmark
10	12:18	1.50		
11	12:25	2.00		
12	12:36	2.50		
13	12:39	3.25		
14	12:47	3:75		
15	12:50	4.00		
16	12:54	5.25		
17	1:02	5.25		
18	1:06	575		

21

L

Technician Del

Appendix F: Committing Street vation Forms Column ID: 03 Date: 4/17/18

Column Description

÷

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	10:14			
2	10.17			
3	10:20	1.25		145
4	10:42	V		
5	10:45			
6	11:27			
7	11:33	0.50		
8	11:35	1.00		/
9	1:42	1.25		/
10	12:18			
11	12:25	0,25		
12	12:36	0.50		
13	12:40	1.50		
14	12:47	2.50		
15	12:50	3.50		
16	12:54	4.00		
17	1:03	3.75		
18	1:06	4.50		

27

57

Technician Sel

i

Appendix F: Column Test Observation Forms Column IDCO4 Date: 4/17-18

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	10:15			
2	10:17	0.25		
3	10:20	0.50		R.02
4	10:42	0		
5	10:46	0,50		
6	11:28	0.25		
7	11:33	0.75		
8	11.36	175		/
9	17.44	Jino	\vee	
10	12:19	0.25		
11	12:26	0.50		
12	12:37	0.75		
13	12:40	1.75		
14	12:48	2.25		
15	12:50	3,00		
16	12:54	3.75		
17	1:03	4.00		
18	1:07	4.75		

14

36

Technician Del

Appendix F: CSampling Sheetation Forms Column ID: OS Date: 4113/8

Column Description

÷

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	10:15			
2	10:18	0.5		
3	17:21	1		627
4	10:42			
5	10.41	0.50		
6	1:28			
7	11:33	0.25		
8	11:36	0.75		1
9	11:44	0.75		\checkmark
10	12:19	0.25		
11	12:26	0.50		
12	12:37	1.00		
13	12:40	1,75		
14	12:48	2.25		
15	12:50	3.00		
16	12:55	4.00		
17	1303	4.00		
18	1:07	4.50		

22

2.2

Technician <u>Soe</u>

Appendix F: Sampling Sheet vation Forms Column ID: O C Date: 4/17/18

Column Description

÷,

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	10:15			
2	10.18	0.25		
3	10:21	0.25		11,7
4	10:43	-		0
5	10-46	0.50		
6	1:29	0.50		
7	11:34	1.00		
8	11:37	1.75		
9	11:45	2.00		\vee
10	12:19	0.50		
11	12:27	0.50		
12	12:38	0,75		
13	12:40	1.75		
14	12:48	2.25		
15	12:52	3.00		
16	12:55	4.00		
17	1:04	4.00		
18	1:07	4.75		

26

61

Technician Del

Appendix F: Southing Sheet Vation Forms Column ID: INF Date: 9/13/18

Nma

Column Description

		Height of		Turbidity
Dose	Time	water (in)	Temp (C)	(NTU)
1	10:15			
2	10:18			
3	10:22			5.51
4	10:43			
5	10:46			
6	h:28			
7	11:24			
8	11:37			
9	11:01		V	
10	12:20			
11	12:38			
12	12:40			
13	12:48			
14	12:52			
15	12:55			
16	1:04			
17	1:08			× .
18	1			

_

Observations: Missed 12:27 time record Shift Dose 11 through Dose 17 down ingert 12:27 for Dose 11 ono cell

٢

Technician) Oel Appendix F: Sampling Sheetvation Forms Column ID: TW2 Date: 4/19/18

Column Description

		Height of		Turbidity]
Dose	Time	water (in)	Temp (C)	(NTU)	
1	9:4)]
2	9:421]
3	1.46]
4	9:55]
5	G:46		1	~	
6	10:19				1
7	10:17]
8	0:19]
9	10:22				1
10	10:24				
11	10.06		V	V	Guybiner
12	11:04				
13	11:05]
14	11:06]
15	11:07]
16][.08]
17	1110]
18	11:16				

Jillution Kun

Technician Joel

Appendix F: Compline Sheet ation Forms Column ID: 00 Date: 4/19/13

Column Description

		Height of		Turbidity	1
Dose	Time	water (in)	Temp (C)	(NTU)	
1	9:41				1
2	9:03,	0.5			
3	9:41	0.75			
4	9:54	E O		1	> Start CATURA Hallection
5	9:56	1.5	V]
6	10:15	.5			
7	10:16	1.5			
8	10:18	225]
9	10:22	\$ 0B			
10	0:23	9:			
11	10'26	5	1/	V	Grab Merc
12	11:04	1			
13	11:05	2]
14	11:06	2.5			
15	11:07	3.75			
16	[]: og	4,85]
17	11.10	5,5			
18	11:16	5,8			

Observations:

٠

 e^{-iT}

Technician JOLI Appendix F: Compling Sheet Observation Forms Column ID: (04 Date: 4/19/19

Column Description

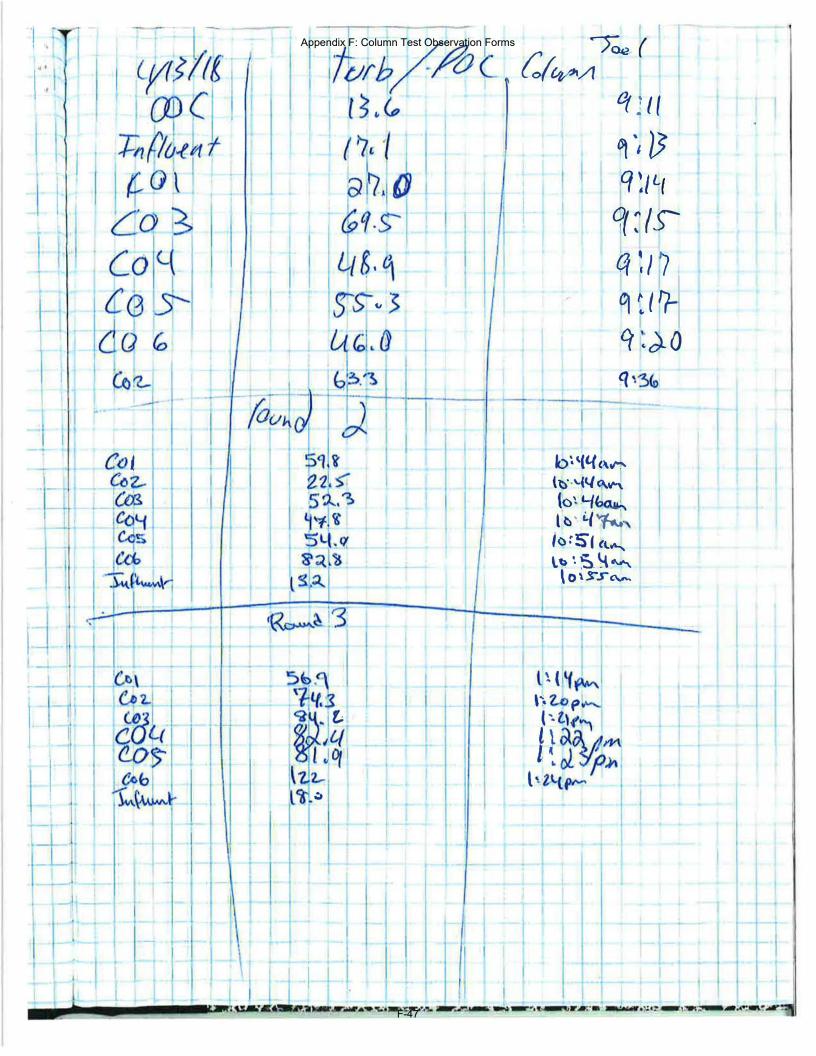
		Height of		Turbidity]
Dose	Time	water (in)	Temp (C)	(NTU)	
1	9:40				
2	9:42	1			11-
3	9:45	1.75			Jost Fred ()
4	4:54	20			Sort -> file Efflort Coll
5	9:56	5.75	V	V	10
6	10:14	1'	121		
7	10:15	2	¢		
8	10:18	2.75]
9	10:21	3.5]
10	10123	4,25			
11	10:25	5			Grap Murch
12	11:04				
13	11:05	2]
14	11:06	2.75]
15	[[:07	3.75]
16	861]]	4.75]
17	11:10	5,5			
18	11:16	5.9]

. 4/19/18	Appendix F. Column Ter	et Observation Forms		
SampleID) TUIB	Time	plt	Teimp
E QUC	15.6	10.02	6.99	18.7
604	6.46	10:03	7.09	19.3
(06	7.75	10:06	6.96	18.9
Enfluent	d.02	10:10	7.63	19.1
Cou	9.75	1029	6,89	19.4
C06	(3.8	1034	7.08	19.2
Fnfluent	1,93	1036	71.77	19.3
Cob	21.8	11:18	6.55	19.1°C
Соч	21.7	(1:22	6.93	19.2°C
Tulkrent	2.08	11:24	7.68	18.802
	Nanisti Stad - S. M. Str. St. 4		NAME AND ADDRESS OF TAXABLE	

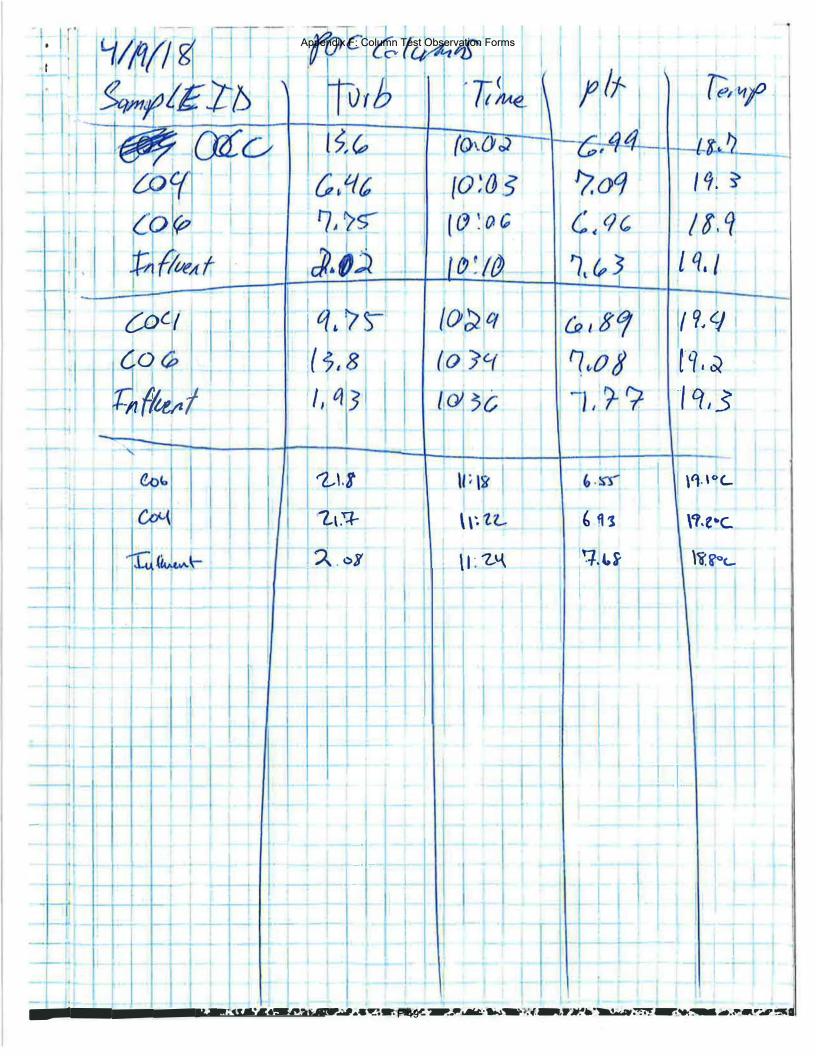
Technician <u>Soe</u>	<u>G.</u>	Appendix F: Column Test Observation Forms
Column Description	TW2	influent Retest

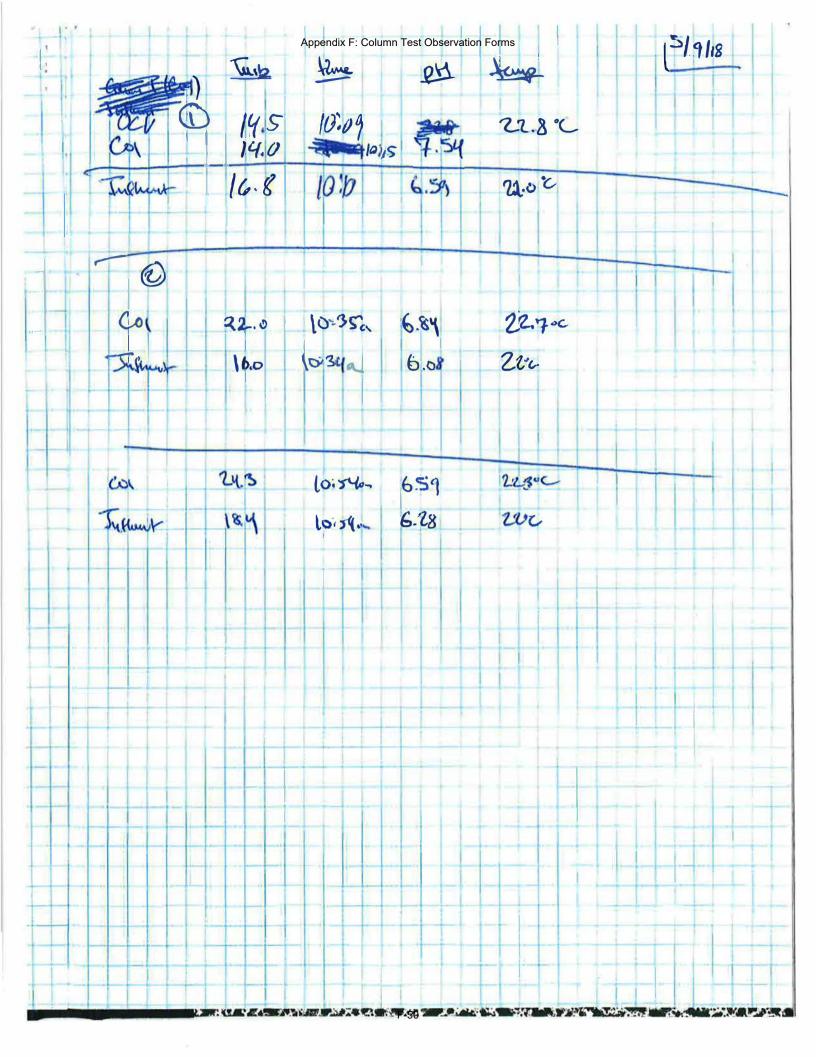
		Height of		Turbidity	2-1 used for majority of influe, 22 Mixed in ten last part
Dose	Time	water (in)	Temp (C)	(NTU)	Del un Del a d'al acces
1	10:02a				~ 1 Used for Majority gt offin
2	10:030				22 Mixedia for lasta
3	10:04 m			·	Tuch
4	10:050				
5	10:172				
6	10:180				
7	10,199				
8	10100			-	D Mercury Grat
9	10:29a				/
10	10:300				
11	10:312				
12	10.32a) Graptaken
13	10:419				
14	10:420				
15	10:432				
16	10:450				
17	10:460				
18	10:50				>6 alphatian

Observations:


ŝ

Technician Jael C. Appendix F: Column Test Observation Forms Column ID: <u>CO1</u> Date: <u>S19/18</u>


Column Description


	1	Height of	1	Turbidity	
Dose	Time	water (in)	Temp (C)	(NTU)	
1	10:020				
2	10:03a				
3	10:040				
4	10:050			V	->grabtaken
5	10:17a				
6	10:180				
7	10:190				
8	10:190	3"			A Werching dup
9	10:29a				
10	10:290				
11	10:31a	3.5			
12	10:320				-> Grabhakun
13	10:412				
14	10:420				
15	10:432				
16	10:450				
17	Diyba				
18	10:500	611			

Observations:

4/17/18	Appendix F: Col	umprest Observation Forms	+++++.	
Sample ID COC	Turb 13.6	1 Time 9:47	PH	temp
Tures	5.51	10:23am	6.10	192
666	11.7	10:2Yan	6.36	19.200
C03	145	10:24 cm	7.01	19.100
	8.02	10:28am	6.83	19.3%
Cos	6.27	loi 3acm	7.05	18.7 .
001	10,5	10:36cm	6.95	19.2.00
602 (DOF 5)	2.27	10. Stan	7.26	18.7%
Round 2 Nob	7.95	() 11:46an	6.04	20.1%
CO 1	13-0	11:56an	6.88	19.40
(02	4.05	12:000.0	7.23	19:30
C03	27.6	11:58am	6.78	19.1 °C
C04	14.9	12:01pm	7.16	19.2
05	2248	12:11pm	7.2	19.100
2-12-06	26.1	12:158	7.03	19.4.2
Round TW6	6.60	1: a Tem	6.40	20.24
Col	20.0	1:42,pm	413	12.20
Co2	21.5	1:38pm	7.30	19.32
603	57.7	132	Ado	19.600
	36.4	1:35	7.19	19.52
C05	22.2	1:28	6.90	19.500
(06	61.4	lizspm	6.90	19.4°C

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
CO2-EF-04102018-01	PCB 008	pg/L	76.2	18.3		NBC,VIL,VJ
CO2-EF-04102018-01	PCB 018/30	pg/L	69.5	28.6		NBC
CO2-EF-04102018-01	PCB 020/28	pg/L	90	42.2		JA,NBC
CO2-EF-04102018-01	PCB 021/33	pg/L	69.1	44.7		NBC
CO2-EF-04102018-01	PCB 031	pg/L	87.8	40.1		NBC
CO2-EF-04102018-01	PCB 044/47/65	pg/L	206	38.5		NBC,VIU
CO2-EF-04102018-01	PCB 049/69	pg/L	167	35.9		NBC,VIU
CO2-EF-04102018-01	PCB 052	pg/L	370	36.1		NBC,VIL,VIU
CO2-EF-04102018-01	PCB 056	pg/L		35.5		NBC
CO2-EF-04102018-01	PCB 060	pg/L		34.6		NBC
CO2-EF-04102018-01	PCB 066	pg/L	67.3	30.5		NBC,VIU
CO2-EF-04102018-01	PCB 070/61/74/76	pg/L	131	32.9	193	J,NBC,VIL,VIU,VJ
CO2-EF-04102018-01	PCB 083/99	pg/L	519	23.3	97	NBC,VIL,VJ,VIU
CO2-EF-04102018-01	PCB 086/87/97/109/119/125	pg/L	209	20.3	193	NBC,VIL,VIU
CO2-EF-04102018-01	PCB 090/101/113	pg/L	424	20.3	193	NBC,VIL,VIU
CO2-EF-04102018-01	PCB 093/95/100	pg/L	362	23.2	193	NBC,VIL,VIU
CO2-EF-04102018-01	PCB 105	pg/L	63.6	27.7	28	NBC,VIU
CO2-EF-04102018-01	PCB 110/115	pg/L	162	18.4	97	NBC
CO2-EF-04102018-01	PCB 118	pg/L	191	25.8	26	NBC,VIL
CO2-EF-04102018-01	PCB 128/166	pg/L	113	14.4	97	JA,NBC,VIL,VJ,VIU
CO2-EF-04102018-01	PCB 129/138/163	pg/L	1440	19.6	193	NBC,VIL,VJ,VIU
CO2-EF-04102018-01	PCB 132	pg/L	116	17.8	48	NBC,VIL,VIU
CO2-EF-04102018-01	PCB 135/151/154	pg/L	1050	10.6	97	VRIU,NBC,VIL,VJ
CO2-EF-04102018-01	PCB 141	pg/L	116	15.1	48	VRIU,NBC,VIL,VJ
CO2-EF-04102018-01	PCB 147/149	pg/L	670	15.1	97	NBC,VIL,VJ,VIU
CO2-EF-04102018-01	PCB 153/168	pg/L	5360	12.9	97	VIP,NBC,VIL,VJ,VIU
CO2-EF-04102018-01	PCB 156/157	pg/L	62	18	39	NBC,VIU
CO2-EF-04102018-01	PCB 158	pg/L	78.2	11.2	48	VRIU,NBC,VIL,VJ
CO2-EF-04102018-01	PCB 170	pg/L	525	29.1	48	NBC,VIL,VJ,VIU
CO2-EF-04102018-01	PCB 174	pg/L	163	23.8	48	NBC,VIL,VJ,VIU
CO2-EF-04102018-01	PCB 177	pg/L	262	25.6	48	NBC,VIL,VJ,VIU
CO2-EF-04102018-01	PCB 180/193	pg/L	1960	22.8	97	NBC,VIL,VJ,VIU
CO2-EF-04102018-01	PCB 183/185	pg/L	626	24.3	97	NBC,VIL,VJ,VIU
CO2-EF-04102018-01	PCB 187	pg/L	2270	14.1	48	NBC,VIL,VJ,VIU
CO2-EF-04102018-01	PCB 194	pg/L	734	28.4	48	NBC,VIL,VJ
CO2-EF-04102018-01	PCB 195	pg/L	172	25.9	48	NBC,VIL,VJ,VIU
CO2-EF-04102018-01	PCB 201	pg/L	79.1	14.9	48	VRIU,NBC,VIL,VJ
CO2-EF-04102018-01	PCB 203	pg/L	317	22.3	48	NBC,VIL,VJ,VIU
CO2-EF-04102018-01	Total DiCB	pg/L	76.2	18.3	19	NBC,VIL,VJ
CO2-EF-04102018-01	Total HeptaCB	pg/L	5170	14.1		NBC,VIL,VJ
CO2-EF-04102018-01	Total HexaCB	pg/L	9000	10.6		VIP,NBC,VIL,VJ
CO2-EF-04102018-01	Total MonoCB	pg/L		19.3		NBC
CO2-EF-04102018-01	Total NonaCB	pg/L		19.3		NBC
CO2-EF-04102018-01	Total OctaCB	pg/L	1300			NBC,VIL,VJ
CO2-EF-04102018-01	Total PCBs	pg/L	19400	10.6		VIP,NBC,VIL,VJ
CO2-EF-04102018-01	Total PentaCB	pg/L	1930			NBC,VIL

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
CO2-EF-04102018-01	Total TetraCB	pg/L	941	30.5	193	NBC,VIL
CO2-EF-04102018-01	Total TriCB	pg/L	316	28.6		NBC,VIL
CO3-EF-04102018-01	PCB 008	pg/L	76.3	2.87		NBC,VIL,VJ
CO3-EF-04102018-01	PCB 018/30	pg/L	62.3	6.37		NBC
CO3-EF-04102018-01	PCB 020/28	pg/L	114	7.02		NBC
CO3-EF-04102018-01	PCB 021/33	pg/L	56.1	7		NBC
CO3-EF-04102018-01	PCB 031	pg/L	91.5			NBC
CO3-EF-04102018-01	PCB 044/47/65	pg/L	78.7	6.23		J,NBC,VIU
CO3-EF-04102018-01	PCB 049/69	pg/L	41.8	5.86		J,NBC,VIU
CO3-EF-04102018-01	PCB 052	pg/L	107	6.17		NBC,VIL,VIU
CO3-EF-04102018-01	PCB 056	pg/L	23.8	7.96		J,JA,NBC
CO3-EF-04102018-01	PCB 060	pg/L	16.8	7.8	49	J,NBC
CO3-EF-04102018-01	PCB 066	pg/L	47.5			J,NBC,VIU
CO3-EF-04102018-01	PCB 070/61/74/76	pg/L	108	5.19	197	J,NBC,VIL,VIU,VJ
CO3-EF-04102018-01	PCB 083/99	pg/L	50.1	4.37		J,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	PCB 086/87/97/109/119/125	pg/L	63.1	3.83		J,NBC,VIL,VIU
CO3-EF-04102018-01	PCB 090/101/113	pg/L	91.5	3.78		J,NBC,VIL,VIU
CO3-EF-04102018-01	PCB 093/95/100	pg/L	66.3	3		J,NBC,VIL,VIU
CO3-EF-04102018-01	PCB 105	pg/L	37.2	3.04		NBC,VIU
CO3-EF-04102018-01	PCB 110/115	pg/L	102	3.49	98	NBC
CO3-EF-04102018-01	PCB 118	pg/L	68.4	2.83		NBC,VIL
CO3-EF-04102018-01	PCB 128/166	pg/L	14.6	2.84	98	J,JA,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	PCB 129/138/163	pg/L	133	3.7	197	J,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	PCB 132	pg/L	29.6	3.38	49	J,NBC,VIL,VIU
CO3-EF-04102018-01	PCB 135/151/154	pg/L	28.9	2.59	98	VRIU,J,NBC,VIL,VJ
CO3-EF-04102018-01	PCB 141	pg/L	18.5	2.85	49	VRIU,J,NBC,VIL,VJ
CO3-EF-04102018-01	PCB 147/149	pg/L	60.1	2.8	98	J,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	PCB 153/168	pg/L	92.8	2.44	98	VIP,J,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	PCB 156/157	pg/L	11.1	8.04	39	J,JA,NBC,VIU
CO3-EF-04102018-01	PCB 158	pg/L	10.3	2.14	49	VRIU,J,NBC,VIL,VJ
CO3-EF-04102018-01	PCB 170	pg/L	28.8	5.59	49	J,JA,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	PCB 174	pg/L	25.8	4.2	49	J,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	PCB 177	pg/L	16.3	4.54	49	J,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	PCB 180/193	pg/L	81	4.19	98	J,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	PCB 183/185	pg/L	21.7	4.11	98	J,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	PCB 187	pg/L	45.1	3.29		J,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	PCB 194	pg/L	36	4.35	49	J,NBC,VIL,VJ
CO3-EF-04102018-01	PCB 195	pg/L	11.9	3.71	49	J,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	PCB 201	pg/L	3.28	1.86	49	VRIU,J,JA,NBC,VIL,VJ
CO3-EF-04102018-01	PCB 203	pg/L	28.2	3.07	49	J,NBC,VIL,VJ,VIU
CO3-EF-04102018-01	Total DiCB	pg/L	76.3	2.87	20	NBC,VIL,VJ
CO3-EF-04102018-01	Total HeptaCB	pg/L	197	3.29	20	NBC,VIL,VJ
CO3-EF-04102018-01	Total HexaCB	pg/L	399	2.14	20	VIP,NBC,VIL,VJ
CO3-EF-04102018-01	Total MonoCB	pg/L		19.7	20	NBC
CO3-EF-04102018-01	Total NonaCB	pg/L		19.7	20	NBC
CO3-EF-04102018-01	Total OctaCB	pg/L	79.4	1.86	20	NBC,VIL,VJ

		Unit				
Sample ID	Analyte Name		Result		RL	QA Code
CO3-EF-04102018-01	Total PCBs	pg/L	2000			VIP,NBC,VIL,VJ
CO3-EF-04102018-01	Total PentaCB	pg/L	479	2.83		NBC,VIL
CO3-EF-04102018-01	Total TetraCB	pg/L	424	4.83		NBC,VIL
CO3-EF-04102018-01	Total TriCB	pg/L	324	6.37		NBC,VIL
CO4-EF-04102018-01	PCB 008	pg/L	104	4.41		NBC,VIL,VJ
CO4-EF-04102018-01	PCB 018/30	pg/L	105	8.46		NBC
CO4-EF-04102018-01	PCB 020/28	pg/L	162	10.8		NBC
CO4-EF-04102018-01	PCB 021/33	pg/L	98.2	10.8		NBC
CO4-EF-04102018-01	PCB 031	pg/L	130	9.97		NBC
CO4-EF-04102018-01	PCB 044/47/65	pg/L	127	6.12		NBC,VIU
CO4-EF-04102018-01	PCB 049/69	pg/L	75.6	5.75		J,NBC,VIU
CO4-EF-04102018-01	PCB 052	pg/L	161	6.05		NBC,VIL,VIU
CO4-EF-04102018-01	PCB 056	pg/L	44.7	8.87		J,JA,NBC
CO4-EF-04102018-01	PCB 060	pg/L	29.9	8.69		J,NBC
CO4-EF-04102018-01	PCB 066	pg/L	80.2	4.74		NBC,VIU
CO4-EF-04102018-01	PCB 070/61/74/76	pg/L	185	5.09		J,NBC,VIL,VIU,VJ
CO4-EF-04102018-01	PCB 083/99	pg/L	84.1	5.33		J,NBC,VIL,VJ,VIU
CO4-EF-04102018-01	PCB 086/87/97/109/119/125	pg/L	130	4.67		J,NBC,VIL,VIU
CO4-EF-04102018-01	PCB 090/101/113	pg/L	146	4.61		J,NBC,VIL,VIU
CO4-EF-04102018-01	PCB 093/95/100	pg/L	112	5.15		J,NBC,VIL,VIU
CO4-EF-04102018-01	PCB 105	pg/L	64.5	8.66		NBC,VIU
CO4-EF-04102018-01	PCB 110/115	pg/L	186	4.26		NBC
CO4-EF-04102018-01	PCB 118	pg/L	114	8.16		NBC,VIL
CO4-EF-04102018-01	PCB 128/166	pg/L	34.1	4.91		J,NBC,VIL,VJ,VIU
CO4-EF-04102018-01	PCB 129/138/163	pg/L	226	6.41		NBC,VIL,VJ,VIU
CO4-EF-04102018-01	PCB 132	pg/L	54.8	5.85		NBC,VIL,VIU
CO4-EF-04102018-01	PCB 135/151/154	pg/L	50.3	3.6		VRIU,J,NBC,VIL,VJ
CO4-EF-04102018-01	PCB 141	pg/L	31.8			VRIU,J,NBC,VIL,VJ
CO4-EF-04102018-01	PCB 147/149	pg/L	104	4.85		NBC,VIL,VJ,VIU
CO4-EF-04102018-01	PCB 153/168	pg/L	138	4.22	96	VIP,NBC,VIL,VJ,VIU
CO4-EF-04102018-01	PCB 156/157	pg/L	28.1	9.81	38	J,NBC,VIU
CO4-EF-04102018-01	PCB 158	pg/L	20.2	3.7		VRIU,J,NBC,VIL,VJ
CO4-EF-04102018-01	PCB 170	pg/L	45			J,NBC,VIL,VJ,VIU
CO4-EF-04102018-01	PCB 174	pg/L	45.6			J,NBC,VIL,VJ,VIU
CO4-EF-04102018-01	PCB 177	pg/L	24.3	6.65		J,NBC,VIL,VJ,VIU
CO4-EF-04102018-01	PCB 180/193	pg/L	118			NBC,VIL,VJ,VIU
CO4-EF-04102018-01	PCB 183/185	pg/L	38.6			J,NBC,VIL,VJ,VIU
CO4-EF-04102018-01	PCB 187	pg/L	65.4			NBC,VIL,VJ,VIU
CO4-EF-04102018-01	PCB 194	pg/L	49.5			NBC,VIL,VJ
CO4-EF-04102018-01	PCB 195	pg/L	16.3			J,JA,NBC,VIL,VJ,VIU
CO4-EF-04102018-01	PCB 201	pg/L	9.17	2.59		VRIU,J,NBC,VIL,VJ
CO4-EF-04102018-01	PCB 203	pg/L	34.6	4.26		J,NBC,VIL,VJ,VIU
CO4-EF-04102018-01	Total DiCB	pg/L	104	4.41	19	NBC,VIL,VJ
CO4-EF-04102018-01	Total HeptaCB	pg/L	298	3.19	19	NBC,VIL,VJ
CO4-EF-04102018-01	Total HexaCB	pg/L	687	3.6	19	VIP,NBC,VIL,VJ
CO4-EF-04102018-01	Total MonoCB	pg/L		19.2	19	NBC

Comple ID		Unit	Decult	MDI	DI	OA Cada
Sample ID CO4-EF-04102018-01	Analyte Name Total NonaCB	Name pg/L	Result	MDL 19.2	RL	QA Code NBC
CO4-EF-04102018-01	Total OctaCB	pg/L	110	2.59		NBC,VIL,VJ
CO4-EF-04102018-01	Total PCBs	pg/L	3270	2.59		VIP,NBC,VIL,VJ
CO4-EF-04102018-01	Total PentaCB	pg/L	837	4.26		NBC,VIL
CO4-EF-04102018-01	Total TetraCB	pg/L	704	4.74		NBC,VIL
CO4-EF-04102018-01	Total TriCB	pg/L	496	8.46		NBC,VIL
CO5-EF-04102018-01	PCB 008	pg/L	135	48		NBC,VIL,VJ
CO5-EF-04102018-01	PCB 018/30	pg/L	117	97.6		JA,NBC
CO5-EF-04102018-01	PCB 020/28	pg/L	206	116		NBC
CO5-EF-04102018-01	PCB 021/33	pg/L	200	116		NBC
CO5-EF-04102018-01	PCB 031	pg/L	149	107		JA,NBC
CO5-EF-04102018-01	PCB 044/47/65	pg/L	137	80.3		NBC,VIU
CO5-EF-04102018-01	PCB 049/69	pg/L	129	75.4		NBC,VIU
CO5-EF-04102018-01	PCB 052	pg/L	306	79.4		NBC,VIL,VIU
CO5-EF-04102018-01	PCB 056	pg/L	500	89.9		NBC
CO5-EF-04102018-01	PCB 060	pg/L		88		NBC
CO5-EF-04102018-01	PCB 066	pg/L		62.2		NBC,VIU
CO5-EF-04102018-01	PCB 070/61/74/76	pg/L	139	66.8		J,NBC,VIL,VIU,VJ
CO5-EF-04102018-01	PCB 083/99	pg/L	100	70.6		NBC,VIL,VJ,VIU
CO5-EF-04102018-01	PCB 086/87/97/109/119/125	pg/L		61.8		NBC,VIL,VIU
CO5-EF-04102018-01	PCB 090/101/113	pg/L		61		NBC,VIL,VIU
CO5-EF-04102018-01	PCB 093/95/100	pg/L		87.1		NBC,VIL,VIU
CO5-EF-04102018-01	PCB 105	pg/L		57.5		NBC,VIU
CO5-EF-04102018-01	PCB 110/115	pg/L	121	56.4		NBC
CO5-EF-04102018-01	PCB 118	pg/L	78.3	53.8		NBC,VIL
CO5-EF-04102018-01	PCB 128/166	pg/L		44		NBC,VIL,VJ,VIU
CO5-EF-04102018-01	PCB 129/138/163	pg/L	182	57.4		J,NBC,VIL,VJ,VIU
CO5-EF-04102018-01	PCB 132	pg/L		52.4		NBC,VIL,VIU
CO5-EF-04102018-01	PCB 135/151/154	pg/L		48.9		VRIU,NBC,VIL,VJ
CO5-EF-04102018-01	PCB 141	pg/L		44.2		VRIU,NBC,VIL,VJ
CO5-EF-04102018-01	PCB 147/149	pg/L	76.7	43.4		J,NBC,VIL,VJ,VIU
CO5-EF-04102018-01	PCB 153/168	pg/L	219	37.7		VIP,NBC,VIL,VJ,VIU
CO5-EF-04102018-01	PCB 156/157	pg/L		78.7		NBC,VIU
CO5-EF-04102018-01	PCB 158	pg/L		33.1		VRIU,NBC,VIL,VJ
CO5-EF-04102018-01	PCB 170	pg/L		129		NBC,VIL,VJ,VIU
CO5-EF-04102018-01	PCB 174	pg/L		96.7		NBC,VIL,VJ,VIU
CO5-EF-04102018-01	PCB 177	pg/L		105		NBC,VIL,VJ,VIU
CO5-EF-04102018-01	PCB 180/193	pg/L	103	96.4		NBC,VIL,VJ,VIU
CO5-EF-04102018-01	PCB 183/185	pg/L		94.5		NBC,VIL,VJ,VIU
CO5-EF-04102018-01	PCB 187	pg/L	61.8	46		NBC,VIL,VJ,VIU
CO5-EF-04102018-01	PCB 194	pg/L		106		NBC,VIL,VJ
CO5-EF-04102018-01	PCB 195	pg/L		89.9		NBC,VIL,VJ,VIU
CO5-EF-04102018-01	PCB 201	pg/L		45.1		VRIU,NBC,VIL,VJ
CO5-EF-04102018-01	PCB 203	pg/L		74.4		NBC,VIL,VJ,VIU
CO5-EF-04102018-01	Total DiCB	pg/L	135	48		NBC,VIL,VJ
CO5-EF-04102018-01	Total HeptaCB	pg/L	165	46		NBC,VIL,VJ

Commits ID	Amelute Name	Unit	Desult	MDI	ы	OA Cada
Sample ID CO5-EF-04102018-01	Analyte Name Total HexaCB	Name pg/L	Result 478	MDL 33.1	RL	QA Code VIP,NBC,VIL,VJ
CO5-EF-04102018-01	Total MonoCB	pg/L	470	19.1		NBC
CO5-EF-04102018-01	Total NonaCB	pg/L		19.1		NBC
CO5-EF-04102018-01	Total OctaCB	pg/L		45.1		NBC,VIL,VJ
CO5-EF-04102018-01	Total PCBs	pg/L	2160	33.1		VIP,NBC,VIL,VJ
CO5-EF-04102018-01	Total PentaCB	pg/L	199	53.8		NBC,VIL
CO5-EF-04102018-01	Total TetraCB	pg/L	711	62.2		NBC,VIL
CO5-EF-04102018-01	Total TriCB	pg/L	473	97.6		NBC,VIL
CO6-EF-04102018-01	PCB 008	pg/L	99.7	1.26		NBC,VIL,VJ
CO6-EF-04102018-01	PCB 018/30	pg/L	125	5.01		NBC
CO6-EF-04102018-01	PCB 020/28	pg/L	164	7.93		NBC
CO6-EF-04102018-01	PCB 021/33	pg/L	86.3	7.9		NBC
CO6-EF-04102018-01	PCB 031	pg/L	130	7.33		NBC
CO6-EF-04102018-01	PCB 044/47/65	pg/L	133	3.68		NBC,VIU
CO6-EF-04102018-01	PCB 049/69	pg/L	70.8	3.46		J,NBC,VIU
CO6-EF-04102018-01	PCB 052	pg/L	169	3.64		NBC,VIL,VIU
CO6-EF-04102018-01	PCB 056	pg/L	40.8	7.08		J,NBC
CO6-EF-04102018-01	PCB 060	pg/L	24.5	6.93		J,NBC
CO6-EF-04102018-01	PCB 066	pg/L	74.2	2.85		NBC,VIU
CO6-EF-04102018-01	PCB 070/61/74/76	pg/L	167	3.07		J,NBC,VIL,VIU,VJ
CO6-EF-04102018-01	PCB 083/99	pg/L	67.3	2.9		J,NBC,VIL,VJ,VIU
CO6-EF-04102018-01	PCB 086/87/97/109/119/125	pg/L	102	2.54		J,NBC,VIL,VIU
CO6-EF-04102018-01	PCB 090/101/113	pg/L	135	2.51		J,NBC,VIL,VIU
CO6-EF-04102018-01	PCB 093/95/100	pg/L	113	2.35	192	J,NBC,VIL,VIU
CO6-EF-04102018-01	PCB 105	pg/L	49.3	4.61	19	NBC,VIU
CO6-EF-04102018-01	PCB 110/115	pg/L	159	2.32	96	NBC
CO6-EF-04102018-01	PCB 118	pg/L	106	4.17	19	NBC,VIL
CO6-EF-04102018-01	PCB 128/166	pg/L	23.3	2.94	96	J,NBC,VIL,VJ,VIU
CO6-EF-04102018-01	PCB 129/138/163	pg/L	187	3.84	192	J,NBC,VIL,VJ,VIU
CO6-EF-04102018-01	PCB 132	pg/L	45.1	3.5	48	J,NBC,VIL,VIU
CO6-EF-04102018-01	PCB 135/151/154	pg/L	42	2.57		VRIU,J,NBC,VIL,VJ
CO6-EF-04102018-01	PCB 141	pg/L	24.2	2.96	48	VRIU,J,NBC,VIL,VJ
CO6-EF-04102018-01	PCB 147/149	pg/L	96.5	2.91	96	NBC,VIL,VJ,VIU
CO6-EF-04102018-01	PCB 153/168	pg/L	115	2.52	96	VIP,NBC,VIL,VJ,VIU
CO6-EF-04102018-01	PCB 156/157	pg/L	16.9	5.34	39	J,NBC,VIU
CO6-EF-04102018-01	PCB 158	pg/L	15.3	2.22	48	VRIU,J,NBC,VIL,VJ
CO6-EF-04102018-01	PCB 170	pg/L	35.9	5.28	48	J,NBC,VIL,VJ,VIU
CO6-EF-04102018-01	PCB 174	pg/L	33.8	3.97	48	J,NBC,VIL,VJ,VIU
CO6-EF-04102018-01	PCB 177	pg/L	21.2	4.29	48	J,NBC,VIL,VJ,VIU
CO6-EF-04102018-01	PCB 180/193	pg/L	84.8	3.96	96	J,NBC,VIL,VJ,VIU
CO6-EF-04102018-01	PCB 183/185	pg/L	27.2	3.88	96	J,NBC,VIL,VJ,VIU
CO6-EF-04102018-01	PCB 187	pg/L	51.6	2.29	48	NBC,VIL,VJ,VIU
CO6-EF-04102018-01	PCB 194	pg/L	35.8	4.57	48	J,NBC,VIL,VJ
CO6-EF-04102018-01	PCB 195	pg/L	14.6	3.9	48	J,NBC,VIL,VJ,VIU
CO6-EF-04102018-01	PCB 201	pg/L	5.85	1.96	48	VRIU,J,NBC,VIL,VJ
CO6-EF-04102018-01	PCB 203	pg/L	27.3	3.23	48	J,JA,NBC,VIL,VJ,VIU

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
CO6-EF-04102018-01	Total DiCB	pg/L	99.7	1.26	19	NBC,VIL,VJ
CO6-EF-04102018-01	Total HeptaCB	pg/L	227	2.29	19	NBC,VIL,VJ
CO6-EF-04102018-01	Total HexaCB	pg/L	565	2.22	19	VIP,NBC,VIL,VJ
CO6-EF-04102018-01	Total MonoCB	pg/L		19.2	19	NBC
CO6-EF-04102018-01	Total NonaCB	pg/L		19.2	19	NBC
CO6-EF-04102018-01	Total OctaCB	pg/L	83.6	1.96	19	NBC,VIL,VJ
CO6-EF-04102018-01	Total PCBs	pg/L	2920	1.26	192	VIP,NBC,VIL,VJ
CO6-EF-04102018-01	Total PentaCB	pg/L	732	2.32	192	NBC,VIL
CO6-EF-04102018-01	Total TetraCB	pg/L	680	2.85	192	NBC,VIL
CO6-EF-04102018-01	Total TriCB	pg/L	506	5.01	48	NBC,VIL
TW2-IN-04102018-01	PCB 008	pg/L	130	10.7	49	NBC,VIL,VJ
TW2-IN-04102018-01	PCB 018/30	pg/L	218	37.4	49	NBC
TW2-IN-04102018-01	PCB 020/28	pg/L	489	44.4	49	NBC
TW2-IN-04102018-01	PCB 021/33	pg/L	337	47	49	NBC
TW2-IN-04102018-01	PCB 031	pg/L	397	42.2	49	NBC
TW2-IN-04102018-01	PCB 044/47/65	pg/L	545	52.3	98	NBC,VIU
TW2-IN-04102018-01	PCB 049/69	pg/L	275	48.7	98	NBC,VIU
TW2-IN-04102018-01	PCB 052	pg/L	508	49	49	NBC,VIL,VIU
TW2-IN-04102018-01	PCB 056	pg/L	223	32.4	49	NBC
TW2-IN-04102018-01	PCB 060	pg/L	128	31.6	49	NBC
TW2-IN-04102018-01	PCB 066	pg/L	322	41.4	49	NBC,VIU
TW2-IN-04102018-01	PCB 070/61/74/76	pg/L	717	44.7	195	NBC,VIL,VIU,VJ
TW2-IN-04102018-01	PCB 083/99	pg/L	367	27.3	98	NBC,VIL,VJ,VIU
TW2-IN-04102018-01	PCB 086/87/97/109/119/125	pg/L	443	23.8	195	NBC,VIL,VIU
TW2-IN-04102018-01	PCB 090/101/113	pg/L	527	23.8	195	JA,NBC,VIL,VIU
TW2-IN-04102018-01	PCB 093/95/100	pg/L	470	31.8	195	NBC,VIL,VIU
TW2-IN-04102018-01	PCB 105	pg/L	325	21.3	21	NBC,VIU
TW2-IN-04102018-01	PCB 110/115	pg/L	822	21.5	98	NBC
TW2-IN-04102018-01	PCB 118	pg/L	554	19.5	20	NBC,VIL
TW2-IN-04102018-01	PCB 128/166	pg/L	186	23.9	98	NBC,VIL,VJ,VIU
TW2-IN-04102018-01	PCB 129/138/163	pg/L	1690	32.5	195	NBC,VIL,VJ,VIU
TW2-IN-04102018-01	PCB 132	pg/L	368	29.6	49	NBC,VIL,VIU
TW2-IN-04102018-01	PCB 135/151/154	pg/L	584	16.6	98	VRIU,NBC,VIL,VJ
TW2-IN-04102018-01	PCB 141	pg/L	213	25	49	VRIU,NBC,VIL,VJ
TW2-IN-04102018-01	PCB 147/149	pg/L	963	25.1	98	NBC,VIL,VJ,VIU
TW2-IN-04102018-01	PCB 153/168	pg/L	1710	21.3	98	VIP,NBC,VIL,VJ,VIU
TW2-IN-04102018-01	PCB 156/157	pg/L	145	44.6	45	NBC,VIU
TW2-IN-04102018-01	PCB 158	pg/L	110	18.6	49	VRIU,NBC,VIL,VJ
TW2-IN-04102018-01	PCB 170	pg/L	540	36.4	49	NBC,VIL,VJ,VIU
TW2-IN-04102018-01	PCB 174	pg/L	608	29.8	49	NBC,VIL,VJ,VIU
TW2-IN-04102018-01	PCB 177	pg/L	361	32	49	NBC,VIL,VJ,VIU
TW2-IN-04102018-01	PCB 180/193	pg/L	1550	28.6	98	NBC,VIL,VJ,VIU
TW2-IN-04102018-01	PCB 183/185	pg/L	529	30.4	98	NBC,VIL,VJ,VIU
TW2-IN-04102018-01	PCB 187	pg/L	1100	17.1	49	NBC,VIL,VJ,VIU
TW2-IN-04102018-01	PCB 194	pg/L	560	35.7	49	NBC,VIL,VJ
TW2-IN-04102018-01	PCB 195	pg/L	192	32.6	49	JA,NBC,VIL,VJ,VIU

		Unit				
Sample ID	Analyte Name		Result		RL	QA Code
TW2-IN-04102018-01	PCB 201	pg/L	69.4	18.8		VRIU,NBC,VIL,VJ
TW2-IN-04102018-01	PCB 203	pg/L	365	28		NBC,VIL,VJ,VIU
TW2-IN-04102018-01	Total DiCB	pg/L	130			NBC,VIL,VJ
TW2-IN-04102018-01	Total HeptaCB	pg/L	4160	17.1		NBC,VIL,VJ
TW2-IN-04102018-01	Total HexaCB	pg/L	5970	16.6		VIP,NBC,VIL,VJ
TW2-IN-04102018-01	Total MonoCB	pg/L		19.5		NBC
TW2-IN-04102018-01	Total NonaCB	pg/L		19.5		NBC
TW2-IN-04102018-01	Total OctaCB	pg/L	1190	18.8		NBC,VIL,VJ
TW2-IN-04102018-01	Total PCBs	pg/L	19600	10.7		VIP,NBC,VIL,VJ
TW2-IN-04102018-01	Total PentaCB	pg/L	3510	19.5		NBC,VIL
TW2-IN-04102018-01	Total TetraCB	pg/L	2720	31.6		NBC,VIL
TW2-IN-04102018-01	Total TriCB	pg/L	1440	37.4		NBC,VIL
CO1-EF-04132018-01	PCB 008	pg/L	74.8	2.31		NBC,VIL,VJ
CO1-EF-04132018-01	PCB 018/30	pg/L	60.3	5.02		NBC
CO1-EF-04132018-01	PCB 020/28	pg/L	84.8	12		NBC
CO1-EF-04132018-01	PCB 021/33	pg/L	50.6	12		NBC
CO1-EF-04132018-01	PCB 031	pg/L	65.8	11.1		NBC
CO1-EF-04132018-01	PCB 044/47/65	pg/L	105	5.15		NBC,VIU
CO1-EF-04132018-01	PCB 049/69	pg/L	74.9	4.84	96	J,NBC,VIU
CO1-EF-04132018-01	PCB 052	pg/L	160	5.09		NBC,VIL,VIU
CO1-EF-04132018-01	PCB 056	pg/L	38.2	27.4		J,NBC
CO1-EF-04132018-01	PCB 060	pg/L		26.8	48	NBC
CO1-EF-04132018-01	PCB 066	pg/L	52.8	3.99	48	NBC,VIU
CO1-EF-04132018-01	PCB 070/61/74/76	pg/L	111	4.28	192	J,NBC,VIL,VIU,VJ
CO1-EF-04132018-01	PCB 083/99	pg/L	531	4.87	96	NBC,VIL,VJ,VIU
CO1-EF-04132018-01	PCB 086/87/97/109/119/125	pg/L	184	4.26	192	J,NBC,VIL,VIU
CO1-EF-04132018-01	PCB 090/101/113	pg/L	405	4.21	192	NBC,VIL,VIU
CO1-EF-04132018-01	PCB 093/95/100	pg/L	211	3.39	192	NBC,VIL,VIU
CO1-EF-04132018-01	PCB 105	pg/L	82.7	12	19	NBC,VIU
CO1-EF-04132018-01	PCB 110/115	pg/L	147	3.89	96	NBC
CO1-EF-04132018-01	PCB 118	pg/L	277	10.9	19	NBC,VIL
CO1-EF-04132018-01	PCB 128/166	pg/L	224	5.47	96	NBC,VIL,VJ,VIU
CO1-EF-04132018-01	PCB 129/138/163	pg/L	2450	7.14	192	NBC,VIL,VJ,VIU
CO1-EF-04132018-01	PCB 132	pg/L	142	6.51	48	NBC,VIL,VIU
CO1-EF-04132018-01	PCB 135/151/154	pg/L	1360	3.39	96	VRIU,NBC,VIL,VJ
CO1-EF-04132018-01	PCB 141	pg/L	176	5.5	48	VRIU,NBC,VIL,VJ
CO1-EF-04132018-01	PCB 147/149	pg/L	980	5.4	96	NBC,VIL,VJ,VIU
CO1-EF-04132018-01	PCB 153/168	pg/L	9440	4.69	96	VIP,NBC,VIL,VJ,VIU
CO1-EF-04132018-01	PCB 156/157	pg/L	115	14.9	38	NBC,VIU
CO1-EF-04132018-01	PCB 158	pg/L	125	4.12	48	VRIU,NBC,VIL,VJ
CO1-EF-04132018-01	РСВ 170	pg/L	1160	8.02	48	NBC,VIL,VJ,VIU
CO1-EF-04132018-01	РСВ 174	pg/L	308	6.03		NBC,VIL,VJ,VIU
CO1-EF-04132018-01	РСВ 177	pg/L	520	6.5		NBC,VIL,VJ,VIU
CO1-EF-04132018-01	PCB 180/193	pg/L	4090	6.01		NBC,VIL,VJ,VIU
CO1-EF-04132018-01	PCB 183/185	pg/L	1250	5.89		NBC,VIL,VJ,VIU
CO1-EF-04132018-01	PCB 187	pg/L	4380	3.23		NBC,VIL,VJ,VIU

		Unit				
Sample ID	Analyte Name	Name		MDL	RL	QA Code
CO1-EF-04132018-01	PCB 194	pg/L	1480	6.25		NBC,VIL,VJ
CO1-EF-04132018-01	PCB 195	pg/L	348	5.33		NBC,VIL,VJ,VIU
CO1-EF-04132018-01	PCB 201	pg/L	152	2.68		VRIU,NBC,VIL,VJ
CO1-EF-04132018-01	PCB 203	pg/L	622	4.41		NBC,VIL,VJ,VIU
CO1-EF-04132018-01	Total DiCB	pg/L	74.8	2.31		NBC,VIL,VJ
CO1-EF-04132018-01	Total HeptaCB	pg/L	10500	3.23		NBC,VIL,VJ
CO1-EF-04132018-01	Total HexaCB	pg/L	15000	3.39		VIP,NBC,VIL,VJ
CO1-EF-04132018-01	Total MonoCB	pg/L		19.2		NBC
CO1-EF-04132018-01	Total NonaCB	pg/L		19.2		NBC
CO1-EF-04132018-01	Total OctaCB	pg/L	2610	2.68		NBC,VIL,VJ
CO1-EF-04132018-01	Total PCBs	pg/L	32000	2.31		VIP,NBC,VIL,VJ
CO1-EF-04132018-01	Total PentaCB	pg/L	1840	3.39		NBC,VIL
CO1-EF-04132018-01	Total TetraCB	pg/L	542	3.99		NBC,VIL
CO1-EF-04132018-01	Total TriCB	pg/L	261	5.02		NBC,VIL
CO2-EF-04132018-01	PCB 008	pg/L	19.4	1.28		J,NBC,VIL,VJ
CO2-EF-04132018-01	PCB 018/30	pg/L	21.6	3.12		J,NBC
CO2-EF-04132018-01	PCB 020/28	pg/L	33.3	3.86		J,NBC
CO2-EF-04132018-01	PCB 021/33	pg/L	21.6			J,NBC
CO2-EF-04132018-01	PCB 031	pg/L	28.7	3.6		J,NBC
CO2-EF-04132018-01	PCB 044/47/65	pg/L	46.5	2.79		J,NBC,VIU
CO2-EF-04132018-01	PCB 049/69	pg/L	24.9	2.65		J,NBC,VIU
CO2-EF-04132018-01	PCB 052	pg/L	73.3	2.72	48	NBC,VIL,VIU
CO2-EF-04132018-01	PCB 056	pg/L	8.37	4.63		J,NBC
CO2-EF-04132018-01	PCB 060	pg/L	5.01	4.55	48	J,NBC
CO2-EF-04132018-01	PCB 066	pg/L	15	2.26		J,NBC,VIU
CO2-EF-04132018-01	PCB 070/61/74/76	pg/L	37.5	2.42	191	J,NBC,VIL,VIU,VJ
CO2-EF-04132018-01	PCB 083/99	pg/L	19.8	2.74	96	J,NBC,VIL,VJ,VIU
CO2-EF-04132018-01	PCB 086/87/97/109/119/125	pg/L	28.1	2.39		J,NBC,VIL,VIU
CO2-EF-04132018-01	PCB 090/101/113	pg/L	39.5	2.36		J,NBC,VIL,VIU
CO2-EF-04132018-01	PCB 093/95/100	pg/L	39.8	1.83	191	J,NBC,VIL,VIU
CO2-EF-04132018-01	PCB 105	pg/L	11.3	3.41	19	J,JA,NBC,VIU
CO2-EF-04132018-01	PCB 110/115	pg/L	39.6	2.17	96	J,NBC
CO2-EF-04132018-01	PCB 118	pg/L	23.1	3.13	19	NBC,VIL
CO2-EF-04132018-01	PCB 128/166	pg/L	8.08	2.45	96	J,NBC,VIL,VJ,VIU
CO2-EF-04132018-01	PCB 129/138/163	pg/L	69.7	3.24	191	J,NBC,VIL,VJ,VIU
CO2-EF-04132018-01	PCB 132	pg/L	14.9	2.83	48	J,NBC,VIL,VIU
CO2-EF-04132018-01	PCB 135/151/154	pg/L	19.9	1.26	96	VRIU,J,NBC,VIL,VJ
CO2-EF-04132018-01	PCB 141	pg/L	8.4	2.45	48	VRIU,J,NBC,VIL,VJ
CO2-EF-04132018-01	PCB 147/149	pg/L	31.7	2.33	96	J,NBC,VIL,VJ,VIU
CO2-EF-04132018-01	PCB 153/168	pg/L	60.6	2.07	96	VIP,J,NBC,VIL,VJ,VIU
CO2-EF-04132018-01	PCB 156/157	pg/L	9.15	5.15	38	J,JA,NBC,VIU
CO2-EF-04132018-01	PCB 158	pg/L	5.91	1.83	48	VRIU,J,NBC,VIL,VJ
CO2-EF-04132018-01	PCB 170	pg/L	18.2	4.4	48	J,JA,NBC,VIL,VJ,VIU
CO2-EF-04132018-01	PCB 174	pg/L	12.8	3.11	48	J,NBC,VIL,VJ,VIU
CO2-EF-04132018-01	PCB 177	pg/L	9.24	3.44	48	J,NBC,VIL,VJ,VIU
CO2-EF-04132018-01	PCB 180/193	pg/L	42.4	3.33	96	J,NBC,VIL,VJ,VIU

		Unit				
Sample ID	Analyte Name	Name		MDL	RL	QA Code
CO2-EF-04132018-01	PCB 183/185	pg/L	16.2	3.24		J,NBC,VIL,VJ,VIU
CO2-EF-04132018-01	PCB 187	pg/L	26.9	1.6		J,NBC,VIL,VJ,VIU
CO2-EF-04132018-01	PCB 194	pg/L	17.5	2.9		J,NBC,VIL,VJ
CO2-EF-04132018-01	PCB 195	pg/L	6.09	2.5		J,NBC,VIL,VJ,VIU
CO2-EF-04132018-01	PCB 201	pg/L	2.47	1.28		VRIU,J,JA,NBC,VIL,VJ
CO2-EF-04132018-01	PCB 203	pg/L	9.22	2.1		J,JA,NBC,VIL,VJ,VIU
CO2-EF-04132018-01	Total DiCB	pg/L	19.4	1.28		NBC,VIL,VJ
CO2-EF-04132018-01	Total HeptaCB	pg/L	109	1.6		NBC,VIL,VJ
CO2-EF-04132018-01	Total HexaCB	pg/L	228	1.26		VIP,NBC,VIL,VJ
CO2-EF-04132018-01	Total MonoCB	pg/L		19.1	19	NBC
CO2-EF-04132018-01	Total NonaCB	pg/L		19.1	19	NBC
CO2-EF-04132018-01	Total OctaCB	pg/L	35.3	1.28	19	NBC,VIL,VJ
CO2-EF-04132018-01	Total PCBs	pg/L	926	1.26	191	VIP,NBC,VIL,VJ
CO2-EF-04132018-01	Total PentaCB	pg/L	201	1.83	191	NBC,VIL
CO2-EF-04132018-01	Total TetraCB	pg/L	211	2.26	191	NBC,VIL
CO2-EF-04132018-01	Total TriCB	pg/L	105	3.12	48	NBC,VIL
CO3-EF-04132018-01	PCB 008	pg/L	40.9	0.85	48	J,NBC,VIL,VJ
CO3-EF-04132018-01	PCB 018/30	pg/L	45.7	3.09	48	J,NBC
CO3-EF-04132018-01	PCB 020/28	pg/L	52.3	5.23	48	NBC
CO3-EF-04132018-01	PCB 021/33	pg/L	30.9	5.34	48	J,NBC
CO3-EF-04132018-01	PCB 031	pg/L	46.2	4.88	48	J,NBC
CO3-EF-04132018-01	PCB 044/47/65	pg/L	68	2.8	96	J,NBC,VIU
CO3-EF-04132018-01	PCB 049/69	pg/L	39.8	2.66	96	J,NBC,VIU
CO3-EF-04132018-01	PCB 052	pg/L	108	2.73	48	NBC,VIL,VIU
CO3-EF-04132018-01	PCB 056	pg/L	12.4	4.81	48	J,NBC
CO3-EF-04132018-01	PCB 060	pg/L	8.03	4.72	48	J,NBC
CO3-EF-04132018-01	PCB 066	pg/L	24.9	2.27	48	J,NBC,VIU
CO3-EF-04132018-01	PCB 070/61/74/76	pg/L	56.7	2.43		J,NBC,VIL,VIU,VJ
CO3-EF-04132018-01	PCB 083/99	pg/L	62.8	1.89		J,NBC,VIL,VJ,VIU
CO3-EF-04132018-01	PCB 086/87/97/109/119/125	pg/L	41.9	1.65	191	J,NBC,VIL,VIU
CO3-EF-04132018-01	PCB 090/101/113	pg/L	70.9			J,NBC,VIL,VIU
CO3-EF-04132018-01	PCB 093/95/100	pg/L	65.8	2.54	191	J,NBC,VIL,VIU
CO3-EF-04132018-01	PCB 105	pg/L	17.5	3.94		J,JA,NBC,VIU
CO3-EF-04132018-01	PCB 110/115	pg/L	53.2			J,NBC
CO3-EF-04132018-01	PCB 118	pg/L	46.1	3.55		NBC,VIL
CO3-EF-04132018-01	PCB 128/166	pg/L	15.2	3.6		J,NBC,VIL,VJ,VIU
CO3-EF-04132018-01	PCB 129/138/163	pg/L	169			J,NBC,VIL,VJ,VIU
CO3-EF-04132018-01	PCB 132	pg/L	20.8	4.16		J,NBC,VIL,VIU
CO3-EF-04132018-01	PCB 135/151/154	pg/L	69.5			VRIU,J,NBC,VIL,VJ
CO3-EF-04132018-01	PCB 141	pg/L	17.7	3.6		VRIU,J,NBC,VIL,VJ
CO3-EF-04132018-01	PCB 147/149	pg/L	59.4	3.43		J,NBC,VIL,VJ,VIU
CO3-EF-04132018-01	PCB 153/168	pg/L	427	3.05		VIP,NBC,VIL,VJ,VIU
CO3-EF-04132018-01	PCB 156/157	pg/L	11	5.5		J,JA,NBC,VIU
CO3-EF-04132018-01	PCB 158	pg/L	9.79	2.69		VRIU,J,NBC,VIL,VJ
CO3-EF-04132018-01	PCB 170	pg/L	51.1	3.92		JA,NBC,VIL,VJ,VIU
CO3-EF-04132018-01	PCB 170		24.7	2.77		J,NBC,VIL,VJ,VIU
03-11-04132010-01		pg/L	24.7	2.17	40	3,110C, 11C, 13, 10

		Unit				
Sample ID	Analyte Name	Name			RL	QA Code
CO3-EF-04132018-01	PCB 177	pg/L	24.4	3.07	48	J,NBC,VIL,VJ,VIU
CO3-EF-04132018-01	PCB 180/193	pg/L	166			NBC,VIL,VJ,VIU
CO3-EF-04132018-01	PCB 183/185	pg/L	53.5	2.88		J,NBC,VIL,VJ,VIU
CO3-EF-04132018-01	PCB 187	pg/L	166	2.02		NBC,VIL,VJ,VIU
CO3-EF-04132018-01	PCB 194	pg/L	48.3	5		NBC,VIL,VJ
CO3-EF-04132018-01	PCB 195	pg/L	15.8			J,NBC,VIL,VJ,VIU
CO3-EF-04132018-01	PCB 201	pg/L	6.08			VRIU,J,NBC,VIL,VJ
CO3-EF-04132018-01	PCB 203	pg/L	22.3	3.63		J,JA,NBC,VIL,VJ,VIU
CO3-EF-04132018-01	Total DiCB	pg/L	40.9	0.85		NBC,VIL,VJ
CO3-EF-04132018-01	Total HeptaCB	pg/L	432	2.02		NBC,VIL,VJ
CO3-EF-04132018-01	Total HexaCB	pg/L	799	1.6		VIP,NBC,VIL,VJ
CO3-EF-04132018-01	Total MonoCB	pg/L		19.1		NBC
CO3-EF-04132018-01	Total NonaCB	pg/L		19.1		NBC
CO3-EF-04132018-01	Total OctaCB	pg/L	92.4	2.21		NBC,VIL,VJ
CO3-EF-04132018-01	Total PCBs	pg/L	2270	0.85		VIP,NBC,VIL,VJ
CO3-EF-04132018-01	Total PentaCB	pg/L	358	1.5		NBC,VIL
CO3-EF-04132018-01	Total TetraCB	pg/L	318	2.27		NBC,VIL
CO3-EF-04132018-01	Total TriCB	pg/L	175	3.09		NBC,VIL
CO4-EF-04132018-01	PCB 008	pg/L	47.3	1.41		J,NBC,VIL,VJ
CO4-EF-04132018-01	PCB 018/30	pg/L	65.4	3.95		NBC
CO4-EF-04132018-01	PCB 020/28	pg/L	75	4.57	50	NBC
CO4-EF-04132018-01	PCB 021/33	pg/L	42.4	4.67	50	J,NBC
CO4-EF-04132018-01	PCB 031	pg/L	59.7	4.27	50	NBC
CO4-EF-04132018-01	PCB 044/47/65	pg/L	82.9	2.72	101	J,NBC,VIU
CO4-EF-04132018-01	PCB 049/69	pg/L	40.7	2.57	101	J,NBC,VIU
CO4-EF-04132018-01	PCB 052	pg/L	108	2.64	50	NBC,VIL,VIU
CO4-EF-04132018-01	PCB 056	pg/L	18.8	7.34	50	J,NBC
CO4-EF-04132018-01	PCB 060	pg/L	11.4	7.21	50	J,NBC
CO4-EF-04132018-01	PCB 066	pg/L	38	2.2		J,NBC,VIU
CO4-EF-04132018-01	PCB 070/61/74/76	pg/L	79.6	2.36	201	J,NBC,VIL,VIU,VJ
CO4-EF-04132018-01	PCB 083/99	pg/L	36.2	4.47	101	J,NBC,VIL,VJ,VIU
CO4-EF-04132018-01	PCB 086/87/97/109/119/125	pg/L	58.2	3.91	201	J,NBC,VIL,VIU
CO4-EF-04132018-01	PCB 090/101/113	pg/L	78.9	3.86	201	J,JA,NBC,VIL,VIU
CO4-EF-04132018-01	PCB 093/95/100	pg/L	76.2	2.89	201	J,NBC,VIL,VIU
CO4-EF-04132018-01	PCB 105	pg/L	25.4	8.33	20	JA,NBC,VIU
CO4-EF-04132018-01	PCB 110/115	pg/L	88.3	3.55	101	J,NBC
CO4-EF-04132018-01	PCB 118	pg/L	52.6	7.21	20	NBC,VIL
CO4-EF-04132018-01	PCB 128/166	pg/L	15.3	3.12	101	J,JA,NBC,VIL,VJ,VIU
CO4-EF-04132018-01	PCB 129/138/163	pg/L	202	4.13	201	NBC,VIL,VJ,VIU
CO4-EF-04132018-01	PCB 132	pg/L	43.2	3.6	50	J,NBC,VIL,VIU
CO4-EF-04132018-01	PCB 135/151/154	pg/L	57	2.64	101	VRIU,J,NBC,VIL,VJ
CO4-EF-04132018-01	PCB 141	pg/L	36	3.12	50	VRIU,J,NBC,VIL,VJ
CO4-EF-04132018-01	PCB 147/149	pg/L	126	2.97	101	NBC,VIL,VJ,VIU
CO4-EF-04132018-01	PCB 153/168	pg/L	151	2.64	101	VIP,NBC,VIL,VJ,VIU
CO4-EF-04132018-01	PCB 156/157	pg/L	17.2	6.85		J,NBC,VIU
CO4-EF-04132018-01	PCB 158	pg/L	15.7	2.33	50	VRIU,J,NBC,VIL,VJ

		Unit				
Sample ID	Analyte Name	Name		MDL	RL	QA Code
CO4-EF-04132018-01	PCB 170	pg/L	66.3	5.84		NBC,VIL,VJ,VIU
CO4-EF-04132018-01	PCB 174	pg/L	65.4	4.13		NBC,VIL,VJ,VIU
CO4-EF-04132018-01	PCB 177	pg/L	39	4.57		J,NBC,VIL,VJ,VIU
CO4-EF-04132018-01	PCB 180/193	pg/L	166	4.41		NBC,VIL,VJ,VIU
CO4-EF-04132018-01	PCB 183/185	pg/L	51.6	4.29		J,NBC,VIL,VJ,VIU
CO4-EF-04132018-01	PCB 187	pg/L	80.7	2.88	50	NBC,VIL,VJ,VIU
CO4-EF-04132018-01	PCB 194	pg/L	41.1	8.32	50	J,JA,NBC,VIL,VJ
CO4-EF-04132018-01	PCB 195	pg/L	19.2	7.16	50	J,JA,NBC,VIL,VJ,VIU
CO4-EF-04132018-01	PCB 201	pg/L	5.22	3.67	50	VRIU,J,JA,NBC,VIL,VJ
CO4-EF-04132018-01	PCB 203	pg/L	32.6	6.03	50	J,NBC,VIL,VJ,VIU
CO4-EF-04132018-01	Total DiCB	pg/L	47.3	1.41	20	NBC,VIL,VJ
CO4-EF-04132018-01	Total HeptaCB	pg/L	417	2.88	20	NBC,VIL,VJ
CO4-EF-04132018-01	Total HexaCB	pg/L	663	2.33	20	VIP,NBC,VIL,VJ
CO4-EF-04132018-01	Total MonoCB	pg/L		20.1	20	NBC
CO4-EF-04132018-01	Total NonaCB	pg/L		20.1	20	NBC
CO4-EF-04132018-01	Total OctaCB	pg/L	98.1	3.67	20	NBC,VIL,VJ
CO4-EF-04132018-01	Total PCBs	pg/L	2310	1.41		VIP,NBC,VIL,VJ
CO4-EF-04132018-01	Total PentaCB	pg/L	416	2.89	201	NBC,VIL
CO4-EF-04132018-01	Total TetraCB	pg/L	379	2.2	201	NBC,VIL
CO4-EF-04132018-01	Total TriCB	pg/L	243	3.95	50	NBC,VIL
CO5-EF-04132018-01	PCB 008	pg/L	32.3	0.6	49	J,NBC,VIL,VJ
CO5-EF-04132018-01	PCB 018/30	pg/L	53.6	2.72	49	NBC
CO5-EF-04132018-01	PCB 020/28	pg/L	75.2	2.82	49	NBC
CO5-EF-04132018-01	PCB 021/33	pg/L	38	2.88	49	J,NBC
CO5-EF-04132018-01	PCB 031	pg/L	60.8		49	NBC
CO5-EF-04132018-01	PCB 044/47/65	pg/L	71.9	1.68	98	J,NBC,VIU
CO5-EF-04132018-01	PCB 049/69	pg/L	39.3	1.59		J,NBC,VIU
CO5-EF-04132018-01	PCB 052	pg/L	98	1.63		NBC,VIL,VIU
CO5-EF-04132018-01	PCB 056	pg/L	15.5	4.5		J,JA,NBC
CO5-EF-04132018-01	PCB 060	pg/L	12.6	4.42	49	J,NBC
CO5-EF-04132018-01	PCB 066	pg/L	37			J,NBC,VIU
CO5-EF-04132018-01	PCB 070/61/74/76	pg/L	82.3	1.45		J,NBC,VIL,VIU,VJ
CO5-EF-04132018-01	PCB 083/99	pg/L	58.8	2.74		J,NBC,VIL,VJ,VIU
CO5-EF-04132018-01	PCB 086/87/97/109/119/125	pg/L	55.3	2.39	196	J,NBC,VIL,VIU
CO5-EF-04132018-01	PCB 090/101/113	pg/L	82.6	2.36		J,NBC,VIL,VIU
CO5-EF-04132018-01	PCB 093/95/100	pg/L	69.7	1.64		J,NBC,VIL,VIU
CO5-EF-04132018-01	PCB 105	pg/L	27.8			NBC,VIU
CO5-EF-04132018-01	PCB 110/115	pg/L	80.2	2.17		J,NBC
CO5-EF-04132018-01	PCB 118	pg/L	61	3.07		NBC,VIL
CO5-EF-04132018-01	PCB 128/166	pg/L	22.6			J,NBC,VIL,VJ,VIU
CO5-EF-04132018-01	PCB 129/138/163	pg/L	215	2.36		NBC,VIL,VJ,VIU
CO5-EF-04132018-01	PCB 132	pg/L	28.4	2.06		J,NBC,VIL,VIU
CO5-EF-04132018-01	PCB 135/151/154	pg/L	84.6	1.64		VRIU,J,NBC,VIL,VJ
CO5-EF-04132018-01	PCB 141	pg/L	21.7	1.78		VRIU,J,NBC,VIL,VJ
CO5-EF-04132018-01	PCB 147/149	pg/L	93.2	1.7		J,NBC,VIL,VJ,VIU
CO5-EF-04132018-01	PCB 153/168	pg/L	507	1.51		VIP,NBC,VIL,VJ,VIU
CC2 C1 07132010-01	1. 00 100/ 100	P6/ L	507	1.51	50	vii ,ivbC, viL, vJ, viO

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
CO5-EF-04132018-01	PCB 156/157	pg/L	13.5	5.87	39	J,NBC,VIU
CO5-EF-04132018-01	PCB 158	pg/L	12.6	1.33	49	VRIU,J,NBC,VIL,VJ
CO5-EF-04132018-01	PCB 170	pg/L	80.7	4.59	49	NBC,VIL,VJ,VIU
CO5-EF-04132018-01	PCB 174	pg/L	31.4	3.25	49	J,NBC,VIL,VJ,VIU
CO5-EF-04132018-01	PCB 177	pg/L	33.7	3.59	49	J,NBC,VIL,VJ,VIU
CO5-EF-04132018-01	PCB 180/193	pg/L	252	3.47	98	NBC,VIL,VJ,VIU
CO5-EF-04132018-01	PCB 183/185	pg/L	73.2	3.38	98	J,NBC,VIL,VJ,VIU
CO5-EF-04132018-01	PCB 187	pg/L	221	1.71	49	NBC,VIL,VJ,VIU
CO5-EF-04132018-01	PCB 194	pg/L	98.8	6.97	49	NBC,VIL,VJ
CO5-EF-04132018-01	PCB 195	pg/L	24.7	6	49	J,JA,NBC,VIL,VJ,VIU
CO5-EF-04132018-01	PCB 201	pg/L	8.22	3.08	49	VRIU,J,NBC,VIL,VJ
CO5-EF-04132018-01	PCB 203	pg/L	45	5.06	49	J,NBC,VIL,VJ,VIU
CO5-EF-04132018-01	Total DiCB	pg/L	32.3	0.6	20	NBC,VIL,VJ
CO5-EF-04132018-01	Total HeptaCB	pg/L	618	1.71	20	NBC,VIL,VJ
CO5-EF-04132018-01	Total HexaCB	pg/L	999	1.33	20	VIP,NBC,VIL,VJ
CO5-EF-04132018-01	Total MonoCB	pg/L		19.6	20	NBC
CO5-EF-04132018-01	Total NonaCB	pg/L		19.6	20	NBC
CO5-EF-04132018-01	Total OctaCB	pg/L	177	3.08	20	NBC,VIL,VJ
CO5-EF-04132018-01	Total PCBs	pg/L	2920	0.6	196	VIP,NBC,VIL,VJ
CO5-EF-04132018-01	Total PentaCB	pg/L	435	1.64	196	NBC,VIL
CO5-EF-04132018-01	Total TetraCB	pg/L	357	1.36	196	NBC,VIL
CO5-EF-04132018-01	Total TriCB	pg/L	228	2.63	49	NBC,VIL
CO6-EF-04132018-01	PCB 008	pg/L	52.5	1.12	48	NBC,VIL,VJ
CO6-EF-04132018-01	PCB 018/30	pg/L	82.9	3.3	48	NBC
CO6-EF-04132018-01	PCB 020/28	pg/L	105	5.3	48	NBC
CO6-EF-04132018-01	PCB 021/33	pg/L	54.1	5.41	48	NBC
CO6-EF-04132018-01	PCB 031	pg/L	80.7	4.94	48	NBC
CO6-EF-04132018-01	PCB 044/47/65	pg/L	145	3.11	97	NBC,VIU
CO6-EF-04132018-01	PCB 049/69	pg/L	96.4	2.95	97	J,NBC,VIU
CO6-EF-04132018-01	PCB 052	pg/L	264	3.03	48	NBC,VIL,VIU
CO6-EF-04132018-01	PCB 056	pg/L	22.8	4.1	48	J,NBC
CO6-EF-04132018-01	PCB 060	pg/L	14	4.03	48	J,NBC
CO6-EF-04132018-01	PCB 066	pg/L	43.1	2.52	48	J,NBC,VIU
CO6-EF-04132018-01	PCB 070/61/74/76	pg/L	94	2.7	193	J,NBC,VIL,VIU,VJ
CO6-EF-04132018-01	PCB 083/99	pg/L	146	2.94	97	NBC,VIL,VJ,VIU
CO6-EF-04132018-01	PCB 086/87/97/109/119/125	pg/L	74.2	2.57	193	J,NBC,VIL,VIU
CO6-EF-04132018-01	PCB 090/101/113	pg/L	157	2.54	193	J,NBC,VIL,VIU
CO6-EF-04132018-01	PCB 093/95/100	pg/L	175	2.24	193	J,NBC,VIL,VIU
CO6-EF-04132018-01	PCB 105	pg/L	30.1	5.13	19	NBC,VIU
CO6-EF-04132018-01	PCB 110/115	pg/L	87.3	2.33	97	J,NBC
CO6-EF-04132018-01	PCB 118	pg/L	72.4	4.41	19	NBC,VIL
CO6-EF-04132018-01	PCB 128/166	pg/L	26.6	3.31	97	J,NBC,VIL,VJ,VIU
CO6-EF-04132018-01	PCB 129/138/163	pg/L	284	4.39	193	NBC,VIL,VJ,VIU
CO6-EF-04132018-01	PCB 132	pg/L	33.2	3.82	48	J,NBC,VIL,VIU
CO6-EF-04132018-01	PCB 135/151/154	pg/L	221	1.5		VRIU,NBC,VIL,VJ
CO6-EF-04132018-01	PCB 141	pg/L	28.2	3.32	48	VRIU,J,NBC,VIL,VJ

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
CO6-EF-04132018-01	PCB 147/149	pg/L	157	3.15	97	NBC,VIL,VJ,VIU
CO6-EF-04132018-01	PCB 153/168	pg/L	926	2.81	97	VIP,NBC,VIL,VJ,VIU
CO6-EF-04132018-01	PCB 156/157	pg/L	17.7	5.92	39	J,NBC,VIU
CO6-EF-04132018-01	PCB 158	pg/L	16.6	2.48	48	VRIU,J,NBC,VIL,VJ
CO6-EF-04132018-01	PCB 170	pg/L	93	4.17	48	NBC,VIL,VJ,VIU
CO6-EF-04132018-01	PCB 174	pg/L	36.3	2.95	48	J,NBC,VIL,VJ,VIU
CO6-EF-04132018-01	PCB 177	pg/L	45.7	3.26	48	J,NBC,VIL,VJ,VIU
CO6-EF-04132018-01	PCB 180/193	pg/L	328	3.15	97	NBC,VIL,VJ,VIU
CO6-EF-04132018-01	PCB 183/185	pg/L	104	3.06	97	NBC,VIL,VJ,VIU
CO6-EF-04132018-01	PCB 187	pg/L	357	1.75	48	NBC,VIL,VJ,VIU
CO6-EF-04132018-01	PCB 194	pg/L	113	5.23	48	NBC,VIL,VJ
CO6-EF-04132018-01	PCB 195	pg/L	28.4	4.5	48	J,NBC,VIL,VJ,VIU
CO6-EF-04132018-01	PCB 201	pg/L	13.9	2.31	48	VRIU,J,NBC,VIL,VJ
CO6-EF-04132018-01	PCB 203	pg/L	51.9	3.79	48	NBC,VIL,VJ,VIU
CO6-EF-04132018-01	Total DiCB	pg/L	52.5	1.12	19	NBC,VIL,VJ
CO6-EF-04132018-01	Total HeptaCB	pg/L	859	1.75	19	NBC,VIL,VJ
CO6-EF-04132018-01	Total HexaCB	pg/L	1710	1.5	19	VIP,NBC,VIL,VJ
CO6-EF-04132018-01	Total MonoCB	pg/L		19.3	19	NBC
CO6-EF-04132018-01	Total NonaCB	pg/L		19.3	19	NBC
CO6-EF-04132018-01	Total OctaCB	pg/L	207	2.31	19	NBC,VIL,VJ
CO6-EF-04132018-01	Total PCBs	pg/L	4680	1.12	193	VIP,NBC,VIL,VJ
CO6-EF-04132018-01	Total PentaCB	pg/L	742	2.24	193	NBC,VIL
CO6-EF-04132018-01	Total TetraCB	pg/L	680	2.52	193	NBC,VIL
CO6-EF-04132018-01	Total TriCB	pg/L	323	3.3	48	NBC,VIL
TW2-IN-04132018-01	PCB 008	pg/L	81.6	1.5	48	NBC,VIL,VJ
TW2-IN-04132018-01	PCB 018/30	pg/L	111	3.77	48	NBC
TW2-IN-04132018-01	PCB 020/28	pg/L	311	7.05	48	NBC
TW2-IN-04132018-01	PCB 021/33	pg/L	214	7.23	48	NBC
TW2-IN-04132018-01	PCB 031	pg/L	252	6.63	48	NBC
TW2-IN-04132018-01	PCB 044/47/65	pg/L	340	9.11	96	NBC,VIU
TW2-IN-04132018-01	PCB 049/69	pg/L	173	8.61		NBC,VIU
TW2-IN-04132018-01	PCB 052	pg/L	330	8.88	48	NBC,VIL,VIU
TW2-IN-04132018-01	PCB 056	pg/L	167	3.54	48	NBC
TW2-IN-04132018-01	PCB 060	pg/L	92.1	3.37	48	NBC
TW2-IN-04132018-01	PCB 066	pg/L	302	7.66	48	NBC,VIU
TW2-IN-04132018-01	PCB 070/61/74/76	pg/L	664	8.02	192	NBC,VIL,VIU,VJ
TW2-IN-04132018-01	PCB 083/99	pg/L	351	4.32		NBC,VIL,VJ,VIU
TW2-IN-04132018-01	PCB 086/87/97/109/119/125	pg/L	529	3.77	192	NBC,VIL,VIU
TW2-IN-04132018-01	PCB 090/101/113	pg/L	641	3.75	192	NBC,VIL,VIU
TW2-IN-04132018-01	PCB 093/95/100	pg/L	401	4.01	192	NBC,VIL,VIU
TW2-IN-04132018-01	PCB 105	pg/L	356	3.83	19	NBC,VIU
TW2-IN-04132018-01	PCB 110/115	pg/L	906	3.42	96	NBC
TW2-IN-04132018-01	PCB 118	pg/L	728	3.52	19	NBC,VIL
TW2-IN-04132018-01	PCB 128/166	pg/L	219			NBC,VIL,VJ,VIU
TW2-IN-04132018-01	PCB 129/138/163	pg/L	2070	2.81	192	VIP,NBC,VIL,VJ,VIU
TW2-IN-04132018-01	PCB 132	pg/L	388	2.49		NBC,VIL,VIU

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
TW2-IN-04132018-01	PCB 135/151/154	pg/L	445	1.95		VRIU,NBC,VIL,VJ
TW2-IN-04132018-01	PCB 141	pg/L	256	2.15		VRIU,NBC,VIL,VJ
TW2-IN-04132018-01	PCB 147/149	pg/L	860	2.12		NBC,VIL,VJ,VIU
TW2-IN-04132018-01	PCB 153/168	pg/L	2170	1.82		VIP,NBC,VIL,VJ,VIU
TW2-IN-04132018-01	PCB 156/157	pg/L	175	6.64		NBC,VIU
TW2-IN-04132018-01	PCB 158	pg/L	142	1.57	48	VRIU,NBC,VIL,VJ
TW2-IN-04132018-01	PCB 170	pg/L	548	3.84	48	NBC,VIL,VJ,VIU
TW2-IN-04132018-01	PCB 174	pg/L	380	3.19	48	NBC,VIL,VJ,VIU
TW2-IN-04132018-01	PCB 177	pg/L	271	3.44	48	NBC,VIL,VJ,VIU
TW2-IN-04132018-01	PCB 180/193	pg/L	1490	3.02	96	NBC,VIL,VJ,VIU
TW2-IN-04132018-01	PCB 183/185	pg/L	434	3.3	96	NBC,VIL,VJ,VIU
TW2-IN-04132018-01	PCB 187	pg/L	1030	1.76	48	NBC,VIL,VJ,VIU
TW2-IN-04132018-01	PCB 194	pg/L	367	3.01	48	VIP,NBC,VIL,VJ
TW2-IN-04132018-01	PCB 195	pg/L	107	3.16	48	NBC,VIL,VJ,VIU
TW2-IN-04132018-01	PCB 201	pg/L	46.2	2.03	48	VRIU,J,NBC,VIL,VJ
TW2-IN-04132018-01	PCB 203	pg/L	227	2.87	48	NBC,VIL,VJ,VIU
TW2-IN-04132018-01	Total DiCB	pg/L	81.6	1.5	19	NBC,VIL,VJ
TW2-IN-04132018-01	Total HeptaCB	pg/L	3720	1.76	19	NBC,VIL,VJ
TW2-IN-04132018-01	Total HexaCB	pg/L	6720	1.57	19	VIP,NBC,VIL,VJ
TW2-IN-04132018-01	Total MonoCB	pg/L		19.2	19	NBC
TW2-IN-04132018-01	Total NonaCB	pg/L		19.2	19	NBC
TW2-IN-04132018-01	Total OctaCB	pg/L	747	2.03	19	VIP,NBC,VIL,VJ
TW2-IN-04132018-01	Total PCBs	pg/L	18600	1.5	192	VIP,NBC,VIL,VJ
TW2-IN-04132018-01	Total PentaCB	pg/L	3910	3.42	192	NBC,VIL
TW2-IN-04132018-01	Total TetraCB	pg/L	2070	3.37	192	NBC,VIL
TW2-IN-04132018-01	Total TriCB	pg/L	889	3.77	48	NBC,VIL
BLNK-EF-04172018-01	PCB 008	pg/L	13.7	1.82	48	J,NBC,VIL,VJ
BLNK-EF-04172018-01	PCB 018/30	pg/L	10.7	5.11	48	J,JA,NBC
BLNK-EF-04172018-01	PCB 020/28	pg/L	17.4	6.17	48	J,NBC
BLNK-EF-04172018-01	PCB 021/33	pg/L	12.8	6.3	48	J,NBC
BLNK-EF-04172018-01	PCB 031	pg/L	14.9			J,NBC
BLNK-EF-04172018-01	PCB 044/47/65	pg/L	37.3	4.52		J,NBC,VIU
BLNK-EF-04172018-01	PCB 049/69	pg/L	14.7	4.28		J,NBC,VIU
BLNK-EF-04172018-01	PCB 052	pg/L	52.6			NBC,VIL,VIU
BLNK-EF-04172018-01	PCB 056	pg/L		4.76		NBC
BLNK-EF-04172018-01	PCB 060	pg/L		4.68		NBC
BLNK-EF-04172018-01	PCB 066	pg/L	5.97	3.65		J,JA,NBC,VIU
BLNK-EF-04172018-01	PCB 070/61/74/76	pg/L	14.9	3.92		J,NBC,VIL,VIU,VJ
BLNK-EF-04172018-01	PCB 083/99	pg/L	10.9			J,JA,NBC,VIL,VJ,VIU
BLNK-EF-04172018-01	PCB 086/87/97/109/119/125	pg/L		6.01		NBC,VIL,VIU
BLNK-EF-04172018-01	PCB 090/101/113	pg/L	22.7	5.93		J,NBC,VIL,VIU
BLNK-EF-04172018-01	PCB 093/95/100	pg/L	26.9	5.98		J,NBC,VIL,VIU
BLNK-EF-04172018-01	PCB 105	pg/L		5.78		NBC,VIU
BLNK-EF-04172018-01	PCB 110/115	pg/L	13.8	5.45		J,JA,NBC
BLNK-EF-04172018-01	PCB 118	pg/L	10.0	5.31		NBC,VIL
BLNK-EF-04172018-01	PCB 128/166	pg/L		5.28		NBC,VIL,VJ,VIU
5-INK EI 071/2010-01	0 120/100	Γ6/ L		5.20	55	

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
BLNK-EF-04172018-01	PCB 129/138/163	pg/L	17.1	6.99		J,NBC,VIL,VJ,VIU
BLNK-EF-04172018-01	PCB 132	pg/L		6.08		NBC,VIL,VIU
BLNK-EF-04172018-01	PCB 135/151/154	pg/L	10.1	3.04		VRIU,J,JA,NBC,VIL,VJ
BLNK-EF-04172018-01	PCB 141	pg/L		5.28		VRIU,NBC,VIL,VJ
BLNK-EF-04172018-01	PCB 147/149	pg/L	13.6	5.02		J,NBC,VIL,VJ,VIU
BLNK-EF-04172018-01	PCB 153/168	pg/L	20.6	4.47		IP,J,JA,NBC,VIL,VJ,VIU
BLNK-EF-04172018-01	PCB 156/157	pg/L		6.97		NBC,VIU
BLNK-EF-04172018-01	PCB 158	pg/L		3.94		VRIU,NBC,VIL,VJ
BLNK-EF-04172018-01	PCB 170	pg/L		8.48		NBC,VIL,VJ,VIU
BLNK-EF-04172018-01	PCB 174	pg/L		5.99		NBC,VIL,VJ,VIU
BLNK-EF-04172018-01	PCB 177	pg/L		6.63		NBC,VIL,VJ,VIU
BLNK-EF-04172018-01	PCB 180/193	pg/L	13.7	6.41		J,NBC,VIL,VJ,VIU
BLNK-EF-04172018-01	PCB 183/185	pg/L		6.23		NBC,VIL,VJ,VIU
BLNK-EF-04172018-01	PCB 187	pg/L	8.14	4.81		J,NBC,VIL,VJ,VIU
BLNK-EF-04172018-01	PCB 194	pg/L		8.64		NBC,VIL,VJ
BLNK-EF-04172018-01	PCB 195	pg/L		7.44		NBC,VIL,VJ,VIU
BLNK-EF-04172018-01	PCB 201	pg/L		3.81		VRIU,NBC,VIL,VJ
BLNK-EF-04172018-01	PCB 203	pg/L		6.26		NBC,VIL,VJ,VIU
BLNK-EF-04172018-01	Total DiCB	pg/L	13.7	1.82		J,NBC,VIL,VJ
BLNK-EF-04172018-01	Total HeptaCB	pg/L	21.9	4.81		NBC,VIL,VJ
BLNK-EF-04172018-01	Total HexaCB	pg/L	61.4	3.04		VIP,NBC,VIL,VJ
BLNK-EF-04172018-01	Total MonoCB	pg/L		19		NBC
BLNK-EF-04172018-01	Total NonaCB	pg/L		19		NBC
BLNK-EF-04172018-01	Total OctaCB	pg/L		3.81		NBC,VIL,VJ
BLNK-EF-04172018-01	Total PCBs	pg/L	353	1.82		VIP,NBC,VIL,VJ
BLNK-EF-04172018-01	Total PentaCB	pg/L	74.4	5.31		J,NBC,VIL
BLNK-EF-04172018-01	Total TetraCB	pg/L	126	3.65		J,NBC,VIL
BLNK-EF-04172018-01	Total TriCB	pg/L	55.7	5.11		NBC,VIL
CO1-EF-04172018-01	PCB 008	pg/L		61.9		NBC,VIL,VJ
CO1-EF-04172018-01	PCB 018/30	pg/L		84.4		NBC
CO1-EF-04172018-01	PCB 020/28	pg/L		103		NBC
CO1-EF-04172018-01	PCB 021/33	pg/L		106		NBC
CO1-EF-04172018-01	PCB 031	pg/L		96.5		NBC
CO1-EF-04172018-01	PCB 044/47/65	pg/L		96.1		NBC,VIU
CO1-EF-04172018-01	PCB 049/69	pg/L		90.9		NBC,VIU
CO1-EF-04172018-01	PCB 052	pg/L		93.7		NBC,VIL,VIU
CO1-EF-04172018-01	PCB 056	pg/L		44.9		NBC
CO1-EF-04172018-01	PCB 060	pg/L		42.7		NBC
CO1-EF-04172018-01	PCB 066	pg/L		80.8		NBC,VIU
CO1-EF-04172018-01	PCB 070/61/74/76	pg/L		84.6		NBC,VIL,VIU,VJ
CO1-EF-04172018-01	PCB 083/99	pg/L		32.4		NBC,VIL,VJ,VIU
CO1-EF-04172018-01	PCB 086/87/97/109/119/125	pg/L	47.0	28.3		NBC,VIL,VIU
CO1-EF-04172018-01	PCB 090/101/113	pg/L	47.8	28.1		J,NBC,VIL,VIU
CO1-EF-04172018-01	PCB 093/95/100	pg/L		40.1		NBC,VIL,VIU
CO1-EF-04172018-01	PCB 105	pg/L		23		NBC,VIU
CO1-EF-04172018-01	PCB 110/115	pg/L	49.6	25.7	99	J,NBC

		Unit	- II			
Sample ID CO1-EF-04172018-01	Analyte Name PCB 118	Name	Result	MDL 24.1	RL 24	QA Code NBC,VIL
CO1-EF-04172018-01	PCB 128/166	pg/L		14.8		NBC,VIL,VJ,VIU
CO1-EF-04172018-01	PCB 129/138/163	pg/L	95.2	20.3		IP,J,NBC,VIL,VJ,VIU
CO1-EF-04172018-01	PCB 129/138/103	pg/L	95.2	20.5		NBC,VIL,VIU
CO1-EF-04172018-01	PCB 135/151/154	pg/L pg/L		15.2		VRIU,NBC,VIL,VJ
CO1-EF-04172018-01	PCB 141	pg/L		15.2		VRIU,NBC,VIL,VJ
CO1-EF-04172018-01	PCB 147/149	pg/L		15.3		NBC,VIL,VJ,VIU
CO1-EF-04172018-01	PCB 153/168	pg/L	92	13.2		IP,J,NBC,VIL,VJ,VIU
CO1-EF-04172018-01	PCB 156/157	pg/L	52	26.3		NBC,VIU
CO1-EF-04172018-01	PCB 158	pg/L		11.4		VRIU,NBC,VIL,VJ
CO1-EF-04172018-01	PCB 170	pg/L		38.5		NBC,VIL,VJ,VIU
CO1-EF-04172018-01	PCB 174	pg/L		31.9		NBC,VIL,VJ,VIU
CO1-EF-04172018-01	PCB 177	pg/L		34.5		NBC,VIL,VJ,VIU
CO1-EF-04172018-01	PCB 180/193	pg/L	61.2	30.3		J,JA,NBC,VIL,VJ,VIU
CO1-EF-04172018-01	PCB 183/185	pg/L	01.2	33		NBC,VIL,VJ,VIU
CO1-EF-04172018-01	PCB 187	pg/L	36.9	16.1		J,NBC,VIL,VJ,VIU
CO1-EF-04172018-01	PCB 194	pg/L	50.5	22.2		VRIP,NBC,VIL,VJ
CO1-EF-04172018-01	PCB 195	pg/L		23.4		NBC,VIL,VJ,VIU
CO1-EF-04172018-01	PCB 201	pg/L		15		VRIU,NBC,VIL,VJ
CO1-EF-04172018-01	PCB 203	pg/L		21.2		NBC,VIL,VJ,VIU
CO1-EF-04172018-01	Total DiCB	pg/L		61.9		NBC,VIL,VJ
CO1-EF-04172018-01	Total HeptaCB	pg/L	98.1	16.1		NBC,VIL,VJ
CO1-EF-04172018-01	Total HexaCB	pg/L	187	11.4		VIP,NBC,VIL,VJ
CO1-EF-04172018-01	Total MonoCB	pg/L	107	19.9		NBC
CO1-EF-04172018-01	Total NonaCB	pg/L		19.9		NBC
CO1-EF-04172018-01	Total OctaCB	pg/L		15.5		VRIP,NBC,VIL,VJ
CO1-EF-04172018-01	Total PCBs	pg/L	383	11.4		VIP,NBC,VIL,VJ
CO1-EF-04172018-01	Total PentaCB	pg/L	97.4	23		J,NBC,VIL
CO1-EF-04172018-01	Total TetraCB	pg/L	5711	42.7		NBC,VIL
CO1-EF-04172018-01	Total TriCB	pg/L		84.4		NBC,VIL
CO2-EF-04172018-01	PCB 008	pg/L	35.5			J,NBC,VIL,VJ
CO2-EF-04172018-D	PCB 008	pg/L	10.9			J,NBC,VIL,VJ
CO2-EF-04172018-01	PCB 018/30	pg/L	14.9	5.25		J,NBC
CO2-EF-04172018-D	PCB 018/30	pg/L	9.84			J,NBC
CO2-EF-04172018-01	PCB 020/28	pg/L	20	13.2		J,JA,NBC
CO2-EF-04172018-D	PCB 020/28	pg/L	15.6	8.61		J,NBC
CO2-EF-04172018-01	PCB 021/33	pg/L		13.5		NBC
CO2-EF-04172018-D	PCB 021/33	pg/L		8.54		NBC
CO2-EF-04172018-01	PCB 031	pg/L	14.4			J,NBC
CO2-EF-04172018-D	PCB 031	pg/L		8.22		NBC
CO2-EF-04172018-01	PCB 044/47/65	pg/L	34.6	8.19		J,NBC,VIU
CO2-EF-04172018-D	PCB 044/47/65	pg/L	27.7	6.27		J,NBC,VIU
CO2-EF-04172018-01	PCB 049/69	pg/L	20.2	7.75		J,JA,NBC,VIU
CO2-EF-04172018-D	PCB 049/69	pg/L	9.7	6.09		J,NBC,VIU
CO2-EF-04172018-01	PCB 052	pg/L	38.7	7.98		J,NBC,VIL,VIU
CO2-EF-04172018-D	PCB 052	pg/L	20	6.72		J,NBC,VIL,VIU

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
CO2-EF-04172018-01	PCB 056	pg/L		17.3		NBC
CO2-EF-04172018-D	PCB 056	pg/L		4.36		NBC
CO2-EF-04172018-01	PCB 060	pg/L		16.5		NBC
CO2-EF-04172018-D	PCB 060	pg/L		4.03		NBC
CO2-EF-04172018-01	PCB 066	pg/L	15.4	6.89		J,NBC,VIU
CO2-EF-04172018-D	PCB 066	pg/L	7.41	4.39		J,NBC,VIU
CO2-EF-04172018-01	PCB 070/61/74/76	pg/L	32.3	7.21		J,NBC,VIL,VIU,VJ
CO2-EF-04172018-D	PCB 070/61/74/76	pg/L	18.2	4.76		J,JA,NBC,VIL,VIU,VJ
CO2-EF-04172018-01	PCB 083/99	pg/L	73.6	4.1		J,NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 083/99	pg/L	11.3	3.35		J,JA,NBC,VIL,VJ,VIU
CO2-EF-04172018-01	PCB 086/87/97/109/119/125	pg/L	38.1	3.58		J,NBC,VIL,VIU
CO2-EF-04172018-D	PCB 086/87/97/109/119/125	pg/L	22.2	2.87		J,NBC,VIL,VIU
CO2-EF-04172018-01	PCB 090/101/113	pg/L	60.7	3.56		J,NBC,VIL,VIU
CO2-EF-04172018-D	PCB 090/101/113	pg/L	22.1	2.95		J,NBC,VIL,VIU
CO2-EF-04172018-01	PCB 093/95/100	pg/L	44.5	3.08		J,NBC,VIL,VIU
CO2-EF-04172018-D	PCB 093/95/100	pg/L	15.9	3.61		J,NBC,VIL,VIU
CO2-EF-04172018-01	PCB 105	pg/L		12.7		NBC,VIU
CO2-EF-04172018-D	PCB 105	pg/L	7.29	4.52		J,JA,NBC,VIU
CO2-EF-04172018-01	PCB 110/115	pg/L	34	3.25		J,NBC
CO2-EF-04172018-D	PCB 110/115	pg/L	25.8	2.55		J,NBC
CO2-EF-04172018-01	PCB 118	pg/L	42.7	12		NBC,VIL
CO2-EF-04172018-D	PCB 118	pg/L	14.8	4.15		J,NBC,VIL
CO2-EF-04172018-01	PCB 128/166	pg/L	33	2.49		J,NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 128/166	pg/L	5.12	1.81	98	J,JA,NBC,VIL,VJ,VIU
CO2-EF-04172018-01	PCB 129/138/163	pg/L	367	3.43	192	VIP,NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 129/138/163	pg/L	36.1	2.6	195	IP,J,NBC,VIL,VJ,VIU
CO2-EF-04172018-01	PCB 132	pg/L	22.5	3.04		J,NBC,VIL,VIU
CO2-EF-04172018-D	PCB 132	pg/L	10.2	2.43		J,NBC,VIL,VIU
CO2-EF-04172018-01	PCB 135/151/154	pg/L	149	2.25	96	VRIU,NBC,VIL,VJ
CO2-EF-04172018-D	PCB 135/151/154	pg/L	11.8	2.28	98	VRIU,J,NBC,VIL,VJ
CO2-EF-04172018-01	PCB 141	pg/L	30.6	2.62	48	VRIU,J,NBC,VIL,VJ
CO2-EF-04172018-D	PCB 141	pg/L	5.88	1.98	49	VRIU,J,NBC,VIL,VJ
CO2-EF-04172018-01	PCB 147/149	pg/L	120	2.59	96	NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 147/149	pg/L	20.5	2.13	98	J,NBC,VIL,VJ,VIU
CO2-EF-04172018-01	PCB 153/168	pg/L	1190	2.22	96	VIP,NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 153/168	pg/L	24	1.71	98	VRIP,IP,J,NBC,VIL,VJ,VIU
CO2-EF-04172018-01	PCB 156/157	pg/L	19.1	8.29	38	J,NBC,VIU
CO2-EF-04172018-D	PCB 156/157	pg/L	5.08	3.9	39	J,JA,NBC,VIU
CO2-EF-04172018-01	PCB 158	pg/L	19.8	1.92		VRIU,J,NBC,VIL,VJ
CO2-EF-04172018-D	PCB 158	pg/L	3.24	1.4	49	VRIU,J,NBC,VIL,VJ
CO2-EF-04172018-01	PCB 170	pg/L	185	3.98	48	NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 170	pg/L	6.79	3.44	49	J,NBC,VIL,VJ,VIU
CO2-EF-04172018-01	PCB 174	pg/L	48.3	3.3		NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 174	pg/L	7.59	3.29	49	J,NBC,VIL,VJ,VIU
CO2-EF-04172018-01	PCB 177	pg/L	78	3.57	48	NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 177	pg/L	4.44	3.32	49	J,NBC,VIL,VJ,VIU

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
CO2-EF-04172018-01	PCB 180/193	pg/L	608	3.13	96	NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 180/193	pg/L	17.2	2.84	98	J,NBC,VIL,VJ,VIU
CO2-EF-04172018-01	PCB 183/185	pg/L	174	3.42	96	NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 183/185	pg/L	7.22	3.3	98	J,NBC,VIL,VJ,VIU
CO2-EF-04172018-01	PCB 187	pg/L	585	2.28	48	NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 187	pg/L	9.87	2.25	49	J,NBC,VIL,VJ,VIU
CO2-EF-04172018-01	PCB 194	pg/L	203	2.9	48	VIP,NBC,VIL,VJ
CO2-EF-04172018-D	PCB 194	pg/L	5.75	2.75	49	VRIP,IP,J,JA,NBC,VIL,VJ
CO2-EF-04172018-01	PCB 195	pg/L	51.3	3.04	48	NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 195	pg/L	3.92	2.79	49	J,NBC,VIL,VJ,VIU
CO2-EF-04172018-01	PCB 201	pg/L	20.8	1.95	48	VRIU,J,NBC,VIL,VJ
CO2-EF-04172018-D	PCB 201	pg/L		1.99	49	VRIU,NBC,VIL,VJ
CO2-EF-04172018-01	PCB 203	pg/L	87.7	2.76	48	NBC,VIL,VJ,VIU
CO2-EF-04172018-D	PCB 203	pg/L	5.23	2.57	49	J,NBC,VIL,VJ,VIU
CO2-EF-04172018-01	Total DiCB	pg/L	35.5	3.22	19	NBC,VIL,VJ
CO2-EF-04172018-D	Total DiCB	pg/L	10.9	1.78	20	J,NBC,VIL,VJ
CO2-EF-04172018-01	Total HeptaCB	pg/L	1500	2.28	19	NBC,VIL,VJ
CO2-EF-04172018-D	Total HeptaCB	pg/L	45.9	2.25	20	NBC,VIL,VJ
CO2-EF-04172018-01	Total HexaCB	pg/L	1950	1.92	19	VIP,NBC,VIL,VJ
CO2-EF-04172018-D	Total HexaCB	pg/L	122	1.4	20	VIP,NBC,VIL,VJ
CO2-EF-04172018-01	Total MonoCB	pg/L		19.2	19	NBC
CO2-EF-04172018-D	Total MonoCB	pg/L		19.5	20	NBC
CO2-EF-04172018-01	Total NonaCB	pg/L		19.2	19	NBC
CO2-EF-04172018-D	Total NonaCB	pg/L		19.5	20	NBC
CO2-EF-04172018-01	Total OctaCB	pg/L	362	1.95	19	VIP,NBC,VIL,VJ
CO2-EF-04172018-D	Total OctaCB	pg/L	14.9	1.99	20	VRIP,J,NBC,VIL,VJ
CO2-EF-04172018-01	Total PCBs	pg/L	4510	1.92	192	VIP,NBC,VIL,VJ
CO2-EF-04172018-D	Total PCBs	pg/L	429	1.4	195	VIP,NBC,VIL,VJ
CO2-EF-04172018-01	Total PentaCB	pg/L	294	3.08	192	NBC,VIL
CO2-EF-04172018-D	Total PentaCB	pg/L	119	2.55	195	J,NBC,VIL
CO2-EF-04172018-01	Total TetraCB	pg/L	141	6.89	192	J,NBC,VIL
CO2-EF-04172018-D	Total TetraCB	pg/L	83	4.03	195	J,NBC,VIL
CO2-EF-04172018-01	Total TriCB	pg/L	49.3	5.25	48	NBC,VIL
CO2-EF-04172018-D	Total TriCB	pg/L	25.4	5.62	49	J,NBC,VIL
CO3-EF-04172018-01	PCB 008	pg/L		25.7	48	NBC,VIL,VJ
CO3-EF-04172018-01	PCB 018/30	pg/L		42.9		NBC
CO3-EF-04172018-01	PCB 020/28	pg/L		54.9	55	NBC
CO3-EF-04172018-01	PCB 021/33	pg/L		56.4		NBC
CO3-EF-04172018-01	PCB 031	pg/L		51.6	52	NBC
CO3-EF-04172018-01	PCB 044/47/65	pg/L		53.2		NBC,VIU
CO3-EF-04172018-01	PCB 049/69	pg/L		50.4		NBC,VIU
CO3-EF-04172018-01	PCB 052	pg/L		51.9		NBC,VIL,VIU
CO3-EF-04172018-01	PCB 056	pg/L		26.5		NBC
CO3-EF-04172018-01	PCB 060	pg/L		25.2		NBC
CO3-EF-04172018-01	PCB 066	pg/L		44.8		NBC,VIU
CO3-EF-04172018-01	PCB 070/61/74/76	pg/L		46.9	194	NBC,VIL,VIU,VJ

Sample ID	Analyte Name	Unit Name	Result	MDL	RL	QA Code
CO3-EF-04172018-01	PCB 083/99	pg/L	Result	15.9		NBC,VIL,VJ,VIU
CO3-EF-04172018-01	PCB 086/87/97/109/119/125	pg/L		13.9		NBC,VIL,VIU
CO3-EF-04172018-01	PCB 090/101/113	pg/L	37.1	13.8		J,JA,NBC,VIL,VIU
CO3-EF-04172018-01	PCB 093/95/100	pg/L	07.1	23.4		NBC,VIL,VIU
CO3-EF-04172018-01	PCB 105	pg/L		16.9		NBC,VIU
CO3-EF-04172018-01	PCB 110/115	pg/L	54.1	12.6		J,NBC
CO3-EF-04172018-01	PCB 118	pg/L	38.7	17		NBC,VIL
CO3-EF-04172018-01	PCB 128/166	pg/L		8.58		NBC,VIL,VJ,VIU
CO3-EF-04172018-01	PCB 129/138/163	pg/L	69.9	11.9		IP,J,NBC,VIL,VJ,VIU
CO3-EF-04172018-01	PCB 132	pg/L	00.0	10.5		NBC,VIL,VIU
CO3-EF-04172018-01	PCB 135/151/154	pg/L	15.1	8.16		VRIU,J,JA,NBC,VIL,VJ
CO3-EF-04172018-01	PCB 141	pg/L		9.02		VRIU,NBC,VIL,VJ
CO3-EF-04172018-01	PCB 147/149	pg/L	17.9	8.91		J,JA,NBC,VIL,VJ,VIU
CO3-EF-04172018-01	PCB 153/168	pg/L	41.4	7.65		IP,J,NBC,VIL,VJ,VIU
CO3-EF-04172018-01	PCB 156/157	pg/L		11.9		NBC,VIU
CO3-EF-04172018-01	PCB 158	pg/L		6.6		VRIU,NBC,VIL,VJ
CO3-EF-04172018-01	PCB 170	pg/L	26			J,NBC,VIL,VJ,VIU
CO3-EF-04172018-01	PCB 174	pg/L	17.5	13.2		J,NBC,VIL,VJ,VIU
CO3-EF-04172018-01	PCB 177	pg/L		14.3		NBC,VIL,VJ,VIU
CO3-EF-04172018-01	PCB 180/193	pg/L	48.9	12.6		J,NBC,VIL,VJ,VIU
CO3-EF-04172018-01	PCB 183/185	pg/L		13.7		NBC,VIL,VJ,VIU
CO3-EF-04172018-01	PCB 187	pg/L	19.4	8.47		J,NBC,VIL,VJ,VIU
CO3-EF-04172018-01	PCB 194	pg/L	15.4	7.39		VRIP,IP,J,JA,NBC,VIL,VJ
CO3-EF-04172018-01	PCB 195	pg/L		7.77		NBC,VIL,VJ,VIU
CO3-EF-04172018-01	PCB 201	pg/L		4.98		VRIU,NBC,VIL,VJ
CO3-EF-04172018-01	PCB 203	pg/L	10	7.05		J,NBC,VIL,VJ,VIU
CO3-EF-04172018-01	Total DiCB	pg/L		25.7	26	NBC,VIL,VJ
CO3-EF-04172018-01	Total HeptaCB	pg/L	112	8.47		NBC,VIL,VJ
CO3-EF-04172018-01	Total HexaCB	pg/L	144	6.6		VIP,NBC,VIL,VJ
CO3-EF-04172018-01	Total MonoCB	pg/L		19.4	19	NBC
CO3-EF-04172018-01	Total NonaCB	pg/L		19.4	19	NBC
CO3-EF-04172018-01	Total OctaCB	pg/L	25.4	4.98	19	VRIP,NBC,VIL,VJ
CO3-EF-04172018-01	Total PCBs	pg/L	411	4.98	194	VIP,NBC,VIL,VJ
CO3-EF-04172018-01	Total PentaCB	pg/L	130	12.6	194	J,NBC,VIL
CO3-EF-04172018-01	Total TetraCB	pg/L		25.2	194	NBC,VIL
CO3-EF-04172018-01	Total TriCB	pg/L		42.9	48	NBC,VIL
CO4-EF-04172018-01	PCB 008	pg/L	27.9	2.36		J,NBC,VIL,VJ
CO4-EF-04172018-01	PCB 018/30	pg/L	35.8	5.41	48	J,NBC
CO4-EF-04172018-01	PCB 020/28	pg/L	34.3	7.76	48	J,NBC
CO4-EF-04172018-01	PCB 021/33	pg/L	19.5	7.96	48	J,NBC
CO4-EF-04172018-01	PCB 031	pg/L	27.9	7.29	48	J,NBC
CO4-EF-04172018-01	PCB 044/47/65	pg/L	37.8	8.16	97	J,NBC,VIU
CO4-EF-04172018-01	PCB 049/69	pg/L	16.9	7.72	97	J,NBC,VIU
CO4-EF-04172018-01	PCB 052	pg/L	33.8	7.96	48	J,JA,NBC,VIL,VIU
CO4-EF-04172018-01	PCB 056	pg/L	12.1	6.33	48	J,NBC
CO4-EF-04172018-01	PCB 060	pg/L		6.02	48	NBC

		Unit				
Sample ID	Analyte Name	Name		MDL	RL	QA Code
CO4-EF-04172018-01	PCB 066	pg/L	19.7	6.86		J,NBC,VIU
CO4-EF-04172018-01	PCB 070/61/74/76	pg/L	43.3	7.19		J,NBC,VIL,VIU,VJ
CO4-EF-04172018-01	PCB 083/99	pg/L	17.8	2.99		J,JA,NBC,VIL,VJ,VIU
CO4-EF-04172018-01	PCB 086/87/97/109/119/125	pg/L	31.6	2.61		J,NBC,VIL,VIU
CO4-EF-04172018-01	PCB 090/101/113	pg/L	38.5	2.59		J,NBC,VIL,VIU
CO4-EF-04172018-01	PCB 093/95/100	pg/L	29.1	4.92		J,NBC,VIL,VIU
CO4-EF-04172018-01	PCB 105	pg/L	16	4.73		J,NBC,VIU
CO4-EF-04172018-01	PCB 110/115	pg/L	49.7	2.37		J,NBC
CO4-EF-04172018-01	PCB 118	pg/L	29.7	4.35		NBC,VIL
CO4-EF-04172018-01	PCB 128/166	pg/L	6.79	3.24		J,JA,NBC,VIL,VJ,VIU
CO4-EF-04172018-01	PCB 129/138/163	pg/L	63.2	4.46	193	IP,J,NBC,VIL,VJ,VIU
CO4-EF-04172018-01	PCB 132	pg/L	14	3.95	48	J,NBC,VIL,VIU
CO4-EF-04172018-01	PCB 135/151/154	pg/L	15.2	2.51		VRIU,J,NBC,VIL,VJ
CO4-EF-04172018-01	PCB 141	pg/L	8.6	3.4		VRIU,J,NBC,VIL,VJ
CO4-EF-04172018-01	PCB 147/149	pg/L	31.1	3.36	97	J,NBC,VIL,VJ,VIU
CO4-EF-04172018-01	PCB 153/168	pg/L	51.6	2.89	97	IP,J,NBC,VIL,VJ,VIU
CO4-EF-04172018-01	PCB 156/157	pg/L	7.15	6.26	39	J,NBC,VIU
CO4-EF-04172018-01	PCB 158	pg/L	4.99	2.49	48	VRIU,J,NBC,VIL,VJ
CO4-EF-04172018-01	PCB 170	pg/L	11.9	4.86	48	J,NBC,VIL,VJ,VIU
CO4-EF-04172018-01	PCB 174	pg/L	10.8	4.03	48	J,NBC,VIL,VJ,VIU
CO4-EF-04172018-01	PCB 177	pg/L	6.01	4.35	48	J,JA,NBC,VIL,VJ,VIU
CO4-EF-04172018-01	PCB 180/193	pg/L	33.1	3.82	97	J,NBC,VIL,VJ,VIU
CO4-EF-04172018-01	PCB 183/185	pg/L	12.6	4.17	97	J,NBC,VIL,VJ,VIU
CO4-EF-04172018-01	PCB 187	pg/L	23.7	3.17	48	J,NBC,VIL,VJ,VIU
CO4-EF-04172018-01	PCB 194	pg/L	10.6	3.59	48	VRIP,IP,J,NBC,VIL,VJ
CO4-EF-04172018-01	PCB 195	pg/L		3.77	48	NBC,VIL,VJ,VIU
CO4-EF-04172018-01	PCB 201	pg/L		2.42	48	VRIU,NBC,VIL,VJ
CO4-EF-04172018-01	PCB 203	pg/L	6.36	3.42	48	J,JA,NBC,VIL,VJ,VIU
CO4-EF-04172018-01	Total DiCB	pg/L	27.9	2.36	19	NBC,VIL,VJ
CO4-EF-04172018-01	Total HeptaCB	pg/L	85.6	3.17	19	NBC,VIL,VJ
CO4-EF-04172018-01	Total HexaCB	pg/L	203	2.49	19	VIP,NBC,VIL,VJ
CO4-EF-04172018-01	Total MonoCB	pg/L		19.3	19	NBC
CO4-EF-04172018-01	Total NonaCB	pg/L		19.3	19	NBC
CO4-EF-04172018-01	Total OctaCB	pg/L	16.9	2.42	19	VRIP,J,NBC,VIL,VJ
CO4-EF-04172018-01	Total PCBs	pg/L	839	2.36	193	VIP,NBC,VIL,VJ
CO4-EF-04172018-01	Total PentaCB	pg/L	212	2.37	193	NBC,VIL
CO4-EF-04172018-01	Total TetraCB	pg/L	164	6.02	193	J,NBC,VIL
CO4-EF-04172018-01	Total TriCB	pg/L	117	5.41	48	NBC,VIL
CO5-EF-04172018-01	PCB 008	pg/L	19.6	1.35	49	J,NBC,VIL,VJ
CO5-EF-04172018-01	PCB 018/30	pg/L	27.1	2.91		J,NBC
CO5-EF-04172018-01	PCB 020/28	pg/L	33.9	3.59	49	J,NBC
CO5-EF-04172018-01	PCB 021/33	pg/L	16	3.69	49	J,JA,NBC
CO5-EF-04172018-01	PCB 031	pg/L	24.3	3.38		J,NBC
CO5-EF-04172018-01	PCB 044/47/65	pg/L	30.5	5.41		J,NBC,VIU
CO5-EF-04172018-01	PCB 049/69	pg/L	14.2	5.12		J,NBC,VIU
CO5-EF-04172018-01	PCB 052	pg/L	29.9	5.28		J,NBC,VIL,VIU

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
CO5-EF-04172018-01	PCB 056	pg/L	8.04	5		J,NBC
CO5-EF-04172018-01	PCB 060	pg/L		4.76		NBC
CO5-EF-04172018-01	PCB 066	pg/L	15.1	4.55		J,NBC,VIU
CO5-EF-04172018-01	PCB 070/61/74/76	pg/L	33.1	4.76		J,NBC,VIL,VIU,VJ
CO5-EF-04172018-01	PCB 083/99	pg/L	13.6	2.87		J,NBC,VIL,VJ,VIU
CO5-EF-04172018-01	PCB 086/87/97/109/119/125	pg/L	23.9	2.51		J,NBC,VIL,VIU
CO5-EF-04172018-01	PCB 090/101/113	pg/L	28.1	2.49		J,NBC,VIL,VIU
CO5-EF-04172018-01	PCB 093/95/100	pg/L	19.9	2.66		J,NBC,VIL,VIU
CO5-EF-04172018-01	PCB 105	pg/L	11.6	4.63		J,NBC,VIU
CO5-EF-04172018-01	PCB 110/115	pg/L	30.8	2.28		J,NBC
CO5-EF-04172018-01	PCB 118	pg/L	20.6	4.24		JA,NBC,VIL
CO5-EF-04172018-01	PCB 128/166	pg/L	5.1	2.12		J,NBC,VIL,VJ,VIU
CO5-EF-04172018-01	PCB 129/138/163	pg/L	38.2	2.92		IP,J,NBC,VIL,VJ,VIU
CO5-EF-04172018-01	PCB 132	pg/L	8.85	2.58		J,JA,NBC,VIL,VIU
CO5-EF-04172018-01	PCB 135/151/154	pg/L	7.19	1.59		VRIU,J,NBC,VIL,VJ
CO5-EF-04172018-01	PCB 141	pg/L	4.64	2.23		VRIU,J,NBC,VIL,VJ
CO5-EF-04172018-01	PCB 147/149	pg/L	20	2.2		J,NBC,VIL,VJ,VIU
CO5-EF-04172018-01	PCB 153/168	pg/L	24.8	1.89		VRIP,IP,J,NBC,VIL,VJ,VIU
CO5-EF-04172018-01	PCB 156/157	pg/L	4.32	3.83		J,NBC,VIU
CO5-EF-04172018-01	PCB 158	pg/L	2.76	1.63		VRIU,J,JA,NBC,VIL,VJ
CO5-EF-04172018-01	PCB 170	pg/L	6.83	2.82	49	J,JA,NBC,VIL,VJ,VIU
CO5-EF-04172018-01	PCB 174	pg/L	7.9	2.34	49	J,NBC,VIL,VJ,VIU
CO5-EF-04172018-01	PCB 177	pg/L	4.04	2.52	49	J,NBC,VIL,VJ,VIU
CO5-EF-04172018-01	PCB 180/193	pg/L	20.6	2.22	98	J,NBC,VIL,VJ,VIU
CO5-EF-04172018-01	PCB 183/185	pg/L	7.29	2.42	98	J,NBC,VIL,VJ,VIU
CO5-EF-04172018-01	PCB 187	pg/L	12	1.63	49	J,NBC,VIL,VJ,VIU
CO5-EF-04172018-01	PCB 194	pg/L	6.34	2.15		VRIP,IP,J,NBC,VIL,VJ
CO5-EF-04172018-01	PCB 195	pg/L		2.25		NBC,VIL,VJ,VIU
CO5-EF-04172018-01	PCB 201	pg/L		1.45	49	VRIU,NBC,VIL,VJ
CO5-EF-04172018-01	PCB 203	pg/L	5.01	2.05	49	J,NBC,VIL,VJ,VIU
CO5-EF-04172018-01	Total DiCB	pg/L	19.6	1.35	20	J,NBC,VIL,VJ
CO5-EF-04172018-01	Total HeptaCB	pg/L	51.4	1.63	20	NBC,VIL,VJ
CO5-EF-04172018-01	Total HexaCB	pg/L	116	1.59		VIP,NBC,VIL,VJ
CO5-EF-04172018-01	Total MonoCB	pg/L		19.7	20	NBC
CO5-EF-04172018-01	Total NonaCB	pg/L		19.7	20	NBC
CO5-EF-04172018-01	Total OctaCB	pg/L	11.3	1.45	20	VRIP,J,NBC,VIL,VJ
CO5-EF-04172018-01	Total PCBs	pg/L	586	1.35	197	VIP,NBC,VIL,VJ
CO5-EF-04172018-01	Total PentaCB	pg/L	149	2.28	197	J,NBC,VIL
CO5-EF-04172018-01	Total TetraCB	pg/L	131	4.55	197	J,NBC,VIL
CO5-EF-04172018-01	Total TriCB	pg/L	101	2.91	49	NBC,VIL
CO6-EF-04172018-01	PCB 008	pg/L	43.7	3.44	48	J,NBC,VIL,VJ
CO6-EF-04172018-01	PCB 018/30	pg/L	49.8	7.74	48	NBC
CO6-EF-04172018-01	PCB 020/28	pg/L	48.2	11.1	48	NBC
CO6-EF-04172018-01	PCB 021/33	pg/L	27.8	11.4	48	J,NBC
CO6-EF-04172018-01	PCB 031	pg/L	37.8	10.5	48	J,NBC
CO6-EF-04172018-01	PCB 044/47/65	pg/L	47.9	13.9	96	J,NBC,VIU

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
CO6-EF-04172018-01	PCB 049/69	pg/L	20.2	13.2		J,JA,NBC,VIU
CO6-EF-04172018-01	PCB 052	pg/L	49.5	13.6		NBC,VIL,VIU
CO6-EF-04172018-01	PCB 056	pg/L	14.5	11.4		J,NBC
CO6-EF-04172018-01	PCB 060	pg/L		10.9		NBC
CO6-EF-04172018-01	PCB 066	pg/L	23.7	11.7		J,NBC,VIU
CO6-EF-04172018-01	PCB 070/61/74/76	pg/L	53.5	12.3		J,NBC,VIL,VIU,VJ
CO6-EF-04172018-01	PCB 083/99	pg/L	23.4	6.28		J,JA,NBC,VIL,VJ,VIU
CO6-EF-04172018-01	PCB 086/87/97/109/119/125	pg/L	37.7	5.49		J,NBC,VIL,VIU
CO6-EF-04172018-01	PCB 090/101/113	pg/L	47.3	5.45		J,NBC,VIL,VIU
CO6-EF-04172018-01	PCB 093/95/100	pg/L	29.5	8.33		J,NBC,VIL,VIU
CO6-EF-04172018-01	PCB 105	pg/L	15	7.25		J,NBC,VIU
CO6-EF-04172018-01	PCB 110/115	pg/L	53.5	4.98		J,NBC
CO6-EF-04172018-01	PCB 118	pg/L	35	6.82		NBC,VIL
CO6-EF-04172018-01	PCB 128/166	pg/L	8.2	3.23		J,JA,NBC,VIL,VJ,VIU
CO6-EF-04172018-01	PCB 129/138/163	pg/L	71.8	4.45		IP,J,NBC,VIL,VJ,VIU
CO6-EF-04172018-01	PCB 132	pg/L	14	3.94	48	J,JA,NBC,VIL,VIU
CO6-EF-04172018-01	PCB 135/151/154	pg/L	16.5	3.43		VRIU,J,NBC,VIL,VJ
CO6-EF-04172018-01	PCB 141	pg/L	10.9	3.4		VRIU,J,NBC,VIL,VJ
CO6-EF-04172018-01	PCB 147/149	pg/L	34.4	3.36	96	J,NBC,VIL,VJ,VIU
CO6-EF-04172018-01	PCB 153/168	pg/L	44.2	2.88	96	IP,J,NBC,VIL,VJ,VIU
CO6-EF-04172018-01	PCB 156/157	pg/L		7.1		NBC,VIU
CO6-EF-04172018-01	PCB 158	pg/L	5.53	2.49		VRIU,J,NBC,VIL,VJ
CO6-EF-04172018-01	PCB 170	pg/L	10.7	7.54	48	J,NBC,VIL,VJ,VIU
CO6-EF-04172018-01	PCB 174	pg/L	11.6	6.25	48	J,NBC,VIL,VJ,VIU
CO6-EF-04172018-01	PCB 177	pg/L	6.75	6.75	48	J,JA,NBC,VIL,VJ,VIU
CO6-EF-04172018-01	PCB 180/193	pg/L	33.5	5.93	96	J,NBC,VIL,VJ,VIU
CO6-EF-04172018-01	PCB 183/185	pg/L	8.35	6.47	96	J,JA,NBC,VIL,VJ,VIU
CO6-EF-04172018-01	PCB 187	pg/L	17	3.17	48	J,NBC,VIL,VJ,VIU
CO6-EF-04172018-01	PCB 194	pg/L	8.43	5.44	48	VRIP,IP,J,JA,NBC,VIL,VJ
CO6-EF-04172018-01	PCB 195	pg/L		5.71	48	NBC,VIL,VJ,VIU
CO6-EF-04172018-01	PCB 201	pg/L		3.66	48	VRIU,NBC,VIL,VJ
CO6-EF-04172018-01	PCB 203	pg/L		5.18	48	NBC,VIL,VJ,VIU
CO6-EF-04172018-01	Total DiCB	pg/L	43.7	3.44	19	NBC,VIL,VJ
CO6-EF-04172018-01	Total HeptaCB	pg/L	79.6	3.17	19	NBC,VIL,VJ
CO6-EF-04172018-01	Total HexaCB	pg/L	206	2.49		VIP,NBC,VIL,VJ
CO6-EF-04172018-01	Total MonoCB	pg/L		19.2	19	NBC
CO6-EF-04172018-01	Total NonaCB	pg/L		19.2	19	NBC
CO6-EF-04172018-01	Total OctaCB	pg/L	8.43	3.66	19	VRIP,J,NBC,VIL,VJ
CO6-EF-04172018-01	Total PCBs	pg/L	960	2.49	192	VIP,NBC,VIL,VJ
CO6-EF-04172018-01	Total PentaCB	pg/L	241	4.98	192	NBC,VIL
CO6-EF-04172018-01	Total TetraCB	pg/L	209	10.9	192	NBC,VIL
CO6-EF-04172018-01	Total TriCB	pg/L	164	7.74	48	NBC,VIL
TW6-IN-04172018-01	PCB 008	pg/L	35.9	3.61	55	J,NBC,VIL,VJ
TW6-IN-04172018-01	PCB 018/30	pg/L	47	6.31	55	J,NBC
TW6-IN-04172018-01	PCB 020/28	pg/L	176	8.1	55	NBC
TW6-IN-04172018-01	PCB 021/33	pg/L	71	8.31	55	NBC

	Unit Unit Deput Anglete Name					
Sample ID TW6-IN-04172018-01	Analyte Name PCB 031	Name		MDL 7.61	RL	QA Code NBC
		pg/L	107			
TW6-IN-04172018-01 TW6-IN-04172018-01	PCB 044/47/65 PCB 049/69	pg/L	222 107	10.5 9.88		NBC,VIU J,NBC,VIU
	PCB 049/69 PCB 052	pg/L	282			
TW6-IN-04172018-01 TW6-IN-04172018-01	PCB 052 PCB 056	pg/L	91	10.2 6.89		NBC,VIL,VIU NBC
TW6-IN-04172018-01	PCB 050 PCB 060	pg/L	43.4	6.56		J,NBC
TW6-IN-04172018-01	PCB 060 PCB 066	pg/L	43.4	6.56 8.78		
TW6-IN-04172018-01	PCB 000 PCB 070/61/74/76	pg/L	377	8.78 9.19		NBC,VIU NBC,VIL,VIU,VJ
TW6-IN-04172018-01	PCB 070/01/74/70 PCB 083/99	pg/L	205	5.09		NBC,VIL,VI,VI
TW6-IN-04172018-01	PCB 085/99 PCB 086/87/97/109/119/125	pg/L	338	4.44		NBC,VIL,VIU
TW6-IN-04172018-01	PCB 080/87/97/109/119/125	pg/L	437	4.44		NBC,VIL,VIU
TW6-IN-04172018-01	PCB 093/95/100	pg/L	302	4.42		NBC,VIL,VIU
	PCB 105	pg/L				
TW6-IN-04172018-01 TW6-IN-04172018-01		pg/L	228 630	2.88 4.03		NBC,VIU NBC
TW6-IN-04172018-01	PCB 110/115 PCB 118	pg/L	454	4.03 2.64		NBC,VIL
TW6-IN-04172018-01		pg/L		2.04		NBC,VIL NBC,VIL,VJ,VIU
TW6-IN-04172018-01	PCB 128/166 PCB 129/138/163	pg/L	138 1180	3.41		VIP,NBC,VIL,VJ,VIU
TW6-IN-04172018-01	PCB 129/138/103	pg/L	256	3.01		NBC,VIL,VIU
TW6-IN-04172018-01	PCB 132 PCB 135/151/154	pg/L	193	2.25		VRIU,NBC,VIL,VJ
TW6-IN-04172018-01	PCB 135/131/134 PCB 141	pg/L	195	2.25		
TW6-IN-04172018-01	PCB 141 PCB 147/149	pg/L	512	2.57		VRIU,NBC,VIL,VJ NBC,VIL,VJ,VIU
TW6-IN-04172018-01	PCB 147/149 PCB 153/168	pg/L	664	2.57		VIP,NBC,VIL,VJ,VIU
TW6-IN-04172018-01		pg/L		6.21		
TW6-IN-04172018-01	PCB 156/157 PCB 158	pg/L	109 87.7	6.21 1.9		NBC,VIU VRIU,NBC,VIL,VJ
TW6-IN-04172018-01	PCB 158 PCB 170	pg/L	285	6.02		
TW6-IN-04172018-01	PCB 170	pg/L	285	4.99		NBC,VIL,VJ,VIU NBC,VIL,VJ,VIU
TW6-IN-04172018-01	PCB 174 PCB 177	pg/L		4.99 5.39		
TW6-IN-04172018-01		pg/L	150			NBC,VIL,VJ,VIU
TW6-IN-04172018-01	PCB 180/193	pg/L	668	4.73 5.17		NBC,VIL,VJ,VIU
	PCB 183/185	pg/L	188			NBC,VIL,VJ,VIU
TW6-IN-04172018-01	PCB 187	pg/L	321	2.6		NBC,VIL,VJ,VIU
TW6-IN-04172018-01	PCB 194	pg/L	160			IP,NBC,VIL,VJ
TW6-IN-04172018-01	PCB 195	pg/L	55.9	4.15		NBC,VIL,VJ,VIU
TW6-IN-04172018-01	PCB 201	pg/L	22.9	2.66		VRIU,J,NBC,VIL,VJ
TW6-IN-04172018-01 TW6-IN-04172018-01	PCB 203	pg/L	134	3.76		NBC,VIL,VJ,VIU
	Total DiCB	pg/L	35.9	3.61		NBC,VIL,VJ
TW6-IN-04172018-01 TW6-IN-04172018-01	Total HeptaCB	pg/L	1670	2.6		NBC,VIL,VJ VIP,NBC,VIL,VJ
TW6-IN-04172018-01	Total HexaCB Total MonoCB	pg/L	3310	1.9		
TW6-IN-04172018-01 TW6-IN-04172018-01	Total NonaCB	pg/L		21.8 21.8		NBC NBC
TW6-IN-04172018-01	Total OctaCB	pg/L	272			
TW6-IN-04172018-01	Total PCBs	pg/L	373 9860	2.66 1.9		VIP,NBC,VIL,VJ
TW6-IN-04172018-01	Total PentaCB	pg/L	2590	2.64		VIP,NBC,VIL,VJ NBC,VIL
TW6-IN-04172018-01	Total TetraCB	pg/L	1300	2.64 6.56		NBC,VIL
TW6-IN-04172018-01	Total TriCB	pg/L	401	6.31		NBC,VIL
CO4-EF-04192018-01	PCB 008	pg/L	37.8	1.74		J,NBC,VIL,VJ
CO4-EF-04192018-01	PCB 008 PCB 018/30	pg/L				
CO4-EF-04192018-01	rub 018/30	pg/L	38	4.44	48	J,NBC

		Unit						
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code		
CO4-EF-04192018-01	PCB 020/28	pg/L	36.1	8.56	48	J,NBC		
CO4-EF-04192018-01	PCB 021/33	pg/L	24.1	8.53		J,JA,NBC		
CO4-EF-04192018-01	PCB 031	pg/L	33.5	7.91		J,NBC		
CO4-EF-04192018-01	PCB 044/47/65	pg/L	47.2	4.23		J,NBC,VIU		
CO4-EF-04192018-01	PCB 049/69	pg/L	24.9	3.97		J,NBC,VIU		
CO4-EF-04192018-01	PCB 052	pg/L	66.1	4.18		NBC,VIL,VIU		
CO4-EF-04192018-01	PCB 056	pg/L		12.3		NBC		
CO4-EF-04192018-01	PCB 060	pg/L		12.1		NBC		
CO4-EF-04192018-01	PCB 066	pg/L	17.7	3.27		J,NBC,VIU		
CO4-EF-04192018-01	PCB 070/61/74/76	pg/L	45.9	3.52		J,NBC,VIL,VIU,VJ		
CO4-EF-04192018-01	PCB 083/99	pg/L	21.5	4.34		J,JA,NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	PCB 086/87/97/109/119/125	pg/L	30.2	3.8	192	J,JA,NBC,VIL,VIU		
CO4-EF-04192018-01	PCB 090/101/113	pg/L	43	3.75		J,NBC,VIL,VIU		
CO4-EF-04192018-01	PCB 093/95/100	pg/L	36.4	3.18	192	J,NBC,VIL,VIU		
CO4-EF-04192018-01	PCB 105	pg/L	10	6.39		J,NBC,VIU		
CO4-EF-04192018-01	PCB 110/115	pg/L	41.8	3.47	96	J,NBC		
CO4-EF-04192018-01	PCB 118	pg/L	22.9	5.91	19	JA,NBC,VIL		
CO4-EF-04192018-01	PCB 128/166	pg/L	6.91	4.6		J,NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	PCB 129/138/163	pg/L	47.5	5.99	192	J,NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	PCB 132	pg/L	11	5.47	48	J,NBC,VIL,VIU		
CO4-EF-04192018-01	PCB 135/151/154	pg/L	15	2.55	96	VRIU,J,NBC,VIL,VJ		
CO4-EF-04192018-01	PCB 141	pg/L	5.69	4.62	48	VRIU,J,JA,NBC,VIL,VJ		
CO4-EF-04192018-01	PCB 147/149	pg/L	24.5	4.54	96	J,NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	PCB 153/168	pg/L	36	3.94	96	IP,J,NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	PCB 156/157	pg/L		6.32	38	NBC,VIU		
CO4-EF-04192018-01	PCB 158	pg/L		3.46	48	VRIU,NBC,VIL,VJ		
CO4-EF-04192018-01	PCB 170	pg/L		5.97	48	NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	PCB 174	pg/L	8.3	4.49	48	J,NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	PCB 177	pg/L		4.84	48	NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	PCB 180/193	pg/L	20.4	4.47	96	J,NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	PCB 183/185	pg/L	9.78	4.39	96	J,NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	PCB 187	pg/L	11.1	2.53	48	J,JA,NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	PCB 194	pg/L	8.43	5.4	48	J,NBC,VIL,VJ		
CO4-EF-04192018-01	PCB 195	pg/L		4.61	48	NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	PCB 201	pg/L		2.31	48	VRIU,NBC,VIL,VJ		
CO4-EF-04192018-01	PCB 203	pg/L		3.81	48	NBC,VIL,VJ,VIU		
CO4-EF-04192018-01	Total DiCB	pg/L	37.8	1.74	19	NBC,VIL,VJ		
CO4-EF-04192018-01	Total HeptaCB	pg/L	39.8	2.53		NBC,VIL,VJ		
CO4-EF-04192018-01	Total HexaCB	pg/L	147	2.55		VIP,NBC,VIL,VJ		
CO4-EF-04192018-01	Total MonoCB	pg/L		19.2	19	NBC		
CO4-EF-04192018-01	Total NonaCB	pg/L		19.2	19	NBC		
CO4-EF-04192018-01	Total OctaCB	pg/L	8.43	2.31		J,NBC,VIL,VJ		
CO4-EF-04192018-01	Total PCBs	pg/L	782	1.74	192	VIP,NBC,VIL,VJ		
CO4-EF-04192018-01	Total PentaCB	pg/L	206	3.18	192	NBC,VIL		
CO4-EF-04192018-01	Total TetraCB	pg/L	202	3.27		NBC,VIL		
CO4-EF-04192018-01	Total TriCB	pg/L	132	4.44	48	NBC,VIL		

		Unit							
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code			
TW2-IN-04192018-01	PCB 008	pg/L	19.9	2.59	48	J,NBC,VIL,VJ			
TW2-IN-04192018-01	PCB 018/30	pg/L	49.1	7.77	48	NBC			
TW2-IN-04192018-01	PCB 020/28	pg/L	91.5	6.35	48	NBC			
TW2-IN-04192018-01	PCB 021/33	pg/L	37.1	6.33	48	J,NBC			
TW2-IN-04192018-01	PCB 031	pg/L	74.5	5.87	48	NBC			
TW2-IN-04192018-01	PCB 044/47/65	pg/L	115	5.83	96	NBC,VIU			
TW2-IN-04192018-01	PCB 049/69	pg/L	55.8	5.47	96	J,NBC,VIU			
TW2-IN-04192018-01	PCB 052	pg/L	125	5.76	48	NBC,VIL,VIU			
TW2-IN-04192018-01	PCB 056	pg/L	39.2	5.48		J,NBC			
TW2-IN-04192018-01	PCB 060	pg/L	20.6	5.37	48	J,JA,NBC			
TW2-IN-04192018-01	PCB 066	pg/L	63.3	4.51	48	NBC,VIU			
TW2-IN-04192018-01	PCB 070/61/74/76	pg/L	136	4.85	192	J,NBC,VIL,VIU,VJ			
TW2-IN-04192018-01	PCB 083/99	pg/L	50.3	5.21	96	J,NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	PCB 086/87/97/109/119/125	pg/L	67.6	4.56	192	J,NBC,VIL,VIU			
TW2-IN-04192018-01	PCB 090/101/113	pg/L	74.4	4.51	192	J,NBC,VIL,VIU			
TW2-IN-04192018-01	PCB 093/95/100	pg/L	58.4	5.1	192	J,NBC,VIL,VIU			
TW2-IN-04192018-01	PCB 105	pg/L	35.6	4.34	19	NBC,VIU			
TW2-IN-04192018-01	PCB 110/115	pg/L	105	4.16	96	NBC			
TW2-IN-04192018-01	PCB 118	pg/L	66.3	4.03	19	NBC,VIL			
TW2-IN-04192018-01	PCB 128/166	pg/L	17.8	4.24	96	J,NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	PCB 129/138/163	pg/L	150	5.53	192	J,NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	PCB 132	pg/L	29.4	5.05	48	J,NBC,VIL,VIU			
TW2-IN-04192018-01	PCB 135/151/154	pg/L	34.3	3.07	96	VRIU,J,NBC,VIL,VJ			
TW2-IN-04192018-01	PCB 141	pg/L	15.7	4.26	48	VRIU,J,JA,NBC,VIL,VJ			
TW2-IN-04192018-01	PCB 147/149	pg/L	52.2	4.19	96	J,NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	PCB 153/168	pg/L	171	3.64	96	VIP,NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	PCB 156/157	pg/L	13.9	6.31	38	J,NBC,VIU			
TW2-IN-04192018-01	PCB 158	pg/L	8.3	3.2	48	VRIU,J,JA,NBC,VIL,VJ			
TW2-IN-04192018-01	PCB 170	pg/L	38	7.21	48	J,NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	PCB 174	pg/L	18.1	5.42	48	J,NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	PCB 177	pg/L	16.2	5.85	48	J,JA,NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	PCB 180/193	pg/L	88.8	5.4	96	J,NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	PCB 183/185	pg/L	24.5	5.3	96	J,JA,NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	PCB 187	pg/L	73.2	3.48	48	NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	PCB 194	pg/L	32.7	6.48	48	J,NBC,VIL,VJ			
TW2-IN-04192018-01	PCB 195	pg/L	8.1	5.53	48	J,JA,NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	PCB 201	pg/L	3.5	2.78	48	VRIU,J,NBC,VIL,VJ			
TW2-IN-04192018-01	РСВ 203	pg/L	17.9	4.57	48	J,NBC,VIL,VJ,VIU			
TW2-IN-04192018-01	Total DiCB	pg/L	19.9	2.59	19	NBC,VIL,VJ			
TW2-IN-04192018-01	Total HeptaCB	pg/L	234	3.48	19	NBC,VIL,VJ			
TW2-IN-04192018-01	Total HexaCB	pg/L	493	3.07	19	VIP,NBC,VIL,VJ			
TW2-IN-04192018-01	Total MonoCB	pg/L		19.2	19	NBC			
TW2-IN-04192018-01	Total NonaCB	pg/L		19.2		NBC			
TW2-IN-04192018-01	Total OctaCB	pg/L	62.2	2.78	19	NBC,VIL,VJ			
TW2-IN-04192018-01	Total PCBs	pg/L	2100	2.59	192	VIP,NBC,VIL,VJ			
TW2-IN-04192018-01	Total PentaCB	pg/L	458	4.03	192	NBC,VIL			

		Unit				
Sample ID	Analyte Name		Result		RL	QA Code
TW2-IN-04192018-01	Total TetraCB	pg/L	556	4.51		NBC,VIL
TW2-IN-04192018-01	Total TriCB	pg/L	252	5.87		NBC,VIL
CO1-EF-05092018-01	PCB 008	pg/L	31.9	7.11		J,NBC,VIL,VJ
CO1-EF-05092018-01	PCB 018/30	pg/L	18.9	9.26		J,NBC
CO1-EF-05092018-01	PCB 020/28	pg/L	23.1	10.9		J,JA,NBC
CO1-EF-05092018-01	PCB 021/33	pg/L	27.4	11.1		J,NBC
CO1-EF-05092018-01	PCB 031	pg/L		10.2		NBC
CO1-EF-05092018-01	PCB 044/47/65	pg/L	23.3	12.4		J,JA,NBC,VIU
CO1-EF-05092018-01	PCB 049/69	pg/L		11.7		NBC,VIU
CO1-EF-05092018-01	PCB 052	pg/L	21	12.1		J,NBC,VIL,VIU
CO1-EF-05092018-01	PCB 056	pg/L		19.4		NBC
CO1-EF-05092018-01	PCB 060	pg/L		19.4		NBC
CO1-EF-05092018-01	PCB 066	pg/L		10.5		NBC,VIU
CO1-EF-05092018-01	PCB 070/61/74/76	pg/L	105	43.6		J,NBC,VIL,VIU,VJ
CO1-EF-05092018-01	PCB 083/99	pg/L	13.3	6.37		J,JA,NBC,VIL,VJ,VIU
CO1-EF-05092018-01	PCB 086/87/97/109/119/125	pg/L	25.5	5.66	191	J,NBC,VIL,VIU
CO1-EF-05092018-01	PCB 090/101/113	pg/L	27.1	5.52	191	J,NBC,VIL,VIU
CO1-EF-05092018-01	PCB 093/95/100	pg/L	32.6	4.44		J,NBC,VIL,VIU
CO1-EF-05092018-01	PCB 105	pg/L		11.8	19	NBC,VIU
CO1-EF-05092018-01	PCB 110/115	pg/L	48.9	5.19	96	J,NBC
CO1-EF-05092018-01	PCB 118	pg/L	12.5	10.8	19	J,NBC,VIL
CO1-EF-05092018-01	PCB 128/166	pg/L	9.24	4.56	96	J,NBC,VIL,VJ,VIU
CO1-EF-05092018-01	PCB 129/138/163	pg/L	50	4.98	191	J,NBC,VIL,VJ,VIU
CO1-EF-05092018-01	PCB 132	pg/L	14.1	5.15	48	J,NBC,VIL,VIU
CO1-EF-05092018-01	PCB 135/151/154	pg/L	14.6	3.33	96	VRIU,J,NBC,VIL,VJ
CO1-EF-05092018-01	PCB 141	pg/L	7.76	4.62	48	VRIU,J,JA,NBC,VIL,VJ
CO1-EF-05092018-01	PCB 147/149	pg/L	26.6	4.19	96	J,NBC,VIL,VJ,VIU
CO1-EF-05092018-01	PCB 153/168	pg/L	32.7	3.92	96	J,NBC,VIL,VJ,VIU
CO1-EF-05092018-01	PCB 156/157	pg/L		7.24	38	NBC,VIU
CO1-EF-05092018-01	PCB 158	pg/L	7.17	3.45	48	VRIU,J,NBC,VIL,VJ
CO1-EF-05092018-01	PCB 170	pg/L	11.9	8.21	48	J,JA,NBC,VIL,VJ,VIU
CO1-EF-05092018-01	PCB 174	pg/L	13.3	6.26	48	J,JA,NBC,VIL,VJ,VIU
CO1-EF-05092018-01	PCB 177	pg/L		6.69	48	NBC,VIL,VJ,VIU
CO1-EF-05092018-01	PCB 180/193	pg/L	34.2	6.4	96	J,NBC,VIL,VJ,VIU
CO1-EF-05092018-01	PCB 183/185	pg/L	12.5	6.13	96	J,NBC,VIL,VJ,VIU
CO1-EF-05092018-01	PCB 187	pg/L	17.6	3.55	48	J,NBC,VIL,VJ,VIU
CO1-EF-05092018-01	PCB 194	pg/L		10.4	48	NBC,VIL,VJ
CO1-EF-05092018-01	PCB 195	pg/L		9.39	48	NBC,VIL,VJ,VIU
CO1-EF-05092018-01	PCB 201	pg/L		5.12	48	VRIU,NBC,VIL,VJ
CO1-EF-05092018-01	РСВ 203	pg/L		8.14		NBC,VIL,VJ,VIU
CO1-EF-05092018-01	Total DiCB	pg/L	31.9	7.11	19	NBC,VIL,VJ
CO1-EF-05092018-01	Total HeptaCB	pg/L	77	3.55		NBC,VIL,VJ
CO1-EF-05092018-01	Total HexaCB	pg/L	162	3.33		NBC,VIL,VJ
CO1-EF-05092018-01	Total MonoCB	pg/L		19.1		NBC
CO1-EF-05092018-01	Total NonaCB	pg/L		19.1	19	NBC
CO1-EF-05092018-01	Total OctaCB	pg/L		5.12	19	NBC,VIL,VJ

		Unit				
Sample ID	Analyte Name	Name		MDL	RL	
CO1-EF-05092018-01	Total PCBs	pg/L	662	3.33		NBC,VIL,VJ
CO1-EF-05092018-01	Total PentaCB	pg/L	160	4.44		J,NBC,VIL
CO1-EF-05092018-01	Total TetraCB	pg/L	149	10.5		J,NBC,VIL
CO1-EF-05092018-01	Total TriCB PCB 008	pg/L	69.5	9.26		NBC,VIL J,NBC,VIL,VJ
TW2-IN-05092018-01 TW2-IN-05092018-01		pg/L	37.8	2.15 4.43		J,NBC,VIL,VJ J,NBC
TW2-IN-05092018-01	PCB 018/30	pg/L	29.2	4.43		NBC
TW2-IN-05092018-01	PCB 020/28 PCB 021/33	pg/L	93.6 44.8	4.35		J,NBC
TW2-IN-05092018-01	PCB 021/33 PCB 031	pg/L		4.45		NBC
TW2-IN-05092018-01	PCB 031 PCB 044/47/65	pg/L	62.1 123	4.08 5.66		NBC,VIU
TW2-IN-05092018-01	PCB 044/47/65 PCB 049/69	pg/L	52	5.33		J,NBC,VIU
TW2-IN-05092018-01	PCB 049709 PCB 052	pg/L	247	5.5		NBC,VIL,VIU
TW2-IN-05092018-01	PCB 052	pg/L	247	10.1		J,JA,NBC
TW2-IN-05092018-01	PCB 056	pg/L	26.9 17.3	10.1		J,NBC
TW2-IN-05092018-01	PCB 066	pg/L	85.3	4.8		NBC,VIU
TW2-IN-05092018-01	PCB 000 PCB 070/61/74/76	pg/L	501	4.8		NBC,VIL,VIU,VJ
TW2-IN-05092018-01	PCB 083/99	pg/L	204	3.25		NBC,VIL,VI,VI
TW2-IN-05092018-01	PCB 085/99 PCB 086/87/97/109/119/125	pg/L pg/L	310	2.89		NBC,VIL,VIU
TW2-IN-05092018-01	PCB 090/101/113	pg/L	414	2.83		NBC,VIL,VIU
TW2-IN-05092018-01	PCB 093/95/100	pg/L	410	3.36		NBC,VIL,VIU
TW2-IN-05092018-01	PCB 105	pg/L	191	5.48		NBC,VIU
TW2-IN-05092018-01	PCB 110/115	pg/L	795	2.65		NBC
TW2-IN-05092018-01	PCB 110/115	pg/L	401	5.03		NBC,VIL
TW2-IN-05092018-01	PCB 128/166	pg/L	166	3.43		NBC,VIL,VJ,VIU
TW2-IN-05092018-01	PCB 129/138/163	pg/L	914	3.45		NBC,VIL,VJ,VIU
TW2-IN-05092018-01	PCB 132	pg/L	270	3.87		NBC,VIL,VIU
TW2-IN-05092018-01	PCB 135/151/154	pg/L	159	2.21		VRIU,NBC,VIL,VJ
TW2-IN-05092018-01	PCB 141	pg/L	132	3.47		VRIU,NBC,VIL,VJ
TW2-IN-05092018-01	PCB 147/149	pg/L	437	3.15		NBC,VIL,VJ,VIU
TW2-IN-05092018-01	PCB 153/168	pg/L	520	2.95		NBC,VIL,VJ,VIU
TW2-IN-05092018-01	PCB 156/157	pg/L	101	6.26		NBC,VIU
TW2-IN-05092018-01	PCB 158	pg/L	87.8	2.6		VRIU,NBC,VIL,VJ
TW2-IN-05092018-01	PCB 170	pg/L	178	5.62		NBC,VIL,VJ,VIU
TW2-IN-05092018-01	PCB 174	pg/L	142	4.28		NBC,VIL,VJ,VIU
TW2-IN-05092018-01	PCB 177	pg/L	84.6	4.58		NBC,VIL,VJ,VIU
TW2-IN-05092018-01	PCB 180/193	pg/L	372	4.38		NBC,VIL,VJ,VIU
TW2-IN-05092018-01	PCB 183/185	pg/L	107	4.19		NBC,VIL,VJ,VIU
TW2-IN-05092018-01	PCB 187	pg/L	185	2.73		NBC,VIL,VJ,VIU
TW2-IN-05092018-01	PCB 194	pg/L	110	8.51		NBC,VIL,VJ
TW2-IN-05092018-01	PCB 195	pg/L	35.9	7.71		J,NBC,VIL,VJ,VIU
TW2-IN-05092018-01	PCB 201	pg/L	18.1	4.2		VRIU,J,NBC,VIL,VJ
TW2-IN-05092018-01	PCB 203	pg/L	93.2	6.68		NBC,VIL,VJ,VIU
TW2-IN-05092018-01	Total DiCB	pg/L	37.8	2.15		NBC,VIL,VJ
TW2-IN-05092018-01	Total HeptaCB	pg/L	962	2.73		NBC,VIL,VJ
			2,50			
TW2-IN-05092018-01 TW2-IN-05092018-01 TW2-IN-05092018-01	Total HexaCB Total MonoCB	pg/L pg/L pg/L	2790	2.21	19	NBC,VIL,VJ NBC

		Unit						
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code		
TW2-IN-05092018-01	Total NonaCB	pg/L		19.2	19	NBC		
TW2-IN-05092018-01	Total OctaCB	pg/L	257	4.2	19	NBC,VIL,VJ		
TW2-IN-05092018-01	Total PCBs	pg/L	8160	2.15	192	NBC,VIL,VJ		
TW2-IN-05092018-01	Total PentaCB	pg/L	2730	2.65	192	NBC,VIL		
TW2-IN-05092018-01	Total TetraCB	pg/L	1050	4.8	192	NBC,VIL		
TW2-IN-05092018-01	Total TriCB	pg/L	230	4.08	48	NBC,VIL		
	http://www.ceden.org/CEDEN_Checker/Checker/DisplayCEDENLookUp.php?List=QALook							
QA Codes	<u>Up</u>							

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
CO1-EF-04102018-01	Mercury	ng/L	24.4	0.06	0.5	VIP,NBC
CO1-EF-04102018-01	Suspended Sediment Concentration	mg/L	116	0.91	0.9	NBC
CO1-EF-04102018-01	Total Organic Carbon	mg/L	26.7	0.3	2	D,NBC
CO2-EF-04102018-01	Mercury	ng/L	16.3	0.06	0.5	VIP,NBC
CO2-EF-04102018-01	Suspended Sediment Concentration	mg/L	104	0.9	0.9	NBC
CO2-EF-04102018-01	Total Organic Carbon	mg/L	11	0.07	0.5	NBC
CO3-EF-04102018-01	Mercury	ng/L	6.77	0.06	0.5	VIP,NBC
CO3-EF-04102018-01	Suspended Sediment Concentration	mg/L	50.3	0.92	0.9	NBC
CO3-EF-04102018-01	Total Organic Carbon	mg/L	42	0.3	2	D,NBC
CO4-EF-04102018-01	Mercury	ng/L	15.2	0.06	0.5	VIP,NBC
CO4-EF-04102018-01	Suspended Sediment Concentration	mg/L	89.1	0.96	1	NBC
CO4-EF-04102018-01	Total Organic Carbon	mg/L	28.9	0.3	2	D,NBC
CO5-EF-04102018-01	Mercury	ng/L	7.57	0.06	0.5	VIP,NBC
CO5-EF-04102018-01	Suspended Sediment Concentration	mg/L	78	0.92	0.9	NBC
CO5-EF-04102018-01	Total Organic Carbon	mg/L	27.7	0.3	2	D,NBC
CO6-EF-04102018-01	Mercury	ng/L	14	0.06	0.5	VIP,NBC
CO6-EF-04102018-01	Suspended Sediment Concentration	mg/L	118	0.91	0.9	NBC
CO6-EF-04102018-01	Total Organic Carbon	mg/L	32.9	0.3	2	D,NBC
TW2-IN-04102018-01	Mercury	ng/L	9.99	0.06	0.5	VIP,NBC
TW2-IN-04102018-01	Suspended Sediment Concentration	mg/L	19.4	0.9	0.9	NBC
TW2-IN-04102018-01	Total Organic Carbon	mg/L	5.39	0.07	0.5	NBC
CO1-EF-04132018-01	Mercury	ng/L	9.68	0.06	0.5	VIP,NBC
CO1-EF-04132018-01	Suspended Sediment Concentration	mg/L	21.9	0.89	0.9	NBC
CO1-EF-04132018-01	Total Organic Carbon	mg/L	12.3	0.3	2	D,NBC
CO2-EF-04132018-01	Mercury	ng/L	8.58	0.06	0.5	VIP,NBC
CO2-EF-04132018-01	Suspended Sediment Concentration	mg/L	13.3	0.9	0.9	NBC
CO2-EF-04132018-01	Total Organic Carbon	mg/L	5.72	0.07	0.5	NBC
CO3-EF-04132018-01	Mercury	ng/L	5.69	0.06	0.5	VIP,NBC
CO3-EF-04132018-01	Suspended Sediment Concentration	mg/L	14.5	0.89	0.9	NBC
CO3-EF-04132018-01	Total Organic Carbon	mg/L	19.1	0.3		D,NBC
CO4-EF-04132018-01	Mercury	ng/L	11.2	0.06	0.5	VIP,NBC
CO4-EF-04132018-01	Suspended Sediment Concentration	mg/L	17	0.93	0.9	NBC
CO4-EF-04132018-01	Total Organic Carbon	mg/L	13.8			D,NBC
CO5-EF-04132018-01	Mercury	ng/L	4.53	0.06	0.5	VIP,NBC
CO5-EF-04132018-01	Suspended Sediment Concentration	mg/L	17.3	0.92		NBC
CO5-EF-04132018-01	Total Organic Carbon	mg/L	12.5	0.3	2	D,NBC
CO6-EF-04132018-01	Mercury	ng/L	13.1	0.06	0.5	VIP,NBC
CO6-EF-04132018-01	Suspended Sediment Concentration	mg/L	35	0.93		NBC
CO6-EF-04132018-01	Total Organic Carbon	mg/L	15.9	0.3	2	D,NBC
TW2-IN-04132018-01	Mercury	ng/L	10.2			VIP,NBC
TW2-IN-04132018-01	Suspended Sediment Concentration	mg/L	40.2	0.89		NBC
TW2-IN-04132018-01	Total Organic Carbon	mg/L	1.71			NBC
BLNK-EF-04172018-01	Mercury	ng/L	1.96			VIP,NBC
BLNK-EF-04172018-01	Suspended Sediment Concentration	mg/L	1.4			NBC
BLNK-EF-04172018-01	Total Organic Carbon	mg/L	0.19	0.07	0.5	J,NBC

		Unit				
Sample ID	Analyte Name	Name	Result	MDL	RL	QA Code
CO1-EF-04172018-01	Mercury	ng/L	9.74	0.06	0.5	VIP,NBC
CO1-EF-04172018-01	Suspended Sediment Concentration	mg/L	12.5	0.93	0.9	NBC
CO1-EF-04172018-01	Total Organic Carbon	mg/L	12.1	0.07	0.5	NBC
CO2-EF-04172018-01	Mercury	ng/L	2.17	0.06	0.5	VIP,NBC
CO2-EF-04172018-01	Suspended Sediment Concentration	mg/L	8.4	0.91	0.9	NBC
CO2-EF-04172018-01	Total Organic Carbon	mg/L	5.12	0.07	0.5	NBC
CO2-EF-04172018-D	Suspended Sediment Concentration	mg/L	9.1	0.92	0.9	NBC
CO2-EF-04172018-D	Total Organic Carbon	mg/L	5.15	0.07	0.5	NBC
CO3-EF-04172018-01	Mercury	ng/L	6.02	0.06	0.5	VIP,NBC
CO3-EF-04172018-01	Suspended Sediment Concentration	mg/L	19.3	0.96	1	NBC
CO3-EF-04172018-01	Total Organic Carbon	mg/L	21.6	0.3	2	D,NBC
CO4-EF-04172018-01	Mercury	ng/L	7.58	0.06	0.5	VIP,NBC
CO4-EF-04172018-01	Suspended Sediment Concentration	mg/L	16.5	0.94	0.9	NBC
CO4-EF-04172018-01	Total Organic Carbon	mg/L	14.4	0.3	2	D,NBC
CO5-EF-04172018-01	Mercury	ng/L	7.36	0.06	0.5	VIP,NBC
CO5-EF-04172018-01	Suspended Sediment Concentration	mg/L	11.7	0.92	0.9	NBC
CO5-EF-04172018-01	Total Organic Carbon	mg/L	12	0.3	2	D,NBC
CO6-EF-04172018-01	Mercury	ng/L	11.3	0.06	0.5	VIP,NBC
CO6-EF-04172018-01	Suspended Sediment Concentration	mg/L	26.7	0.95	1	NBC
CO6-EF-04172018-01	Total Organic Carbon	mg/L	17.2	0.3	2	D,NBC
TW6-IN-04172018-01	Mercury	ng/L	9.86	0.06	0.5	VIP,NBC
TW6-IN-04172018-01	Suspended Sediment Concentration	mg/L	16.3	0.89	0.9	NBC
TW6-IN-04172018-01	Total Organic Carbon	mg/L	1.64	0.07	0.5	NBC
CO4-EF-04192018-01	Mercury	ng/L	5.26	0.06	0.5	VIP,NBC
CO4-EF-04192018-01	Suspended Sediment Concentration	mg/L	9.7	0.9	0.9	NBC
CO6-EF-04192018-01	Mercury	ng/L	7.41	0.06	0.5	VIP,NBC
CO6-EF-04192018-01	Suspended Sediment Concentration	mg/L	11.1	0.94	0.9	NBC
CO6-EF-04192018-01	Total Organic Carbon	mg/L	10.9	0.3	2	D,NBC
TW2-IN-04192018-01	Mercury	ng/L	3	0.06	0.5	VIP,NBC
TW2-IN-04192018-01	Suspended Sediment Concentration	mg/L	1.9	0.89	0.9	NBC
	http://www.ceden.org/CEDEN_Checke	r/Checker	/Display	CEDEN	Look	Jp.php?Li
QA Codes	st=QAI	LookUp				

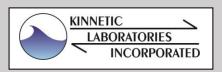
Appendix E

Evaluation of Mercury and PCBs Removal Effectiveness of Full Trash Capture HDS Units

Pollutants of Concern Monitoring for Management Action Effectiveness

Evaluation of Mercury and PCBs Removal Effectiveness of Full Trash Capture <u>Hydrodynamic Separator Units</u>

Project Report



Prepared for:

Prepared by:

February 20, 2019

FINAL

DISCLAIMER

Information contained in BASMAA products is to be considered general guidance and is not to be construed as specific recommendations for specific cases. BASMAA is not responsible for the use of any such information for a specific case or for any damages, costs, liabilities or claims resulting from such use. Users of BASMAA products assume all liability directly or indirectly arising from use of the products.

The mention of commercial products, their source, or their use in connection with information in BASMAA products is not to be construed as an actual or implied approval, endorsement, recommendation, or warranty of such product or its use in connection with the information provided by BASMAA.

This disclaimer is applicable to all BASMAA products, whether information from the BASMAA products is obtained in hard copy form, electronically, or downloaded from the Internet

TABLE OF CONTENTS

LIST OF FIGURES	. iv
LIST OF TABLES	. iv
LIST OF ACRONYMS	v
EXECUTIVE SUMMARY	1
1 INTRODUCTION	5
1.1 Background	5
1.2 Problem Statement	6
1.3 Project Goal	7
2 METHODS	9
2.1 Overall Project Approach	9
2.2 HDS Unit Sampling	9
2.3 Laboratory Methods	10
2.4 Data Analysis and Reporting	11
2.4.1 Annual Mass of POCs Reduced Due to Cleanouts	
2.4.2 Annual POC Stormwater loads discharged from each HDS Unit Catchment	
2.4.3 Evaluation of HDS Unit Performance3 RESULTS AND DISCUSSION	
3.1 HDS Unit Sampling	
3.1.1 Laboratory Analysis	
3.2 Evaluation of HDS Unit Performance	
3.2.1 HDS Unit Construction Details and Maintenance Records	26
3.2.2 Mass of POCs Removed During Cleanouts	
3.2.3 HDS Catchment POC Loads and Calculated Percent Removals Due to Cleanouts	
3.2.4 Limitations4 CONCLUSIONS	
Appendix A: Final Study Design	
Appendix B: Sampling and Analysis Plan and Quality Assurance Project Plan	
Appendix C: QA Summary Reports	
Appendix D: PCBs Congeners Concentration Data	39

LIST OF FIGURES

Figure 1.1	Basic features of a Contech Continuous Deflective Separator (CDS) Hydrodynamic	
	Separator (HDS) Unit. Source: Contech Engineered Solutions 2014.	6
Figure 3.1	Catchment Sizes and Land Use Distributions for Existing Public HDS Units in the San	
	Francisco Bay Area. The HDS units that were sampled in this study are identified with a	
	black star (sediment-only samples collected) or diamond (sediment/organic debris	
	samples collected).	17
Figure 3.2	Overview Map of the 8 HDS Units Sampled in the San Francisco Bay Area as Part of the	
	BASMAA BMP Effectiveness Study.	18
Figure 3.3	Map of HDS Units #1 and #2 Catchments in Sunnyvale, CA.	20
Figure 3.4	Map of HDS Units #3 and #4 Catchments in Oakland, CA	20
Figure 3.5	Map of HDS Unit #5 Catchment in Palo Alto, CA	21
Figure 3.6	Map of HDS Unit #6 Catchment in San Jose, CA	21
Figure 3.7	Map of HDS Unit #7 Catchment in Sunnyvale, CA	22
Figure 3.8	Map of HDS Unit #8 Catchment in San Jose, CA	22

LIST OF TABLES

Table 2.1.	Laboratory Analytical Methods for Analytes in Sediment and Sediment/Organic Leaf	
	debris	11
Table 2.2	Land Use-Based PCBs and Mercury Yields.	14
Table 2.3	Event Mean Concentrations in Water for PCBs and Mercury by Land Use Classification	
	from the Regional Watershed Spreadsheet Model ¹	15
Table 3.1	HDS Units that were sampled in the San Francisco Bay Area as part of the BASMAA POC	
	Monitoring for Management Action Effectiveness Study	19
Table 3.2	Chemical Analysis Results of Solids Collected from HDS Unit Sumps. ¹	25
Table 3.3	Summary of Information on Storage Capacity, Cleanout Frequencies, and Volumes of	
	Solids Removed from HDS Unit Sumps.	27
Table 3.4	PCBs and Mercury Mass Removed During HDS Unit Sump Cleanouts. ¹	29
Table 3.5	HDS Unit Percent Removal of PCBs for Catchment Loads Calculated using Method #1 (La	nd
	use-based Yields) and Method #2 (RWSM Runoff Volume x Concentration)	30
Table 3.6	HDS unit Percent Removal of Mercury for Catchment Loads Calculated using Method #1	
	(BASMAA Land use-based Yields) and Method #2 (RWSM Runoff Volume x	
	Concentration).	31

LIST OF ACRONYMS

ACCWP	Alameda Countywide Clean Water Program
BASMAA	Bay Area Stormwater Management Agencies Association
CCCWP	Contra Costa Clean Water Program
EPA	Environmental Protection Agency
FSURMP	Fairfield-Suisun Urban Runoff Management Program
GC/MS	Gas Chromatography/Mass Spectroscopy
HDS	Hydrodynamic Separator
KLI	Kinnetic Laboratories, Inc.
LCS	Laboratory Control Sample
MDL	Method Detection Limit
MRL	Method Reporting Limits
MRP	Municipal Regional Stormwater NPDES Permit
MS	Matrix Spike
MS4	Municipal Separate Storm Sewer System
na	not applicable
nr	not reported
ND	Non-Detect
NPDES	National Pollutant Discharge Elimination System
PCBs	Polychlorinated Biphenyl
PMT	Project Management Team
POC	Pollutants of Concern
ppb	parts per billion
ppm	parts per million
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
RWSM	Regional Watershed Spreadsheet Model
ROW	Right-of-Way
SAP	Sampling and Analysis Plan
SCVURPPP	Santa Clara Valley Urban Runoff Pollution Prevention Program
SFEI	San Francisco Estuary Institute
SMCWPPP	San Mateo Countywide Water Pollution Prevention Program
SOP	Standard Operating Procedure
TMDL	Total Maximum Daily Loads
VSFCD	City of Vallejo and the Vallejo Sanitation and Flood Control District

EXECUTIVE SUMMARY

INTRODUCTION

The Municipal Regional Stormwater National Pollutant Discharge Elimination System (NPDES) Permit (MRP; Order No. R2-2015-0049) implements the municipal stormwater portion of the mercury and polychlorinated biphenyls (PCBs) Total Maximum Daily Loads (TMDLs) for the San Francisco Bay. Provisions C.11 and C.12 of the MRP require mercury and PCBs load reductions and the development of a Reasonable Assurance Analysis (RAA) demonstrating that control measures will be sufficient to attain the TMDL wasteload allocations within specified timeframes. In compliance with the MRP, Permittees have implemented a number of source control measures in recent years designed to reduce pollutants of concern (POCs) in urban stormwater and achieve the wasteload allocations described in the mercury and PCBs TMDLs. For all control measures, an Interim Accounting Methodology for TMDL Loads Reduced has been developed to determine POC load reductions achieved based on relative mercury and PCBs yields from different land use categories (BASMAA, 2017a). Provision C.8.f of the MRP further supports implementation of the mercury and PCBs TMDLs by requiring that Permittees conduct POC monitoring to address management action effectiveness, one of the five priority information needs identified in the MRP. Management action effectiveness monitoring is intended to provide support for planning future management actions or evaluating the effectiveness or impacts of existing management actions.

To achieve compliance with the above permit requirements, the Bay Area Stormwater Management Agencies Association (BASMAA¹) implemented a regional project on behalf of its member agencies. The goal of the **BASMAA POC Monitoring for Management Action Effectiveness -Evaluation of Mercury and PCBs Removal Effectiveness of Full Trash Capture Hydrodynamic Separator (HDS) Units** project (the Project) was to evaluate the mercury and PCBs removal effectiveness of HDS units associated with removal of solids captured within the sump. The information provided by this monitoring effort will be used to support ongoing efforts by MRP Permittees and the California Regional Water Quality Control Board, San Francisco Bay Region (Regional Water Board) to better quantify the pollutant load reductions achieved by existing and future HDS units installed in urban watersheds of the Bay Area. This project was conducted between March 2017 and December 2018 in the portion of the San Francisco Bay Area subject to the MRP. The project was implemented by a project team comprised of EOA Inc., the Office of Water Programs at Sacramento State University (OWP), Kinnetic Laboratories, Inc. (KLI), and the San Francisco Estuary Institute (SFEI). A BASMAA Project Management Team (PMT) consisting of

¹ BASMAA is a 501(c)(3) non-profit organization that coordinates and facilitates regional activities of municipal stormwater programs in the San Francisco Bay Area. BASMAA programs support implementation of the MRP (Order No. R2-2015-0049). BASMAA is comprised of all 76 identified MRP municipalities and special districts, the Alameda Countywide Clean Water Program (ACCWP), Contra Costa Clean Water Program (CCCWP), the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP), the San Mateo Countywide Water Pollution Prevention Program (SMCWPPP), the Fairfield-Suisun Urban Runoff Management Program (FSURMP), the City of Vallejo and the Vallejo Sanitation and Flood Control District (VSFCD).

representatives from BASMAA stormwater programs and municipalities provided oversight and guidance to the project team.

METHODS

The Project combined sampling and modeling efforts to evaluate the mercury and PCBs removal performance of HDS units as follows. First, samples of the solids captured and removed from eight different HDS unit sumps during cleanout were collected and analyzed for PCBs and mercury. Second, maintenance records and construction plans for these HDS units were reviewed to develop estimates of the average volume of solids removed per cleanout. This information was combined with the monitoring data to calculate the mass of POCs removed during cleanouts. Third, the annual mercury and PCBs loads discharged from each HDS unit catchment were estimated using two different load calculation methods. Method #1 used the land use-based POC yields described in the BASMAA Interim Accounting Methodology (BASMAA 2017a) to estimate catchment loads. Method #2 used the Regional Watershed Spreadsheet Model (RWSM, Wu et al. 2017) to estimate runoff volumes and stormwater concentrations and calculate catchment loads. Finally, HDS unit performance was evaluated for both catchment load estimates by calculating the average annual percent removal of POCs as a result of the removal of solids from the HDS unit sumps.

RESULTS

Samples were collected from HDS units located in the cities of Palo Alto, Oakland, San Jose and Sunnyvale. These HDS units were selected opportunistically, based on the units that were scheduled for cleanout during the project sampling period (fall 2017 – spring 2018). The types of solid samples that were collected depended on the solids that were found in each sump, and included 3 sediment-only samples, and 5 sediment and organic/leafy debris samples. All samples were analyzed for the RMP 40 PCB congeners², total mercury, total solids (TS), total organic carbon (TOC), and bulk density. The sediment-only samples were also analyzed for grain size and were sieved at 2 millimeters (mm) prior to analysis for PCBs and mercury. The sediment and organic/leaf debris samples were analyzed as whole samples (not sieved) and were also analyzed for total organic matter in order to calculate the inorganic fraction (i.e., the mineral fraction assumed to be associated with POCs). Total PCBs concentrations across the 8 samples ranged from 0.01 to 0.41 milligram/kilogram (mg/kg) dry weight (dw). Total mercury concentrations ranged from 0.005 to 0.31 mg/kg dw. Overall, the range of mercury and PCBs concentrations found in storm drain sediments and street dirt across the Bay Area, as reported elsewhere (BASMAA 2017a).

Based on review of maintenance records for 38 cleanout events, as well as construction details for each unit which provided information on each unit's storage capacity, the estimated average solids removed per cleanout ranged from 2.4 cubic yards (CY) to 37 CY. These numbers indicate the HDS unit sumps were on average 97% full when a cleanout was conducted. The calculated annual mass of PCBs removed

² The 40 individual congeners routinely quantified by the Regional Monitoring Program (RMP) for Water Quality in San Francisco Bay include: PCBs 8, 18, 28, 31, 33, 44, 49, 52, 56, 60, 66, 70, 74, 87, 95, 97, 99, 101, 105, 110, 118, 128, 132, 138, 141, 149, 151, 153, 156, 158, 170, 174, 177, 180, 183, 187, 194, 195, 201, and 203

from each unit ranged from 2 mg/year up to 2,600 mg/yr, while the annual mass of mercury removed from each unit ranged from 9 mg/year up to 6,500 mg/year. Differences in catchment sizes do not explain the high degree of variability observed across the different units. When normalized to catchment size, the mass of POCs removed per acre treated for the HDS units in this study remained highly variable, ranging from 0.01 mg/acre to 29 mg/acre for PCBs, and 0.03 mg/acre to 50 mg/acre for mercury.

PCBs Removal Rates (Table ES-1): For catchment loads calculated using Method #1 (land use-based yields), the median percent PCBs removal across all 8 units ranged from 5% to 10%. For catchment loads calculated using Method #2 (RWSM runoff volume x concentration), the median percent PCBs removal ranged from 15% to 32%. Variability in removal rates was high between individual units, ranging from almost no removal to 100% removal of the estimated loads.

HDS Unit	PCBs Removal			Mercury Removal				
ID	Method #1 Method #2 Method #1		od #1	Method #2				
	Low	High	Low	High	Low	High	Low	High
1	80%	100%	100%	100%	26%	40%	100%	100%
2	8%	18%	10%	22%	4%	6%	65%	98%
3	4%	9%	21%	45%	2%	3%	8%	12%
4	38%	83%	27%	59%	5%	7%	17%	26%
5	0.06%	0.13%	0.21%	0.46%	0.1%	0.2%	1.1%	1.6%
6	5%	11%	20%	43%	0.01%	0.02%	0.1%	0.2%
7	0.6%	1.4%	0.5%	1.1%	0.06%	0.09%	2%	3%
8	1.4%	3.1%	7%	16%	3%	4%	27%	41%
Median	5%	10%	15%	32%	3%	4%	13%	19%

 Table ES-1. HDS Unit Performance - Annual Percent Removal Calculated For Two Catchment Load Estimates.

Mercury Removal Rates (Table ES-1): Across all 8 units, the median percent removal for catchment loads calculated using Method #1 (land use-based yields) ranged from 3% to 4%. For all units under Method #1, the removal rates were lower for mercury than for PCBs. For catchment loads calculated using Method #2 (RWSM runoff volume x concentration) the median removal ranged from 13% to 19%. Similar to PCBs, removal rates for mercury in individual HDS units were highly variable.

CONCLUSIONS

For both PCBs and mercury, the data from this study indicate the percent removals achieved by HDS unit cleanouts are highly variable across units, and likely variable within the same unit over time. The conclusions on pollutant removal effectiveness of HDS unit sump cleanouts based on the results of this study are limited by the small number of HDS units that were sampled (n=8) and the limited, and often incomplete, maintenance records that were available at the time of this study. Nevertheless, the results of this study provide new information on the range of pollutant concentrations measured in HDS unit sump solids. Additional data would be needed to fully characterize the range of pollutant load reductions achieved by HDS units over longer periods of time and across varying urban environments.

The results from this study will be considered in the update of the Interim Accounting Methodology that is being conducted as part of the BASMAA regional project *Source Control Load Reduction Accounting for Reasonable Assurance Analysis*, and will include methods for estimating POC reductions associated with stormwater control measures, including HDS units.

Additional recommendations on options for potentially improving the pollutant removal effectiveness of HDS unit maintenance practices, as well as improving the estimates presented in this report include the following:

- Develop site-specific standard operating procedures (SOPs) for each HDS unit, including suggested cleanout frequency and cleanout methods to ensure efficient and consistent practices over time.
- To improve pollutant removal effectiveness, cleanouts should occur well before sumps reach capacity. Frequent inspections of HDS unit sumps may also provide the information needed to determine an appropriate cleanout frequency for each HDS unit.
- To improve estimates of the solids removal achieved per cleanout (and the associated pollutant removals achieved), provide consistent recording of the following information: cleanout dates, measured depth of solids and water in the sump prior to a cleanout, estimates of the volumes of solids and water removed from the sump during cleanout, and a description of the types of solids removed.

1 INTRODUCTION

1.1 BACKGROUND

Fish tissue monitoring in San Francisco Bay (Bay) has revealed bioaccumulation of polychlorinated biphenyls (PCBs) and mercury. The measured fish tissue concentrations are thought to pose a health risk to people consuming fish caught in the Bay. As a result of these findings, California has issued an interim advisory on the consumption of fish from the Bay. The advisory led to the Bay being designated as an impaired water body on the Clean Water Act "Section 303(d) list" due to PCBs and mercury. In response, the California Regional Water Quality Control Board, San Francisco Bay Region (Regional Water Board) adopted total maximum daily loads (TMDLs) to address these pollutants of concern (POCs) (SFBRWQCB 2012).

Provisions C.11 and C.12 of the Municipal Regional Stormwater National Pollutant Discharge Elimination System (NPDES) Permit (MRP; Order No. R2-2015-0049) implements the municipal stormwater portion of the Mercury and PCBs TMDLs for the San Francisco Bay Area. These provisions require mercury and PCBs load reductions and the development of a Reasonable Assurance Analysis (RAA) demonstrating that control measures will be sufficient to attain the TMDL wasteload allocations within specified timeframes. In compliance with the MRP, Permittees have implemented a number of source control measures in recent years designed to reduce POCs in urban stormwater and achieve the wasteload allocations described in the mercury and PCBs TMDLs. For all control measures, the Bay Area Stormwater Management Agencies Association (BASMAA³) developed an Interim Accounting Methodology to define POC load reductions achieved based on relative mercury and PCBs yields from different land use categories (BASMAA 2017a).

Provision C.8.f of the MRP further supports implementation of the mercury and PCBs TMDLs by requiring that Permittees conduct POC monitoring to address management action effectiveness, one of the five priority information needs identified in the MRP. Management action effectiveness monitoring is intended to provide support for planning future management actions or evaluating the effectiveness or impacts of existing management actions. Although individual Countywide monitoring programs can meet all MRP monitoring requirements on their own, some requirements are conducted more efficiently, and likely yield more valuable information, when coordinated and implemented on a regional basis.

³ BASMAA is a 501(c)(3) non-profit organization that coordinates and facilitates regional activities of municipal stormwater programs in the San Francisco Bay Area. BASMAA programs support implementation of the MRP (Order No. R2-2015-0049). BASMAA is comprised of all 76 identified MRP municipalities and special districts, the Alameda Countywide Clean Water Program (ACCWP), Contra Costa Clean Water Program (CCCWP), the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP), the San Mateo Countywide Water Pollution Prevention Program (SMCWPPP), the Fairfield-Suisun Urban Runoff Management Program (FSURMP), the City of Vallejo and the Vallejo Sanitation and Flood Control District (VSFCD).

1.2 PROBLEM STATEMENT

During the previous MRP permit term (2009 – 2015), BASMAA pilot tested a number of different stormwater control measures for pollutant removal effectiveness through the Clean Watersheds for a Clean Bay (CW4CB) project (BASMAA 2017b). One treatment option that was pilot-tested during CW4CB includes hydrodynamic separator (HDS) units. HDS units have been installed for trash control throughout the Bay Area. An HDS unit typically consists of a circular concrete manhole structure that is installed underground, either inline or offline within the existing storm drainage system. As an example, the features of an inline Contech Continuous Deflective Separator (CDS) Unit are shown in Figure 1.1. Stormwater flows from the HDS catchment (up to the treatment design capacity) enter the device tangentially, which initiates a swirling motion to the water. This is enhanced by a curved deflection plate. The flows are then guided into the separation chamber, where swirl concentration and screen deflection force solids to the center of the chamber. The flow continues through the separation screen, under the oil baffle and exits the unit. All of the solids and debris larger than the screen apertures are trapped within the unit. Floatables (i.e., buoyant solids) will typically remain suspended in the water that is retained within the unit near the top of the treatment screen, while the heavier solids settle into the storage sump located directly below the screening area. These units are designed to collect trash, sediment and other solid debris. POC removal is expected to occur through capture of POC-containing solids in the HDS unit sumps, and subsequent removal and disposal of these solids during cleanouts. Generally, the net solids removal is expected to vary by site-specific conditions, and the removal efficiency for solids smaller than the screen apertures varies depending on the model selected and the flow characteristics of the site.

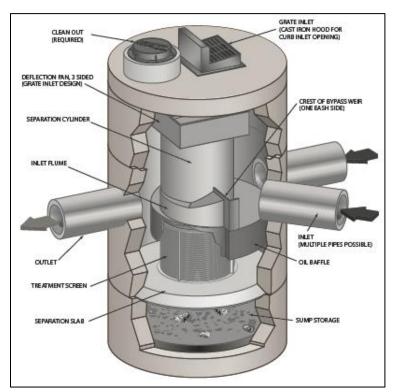


Figure 1.1 Basic features of a Contech Continuous Deflective Separator (CDS) Hydrodynamic Separator (HDS) Unit. Source: Contech Engineered Solutions 2014.

For HDS units and other stormwater control measures, BASMAA developed the *Interim Accounting Methodology for TMDL Loads Reduced* (Interim Accounting Methodology, BASMAA 2017a) to calculate load reductions achieved by these measures during the current permit term (2016 – 2020). The Interim Accounting Methodology is based on relative mercury and PCBs yields from different land use categories. For HDS units, the methodology assumes a default 20% reduction of the area-weighted land use-based pollutant yields for a given catchment. This default value was based on average percent removal of total suspended solids (TSS) from HDS units from an analysis of paired influent/effluent data reported in the International Stormwater Best Management Practices (BMP) Database (<u>www.bmpdatabase.org</u>), as described in Appendix C of the Interim Accounting Methodology (BASMAA 2017a). However, significant data gaps remain in determining the effectiveness of this practice and expected load reductions.

The CW4CB results suggested that the materials retained within the HDS unit sumps and removed during routine cleanouts provide reductions of POC mass that would otherwise remain in the municipal separate storm sewer system (MS4). However, the CW4CB pilot tests were limited to 2 data points, collected from a single HDS unit that drains a catchment with elevated mercury and PCBs concentrations. The monitoring performed to-date is not sufficient to characterize pollutant concentrations of solids captured in HDS units that drain catchments with different loading scenarios (e.g., land uses, stormwater volumes, source areas, etc.), nor to estimate the percent removal based on the pollutant load captured and removed from the HDS unit during ongoing maintenance practices.

1.3 PROJECT GOAL

The overall goal of this project is to evaluate the mercury and PCBs removal effectiveness of HDS units due to solids capture within the sumps and subsequent removal during cleanouts. The monitoring conducted through this project provides partial fulfilment of MRP monitoring requirements for management action effectiveness under provision C.8.f., while also addressing some of the data gaps identified by the CW4CB project (BASMAA 2017b). The information provided by this project will be used by MRP Permittees and the Regional Water Board to support ongoing efforts to better quantify the pollutant load reductions achieved by existing and future HDS units installed in urban watersheds of the Bay Area.

To accomplish the project goal, BASMAA implemented a regional project on behalf of its member agencies to collect samples of the solids removed from HDS Unit sumps during cleanout events to estimate the mass of POCs removed. This report presents the results of the **BASMAA POC Monitoring** *for Management Action Effectiveness - Evaluation of Mercury and PCBs Removal Effectiveness of Full Trash Capture Hydrodynamic Separator Units* project (the Project) that was conducted during 2017 and 2018 in the portion of the San Francisco Bay Area subject to the MRP. The project was implemented by a project team comprised of EOA Inc., the Office of Water Programs (OWP) at Sacramento State University, Kinnetic Laboratories, Inc. (KLI), and the San Francisco Estuary Institute (SFEI). A BASMAA Project Management Team (PMT) consisting of representatives from BASMAA stormwater programs and municipalities provided oversight and guidance to the project team throughout the project.

Section 2 of this report presents the overall approach and details methods that were used to implement the project, including a description of the sampling and chemical analysis methods, and descriptions of

the methodology used to estimate the POC percent removals achieved through cleanouts. Section 3 presents the project results and discussion, including the location and description of each HDS unit that was sampled, a summary of the chemical analysis results for each unit, a summary of the cleanout events identified in maintenance records, the modeled estimates of the annual average POC stormwater loads within each HDS unit catchment, and the annual loads reduced (and percent removals achieved) through HDS unit maintenance practices. Section 4 summarizes the conclusions based on the results of the project.

2 METHODS

This section presents the overall approach and methods that were used to implement the Project. Under the guidance and oversight of the PMT, the project team developed a study design (Appendix A) and a SAP/QAPP (Appendix B), which were followed throughout implementation of the sampling program.

2.1 OVERALL PROJECT APPROACH

The overall approach to the Project involved a combined sampling and modeling effort to evaluate the mercury and PCBs removal performance of the sampled HDS units. The project implemented the following 4 tasks:

- 1. Collect samples of the solids captured in HDS unit sumps in Bay Area urban catchments and analyze them for mercury and PCBs;
- 2. Quantify the volume and mass of solids (and associated mercury and PCBs) removed from HDS unit sumps during cleanouts;
- 3. Estimate annual average mercury and PCBs stormwater loads for each HDS unit catchment of interest (i.e., the HDS unit catchments that were sampled in task 1);
- 4. Calculate the annual mercury and PCBs percent removals due to HDS unit cleanouts for each catchment of interest.

It is important to note this project was not designed to fully characterize the range of POC concentrations and masses captured in Bay Area HDS unit sumps. Nor was this project intended to provide highly accurate stormwater loading estimates for the catchments of interest. Rather, this project was intended to provide additional data to better quantify the mercury and PCBs load reduction effectiveness of HDS unit maintenance practices and support future development of source control RAAs.

The remainder of this section provides additional details on the methods and assumptions employed to implement the project tasks.

2.2 HDS UNIT SAMPLING

Across the Bay Area, at least 37 large, public HDS units have been installed in public right-of-way (ROW) locations over the past 10+ years. These units were primarily installed for trash controls. These units treat stormwater runoff from more than 13,000 acres spread across nine Bay Area municipalities. The size of the catchments treated by individual units in the Bay Area ranges from about 3 acres up to more than 900 acres. Selection of HDS units for sampling during this project was primarily opportunistic, based on the units that were scheduled for cleanouts during the project. The project team worked cooperatively with the PMT and multiple Bay Area municipal agencies to identify public HDS units that were scheduled for maintenance during the project sampling period (Fall 2017 through spring 2018). Additional selection criteria included cooperation of the appropriate municipal staff and safety considerations for the monitoring team. All field sampling was conducted during dry weather, when urban runoff flows through the HDS units were minimal and did not present safety hazards or other logistical concerns.

During sampling, HDS units were typically dewatered by municipal staff to remove standing water in the units and any floatables suspended in that water prior to sump cleanout. The monitoring team then collected multiple samples of the solids (sediment and organic debris) contained within each unit's sump, avoiding trash and other large debris. The solid samples were then combined and thoroughly homogenized in a stainless steel or Kynar-coated bucket, from which a composite sample was removed and aliquoted into separate jars for chemical analysis. Sample collection techniques varied between units due to the unique characteristics of each unit (i.e., sump depth and volume, safety considerations, etc.). For the majority of units, a stainless steel scoop on the end of a long pole was used to collect samples of the solids in the sump. However, in cases where the sump was too deep and/or too large to collect a representative sample using this method, samples were collected after the solids were removed from the sump by maintenance staff as the cleanout proceeded. Any confined space entry to remove solids from HDS unit sumps was performed by city maintenance staff trained and certified in such activities. One composite sample of the solids was collected for each HDS unit. The solid samples that were collected consisted of either sediment-only, or a combination of sediment and organic/leafy debris, depending on the type of solids that were found in each sump. The latter type of samples were collected in cases where this type of material dominated the solids content of the HDS unit sump, and collection of a sediment-only sample would not be representative of the solids in the sump.

2.3 LABORATORY METHODS

All solid samples were analyzed for the RMP 40 PCB congeners⁴, total mercury, total solids (TS), total organic carbon (TOC), and bulk density by the methods identified in Table 2.1. All sediment-only samples were also analyzed for grain size by the methods in Table 2.1. With the exception of grain size and bulk density, sediment-only samples were sieved by the laboratory at 2 mm prior to analysis. The sediment and organic/leaf debris samples were not sieved but were analyzed as whole samples. These samples were also analyzed for total organic matter (TOM) by the method identified in Table 2.1, in order to estimate the percent of the solid material that was organic (e.g., leaf debris) vs. inorganic (e.g., mineral content) because POCs in sump solids were assumed to be predominantly associated with the mineral fraction (i.e., the leafy material is expected to add few POCs but a large contribution to the total solids mass, and the relative proportion of organic-matter vs. mineral fractions provides assessment of the degree of dilution by organic matter).

Additional details about the field sampling and laboratory analysis methods are provided in the project SAP/QAPP (Appendix B).

⁴ The 40 individual congeners routinely quantified by the Regional Monitoring Program (RMP) for Water Quality in the San Francisco Estuary include: PCBs 8, 18, 28, 31, 33, 44, 49, 52, 56, 60, 66, 70, 74, 87, 95, 97, 99, 101, 105, 110, 118, 128, 132, 138, 141, 149, 151, 153, 156, 158, 170, 174, 177, 180, 183, 187, 194, 195, 201, and 203

Sample Type	Analyte	Sampling Method	Analytical Method	Reporting Units
All	Total Organic Carbon	Grab	EPA 415.1, 440.0, 9060, or	%
	(TOC)		ASTM D4129M	
Sediment-Only	Grain Size	Grab	ASTM D422M/PSEP	%
All	Bulk Density	Grab	ASTM E1109-86	g/cm ³
All	Mercury	Grab	EPA 7471A, 7473, or 1631	µg/kg
All	PCBs (RMP 40 Congeners)	Grab	EPA 1668	µg/kg
All	Total Solids	Grab	EPA160.3	%
Sediment +	Total Organic Matter	Grab	EPA160.4	%
Organic/Leaf Debris	(TOM)			

2.4 DATA ANALYSIS AND REPORTING

The data collected during sampling was combined with estimated catchment loads to evaluate the POC removal performance of each HDS unit as follows. First, the annual mass of POCs reduced due to cleanouts was calculated from the measured POC concentrations in sump solids and the estimated average volume of solids removed per cleanout, and the total number of cleanouts per year. Next, the annual stormwater loads of POCs discharged from each HDS unit catchment were estimated using two different methods to calculate the catchment loads. Finally, HDS unit performance was evaluated by calculating the POC percent removals due to HDS Unit cleanouts for both catchment load estimates. Additional details about each of these steps are presented here.

2.4.1 Annual Mass of POCs Reduced Due to Cleanouts

The annual mass of POCs reduced due to removal of sump solids from HDS units during cleanouts was calculated using Equation 2-1.

(2-1)	$M_{HDS-i} = V_{HDS-i} \times \rho_{HDS-i} \times F_{POC-HDS-i} \times C_{POC, HDS-i} \times N_{HDS-i}$
Where:	
M _{HDS-i}	the total annual POC mass removed from the sump of HDS Unit i (mg/year);
$V_{\text{HDS-i}}$	the volume of solids removed from HDS Unit i during a cleanout (cubic yards (CY) per cleanout;
P _{HDS-i}	the bulk density of solids removed from HDS Unit i during a cleanout (kg/CY);
F _{POC-HDS-i}	the mass fraction of solids removed from HDS Unit i during a cleanout that is associated with POCs;
Cpoc, hds-i	the concentration of POCs in the solids removed from HDS Unit i during a cleanout (mg/kg dw);
$N_{\text{HDS-i}}$	the number of cleanouts of HDS Unit i each year (cleanouts/year).

In order to provide the inputs required for Equation 2-1, additional information was gathered from the appropriate municipalities for each HDS unit that was sampled, including construction details (as-builts) and maintenance records on past cleanouts. Maintenance records were reviewed to gather information on the number and frequency of past cleanouts, and the volume of solids typically removed from sumps during cleanouts. Information on the types of materials removed during each cleanout was generally limited. However, any cleanout that only recorded removal of floatables (i.e., buoyant solids suspended in the water layer above the sump) was excluded from these evaluations, as the focus here was on removal of solid sediment and debris captured in the sumps. Although organic materials such as leaves are generally buoyant, these solids were frequently found in HDS unit sumps, likely because a sufficient mass of soil particles attached to the organic debris and caused the materials to settle in the sump. Additional assumptions described below were used to provide the inputs required for Equation 2-1.

- The average volume of solids removed from the sump per cleanout (V_{HDS-i}) was calculated for • each unit from maintenance records or was assumed to be equivalent to the volume of the unit's solids storage sump if maintenance records were not available. Where available, maintenance records were reviewed to identify the volume of solids removed from a given unit's sump during each cleanout, and an average volume per cleanout calculated for each unit. Where not available, construction details (i.e., as-built drawings) were reviewed to calculate the sump storage capacity for each unit. The full sump capacity was selected as a reasonable estimate of the volume of solids removed during a cleanout because (1) the recorded volumes removed during cleanouts were typically near or even exceeded sump capacity; and (2) information provided by municipal staff indicated solids in the sumps were typically not removed unless the sumps were well over 50% full. This later information was further corroborated by maintenance records that identified a number of cleanouts were performed where only floatables were removed from the top layer of water in the unit's screening area, and no solids were removed from the sumps. As stated previously, cleanouts that only removed these floatables were not included in the calculation of the average volume of solids removed per cleanout. Initial attempts to further refine and/or improve the estimates of the average volumes of solids removed per cleanout based on maintenance records were evaluated, including (for example) normalizing the volume of solids removed in a given cleanout to the rainfall amounts within that catchment since the previous cleanout. However, because the maintenance data were limited, highly uncertain, and in many cases, incomplete, the outcomes of these efforts were inconclusive at best, and they were not pursued further.
- <u>The fraction of solids removed during cleanouts that was associated with POCs (F_{POC-HDS-i}) was</u> estimated from measurement data for each HDS unit. For sediment-only samples, the fraction associated with POCs was assumed to be the dry fraction of solids removed that was < 2 mm in grain size, where %TS accounts for the moisture content of the solids, and the % < 2 mm accounts for the small particle size fraction of the solids. For the sediment + organic/leaf samples, the fraction associated with POCs was assumed to be the dry fraction of solids removed that was inorganic, where % TOM measurement allows for calculation of the % inorganic (i.e., mineral content of the sample). These assumptions are consistent with catchment loads calculated in Section 2.4.2 for each HDS unit catchment. Catchment loads

calculated using the BASMAA land use-based POC yields (BASMAA 2017a) or using the Regional Watershed Spreadsheet Model (RWSM, Wu et al. 2017), both rely on inputs that assume POCs are associated with the smaller (i.e., < 2 mm) particle size fractions in stormwater.

- All of the measurement data used as inputs to Equation 2-1 (POC concentrations, bulk density, etc.) were assumed to be representative of the values of these parameters for typical sump solids removed during cleanouts over time for a given HDS Unit. This assumption was necessary because the data needed to evaluate the temporal and spatial variability in these parameters are currently unavailable. Multiple samples from the same HDS unit over a number of years would be needed to quantify the variability over time, while this project provided only 1 sample per unit. To account for some degree of variability in the measured POC concentrations, the average relative percent differences (RPDs) between field duplicate sediment samples collected from storm drain structures over the past 5+ years across the Bay Area were used (SCVURPPP 2018, SMCWPPP 2018, BASMAA 2017b). The RPD was calculated for 27 field duplicate pairs, and for PCBs, ranged from <1% to 185%, with an average of 37%. For mercury, the RPDs ranged from 4% to 43%, with an average of 17%. The average RPDs for PCBs and mercury were applied to the concentrations measured in this study to develop a low and high concentration estimate (and associated low and high POC mass removed per cleanout) for each unit.</p>
- <u>Two cleanouts per year were assumed</u>. Although maintenance records provided some information on cleanout frequencies, it appears from both the information provided, and further discussion with municipal staff that cleanout frequency is highly variable from unit to unit and from year to year. A default assumption of two cleanouts per year was selected as a reasonable approximation based on the typical cleanout frequencies reported by maintenance staff.

2.4.2 Annual POC Stormwater loads discharged from each HDS Unit Catchment

For each HDS Unit, the annual average POC loads discharged from its catchment were calculated using two different methods. Method #1 is based on catchment-specific land use multiplied by land use-based POC yields described in the BASMAA Interim Accounting Methodology (BASMAA 2017a). Method #2 is based on RWSM estimates of annual stormwater runoff volumes and land use-based POC event mean concentrations (Wu et al. 2017). Additional details about the inputs and assumptions used to calculate annual average catchments POC loads using each of these methods are provided below.

2.4.2.1 HDS Catchment Loads – Method #1: BASMAA Land Use-Based Yields

This method relies on the land use-based mercury and PCBs yields that form the basis for the stormwater control measure load reduction accounting methodology described in the BASMAA Interim Accounting Methodology (BASMAA 2017a). These yields, presented in Table 2.2, provide an estimate of the mass of POCs contributed by an area of a given land use each year.

Land Use Category	PCBs Yield (mg/acre/year)	Mercury Yield (mg/acre/year)
Old Industrial	86.5	1,300
Old Urban	30.3	215
New Urban	3.5	33
Other	3.5	26
Open Space	4.3	33

Table 2.2 Land Use-Based PCBs and Mercury Yields.

For each of the HDS Unit catchments in this study, the area of each land use category identified in Table 2.2 was multiplied by the associated POC yield for that land use. The total POC load for each land use was summed to provide the total POC catchment loads for an average year.

2.4.2.2 HDS Catchment Loads - Method #2: RWSM Runoff Volume X Concentration

For this method, outputs of the RWSM were used to estimate annual average POC loads for each of the eight HDS unit catchments in this study. The RWSM was developed by SFEI (Wu et al., 2017) to serve as a regional scale planning tool for estimating average annual loads from small tributaries and subwatersheds of San Francisco Bay. The RWSM includes a hydrology model that provides an estimate of runoff volumes for Bay Area watersheds and sub-watersheds, and pollutant models for PCBs and mercury that are driven by the hydrology and provide water concentration maps tied to land use classifications. The hydrology model calculates annual average runoff using rainfall data from PRISM (Parameter Elevation Regression on Independent Slopes Model, which is based on climate data from 1981 – 2010, www.prismclimate.org), and runoff coefficients developed from land use-soil-slope combinations. The hydrological calibration was based on 19 watersheds evenly distributed across three micro-climate sub-regions (East Bay, South Bay/ Peninsula, and North Bay for independent calibrations that averaged a mean bias of +1%, a median bias of 0% and a range of +/- 30%). One of the outputs from the model is a continuous estimate of runoff for the entire Bay area in GIS format which can be used to estimate flow from any spatial extent of interest (parcel, storm, sub-watershed, watershed, sub-region (e.g. county), or for the Bay area as a whole (Wu et al., 2017). This GIS map was used here to support this project. The RWSM PCBs and mercury pollutant models were calibrated using data from eight (PCBs) and six (mercury) well sampled watersheds. The calibration was deemed reasonable for PCBs and less good for mercury (Wu et al., 2017). One of the outputs from the model provides event mean concentration (EMC) data for stormwater by land use classification, as shown in Table 2.3.

Regional Watershed Spreadsh	Event Mean Concentrations (EMCs)			
Land Use Classification	PCBs ng/L	Mercury (ng/L)		
Ag and Open Space	0.2	72		
New Urban	0.2	3		
Old Residential	4	62		
Old Commercial and Transportation	50	- 63		
Old Industrial	201	40		
Source Areas	- 201			

 Table 2.3
 Event Mean Concentrations in Water for PCBs and Mercury by Land Use Classification from the Regional Watershed Spreadsheet Model¹.

¹Wu et al. 2017

It is important to note that the land use classifications shown in Table 2.3 are not exactly the same for PCBs and mercury, nor are they identical for the same pollutant in Tables 2.2 and 2.3. The differences include the following:

- The "old urban" classification in Table 2.2 combines the "old residential" and "old commercial and transportation" categories for PCBs, while these are distinct categories in Table 2.3;
- New Urban, Ag and Open space classifications in Table 2.3 all have the same EMC for PCBs, but are split into two separate categories (New Urban, and Ag/Open Space) with different EMCs for mercury, and with different PCBs yields for each category in Table 2.2.

For each HDS Unit catchment in this study, Equation 2-2 was used to calculate the average annual POC loads for the catchment, using RWSM inputs as described below.

(2-2)	$M_{Catchment-i} = Q_{Catchment-i} \times C \times EMC_{Catchment-i}$
Where:	
$M_{Catchment-i}$	the total POC mass discharged from Catchment-i (the catchment draining to HDS Unit-i) over the time period of interest (mg/year);
QCatchment-i	the average annual runoff volume in catchment-i from the RWSM (liters/year);
С	unit conversion factor (ng to mg);
EMC _{Catchment-i}	the area-weighted stormwater pollutant event mean concentration (EMC, ng/l) for Catchment-i based on land use. The RWSM land use-based EMCs in Table 2.3 (Wu et. al. 2017) were used to calculate an area-weighted pollutant EMC for each catchment based on the acreage of each land use classification in the catchment.

2.4.3 Evaluation of HDS Unit Performance

The HDS Unit performance was evaluated by calculating the annual percent removals of POCs due to cleanout of solids from HDS unit sumps. The percent removal of PCBs and mercury from the total estimated catchment mass for both of the catchment load estimate methods was calculated using Equation 2-3.

(2-3) Total Catchment Pollutant Mass Removed (%) = $[M_{HDS-i}/M_{Catchment-i}] \times 100\%$

Where:

M _{HDS-i}	the total POC mass captured in the sump of HDS Unit i over the time period of interest (mg/year);
MCatchment-i	the total POC mass discharged from Catchment-i (the catchment draining to HDS Unit-i) over the time period of interest (mg/year) calculated using Method #1 or Method #2.

Two pollutant percent removals were calculated for each HDS unit catchment using Equation 2-3, including one for the catchment loads calculated using Method #1 (BASMAA land use-based yields) and the second for the catchment loads calculated using Method #2 (RWSM runoff volume x concentration).

3 RESULTS AND DISCUSSION

3.1 HDS UNIT SAMPLING

Figure 3.1 presents the range of catchment sizes treated by the 37 existing public HDS units in the Bay Area at the time of this project, and showing the land use distributions of each catchment. The cities of Oakland, Palo Alto, San Jose, and Sunnyvale all had HDS units that were scheduled for maintenance during the project period and met the logistical and safety constraints of the project. Between September 2017 and March 2018, sampling was attempted at 10 HDS units in these cities and competed successfully at the 8 units identified on Figure 3.1 and on the map in Figure 3.2. Although HDS units were selected for sampling opportunistically, the HDS units that were sampled span the range of catchment sizes treated by existing public HDS units in the Bay Area. The majority of HDS unit catchments (both sampled and not sampled) were dominated by old urban land use.

Additional information about each of the sampled HDS units is presented in Table 3.1. Figures 3.2 - 3.7 provide maps of the catchments for each of the sampled HDS units in this project.

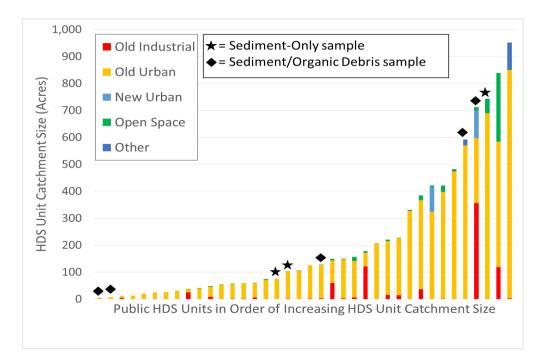



Figure 3.1 Catchment Sizes and Land Use Distributions for Existing Public HDS Units in the San Francisco Bay Area. The HDS units that were sampled in this study are identified with a black star (sediment-only samples collected) or diamond (sediment/organic debris samples collected).

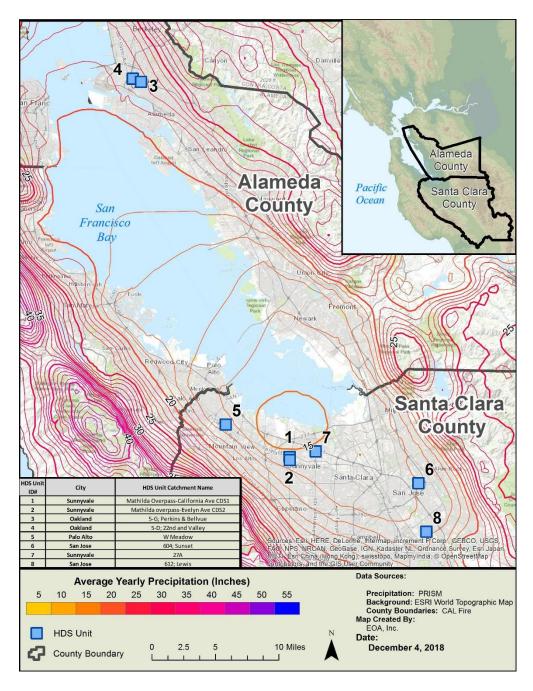


Figure 3.2 Overview Map of the 8 HDS Units Sampled in the San Francisco Bay Area as Part of the BASMAA BMP Effectiveness Study.

HDS	Date					Old Ui	rban¹			Total
ID	Installed	HDS Description	Lat	Long	Old Industrial	Old Commercial/ Other	Old Residential/ Parks	New Urban	Ag/ Open	Area (Acres)
1	Sep-2014	Mathilda overpass project CDS1 at California Ave Sunnyvale, CA	37.38224	-122.03306	0.0	0.0	1.5	1.5	0.2	3.3
2	Sep-2014	Mathilda overpass project CDS2 at Evelyn Ave Sunnyvale, CA	37.37891	-122.03271	1.1	0.3	2.2	3.6	0.0	7.2
3	Aug- 2010	HDS 5-G; Perkins & Bellevue (Nature Center) Oakland, CA	37.80744	-122.25597	0.0	5.3	70.0	0.0	0.0	75.3
4	Jul-2012	HDS 5-D; 22nd and Valley Oakland, CA	37.81109	-122.26787	1.8	73.2	27.0	0.0	0.3	102.3
5	Jun-2012	W. Meadow Drive and Park Blvd Palo Alto, CA	37.41816	-122.12538	2.9	17.6	73.9	32.5	0.8	127.5
6	Sep-2012	HDS 604; Sunset Avenue SW of Alum Rock Avenue San Jose, CA	37.35447	-121.84814	23.0	127.0	441.1	1.6	0.0	592.7
7	Sep-2015	HDS 27A -2 units (East Unit and West Unit) San Jose, CA	37.38922	-121.99592	269.6	136.2	11.3	282.6	11.9	711.6
8	Jun-2016	HDS 612; Lewis Road and Lone Bluff Way - Los Lagos Golf Course (2 units) San Jose, CA	37.29923	-121.83591	0.0	171.9	503.2	14.4	53.3	742.8

 Table 3.1
 HDS Units that were sampled in the San Francisco Bay Area as part of the BASMAA POC Monitoring for Management Action Effectiveness Study.

¹The "Old Urban" land use category in the Interim Accounting Methodology (2017a) was further divided into "Old commercial/other" and "Old Urban residential/parks" to provide consistency with the land use categories in the RWSM (Wu et al. 2017).



Figure 3.3 Map of HDS Units #1 and #2 Catchments in Sunnyvale, CA.

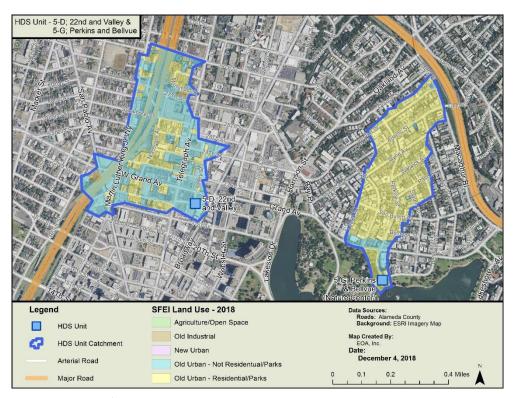


Figure 3.4 Map of HDS Units #3 and #4 Catchments in Oakland, CA

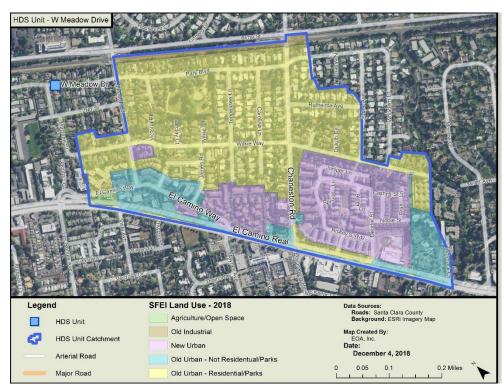


Figure 3.5 Map of HDS Unit #5 Catchment in Palo Alto, CA

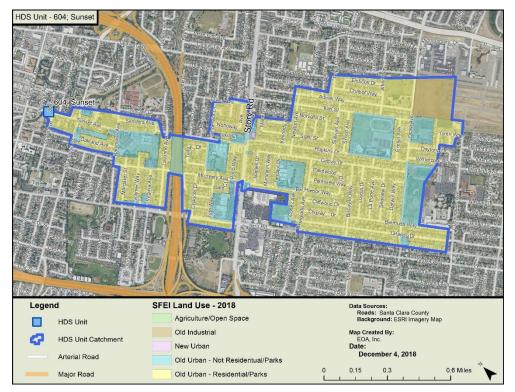


Figure 3.6 Map of HDS Unit #6 Catchment in San Jose, CA

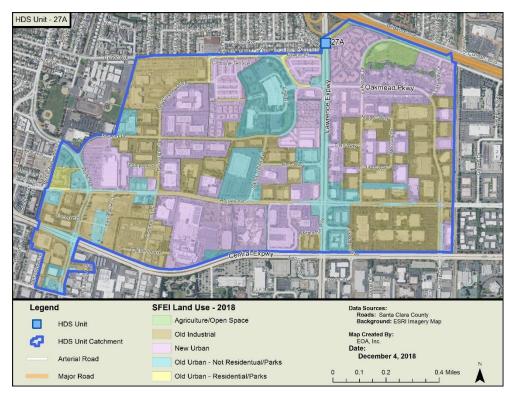


Figure 3.7 Map of HDS Unit #7 Catchment in Sunnyvale, CA

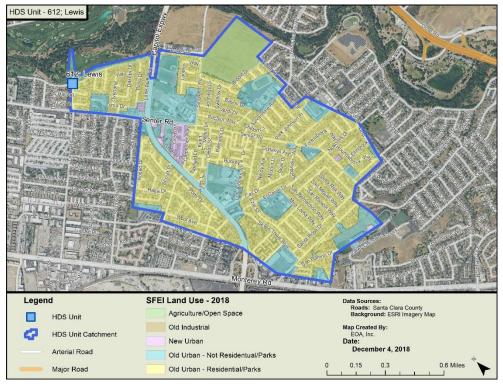


Figure 3.8 Map of HDS Unit #8 Catchment in San Jose, CA

3.1.1 Laboratory Analysis

3.1.1.1 Quality Assurance and Quality Control

Data Quality Assurance (QA) and Quality Control (QC) was performed in accordance with the project's SAP/QAPP (Appendix B). The SAP/QAPP established Data Quality Objectives (DQOs) to ensure that data collected are sufficient and of adequate quality for their intended use. These DQOs include both quantitative and qualitative assessments of the acceptability of data. The qualitative goals include representativeness and comparability, and the quantitative goals include completeness, sensitivity (detection and quantization limits), precision, accuracy, and contamination. Measurement Quality Objectives (MQOs) are the acceptance thresholds or goals for the data.

<u>PCBs</u>: The dataset included 8 field samples, with 3 blanks, and 5 laboratory control samples (LCS), some in duplicate, meeting the minimum number of QC samples required. Results were reported for the RMP 40 PCB analytes (with their coeluters, yielding 38 unique analytes). One sample was flagged for a hold time of one week too long but considered unlikely to affect results. Eight of the analytes were detected in blanks, but field sample concentrations were over 3-fold higher, so no results were censored. Two of the analytes had recovery with average >35% deviation from target values in the LCS, and one (PCB 183/185) had average error >70%, so was censored. PCB 183/185 was also flagged for poor precision (RSD 53%), but that analyte was already rejected for poor recovery, so the precision flag is largely moot. Overall the data quality was acceptable.

<u>Mercury/TOC/TS/bulk density/TOM</u>: The HDS sediment and sediment/organic debris dataset included eight field samples reported for total mercury, total solids, and bulk density, but only seven for TOC, and four (missing SJC-604) for sediment/organic debris for total volatile solids (total organic matter, TOM). MS/D pairs were reported for two sites for TOC, and mercury. Nine lab blanks were reported for mercury, and 6 for TOC, meeting the one per batch requirement. Three LCSs were also reported for TOC. Nearly all density and total solids were analyzed past the 1-one week QAPP listed hold times, and flagged VH, but so long as initial masses were recorded well, it is unlikely to affect results. Only Hg was occasionally detected in the blanks, but averaged <MDL so results were not flagged. Precision (<25% RPD) and recovery targets (±20% for conventional analytes and ±25% for Hg) were met for all QC samples, so no other flags were added. Overall the data quality was acceptable.

<u>Grain Size</u>: The sediment dataset included three field samples reported for grainsize, all analyzed in replicate. No blanks or recovery samples were reported, which is common for grainsize analysis. Fourteen size fractions were reported, with results normalized from the raw lab reported percentages to yield sums of 100% for each analysis. Nominal percent differences in lab replicates for any given sample were always <5%, so no qualifier flags were added. Overall, the data quality was acceptable.

Additional details about the data quality review are provided in Appendix C. The laboratory QA/QC data are available upon request.

3.1.1.2 POC Concentrations

Chemical analysis results are summarized in Table 3.2. PCBs concentrations in this report are presented as the sum of the RMP-40 congeners; individual congener data are available in Appendix D. The laboratory reports from this project are available upon request. Of the eight samples collected, three

were sediment-only samples that were sieved at 2 mm prior to POC analysis. The remaining five samples were mixtures of sediment and organic debris (e.g., leaves). These samples were treated as a whole sample and not sieved at 2 mm prior to POC analysis. Upon consultation with the PMT, the project team decided to analyze these mixed sediment/organic debris samples as part of this study because these types of solids (i.e., leaf debris) appeared to be commonly captured in HDS unit sumps.

Total PCBs ranged from 0.01 to 0.41 mg/kg dry weight. The PCBs concentrations observed in the present study are at least an order of magnitude lower than PCBs concentrations observed in the solids removed from the 7th Street HDS Unit that drains the Leo Avenue area of San Jose observed in the CW4CB project in 2013, where a known source property is located (BASMAA 2017c). Total mercury concentrations ranged from 0.005 to 0.31 mg/kg dry weight. Overall, the range of mercury and PCBs concentrations measured in the HDS unit solids in the present study were similar to the average concentrations found in storm drain sediments and street dirt across the Bay Area, as reported in Appendix B of the Interim Accounting Methodology (BASMAA 2017a). All laboratory data from this project are available upon request.

HDS Unit ID	Sample ID	Sample Date	Sample Type	Bulk Density (g/cm³)	Mercury (mg/kg dw)	тос (%)	Total PCBs (mg/kg dw)	Total Solids (%)	Total Organic Matter (%)	Sediment Fraction < 2mm (%)
1	SUN-MatCDS1	3/8/18	Whole-Sediment/ organic debris	0.66	0.11	187	0.053	16.3	53.3	na
2	SUN-MatCDS2	3/8/18	Whole-Sediment/ organic debris	0.57	0.19	283	0.044	13.9	72.6	na
3	OAK-5-G	10/16/17	Sediment Only	0.53	0.25	3.64	0.092	88.5	na	67
4	OAK-5-D	2/2/18	Sediment Only	0.81	0.31	5.85	0.408	99.2	na	95
5	PAL-Meadow	10/25/17	Whole-Sediment/ organic debris	0.47	0.21	222	0.015	19.2	85.4	na
6	SJC-604	10/5/17	Whole-Sediment/ organic debris	0.99	0.04	nr	0.294	10.1	na	na
7	SUN-27A	3/8/18	Whole-Sediment/ organic debris	0.76	0.005	375	0.060	8.3	60.3	na
8	SJC-612-01	9/13/17	Sediment Only	0.74	0.14	3.78	0.012	98.3	na	93

 Table 3.2 Chemical Analysis Results of Solids Collected from HDS Unit Sumps.¹

¹na=not applicable; nr= not reported

3.2 EVALUATION OF HDS UNIT PERFORMANCE

3.2.1 HDS Unit Construction Details and Maintenance Records

Additional information was gathered about each of the sampled HDS units, including construction details and maintenance records provided by the corresponding municipality. The quantity and quality of the maintenance records varied greatly from city-to-city and even within a city, from unit to unit. After careful review of all the available data, relevant information on cleanout frequencies, volumes of solids removed, and the types of materials contained in the solids was compiled and used to estimate the volume of solids removed per cleanout (Table 3.3). These data include information on a total of 38 cleanouts at 7 HDS units (2 to 13 cleanouts for each HDS unit in this study with the exception of Palo Alto, for which no maintenance records were available at the time of this report). In most cases, the maintenance records provided estimates of the volume of solids removed from the sumps during cleanouts, as well as the volume of floatables and trash. Both the cities of Sunnyvale and San Jose also provided the depth of solids in the sump prior to cleanout. This later information was combined with the known dimensions of each unit's sump taken from the construction details to calculate the total volume of solids contained in the sump just prior to cleanout. Some records also provided basic descriptions of the types of solid materials that were removed from sumps during a cleanout and a rough estimate of the volume(s) of each type. Excluding cleanouts that only removed floatables, the average volume of solids removed per cleanout was calculated for each unit and reported in Table 3.3. These estimates ranged between 2.4 cubic yards (CY) and 37 CY. Interestingly, for five of the HDS units, the volume of solids removed exceeded the maximum storage capacity of the sumps, indicating solids were likely overflowing the sump and also contained within the neck and screening area above the sumps of these units. This suggests sump cleanouts may be needed more frequently at these units, which were typically cleaned once per year. In contrast, the average solids removed per cleanout for the two Oakland units ranged from 55% to 60% of the sump capacity, indicating the current cleanout frequency of 2 to 3 times per year appears adequate for these units.

When normalized to the total area of the catchment, the average volume of solids removed per cleanout ranged from 0.01 CY to 0.8 CY of solids per acre treated. The solids storage capacity for these 8 units had a similar range of 0.01 CY to 0.7 CY per acre treated. The similarities between measured storage capacity and estimated solids removed provides further corroboration that, on average, cleanouts were occurring when the sumps were full. This supports the use of the total sump storage capacity to represent the volume removed during a cleanout in cases where maintenance data were unavailable. This also suggests more frequent cleanouts may be warranted.

HDS Unit ID	HDS Catchment Description	Total Storage Capacity (CY)ª	Sump Storage Capacity (CY) ^b	Cleanout Date	Description of Solids Removed From Unit	Solids Removed per Cleanout (CY)	Average Solids Removed per Cleanout (CY)			
				12/19/2016	leaves/trash/debris	2.5				
1	Mathilda overpass project CDS1 at California Avenue	4.9	2.2	8/29/2017	leaves/trash/debris	2.1	2.7			
	CDS1 at California Avenue			10/23/2018	leaves/trash/debris	3.5				
	Mathilda average project			12/19/2016	leaves/trash/debris	1.8				
2	Mathilda overpass project CDS2 at Evelyn Ave	3.0	1.5	8/29/2017	leaves/trash/debris	2.8	2.4			
	CD32 at EveryII Ave			10/23/2018	leaves/trash/debris	2.5				
				4/12/2010	60% debris/20% organic/20%trash	2				
				5/25/2010	floatables/organic debris	3				
				7/19/2010	25% sediment/75% Debris	1				
	HDS 5-G; Perkins & Bellvue (Nature Center)	17	5.8	2/2/2011	5% floatables/95% organic debris	3	3.5			
				4/25/2011	debris	3				
				1/12/2012	organic debris and floatables	3				
3				4/18/2012	dirt and debris	1				
				10/18/2012	sediment debris	12				
				9/30/2014	sediment/trash	3				
				5/20/2015	floatables and sediment	3				
				5/22/2015	floatables and sediment	4				
				5/19/2017	debris	7				
				10/18/2017	sediment	1.1				
				7/7/2010	dirt/debris/organics	3				
				2/4/2011	90% floatables/10% organic debris	4				
				1/10/2012	dirt/debris/organics	2.5				
				4/6/2012	dirt/debris/organics	3	7			
4	HDS 5-D; 22nd and Valley	28	7.3	10/17/2012	floatables/trash/debris	8	4.1			
				8/27/2013	debris	5				
				1/27/2015	sediment/trash	1	7			
				2/17/2016	sediment/debris	8				
				4/29/2018	sediment debris	2				

 Table 3.3
 Summary of Information on Storage Capacity, Cleanout Frequencies, and Volumes of Solids Removed from HDS Unit Sumps.

Table 3.3 Cont...

HDS Unit ID	HDS Catchment	Total Storage Capacity	Sump Storage Capacity	Cleanout	Description of Solids Removed From Unit	Solids Removed per Cleanout	Average Solids Removed per Cleanout (CY)		
	Description W. Meadow Dr and Park	(CY) ^a	(CY) ^b	Date	From Onit	(CY)	cleanout (CT)		
5	Blvd	6.5	1.9		No Maintenance Data Avai	lable			
			9.2	9/24/2016	trash/solids	14	10		
	HDS 604; Sunset Avenue SW of Alum Rock Avenue	31		3/26/2017	trash/solids	9.5			
6				10/5/2017	trash/solids	3.2			
	SW OF Alum ROCK AVENUE			12/13/2017	trash/solids	12			
				3/6/2018	trash/solids	11			
				12/21/2016	leaves/trash/debris	18			
7	HDS 27A -2 units (East Unit and West Unit)	68	18	8/30/2017	leaves/trash/debris	4.4	10.5		
				10/25/2018	leaves/trash/debris	8.7			
	HDS 612; Lewis Road and			9/14/2017	trash/solids	37			
8	Lone Bluff Way - Los Lagos Golf Course (2 units)	116	38	4/24/2018	trash/solids	37	37		

^aThe total storage capacity of each HDS unit was calculated from the dimensions of the solids storage sump and the screening area above the sump, as provided in construction plans. ^bThe sump storage capacity was calculated from the dimensions of the solids storage sump provided in the construction plans.

3.2.2 Mass of POCs Removed During Cleanouts

The estimated mass of POCs removed during HDS unit sump cleanouts is presented in Table 3.4 for the following assumed cleanout conditions (i.e., volumes of solids removed during each cleanout):

- the average volume of solids removed per cleanout from maintenance records; or
- for the Palo Alto HDS Unit #5 only, the volume of solids removed per cleanout was assumed to be equal to the sump capacity (because no maintenance data were available for this HDS unit);

For each HDS unit, the estimated mass of PCBs removed per cleanout ranged from < 1 mg to > 1,300 mg of PCBs. If we assume a cleanout rate of twice per year, the calculated mass of PCBs removed per year from all of these eight HDS units combined ranged from ~2,800 mg to ~6,000 mg of PCBs. When normalized to the catchment area, the mass of PCBs removed per acre treated ranged from 0.01 mg/acre/yr to 29 mg/acre/yr. The estimated mass of mercury removed per cleanout ranged from ~9 mg to > 3,200 mg, while the total mass of mercury removed per year from all eight HDS units combined (again, assuming 2 cleanouts per year) ranged from ~6,300 mg to 9,500 mg. The mass of mercury removed per acre treated ranged from 0.03 mg/acre/yr to 50 mg/acre/yr. For both PCBs and mercury, the larger catchments more frequently had lower rates of POCs per acre, although there was not a consistent correlation between catchment size and the mass of POCs in the sump.

			Tota	l PCBs			Total Mercury						
			Ma	ss of			Ma	ss of					
	Mass of PCBs PCBs						Mercury		Mass of				
	per	CY of	rem	oved	Annua	al Mass	per CY of Mercury			Annual Mass			
	so	lids	p	er	of F	PCBs	so	solids removed per			of Mercury		
HDS	removed		clea	nout	-	oved	-	oved	clea	nout	_	oved	
Unit	(n	ng)	(n	ng)	(mg/	Year)	(n	ng)	(m	ng)	(mg/Year)		
ID	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	
1	8	17	21	47	43	93	20	30	54	82	109	163	
2	3	7	8	17	16	34	18	27	43	65	87	130	
3	14	30	49	107	98	213	47	71	167	250	333	500	
4	149	325	606	1,318	1,212	2,636	146	218	591	886	1,181	1,772	
5	0.5	1.1	1.0	2.1	1.9	4.1	9	13	17	25	33	50	
6	48	104	480	1,044	960	2,088	1.0	1.4	9.7	15	19	29	
7	9	19	90	197	181	393	11	16	113	170	227	340	
8	4	9	147	321	295	641	59	88	2,179	3,268	4,357	6,536	
			Tot	al Sum	2,807	6,104			Tot	al Sum	6,347	9,520	

Table 3.4 PCBs and Mercury Mass Removed During HDS Unit Sump Cleanouts.¹

¹The low and high estimates of mass of PCBs and mercury removed were calculated from the measured PCBs and mercury concentrations in this study and +/- mean RPD of Bay Area sediment PCBs concentrations of +/- 37% (PCBs) and +/- 17% (mercury), as described in Section 2.4.1.

Range

16 - 41

9 - 34,806

0.2%

100%

3.2.3 HDS Catchment POC Loads and Calculated Percent Removals Due to Cleanouts

The annual POC loads discharged from each HDS Unit catchment calculated using Method #1 and Method #2, along with the calculated percent removals are presented in Tables 3.5 and 3.6 for PCBs and mercury, respectively. For the purpose of calculating descriptive statistics, percent removal was capped at 100%.

	Method #1 Catchment Load Land Use-Based Yields HDS Performance Annual Percent					ood #2 Catchn off Volume x	Concentr HDS Per	ation formance Percent
	HDS Catch	ment Info	Removal		HDS Catchm	nent Info	Removal	
HDS Unit ID	PCBs Yield (mg/acre/yr)	PCBs Load (mg/yr)	Low	High	PCBs Yield (mg/acre/yr)	PCBs Load (mg/yr)	Low	High
1	16	53	80%	100%	3	9	100%	100%
2	26	187	8%	18%	22	158	10%	22%
3	30	2,281	4%	9%	6	478	21%	45%
4	31	3,192	38%	83%	44	4,478	27%	59%
5	25	3,135	0.06%	0.13%	7	898	0.2%	0.5%
6	32	19,209	5%	11%	8	4,832	20%	43%
7	41	28,828	0.6%	1.4%	49	34,806	0.5%	1.1%
8	28	20,735	1.4%	3.1%	5	3,997	7%	16%
Median	29	3,164	5%	10%	8	2,447	15%	32%

Table 3.5	HDS Unit Percent Removal of PCBs for Catchment Loads Calculated using Method #1 (Land use-based
	Yields) and Method #2 (RWSM Runoff Volume x Concentration).

With the catchment loads calculated using Method #1, the PCBs percent removal varied greatly between HDS units, ranging from a low of <1% removal to a high of 100% removal. The median percent removal across all 8 units ranged from 5% to 10%.

100%

3 - 49

53 - 28,828

0.06%

With the catchment loads calculated using Method #2, the PCBs percent removal also varied greatly between HDS units, ranging from a low of <1% removal to a high of 100% removal. However, the median removal rate across all eight units was higher, ranging from 15% to 32%. Again, the variability in removal rates between individual HDS units was high. Generally, the percent removals were lower for a given HDS unit when the catchment loads were calculated using Method #1 compared with Method #2. Only HDS Unit #4 had a higher percent removal under Method #1.

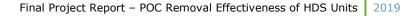
		Catchment Load for Method #1 BASMAA Land Use-Based Sediment Yields				Catchment Load for Method #2 RWSM Runoff Volume x Concentration			
	HDS Catch	ment Info	HDS Performance Annual Percent Removal		HDS Catchment Info		HDS Performance Annual Percent Removal		
HDS Unit ID	Mercury Yield (mg/acre/yr)	Mercury Load (mg/yr)	Low	High	Mercury Yield (mg/acre/yr)	Mercury Load (mg/yr)	Low	High	
1	126	412	26%	40%	21.0	69	100%	100%	
2	297	2,140	4%	6%	18.4	133	65%	98%	
3	215	16,188	2%	3%	55.4	4,174	8%	12%	
4	233	23,876	5%	7%	67.7	6,928	17%	26%	
5	192	24,479	0.14%	0.20%	23.9	3,055	1.1%	1.6%	
6	257	152,118	0.01%	0.02%	23.5	13,922	0.1%	0.2%	
7	551	391,874	0.06%	0.09%	16.8	11,940	1.9%	2.8%	
8	198	147,379	2%	3%	21.7	16,084	27%	41%	
Median	224	24,177	2%	3%	23	5,551	13%	19%	
Range	126 - 551	412-391,874	0.01%	40%	21 - 68	69 - 16,084	0.13%	100%	

 Table 3.6
 HDS unit Percent Removal of Mercury for Catchment Loads Calculated using Method #1 (BASMAA Land use-based Yields) and Method #2 (RWSM Runoff Volume x Concentration).

For mercury, the removal rates for catchment loads calculated using Method #1 ranged from 0.01% to 40% removal, and the median percent removal across all eight units ranged from 2% to 3%. The mercury removal rates for catchment loads calculated using Method #2 ranged from a low of <1% removal to a high of 100% removal. The median removal rate across all 8 units ranged from 13% to 19%. These results show the percent of mercury capture for both catchment load calculation methods was typically lower than for PCBs, which is consistent with observations in other studies of BMP effectiveness in the Bay Area (Gilbreath et al. 2019, David et al. 2015, Yee and McKee 2010).

One notable difference between the catchment load calculation methods presented in Tables 3.5 and 3.6 is that the catchment-specific yields (POC mass per acre per year) calculated for the same HDS unit catchment under each method are substantially different. The RPDs for the paired catchment-specific yields calculated under Scenario 1 and Scenario 2 ranged from 3% to 67%, with an average of 39% for PCBs. Also, for PCBs the differences in catchment yields for a given unit were not consistently higher or lower for Method #1 vs. Method #2 catchment load estimates. The RPDs between catchment yields under the 2 loading scenarios for each HDS unit were generally larger for mercury, ranging from 47% to 90%, with an average of 68%.

Overall, the results of this study indicate the HDS unit performance appears to vary substantially between units, regardless of the method used to estimate the catchment loads. Even when normalized to the area of the HDS unit catchment, the POCs removed per acre treated were highly variable between units, ranging up to over a thousand fold difference between the highest and lowest capture rates. The method used to calculate the catchment annual loads also impacts the calculated performance of the individual HDS units.



3.2.4 Limitations

It is important to note, that all of the assumptions that were used in the calculations described in this report represent important limitations of this study and highlight the paucity of data that are currently available to evaluate HDS Unit performance for PCBs and mercury removals. Although this study provided new data on the concentrations of POCs in the solids removed from HDS unit sumps during cleanouts, the data set remains small (n=8), especially in comparison to the expected (and observed) variability between each unit. The calculated removal rates, even under the same loading scenario, were highly variable across different HDS Units, ranging from almost zero POC removal, to 100% removal of all POCs discharged from the catchment. Although an estimate of variability in POC concentrations was applied based on information about the variability likely falls far short of accounting for the full range of variability and error in the input parameters used to calculate the POC removal rates presented here. Much more data would be needed to improve these estimates and better characterize the true variability in removal rates between units, and within the same unit over time.

One data input that proved particularly difficult to account for was the volume of solids (and associated mass) that was removed from HDS units during each cleanout. This study relied on the limited information recorded in maintenance records provided by individual cities for each of the HDS units in this study. The information that was provided varied from cleanout to cleanout, and from city to city. Although some cities provided measurements of the depth of solids in a unit at cleanout, which allowed a more accurate calculation of the total solids volume, in many cases, the information provided was likely based on a visual assessment by the maintenance staff onsite at the time of the cleanout, and thus subject to a large degree of error.

Nevertheless, this study increased the number of data points on POC concentrations in the solids removed from HDS Unit sumps during cleanouts from n=2 (the Leo Ave HDS data from CW4CB) to n=10, an increase of 500%. Furthermore, because of the careful review of maintenance records that was performed as part of this study, the authors were able to identify a number of recommendations (provided in Section 4) for improving the removal effectiveness of HDS unit maintenance practices, and improving the quality of maintenance records for the purpose of quantifying solids removed, and. the volume of solids associated with pollutants.

4 CONCLUSIONS

The Project combined sampling and modeling efforts to evaluate the mercury and PCBs removal performance of HDS units. Samples of the solids captured in 8 HDS units in the Bay Area were collected and analyzed for PCBs and mercury. The monitoring data collected by this project provided partial fulfilment of MRP monitoring requirements for management action effectiveness under provision C.8.f., and also addressed some of the data gaps on BMP effectiveness that were identified by the CW4CB project (BASMAA, 2017b). This study also reviewed information on HDS Unit maintenance practices, including the frequency of cleanouts, the volumes of solids removed during these cleanouts, and the types of materials contained within the solids. This information was used to develop estimates of the average solids removal per cleanout, and combined with concentration data, the mass of mercury and PCBs removed per cleanout. Finally, the percent removals achieved by HDS unit cleanouts were calculated using two different methods to estimate the catchment loads, including BASMAA land use-based pollutant yields (BASMAA 2017a), and RWSM runoff-concentration load estimates (Wu et al. 2017).

Based on median values, the results of this study suggest HDS unit maintenance practices reduce loads of PCBs from 5% to 32%, while mercury load reductions are lower, ranging from 3% to 19%. For both PCBs and mercury, the data from this study demonstrate the percent removals achieved by HDS unit cleanouts are highly variable across units, and likely variable within the same unit over time.

The conclusions on pollutant removal effectiveness of HDS unit sump cleanouts based on the results of this study are limited by the small number of HDS units that were sampled (n=8) and the limited, and often incomplete, maintenance records that were available at the time of this study. Nevertheless, the results of this study provide new information on the range of pollutant concentrations measured in HDS unit sump solids. Much more data would be needed to fully characterize the range of pollutant load reductions achieved by HDS units over longer periods of time and across varying urban environments.

In addition to the conclusions above, this study also identified the following suggestions for potentially increasing the PCBs and mercury removal effectiveness of HDS unit maintenance practices, and to improve the quality of the data available for calculating loads reduced. First, review of maintenance records indicated that the HDS unit sumps were often full or nearly full when the cleanouts occurred. Because no pollutant removal can occur after the sumps are 100% full, conducting cleanouts well before capacity is reached would likely improve pollutant removal rates for a given unit. However, given the site-specific nature of sump loading and variability across time, both the cleanout frequency and the cleanout methods required are likely to be highly site-specific. Development of site-specific standard operating procedures (SOPs) for cleanout frequency and cleanout methods for each HDS unit sumps may also provide the information needed to determine an appropriate cleanout frequency for each HDS unit.

Second, review of maintenance records highlighted the need for more detailed and consistent reporting on each cleanout. The maintenance records provided by municipalities in this study varied considerably in the quantity and quality of the information provided. The variability was high both between cities,

and within cities for the same unit over time. To improve estimates of the solids removal achieved per cleanout (and the associated pollutant removals achieved), consistent recording of the following information for each cleanout would be useful.

- o cleanout date
- o measured depth of solids in the sump prior to cleanout;
- o measured depth of water in the sump prior to cleanout;
- o an estimate of the volume of water removed during the cleanout;
- o an estimate of the volume of solids removed during the cleanout;
- a description of the materials contained in the sump solids including estimates of the percent contribution by volume of sediment, organic materials (leaves and vegetation), trash and large debris, and floatables;
- o clearly identify all cleanouts that ONLY remove floatables;

The information above would provide better estimates of the solids removed per cleanout, and a better understanding of the solids captured in HDS units that are likely associated with POCs. Both pieces of information are important for improving estimates of pollutant removal effectiveness of HDS unit cleanouts. This information could also be reviewed periodically to determine if the appropriate cleanout frequencies are being maintained.

5 REFERENCES

- BASMAA, 2017a. Interim Accounting Methodology for TMDL Loads Reduced. Bay Area Stormwater Management Agencies Association.
- BASMAA, 2017b. Clean Watersheds for a Clean Bay Project Report, Final Report May 2017. Bay Area Stormwater Management Agencies Association.
- BASMAA, 2017c. Clean Watersheds for a Clean Bay Task 5: Stormwater Treatment Retrofit Pilot Projects
 7th Street Hydrodynamic Separator Unit draining the Leo Avenue Watershed, San Jose, CA.
 Bay Area Stormwater Management Agencies Association.
- Contech Engineered Solutions LLC, 2014. CDS Guide: Operation, Design, Performance and Maintenance. Available at www.conteces.com.
- David, N., Leatherbarrow, J.E, Yee, D., and McKee, L.J, 2015. Removal Efficiencies of a Bioretention System for Trace Metals, PCBs, PAHs, and Dioxins in a Semi-arid Environment. Journal of Environmental Engineering, 141(6) (June).
- Gilbreath, A.N, McKee, L.J., Shimabuku, I., Lin D., Werbowski, L.M., Zhu, X., Grbic, J., Rochman, C., 2019 (accepted). Multi-year water quality performance and mass accumulation of PCBs, mercury, methylmercury, copper and microplastics in a bioretention rain garden. Journal of Sustainable Water in the Built Environment.
- Santa Clara County, 2007. Santa Clara County California Drainage Manual 2007. Prepared by Schaaf & Wheeler for Santa Clara County. August 14, 2007.
- SCVURPPP, 2018. Pollutants of Concern Monitoring Data Report. Water Year 2017. Santa Clara Valley Urban Runoff Prevention Program. March 31, 2018.
- SFBRWQCB, 2012. San Francisco Bay Regional Water Quality Control Board. Total Maximum Daily Loads (TMDLs) and the 303(d) List of Impaired Water Bodies. 2012.
- SFBRWQCB, 2015. Municipal Regional Stormwater NPDES Permit, Order No. R2-2015-0049. NPDES Permit No. CAS612008. November 19, 2015
- SMCWPPP, 2018. Pollutants of Concern Monitoring Data Report. Water Year 2017. San Mateo Countywide Water Pollution Prevention Program. March 29, 2018.
- Wu, J; Gilbreath, A.; McKee, L. J. 2017. Regional Watershed Spreadsheet Model (RWSM): Year 6 Progress Report. SFEI Contribution No. 811. San Francisco Estuary Institute: Richmond, CA.
- Yee, D., and McKee, L.J., 2010. Task 3.5: Concentrations of PCBs and Hg in soils, sediments and water in the urbanized Bay Area: Implications for best management. A technical report of the Watershed Program. SFEI Contribution 608. San Francisco Estuary Institute, Oakland CA 94621. 36 pp. + appendix. http://www.sfei.org/documents/concentrations-pcbs-and-hg-soils-sediments-andwater-urbanized-bay-area-implications-best.

APPENDIX A: FINAL STUDY DESIGN

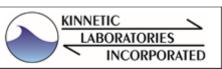
POC Monitoring for Management Action Effectiveness

Monitoring Study Design Final, September 2017

Prepared for:

Bay Area Stormwater Management Agencies Association

Prepared by:


1410 Jackson Street Oakland, California 94612

WATER PROGRAMS SACRAMENTO STATE

6000 J Street Sacramento, California 95819

4911 Central Avenue Richmond, California 94804

307 Washington Street Santa Cruz, California 95060

Contents

	List of Tables	3
	List of Figures	3
1.	Introduction	
2.	Problem Definition	5
	2.1 HDS Units	5
	2.2 Bioretention	7
3.	Study Goals	
	3.1 Primary Management Questions	
	3.2 Secondary Management Questions	
	3.3 Level of Confidence	
4.	Study Design Options	
	4.1 Influent-Effluent Monitoring	
	4.2 Sediment Sampling	
	4.3 Before-After Monitoring	
5.	Primary Data Objectives	
-	5.1 Data Objective 1: Annual Loads Captured by HDS Units	
	5.2 Data Objective 2: Loads Reduced by Biochar-Amended BSM	
6.	BMP Processes and Key Study Variables	
	6.1 HDS Units	
	6.2 Bioretention	
7.	Monitoring and Sampling Options	
	7.1 HDS Units	
	7.1.1 Influent Quality	
	7.1.2 BMP Design and Hydraulic Loading	
	7.1.3 Operation and Maintenance	
	7.2 Enhanced Bioretention	
	7.2.1 Influent Quality	
	7.2.2 BMP Design and Hydraulic Loading	
	7.2.3 Media Type and Properties	
	7.2.4 Operation and Maintenance Parameters	
	7.3 Uncontrolled Variables and Study Assumptions	
8.	Final Study Design	
	8.1 Statistical Testing & Sample Size	
	8.2 Constituents for Sediment Analysis	
	1 – Only total mercury analyzed. Methyl mercury is not	
	relevant for SF Bay TMDL.	
	8.3 Constituents for Water Quality Analysis	
	1 – Only total mercury analyzed. Methyl mercury is not	
	relevant for SF Bay TMDL.	
	8.4 Budget and Schedule	
	8.5 Optimized Study Design	
	8.6 Adequacy of Study Design	
9.	Recommendations for Sampling and Analysis Plans	

	9.1	HDS Monitoring	39
		Enhanced Bioretention Media Testing	
		Data Quality Objectives	
10.		ences	

List of Tables

Table 2.1	Summary of Data Collected from Leo Avenue HDS during October, 2014	Annual
Cleanout Event		6
Table 2.2	Summary of Bay Area Drain Inlet Sediment Concentration Data	6
Table 7.1	HDS Sampling Design based on Watershed Land Use	22
Table 7.2	Percent of Land Use in HDS Watershed Areas	23
Table 7.3	HDS Sampling Design based on Predominant Land Use	24
Table 7.4	HDS Sampling Design based on Predominant Land Use and HDS Size	25
Table 7.5	Example Sampling Design for Laboratory Column Experiments	28
Table 8.1	Selected Constituents for HDS Sediment Monitoring	32
Table 8.2	Selected Aqueous Constituents for Media Testing in Laboratory Column	s 33
Table 8.3	HDS Monitoring Study Design	35
Table 8.4	Enhanced BSM Testing Study Design	

List of Figures

Figure 2.1 Cumulative Frequency Distribution of Total PBCs Influent Concentrations for	r
Bioretention Media with and without Biochar	8
Figure 4.1 Typical BMP system and pollutant pathways	. 12
Figure 4.2 Comparison of two hypothetical non-overlapping BMP regressions	. 14
Figure 7.1 Land Use based PCB and Mercury Loading based on BASMAA Integrated	
Monitoring Reports (SFEI, 2015)	. 22

1. Introduction

Discharges of PCBs and mercury in stormwater have caused impairment to the San Francisco Bay estuary. In response, the Regional Water Board adopted total maximum daily loads (TMDLs) to address these pollutants of concern (POC) (SFBRWQCB, 2012). Provisions C.11 and C.12 the Municipal Regional Stormwater NPDES Permit, MRP (SFBRWQCB, 2015) implement the Mercury and PCB Total Maximum Daily Loads (TMDLs) for the San Francisco Bay Area. These provisions require mercury and PCB load reductions and the development of a Reasonable Assurance Analysis (RAA) demonstrating that control measures will be sufficient to attain the TMDL waste load allocations within specified timeframes. Provision C.8.f of the MRP supports implementation of the mercury and PCB TMDLs provisions by requiring that Permittees conduct pollutants of concern (POC) monitoring to address the five priority information needs listed below.

1. *Source Identification* – identifying which sources or watershed source areas provide the greatest opportunities for reductions of POCs in urban stormwater runoff;

2. *Contributions to Bay Impairment* – identifying which watershed source areas contribute most to the impairment of San Francisco Bay beneficial uses (due to source intensity and sensitivity of discharge location);

3. *Management Action Effectiveness* – providing support for planning future management actions or evaluating the effectiveness or impacts of existing management actions;

4. *Loads and Status* – providing information on POC loads, concentrations, and presence in local tributaries or urban stormwater discharges; and

5. *Trends* – evaluating trends in POC loading to the Bay and POC concentrations in urban stormwater discharges or local tributaries over time.

Table 8.2 of Provision C.8.f identifies the minimum number of samples that each MRP Countywide Program (i.e., Santa Clara, San Mateo, Alameda, and Contra Costa) must collect and analyze to address each monitoring priority. Although individual Countywide monitoring programs can meet these monitoring requirements, some requirements can be conducted more efficiently and will likely yield more valuable information if coordinated and implemented on a regional basis. The minimum of eight (8) PCB and mercury samples required by each Program to address information priority #3 is one such example. Findings from a regionallycoordinated monitoring effort would better support development of the RAA.

This Study Design describes monitoring and sample collection activities designed to meet the requirements of information priority #3 of Provision C.8.f of the MRP. The activities planned include field sampling of hydrodynamic separators and laboratory experiments with amended bioretention soils. Study planning is important to ensure that the right type of data are collected and there is a sufficient sample size and power to help address the management questions within the available time and budget constraints. Essential components of the study plan include describing problems, defining study goals, identifying important study parameters, specifying methodologies, and validating and optimizing the study design.

2. Problem Definition

Studies conducted to date have identified PCB source areas in the Bay Area where pollutant management options may be feasible and beneficial. Enhanced municipal operational PCB management options (e.g., street sweeping, storm drain line cleanout) have the advantage of being familiar and well-practiced, address multiple benefits, and the cost-benefit may exceed that for stormwater treatment (BASMAA, 2017a). Site-specific stormwater treatment via bioretention, however, is now commonly implemented to meet new and redevelopment (MRP Provision C.3) requirements. An added benefit of redevelopment is that PCB-laden sediment sources can be immobilized. However, many areas where certain land uses or activities generate higher PCB concentrations in runoff are unlikely to undergo near-term redevelopment, and instead may only be subject to maintenance operations or stormwater BMP retrofit projects implemented by the municipality. Consequently it is valuable to maximize cost effective PCB removal benefit of both operations and maintenance, and stormwater treatment.

Two treatment options that have the potential to reduce PCB discharges include hydrodynamic separators (HDS units) and enhanced bioretention filters. These options were pilot-tested in the Clean Watersheds for a Clean Bay (CW4CB) Project (BASMAA, 2017a). HDS units are being implemented for trash control throughout the Bay Area and collect sediment to some extent along with trash and other debris. Quantifying PCB mass removed by these units will help MRP Permittees account for the associated load reductions. For these and other control measures, an Interim Accounting Methodology has been developed based on relative mercury and PCBs yields from different land use categories (BASMAA, 2017c). Bioretention is a common treatment practice for new development and redevelopment in the San Francisco Bay Area, so enhancing the performance of bioretention is also attractive.

At this time reducing mercury loads in stormwater runoff is a lower priority than PCBs load reduction. The assumption during the MRP 2.0 permit term is that actions taken to reduce PCBs loads in stormwater runoff are generally sufficient to address mercury. Therefore, optimizing stormwater controls for PCBs is the primary focus in this study.

2.1 HDS Units

Limited CW4CB monitoring conducted at two HDS sites was used to calculate the mass of PCBs in trapped sediment (BASMAA, 2017a). The two sites sampled were Leo Avenue in San Jose and City of Oakland Alameda and High Street. The Leo Avenue HDS unit treats runoff from approximately 178 acres of watershed with a long history of industrial land uses, including auto repair and salvage yards, metal recyclers, and historic rail lines. The City of Oakland Alameda and High Street HDS has a tributary drainage area of approximately 35 acres with a high concentration of old industrial and commercial land uses, including historic rail lines.

Sampling of the two CW4CB HDS units was opportunistic and associated with scheduled cleanouts. Two sump cleanout events took place in August 2013, one at the Leo Avenue HDS unit and one at the Alameda and High Street HDS unit. However, due to a lack of captured sediment the samples collected were aqueous phase samples instead of sediment samples. An additional cleanout took place at Leo Avenue in October 2014. A sump sediment sample

collected and analyzed during this cleanout contained total PCB concentrations of 1.5 mg/kg and mercury concentrations of 0.33 mg/kg for sediment less than 2 mm in size, and estimated annual total PCB and mercury removals were 375 mg and 82.4 mg, respectively (Table 2.1). The HDS sediment concentrations are comparable to previous Leo Avenue watershed measurements in sediments from piping assessed via manholes, drop inlets/catch basins, streets/gutters, and private properties (ND to 27 mg/kg for PCBs and 0.089 to 6.2 mg/kg for mercury) (BASMAA, 2014). At the Alameda and High Street HDS unit, tidal influences of Bay water prevented additional monitoring.

Parameter	Result	Units
Volume of Sediment Removed	4	Cubic yards
Total PCBs Concentration	1.5	mg/Kg
Mercury Concentration	0.33	mg/Kg
Bulk density	0.67	g/cm ³
Percent solids	39	%
Particle Size (< 2 mm)	31	%

Table 2.1 Summary of Data Collected from Leo Avenue HDS during October, 2014 Annual Cleanout Event

There are no known published studies characterizing HDS sediment for PCBs or mercury, so the Leo Avenue results are compared to relevant drain inlet/catch basin sediment studies. In the Bay Area, different municipalities have collected and analyzed drain inlet cleaning sediment samples. The analytical results for these drain inlet sediment samples are summarized in Table 2.2 (BASMAA, 2014). As can be seen from Table 2.2, the Leo Avenue sediment PCB concentrations are higher than those measured in Bay Area drain inlet sediment by up to an order-of-magnitude, but mercury concentrations are comparable.

			Mercury			
Municipality	No. Drain Inlet Sediment Samples	Mean PCB DI Sediment Concentrati on (mg/Kg)	Median PCB DI Sediment Concentrati on (mg/Kg)	No. Drain Inlet Sediment Samples	Mean Mercury DI Sediment Concentrati on (mg/Kg)	Median Mercury DI Sediment Concentrati on (mg/Kg)
Fairfield & Suisun	8	0.244	0.055	16	0.510	0.228
San Mateo County Municipalities	29	0.318	0.123	28	0.160	0.147
San Carlos	22	0.267	0.129	25	0.167	0.147
Alameda County Municipalities	47	0.294	0.122	75	0.384	0.204
Berkeley	8	0.147	0.122	11	0.343	0.241
Oakland	24	0.402	0.155	28	0.539	0.297
San Leandro	11	0.219	0.106	21	0.230	0.151
Contra Costa County						
Municipalities	46	0.515	0.168	48	0.413	0.308
Richmond	31	0.736	0.482	28	0.460	0.349

 Table 2.2 Summary of Bay Area Drain Inlet Sediment Concentration Data

 (Based on readily available data; see BASMAA (2016b) for additional summaries for street and storm drain sediment)

Notes:

Mean and median drain inlet sediment concentrations were calculated from the SFEI database (SFEI 2010, KLI and EOA 2002; City of San Jose and EOA 2003).

Monitoring by the City of Spokane, Washington, showed total PCBs in catch basin sediment ranged between 0.025 mg/kg and 1.7 mg/kg for an industrial area with known PCB contamination (City of Spokane, 2015). A City of San Diego study characterized sediments in eight catch basins in a 9.5 acre area of downtown San Diego classified as high density mixed use with roads, sidewalks, and parking lots (City of San Diego, 2012). Concentrations of common aroclors in the catch basin sediments varied from about 0.040 to over 0.9 mg/kg. Monitoring by the City of Tacoma showed PCB concentrations in stormwater sediment traps varied from nondetect to a maximum near 2 mg/kg (City of Tacoma, 2015). The highest PCB concentrations in catch basin sediments ranged from 16 mg/kg in downtown Tacoma to 18 mg/kg in East Tacoma. These published drain inlet/catch basin studies show that PCB and mercury concentrations can vary substantially in storm drain sediments depending on the characteristics of the watershed.

Sampling of captured sediment at the Leo Avenue HDS in San Jose highlighted the potential of HDS maintenance as a management practice for controlling PCB and mercury loads. The BASMAA Interim Accounting Methodology that is currently being used to calculate load reductions assumes a default 20% reduction of the area-weighted land-used based pollutant yields for a given catchment. This default value was based on average percent removal of TSS from HDS units based on analysis of paired influent/effluent data. However, significant data gaps remain in determining the effectiveness of this practice and expected load reductions. HDS sediment sampling has been limited to a few samples. PCB concentrations in the Leo Avenue HDS sample were much higher than average concentrations in Bay Area drain inlet sediment. Drain inlet/catch basin sediment sampling by others suggests that sediment PCB and mercury concentrations can vary substantially from watershed to watershed. The monitoring performed to date is not sufficient to characterize pollutant concentrations of sediment captured in HDS units that drain catchments with different loading scenarios (e.g., land-uses, stormwater volumes, etc.), nor to estimate the percent removal based on the pollutant load captured by the HDS unit. Additional sampling is needed to better quantify the PCB and mercury loads capture by these devices, and calculate the percent removal achieved. Consequently, guantification of PCBs removed at other HDS locations and evaluation of the percent load reduction achieved is needed to provide better estimates of PCB load reductions from existing HDS unit maintenance practices.

2.2 Bioretention

The results of monitoring the performance of bioretention soil media (BSM) amended with biochar at one CW4CB pilot site suggest that the addition of biochar to BSM is likely to increase removal of PCBs in bioretention BMPs. Biochar is a highly porous, granular material similar to charcoal. In the CW4CB study, the effect of adding biochar to BSM was evaluated using data collected from two bioretention cells (LAU 3 and LAU 4) at the Richmond PG&E Substation 1st and Cutting site. At this site, cell LAU 3 contains standard engineered soil mix (60% sand and 40% compost) while cell LAU 4 contains a mix of 75% standard engineered soil and 25% pine wood-based biochar (by volume).

Figure 2.1 shows a cumulative frequency plot of influent and effluent PCB concentrations for the two bioretention cells. Although influent PCB concentrations at the two cells were generally similar, effluent PCB concentrations were much lower for the enhanced bioretention

cell (LAU 4) compared to those for the standard bioretention cell (LAU 3). The results for total mercury were different from those for PCBs, with both cells demonstrating little difference between influent and effluent concentrations. These CW4CB monitoring results suggest that the addition of biochar to BSM may increase removal of PCBs but not mercury from stormwater. However, analysis of methylmercury indicated that BSM may encourage methylation while biochar may mitigate the effect such that there is no substantial transformation of mercury to methylmercury. Tidal influences at 1st and Cutting also may be a contributing factor that should be controlled in future study.

The majority of biochar research conducted to date has focused on agricultural applications, where biochar has been shown to improve plant growth, soil fertility, and soil water holding, especially in sandier soils. Only a handful of field-scale projects have investigated the effects of biochar in stormwater treatment and no known field studies have investigated removal of mercury or PCBs from stormwater by biochar-amended media.

A recent laboratory study on the effect of biochar addition to contaminated sediments showed that biochar is one to two orders of magnitude more effective at removing PCBs from soil pore water than natural organic matter, and may be effective at removing methylmercury but not total mercury (Gomez-Eyles et al., 2013). A laboratory column testing study to determine treatment effectiveness of 10 media mixtures showed that a mixture of 70% sand/20% coconut coir/10% biochar was one of the top performers and cheaper than similarly effective mixtures using activated carbon (Kitsap County, 2015). Liu et al (2016) tested 36 different biochars for their potential to remove mercury from aqueous solution and found that concentrations of total mercury decreased by >90% for biochars produced at >600°C but about 40–90% for biochars produced at 300°C.

Figure 2.1 Cumulative Frequency Distribution of Total PBCs Influent Concentrations for Bioretention Media with and without Biochar

Monitoring of two bioretention cells at the Richmond PG&E Substation 1st and Cutting pilot site showed greater PCB removal for a biochar-amended BSM than that for standard BSM.

However, to date sampling has been limited to one test site and one biochar amendment, and the operational life of the amended media is unknown. **Besides the CW4CB study, there are no published literature studies on field PCB and mercury removal for biochars. Additional field testing can confirm the effectiveness of bioretention implementation in more typical conditions, and laboratory testing is recommended as an initial screening to help identify potential biochars for field testing.** Laboratory testing using actual stormwater from the Bay Area can be a cost-effective screening tool to identify biochar media that are effective for PCB removal, do not exacerbate mercury problems or even improve mercury removal, and meet operational requirements, including an initial maximum infiltration rate of 12 in/h and a minimum long-term infiltration capacity of 5 in/h.

3. Study Goals

The goals of this study identified from the problem statements are as follows:

- 1. Quantify annual PCB and mercury load removals during maintenance (cleanout) of HDS units
- 2. Identify biochar media amendments that improve PCB and mercury load removal by bioretention BMPs

To reach these goals, the following management questions are prioritized as primary or secondary management questions.

3.1 Primary Management Questions

A properly conceived study will address the study goals in a manner that supports planning for future management actions or evaluating the effectiveness or impacts of existing management actions. The resulting primary management questions focus on performance and are:

- 1. What are the average annual PCB and mercury loads captured by existing HDS units in Bay Area urban watersheds?
- 2. Are there readily available biochar-amended BSM that provide significantly better PCB and mercury load reductions than standard BSM and meet MRP infiltration rate requirements?

The MRP infiltration rate requirements are described in Provision C.3.c of the MRP (SFBRWQCB, 2015). This provision states the following: "Biotreatment (or bioretention) systems shall be designed to have a surface area no smaller than what is required to accommodate a 5 inches/hour stormwater runoff surface loading rate, infiltrate runoff through biotreatment soil media at a minimum of 5 inches per hour, and maximize infiltration to the native soil during the life of the Regulated Project. In addition to the 5 inches/hour MRP requirement, for non-standard BSM the recently updated BASMAA specification requires "certification from an accredited geotechnical testing laboratory that the bioretention soil has an infiltration rate between 5 and 12 inches per hour" (BASMAA, 2016a).

3.2 Secondary Management Questions

Secondary management questions are helpful, but they are not critical to the usefulness of the study. Study scope, budget, and schedule constraints limit the extent to which they can be addressed. Possible secondary management questions include the following:

HDS

- 1. How does sizing of HDS units affect annual PCB and mercury loads captured in HDS sediment?
- 2. Do design differences between HDS units (e.g., single vs multiple chambers) result in significant differences in pollutant capture?
- 3. How does the frequency of cleanout of HDS units affect load capture?

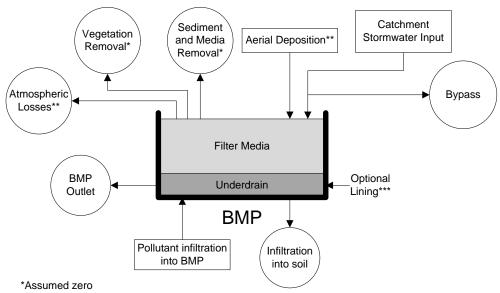
- 4. If present, does washout of HDS sediment depend on remaining sediment volume capacity?
- 5. Are there significant concentrations of PCBs in the pore (interstitial) water of HDS sediment?
- 6. Are PCBs and mercury removal correlated to removal of better-studied surrogate constituents, such as TSS?
- 7. Is there evidence of increased methylation within HDS sediment chambers?

Enhanced Bioretention

- 1. How does biochar performance vary with feedstock?
- 2. How does biochar performance vary with manufacturing method?
- 3. Should the biochar be mixed with the BSM or provided as a separate layer below the standard BSM?
- 4. Does biochar have leaching issues or require conditioning before use?
- 5. How long does the improved performance of biochar-amended BSM last?
- 6. Does the promising media increase methylation of mercury?
- 7. What is the expected increase in BSM costs due to inclusion of media amendment?
- 8. Does knowledge of the association of PCBs and mercury to specific particle sizes improve understanding of performance?
- 9. Is mass removal comparable to that expected from a conceptual understanding of removal mechanisms?

The above secondary management questions are provided as examples, and the questions answered will depend on budget, schedule, and actual data collected.

3.3 Level of Confidence


The level of confidence in the answers to the above management questions depends on sample representativeness and size. Samples are considered representative if they are derived from sites or test conditions that are representative of the watershed or treatment being considered. A power analysis can be used after monitoring commences or at the end of a study to determine if sample size is sufficient to draw statistically valid conclusions at a pre-selected level of confidence. Power analysis can also be used prior to study commencement, but its usefulness in estimating sample size requirements may be limited by lack of knowledge of variability in the biochar-amended BSM data to be collected.

Level of confidence can also be assessed in terms of consistency of treatment (e.g., a particular biochar consistently shows better removals than other biochars for a variety of stormwaters), which can be assessed with non-parametric approaches such as a sign-rank test.

Data analysis approaches are discussed in Section 8.5.

4. Study Design Options

An overview of the available study designs is presented here to understand the methods, value, and constraints of each design. This information is helpful in identifying which study designs are appropriate for the various management questions. To answer the primary management questions, the mass of pollutants captured must be quantified. This is accomplished by monitoring pollutant input and export for each HDS unit or media option, or directly quantifying captured pollutant. For example, the typical input and output pathways for a stormwater treatment measure (i.e., BMP) are illustrated in **Error! Reference source not found.**4.1. This overview describes how data are collected and how they are used to answer the primary study questions.

** Assumed minor (usually unmeasured)

*** Lining, when present, helps prevent losses and gains from interaction with surrounding soils and water.

Figure 4.1 Typical BMP system and pollutant pathways

The study designs discussed here address major inputs and losses, but not all. Selection of study design is based on the management questions, the type of BMP(s), the study constraints, and the current and historic conditions of the study area. Each type of study has associated strengths and weaknesses as described below:

- Influent-effluent monitoring
 - Influent and effluent monitoring tests water going into and discharging from a selected BMP or treatment option for a particular storm event. This approach is typically used to assess BMP effectiveness. An advantage of this approach is its ability to discern differences in limited data sets. A weakness of this approach is that measured load reductions may not be representative of true load reductions if there is infiltration to the native soil, baseflow entering the BMP, or bypass flows that are not monitored

Sediment sampling

Sediment sampling occurs within the BMP or treatment option and is used to estimate cumulative load removed over several storms. Sediment sampling can occur in dry periods.

• Before-after monitoring

Before-after monitoring occurs at the same location. In the before-after approach, data are collected at some location, a change is made (i.e., a BMP is implemented or modified), and additional data are then collected at the same location. This introduces variability because in field monitoring the storms monitored before BMP implementation may not have the same characteristics as those after implementation.

• Paired watershed monitoring

Paired watershed attempts to characterize two watersheds that are as similar as possible, except one has BMP treatment (e.g., an HDS unit). The paired watershed approach is typically used when monitoring the influent of the BMP is infeasible. While the storms monitored are the same, inevitable differences in the watersheds often lead to unexplainable variability.

Paired watershed monitoring is not discussed further because it is not applicable to this study. The scope of work does not require influent monitoring at field sites or monitoring of paired sites without BMPs.

Volume measurement is critical to estimating load removal efficiency for BMPs that have volume losses. Volumes can be measured at influent, effluent, and bypass locations and within the BMP for individual storms or over a longer period.

The following subsections provide more detail on each monitoring approach.

4.1 Influent-Effluent Monitoring

Comparison of influent and effluent water quality and load is the method most often used in studies of treatment BMPs. This method is used to estimate the pollutant removal capability of field devices such as individual BMPs or a series of in-line BMPs (i.e., a treatment train) or laboratory treatment systems such as filter media columns. This type of study results in paired samples. Paired samples are beneficial because fewer samples are needed to show statistically significant levels of pollutant reduction compared to unpaired samples. This can result in substantial cost savings for sample collection and sample analysis.

Comparison of performance among BMPs may not be possible if there are only a limited number of locations because of different influent qualities. This is illustrated in **Error! Reference source not found.** for two non-overlapping BMP data sets, which show confidence intervals for effluent estimates (vertical dashed and dotted lines with arrows) expand as the distance between the hypothetical influent *x*-value and the mean *x*-value of the data increases. Although the effluent estimates at a common influent concentration (solid black square and diamond) may reflect true effluent qualities, confidence in these predictions is low because of this extrapolation and the performance of the two BMPs may not be statistically distinguishable. A better study design is one that selects sites with similar influent

characteristics or ensures collection of a sufficient number of samples at or close to the common influent level.

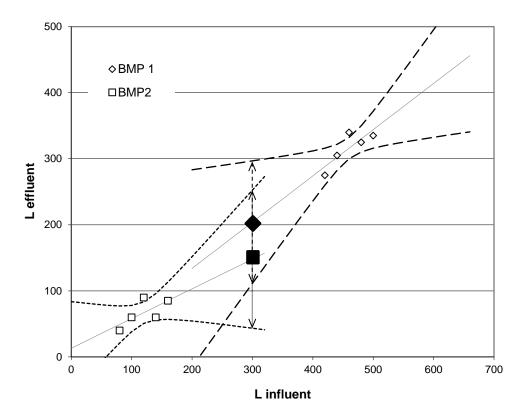


Figure 4.2 Comparison of two hypothetical non-overlapping BMP regressions

4.2 Sediment Sampling

Sediment sampling involves taking samples of actual sediment captured in a BMP in lieu of influent and effluent monitoring. Analysis of the accumulated sediment can provide estimates of the total mass of conservative pollutants removed¹. An advantage of sediment sampling is reduced cost because expensive storm event sampling is not required. Another advantage is that the measure of pollutants is direct and it is not possible to obtain negative results as in the case of sampling highly variable influent/effluent.

There are a number of limitations to sediment sampling. Annual sediment sampling during a maintenance interval generates fewer data points than influent-effluent sampling throughout a storm season, so comparisons among BMP factors (design, loading, etc.) may require a greater number of monitoring sites. Another limitation is that influent monitoring data are not available to describe how the mass removal estimates may be sensitive to influent loading, and influent monitoring may be required in addition to sediment sampling to

¹ In the context of sediment sampling, "conservative pollutants" are those that are not substantially lost to volatilization or plant uptake in between periods of sediment analysis. Sediment analysis underestimates performance where volatilization or plant uptake is substantial.

characterize pollutant loading. This limitation is addressed in this study during the data analysis by using model estimates of stormwater flows and pollutant loads from each HDS unit catchment to provide estimates of the influent and associated percent removals achieved.

Another limitation of sediment sampling is the potential error resulting in nonhomogeneous pollutant distribution within the sediment. Compositing multiple samples will better characterize the sediment, much as the collection of several aliquots throughout a stormwater runoff event can better represent the total volume of water. Mixing the removed sediment before compositing can provide samples that are more homogeneous.

Consequently, the effectiveness of sediment sampling depends on the type of BMP. HDS are the best candidates for sediment sampling. The sumps are cleaned and empty at the start of the study, and the entire mass of retained sediment is removed at each maintenance event (sump cleanout). Conversely, bioretention has background sediment (planting media) that obscure pollutant accumulation. Since pollutants tend to accumulate on the surface of media (typically within the first few inches), surface sediments should be targeted when sampling these systems. Coring these systems and compositing the core sediments will most likely result in further dilution of the PCBs retained in the media, making quantification more difficult. For all systems, larger pieces of litter and vegetation may be difficult to include in the analysis. A conservative approach is to exclude larger material and assume these have little association with PCBs.

4.3 Before-After Monitoring

Pollutant removal can also be estimated by monitoring discharge quality for treatment devices before and after installation. This may be attractive for green street projects that have multiple BMPs with multiple influent and effluent locations. Monitoring all of these individual systems is almost impossible because of space constraints. Note that since the data from before/after implementation are unpaired, variability is expected to be larger and the number of samples required to show significant removal much higher than for paired samples.

Before-after monitoring is also applicable to laboratory test systems in which water quality is measured before and after a change is made. For example, the rate of adsorption or the adsorptive capacity of media can be determined by measuring the water quality before and after addition of a known quantity of media.

5. Primary Data Objectives

The study design options discussed previously are matched to the primary management questions. The primary management questions require two data objectives: determine annual mass captured by HDS units and load removal by biochar-amended BSM. The primary management questions are:

- 1. What are the **annual PCB and mercury loads captured** by existing HDS units in Bay Area urban watersheds?
- 2. Are there readily available biochar-amended BSM that provide significantly better **PCB and mercury load reductions** than standard BSM and meet MRP infiltration rate requirements?

Monitoring to address the first management question should at minimum provide the average annual PCB and mercury loads captured by HDS units.

5.1 Data Objective 1: Annual Loads Captured by HDS Units

Determined by influent-effluent monitoring for individual storm events over one or more seasons or filter media/sediment sampling at end of each season.

Options:

- Influent-effluent monitoring. Requires monitoring of as many storms as possible over a season and flow measurement in addition to water quality sampling. Flow measurement is a critical component for estimating stormwater volumes treated, retained, and bypassed, and is often associated with additional measurements such as water depth within a BMP to estimate bypass and retention.
- Filter media/sediment sampling. Requires sampling at end of season but does not require influent/effluent water quality or flow measurement. Sediment sampling has a high value for estimating annual mass removal because a single composite sample of retained sediment over a season can yield an estimate of load removal for the constituents analyzed. However, influent characterization would also help explain mass removal performance. This method is most appropriate when applied to HDS systems because they can isolate retained sediment.

5.2 Data Objective 2: Loads Reduced by Biochar-Amended BSM

Determined by influent-effluent monitoring or filter media/sediment sampling for individual events until sufficient data are available for statistical analysis.

Options:

Influent-effluent monitoring. Requires monitoring of multiple individual events and flow measurement in addition to water quality sampling. Accurate flow measurement in BMPs is difficult because flows can vary an order of magnitude during individual events and measurements may be required at multiple locations within a device because of bypass, infiltration etc. (see Figure 4.2). This complexity introduces a great degree of variability in the monitored data that can substantially increase the number of data points required to show statistically significant load removals, particularly for BMPs such as HDS units that show relatively small differences between influent and effluent load reductions. This option is most appropriate for testing filter media, for example in laboratory experiments, in which accurate flow measurements are possible and sampling of accumulated sediment is infeasible.

 Filter media/sediment sampling. Requires sampling after individual events but does not require influent/effluent water quality or flow measurement. This method is not feasible for filter media because the retained sediment cannot be isolated from the filter media.

6. BMP Processes and Key Study Variables

The treatment mechanisms that occur in a BMP help inform selection and control of the study variables. These treatment mechanisms, also called *unit processes*, may include physical, chemical, or biological processes. The primary physical, chemical, and biological processes that are responsible for removing contaminants include the following:

- Sedimentation The physical process by which suspended solids and other particulate matter are removed by gravity settling. Sedimentation is highly sensitive to many factors, including size of BMP, flow rate/regime, particle size, and particle concentration, and it does not remove dissolved contaminants. Treated water quality is less consistent compared to other mechanisms due to high dependence on flow regime, particle characteristics, and scour potential.
- Flocculation Flocculation is a process by which colloidal size particles come out of suspension in the form of larger flocs either spontaneously or due to the addition of a flocculating agent. The process of sedimentation can physically remove flocculated particles.
- Filtration The physical process by which suspended solids and other particulate matter are removed from water by passage through layers of porous media. Filtration provides physical screening of particles and trapping of particles within the porous media. Filtration depends on a number of factors, including hydraulic loading and head, media type and physical properties (composition, media depth, grain size, permeability), and water quality (proportion of dissolved contaminants, particle size, particle size distribution). Compared to sedimentation, filtration provides a more consistent treated quality over a wider range of contaminant concentrations.
- Infiltration The physical process by which water percolates into underlying soils. Infiltration is similar to filtration except it results in overall volume reduction.
- Screening The physical process by which suspended solids and other particulate matter are removed by means of a screen. Unlike filtration, screening is used to occlude and remove relatively larger particles and provide little or no removal for particles smaller than the screen opening size and for dissolved contaminants.
- Sorption The processes of absorption and adsorption occur when water enters a
 permeable material and contaminants are brought into contact with the surfaces of
 substrate media, plant roots, and sediments, resulting in short-term retention or longterm immobilization of contaminants. The effectiveness of sorptive processes depends on
 many factors, including the properties of the water (contaminant concentration, particle
 concentration, organic matter, proportion of dissolved contaminants, particle size, pH,
 particle size and charge), media type (surface charge, absorptive capacity), and contact
 time.

- Chemical Precipitation The conversion of contaminants in the influent stream, through contact with the substrate or root zone, to an insoluble solid form that settles out. Consistent performance often depends on controlling other parameters such as pH.
- Aerobic/Anaerobic Biodegradation The metabolic processes of microorganisms, which play a significant role in removing organic compounds and nitrogen in filters.
- Phytoremediation The uptake, accumulation, and transpiration of organic and inorganic contaminants, especially nutrients, by plants.

The relative importance of individual treatment mechanisms depend to a large extent on the chemical and physical properties of the contaminant(s) to be removed i.e. the influent quality. The two contaminants of interest in this study are PCBs and mercury. PCBs are relatively inert hydrophobic compounds that have very limited solubility and a strong affinity for organic matter. They are often associated with fine and medium-grained particles in stormwater runoff, making them subject to removal through gravitational settling or filtering through sand, soils, media or vegetation. Most of the mercury in water, soil, and sediments is in the form of inorganic mercury salts and organic forms of mercury such as methylmercury that are strongly adsorbed to organic matter (e.g., humic materials). In general, mercury is most strongly associated with fine particles while PCBs are generally associated with relatively larger and/or heavier particles. It is therefore expected that sedimentation, flocculation, and related processes will be less effective for mercury removal than for removal of PCBs (Yee and McKee, 2010).

The following subsections provide a brief description of the BMP types being evaluated in this study, the unit processes involved in each, and key variables that indicate possible data collection approaches. The final selection of the quantity and type of data to collect is presented in the "Optimized Study Design" section.

6.1 HDS Units

Hydrodynamic separators rely on sedimentation and screening as the primary removal mechanism for sediment and particulate pollutants. Treatment performance is highly dependent on the following:

- Influent quality (contaminant concentration, proportion of dissolved contaminants, particle size, particle size distribution, and particle density)
- BMP design and hydraulic loading/flow regime (size of unit versus catchment area)
- Operational factors (remaining sediment capacity)

HDS effluent quality is highly variable, particularly for contaminants such as mercury that are associated with fine particles that are not as effectively removed in HDS. These devices are expected to require a relatively large number of influent-effluent samples to demonstrate statistically significant reductions in pollutant concentrations. Therefore, analysis of retained sediment is an appropriate alternative to influent-effluent sampling for determining pollutant mass captured. Sediment can be analyzed when the device is cleaned.

6.2 Bioretention

Bioretention is a slow-rate filter bed system. It is planted with macrophytes (typically shrubs and smaller non-woody vegetation). The major sediment removal mechanism is physical filtration through the planting media. When retention time is sufficient, dissolved constituents can be removed by sorption to plant roots in the planting media, which typically contains clays and organics to enhance sorption. Treatment performance is highly dependent on the following variables:

- Influent quality (contaminant concentration, particle concentration, organic matter, proportion of dissolved contaminants, particle size, particle size distribution)
- BMP design and hydraulic loading rate/head (size of the unit in relation to catchment area and storm character)
- Media type and properties (composition, grain size, grain size distribution, adsorptive properties, and hydraulic conductivity)
- Volume reduction by infiltration
- Operational factors (surface clogging, short-circuiting)

The effluent quality from bioretention and enhanced bioretention is expected to be consistently higher than for sedimentation-type BMPs. These devices are expected to require a relatively fewer number of samples than HDS units to demonstrate statistically significant reduction because of better treatment of fine particles and dissolved contaminants.

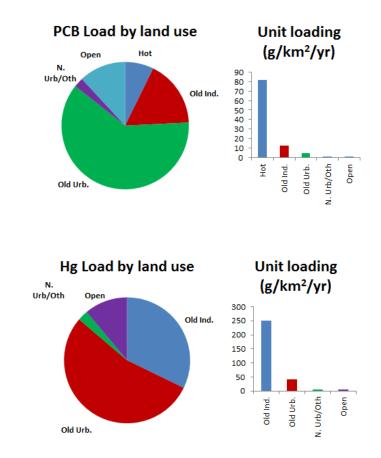
It is important to note that laboratory and not field bioretention systems are of interest in this study. These laboratory systems, essentially cylindrical columns filled with the media being tested, attempt to simulate most, but not all, of the chemical, biological, and physical processes that occur in field devices. For example, volume reductions due to infiltration are not simulated in laboratory column experiments. The advantages of using media columns as proxies for field devices include improved control over operation, monitoring, and sample collection in ways that would be impractical in the field. This improved control makes it possible to test a large number of potential media and identify the most promising for future field testing.

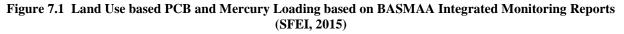
7. Monitoring and Sampling Options

Key variables that affect water quality and sediment quality data are identified from knowledge of treatment processes. The following lists the process variables identified through knowledge of the treatment processes:

- Influent quality (contaminant concentration, particle concentration, organic matter, proportion of dissolved contaminants, particle size, particle size distribution, particle density)
- BMP design and hydraulic loading (flow rate, hydraulic head, flow regime)
- Media type and properties (composition, grain size, grain size distribution, adsorptive properties, and hydraulic conductivity)
- Operational factors (surface clogging, short-circuiting, remaining sediment capacity)

Some of the above variables can be controlled and others are measured to determine their effect on water quality and sediment quality. Inevitably, some variables will be beyond the control of the study but their expected impact should be considered based on theory, past experience, models, or observations from other studies.


7.1 HDS Units


7.1.1 Influent Quality

The location of the BMP can greatly affect influent water quality such as pollutant concentrations and particle characteristics because land use and land cover affect sediment mobilization and pollutant concentrations within the sediments. Land use is often used as an indicator of pollutant loading. The land uses of the areas of interest include industrial, commercial/mixed use, roads/rail, institutional, and residential. Because of past use of PCB and past PCB and mercury handling practices, age of the land use is also important, with generally higher concentrations from older industrial, commercial, and transportation areas, and lower concentrations from newer residential areas. However, PCB analysis by the San Francisco Estuary Institute (SFEI) showed that PCB concentration patterns were patchy within larger urban watersheds with higher concentrations. This finding indicates that mass reductions of PCBs may require site-specific sampling of influent loads or site-specific quantification of mass removed. Mercury data suggest areas with higher mercury concentrations are not as pronounced although generally where there is PCB contamination there is also high to moderate Hg contamination (Yee and McKee, 2010).

Since HDSs are primarily installed for trash capture, their distribution within the study area is assumed to be random. However, the primary interest is in watersheds with relatively high pollutant loads that are most likely to result in significant removal in HDSs (e.g., the Leo Avenue watershed). Land use or land use based pollutant yields can be used to represent average influent water quality when influent monitoring is not conducted.

Figure 7.1 shows the land use based PCB and mercury loadings for key designated land use types. It can be seen that unit PCB loading from watersheds with higher PCB concentrations and mercury loading from old industrial watersheds are substantially higher than the other land uses. Assuming particle size, particle size distribution, and other stormwater characteristics are similar for the different land uses, HDSs in higher concentration watersheds or old industrial watersheds are expected to capture much higher pollutant loads than those in other watersheds.

A preliminary land use based study design could categorize HDS sites as show in Table 7.1.

Land Use	HDS Samples
Higher Concentration	X, X, X ¹
Old Industrial	X, X, X ¹
Old Urban	X, X, X ¹

Table 7.1 HDS Sampling Design based on Watershed Land Use

The above design is appropriate if HDS units can be categorized easily into one of the three land use categories. A review of the land uses within HDS watersheds indicates that most HDS units are in predominantly old urban watersheds, and it is unclear how many HDSs are within areas with higher PCB concentrations (Table 7.2).

HDS Catchment ID	New Urban	Old Industrial	Old Urban	Open Space	Other
287; Sonora Ave		16	84	1	
27A	15	50	34	2	
996; Parkmoor Ave		1	98	1	
1084; Oswego		0	89	0	10
600; Edwards Ave		33	39	28	
611; Balfour		14	55	30	
1082; Melody/33rd		0	97	3	
612; Lewis			93	7	
604; Sunset			96		4
1012; Blossom Hill/Shadowcrest			100	0	
1083; Lucretia		0	98	1	1
1002; Selma Olinder		10	86	5	
995; Dupont St.		9	91	0	
9-A; 73rd Ave and International Blvd		0	94	6	
475; 7th		68	29	3	
509; Coyote	22		77	1	
47			99	1	
8-A; Alameda Ave near Fruitvale	1	40	57	4	
575; Bulldog		6	93	1	
601; W. Virginia		7	90	3	
1504; Phelps			100	0	
390; Remillard		4	87	10	
Tennyson at Ward Creek		1	97	2	
W Meadow Dr		2	97	1	
Leland and Fair Oaks		1	99		
Ward and Edith			100	0	
5-D; 22nd and Valley		1	99	0	
8-C; High St @ Alameda Bridge		67	32	0	
5-G; Perkins & Bellvue (Nature Center)			100		
999; William	1	0	95	5	
Main St and Hwy 1	1		85	15	
Central Expy at Fair Oaks	1	11	89	0	
393; Wool Creek	1	11	78	4	
5-C; 27 St & Valdez Ave	1	2	98	· · · · · · · · · · · · · · · · · · ·	
998; Pierce	1	1	96	3	
Maple and Ebensburg	1	-	98	2	
Ventura Ave	1		99	1	
Golden Gate and St Patrick			100	0	
5-A; Euclid Ave @ Grand Ave			100	y i	
5-H; Lake Merritt (SD Outfall 11)			100		
5-B; Staten Ave & Bellvue			100		
Central Expy at De la Cruz		33	67		
· ·		33	100		
5-I; Lake Merritt (SD Outfall 26)	+	0			
Mathilda overpass project CDS2		0	100	~	
Mathilda overpass project CDS1	<u> </u>	10	84	7	

 Table 7.2 Percent of Land Use in HDS Watershed Areas

(Based on FY 2015-16 Co-permittee Annual Reports, Section 10 - Trash Load Reduction. Source: Chris Sommers Personal Communication)

Given the few sites in categories other than old urban, an alternative study design based on mixed land uses may be more appropriate (Table 7.3).

Predominant Land Use	HDS Samples
Higher Concentration/Old Industrial	X, X, X ¹
Old Urban/Old Industrial	X, X, X ¹
New Urban/Old Urban	X, X, X ¹

Table 7.3 HDS Sampling Design based on Predominant Land Use

1-``X'' represents a sample from a selected HDS unit in the specified land use category.

The sampling design in Table 7.3 assumes that at least three HDS units are available for sampling in each PCB land use category. The sampling design may need to be modified further if there are an insufficient number of units available for sampling. For example, any site with more than 30% old industrial may be considered especially if it is a mixed zoned watershed (with industrial, commercial, residential and transportation land uses). The range of values in each land use category can be determined upon review of the most recent information. The design in Table 7.3 assumes that the characteristics of the runoff (e.g., particle sizes) are similar for the different land uses and only the yield is different.

Only sediment sampling is proposed for HDS. Since HDS influent-effluent monitoring is not required, variables such as proportion of dissolved contaminants, particle size, particle size distribution, and particle density are not measured or controlled, but their effect on influent quality and treatment is accounted for by randomly selecting HDSs within each land use category.

7.1.2 BMP Design and Hydraulic Loading

BMP design and hydraulic loading, which depends on the size of the BMP, can have a substantial impact on effluent water quality and the quantity of sediment retained in a BMP. Consequently, a full range of BMP designs and sizes are of interest. Properly sized, BMPs infrequently exceed their design capacity. However, BMPs are not always sized to standard specification, especially in retrofit environments in which typical hydraulic loading is much higher due to space constraints.

HDS units are typically proprietary and designs and sizing vary widely. Sediment capture may vary because of design differences such as number of chambers and design of overflow weirs and baffles, as well as different sizing criteria that can greatly affect both hydraulic loading and flow regime. The purpose of the study is to characterize sediment in HDS units in the study area. Since BMP design and sizing are important factors affecting HDS performance, it is necessary to include a range of HDS units in the study design and not just randomly select HDS units. A randomized blocked study design is therefore considered more appropriate than a completely random one that may result in an insufficient number of HDS units of a certain size.

In a randomized design, one factor or variable is of primary interest (e.g., land use), but there are one or more other confounding variables that may affect the measured result but are not of primary interest (e.g., HDS design, HDS size). Blocking is used to remove the effects of one or more of the most important confounding variables and randomization within blocks is then used to reduce the effects of the remaining confounding variables. An appropriate sampling design could therefore be land use as the primary factor and HDS size as the blocking factor. Since the population of HDS units in the land use categories of interest is limited, only two size blocks are used ($\leq 50^{\text{th}}$ percentile, > 50th percentile), and other variables such as design differences are accounted for by random selection within each block (Table 7.4).

I O O O		
Predominant Land Use	HDS Size	
	≤50th percentile	>50th percentile
Higher Concentration/Old Industrial	X, X, X ¹	X, X, X ¹
Old Urban/Old Industrial	X, X, X ¹	X, X, X ¹
New Urban/Old Urban	X, X, X ¹	X, X, X ¹

 Table 7.4 HDS Sampling Design based on Predominant Land Use and HDS Size

1 - "X" represents a sample from a selected HDS unit in the specified land use category.

For the sampling design in Table 7.4, an HDS size factor is required to differentiate the two types of sizes that are of interest. In controlled field study of 4 different proprietary HDS units and laboratory testing of 2 other units, Wilson et al. (2009) developed a *performance function* (treatment factor) that reasonably predicted the removal efficiency of a given hydrodynamic separator. The performance function explained particle removal efficiency in terms of a Péclet number, P_e , which accounts for particle settling and turbulent diffusion. In the following equation, V_s is the particle settling velocity, h is the settling depth in the device, d is the device diameter, and Q is the flow through the device:

$$P_e = \frac{V_s h d}{Q}$$

The above Péclet number (Wilson et al's performance function) can be used in the sampling design as the HDS size factor. For grouping the available HDS units into the two blocks, information is required on the particle diameter and design parameters for each device (settling depth, diameter, and design flow). Particle diameter can be assumed to be 75 µm, which is the critical size used for partitioning PCB fractions in Yee and McKee (2010), and is also approximately the size separating silt and fine sand size particles. The design flow can be calculated from knowledge of the drainage area to the device and a standard design storm. Note that the design flow should not be based on manufacturer guidance because different manufacturers use different sizing criteria and device sizing may not always follow manufacturer guidance.

The final sampling design may need revision depending on the monitoring approach, availability of HDSs, information on watershed land use and sizing, and the level of participation from municipalities.

7.1.3 Operation and Maintenance

Maintenance frequency can greatly impact BMP performance. For sedimentation BMPs such as HDS, sediment levels may exceed the sediment capacity of the BMP, decreasing the volume for sedimentation and increasing scour.

Operation and maintenance (e.g., cleanout frequency) are not of direct interest in this study and their effect on treatment is not being tested. However, these are confounding variables that need to be excluded. In the HDS sediment sampling design, HDS units that are considered at capacity or will reach capacity during the study should be excluded from the population of interest. Field observations are required to make this determination (e.g., whether the screen is blocked). These units can be cleaned out and sampled in a subsequent year. For each selected HDS unit, maintenance schedules (past and current) will need to be reviewed to determine the time period over which sediment accumulated.

7.2 Enhanced Bioretention

7.2.1 Influent Quality

The purpose of the laboratory testing is to screen alternative biochar-amended BSM and identify the most promising for further field testing. The laboratory testing requires influent-effluent monitoring. Influent water characteristics can vary depending on the source of the test water. PCB and mercury loading is largely a result of historic activities that result in accumulation in sediments of pervious areas. Mobilization of these sediments may require exceeding site-specific intensity and volume thresholds. Storm intensity is critical to detach and mobilize particles and storm volume must exceed any depression storage within the pervious areas. However, the precise effect of storm intensity and volume on the mobilization of PCB-contaminated and mercury-contaminated sediments has not been established. Influent water characteristics also depend greatly on drainage area characteristics including traffic and industrial and commercial activity.

Since the purpose of the laboratory study is to screen alternative biochar-amended BSM that can be used throughout the Bay Area, collection and use of stormwater from one or more representative watersheds is preferred. A preliminary review of available Bay Area stormwater runoff monitoring data from 27 sites (Table 7 of SFEI 2015) suggests median PCB concentration is about 9 ng/L. Therefore, one or more previously monitored watersheds with mean PCB concentrations well above 10 ng/L may be appropriate for collection of stormwater for the laboratory testing. Since the relative treatment performance of the various media at even lower concentrations may be different, additional tests with diluted stormwater may be required to confirm study results.

Storms from the representative watershed should be targeted randomly without bias, thereby accounting for the effects of storm intensity and ensuring variability in contaminant concentration, proportion of dissolved contaminants, particle size, particle size distribution, and particle density. To achieve this, minimal mobilization criteria should be used to ensure predicted storm intensity and runoff volume are likely to yield the desired volume.

7.2.2 BMP Design and Hydraulic Loading

The design variables in the enhanced bioretention testing laboratory study include media type, media depth, and media configuration. Media type is a key variable that is discussed further below. Testing the effect of different media depths or media configurations is not a research objective of the laboratory study, so these can be fixed for all experiments. Typical bioretention media depth in the Bay Area is 18 inches, so all column experiments should use 18 inches of BSM. In the Richmond PG&E Substation 1st and Cutting enhanced BSM testing, the biochar was not installed as a separate layer but was instead mixed with the standard BSM. It is unclear how treatment is affected by these two media configurations, but for consistency with previous field work the biochar and standard BSM should be mixed.

Hydraulic loading is a controlled variable that can be kept constant for all columns. Since the laboratory study is attempting to replicate field bioretention, the hydraulic loading can be the design loading for bioretention. Bioretention designs in the Bay Area typically have a maximum ponding depth of 6 inches, so a loading of 6 inches could be used for the column tests. There are two options for loading the columns: pump and manual. Peristaltic pumps are ideal for controlled loading, but in this study manual loading (batch loading) is more appropriate because of the potential for PCBs and mercury to stick to tubing, pump parts, etc. For manual loading, up to 10 inches of stormwater may be needed each time to ensure sufficient sample volume.

7.2.3 Media Type and Properties

Media type and properties have a substantial effect on the treatment performance of filtration devices. This group of variables include composition, grain size, grain size distribution, adsorptive properties such as surface area, and hydraulic conductivity. Media composition is a primary variable that accounts for differences in the biochars used and the proportion of each biochar in the amended BSM mix. The other variables (grain size, grain size distribution, adsorptive properties, and hydraulic conductivity) are not of direct interest in this study and are assumed to vary randomly or are controlled through screening experiments that limit their variability.

Biochar is produced from nearly any biomass feedstock, such as crop residues (both field residues and processing residues such as nut shells, fruit pits, and bagasse); yard, food, and forestry wastes; animal manures, and solid waste. Biochar feedstock and production conditions can vary widely and significantly affect biochar properties and performance in different applications, making it difficult to compare performance results from one study to another (BASMAA, 2017a). A laboratory study that characterized the physical properties of six different waste wood derived biochars found particle sizes ranging from over 20mm to fine powder and surface areas ranging from 0.095 to 155.1 m²/g (Yargicoglu et al., 2015). The variability in biochar types and properties is expected to result in large variation in treatment efficiency and infiltration rates. Given the large number of potential biochars that could be tested and the need to meet an initial maximum 12 in/h infiltration rate and a minimum long-term infiltration rate of 5 in/h, a phased study design is appropriate. In such a phased study, promising readily available biochars are first identified through a review of the literature, and hydraulic screening experiments are performed on biochar-BSM media mixes to ensure infiltration rates are met

prior to performance testing. This approach is expected to be the most cost-effective because it reduces analytical costs.

There is little information on hydraulic properties of bioretention media amended with biochar, and it is not clear what percentage of the amended BSM should be biochar to maximize treatment benefit. Given the variable physical size of the biochar media, relatively fine biochars could result in a mix that does not meet the initial 12 in/h maximum infiltration rate or minimum 5 in/h long-term infiltration rate. Kitsap County (2015) tested a BSM mix containing 60% sand, 15% Compost, 15% Biochar, and 10% shredded bark, and found that the biochar mix had an infiltration rate of only 6.0 in/h. One conclusion of the study was that the reduction in infiltration rate with the biochar additive was most likely because of fines in the biochar. To overcome this, hydraulic screening experiments are required in which the infiltration rate for each media mix is measured prior to water quality testing to ensure that both the maximum and minimum rates are met. Initially, each biochar can be mixed with standard BSM at a rate of 25% biochar by volume (the same as that at the CW4CB Richmond PG&E Substation 1st and Cutting site). Hydraulic conductivity can be determined using the method stated in the BASMAA soil specification, method ASTM D2434, which requires measurement of water levels and drain times. If a mix does not meet the infiltration requirements, the percentage of biochar is adjusted and the new mix tested. Amended mixes that do not meet the infiltration rate requirements are removed from further consideration (i.e. the effect of hydraulic conductivity is controlled by screening).

The final phase of the laboratory study can be column testing to identify the most effective amended BSM mixes for field testing. An influent-effluent monitoring design is typically used in column testing and media effectiveness is assessed on a storm-to-storm basis with real stormwater collected in the Bay Area. Only media mixes that have passed the hydraulic screening should be tested. All media columns should be sufficiently large or replicated to account for or minimize the impact of variability in media installation and experimental technique. Standard BSM should be used as a control since the primary interest is to identify media mixes that perform significantly better than standard BSM. An example of the column sampling design for 5 new media mixes and one standard BSM control is shown in Table 7.5. The key variable of interest in the sampling design in Table 7.5 is the media mix (composition).

Biochar/BSM Mix	Column Samples
A Mix	X, X, X ¹
B Mix	X, X, X ¹
C Mix	X, X, X ¹
D Mix	X, X, X ¹
E Mix	X, X, X ¹
Control Mix	X, X, X ¹

Table 7.5 Example Sampling Design for Laboratory Column Experiments

1 – "X" represents an influent or effluent sample.

7.2.4 Operation and Maintenance Parameters

Operational life depends on the capacity to pass the minimum required stormwater flows. Like media life, operational life is important because it determines the frequency and cost of maintenance requirements. Maintenance frequency can greatly impact BMP performance, and lack of maintenance can lead to surface clogging and sediment clogging in the inlets which reduces treatment capacity and increases bypass and overflow. Operation and maintenance are not of direct interest in this study and their effect on treatment is not being tested. However, these are confounding variables that need to be excluded.

Media mixes that do not meet the maximum 12 in/h and minimum 5 in/h infiltration rates can be excluded by hydraulic screening experiments (discussed above). As well as meeting the maximum 12 in/h initial infiltration rate requirement, these screening experiments help ensure that the BSM mixes do not fail during the laboratory testing. However, operational performance in laboratory experiments is not expected to be representative of that in the field because of differences in influent quality, variability in loading, effects of vegetation, etc. Therefore, laboratory estimates of long term infiltration rate are of little use and field testing is required to confirm that selected media mixes meet the long-term minimum infiltration rate of 5 in/h. The laboratory testing, however, can provide relative comparisons of hydraulic performance that can be used to decide and screen out media mixes that are likely to hydraulically fail in the field.

7.3 Uncontrolled Variables and Study Assumptions

The following assumptions were adapted from the Caltrans PSGM (Caltrans, 2009):

- Site Assumptions
 - HDS sediment concentrations are representative of the land use within the watershed, i.e. there are no sources of sediment from adjoining watersheds, from illicit discharges, or from construction activities
 - HDS sediment or influent is not affected by base flow, groundwater, or saltwater intrusion
 - Differences in storm patterns throughout the Bay Area are not sufficient to change the HDS performance measurements
 - Water quality of stormwater collected for laboratory testing is representative of that observed in Bay Area urban watersheds
- BMP Operation Assumptions
 - Sampled HDS units operated as designed (e.g., no significant scouring)
 - Volatilization of pollutants is negligible
 - > There is no short-circuiting of flows in laboratory column studies
- Media Selection Assumptions
 - > The readily available biochars selected are representative of all biochars
 - Selected media do not leach contaminates and media conditioning (e.g., washing) is not required
- Monitoring Assumptions

- Data collected from a few sites over a relatively short time span will accurately represent sediment at all HDS sites over longer time frames
- There are minimal contaminant losses in collecting and transporting water for laboratory experiments
- Water quality of stormwater for laboratory tests does not change significantly during each test
- Stormwater loading of laboratory columns is representative of loading in the field
- > Long-term infiltration performance of biochar mixes is to be tested in the field

8. Final Study Design

The study design is optimized to answer the primary management questions within the available budget. The design used prioritizes sampling of HDS units, but allocates sufficient funding for minimum sampling requirements for the laboratory media testing study. Monitoring that does not relate directly to the primary management questions is considered lower priority.

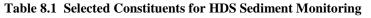
8.1 Statistical Testing & Sample Size

In a traditional test of a treatment, the null hypothesis is that there is no difference between the influent and effluent of a treatment (i.e., the treatment does not work). In the case of HDS sampling, influent-effluent sampling is not required, and interest is only in determining if HDS units remove PCBs and mercury and how the sediment concentrations and load removals vary for different land uses, and for different rainfall and stormwater flow characteristics. Statistical testing in the HDS study is therefore limited to testing if there is a difference in the concentrations and loads captured by HDS units in different watersheds. This testing will require sampling of a sufficient number of HDS units in each land use category associated with differing pollutant load yields.

In the laboratory study, influent-effluent sampling is required and traditional statistical tests can be used depending on sample size.

As well as traditional statistical testing, confidence in the conclusions can be established by comparing total PCB and mercury performance to that for other constituents that directly affect it (e.g., suspended solids, total organic carbon) or have similar chemistry (e.g., other organics). As stated previously, total PCB and mercury concentrations are expected to correlate to some extent with particulates and organics. Comparisons to other constituents are particularly useful for studies in which treatment is expected to be low and the corresponding sample size requirements very high.

Sample size requirements are smaller for paired sampling designs (i.e., influent and effluent sampling for the same storm event) than for independent sampling designs. Paired sampling is not possible for the HDS sampling study that has no influent-effluent monitoring, but is possible in the laboratory media testing study. Additionally, the number of samples required to show significant treatment are generally fewer for filtration-type BMPs than sedimentation-type BMPs because of their better and more consistent treatment.


8.2 Constituents for Sediment Analysis

Constituents selected for HDS sediment analysis must meet the data objectives discussed previously in "Primary Data Objectives", and be consistent with Table 8.3 of the MRP (SFRWQCB, 2015). Sediment samples will be screened using a 2 mm screen prior to analysis. Table 8.1 lists the constituents for sediment quality analysis. Total organic carbon (TOC) is included because it is a MRP requirement and can be useful for normalizing PCBs data collected for the sediment.

The primary objective of sediment analysis is quantification of the mass of PCBs and mercury accumulating within HDS units. Consequently, PCBs and total mercury are analyzed

for all screened sediment samples. The secondary objective is to establish a relationship between total PCBs, mercury, and particle size. Correlating total PCBs and mercury to particle sizes will complement past studies and provide insight into the type of BMPs that are appropriate to achieve the most cost-effective mass removal.

Analysis of PCBs at the CW4CB Leo Avenue HDS showed that PCBs in the water above the sediment may be minor when compared to sediment-associated PCBs (BASMAA, 2017b). PCB concentrations in overlying water are expected to be low and sampling of this water is not included in this study design.

Constituent
тос
Total Mercury ¹
PCBs (40 congeners) in Sediment
Particle Size Distribution
Bulk Density
1 - Only total mercury analyzed. Methyl mercury is not
relevant for SF Bay TMDL.

8.3 Constituents for Water Quality Analysis

Constituents for analysis of water samples must meet the data objectives discussed previously in "Primary Data Objectives", and be consistent with Table 8.3 of the MRP (SFRWQCB, 2015). Table 8.2 lists the constituents for the laboratory media testing studies. The list of water quality constituents must provide data to address the primary management question to quantify total PCB and mercury reduction, so PCBs and total mercury are analyzed for all samples. Secondary management questions relate to understanding removal performance for total PCB and mercury.

In addition to PCBs and total mercury, the other constituents selected for influent and effluent analysis are SSC, turbidity, and TOC. SSC was selected because it more accurately characterizes larger size fractions within the water column, while turbidity was selected because it is an inexpensive and quick test to describe treatment efficiency where strong correlation to other pollutants has been established. As with the sediment analysis, TOC is included because it is a MRP requirement and can be useful for normalizing PCBs data collected for water samples.

Constituent
SSC
Turbidity
ТОС
Total Mercury ¹
PCBs (40 congeners) in Water
1 - Only total mercury analyzed. Methyl mercury is not
relevant for SF Bay TMDL.

 Table 8.2 Selected Aqueous Constituents for Media Testing in Laboratory Columns

8.4 Budget and Schedule

The monitoring budget for the study is approximately \$200,000. A contingency of 10 percent of the water quality monitoring budget is recommended to account for unforeseen costs such as equipment failure. Another constraint is that all sampling will occur in one wet season.

8.5 Optimized Study Design

The optimized study designs are presented in Tables 8.3 and 8.4 for the HDS Monitoring and Enhanced Bioretention studies, respectively. Several iterations were analyzed and the study designs shown are based on best professional judgment to allocate the budget to the various data collection options.

The final design for the HDS monitoring study is based on selection and sampling of 9 HDS units in key land use areas. The number of units that can be sampled is limited because sampling is expected to be opportunistic as part of regular maintenance programs. Therefore, a simple design with 9 units is appropriate. The data analysis will evaluate the percent removal achieved for each HDS unit during the time period of interest (i.e., the time period between the date of the previous cleanout, and the current cleanout date for each HDS unit sampled) by incorporating modeled estimates of stormwater volumes and associated pollutant loads for each HDS unit catchment. Because HDS units are sized to treat stormwater runoff from storms of a given size and intensity, excess flows for storms exceeding the design capacity will bypass the unit and are not treated. Storm by storm analysis of rainfall data during the time period of interest will allow estimation of the total stormwater volume and pollutant load to the catchment during each storm, as well as the volume and pollutant load that bypassed the HDS unit and was not treated. This information will then be combined with the measured pollutant mass captured by each HDS unit to quantify the percent removal of PCBs and mercury from the total catchment flow, and the percent removal of PCBs and mercury from the treated flow. For each HDS unit sampled in the study, the total and treated pollutant mass removed will be calculated using the following equations.

(1) Total Pollutant Mass Removed (%) =	[M _{HDS-i} /M _{Catchment-i}] x 100%
(2) Treated Pollutant Mass Removed (%) =	[M _{HDS-i} /(M _{Catchment-i} - M _B)] x 100%

Where:

M _{HDS-i}	the total POC mass captured in the sump of HDS Unit i over the time period of interest
$M_{Catchment-i}$	the total POC mass discharged from Catchment-A (the catchment draining to HDS unit A) over the time period of interest
	draining to TDS unit A) over the time period of interest
MB	the total POC mass that bypassed HDS unit A over the time period of
	interest

The following inputs will be measured or modeled for the time period of interest for use in the equations above:

- Total PCBs and mercury mass captured by a given HDS unit. This is the mass measured in each HDS unit during this project.
- The total stormwater volume and associated PCBs and mercury load from the HDS unit catchment. This will be modeled on a storm by storm basis using available rainfall data, catchment runoff coefficients, and assumed pollutant stormwater concentrations.
- The stormwater volume and associated PCBs and mercury load that bypassed the HDS unit. The bypass volume (and associated pollutant load) during each storm (if any) will be calculated based on the design criteria for a given HDS unit.
- The total PCBs and mercury load treated by a given HDS unit. This will be determined by subtracting the bypass load (if any) from the total pollutant load for the catchment.

The corresponding design for the enhanced BSM study is based on testing of readily available biochars in hydraulic screening experiments followed by column testing of up to five promising BSM mixes as well as a standard BSM control mix. The final number of BSM mixes will depend on availability and media properties (e.g., expected hydraulic conductivity). The optimized designs will yield 33 data points for the key data objectives, 9 from the HDS monitoring study and 24 from the enhanced BSM media testing column study.

	Table 8.5 HDS Molitoring Stu	aj Design	
Primary Management Question(s)	What are the annual PCB and mercury load urban watersheds and the associated perce		ng HDS units in Bay Area
Type of Study	Sediment monitoring; modeling stormwate	r volume and pollut	ant load
Data Objective(s)	Annual PCB and mercury mass captured in	HDS units and perce	ent removal
Description of Key Treatment Processes	 Sedimentation, Flocculation & Screening Removal by gravity settling and physical Effectiveness depends on water quality, regime, and operational factors 		
Key Variables	 Sediment quality and quantity Influent quantity and quality (contaminates BMP design and hydraulic loading/flow) BMP maintenance (remaining sediment) 	regime	
Monitoring Needs	Monitored variables: sediment quality, sediment mass Controlled variables: influent quality, BMP maintenance (remaining sediment capacity) Uncontrolled variables: HDS design, hydraulic loading, flow regime		
Monitoring Approach	Influent quantity and quality: based on rain pollutant yield (old urb Hydraulic loading: base on HDS size (diame for known watershed siz BMP maintenance: base on remaining sum	an, new urban, etc.) ter and settling dep e) p capacity	th) and flow (design flow
Sampling Design	Sampling expected to be opportunistic as part of regular maintenance programs. Targeted predominant land uses for HDS selection and corresponding data generation:		
	Predominant Land Use	HDS Samples	No. Samples (Total 9)
	Higher Concentration/Old Industrial	X, X, X ¹	3
	Old Urban/Old Industrial	X, X, X ¹	3
	New Urban/Old Urban	X, X, X ¹	3
	 1 – "X" represents a sample from a select determined during site selection. Exclude units at full sump capacity (clear possible) 		
Constituent List	TOC, total mercury, PCBs (40 congeners) in bulk density	sediment, particle s	ize distribution, and
Data Analysis	Independent (unpaired) samples. Present is concentrations measured and mass remove Model estimates of catchment stormwater loads combined with the measured mass ca removal.	ed/area treated. An volumes and PCB a	alyze using ANOVA. nd mercury stormwater

		bSivi Testilig Study Desi	•
Primary Management Question(s)	Are there readily available biocha mercury load reductions than star		
Type of Study	Influent-effluent monitoring		
Data Objective(s)	PCB and mercury load removal		
Description of	Filtration and Adsorption		
Key Treatment	Removal by physical screening	, trapping in media, and r	etention on media surface
Processes	• Effectiveness depends on influ regime, media type and prope		esign and hydraulic loading/flow tors
Key Variables	Influent and effluent quality (P		
	proportion of dissolved contan		ticle size distribution)
	BMP design (media depth) and		
	Media type and properties (co		distribution, adsorptive
	properties, hydraulic conductiv		
	BMP maintenance (surface clo		
Monitoring	Monitored variables: Influent and		-
Needs		on, organic matter, surfa	
	Controlled variables: media depth		-
		properties, hydraulic cond	-
	Uncontrolled variables: Influent a	cle size distribution, sho	
Monitoring	Phased approach because of num		U
Monitoring Approach	1. Hydraulic tests to ensure ame		
Арргоасн	 Influent-effluent column tests 		
	3. Influent-effluent column tests		-
	concentrations		
Sampling Design	Phase I Hydraulic Tests:		
	- Determine infiltration rates	or media mixes with 25%	biochar by volume
	- If MRP infiltration rates not		
			mpt to control rate to +/- 1 in/h
	Phase II Influent-Effluent Column	Tests with Bay Area Stor	mwater (up to 5 mixes)
	Biochar/BSM Mix	Column Samples	No. Samples (Total 21)
	A Mix	X, X, X	3
	B Mix	X, X, X	3
	C Mix	X, X, X	3
	D Mix	X, X, X	3
	E Mix	X, X, X	3
	Control Mix	X, X, X	3
	Influent	X, X, X	3
	Phase III Influent-Effluent Column	n Tests for Select Mix with	n Diluted Bay Area Stormwater
	- Perform tests with diluted st	ormwater, if necessary, t	o confirm effectiveness at
	concentrations representation		
	- Test at one dilution (1 influe	nt and 1 mix and 1 contro	ol effluent) (3 samples)
Constituent List	SSC, turbidity, TOC, total mercury	PCBs (40 congeners) in v	vater
Data Analysis	Dependent (paired) samples. Pre	sent range of total PCB ar	nd mercury concentrations
	measured and mass removal efficiencies. Analyze using ANOVA and regressions of		
	influent/effluent quality. Perform sign-rank test to compare consistency in relative		
	performance among the columns.		

Table 8.4 Enhanced BSM Testing Study Design

8.6 Adequacy of Study Design

The primary management questions are reviewed in this section in light of the budgeted data collection efforts. The primary management questions are restated and followed by an analysis of the adequacy of the data collection effort.

1. What are the annual PCB and mercury loads captured by existing HDS units in Bay Area urban watersheds?

Table 8.3 lists the number of data points that are anticipated for the HDS monitoring study.

This selected design will provide 9 data points for each of the following: PCB sediment concentration, mercury sediment concentration, and sediment mass. This design will not be able to assess the effect of HDS size and hydraulic loading on pollutant removal, and may not be able to statistically differentiate load capture between different land uses because of the small sample count for each land use (3). However, this design is selected because of the lack of information available on HDS sizing and the opportunistic nature of the sampling which limits the number of HDS units that can be sampled. The effect of maintenance is eliminated by ensuring that samples are not collected from units that have no remaining sump capacity.

The HDS study design collects independent (unpaired) samples since each HDS unit is sampled independently and there is no relationship between the various HDS units. This limits ability to discern differences due to land use or HDS size, especially when sample size is relatively low and there is considerable variability in the data collected. Although the study design yields 9 data points for each data objective, it may not be sufficient to <u>draw</u> statistically<u>based conclusions</u>. However, the study will provide point estimates of loads removed during cleanouts and how they vary for different land uses (e.g., X g of PCBs are removed per unit area of Y land use). This is the metric used for effectiveness of HDS cleanouts, so the study will provide a practical improvement in knowledge that can be applied to future HDS effectiveness estimates.

In addition, modeled stormwater flows and associated POC loads to each HDS unit catchment during the time period between cleanouts will be developed. These modeled estimates will be used along with the measured mass captured in the HDS unit between cleanouts to quantify the percent removal for each unit during the study.

2. Are there readily available biochar-amended BSM that provide significantly better PCB and mercury load reductions than standard BSM and meet MRP infiltration rate requirements?

Table 8.4 lists the number of data points that are anticipated for the enhanced BSM testing study. The sampling design will yield 19 data points for each of the following: effluent PCB concentration, effluent mercury concentration. Including influent analysis, a total of 24 samples will be analyzed. The purpose of this study is to identify the best biochar amended BSM mixes for field testing and not test the effect of confounding variables such as influent quality and hydraulic loading on load removals. The study design accounts for these confounding variables by either ensuring their effect is randomized (e.g., influent water quality) or keeps them fixed (e.g., hydraulic loading). To ensure influent stormwater concentrations are representative of typical Bay Area concentrations, an additional column test with diluted

stormwater is performed on an effective media mix. Standard BSM controls are used for each column run so that removal by biochar amended mixes can be compared directly to removal by standard BSM. Infiltration experiments are performed prior to the column testing to ensure media selected for final column testing will meet the MRP infiltration rate requirements.

The enhanced BSM column study design collects dependent (paired) samples since each effluent sample is related to a corresponding influent sample. Additionally, standard BSM controls are used for each run which makes it possible to directly compare effluent quality for each amended BSM to standard BSM. The paired sampling design, use of standard BSM controls, and ability to control or fix many of the variables that effect load removal increase the ability to discern differences in treatment. Therefore, only 3 column runs are proposed, and available budget is instead used in initial hydraulic screening experiments to ensure selected media mixes meet MRP infiltration rate requirements. The study design may not be sufficient to <u>draw</u> statistically-<u>based conclusions</u> because it yields only 3 data points for each biochar mix tested. <u>However, the study will enable direct comparisons of effluent quality and treatment</u> <u>between mixes for individual events and consistency of treatment between events. The information provided by the study is expected to be sufficient to identify the most promising biochar mixes for field testing.</u>

The study designs for the HDS monitoring and enhanced bioretention studies meet MRP sample collection requirements. The sampling design for the HDS monitoring study will yield a minimum of 9 PCB and mercury data points, while the sampling design for the enhanced bioretention laboratory study will yield 24 PCB and mercury data points (including influent analysis). The minimum number of PCB samples for this study plan is 33 (9+24). Because 3 of the 32 BMP effectiveness samples required by the current MRP have already been collected, the minimum number required for this project is 29. This study must yield 29 of the 32 permit-required samples, per Provision C.8.f of the MRP. To ensure that at least 29 samples are collected to meet the MRP requirement, additional samples will be collected during the laboratory media testing runs if fewer than 5 HDS units are available for sampling.

9. Recommendations for Sampling and Analysis Plans

This section presents specific recommendations for the development of SAPs. More detailed information is available in Section 6 of the Caltrans Monitoring Guidance Manual (Caltrans, 2015) and in the Urban Stormwater BMP Performance Monitoring (WERF 2009). Analysis of constituents should follow the CW4CB Quality Assurance Project Plan (BASMAA 2013).

9.1 HDS Monitoring

The following SAP recommendations are based on the lessons learned from sampling the Leo Avenue HDS site (BASMAA, 2017b):

- Include equipment to determine sump capacity before sampling. The study design does not require sampling of units that are full (i.e., have no remaining sump capacity). The depth of the unit can make it difficult to inspect for sump basin contents, and use of a "sludge judge" or other similar equipment may not be possible because of difficulty penetrating through compacted organic materials.
- The sampling is expected to be opportunistic sampling during regular cleanouts. Since it coincides with regular maintenance patterns, the occurrence of a clean and empty vactor truck from which samples of the sediment can be taken is unlikely. To obtain representative samples, multiple grab samples that extend from the top of the sediment layer to the bottom of the sump will need to be collected and composited prior to analyses.
- Sediment samples will require screening to remove coarse particles, trash, etc. In the CW4CB study (BASMAA, 2007b), only sediment less than 2 mm in size was analyzed.

It is unclear how samples of the HDS sediment were taken in the Leo Avenue HDS sampling. Appropriate sampling methods should be developed to ensure the samples collected are representative of the sediment in the HDS units.

HDS sediment sampling is not expected to require additional handling/safety precautions beyond normal drain cleaning safety procedures. Human health criteria for PCBs are for exposure via ingestion or vapor intake and not for contact. OSHA directive STD 01-04-002 state that "repeated skin contact hazards with all PCB's could be addressed by the standards 1910.132 and 1910.133". Both 1910.132 and 1910.133 OSHA standards require use of personal protective equipment, including eye and face protection.

9.2 Enhanced Bioretention Media Testing

The following SAP recommendations are based on past experience and specific guidance provided in DEMEAU (2014):

• The enhanced BSM testing will use real stormwater for the column experiments to account for the effect of influent water quality on load removal. A stormwater

collection site will need to be identified in a watershed with typical PCB concentrations to ensure PCB concentrations are representative of those expected in Bay Area urban watersheds. Also, guidance will need to be developed on mobilization to ensure storms are targeted randomly.

- Stormwater properties are known to change significantly with time due to natural flocculation and settling of particles. Appropriate procedures should be developed to ensure collected stormwater is well mixed at all times, and experiments are performed in a timely manner to insure the stormwater used is representative.
- PCBs can readily attach to test equipment, including the inside of tubing that may be used for pumps and the inside of PVC columns. Alternatives should be considered that eliminate the need for pumping equipment and reduce attachment within columns (e.g., by use of glass columns).
- The results of column experiments can be affected by channeling and wall effects. Use a column diameter to particle diameter ratio greater than about 40 to minimize these.
- How media is packed in columns will affect infiltration rates and treatment performance. Therefore, detailed procedures should be developed for the packing of media in columns to ensure consistency between columns and between experiments.

9.3 Data Quality Objectives

Data quality objectives (DQOs) should follow standard stormwater monitoring protocols and be described in detail in individual SAPs. Both sampling and laboratory data quality objectives should be included. For sampling, the SAP should specify sediment and water collection procedures and equipment as well as sample volume and handling requirements. For laboratories, numeric DQOs are appropriate for sample blanks, duplicates (or field splits), and matrix spike recovery.

10. References

BASMAA, 2013. Quality Assurance Project Plan (QAPP). Clean Watersheds for a Clean Bay – Implementing the San Francisco Bay's PCBs and Mercury TMDLs with a Focus on Urban Runoff. August 15, 2013.

BASMAA, 2014. Integrated Monitoring Report Part B: PCB and Mercury Loads Avoided and Reduced via Stormwater Control Measures. Bay Area Stormwater Management Agencies Association.

BASMAA, 2016a. Regional Biotreatment Soil Specification: Specification of Soils for Biotreatment or Bioretention Facilities. Bay Area Stormwater Management Agencies Association.

BASMAA, 2016b. Interim Accounting Methodology for TMDL Loads Reduced. Bay Area Stormwater Management Agencies Association.

BASMAA, 2017a. Clean Watersheds for a Clean Bay Project Report, Final Report May 2017. Bay Area Stormwater Management Agencies Association.

BASMAA, 2017b. Clean Watersheds for a Clean Bay Task 5: Stormwater Treatment Retrofit Pilot Projects Stormwater Treatment Retrofit - 7th Street Hydrodynamic Separator Unit draining the Leo Avenue Watershed, San Jose, CA. Bay Area Stormwater Management Agencies Association.

BASMAA, 2017c. Bay Area Reasonable Assurance Analysis Guidance Document. Project Number: WW2282, June 2017. Bay Area Stormwater Management Agencies Association.

Caltrans, 2009. BMP Pilot Study Guidance Manual. Document No. CTSW-RT-06-171.02.1. California Department of Transportation, Sacramento.

Caltrans, 2015. Caltrans Stormwater Monitoring Guidance Manual, November 2015. Document No. CTSW-OT-15-999.43.01. California Department of Transportation, Sacramento.

City of San Diego, 2012. Catch Basin Inlet Cleaning Pilot Study Final Report, June 2012. The City of San Diego, California.

City of Spokane, 2015. PCB Characterization of Spokane Regional Vactor Waste Decant Facilities, Prepared for the Spokane River Regional Toxics Taskforce September, 2015. City of Spokane RPWRF Laboratory.

City of Tacoma, 2015. East Tacoma PCB Investigation: Results & Next Steps. November 20, 2013. City of Tacoma Environmental Services.

City of Tacoma PCB Presentation. Last Assessed May 28, 2017.

DEMEAU, 2014. Guidelining protocol for soil-column experiments assessing fate and transport of trace organics. Demonstration of promising technologies to address emerging pollutants in water and waste water project. European Union Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement No. 308330.

Gomez-Eyles, J. L., C. Yupanqui, B. Beckingham, G. Riedel, C. Gilmour, and U. Ghosh, 2013. Evaluation of Biochars and Activated Carbons for In Situ Remediation of Sediments Impacted with Organics, Mercury, and Methylmercury. *Environ. Sci. Technol.*, 47, 13721–13729.

Kitsap County, 2015. Analysis of Bioretention Soil Media for Improved Nitrogen, Phosphorus and Copper Retention, Final Report. Kitsap County Public Works, Washington.

Liu, P., C. J. Ptacek, D. W. Blowes, and R. C. Landis, 2015. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy. *Journal of Hazardous Materials*, 308 (2016) 233–242.

SFBRWQCB, 2012. San Francisco Bay Regional Water Quality Control Board. Total Maximum Daily Loads (TMDLs) and the 303(d) List of Impaired Water Bodies. 2012.

SFBRWQCB, 2015. Municipal Regional Stormwater NPDES Permit, Order No. R2-2015-0049. NPDES Permit No. CAS612008. November 19, 2015

SFEI, 2015. Sources, Pathways and Loadings: Multi-Year Synthesis with a Focus on PCBs and Hg. Report for Regional Monitoring Program for Water Quality in San Francisco Bay (RMP), Sources Pathways and Loadings Workgroup (SPLWG), Small Tributaries Loading Strategy (STLS). 2015.

WERF, 2009. Urban Stormwater BMP Performance Monitoring. Water Environment Research Foundation.

<u>Urban Stormwater BMP Performance Monitoring</u>. Last accessed August 6, 2012.

Wilson M. A., O. Mohseni, J. S. Gulliver, R. M. Hozalski, and H. G. Stefan, 2009. Assessment of Hydrodynamic Separators for Storm-Water Treatment. *J. Hydraul. Eng.*, 2009, 135(5): 383-392.

Yargicoglu, E. N. and K. R. Reddy, 2015. Characterization and Surface Analysis of Commercially Available Biochars for Geoenvironmental Applications. IFCEE2015, San Antonio, TX, March 17-21, 2015.

Yee, D., and L. J. McKee, 2010. Task 3.5: Concentrations of PCBs and Hg in soils, sediments and water in the urbanized Bay Area: Implications for best management. A technical report of the Watershed Program. SFEI Contribution 608. San Francisco Estuary Institute, Oakland CA.

APPENDIX B: SAMPLING AND ANALYSIS PLAN AND QUALITY ASSURANCE PROJECT PLAN

BASMAA Regional Monitoring Coalition

Pollutants of Concern Monitoring for Source Identification and Management Action Effectiveness, 2017-2018

Sampling and Analysis Plan and Quality Assurance Project Plan

Prepared for:

The Bay Area Stormwater Management Agencies Association (BASMAA)

1410 Jackson Street Oakland, CA 94612

6000 J Street Sacramento, CA 95819

4911 Central Avenue Richmond, CA 94804 KINNETIC LABORATORIES INCORPORATED

307 Washington Street Santa Cruz, CA 95060

Version 2 September 29, 2017

Title and Approval Sheet

Program Title	Pollutants of Concern (POC) Monitoring for Source Identification	
	and Management Action Effectiveness	
Lead Organization	Bay Area Stormwater Management Agencies Association (BASMAA)	
	P.O. Box 2385, Menlo Park, CA 94026, 510-622-2326	
	info@basmaa.org	
Primary Contact	Geoff Brosseau	
Effective Date	September 29, 2017	
Revision Number	Version 2	

Approval Signatures:

A signature from the BASMAA Executive Director approving the BASMAA POC Monitoring for Source Identification and Management Action Effectiveness is considered approval on behalf of all Program Managers.

Geoff Brosseau

Date

TABLE OF CONTENTS

TITL	TITLE AND APPROVAL SHEET	
AP	PROVAL SIGNATURES:	
1.	PROBLEM DEFINITION/BACKGROUND	0
1 .		
1.1		
2.	DISTRIBUTION LIST AND CONTACT INFORMATION	
3.	PROGRAM ORGANIZATION	
3.1		
3.2	2. BASMAA PROJECT MANAGER (BASMAA-PM)	
3.3		
3.4	, ()	
3.5	5. QUALITY ASSURANCE OFFICER (QA OFFICER)	
3.6		
3.7		
3.8	, ()	
3.1	. Report Preparer	
4.	MONITORING PROGRAM DESCRIPTION	
4.1		
4.2		
	4.2.1. Task 1 - Caulk/Sealant samples	
	4.2.2. Task 2 - Sediment samples from HDS Units	
	4.2.3. Task 3 - Storm Water and Column Test Samples	
4.3	3. Schedule	
4.4	- GEOGRAPHICAL SETTING	
4.5	5. Constraints	
5.	MEASUREMENT QUALITY OBJECTIVES (MQO)	18
5 .1		
5.2		
5.3		
5.4		
5.5		
5.6		
6.	SPECIAL TRAINING NEEDS / CERTIFICATION	
	-	
7.	PROGRAM DOCUMENTATION AND REPORTING	
7.1		
	7.1.1. Sampling Plans, COCs, and Sampling Reports	
	7.1.2. Data Sheets	
	7.1.3. Photographic Documentation	
7.2		
	7.2.1. Data Reporting Format	
	7.2.2. Other Laboratory QA/QC Documentation	
7.3		
	7.3.1. SAP/QAPP	
	7.3.2. Program Information Archival	
7.4	REPORTING	

8.	SAMPLING PROCESS DESIGN	25
8.1.	CAULK/SEALANT SAMPLING	25
8.2.	SEDIMENT QUALITY SAMPLING	25
8.3.	WATER QUALITY SAMPLING	
8.4.	SAMPLING UNCERTAINTY	
9.	SAMPLING METHODS	26
9. 9.1.	CAULK/SEALANT SAMPLING (TASK 1)	
	1.1. Sample Site Selection	
	1.1. Sumple Site Selection	
	1.2. Field Cleaning Protocol	
	1.3. Pleta Cleaning Protocol	
	1.5. Caulk/Sealant Collection Procedures	
9.2.	1.6. Sample ID Designation HDS UNIT SAMPLING PROCEDURES (TASK 2)	
	2.1. Sample Site Selection 2.2. Field Eauipment and Cleanina	
	2.3. Soil / Sediment Sample Collection	
	2.4. Sample ID Designation	
9.3.	C C C C C C	
	3.1. Sample Site Selection	
	3.2. Field Equipment and Cleaning	
	3.3. Water Sampling Procedures	
	3.4. Hydraulic Testing	
	3.5. Column Testing Procedures	
	3.6. Sample ID Designations	
9.4.	COLLECTION OF SAMPLES FOR ARCHIVING	
9.5.	WASTE DISPOSAL	
	5.1. Routine Garbage	
	5.2. Detergent Washes	
	5.3. Chemicals	
9.1.	RESPONSIBILITY AND CORRECTIVE ACTIONS	
9.2.	STANDARD OPERATING PROCEDURES	
10.	SAMPLE HANDLING AND CUSTODY	
10.1	. SAMPLING CONTAINERS	
10.2	. SAMPLE PRESERVATION	
10.3	PACKAGING AND SHIPPING	
10.4	. Commercial Vehicle Transport	
10.5	. SAMPLE HOLD TIMES	
11.	FIELD HEALTH AND SAFETY PROCEDURES	30
12.	LABORATORY ANALYTICAL METHODS	
12.1	- /	
	2.1.1. XRF Chlorine analysis	
	2.1.2. Selection of Samples for PCB analysis and Compositing	
	2.1.3. Sample Preparation	
	2.1.4. PCBs Analysis	
12.2		
12.3		
12.4	. Method Failures	41

12.5	5. SAMPLE DISPOSAL	42
12.6	5. LABORATORY SAMPLE PROCESSING	42
13.	QUALITY CONTROL	42
13.1	•	
-	3.1.1. Field Blanks	
	3.1.2. Field Duplicates	
	3.1.3. Field Corrective Action	
	2. LABORATORY QUALITY CONTROL	
	3.2.1. Calibration and Working Standards	
13	3.2.2. Instrument Calibration	
13	3.2.3. Initial Calibration Verification	45
13	3.2.4. Continuing Calibration Verification	
13	3.2.5. Laboratory Blanks	
13	3.2.6. Reference Materials and Demonstration of Laboratory Accuracy	
13	3.2.7. Reference Materials vs. Certified Reference Materials	
	3.2.8. Laboratory Control Samples	
	3.2.9. Prioritizing Certified Reference Materials, Reference Materials, and Laborat	
	ontrol Samples	
	3.2.10. Matrix Spikes	
	3.2.11. Laboratory Duplicates	
	3.2.12. Laboratory Duplicates vs. Matrix Spike Duplicates	
	3.2.13. Replicate Analyses	
	3.2.14. Surrogates	
	3.2.15. Internal Standards	
	3.2.16. Dual-Column Confirmation	
	3.2.17. Dilution of Samples	
13	3.2.18. Laboratory Corrective Action	
14.	INSPECTION/ACCEPTANCE FOR SUPPLIES AND CONSUMABLES	56
15.	NON DIRECT MEASUREMENTS, EXISTING DATA	
16.	DATA MANAGEMENT	
16.1		
-	2. LABORATORY DATA MANAGEMENT	
-		
	ASSESSMENTS AND RESPONSE ACTIONS	
17.1		
17.2		
17.3	3. LABORATORY DATA REVIEWS	
18.	INSTRUMENT/EQUIPMENT TESTING, INSPECTION AND MAINTENANCE	58
18.1		
18.2	2. LABORATORY EQUIPMENT	58
19.	INSTRUMENT/EQUIPMENT CALIBRATION AND FREQUENCY	
19.1		
19.2		
19	9.2.1. In-house Analysis – XRF Screening	59
19	9.2.2. Contract Laboratory Analyses	
20.	DATA REVIEW, VERIFICATION, AND VALIDATION	60
21.	VERIFICATION AND VALIDATION METHODS	61

Version 2, September 2017

22.	RECONCILIATION WITH USER REQUIREMENTS	. 61
23.	REFERENCES	. 62
24.	APPENDIX A: FIELD DOCUMENTATION	. 63
25.	APPENDIX B: LABORATORY STANDARD OPERATING PROCEDURES (SOPS)	. 69

List of Tables

TABLE 2-1. BASMAA SAP/QAPP DISTRIBUTION LIST.	11
TABLE 3-1. SAN FRANCISCO BAY AREA STORMWATER PROGRAMS AND ASSOCIATED MRP PERMITTEES PARTICIPATING II	N THE
BASMAA Monitoring Program	12
TABLE 7-1. DOCUMENT AND RECORD RETENTION, ARCHIVAL, AND DISPOSITION	24
TABLE 7-2. MONITORING PROGRAM FINAL REPORTING DUE DATES. TABLE 9-1 FIELD EQUIPMENT FOR HDS UNIT SAMPLING.	25
TABLE 9-1 FIELD EQUIPMENT FOR HDS UNIT SAMPLING.	30
TABLE 9-2 STATION CODES FOR STORMWATER INFLUENT SAMPLES AND COLUMN TESTS.	35
TABLE 9-3. LIST OF BASMAA RMC SOPS UTILIZED BY THE MONITORING PROGRAM	
TABLE 10-1 SAMPLE HANDLING FOR THE MONITORING PROGRAM ANALYTES BY MEDIA TYPE.	
TABLE 12-1. LABORATORY ANALYTICAL METHODS FOR ANALYTES IN SEDIMENT.	41
TABLE 12-2. LABORATORY ANALYTICAL METHODS FOR ANALYTES IN WATER	41
TABLE 13-1. MEASUREMENT QUALITY OBJECTIVES - PCBS.	50
TABLE 12-2. EMBORREMENT QUALITY OBJECTIVES - PCBS. TABLE 13-2. MEASUREMENT QUALITY OBJECTIVES – INORGANIC ANALYTES.	51
TABLE 13-3 MEASUREMENT QUALITY OBJECTIVES - CONVENTIONAL ANALYTES	52
TABLE 13-4. TARGET MRLs FOR SEDIMENT QUALITY PARAMETERS.	52
TABLE 13-5. TARGET MRLs FOR PCBs IN WATER, SEDIMENT AND CAULK	53
TABLE 13-6. SIZE DISTRIBUTION CATEGORIES FOR GRAIN SIZE IN SEDIMENT.	
TABLE 13-7. TARGET MRLs FOR TOC, SSC, AND MERCURY IN WATER	54
TABLE 13-8. CORRECTIVE ACTION - LABORATORY AND FIELD QUALITY CONTROL.	55
TABLE 14-1. INSPECTION / ACCEPTANCE TESTING REQUIREMENTS FOR CONSUMABLES AND SUPPLIES	56

List of Acronyms

ACCWP	Alameda Countywide Clean Water Program
ALS	ALS Environmental Laboratory
BASMAA	Bay Area Stormwater Management Agencies Association
BSM	Bioretention Soil Media
CCCWP	Contra Costa Clean Water Program
CCV	continuing calibration verification
CEDEN	California Environmental Data Exchange Network
CEH	Center for Environmental Health
COC	Chain of Custody
Consultant-PM	Consultant Team Project Manager
CRM	Certified Reference Material
CSE	Confined Space Entry
ECD	Electron capture detection
EDD	Electronic Data Deliverable
EOA	Eisenberg, Olivieri & Associates, Inc.
EPA	Environmental Protection Agency (U.S.)
FD	Field duplicate
Field PM	Field Contractor Project Manager
FSURMP	Fairfield-Suisun Urban Runoff Management Program
GC-MS	Gas Chromatography-Mass Spectroscopy
IDL	Instrument Detection Limits
ICV	initial calibration verification
KLI	Kinnetic Laboratories Inc.
LCS	Laboratory Control Samples
Lab-PM	Laboratory Project Manager
MS/MSD	Matrix Spike/Matrix Spike Duplicate
MDL	Method Detection Limit
MQO	Measurement Quality Objective
MRL	Method Reporting Limit
MRP	Municipal Regional Permit
NPDES	National Pollutant Discharge Elimination System
OWP-CSUS	Office of Water Programs at California State University Sacramento
PCB	Polychlorinated Biphenyl
PM	Project Manager
PMT	Project Management Team
POC	Pollutants of Concern
QA	Quality Assurance
QA Officer	Quality Assurance Officer
QAPP	Quality Assurance Project Plan
QC	Quality Control
ROW	Right-of-way
RPD	Relative Percent Difference
RMC	Regional Monitoring Coalition
RMP	Regional Monitoring Program for Water Quality in the San Francisco Estuary
SFRWQCB	San Francisco Regional Water Quality Control Board (Regional Water Board)
SAP	Sampling and Analysis Plan
SCCVURPP	Santa Clara Valley Urban Runoff Pollution Prevention Program
SCVWD	Santa Clara Valley Water Department
SFEI	San Francisco Estuary Institute

SMCWPPP	San Mateo County Water Pollution Prevention Program
SOP	Standard Operating Procedure
SWAMP	California Surface Water Ambient Monitoring Program
TOC	Total Organic Carbon
TMDL	Total Maximum Daily Load
VSFCD	Vallejo Sanitation and Flood Control District

1. Problem Definition/Background

The Bay Area Stormwater Management Agencies Association (BASMAA) member agencies will implement a regional monitoring program for Pollutants of Concern (POC) Monitoring for Source Identification and Management Action Effectiveness (Monitoring Program). The Monitoring Program is intended to fulfill components of the Municipal Regional Stormwater NPDES Permit (MRP; Order No. R2-2015-0049), which implements the polychlorinated biphenyls (PCBs) and Mercury Total Maximum Daily Loads (TMDLs) for the San Francisco Bay Area. Monitoring for <u>Source Identification</u> and <u>Management Action Effectiveness</u> are two of five monitoring priorities for POCs identified in the MRP. Source identification monitoring is conducted to identify the sources or watershed source areas that provide the greatest opportunities for reductions of POCs in urban stormwater runoff. Management action effectiveness or impacts of existing management actions.

BASMAA developed two study designs to implement each component of the Monitoring Program. The *Evaluation of PCBs Presence in Public Roadway and Storm Drain Infrastructure Caulk and Sealants Study Design* (BASMAA 2017a) addresses the source identification monitoring requirements of Provision C.8.f, as well as requirements of Provision C.12.e to investigate PCBs in infrastructure caulk and sealants. The *POC Monitoring for Management Action Effectiveness Study Design* (BASMAA 2017b) addresses the management action effectiveness monitoring requirements of Provision C.8.f. The results of the Monitoring Program will contribute to ongoing efforts by MRP Permittees to identify PCB sources and improve the PCBs and mercury treatment effectiveness of stormwater control measures in the Phase I permittee area of the Bay Area. This Sampling and Analysis Plan and Quality Assurance Project Plan (SAP/QAPP) was developed to guide implementation of both components of the Monitoring Program.

1.1. Problem Statement

Fish tissue monitoring in San Francisco Bay (Bay) has revealed bioaccumulation of PCBs and mercury. The measured fish tissue concentrations are thought to pose a health risk to people consuming fish caught in the Bay. As a result of these findings, California has issued an interim advisory on the consumption of fish from the Bay. The advisory led to the Bay being designated as an impaired water body on the Clean Water Act "Section 303(d) list" due to PCBs and mercury. In response, the California Regional Water Quality Control Board, San Francisco Bay Region (Regional Water Board) has developed TMDL water quality restoration programs targeting PCBs and mercury in the Bay. The general goals of the TMDLs are to identify sources of PCBs and mercury to the Bay and implement actions to control the sources and restore water quality.

Since the TMDLs were adopted, Permittees have conducted a number of projects to provide information that supports implementation of management actions designed to achieve the wasteload allocations described in the Mercury and PCBs TMDL, as required by Provisions of the MRP. The Clean Watersheds for a Clean Bay project (CW4CB) was a collaboration among BASMAA member agencies that pilot tested various stormwater control measures and provided estimates of the PCBs and mercury load reduction effectiveness of these controls (BASMAA, 2017c). However, the results of the CW4CB project identified a number of remaining data gaps on the load reduction effectiveness of the control measures

that were tested. In addition, MRP Provisions C.8.f. and C.12.e require Permittees to conduct further source identification and management action effectiveness monitoring during the current permit term.

1.2. Outcomes

The Monitoring Program will allow Permittees to satisfy MRP monitoring requirements for source identification and management action effectiveness, while also addressing some of the data gaps identified by the CW4CB project (BASMAA, 2017c). Specifically, the Monitoring Program is intended to provide the following outcomes:

- 1. Satisfy MRP Provision C.8.f. requirements for POC monitoring for source identification; and Satisfy MRP Provision C.12.e.ii requirements to evaluate PCBs presence in caulks/sealants used in storm drain or roadway infrastructure in public ROWs;
 - a. Report the range of PCB concentrations observed in 20 composite samples of caulk/sealant collected from structures installed or rehabilitated during the 1970's;
- 2. Satisfy MRP Provision C.8.f. requirements for POC monitoring for management action effectiveness;
 - a. Quantify the annual mass of mercury and PCBs captured in HDS Unit sumps during maintenance; and
 - b. Identify bioretention soil media (BSM) mixtures for future field testing that provide the most effective mercury and PCBs treatment in laboratory column tests.

The information generated from the Monitoring Program will be used by MRP Permittees and the Regional Water Board to better understand potential PCB sources and better estimate the load reduction effectiveness of current and future stormwater control measures.

2. Distribution List and Contact Information

The distribution list for this BASMAA SAP/QAPP is provided in Table 2-1.

Project Group	Title	Name and Affiliation	Telephone No.
BASMAA	BASMAA Project	Reid Bogert, SMCWPPP	650-599-1433
Project	Manager, Stormwater		
Management	Program Specialist		
Team	Program Manager	Jim Scanlin, ACCWP	510-670-6548
	Watershed Management Planning Specialist	Lucile Paquette, CCCWP	925-313-2373
	Program Manager	Rachel Kraai, CCCWP	925-313-2042
	Technical Consultant to ACCWP and CCCWP	Lisa Austin, Geosyntec Inc. CCCWP	510-285-2757
	Supervising Environmental Services Specialist	James Downing, City of San Jose	408-535-3500
	Senior Environmental Engineer	Kevin Cullen, FSURMP	707-428-9129
	Pollution Control Supervisor	Doug Scott, VSFCD	707-644-8949 x269
Consultant	Project Manager	Bonnie de Berry, EOA Inc.	510-832-2852 x123
Team	Assistant Project Manager SAP/QAPP Author and Report Preparer	Lisa Sabin, EOA Inc.	510-832-2852 x108
	Technical Advisor	Chris Sommers, EOA Inc.	510-832-2852 x109
	Study Design Lead and Report Preparer	Brian Currier, OWP-CSUS	916-278-8109
	Study Design Lead and Report Preparer	Dipen Patel, OWP-CSUS	
	Technical Advisor	Lester McKee, SFEI	415-847-5095
	Quality Assurance Officer	Don Yee, SFEI	510-746-7369
	Data Manager	Amy Franz, SFEI	510-746-7394
	Field Contractor Project Manager	Jonathan Toal, KLI	831-457-3950
Project Laboratories	Laboratory Project Manager	Howard Borse, ALS	360-430-7733
	XRF Laboratory Project Manager	Matt Nevins, CEH	510-655-3900 x318

Table 2-1. BASMAA SAP/QAPP Distribution List.

3. Program Organization

3.1. Involved Parties and Roles

BASMAA is a 501(c)(3) non-profit organization that coordinates and facilitates regional activities of municipal stormwater programs in the San Francisco Bay Area. BASMAA programs support implementation of the MRP (Order No. R2-2015-0049), which implements the PCBs and Mercury TMDLs for the San Francisco Bay Area. BASMAA is comprised of all 76 identified MRP municipalities and special districts, the Alameda Countywide Clean Water Program (ACCWP), Contra Costa Clean

Water Program (CCCWP), the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP), the San Mateo Countywide Water Pollution Prevention Program (SMCWPPP), the Fairfield-Suisun Urban Runoff Management Program (FSURMP), the City of Vallejo and the Vallejo Sanitation and Flood Control District (VSFCD) (Table 3-1).

MRP Permittees have agreed to collectively implement this Monitoring Program via BASMAA. The Program will be facilitated through the BASMAA Monitoring and Pollutants of Concern Committee (MPC). BASMAA selected a consultant team to develop and implement the Monitoring Program with oversight and guidance from a BASMAA Project Management Team (PMT), consisting of representatives from BASMAA stormwater programs and municipalities (Table 3-1).

Stormwater Programs	MRP Permittees
Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP)	Cities of Campbell, Cupertino, Los Altos, Milpitas, Monte Sereno, Mountain View, Palo Alto, San Jose, Santa Clara, Saratoga, Sunnyvale, Los Altos Hills, and Los Gatos; Santa Clara Valley Water District; and, Santa Clara County
Alameda Countywide Clean Water Program (ACCWP)	Cities of Alameda, Albany, Berkeley, Dublin, Emeryville, Fremont, Hayward, Livermore, Newark, Oakland, Piedmont, Pleasanton, San Leandro, and Union City; Alameda County; Alameda County Flood Control and Water Conservation District; and, Zone 7 Water District
Contra Costa Clean Water Program (CCCWP)	Cities of, Clayton, Concord, El Cerrito, Hercules, Lafayette, Martinez, , Orinda, Pinole, Pittsburg, Pleasant Hill, Richmond, San Pablo, San Ramon, Walnut Creek, Danville, and Moraga; Contra Costa County; and, Contra Costa County Flood Control and Water Conservation District
San Mateo County Wide Water Pollution Prevention Program (SMCWPPP)	Cities of Belmont, Brisbane, Burlingame, Daly City, East Palo Alto, Foster City, Half Moon Bay, Menlo Park, Millbrae, Pacifica, Redwood City, San Bruno, San Carlos, San Mateo, South San Francisco, Atherton, Colma, Hillsborough, Portola Valley, and Woodside; San Mateo County Flood Control District; and, San Mateo County
Fairfield-Suisun Urban Runoff Management Program (FSURMP)	Cities of Fairfield and Suisun City
Vallejo Permittees (VSFCD)	City of Vallejo and Vallejo Sanitation and Flood Control District

 Table 3-1. San Francisco Bay Area Stormwater Programs and Associated MRP Permittees

 Participating in the BASMAA Monitoring Program.

3.2. BASMAA Project Manager (BASMAA-PM)

The BASMAA Project Manager (BASMAA-PM) will be responsible for directing the activities of the below-described PMT, and will provide oversight and managerial level activities, including reporting status updates to the PMT and BASMAA, and acting as the liaison between the PMT and the Consultant Team. The BASMAA PM will oversee preparation, review, and approval of project deliverables, including the required reports to the Regional Water Board.

3.3. BASMAA Project Management Team (PMT)

The BASMAA PMT will assist the BASMAA-PM and the below described Consultant Team with the design and implementation of all project activities. PMT members will assist the BASMAA-PM and Consultant Team to complete project activities within scope, on-time, and within budget by having specific responsibility for planning and oversight of project activities within the jurisdiction of the BASMAA agency that they represent. In addition, the PMT will coordinate with the municipal project partners and key regional agencies, including the Regional Water Board. The PMT is also responsible for reviewing and approving project deliverables (e.g., draft and final project reports).

3.4. Consultant Team Project Manager (Consultant-PM)

The Consultant Team Project Manager (Consultant-PM) will be responsible for ensuring all work performed during the Monitoring Program is consistent with project goals, and provide oversight of all day-to-day operations associated with implementing all components of the Monitoring Program, including scheduling, budgeting, reporting, and oversight of subcontractors. The Consultant-PM will ensure that data generated and reported through implementation of the Monitoring Program meet measurement quality objectives (MQOs) described in this SAP/QAPP. The Consultant -PM will work with the Quality Assurance Officer as required to resolve any uncertainties or discrepancies. The Consultant -PM will also be responsible for overseeing development of draft and final reports for the Monitoring Program, as described in this SAP/QAPP.

3.5. Quality Assurance Officer (QA Officer)

The role of the Quality Assurance Officer (QA Officer) is to provide independent oversight and review of the quality of the data being generated. In this role, the QA Officer has the responsibility to require data that is of insufficient quality to be flagged, or not used, or for work to be redone as necessary so that the data meets specified quality measurements. The QA Officer will oversee the technical conduct of the field related components of the Monitoring Program, including ensuring field program compliance with the SAP/QAPP for tasks overseen at the programmatic level.

3.6. Data Manager (DM)

The Data Manager will be responsible for receipt and review of all project related documentation and reporting associated with both field efforts and laboratory analysis. The Data Manager will also be responsible for storage and safekeeping of these records for the duration of the project.

3.7. Field Contractor Project Manager (Field-PM)

The Field Contractor Project Manager (Field-PM) will be responsible for conduct and oversight of all field monitoring- and reporting-related activities, including completion of field datasheets, chain of custodies, and collection of field measurements and field samples, consistent with the monitoring methods and procedures in the SAP/QAPP. The Field-PM will also be responsible for ensuring that personnel conducting monitoring are qualified to perform their responsibilities and have received appropriate training. The Field-PM will be responsible for initial receipt and review of all project related documentation and reporting associated with both field efforts and laboratory analysis.

The Field-PM will also be responsible for receiving all samples collected opportunistically by participating municipalities, including all caulk/sealant samples, initial review of sample IDs to ensure there are no duplicate sample IDs, and shipping the samples under COC to the appropriate laboratory (CEH for the caulk/sealant samples; ALS for all other samples). Participating municipalities should ship all samples they collect to the Field PM at the following address:

Jon Toal Kinnetic Laboratories, Inc. 307 Washington Street Santa Cruz, CA 95060 Reference: BASMAA POC Monitoring Project (831)457-3950

3.8. Laboratory Project Manager (Lab-PM)

The Laboratory Project Manager (Lab-PM) and chemists at each analytical laboratory will be responsible for ensuring that the laboratory's quality assurance program and standard operating procedures (SOPs) are consistent with this SAP/QAPP, and that laboratory analyses meet all applicable requirements or explain any deviations. Each Lab-PM will also be responsible for coordinating with the Field-PM and other staff (e.g., Consultant -PM, Data Manager, QA Officer) and facilitating communication between the Field-PM, the Consultant -PM, and analytical laboratory personnel, as required for the project.

The Center for Environmental Health (CEH) will provide chlorine content screening of all caulk/sealant samples collected using X-Ray Fluorescence (XRF) technology to assist in selection of samples for further laboratory analysis of PCBs. This XRF-screening will also provide additional information on the utility of XRF in prioritizing samples for chemical PCBs analyses.

All other laboratory analyses will be provided by ALS Environmental.

3.1. Report Preparer

The Report Preparer (RP) will be responsible for developing draft and final reports for each of the following components of the Monitoring Program: (1) Source identification; and (2) Management action effectiveness. All draft reports will be submitted to the PMT for review and input prior to submission for approval by the BASMAA Board of Directors (BOD).

4. Monitoring Program Description

4.1. Work Statement and Program Overview

The Monitoring Program consists of the following three major tasks, each of which has a field sampling component:

• Task 1. Evaluate presence and possible concentrations of PCBs in roadway and storm drain infrastructure caulk and sealants. This task involves analysis of 20 composite samples of caulk/sealant collected from public roadway and storm drain infrastructure throughout the permit

area to investigate PCB concentrations. The goal of this task is to evaluate, at a limited screening level, whether and in what concentrations PCBs are present in public roadway and storm drain infrastructure caulk and sealants in the portions of the Bay Area under the jurisdiction of the Phase I Permittees identified in Table 3-1 (Bay Area).

- Task 2. Evaluate Annual mass of PCBs and mercury captured in Hydrodynamic Separator (HDS) Unit sumps during maintenance. This task involves collecting sediment samples from the sumps of public HDS unit during maintenance cleanouts to evaluate the mass of PCBs and mercury captured by these devices. The goal of this task is to provide data to better characterize the concentrations of POCs in HDS Unit sump sediment and improve estimates of the mass captured and removed from these units during current maintenance practices for appropriate TMDL load reduction crediting purposes.
- Task 3. Bench-scale testing of the mercury and PCBs removal effectiveness of selected BSM mixtures enhanced with biochar. This task involves collecting stormwater from the Bay Area that will then be used to conduct laboratory column tests designed to evaluate the mercury and PCBs treatment effectiveness of various biochar-amended BSM mixtures. Real stormwater will be used for the column tests to account for the effect of influent water quality on load removal. The goal of this task is to identify BSM mixtures amended with biochar that meet operational infiltration requirements and are effective for PCBs and mercury removal for future field testing.

All monitoring results and interpretations will be documented in BASMAA reports for submission to the Regional Water Board according to the schedule in the MRP.

4.2. Sampling Detail

The Monitoring Program includes three separate sampling tasks that involve collection and analysis of the following types of samples: caulk/sealants (Task 1); sediment from HDS units (Task 2); and stormwater collected and used for column tests in the lab (Task 3). Additional details specific to the sampling design for each task are provided below.

4.2.1.Task 1 - Caulk/Sealant samples

The PMT will recruit municipal partners from within each stormwater program to participate in this task. All caulk/sealant samples will be collected from locations within public roadway or storm drain infrastructure in the participating municipalities. Exact sample sites will be identified based on available information for each municipal partner, including: age of public infrastructure; records of infrastructure repair or rehabilitation (aiming for the late 1960s through the 1970s); and current municipal staff knowledge about locations that meet the site selection criteria identified in the study design (BASMAA, 2017a). Field crews led by the Field-PM and/or municipal staff will conduct field reconnaissance to further identify specific sampling locations and if feasible, will collect caulk/sealant samples during these initial field visits. Follow-up sampling events will be conducted for any sites that require additional planning or equipment for sample collection (e.g., confined space entry, parking controls, etc.). Sample locations will include any of the following public infrastructure where caulk/sealant are present: roadway or sidewalk surfaces, between expansion joints for roadways, parking garages, bridges, dams, or storm drain pipes, and/or in pavement joints (e.g., curb and gutter). Sampling will only occur during periods of dry weather when urban runoff flows through any structures that will be sampled are minimal, and do not

present any safety hazards or other logistical issues during sample collection. Sample collection methods are described further in Section 9.

As opportunities arise, municipal staff will also collect samples following the methods and procedures described in this SAP/QAPP during ongoing capital projects that provide access to public infrastructure locations with caulk/sealant that meet the sample site criteria. All samples collected by participating municipal staff will be delivered to the Field PM under COC. The Field-PM will be responsible for storing all caulk/sealant samples and shipping the samples under COC to CEH for XRF screening analysis.

All caulk/sealant samples collected will be screened for chlorine content using XRF technology described in Section 9. Samples will be grouped for compositing purposes as described in the study design (BASMAA, 2017a). Up to three samples will be included per composite and a total of 20 composite caulk/sealant samples will be analyzed for the RMP 40 PCB congeners¹. All compositing and PCBs analysis will be conducted blind to the location where each sample was collected. Laboratory analysis methods must be able to detect a minimum PCBs concentration of 200 parts per billion (ppb, or μ g/Kg). Laboratory analytical methods are described further in Section 12. The range of PCB concentrations found in caulk based on this documented sampling design will be reported to the Regional Water Board within the Permittees' 2018 Annual Reports.

4.2.2. Task 2 - Sediment samples from HDS Units

The PMT will recruit municipal partners that maintain public HDS units to participate in this task. All sediment samples will be collected from the sump of selected HDS units during scheduled cleaning and maintenance. Selection of the HDS units for sampling will be opportunistic, based on the units that are scheduled for maintenance by participating municipalities during the project period. Field crews led by the Field-PM and municipal maintenance staff will coordinate sampling with scheduled maintenance events. As needed, municipal staff will dewater the HDS unit sumps prior to sample collection, and provide assistance to field crews with access to the sump sediment as needed (e.g., confined space entry, parking controls, etc.). All sump sediment samples will be collected following the methods and procedures described in this SAP/QAPP. Sampling will only occur during periods of dry weather when urban runoff flows into the HDS unit sumps are minimal, and do not present any safety hazards or other logistical issues during sample collection. Sample collection methods are described further in Section 9.

All sediment samples collected will be analyzed for the RMP 40 PCB congeners, total mercury, total organic carbon (TOC), particle size distribution (PSD), and bulk density. Laboratory analytical methods are described further in Section 12. The range of PCB and mercury concentrations observed in HDS Unit sump sediments and the annual pollutant masses removed during cleanouts will be reported to the Regional Water Board in March 2019.

4.2.3.Task 3 - Storm Water and Column Test Samples

This task will collect stormwater from Bay Area locations that will then be used as the influent for column tests of biochar-amended BSM. Bay Area stormwater samples will be collected from locations

¹ The 40 individual congeners routinely quantified by the Regional Monitoring Program (RMP) for Water Quality in the San Francisco Estuary include: PCBs 8, 18, 28, 31, 33, 44, 49, 52, 56, 60, 66, 70, 74, 87, 95, 97, 99, 101, 105, 110, 118, 128, 132, 138, 141, 149, 151, 153, 156, 158, 170, 174, 177, 180, 183, 187, 194, 195, 201, and 203

within public roadway or storm drain infrastructure in participating municipalities. Field personnel lead by the Field PM will collect stormwater samples during three qualifying storm events and ensure all samples are delivered to the lab of OWP at CSUS within 24-hours of collection. Stormwater will be collected from one watershed that has a range of PCB concentrations and is considered representative of Bay Area watersheds (e.g. the West Oakland Ettie Street Pump Station watershed). Storms from the representative watershed should be targeted randomly without bias, thereby accounting for the effects of storm intensity and ensuring variability in contaminant concentration, proportion of dissolved contaminants, particle size, particle size distribution, and particle density. To achieve this, minimal mobilization criteria should be used to ensure predicted storm intensity and runoff volume are likely to yield the desired volume. Sample collection methods are described further in Section 9.

The stormwater collected will be used as the influent for column tests of various BSM mixtures amended with biochar. These tests will be implemented in three phases. First, hydraulic screening tests will be performed to ensure all amended BSM mixtures meet the MRP infiltration rate requirements of 12 in/h initial maximum infiltration or minimum 5 in/h long-term infiltration rate. Second, column tests will be performed using Bay Area stormwater to evaluate pollutant removal. Third, additional column tests will be performed using lower concentration (e.g., diluted) Bay Area stormwater to evaluate relative pollutant removal performance at lower concentrations. Further details about the column testing are provided in Section 9.3.

All influent and effluent water samples collected will be analyzed for the RMP 40 PCB congeners, total mercury, suspended sediment concentrations (SSC), TOC, and turbidity. Laboratory analytical methods are described further in Section 12. The range of PCB and mercury concentrations observed in influent and effluent water samples and the associated pollutant mass removal efficiencies for each BSM mixture tested will be reported to the Regional Water Board in March 2019.

4.3. Schedule

Caulk/sealant sampling (Task 1) will be conducted between July 2017 and December 2017. HDS Unit sampling (Task 2) will be conducted between July 2017 and May 2018. Stormwater sample collection and BSM column tests (Task 3) will occur between October 2017 – April 2018.

4.4. Geographical Setting

Field operations will be conducted across multiple Phase I cities in the San Francisco Bay region within the counties of San Mateo, Santa Clara, Alameda, and Contra Costa, and the City of Vallejo.

4.5. Constraints

Caulk/sealant sampling and HDS unit sampling will only be conducted during dry weather, when urban runoff flows through the sampled structures are minimal and do not present safety hazards or other logistical concerns. Caulk/sealant sampling will be limited to the caulk/sealant available and accessible at sites that meet the project site criteria (described in the Study Design, BASMAA 2017a). HDS unit sampling will be limited by the number of public HDS units that are available for maintenance during the project period. Extreme wet weather may pose a safety hazard to sampling personnel and may therefore impact wet season sampling.

5. Measurement Quality Objectives (MQO)

The quantitative measurements that estimate the true value or concentration of a physical or chemical property always involve some level of uncertainty. The uncertainty associated with a measurement generally results from one or more of several areas: (1) natural variability of a sample; (2) sample handling conditions and operations; (3) spatial and temporal variation; and (4) variations in collection or analytical procedures. Stringent Quality Assurance (QA) and Quality Control (QC) procedures are essential for obtaining unbiased, precise, and representative measurements and for maintaining the integrity of the sample during collection, handling, and analysis, as well and for measuring elements of variability that cannot be controlled. Stringent procedures also must be applied to data management to assure that accuracy of the data is maintained.

MQOs are established to ensure that data collected are sufficient and of adequate quality for the intended use. MQOs include both quantitative and qualitative assessment of the acceptability of data. The qualitative goals include representativeness and comparability, and the quantitative goals include completeness, sensitivity (detection and quantization limits), precision, accuracy, and contamination.

MQOs associated with representativeness, comparability, completeness, sensitivity, precision, accuracy, and contamination are presented below in narrative form.

5.1. Representativeness and Comparability

The representativeness of data is the ability of the sampling locations and the sampling procedures to adequately represent the true condition of the sample sites. The comparability of data is the degree to which the data can be compared directly between all samples collected under this SAP/QAPP. Field personnel, including municipal personnel that collect samples, will strictly adhere to the field sampling protocols identified in this SAP/QAPP to ensure the collection of representative, uncontaminated, comparable samples. The most important aspects of quality control associated with chemistry sample collection are as follows:

- Field personnel will be thoroughly trained in the proper use of sample collection equipment and will be able to distinguish acceptable versus unacceptable samples in accordance with pre-established criteria.
- Field personnel are trained to recognize and avoid potential sources of sample contamination (e.g., dirty hands, insufficient field cleaning).
- Samplers and utensils that come in direct contact with the sample will be made of noncontaminating materials, and will be thoroughly cleaned between sampling stations.
- Sample containers will be pre-cleaned and of the recommended type.
- All sampling sites will be selected according to the criteria identified in the project study design (BASMAA, 2017a)

Further, the methods for collecting and analyzing PCBs in infrastructure caulk and sealants will be comparable to other studies of PCBs in building material and infrastructure caulk (e.g., Klosterhaus et al., 2014). This SAP/QAPP was also developed to be comparable with the California Surface Water Ambient Monitoring Program (SWAMP) Quality Assurance Program Plan (QAPrP, SWAMP 2013). All sediment

and water quality data collected during the Monitoring Program will be performed in a manner so that data are SWAMP comparable².

5.2. Completeness

Completeness is defined as the percentage of valid data collected and analyzed compared to the total expected to being obtained under normal operating conditions. Overall completeness accounts for both sampling (in the field) and analysis (in the laboratory). Valid samples include those for analytes in which the concentration is determined to be below detection limits.

Under ideal circumstances, the objective is to collect 100 percent of all field samples desired, with successful laboratory analyses on 100% of measurements (including QC samples). However, circumstances surrounding sample collections and subsequent laboratory analysis are influenced by numerous factors, including availability of infrastructure meeting the required sampling criteria (applies to both infrastructure caulk sampling and HDS Unit sampling), flow conditions, weather, shipping damage or delays, sampling crew or lab analyst error, and QC samples failing MQOs. An overall completeness of greater than 90% is considered acceptable for the Monitoring Program.

5.3. Sensitivity

Different indicators of the sensitivity of an analytical method to measure a target parameter are often used including instrument detection limits (IDLs), method detection limits (MDLs), and method reporting limits (MRLs). For the Monitoring Program, MRL is the measurement of primary interest, consistent with SWAMP Quality Assurance Project Plan (SWAMP 2013). Target MRLs for all analytes by analytical method provided in Section 13.

5.4. Precision

Precision is used to measure the degree of mutual agreement among individual measurements of the same property under prescribed similar conditions. Overall precision usually refers to the degree of agreement for the entire sampling, operational, and analysis system. It is derived from reanalysis of individual samples (laboratory replicates) or multiple collocated samples (field replicates) analyzed on equivalent instruments and expressed as the relative percent difference (RPD) or relative standard deviation (RSD). Analytical precision can be determined from duplicate analyses of field samples, laboratory matrix spikes/matrix spike duplicates (MS/MSD), laboratory control samples (LCS) and/or reference material samples. Analytical precision is expressed as the RPD for duplicate measurements:

RPD = ABS ([X1 - X2] / [(X1 + X2) / 2])

Where: X1=the first sample resultX2=the duplicate sample result.

 $^{^2}$ SWAMP data templates and documentation are available online at

http://waterboards.ca.gov/water_issues/programs/swamp/data_management_resources/templates_docs.shtml

Precision will be assessed during the Monitoring Program by calculating the RPD of laboratory replicate samples and/or MS/MSD samples, which will be run at a frequency of 1 per analytical batch for each analyte. Target RPDs for the Monitoring Program are identified in Section 13.

5.5. Accuracy

Accuracy describes the degree of agreement between a measurement (or the average of measurements of the same quantity) and its true environmental value, or an acceptable reference value. The "true" values of the POCs in the Monitoring Program are unknown and therefore "absolute" accuracy (and representativeness) cannot be assessed. However, the analytical accuracy can be assessed through the use of laboratory MS samples, and/or LCS. For MS samples, recovery is calculated from the original sample result, the expected value (EV = native + spike concentration), and the measured value with the spike (MV):

% Recovery = $(MV-N) \times 100\% / (EV-N)$

Where: MV		the measured value
EV	=	the true expected (reference) value
Ν	=	the native, unspiked result

For LCS, recovery is calculated from the concentration of the analyte recovered and the true value of the amount spiked:

% Recovery = (X/TV) x 100% Where: X = concentration of the analyte recovered TV = concentration of the true value of the amount spiked

Surrogate standards are also spiked into samples for some analytical methods (i.e., PCBs) and used to evaluate method and instrument performance. Although recoveries on surrogates are to be reported, control limits for surrogates are method and laboratory specific, and no project specific recovery targets for surrogates are specified, so long as overall recovery targets for accuracy (with matrix spikes) are achieved. Where surrogate recoveries are applicable, data will not be reported as surrogate-corrected values.

Analytical accuracy will be assessed during the Monitoring Program based on recovery of the compound of interest in matrix spike and matrix spike duplicates compared with the laboratory's expected value, at a frequency of 1 per analytical batch for each analyte. Recovery targets for the Monitoring Program are identified in Section 13.

5.6. Contamination

Collected samples may inadvertently be contaminated with target analytes at many points in the sampling and analytical process, from the materials shipped for field sampling, to the air supply in the analytical laboratory. When appropriate, blank samples evaluated at multiple points in the process chain help assure that compound of interest measured in samples actually originated from the target matrix in the sampled environment and are not artifacts of the collection or analytical process.

Method blanks (also called laboratory reagent blanks, extraction blanks, procedural blanks, or preparation blanks) are used by laboratory personnel to assess laboratory contamination during all stages of sample preparation and analysis. The method blank is processed through the entire analytical procedure in a manner identical to the samples. A method blank concentration should be less than the RL or should not exceed a concentration of 10% of the lowest reported sample concentration. A method blank concentration greater than 10% of the lowest reported sample concentration will require corrective action to identify and eliminate the source(s) of contamination before proceeding with sample analysis. If eliminating the blank contamination is not possible, all impacted analytes in the analytical batch shall be flagged. In addition, a detailed description of the likely contamination source(s) and the steps taken to eliminate/minimize the contaminants shall be included in narrative of the data report. If supporting data is presented demonstrating sufficient precision in blank measurement that the 99% confidence interval around the average blank value is less than the MDL or 10% of the lowest measured sample concentration, then the average blank value may be subtracted.

A field blank is collected to assess potential sample contamination levels that occur during field sampling activities. Field blanks are taken to the field, transferred to the appropriate container, preserved (if required by the method), and treated the same as the corresponding sample type during the course of a sampling event. The inclusion of field blanks is dependent on the requirements specified in the relevant MQO tables or in the sampling method.

6. Special Training Needs / Certification

All fieldwork will be performed by contractor staff that has appropriate levels of experience and expertise to conduct the work, and/or by municipal staff that have received the appropriate instruction on sample collection, as determined by the Field PM and/or the PMT. The Field-PM will ensure that all members of the field crew (including participating municipal staff) have received appropriate instructions based on methods described in this document (Section 9) for collecting and transporting samples. As appropriate, sampling personnel may be required to undergo or have undergone OSHA training / certification for confined space entry in order to undertake particular aspects of sampling within areas deemed as such.

Analytical laboratories are to be certified for the analyses conducted at each laboratory by ELAP, NELAP, or an equivalent accreditation program as approved by the PMT. All laboratory personal will follow methods described in Section 13 for analyzing samples.

7. Program Documentation and Reporting

The Consultant Team in consultation with the PMT will prepare draft and final reports of all monitoring data, including statistical analysis and interpretation of the data, as appropriate, which will be submitted to the BASMAA BOD for approval. Following approval by the BASMAA BOD, Final project reports will be available for submission with each stormwater program's Annual Report in 2018 (Task 1) or in the March 31, 2019 report to the Regional Water Board (Tasks 2 and 3). Procedures for overall management of project documents and records and report preparation are summarized below.

7.1. Field Documentation

All field data gathered for the project are to be recorded in field datasheets, and scanned or transcribed to electronic documents as needed to permit easy access by the PMT, the consultant team, and other appropriate parties.

7.1.1.Sampling Plans, COCs, and Sampling Reports

The Field-PM will be responsible for development and submission of field sampling reports to the Data Manager and Consultant-PM. Field crews will collect records for sample collection, and will be responsible for maintaining these records in an accessible manner. Samples sent to analytical laboratories will include standard Chain of Custody (COC) procedures and forms; field crews will maintain a copy of originating COCs at their individual headquarters. Analytical laboratories will collect records for sample receipt and storage, analyses, and reporting. All records, except lab records, generated by the Monitoring Program will be stored at the office of the Data Manager for the duration of the project, and provided to BASMAA at the end of the project.

7.1.2.Data Sheets

All field data gathered by the Monitoring Program will be recorded on standardized field data entry forms. The field data sheets that will be used for each sampling task are provided in Appendix A.

7.1.3.Photographic Documentation

Photographic documentation is an important part of sampling procedures. An associated photo log will be maintained documenting sites and subjects associated with photos. If an option, the date function on the camera shall be turned on. Field Personnel will be instructed to take care to avoid any land marks when taking photographs, such as street signs, names of buildings, road mile markers, etc. that could be used later to identify a specific location. A copy of all photographs should be provided at the conclusion of sampling efforts and maintained for project duration.

7.2. Laboratory Documentation

The Monitoring Program requires specific actions to be taken by contract laboratories, including requirements for data deliverables, quality control, and on-site archival of project-specific information. Each of these aspects is described below.

7.2.1.Data Reporting Format

Each laboratory will deliver data in electronic formats to the Field-PM, who will transfer the records to the Data Manager, who is responsible for storage and safekeeping of these records for the duration of the project. In addition, each laboratory will deliver narrative information to the QA Officer for use in data QA and for long-term storage.

The analytical laboratory will report the analytical data to the Field-PM via an analytical report consisting of, at a minimum:

- 1. Letter of transmittal
- 2. Chain of custody information
- 3. Analytical results for field and quality control samples (Electronic Data Deliverable, EDD)
- 4. Case narrative

5. Copies of all raw data.

The Field-PM will review the data deliverables provided by the laboratory for completeness and errors. The QA Officer will review the data deliverables provided by the laboratory for review of QA/QC. In addition to the laboratory's standard reporting format, all results meeting MQOs and results having satisfactory explanations for deviations from objectives shall be reported in tabular format on electronic media. SWAMP-formatted electronic data deliverable (EDD) templates are to be agreed upon by the Data Manager, QA Officer, and the Lab-PM prior to onset of any sampling activities related to that laboratory.

Documentation for analytical data is kept on file at the laboratories, or may be submitted with analytical results. These may be reviewed during external audits of the Monitoring Program, as needed. These records include the analyst's comments on the condition of the sample and progress of the analysis, raw data, and QC checks. Paper or electronic copies of all analytical data, field data forms and field notebooks, raw and condensed data for analysis performed on-site, and field instrument calibration notebooks are kept as part of the Monitoring Program archives for a minimum period of eight years.

7.2.2. Other Laboratory QA/QC Documentation

All laboratories will have the latest version of this Monitoring Program SAP/QAPP in electronic format. In addition, the following documents and information from the laboratories will be current, and they will be available to all laboratory personnel participating in the processing of samples:

- 1. Laboratory QA plan: Clearly defines policies and protocols specific to a particular laboratory, including personnel responsibilities, laboratory acceptance criteria, and corrective actions to be applied to the affected analytical batches, qualification of data, and procedures for determining the acceptability of results.
- 2. Laboratory Standard Operation Procedures (SOPs): Contain instructions for performing routine laboratory procedures, describing exactly how a method is implemented in the laboratory for a particular analytical procedure. Where published standard methods allow alternatives at various steps in the process, those approaches chosen by the laboratory in their implementation (either in general or in specific analytical batches) are to be noted in the data report, and any deviations from the standard method are to be noted and described.
- 3. Instrument performance information: Contains information on instrument baseline noise, calibration standard response, analytical precision and bias data, detection limits, scheduled maintenance, etc.
- 4. Control charts: Control charts are developed and maintained throughout the Program for all appropriate analyses and measurements for purposes of determining sources of an analytical problem or in monitoring an unstable process subject to drift. Control charts serve as internal evaluations of laboratory procedures and methodology and are helpful in identifying and correcting systematic error sources. Control limits for the laboratory quality control samples are ±3 standard deviations from the certified or theoretical concentration for any given analyte.

Records of all quality control data, maintained in a bound notebook at each workstation, are signed and dated by the analyst. Quality control data include documentation of standard calibrations, instrument

maintenance and tests. Control charts of the data are generated by the analysts monthly or for analyses done infrequently, with each analysis batch. The laboratory quality assurance specialist will review all QA/QC records with each data submission, and will provide QA/QC reports to the Field-PM with each batch of submitted field sample data.

7.3. Program Management Documentation

The BASMAA-PM and Consultant-PM are responsible for managing key parts of the Monitoring Program's information management systems. These efforts are described below.

7.3.1.SAP/QAPP

All original SAP/QAPPs will be held by the Consultant-PM. This SAP/QAPP and its revisions will be distributed to all parties involved with the Monitoring Program. Copies will also be sent to the each participating analytical laboratory's contact for internal distribution, preferably via electronic distribution from a secure location.

Associated with each update to the SAP/QAPP, the Consultant-PM will notify the BASMAA-PM and the PMT of the updated SAP/QAPP, with a cover memo compiling changes made. After appropriate distributions are made to affected parties, these approved updates will be filed and maintained by the SAP/QAPP Preparers for the Monitoring Program. Upon revision, the replaced SAP/QAPPs will be discarded/deleted.

7.3.2. Program Information Archival

The Data Manager and Consultant-PM will oversee the actions of all personnel with records retention responsibilities, and will arbitrate any issues relative to records retention and any decisions to discard records. Each analytical laboratory will archive all analytical records generated for this Program. The Consultant-PM will be responsible for archiving all management-level records.

Persons responsible for maintaining records for this Program are shown in Table 7-1.

Туре	Retention (years)	Archival	Disposition
Field Datasheets	8	Data Manager	Maintain indefinitely
Chain of Custody Forms	8	Data Manager	Maintain indefinitely
Raw Analytical Data	8	Laboratory	Recycling
Lab QC Records	8	Laboratory	Recycling
Electronic data deliverables	8	Data Manager	Maintain indefinitely
Reports	8	Consultant-PM	Maintain indefinitely

 Table 7-1. Document and Record Retention, Archival, and Disposition

As discussed previously, the analytical laboratory will archive all analytical records generated for this Program. The Consultant-PM will be responsible for archiving all other records associated with implementation of the Monitoring Program.

All field operation records will be entered into electronic formats and maintained in a dedicated directory managed by the BASMAA-PM.

7.4. Reporting

The Consultant team will prepare draft and final reports for each component of the Monitoring Program. The PMT will provide review and input on draft reports and submit to the BASMAA BOD for approval. Once approved by the BASMAA BOD, the Monitoring Program reports will be available to each individual stormwater program for submission to the Regional Water Board according to the schedule outlined in the MRP and summarized in Table 7.2.

Monitoring Program Component	Task	MRP Reporting Due Date
Source Identification	Task 1 - Evaluation of PCB concentrations in roadwayand storm drain infrastructure caulk and sealants	September 30, 2018
Management Action Effectiveness	Task 2 - Evaluation of the annual mass of PCBs and mercury captured in HDS Unit sump sediment	March 31, 2019
	Task 3 - Bench-scale testing of the mercury and PCBs removal effectiveness of selected BSM mixtures.	

8. Sampling Process Design

All information generated through conduct of the Monitoring Program will be used to inform TMDL implementation efforts for mercury and PCBs in the San Francisco Bay region. The Monitoring Program will implement the following tasks: (1) evaluate the presence and concentrations of PCB in caulk and sealants from public roadway and stormdrain infrastructure; (2) evaluate mass of PCBs and mercury removed during HDS Unit maintenance; and (3) evaluate the mercury and PCBs treatment effectiveness of various BSM mixtures in laboratory column tests using stormwater collected from Bay Area locations. Sample locations and the timing of sample collection will be selected using the directed sampling design principle. This is a deterministic approach in which points are selected deliberately based on knowledge of their attributes of interest as related to the environmental site being monitored. This principle is also known as "judgmental," "authoritative," "targeted," or "knowledge-based." Individual monitoring aspects are summarized further under Field Methods (Section 9) and in the task-specific study designs (BASMAA 2017a,b).

8.1. Caulk/Sealant Sampling

Caulk/sealant sampling will support the Monitoring Program's Task 1 to evaluate PCBs in roadway and stormdrain infrastructure caulk/sealant, as described previously (see Section 4). Further detail on caulk/sealant sampling methods and procedures are provided under Field Methods (Section 9).

8.2. Sediment Quality Sampling

Sediment sampling will support the Monitoring Program's Task 2 to evaluate the mass of mercury and PCBs removed during HDS unit maintenance, as described previously (see Section 4). Further detail on

sediment sampling methods and procedures are provided under Field Methods (Section 9).

8.3. Water Quality Sampling

Water sampling will support the Monitoring Program's Task 3 to evaluate the mercury and PCBs treatment effectiveness of various BSM mixtures, as described previously (see Section 4). Further detail on water sampling methods and procedures are provided under Field Methods (Section 9).

8.4. Sampling Uncertainty

There are multiple sources of potential sampling uncertainty associated with the Monitoring Program, including: (1) measurement error; (2) natural (inherent) variability; (3) undersampling (or poor representativeness); and (4) sampling bias (statistical meaning). Measures incorporated to address these areas of uncertainty are discussed below:

(1) Measurement error combines all sources of error related to the entire sampling and analysis process (i.e., to the measurement system). All aspects of dealing with uncertainty due to measurement error have been described elsewhere within this document.

(2) Natural (inherent) variability occurs in any environment monitored, and is often much wider than the measurement error. Prior work conducted by others in the field of stormwater management have demonstrated the high degree of variability in environmental media, which will be taken into consideration when interpreting results of the various lines of inquiry.

(3) Under- or unrepresentative sampling happens at the level of an individual sample or field measurement where an individual sample collected is a poor representative for overall conditions encountered given typical sources of variation. To address this situation, the Monitoring Program will be implementing a number of QA-related measures described elsewhere within this document, including methods refined through implementation of prior, related investigations.

(4) Sampling bias relates to the sampling design employed and whether the appropriate statistical design is employed to allow for appropriate understanding of environmental conditions. To a large degree, the sampling design required by the Monitoring Program is judgmental, which will therefore incorporate an unknown degree of sampling bias into the Project. There are small measures that have been built into the sampling design to combat this effect (e.g., homogenization of sediments for chemistry analyses), but overall this bias is a desired outcome designed to meet the goals of this Monitoring Program, and will be taken into consideration when interpreting results of the various investigations.

Further detail on measures implemented to reduce uncertainty through mobilization, sampling, sample handling, analysis, and reporting phases are provided throughout this document.

9. Sampling Methods

The Monitoring Program involves the collection of three types of samples: Caulk/sealants; sediment from HDS unit sumps; and water quality samples. Field collection will be conducted by field contractors or municipal staff using a variety of sampling protocols, depending on the media and parameter monitored. These methods are presented below. In addition, the Monitoring Program will utilize several field

sampling SOPs previously developed by the BASMAA Regional Monitoring Coalition identified in Table 9-3 (RMC, BASMAA, 2016).

9.1. Caulk/Sealant Sampling (Task 1)

Procedures for collecting caulk and sealant samples are not well established. Minimal details on caulk or sealant sample collection methodologies are available in peer-reviewed publications. The caulk/sealant sampling procedures described here were adapted from a previous study examining PCBs in building materials conducted in the Bay Area (Klosterhaus et al., 2014). The methods described by Klosterhaus et al. (2014) were developed through consultation with many of the previous authors of caulk literature references therein, in addition to field experience gained during the Bay Area study. It is anticipated that lessons will also be learned during the current study.

9.1.1.Sample Site Selection

Once a structure has been identified as meeting the selection criteria and permission is granted to perform the testing or collection of sealant samples, an on-site survey of the structure will be used to identify sealant types and locations on the structure to be sampled. It is expected that sealants from a number of different locations on each structure may sampled; however, inconspicuous locations on the structure will be targeted.

9.1.2. Initial Equipment Cleaning

The sampling equipment that is pre-cleaned includes:

- Glass sample jars
- Utility knife, extra blades
- Stainless-steel forceps

Prior to sampling, all equipment will be thoroughly cleaned. Glass sample containers will be factory precleaned (Quality Certified[™], ESS Vial, Oakland, CA) and delivered to field team at least one week prior to the start of sample collection. Sample containers will be pre-labeled and kept in their original boxes, which will be transported in coolers. Utility knife blades, forceps, stainless steel spoons, and chisels will be pre-cleaned with Alconox, Liquinox, or similar detergent, and then rinsed with deionized water and methanol. The cleaned equipment will then be wrapped in methanol-rinsed aluminum foil and stored in clean Ziploc bags until used in the field.

9.1.3.Field Cleaning Protocol

Between each use the tool used (utility knife blade, spoon or chisel) and forceps will be rinsed with methanol and then deionized water, and inspected to ensure all visible sign of the previous sample have been removed. The clean tools, extra blades, and forceps will be kept in methanol-rinsed aluminum foil and stored in clean Ziploc bags when not in use.

9.1.4.Blind Sampling Procedures

The intention of this sampling is to better determine whether sealants in road and storm drain infrastructure contain PCBs at concentrations of concern, and to understand the relative importance of PCBs in this infrastructure among the other known sources of PCBs that can affect San Francisco Bay. At this phase of the project, we are not seeking to identify specific facilities requiring mitigation (if PCBs are identified, this could be a future phase). Therefore, in this initial round of sampling, we are not identifying sample locations, but instead implementing a blind sampling protocol, as follows:

- All samples will be collected without retaining any information that would identify structure locations. The information provided to the contractor on sampling locations will not be retained. Structure location information will not be recorded on any data sheets or in any data spreadsheets or other electronic computer files created for the Project. Physical sealant samples collected will be identified only by a sample identification (ID) designation (Section 4). Physical sealant sample labels will contain only the sample ID (see Section 4 and example label in Appendix A). Samples will be identified only by their sample ID on the COC forms.
- As an added precaution and if resources allow, oversampling will occur such that more samples will be collected than will be sent to the laboratory for compositing and analysis. In this case, the Project team would select a subset of samples for PCB analysis based on factors such as application type and/or chlorine content, but blind to the specific location where each sample was collected.
- Up to three individual sealant samples will be composited by the laboratory prior to analysis for PCBs, following instructions from the Consultant PM. This further ensures a blind sampling approach because samples collected at different locations will be analyzed together.

9.1.5.Caulk/Sealant Collection Procedures

At each sample location, the Field-PM, and/or municipal staff, will make a final selection of the most accessible sampling points at the time of sampling. From each point sampled, a one inch strip (aiming for about 10 g of material) of caulk or sealant will be removed from the structure using one of the following solvent-rinsed tools: a utility knife with a stainless-steel blade, stainless steel spoon to scrape off the material, or a stainless steel chisel. The Field-PM or municipal staff at the site will select the appropriate tool based on the conditions of the caulk/sealant at each sample point. Field personnel will wear nitrile gloves during sample collection to reduce potential sample collected, field personnel will fill out a field data sheet at the time of sample collection, which includes the following information:

- Date and time of sample collection,
- sample identification designation,
- qualitative descriptions of relevant structure or caulk/sealant features, including use profile, color and consistency of material collected, surface coating (paint, oily film, masonry residues etc.)
- crack dimensions, the length and/or width of the caulk bead sampled, spacing of expansion joints in a particular type of application, and
- a description of any unusual occurrences associated with the sampling event (especially those that could affect sample or data quality).

Appendix A contains an example field data sheet. All samples will be kept in a chilled cooler in the field (i.e., at $4 \text{ }^{\circ}\text{C} \pm 2 \text{ }^{\circ}\text{C}$), and kept refrigerated pending delivery under COC to the Field PM at KLI. Further, the field data sheets will remain with the samples when they are shipped to KLI, and will then be maintained by the Field PM at KLI.

As needed, the procedure for replacement of the caulk/sealant will be coordinated with the appropriate municipal staff to help ensure that the sampling does not result in damage to the structure.

9.1.6.Sample ID Designation

Every sample must have a unique sample ID to ensure analytical results from each sample can be differentiated from every other sample. This information should follow the sample through the COC, analytical, and interpretation and reporting processes. For the infrastructure caulk/sealant samples, the sample ID must not contain information that can be used to identify where the sample was collected. The following 2-step process will be followed to assign sample IDs to the caulk/sealant samples.

1. Upon collection, the sample will be labeled according to the following naming convention:

MMDDYYYY-TTTT-##			
Where:			
MM	2 digit month of collection		
DD	2 digit date of collection		
YYYY	4 digit year of collection		
TTTT	4 digit time of collection (military time)		
##	Sequential 2-digit sample number (i.e., 01, 02, 03etc.)		

For example, a sample collected on September 20, 2017 at 9 AM could be assigned the following sample ID: 09202017-0900-01.

2. This second step was added to avoid issues that could arise due to duplicate sample IDs, while maintaining the blind sampling approach. While the sample naming system identified above is unlikely to produce duplicate sample IDs, there is a chance that different groups may collect samples simultaneously. This second step will be implemented by the Field PM at KLI upon receipt of caulk/sealant samples from participating municipalities. The Field PM at KLI will review the sample IDs on the COC forms for all samples and compare the sample IDs to all caulk samples for this project already in storage at KLI. If any two samples have the same sample IDs, the Field PM will add a one-digit number to the end of one of the sample IDs, selected at random. This extra number will be added to the sample container label, the field data sheet, and the COC form for that sample.

9.2. HDS Unit Sampling Procedures (Task 2)

9.2.1.Sample Site Selection

Sample site selection will be opportunistic, based on the public HDS units that participating municipalities schedule for cleaning during the project. The project team will coordinate with participating municipalities to schedule sampling during HDS unit cleanouts.

9.2.2.Field Equipment and Cleaning

A list of potential sampling equipment for soil/sediment is presented in Table 5. The equipment list should be reviewed and tailored by field contractors to meet the needs of each individual sampling site. Appropriate sampling equipment is prepared in the laboratory a minimum of four days prior to sampling. Prior to sampling, all equipment will be thoroughly cleaned. Equipment is soaked (fully immersed) for three days in a solution of Alconox, Liquinox, or similar phosphate-free detergent and deionized water. Equipment is then rinsed three times with deionized water. Equipment is next rinsed with a dilute solution

(1-2%) of hydrochloric acid, followed by a rinse with reagent grade methanol, followed by another set of three rinses with deionized water. All equipment is then allowed to dry in a clean place. The cleaned equipment is then wrapped in aluminum foil or stored in clean Ziploc bags until used in the field.

Description of Equipment	Material (if applicable)
Sample scoops	Stainless steel or Kynar coated
Sample trowels	Stainless steel or Kynar coated
Compositing bucket	Stainless steel or Kynar coated
Ekman Dredge (as needed)	Stainless steel
Sample containers (with labels)	As coordinated with lab(s)
Methanol, Reagent grade (Teflon squeeze bottle with refill)	
Hydrochloric acid, 1-2%, Reagent grade (Teflon squeeze bottle)	
Liquinox detergent (diluted in DI within Teflon squeeze bottle)	
Deionized / reverse osmosis water	
Plastic scrub brushes	
Container for storage of sampling derived waste, dry	
Container for storage of sampling derived waste, wet	
Wet ice	
Coolers, as required	
Aluminum foil (heavy duty recommended)	
Protective packaging materials	Bubble / foam bags
Splash proof eye protection	
PPE for sampling personnel, including traffic mgmt as required	
Gloves for dry ice handling	Cotton, leather, etc.
Gloves for sample collection, reagent handling	Nitrile
Field datasheets	
COC forms	
Custody tape (as required)	
Shipping materials (as required)	
GPS	

Table 9-1 Field Equipment for HDS Unit Sampling.

9.2.3.Soil / Sediment Sample Collection

Field sampling personnel will collect sediment samples from HDS unit sumps using methods that minimize contamination, losses, and changes to the chemical form of the analytes of interest. The samples will be collected in the field into pre-cleaned sample containers of a material appropriate to the analysis to be conducted. Pre-cleaned sampling equipment is used for each site, whenever possible and/or when necessary. Appropriate sampling technique and measuring equipment may vary depending on the location, sample type, sampling objective, and weather. Additional safety measures may be necessary in some cases; for example, if traffic control or confined space entry is required to conduct the sampling.

Ideally and where a sufficient volume of soil/sediment allows, samples are collected into a composite container, where they are thoroughly homogenized, and then aliquoted into separate jars for chemical analysis. Sediment samples for metals and organics are submitted to the analytical laboratories in separate jars, which have been pre-cleaned according to laboratory protocol. It is anticipated that soil / solid media will be collected for laboratory analysis using one of two techniques: (1) Remote grab of submerged sediments within HDS unit sumps using Ekman dredge or similar; or (2) direct grab sampling of

sediments after dewatering HDS unit sumps using individual scoops, push core sampling, or similar. Each of these techniques is described briefly below.

- Soil and Sediment Samples, Submerged. Wet soil and sediment samples may be collected from within HDS unit sumps. Sample crews must exercise judgment on whether submerged samples can be collected in a manner that does not substantially change the character of the soil/sediment collected for analysis (e.g., loss of fine materials). It is anticipated that presence of trash within the sumps may interfere with sample collection by preventing complete grab closure and loss of significant portion of the sample. Field crews will have the responsibility to determine the best method for collection of samples within each HDS Unit sump. If sampling personnel determine that sample integrity cannot be maintained throughout collection process, it is preferable to cancel sampling operations rather than collect samples with questionable integrity. This decision making process is more fully described in Section 11, Field Variances.
- Soil and Sediment Samples, Dry. Soils / sediments may be collected from within the HDS unit sump after dewatering. Field crews will have the responsibility to identify areas of sediment accumulation within areas targeted for sampling and analysis, and determine the best method for collection of samples with minimal disturbance to the sampling media.

After collection, all soil/sediment samples for PCBs and mercury analyses will be homogenized and transferred from the sample-dedicated homogenization pail into factory-supplied wide-mouth glass jars using a clean trowel or scoop. The samples will be transferred to coolers containing double-bagged wet ice and chilled to 6°C immediately upon collection.

For each sample collected, field personnel will fill out a field data sheet at the time of sample collection. Appendix A contains an example field data sheet. All samples will be kept in a chilled cooler in the field, and kept refrigerated pending delivery under COC to the field-PM. The Field PM will be responsible for sending the samples in a single batch to CEH for XRF analysis under COC. Following XRF analysis, CEH will deliver the samples under COC to the Consultant-PM. The Consultant-PM will be responsible for working with the project team to group samples for compositing, and sending those samples to the analytical laboratory under COC.

9.2.4.Sample ID Designation

Every sample must have a unique sample ID so that the analytical results from each sample can be differentiated from every other sample. This information should follow the sample through the COC, analytical, and interpretation and reporting processes. Each sediment/soil sample collected from HDS units will be labeled according to the following naming convention:

where:	
MMM	Municipal Abbreviation (i.e., SJC=San Jose; OAK=Oakland; SUN=Sunnyvale).
UUU	HDS Unit Catchment ID; this is the number provided by the municipality for a specific HDS unit.
##	Sequential Sample Number (i.e., 01, 02, 03etc.)

9.3. Water Quality Sampling and Column Testing Procedures (Task 3)

For this task, monitoring will be conducted during three storm events. The stormwater collected during these events will then be used as the influent for the laboratory column tests of amended BSM mixtures. Four influent samples (i.e., one sample of Bay Area stormwater from each of the three monitored storm events plus one diluted stormwater sample) and 20 effluent samples from the column tests that includes 3 tests for each of the six columns, plus one test with the diluted stormwater in two columns (one test column and one control column) will be collected and analyzed for pollutant concentrations.

9.3.1.Sample Site Selection

Two stormwater collection sites have been selected based on influent PCB concentrations measured during CW4CB (BASMAA, 2017c). Both sites are near tree wells located on Ettie Street in West Oakland. The first site is the influent to tree well #6 (station code = TW6). During CW4CB, influent stormwater concentrations at this location were average to high, ranging from 30 ng/L to 286 ng/L. Stormwater collected from this site will be used as the influent for one of the main column tests and some water will be reserved for the dilution series column tests. The amount of dilution will be determined after results are received from the lab from the first run. The second site is the influent to tree well #2 (station code=TW2). During CW4CB, influent stormwater concentrations at this location were low to average, ranging from 6 ng/L to 39 ng/L. Stormwater collected from this site will be used for the remaining two main column tests..

9.3.2. Field Equipment and Cleaning

Field sampling equipment includes:

- 1. Borosilicate glass carboys
- 2. Glass sample jars
- 3. Peristaltic pump tubing

Prior to sampling, all equipment will be thoroughly cleaned. Glass sample containers and peristaltic pump tubing will be factory pre-cleaned. Prior to first use and after each use, glass carboys (field carboys and effluent collection carboys) will be washed using phosphate-free laboratory detergent and scrubbed with a plastic brush. After washing the carboy will be rinsed with methylene chloride, then de-ionized water, then 2N nitric acid, then again with de-ionized water. Glass carboys will be cleaned after each sample run before they are returned to the Field PM for reuse in the field.

9.3.3. Water Sampling Procedures

During each storm event, stormwater will be collected in six, five-gallon glass carboys. To fill the carboys, the Field PM will create a backwater condition in the gutter before the drain inlet at each site and use a peristaltic pump to pump the water into glass carboys. Field personnel will wear nitrile gloves during sample collection to prevent contamination. Carboys will be stored and transported in coolers with either wet ice or blue ice, and will be delivered to OWP within 24 hours of collection.

9.3.4.Hydraulic Testing

Based on the literature review and availability, the best five biochars will be mixed with the standard BSM to create biochar amended BSMs. Initially, each biochar will be mixed with standard BSM at a rate of 25% biochar by volume (the same as that at the CW4CB Richmond PG&E Substation 1st and Cutting

site). Hydraulic conductivity can be determined using the method stated in the BASMAA soil specification, method ASTM D2434.

- 1. Follow the directions for permeability testing in ASTM D2434 for the BSM.
- 2. Sieve enough of the sample biochar to collect at least 15 in³ on a no. 200 sieve.
- 3. Mix the sieved biochar with standard BSM at a 1 to 4 ratio.
- 4. Thoroughly mix the soil.
- 5. Follow the directions for permeability testing in ASTM D2434.
- 6. If the soil mix is more than 1 in/hr different from the BSM, repeat steps 1-4 but on step 3, adjust the ratio as estimated to achieve the same permeability as the BSM.
- 7. Repeat steps 2-6 for each biochar.

9.3.5.Column Testing Procedures

Column Setup: Up to five biochar amended BSMs and one standard BSM will be tested (based on performance and availability of biochars). Six glass columns with a diameter of eight inches and a height of three feet will be mounted to the wall with sufficient height between the bottom of the columns and the floor to allow for effluent sample collection. Each column will be capped at the bottom and fitted with a spigot to facilitate sampling. Soil depth for all columns will be 18" after compaction, which is a standard depth used in bay area bioretention installations (see Figure 9-1 below). To retain soil the bottom of the soil layer will be contained by a layer of filter fabric on top of structural backing. Behind each column, a yardstick will be mounted to the wall so that the depth of water in the column can be monitored.

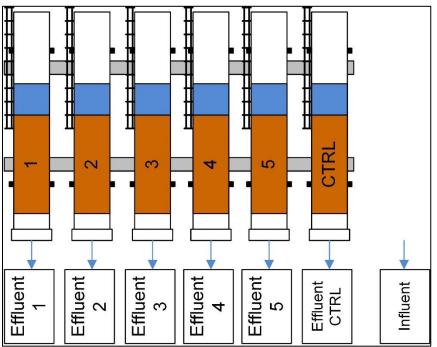


Figure 9-1. Column Test Setup

Dilution Run Column Setup: One of the existing biochar-amended BSM column and the standard BSM will be tested using diluted stormwater.

Testing procedure pre run setup: Before a sampling run begins a clean glass carboy will be placed under each soil column and labeled to match, this carboy will be sized to collect the full effluent volume

of the sample run. A glass beaker will also be assigned and labeled for each column of sufficient volume to accurately measure a single influent dose equivalent to 1 inch of depth in the column. An additional beaker will be prepared and labeled influent.

<u>Media conditioning</u>: Within 24 to 72 hours prior to the first column test run, pre-wet each column with a stormwater matrix collected from the CSUS campus by filling each column from the invert until water ponds above the media. Drain the water after 3 hours.

Sampling run: When the six glass carboys are delivered:

- 1. Inspect each carboy and fill out the Sample Receiving worksheet.
- 2. The runs will begin within 72 hours of delivery.
- 3. Select one carboy at random and fully mix it using a portable lab mixer for five minutes.
- 4. Turn off and remove the mixer, allow the sample to rest for one minute to allow the largest particles to settle to the bottom.
- 5. Fill each of the six dosing beakers and the one influent sample jar.
- 6. Pour each aliquot beaker into its respective column; record the time and height of water in each column.
- 7. Repeat steps 3-6 for each of the remaining carboys until a total of 18 inches of water is applied to each column. Before pouring an aliquot record the height of water in each column and the time. Pour each successive aliquot from the carboy when all columns have less than three inches of water above the soil surface. The water level should never be above 6 inches in any column at any time (6 inches is a standard ponding depth used in the bay area). Pour all aliquots from a single carboy into the columns at the same time.
- 8. Collect turbidity samples from the effluent of each column at the beginning, middle, and end of the sampling run. Fill the cuvettes for turbidity measurement directly from the effluent stream of each column and dispose of them after testing.
- 9. Collect mercury samples from the effluent of each column at the middle of the sample run using pre-labeled sample containers provided by the lab for that purpose.
- 10. Fill a pre-labeled sample jar from each columns effluent. The jar will be obtained from the laboratory performing the PCB analysis.
- 11. Pack each jar in ice and complete the lab COCs.
- 12. Ship the samples to the lab for analysis.

9.3.6.Sample ID Designations

Every sample must have a unique sample identification to ensure analytical results from each sample can be differentiated from every other sample. This information should follow the sample through the COC, analytical, and interpretation and reporting processes. Each influent and effluent water quality sample will be labeled according to the following naming convention:

SSS-TT-MMDDYYYY-##

Where:	
SSS	Station code (see Table 9-2 for station codes)
TT	Sample Type (IN=influent; EF=Effluent)
MM	2 digit month of collection
DD	2 digit date of collection
YYYY	4 digit year of collection
##	Sequential 2-digit sample number (i.e., 01, 02, 03etc.)

For example, a sample collected at the West Oakland Tree Well #2 site on October 20, 2017 and used for the influent sample for run #3 could be assigned the following sample ID: TW2-IN-09202017-03.

Station Code	Station Description		
TW2	Stormwater sample collected from the West Oakland Tree Well #2		
TW6	Stormwater sample collected from the West Oakland Tree Well #6		
CO1	Effluent sample collected from column number 1		
CO2	Effluent sample collected from column number 2		
CO3	Effluent sample collected from column number 3		
CO4	Effluent sample collected from column number 4		
CO5	Effluent sample collected from column number 5		
CO6	Effluent sample collected from column number 6		

 Table 9-2 Station Codes for Stormwater Influent Samples and Column Tests.

9.4. Collection of Samples for Archiving

Archive samples will not be collected for this Monitoring Program. The sample size collected will be enough to support additional analyses if QA/QC issues arise. Once quality assurance is certified by the QA Officer, the laboratory will be instructed to dispose of any leftover sample materials.

9.5. Waste Disposal

Proper disposal of all waste is an important component of field activities. At no time will any waste be disposed of improperly. The proper methods of waste disposal are outlined below:

9.5.1.Routine Garbage

Regular garbage (paper towels, paper cups, etc.) is collected by sampling personnel in garbage bags or similar. It can then be disposed of properly at appropriate intervals.

9.5.2. Detergent Washes

Any detergents used or detergent wash water should be collected in the field in a water-tight container and disposed of appropriately.

9.5.3.Chemicals

Methanol, if used, should be disposed of by following all appropriate regulations. It should always be collected when sampling and never be disposed in the field.

9.1. Responsibility and Corrective Actions

If monitoring equipment fails, sampling personnel will report the problem in the comments section of their field notes and will not record data values for the variables in question. Actions will be taken to replace or repair broken equipment prior to the next field use.

9.2. Standard Operating Procedures

SOPs associated with sampling and sample handling expected to be used as part of implementation of The Monitoring Program are identified in Table 9-3. Additional details on sample container information, required preservation, holding times, and sample volumes for all Monitoring Program analytes are listed

in Table 10-1 of Section 10.

RMC	RMC SOP	Source
SOP #		
FS-2	Water Quality Sampling for Chemical Analysis, Pathogen Indicators,	BASMAA 2016
	and Toxicity	
FS-3	Field Measurements, Manual	BASMAA 2016
FS-4	Field Measurements, Continuous General Water Quality	BASMAA 2016
FS-5	Temperature, Automated, Digital Logger	BASMAA 2016
FS-6	Collection of Bedded Sediment Samples for Chemical Analysis and	BASMAA 2016
	Toxicity	
FS-7	Field Equipment Cleaning Procedures	BASMAA 2016
FS-8	Field Equipment Decontamination Procedures	BASMAA 2016
FS-9	Sample Container, Handling, and Chain of Custody Procedures	BASMAA 2016
FS-10	Completion and Processing of Field Datasheets	BASMAA 2016
FS-11	Site and Sample Naming Convention	BASMAA 2016

 Table 9-3. List of BASMAA RMC SOPs Utilized by the Monitoring Program.

In addition, contractor-specific plans and procedures may be required for specific aspects of the Monitoring Program implementation (e.g., health and safety plans, dry ice shipping procedures).

10. Sample Handling and Custody

Sample handling and chain of custody procedures are described in detail in RMC SOP FS-9 (Table 9-3) (BASMAA 2016). The Field-PM or designated municipal staff on site during sample collection will be responsible for overall collection and custody of samples during field sampling. Field crews will keep a field log, which will consist of sampling forms for each sampling event. Sample collection methods described in this document and the study designs (BASMAA 2017a, b) will be followed for each sampling task. Field data sheets will be filled out for each sample collected during the project. Example field data sheets are provided in Appendix A, and described further in Section 9.

The field crews will have custody of samples during field sampling, and COC forms will accompany all samples from field collection until delivery to the analyzing laboratory. COC procedures require that possession of samples be traceable from the time the samples are collected until completion and submittal of analytical results. Each laboratory will follow sample custody procedures as outlined in its QA plans.

Information on sampling containers, preservation techniques, packaging and shipping, and hold times is described below and summarized in Table 10.1.

10.1. Sampling Containers

Collection of all sample types require the use of clean containers. Factory pre-cleaned sample containers of the appropriate type will be provided by the contracted laboratory and delivered to field team at least one week prior to the start of sample collection. Individual laboratories will be responsible for the integrity of containers provided. The number and type of sample containers required for all analytes by media type for each sampling task are provided in Table 10.1.

10.2. Sample Preservation

Field Crews will collect samples in the field in a way that neither contaminates, loses, or changes the chemical form of the analytes of interest. The samples will be collected in the field into pre-cleaned sample containers of a material appropriate to the analysis to be conducted. Pre-cleaned sampling equipment is used for each site, whenever possible and/or when necessary. Appropriate sampling technique and measurement equipment may vary depending on the location, sample type, sampling objective, and weather.

In general, all samples will be packed in sufficient wet ice or frozen ice packs during shipment, so that they will be kept between 2 and 4° C (Table 10.1). When used, wet ice will be double bagged in Zip-top bags to prevent contamination via melt water. Where appropriate, samples may be frozen to prevent degradation. If samples are to be shipped frozen on dry ice, then appropriate handling procedures will be followed, including ensuring use of appropriate packaging materials and appropriate training for shipping personnel.

10.3. Packaging and Shipping

All samples will be handled, prepared, transported, and stored in a manner so as to minimize bulk loss, analyte loss, contamination, or biological degradation. Sample containers will be clearly labeled with an indelible marker. All caps and lids will be checked for tightness prior to shipping. Ice chests will be sealed with packing tape before shipping. Samples will be placed in the ice chest with enough ice or frozen ice packs to maintain between 2 and 4° C. Additional packing material will be added as needed. COC forms will be placed in a zip-top bag and placed inside of the ice chest.

10.4. Commercial Vehicle Transport

If transport of samples to the contracted laboratories is to be by commercial carriers, pickup will be prearranged with the carrier and all required shipping forms will be completed prior to sample pickup by the commercial carrier.

10.5. Sample Hold Times

Sample hold times for each analyte by media type are presented in Table 10-1.

Analyte	Sample Media	Sample Container	Minimum Sample / Container Size ^a	Preservative	Hold Time (at 6° C)
PCBs (40-RMP Congeners)	Caulk or sealant	Pre-cleaned 250-mL glass sample container (e.g., Quality Certified™, ESS Vial, Oakland, CA)	10 g	Cool to 6° C within 24 hours, then freeze to \leq -20° C	1 year at -20° C; Samples must be analyzed within 14 days of collection or thawing.
	Sediment	Pre-cleaned 250-mL I- Chem 200 Series amber glass jar with Teflon lid liner	500 mL (two jars)	Cool to 6° C within 24 hours, then freeze to ≤-20° C	1 year at -20° C; Samples must be analyzed within 14 days of collection or thawing.
	Water	1000-mL I-Chem 200- Series amber glass bottle, with Teflon lid- liner	1000 mL/per individual analyses	Cool to 6° C in the dark.	1 year until extraction, 1 year after extraction
Total Mercury	Sediment	Pre-cleaned 250-mL I- Chem 200 Series amber glass jar with Teflon lid liner	100 g	Cool to 6° C and in the dark	1 year at -20° C; Samples must be analyzed within 14 days of collection or thawing.
	Water	250-mL glass or acid- cleaned Teflon bottle	250 mL	Cool to 6° C in the dark and acidify to 0.5% with pre-tested HCl within 48 hours	6 months at room temperature following acidification
Bulk Density	Sediment	250-mL clear glass jar; pre-cleaned	250 mL	Cool to 6° C	7 days
Grain Size and TOC	Sediment	250-mL clear glass jar; pre-cleaned	250 mL	Cool to 6° C, in the dark up to 28 days ²	28 days at $\leq 6 \circ C$; 1 year at $\leq -20 \circ C$
SSC	Water	125-mL amber glass jar or Polyethylene Bottles	125 mL	Cool to 6° C and store in the dark	7 days
Turbidity	Water				
Total Solids	Water	1 L HDPE	1 L	Cool to ≤6 ∘C	7 days
TOC	Water	40-mL glass vial	40 mL	Cool to 6° C and store in the dark. If analysis is to occur more than two hours after sampling, acidify (pH < 2) with HCl or H ₂ SO ₄ .	28 days
Particle Size Distribution	Water	1 L HDPE	2 L	Cool to 6° C and store in the dark	7 days

Table 10-1 Sam	ole Handling for the	Monitoring Program	Analytes by media type.

^aQC samples or other analytes require additional sample bottles.

11. Field Health and Safety Procedures

All field crews will be expected to abide by their employer's (i.e., the field contractor's) health and safety programs. Additionally, prior to the fieldwork, field contractors are required to develop site-specific Health and Safety plans that include the locations of the nearest emergency medical services.

Implementation of the Monitoring Program activities may require confined space entry (CSE) to accomplish sampling goals. Sampling personnel conducting any confined space entry activities will be expected to be certified for CSE and to abide by relevant regulations.

12. Laboratory Analytical Methods

12.1. Caulk/Sealant Samples (Task 1)

12.1.1. XRF Chlorine analysis

XRF technology will be used in a laboratory setting to rank samples for chlorine content before sending the samples to the project laboratory for chemical analysis. Procedures for testing caulk or sealants using X-Ray fluorescence (XRF) and collecting caulk and sealant samples are not well described, and minimal detail on caulk or sealant sample collection is available in peer-reviewed publications. Sealant sampling procedures were adapted from the previous study examining PCBs in building materials (Klosterhaus et al., 2014).

An XRF analyzer will be used at the Center for Environmental Health (CEH) as a screening tool to estimate the concentration of chlorine (Cl) in collected caulk and sealant samples from various structures. Settings for the analyzer will be 'standardized' using procedures developed/ recommended by CEH each time the instrument is turned on and prior to any measurement. European plastic pellet reference materials (EC680 and EC681) will be used as 'check' standards upon first use to verify analyzer performance. A 30 second measurement in 'soil' mode will be used. CEH personnel will inspect the caulk/sealant surfaces and use a stainless steel blade to scrape off any paint, concrete chips, or other visible surface residue. The caulk/sealant surface to be sampled will then be wiped with a laboratory tissue to remove any remaining debris that may potentially interfere with the XRF analysis. At least two XRF readings will be collected from each sample switching the orientation or position of the sample between readings. If Cl is detected, a minimum of four additional readings will be collected on the same material to determine analytical variability. Each individual Cl reading and its detection limit will be recorded on the data sheet. After XRF analysis, all samples will be returned to their original sample container. Results of the XRF analysis will be provided to the project team as a table of ranked Cl screening results for possible selection for chemical (PCBs) analysis.

12.1.2. Selection of Samples for PCB analysis and Compositing

Once samples have been ranked for their chlorine content, primarily samples with the highest Cl will preferentially be selected for chemical analysis. About 75% of samples to be analyzed should be selected from samples with the top quartile Cl content. The remaining 25% should be selected from samples with medium (25 to 75th percentile) Cl, as the previous study using XRF screening showed inconsistent correlation between total Cl and PCB. Although samples with very low Cl seldom had much PCBs, samples with medium Cl on occasion had higher PCBs than samples with high Cl, and within the high Cl group, Cl content was not a good predictor of their ranks of PCB concentration.

In addition to Cl content, other factors about each sample that were recorded on the field data sheets at the time of sample collection, including the color or consistency of the sample, the type and/or age of the structure that was sampled, or the type of caulk or sealant application will be considered in selecting the samples that will be sent to the laboratory for PCBs analysis, as well as how the samples will be grouped for compositing purposes. Those factors are described in more detail in the study design (BASMAA, 2017a).

The Consultant PM will work with the project team to identify up to three samples for inclusion in each composite. A common composite ID will then be assigned to each sample that will be composited together (i.e., all samples the lab should composite together will be identified by the common composite ID). The composite ID will consist of a single letter designation and will be identical for all samples (up to 3 total) that will be composited together. The Consultant PM will add the composite ID to each sample container label, to each sample ID on all COC forms, and to each field data sheet for all samples prior to sending the samples to the laboratory for PCBs analysis.

12.1.3. Sample Preparation

The project laboratory will composite the samples prior to extraction and PCBs analysis according to the groupings identified by the common composite ID. Sample preparation will include removal of any paint, concrete chips, or other surface debris, followed by homogenization of the caulk/sealant material and compositing up to three samples per composite. Each sample will have a composite ID that will be used to identify which samples should be composited together. Samples with the same composite ID will be combined into a single composite sample. For example, all samples with composite ID = "A" will be composited together; all samples with composite ID = "B" will be composited together, etc. Sample preparation and compositing will follow the procedures outlined in the laboratory SOPs (Appendix B). After compositing, each composite sample will be assigned a new sample ID using the following naming convention:

X-MMDDYYYY

Where:

where.	
Х	the single letter Composite ID that is common to all samples included in a given
	composite.
MM	2 digit month of composite preparation
DD	2 digit date of composite preparation
YYYY	4 digit year of composite preparation

For example, if three samples with the composite ID= "A" are combined into a single composite sample on December 12, 2017, the new (composite) sample ID would be the following: A-12122017.

12.1.4. PCBs Analysis

All composite caulk/sealant samples will be extracted by Method 3540C, and analyzed for the RMP-40 PCB congeners³ using a modified EPA Method 8270C (GC/MS-SIM), in order to obtain positive

³ The 40 individual congeners routinely quantified by the Regional Monitoring Program (RMP) for Water Quality in the San Francisco Estuary include: PCBs 8, 18, 28, 31, 33, 44, 49, 52, 56, 60, 66, 70, 74, 87, 95, 97, 99, 101, 105, 110, 118, 128, 132, 138, 141, 149, 151, 153, 156, 158, 170, 174, 177, 180, 183, 187, 194, 195, 201, and 203

identification and quantitation of PCBs. PCB content of these material covers an extremely wide range, so the subsampling of material should include sufficient material for quantification assuming that the concentration is likely to be around the median of previous results. There may be samples with much higher concentrations, which can be reanalyzed on dilution as needed. Method Reporting Limits (MRLs) for each of the RMP-40 PCB Congeners are $0.5 \mu g/Kg$.

12.2. Sediment Samples Collected from HDS Units (Task 2)

All sediment samples collected from HDS units under Task 2 will be analyzed for TOC, grain size, bulk density, total mercury, and PCBs (RMP 40 Congeners1) by the methods identified in Table 12-1. All sediment samples (with the exception of grain size) will be sieved by the laboratory at 2 mm prior to analysis.

Analyte	Sampling Method	Recommended Analytical Method	Reporting Units
Total Organic Carbon (TOC)	Grab	EPA 415.1, 440.0, 9060, or ASTM D4129M	%
Grain Size	Grab	ASTM D422M/PSEP	%
Bulk Density	Grab	ASTM E1109-86	g/cm3
Mercury	Grab	EPA 7471A, 7473, or 1631	µg/kg
PCBs (RMP 40 Congeners)	Grab	EPA 1668	µg/kg

Table 12-1. Laboratory Analytical Methods for Analytes in Sediment

12.3. Water Samples – Stormwater and Column Tests (Task 3)

All water samples submitted to the laboratory will be analyzed for SSC, TOC, total mercury and PCBs (RMP-40 congeners) according to the methods identified in Table 12-2.

Table 12-2. Laboratory Analytical Methods for Analytes in Water

Analyte	Sampling Method	Recommended Analytical Method	Reporting Units
Suspended Sediment Concentration (SSC)	Grab	ASTM D3977-97 (Method C)	mg/L
Total Organic Carbon (TOC)	Grab	EPA 415.1 or SM 5310B	%
Mercury (Total)	Grab	EPA 1631	μg/L
PCBs (RMP 40 Congeners)	Grab	EPA 1668	ng/L

12.4. Method Failures

The QA Officer will be responsible for overseeing the laboratory implementing any corrective actions that may be needed in the event that methods fail to produce acceptable data. If a method fails to provide acceptable data for any reason, including analyte or matrix interferences, instrument failures, etc., then the involved samples will be analyzed again if possible. The laboratory in question's SOP for handling these types of problems will be followed. When a method fails to provide acceptable data, then the laboratory's

SOP for documenting method failures will be used to document the problem and what was done to rectify it.

Corrective actions for chemical data are taken when an analysis is deemed suspect for some reason. These reasons include exceeding accuracy or precision ranges and/or problems with sorting and identification. The corrective action will vary on a case-by-case basis, but at a minimum involves the following:

- A check of procedures.
- A review of documents and calculations to identify possible errors.
- Correction of errors based on discussions among analysts.
- A complete re-identification of the sample.

The field and laboratory coordinators shall have systems in place to document problems and make corrective actions. All corrective actions will be documented to the FTL and the QA Officer.

12.5. Sample Disposal

After analysis of the Monitoring Program samples has been completed by the laboratory and results have been accepted by QA Officer and the Field-PM, they will be disposed by laboratory staff in compliance with all federal, state, and local regulations. The laboratory has standard procedures for disposing of its waste, including left over sample materials

12.6. Laboratory Sample Processing

Field samples sent to the laboratories will be processed within their recommended hold time using methods agreed upon method between the Lab-PM and Field-PM. Each sample may be assigned unique laboratory sample ID numbers for tracking processing and analyses of samples within the laboratory. This laboratory sample ID (if differing from the field team sample ID) must be included in the data submission, within a lookup table linking the field sample ID to that assigned by the lab.

Samples arriving at the laboratory are to be stored under conditions appropriate for the planned analytical procedure(s), unless they are processed for analysis immediately upon receipt. Samples to be analyzed should only be removed from storage when laboratory staff are ready to proceed.

13. Quality Control

Each step in the field collection and analytical process is a potential source of contamination and must be consistently monitored to ensure that the final measurement is not adversely affected by any processing steps. Various aspects of the quality control procedures required by the Monitoring Program are summarized below.

13.1. Field Quality Control

Field QC results must meet the MQOs and frequency requirements specified in Tables 13-1 – 13-4 below.

13.1.1. Field Blanks

A field blank is collected to assess potential sample contamination levels that occur during field sampling activities. Field blanks are taken to the field, transferred to the appropriate container, preserved (if required by the method), and treated the same as the corresponding sample type during the course of a sampling event. The inclusion of field blanks is dependent on the requirements specified in the relevant MQO tables or in the sampling method or SOP.

Collection of caulk or sealant field blank samples has been deemed unnecessary due to the difficulty in collection and interpretation of representative blank samples and the use of precautions that minimize contamination of the samples. Additionally, PCBs have been reported to be present in percent concentrations when used in sealants; therefore any low level contamination (at ppb or even ppm level) due to sampling equipment and procedures is not expected to affect data quality because it would be many orders of magnitude lower than the concentrations deemed to be a positive PCB signal.

For stormwater samples, field blanks will be generated using lab supplied containers and clean matrices. Sampling containers will be opened as though actual samples were to be collected, and clean lab-supplied matrix (if any) will be transferred to sample containers for analysis.

13.1.2. Field Duplicates

Field samples collected in duplicate provide precision information as it pertains to the sampling process. The duplicate sample must be collected in the same manner and as close in time as possible to the original sample. This effort is to attempt to examine field homogeneity as well as sample handling, within the limits and constraints of the situation. These data are evaluated in the data analysis/assessment process for small-scale spatial variability.

Field duplicates will not be collected for caulk/sealant samples (Task 1), as assessment of within-structure variability of PCB concentrations in sealants is not a primary objective of the Project. Due to budget limitations, PCBs analysis of only one caulk/sealant sample per application will be targeted to maximize the number of Bay Area structures and structure types that may be analyzed in the Project. The selected laboratory will conduct a number of quality assurance analyses (see Section 13), including a limited number of sample duplicates, to evaluate laboratory and method performance as well as variability of PCB content within a sample.

For all sediment and water samples, 5% of field duplicates and/or column influent/effluent duplicates will be collected along with primary samples in order to evaluate small scale spatial or temporal variability in sample collection without specifically targeting any apparent or likely bias (e.g. different sides of a seemingly symmetrical unit, or offset locations in making a composite, or immediately following collection of a primary water sample would be acceptable, whereas collecting one composite near an inlet and another near the outlet, or intentionally collecting times with vastly different flow rates, would not be desirable).

13.1.3. Field Corrective Action

The Field PM is responsible for responding to failures in their sampling and field measurement systems. If monitoring equipment fails, personnel are to record the problem according to their documentation protocols. Failing equipment must be replaced or repaired prior to subsequent sampling events. It is the combined responsibility of all members of the field organization to determine if the performance

requirements of the specific sampling method have been met, and to collect additional samples if necessary. Associated data is to be flagged accordingly. Specific field corrective actions are detailed in Table 13-8.

13.2. Laboratory Quality Control

Laboratories providing analytical support to the Monitoring Program will have the appropriate facilities to store, prepare, and process samples in an ultra-clean environment, and will have appropriate instrumentation and staff to perform analyses and provide data of the required quality within the time period dictated by the Monitoring Program. The laboratories are expected to satisfy the following:

- 1. Demonstrate capability through pertinent certification and satisfactory performance in interlaboratory comparison exercises.
- 2. Provide qualification statements regarding their facility and personnel.
- 3. Maintain a program of scheduled maintenance of analytical balances, laboratory equipment and instrumentation.
- 4. Conduct routine checking of analytical balances using a set of standard reference weights (American Society of Testing and Materials Class 3, NIST Class S-1, or equivalents). Analytical balances are serviced at six-month intervals or when test weight values are not within the manufacturer's instrument specifications, whichever occurs first.
- 5. Conduct routine checking and recording the composition of fresh calibration standards against the previous lot. Acceptable comparisons are within 2% of the precious value.
- 6. Record all analytical data in bound (where possible) logbooks, with all entries in ink, or electronically.
- 7. Monitor and document the temperatures of cold storage areas and freezer units on a continuous basis.
- 8. Verify the efficiency of fume/exhaust hoods.
- 9. Have a source of reagent water meeting specifications described in Section 8.0 available in sufficient quantity to support analytical operations.
- 10. Label all containers used in the laboratory with date prepared, contents, initials of the individual who prepared the contents, and other information as appropriate.
- 11. Date and safely store all chemicals upon receipt. Proper disposal of chemicals when the expiration date has passed.
- 12. Have QAPP, SOPs, analytical methods manuals, and safety plans readily available to staff.
- 13. Have raw analytical data readily accessible so that they are available upon request.

In addition, laboratories involved in the Monitoring Program are required to demonstrate capability continuously through the following protocols:

- 1. Strict adherence to routine QA/QC procedures.
- 2. Regular participation in annual certification programs.
- 3. Satisfactory performance at least annually in the analysis of blind Performance Evaluation Samples and/or participation in inter-laboratory comparison exercises.

Laboratory QC samples must satisfy MQOs and frequency requirements. MQOs and frequency requirements are listed in Tables 13-1 – 13-3. Frequency requirements are provided on an analytical batch

level. The Monitoring Program defines an analytical batch as 20 or fewer samples and associated quality control that are processed by the same instrument within a 24-hour period (unless otherwise specified by method). Target Method Reporting Limits are provided in Tables 13.4 - 13.8. Details regarding sample preparation are method- or laboratory SOP-specific, and may consist of extraction, digestion, or other techniques.

13.2.1. Calibration and Working Standards

All calibration standards must be traceable to a certified standard obtained from a recognized organization. If traceable standards are not available, procedures must be implemented to standardize the utilized calibration solutions (*e.g.*, comparison to a CRM – see below). Standardization of calibration solutions must be thoroughly documented, and is only acceptable when pre-certified standard solutions are not available. Working standards are dilutions of stock standards prepared for daily use in the laboratory. Working standards are used to calibrate instruments or prepare matrix spikes, and may be prepared at several different dilutions from a common stock standard. Working standards are diluted with solutions that ensure the stability of the target analyte. Preparation of the working standard must be thoroughly documented such that each working standard is traceable back to its original stock standard. Finally, the concentration of all working standards must be verified by analysis prior to use in the laboratory.

13.2.2. Instrument Calibration

Prior to sample analysis, utilized instruments must be calibrated following the procedures outlined in the relevant analytical method or laboratory SOP. Each method or SOP must specify acceptance criteria that demonstrate instrument stability and an acceptable calibration. If instrument calibration does not meet the specified acceptance criteria, the analytical process is not in control and must be halted. The instrument must be successfully recalibrated before samples may be analyzed.

Calibration curves will be established for each analyte covering the range of expected sample concentrations. Only data that result from quantification within the demonstrated working calibration range may be reported unflagged by the laboratory. Quantification based upon extrapolation is not acceptable; sample extracts above the calibration range should be diluted and rerun if possible. Data reported below the calibration range must be flagged as estimated values that are Detected not Quantified.

13.2.3. Initial Calibration Verification

The initial calibration verification (ICV) is a mid-level standard analyzed immediately following the calibration curve. The source of the standards used to calibrate the instrument and the source of the standard used to perform the ICV must be independent of one another. This is usually achieved by the purchase of standards from separate vendors. Since the standards are obtained from independent sources and both are traceable, analyses of the ICV functions as a check on the accuracy of the standards used to calibrate the instrument. The ICV is not a requirement of all SOPs or methods, particularly if other checks on analytical accuracy are present in the sample batch.

13.2.4. Continuing Calibration Verification

Continuing calibration verification (CCV) standards are mid-level standards analyzed at specified intervals during the course of the analytical run. CCVs are used to monitor sensitivity changes in the instrument during analysis. In order to properly assess these sensitivity changes, the standards used to perform CCVs must be from the same set of working standards used to calibrate the instrument. Use of a

second source standard is not necessary for CCV standards, since other QC samples are designed to assess the accuracy of the calibration standards. Analysis of CCVs using the calibration standards limits this QC sample to assessing only instrument sensitivity changes. The acceptance criteria and required frequency for CCVs are detailed in Tables 13-1 through 13-3. If a CCV falls outside the acceptance limits, the analytical system is not in control, and immediate corrective action must be taken.

Data obtained while the instrument is out of control is not reportable, and all samples analyzed during this period must be reanalyzed. If reanalysis is not an option, the original data must be flagged with the appropriate qualifier and reported. A narrative must be submitted listing the results that were generated while the instrument was out of control, in addition to corrective actions that were applied.

13.2.5. Laboratory Blanks

Laboratory blanks (also called extraction blanks, procedural blanks, or method blanks) are used to assess the background level of a target analyte resulting from sample preparation and analysis. Laboratory blanks are carried through precisely the same procedures as the field samples. For both organic and inorganic analyses, a minimum of at least one laboratory blank must be prepared and analyzed in every analytical batch or per 20 samples, whichever is more frequent. Some methods may require more than one laboratory blank with each analytical run. Acceptance criteria for laboratory blanks are detailed in Tables 13-1 through 13-3. Blanks that are too high require corrective action to bring the concentrations down to acceptable levels. This may involve changing reagents, cleaning equipment, or even modifying the utilized methods or SOPs. Although acceptable laboratory blanks are important for obtaining results for low-level samples, improvements in analytical sensitivity have pushed detection limits down to the point where some amount of analyte will be detected in even the cleanest laboratory blanks. The magnitude of the blanks must be evaluated against the concentrations of the samples being analyzed and against project objectives.

13.2.6. Reference Materials and Demonstration of Laboratory Accuracy

Evaluation of the accuracy of laboratory procedures is achieved through the preparation and analysis of reference materials with each analytical batch. Ideally, the reference materials selected are similar in matrix and concentration range to the samples being prepared and analyzed. The acceptance criteria for reference materials are listed in Tables 13-1 - 13-3. The accuracy of an analytical method can be assessed using CRMs only when certified values are provided for the target analytes. When possible, reference materials that have certified values for the target analytes should be used. This is not always possible, and often times certified reference values are not available for all target analytes. Many reference materials have both certified and non-certified (or reference) values listed on the certificate of analysis. Certified reference values are clearly distinguished from the non-certified reference values on the certificate of analysis.

13.2.7. Reference Materials vs. Certified Reference Materials

The distinction between a reference material and a certified reference material does not involve how the two are prepared, rather with the way that the reference values were established. Certified values are determined through replicate analyses using two independent measurement techniques for verification. The certifying agency may also provide "non-certified or "reference" values for other target analytes. Such values are determined using a single measurement technique that may introduce bias. When available, it is preferable to use reference materials that have certified values for all target analytes. This is not always an option, and therefore it is acceptable to use materials that have reference values for these

analytes. Note: Standard Reference Materials (SRMs) are essentially the same as CRMs. The term "Standard Reference Material" has been trademarked by the National Institute of Standards and Technology (NIST), and is therefore used only for reference materials distributed by NIST.

13.2.8. Laboratory Control Samples

While reference materials are not available for all analytes, a way of assessing the accuracy of an analytical method is still required. LCSs provide an alternate method of assessing accuracy. An LCS is a specimen of known composition prepared using contaminant-free reagent water or an inert solid spiked with the target analyte at the midpoint of the calibration curve or at the level of concern. The LCS must be analyzed using the same preparation, reagents, and analytical methods employed for regular samples. If an LCS needs to be substituted for a reference material, the acceptance criteria are the same as those for the analysis of reference materials..

13.2.9. Prioritizing Certified Reference Materials, Reference Materials, and Laboratory Control Samples

Certified reference materials, reference materials, and laboratory control samples all provide a method to assess the accuracy at the mid-range of the analytical process. However, this does not mean that they can be used interchangeably in all situations. When available, analysis of one certified reference material per analytical batch should be conducted. Certified values are not always available for all target analytes. If no certified reference material exists, reference values may be used. If no reference material exists for the target analyte, an LCS must be prepared and analyzed with the sample batch as a means of assessing accuracy. The hierarchy is as follows: analysis of a CRM is favored over the analysis of a reference material, and analysis of a reference material is preferable to the analysis of an LCS. Substitution of an LCS is not acceptable if a certified reference material or reference material is available, contact the Project Manager and QAO for approval before relying exclusively on an LCS as a measure of accuracy.

13.2.10.Matrix Spikes

A MS is prepared by adding a known concentration of the target analyte to a field sample, which is then subjected to the entire analytical procedure. The MS is analyzed in order to assess the magnitude of matrix interference and bias present. Because these spikes are often analyzed in pairs, the second spike is called the MSD. The MSD provides information regarding the precision of measurement and consistency of the matrix effects. Both the MS and MSD are split from the same original field sample. In order to properly assess the degree of matrix interference and potential bias, the spiking level should be approximately 2-5x the ambient concentration of the spiked sample. To establish spiking levels prior to sample analysis, if possible, laboratories should review any relevant historical data. In many instances, the laboratory will be spiking samples blind and will not meet a spiking level of 2-5x the ambient concentration. In addition to the recoveries, the relative percent difference (RPD) between the MS and MSD is calculated to evaluate how matrix affects precision. The MQO for the RPD between the MS and MSD is the same regardless of the method of calculation. These are detailed in Tables 13-1-13-3. Recovery data for matrix spikes provides a basis for determining the prevalence of matrix effects in the samples collected and analyzed. If the percent recovery for any analyte in the MS or MSD is outside of the limits specified in Tables 13-1-13-3, the chromatograms (in the case of trace organic analyses) and raw data quantitation reports should be reviewed. Data should be scrutinized for evidence of sensitivity shifts (indicated by the results of the CCVs) or other potential problems with the analytical process. If associated QC samples (reference materials or LCSs) are in control, matrix effects may be the source of

the problem. If the standard used to spike the samples is different from the standard used to calibrate the instrument, it must be checked for accuracy prior to attributing poor recoveries to matrix effects.

13.2.11.Laboratory Duplicates

In order to evaluate the precision of an analytical process, a field sample is selected and prepared in duplicate. Specific requirements pertaining to the analysis of laboratory duplicates vary depending on the type of analysis. The acceptance criteria for laboratory duplicates are specified in Tables 13-1-13-3.

13.2.12.Laboratory Duplicates vs. Matrix Spike Duplicates

Although the laboratory duplicate and matrix spike duplicate both provide information regarding precision, they are unique measurements. Laboratory duplicates provide information regarding the precision of laboratory procedures at actual ambient concentrations. The matrix spike duplicate provides information regarding how the matrix of the sample affects both the precision and bias associated with the results. It also determines whether or not the matrix affects the results in a reproducible manner. MS/MSDs are often spiked at levels well above ambient concentrations, so thus are not representative of typical sample precision. Because the two concepts cannot be used interchangeably, it is unacceptable to analyze only an MS/MSD when a laboratory duplicate is required.

13.2.13.Replicate Analyses

The Monitoring Program will adopt the same terminology as SWAMP in defining replicate samples, wherein replicate analyses are distinguished from duplicate analyses based simply on the number of involved analyses. Duplicate analyses refer to two sample preparations, while replicate analyses refer to three or more. Analysis of replicate samples is not explicitly required.

13.2.14.Surrogates

Surrogate compounds accompany organic measurements in order to estimate target analyte losses or matrix effects during sample extraction and analysis. The selected surrogate compounds behave similarly to the target analytes, and therefore any loss of the surrogate compound during preparation and analysis is presumed to coincide with a similar loss of the target analyte. Surrogate compounds must be added to field and QC samples prior to extraction, or according to the utilized method or SOP. Surrogate recovery data are to be carefully monitored. If possible, isotopically labeled analogs of the analytes are to be used as surrogates.

13.2.15.Internal Standards

To optimize gas chromatography mass spectrometry (GC-MS) analysis, internal standards (also referred to as "injection internal standards") may be added to field and QC sample extracts prior to injection. Use of internal standards is particularly important for analysis of complex extracts subject to retention time shifts relative to the analysis of standards. The internal standards can also be used to detect and correct for problems in the GC injection port or other parts of the instrument. The analyst must monitor internal standard retention times and recoveries to determine if instrument maintenance or repair or changes in analytical procedures are indicated. Corrective action is initiated based on the judgment of the analyst. Instrument problems that affect the data or result in reanalysis must be documented properly in logbooks and internal data reports, and used by the laboratory personnel to take appropriate corrective action. Performance criteria for internal standards are established by the method or laboratory SOP.

13.2.16.Dual-Column Confirmation

Due to the high probability of false positives from single-column analyses, dual column confirmation should be applied to all gas chromatography and liquid chromatography methods that do not provide definitive identifications. It should not be restricted to instruments with electron capture detection (ECD).

13.2.17.Dilution of Samples

Final reported results must be corrected for dilution carried out during the process of analysis. In order to evaluate the QC analyses associated with an analytical batch, corresponding batch QC samples must be analyzed at the same dilution factor. For example, the results used to calculate the results of matrix spikes must be derived from results for the native sample, matrix spike, and matrix spike duplicate analyzed at the same dilution. Results derived from samples analyzed at different dilution factors must not be used to calculate QC results.

13.2.18.Laboratory Corrective Action

Failures in laboratory measurement systems include, but are not limited to: instrument malfunction, calibration failure, sample container breakage, contamination, and QC sample failure. If the failure can be corrected, the analyst must document it and its associated corrective actions in the laboratory record and complete the analysis. If the failure is not resolved, it is conveyed to the respective supervisor who should determine if the analytical failure compromised associated results. The nature and disposition of the problem must be documented in the data report that is sent to the Consultant-PM. Suggested corrective actions are detailed in Table 13-9.

Laboratory Quality Control	Frequency of Analysis	Measurement Quality Objective	
Tuning ²	Per analytical method	Per analytical method	
Calibration	Initial method setup or when the calibration verification fails	Correlation coefficient (r ² >0.990) for linear and non-linear curves	
		 If RSD<15%, average RF may be used to quantitate; otherwise use equation of the curve 	
		 First- or second-order curves only (not forced through the origin) 	
		Refer to SW-846 methods for SPCC and CCC criteria ²	
		 Minimum of 5 points per curve (one of them at or below the RL) 	
Calibration Verification	Per 12 hours		
		Expected response or expected concentration ±20%	
		• RF for SPCCs=initial calibration ⁴	
Laboratory Blank	Per 20 samples or per analytical batch, whichever is more frequent	<rl analytes<="" for="" target="" th=""></rl>	
Reference Material	Per 20 samples or per analytical batch	70-130% recovery if certified; otherwise, 50-150% recovery50-150% or based on historical laboratory control limits (average±3SD)50-150% or based on historical laboratory control limits (average±3SD); RPD<25%Based on historical laboratory control limits (50-150% or better)Per laboratory procedure	
Matrix Spike	Per 20 samples or per analytical batch, whichever is more frequent		
Matrix Spike Duplicate	Per 20 samples or per analytical batch, whichever is more frequent		
Surrogate	Included in all samples and all QC samples		
Internal Standard	Included in all samples and all QC samples (as available)		
Field Quality Control	Frequency of Analysis	Measurement Quality Objective	
Field Duplicate	5% of total Project sample count (sediment and water samples only)	RPD<25% (n/a if concentration of either sample <rl)< th=""></rl)<>	
Field Blank	Not required for the Monitoring Program	<rl analytes<="" for="" target="" th=""></rl>	

Table 13-1. Measurement Quality Objectives - PCBs.

Laboratory Quality Control	Frequency of Analysis	Measurement Quality Objective
Calibration Standard	Per analytical method or manufacturer's specifications	Per analytical method or manufacturer's specifications
Continuing Calibration Verification	Per 10 analytical runs	80-120% recovery
Laboratory Blank	Per 20 samples or per analytical batch, whichever is more frequent	<rl analyte<="" for="" target="" td=""></rl>
Reference Material	Per 20 samples or per analytical batch, whichever is more frequent	75-125% recovery
Matrix Spike	Per 20 samples or per analytical batch, whichever is more frequent	75-125% recovery
Matrix Spike Duplicate	Per 20 samples or per analytical batch, whichever is more frequent	75-125% recovery ; RPD<25%
Laboratory Duplicate	Per 20 samples or per analytical batch, whichever is more frequent	RPD<25% (n/a if concentration of either sample <rl)< td=""></rl)<>
Internal Standard	Accompanying every analytical run when method appropriate	60-125% recovery
Field Quality Control	Frequency of Analysis	Measurement Quality Objective
Field Duplicate	5% of total Project sample count	RPD<25% (n/a if concentration of either sample <rl), unless<br="">otherwise specified by method</rl),>
Field Blank, Equipment Field, Eqpt Blanks	Not required for the Monitoring Program	Blanks <rl analyte<="" for="" target="" td=""></rl>

Laboratory Quality Control	Frequency of Analysis	Measurement Quality Objective	
Calibration Standard	Per analytical method or manufacturer's specifications	Per analytical method or manufacturer's specifications	
Laboratory Blank	Total organic carbon only: one per 20 samples or per analytical batch, whichever is more frequent (n/a for other parameters)	80-120% recovery	
Reference Material	One per analytical batch	RPD<25% (n/a if native concentration of either sample <rl)< th=""></rl)<>	
Laboratory Duplicate	(TOC only) one per 20 samples or per analytical batch, whichever is more frequent (n/a for other parameters)	80-120% recovery	
Field Quality Control	Frequency of Analysis	Measurement Quality Objective	
Field Duplicate	5% of total Project sample count	RPD<25% (n/a if concentration of either sample <rl)< th=""></rl)<>	
Field Blank, Travel Blank, Field BlanksNot required for the Monitoring Prog analytes		NA	

Consistent with SWAMP QAPP and as applicable, percent moisture should be reported with each batch of sediment samples. Sediment data must be reported on a dry weight basis.

 Table 13-4. Target MRLs for Sediment Quality Parameters.

Analyte	MRL
Sediment Total Organic Carbon	0.01% OC
Bulk Density	n/a
%Moisture	n/a
%Lipids	n/a
Mercury	30 µg/kg

Congener	Water MRL (µg/L)	Sediment MRL (µg/kg)	Caulk/Sealant MRL (µg/kg)
PCB 8	0.002	0.2	0.5
PCB 18	0.002	0.2	0.5
PCB 28	0.002	0.2	0.5
PCB 31	0.002	0.2	0.5
PCB 33	0.002	0.2	0.5
PCB 44	0.002	0.2	0.5
PCB 49	0.002	0.2	0.5
PCB 52	0.002	0.2	0.5
PCB 56	0.002	0.2	0.5
PCB 60	0.002	0.2	0.5
PCB 66	0.002	0.2	0.5
PCB 70	0.002	0.2	0.5
PCB 74	0.002	0.2	0.5
PCB 87	0.002	0.2	0.5
PCB 95	0.002	0.2	0.5
PCB 97	0.002	0.2	0.5
PCB 99	0.002	0.2	0.5
PCB 101	0.002	0.2	0.5
PCB 105	0.002	0.2	0.5
PCB 110	0.002	0.2	0.5
PCB 118	0.002	0.2	0.5
PCB 128	0.002	0.2	0.5
PCB 132	0.002	0.2	0.5
PCB 138	0.002	0.2	0.5
PCB 141	0.002	0.2	0.5
PCB 149	0.002	0.2	0.5
PCB 151	0.002	0.2	0.5
PCB 153	0.002	0.2	0.5
PCB 156	0.002	0.2	0.5
PCB 158	0.002	0.2	0.5
PCB 170	0.002	0.2	0.5
PCB 174	0.002	0.2	0.5
PCB 177	0.002	0.2	0.5
PCB 180	0.002	0.2	0.5
PCB 183	0.002	0.2	0.5
PCB 187	0.002	0.2	0.5
PCB 194	0.002	0.2	0.5
PCB 195	0.002	0.2	0.5
PCB 201	0.002	0.2	0.5
PCB 203	0.002	0.2	0.5

 Table 13-5. Target MRLs for PCBs in Water, Sediment and Caulk

Wentworth Size Category	Size	MRL
Clay	<0.0039 mm	1%
Silt	0.0039 mm to <0.0625 mm	1%
Sand, very fine	0.0625 mm to <0.125 mm	1%
Sand, fine	0.125 mm to <0.250 mm	1%
Sand, medium	0.250 mm to <0.5 mm	1%
Sand, coarse	0.5 mm to < 1.0 mm	1%
Sand, very coarse	1.0 mm to < 2 mm	1%
Gravel	2 mm and larger	1%

Table 13-6. Size l	Distribution	Categories for	Grain Siz	e in Sediment
		Current for the tot		

Table 13-7. Target MRLs for TOC, SSC, and Mercury in Water

Analyte	MRL
Total Organic Carbon	0.6 mg/L
Suspended Sediment Concentration	0.5 mg/L
Mercury	0.0002 µg/L

Laboratory	Recommended Corrective Action			
Quality Control				
Calibration	Recalibrate the instrument. Affected samples and associated quality control must be reanalyzed following successful instrument recalibration.			
Calibration Verification	Reanalyze the calibration verification to confirm the result. If the problem continues, halt analysis and investigate the source of the instrument drift. The analyst should determine if the instrument must be recalibrated before the analysis can continue. All of the samples not bracketed by acceptable calibration verification must be reanalyzed.			
Laboratory Blank	Reanalyze the blank to confirm the result. Investigate the source of contamination. If the source of the contamination is isolated to the sample preparation, the entire batch of samples, along with the new laboratory blanks and associated QC samples, should be prepared and/or re- extracted and analyzed. If the source of contamination is isolated to the analysis procedures, reanalyze the entire batch of samples. If reanalysis is not possible, the associated sample results must be flagged to indicate the potential presence of the contamination.			
Reference Material	Reanalyze the reference material to confirm the result. Compare this to the matrix spike/matrix spike duplicate recovery data. If adverse trends are noted, reprocess all of the samples associated with the batch.			
Matrix Spike	The spiking level should be near the midrange of the calibration curve or at a level that does not require sample dilution. Reanalyze the matrix spike to confirm the result. Review the recovery obtained for the matrix spike duplicate. Review the results of the other QC samples (such as reference materials) to determine if other analytical problems are a potential source of the poor spike recovery.			
Matrix Spike Duplicate	The spiking level should be near the midrange of the calibration curve or at a level that does not require sample dilution. Reanalyze the matrix spike duplicate to confirm the result. Review the recovery obtained for the matrix spike. Review the results of the other QC samples (such as reference materials) to determine if other analytical problems are a potential source of the poor spike recovery.			
Internal Standard	Check the response of the internal standards. If the instrument continues to generate poor results, terminate the analytical run and investigate the cause of the instrument drift.			
Surrogate	Analyze as appropriate for the utilized method. Troubleshoot as needed. If no instrument problem is found, samples should be re-extracted and reanalyzed if possible.			
Field Quality Control	Recommended Corrective Action			
Field Duplicate	Visually inspect the samples to determine if a high RPD between results could be attributed to sample heterogeneity. For duplicate results due to matrix heterogeneity, or where ambient concentrations are below the reporting limit, qualify the results and document the heterogeneity. All failures should be communicated to the project coordinator, who in turn will follow the process detailed in the method.			
Field Blank	Investigate the source of contamination. Potential sources of contamination include sampling equipment, protocols, and handling. The laboratory should report evidence of field contamination as soon as possible so corrective actions can be implemented. Samples collected in the presence of field contamination should be flagged.			

Table 13-8. Corrective Action – Laboratory and Field Quality Control

14. Inspection/Acceptance for Supplies and Consumables

Each sampling event conducted for the Monitoring Program will require use of appropriate consumables to reduce likelihood of sample contamination. The Field-PM will be responsible for ensuring that all supplies are appropriate prior to their use. Inspection requirements for sampling consumables and supplies are summarized in Table 14-1.

Project- related Supplies	Inspection / Testing Specifications	Acceptance Criteria	Frequency	Responsible Person Sampling Containers
Sampling supplies	Visual	Appropriateness; no evident contamination or damage; within expiration date	Each purchase	Field Crew Leader

Table 14-1. Inspection / Acceptance Testing Requirements for Consumables and Supplies

15. Non Direct Measurements, Existing Data

No data from external sources are planned to be used with this project.

16. Data Management

As previously discussed, the Monitoring Program data management will conform to protocols dictated by the study designs (BASMAA 2017a, b). A summary of specific data management aspects is provided below.

16.1. Field Data Management

All field data will be reviewed for legibility and errors as soon as possible after the conclusion of sampling. All field data that is entered electronically will be hand-checked at a rate of 10% of entries as a check on data entry. Any corrective actions required will be documented in correspondence to the QA Officer.

16.2. Laboratory Data Management

Record keeping of laboratory analytical data for the proposed project will employ standard recordkeeping and tracking practices. All laboratory analytical data will be entered into electronic files by the instrumentation being used or, if data is manually recorded, then it will be entered by the analyst in charge of the analyses, per laboratory standard procedures.

Following the completion of internal laboratory quality control checks, analytical results will be forwarded electronically to the Field-PM. The analytical laboratories will provide data in electronic format, encompassing both a narrative and electronic data deliverable (EDD).

17. Assessments and Response Actions

17.1. Readiness Reviews

The Field-PM will review all field equipment, instruments, containers, and paperwork to ensure that everything is ready prior to each sampling event. All sampling personnel will be given a brief review of the goals and objectives of the sampling event and the sampling procedures and equipment that will be used to achieve them. It is important that all field equipment be clean and ready to use when it is needed. Therefore, prior to using all sampling and/or field measurement equipment, each piece of equipment will be checked to make sure that it is in proper working order. Equipment maintenance records will be checked to ensure that all field instruments have been properly maintained and that they are ready for use. Adequate supplies of all preservatives, bottles, labels, waterproof pens, etc. will be checked before each field event to make sure that there are sufficient supplies to successfully support each sampling event, and, as applicable, are within their expiration dates. It is important to make sure that all field activities and measurements are properly recorded in the field. Therefore, prior to starting each field event, necessary paperwork such as logbooks, chain of custody record forms, etc. will be checked to ensure that sufficient amounts are available during the field event. In the event that a problem is discovered during a readiness review it will be noted in the field log book and corrected before the field crew is deployed. The actions taken to correct the problem will also be documented with the problem in the field log book. This information will be communicated by the Field-PM prior to conducting relevant sampling. The Field-PM will track corrective actions taken.

17.2. Post Sampling Event Reviews

The Field-PM will be responsible for post sampling event reviews. Any problems that are noted will be documented along with recommendations for correcting the problem. Post sampling event reviews will be conducted following each sampling event in order to ensure that all information is complete and any deviations from planned methodologies are documented. Post sampling event reviews will include field sampling activities and field measurement documentation in order to help ensure that all information is complete. The reports for each post sampling event will be used to identify areas that may be improved prior to the next sampling event.

17.3. Laboratory Data Reviews

The Field-PM will be responsible for reviewing the laboratory's data for completeness and accuracy. The data will also be checked to make sure that the appropriate methods were used and that all required QC data was provided with the sample analytical results. Any laboratory data that is discovered to be incorrect or missing will immediately be reported to the both the laboratory and Consultant-PM. The laboratory's QA manual details the procedures that will be followed by laboratory personnel to correct any invalid or missing data. The Consultant-PM has the authority to request re-testing if a review of any of the laboratory data is found to be invalid or if it would compromise the quality of the data and resulting conclusions from the proposed project.

18. Instrument/Equipment Testing, Inspection and Maintenance

18.1. Field Equipment

Field measurement equipment will be checked for operation in accordance with manufacturer's specifications. All equipment will be inspected for damage when first employed and again when returned from use. Maintenance logs will be kept and each applicable piece of equipment will have its own log that documents the dates and description of any problems, the action(s) taken to correct problem(s), maintenance procedures, system checks, follow-up maintenance dates, and the person responsible for maintaining the equipment.

18.2. Laboratory Equipment

All laboratories providing analytical support for chemical or biological analyses will have the appropriate facilities to store, prepare, and process samples. Moreover, appropriate instrumentation and staff to provide data of the required quality within the schedule required by the program are also required. Laboratory operations must include the following procedures:

- A program of scheduled maintenance of analytical balances, microscopes, laboratory equipment, and instrumentation.
- Routine checking of analytical balances using a set of standard reference weights (American Society of Testing and Materials (ASTM) Class 3, NIST Class S-1, or equivalents).
- Checking and recording the composition of fresh calibration standards against the previous lot, wherever possible. Acceptable comparisons are < 2% of the previous value.
- Recording all analytical data in bound (where possible) logbooks, with all entries in ink, or electronic format.
- Monitoring and documenting the temperatures of cold storage areas and freezer units once per week.
- Verifying the efficiency of fume hoods.
- Having a source of reagent water meeting ASTM Type I specifications (ASTM, 1984) available in sufficient quantity to support analytical operations. The conductivity of the reagent water will not exceed 18 megaohms at 25°C. Alternately, the resistivity of the reagent water will exceed 10 mmhos/cm.
- Labeling all containers used in the laboratory with date prepared, contents, initials of the individual who prepared the contents, and other information, as appropriate.
- Dating and safely storing all chemicals upon receipt. Proper disposal of chemicals when the expiration date has passed.
- Having QAPP, SOPs, analytical methods manuals, and safety plans readily available to staff.
- Having raw analytical data, such as chromatograms, accessible so that they are available upon request.

Laboratories will maintain appropriate equipment per the requirements of individual laboratory SOPs and will be able to provide information documenting their ability to conduct the analyses with the required level of data quality. Such information might include results from interlaboratory comparison studies, control charts and summary data of internal QA/QC checks, and results from certified reference material analyses.

19. Instrument/Equipment Calibration and Frequency

19.1. Field Measurements

Any equipment used should be visually inspected during mobilization to identify problems that would result in loss of data. As appropriate, equipment-specific SOPs should be consulted for equipment calibration.

19.2. Laboratory Analyses

19.2.1. In-house Analysis – XRF Screening

A portable XRF analyzer will be used as a screening tool to estimate the chlorine concentration in each caulk sample. Since caulk often contains in excess of 1% PCBs and detection limits of portable XRF may be in the ppm range, the portable XRF may be able to detect chlorine within caulk containing PCBs down to about 0.1%. The analysis will be performed on the field samples using a test stand. The analyzer will be calibrated for chlorine using plastic pellet European reference materials (EC680 and EC681) upon first use, and standardized each time the instrument is turned on and prior to any caulk Cl analysis. The standardization procedure will entail a calibration analysis of the materials provided/recommended with the XRF analyzer. Analyses will be conducted in duplicate on each sample and notes kept. The mean will be used for comparison to GC–MS results.

19.2.2. Contract Laboratory Analyses

The procedures for and frequency of calibration will vary depending on the chemical parameters being determined. Equipment is maintained and checked according to the standard procedures specified in each laboratory's instrument operation instruction manual.

Upon initiation of an analytical run, after each major equipment disruption, and whenever on-going calibration checks do not meet recommended DQOs (see Section 13), analytical systems will be calibrated with a full range of analytical standards. Immediately after this procedure, the initial calibration must be verified through the analysis of a standard obtained from a different source than the standards used to calibrate the instrumentation and prepared in an independent manner and ideally having certified concentrations of target analytes of a CRM or certified solution. Frequently, calibration standards are included as part of an analytical run, interspersed with actual samples.

Calibration curves will be established for each analyte and batch analysis from a calibration blank and a minimum of three analytical standards of increasing concentration, covering the range of expected sample concentrations. Only those data resulting from quantification within the demonstrated working calibration range may be reported by the laboratory.

The calibration standards will be prepared from reference materials available from the EPA repository, or from available commercial sources. The source, lot number, identification, and purity of each reference material will be recorded. Neat compounds will be prepared weight/volume using a calibrated analytical balance and Class A volumetric flasks. Reference solutions will be diluted using Class A volumetric glassware. Individual stock standards for each analyte will be prepared. Combination working standards will be prepared by volumetric dilution of the stock standards. The calibration standards will be stored at - 20° C. Newly prepared standards will be compared with existing standards prior to their use. All solvents

used will be commercially available, distilled in glass, and judged suitable for analysis of selected chemicals. Stock standards and intermediate standards are prepared on an annual basis and working standards are prepared every three months.

Sampling and analytical logbooks will be kept to record inspections, calibrations, standard identification numbers, the results of calibrations, and corrective action taken. Equipment logs will document instrument usage, maintenance, repair and performance checks. Daily calibration data will be stored with the raw sample data

20. Data Review, Verification, and Validation

Defining data review, verification, and validation procedures helps to ensure that Monitoring Plan data will be reviewed in an objective and consistent manner. Data review is the in-house examination to ensure that the data have been recorded, transmitted, and processed correctly. The Field-PM will be responsible for initial data review for field forms and field measurements; QA Officer will be responsible for doing so for data reported by analytical laboratories. This includes checking that all technical criteria have been met, documenting any problems that are observed and, if possible, ensuring that deficiencies noted in the data are corrected.

In-house examination of the data produced from the proposed Monitoring Program will be conducted to check for typical types of errors. This includes checking to make sure that the data have been recorded, transmitted, and processed correctly. The kinds of checks that will be made will include checking for data entry errors, transcription errors, transformation errors, calculation errors, and errors of data omission.

Data generated by Program activities will be reviewed against MQOs that were developed and documented in Section 13. This will ensure that the data will be of acceptable quality and that it will be SWAMP-comparable with respect to minimum expected MQOs.

QA/QC requirements were developed and documented in Sections 13.1 and 13.2, and the data will be checked against this information. Checks will include evaluation of field and laboratory duplicate results, field and laboratory blank data, matrix spike recovery data, and laboratory control sample data pertinent to each method and analytical data set. This will ensure that the data will be SWAMP-comparable with respect to quality assurance and quality control procedures.

Field data consists of all information obtained during sample collection and field measurements, including that documented in field log books and/or recording equipment, photographs, and chain of custody forms. Checks of field data will be made to ensure that it is complete, consistent, and meets the data management requirements that were developed and documented in Section 13.1.

Lab data consists of all information obtained during sample analysis. Initial review of laboratory data will be performed by the laboratory QA/QC Officer in accordance with the lab's internal data review procedures. However, upon receipt of laboratory data, the Lab-PM will perform independent checks to ensure that it is complete, consistent, and meets the data management requirements that were developed and documented in Section 13.2. This review will include evaluation of field and laboratory QC data and also making sure that the data are reported in compliance with procedures developed and documented in Section 7.

Data verification is the process of evaluating the completeness, correctness, and conformance / compliance of a specific data set against the method, procedural, or contractual specifications. The Lab-PM and Data Manager will conduct data verification, as described in Section 13 on Quality Control, in order to ensure that it is SWAMP-comparable with respect to completeness, correctness, and conformance with minimum requirements.

Data will be separated into three categories for use with making decisions based upon it. These categories are: (1) data that meets all acceptance requirements, (2) data that has been determined to be unacceptable for use, and (3) data that may be conditionally used and that is flagged as per US EPA specifications.

21. Verification and Validation Methods

Defining the methods for data verification and validation helps to ensure that Program data are evaluated objectively and consistently. For the proposed Program many of these methods have been described in Section 20. Additional information is provided below.

All data records for the Monitoring Program will be checked visually and will be recorded as checked by the checker's initials as well as with the dates on which the records were checked. Consultant Team staff will perform an independent re-check of at least 10% of these records as the validation methodology.

All of the laboratory's data will be checked as part of the verification methodology process. Each contract laboratory's Project Analyst will conduct reviews of all laboratory data for verification of their accuracy.

Any data that is discovered to be incorrect or missing during the verification or validation process will immediately be reported to the Consultant-PM. If errors involve laboratory data then this information will also be reported to the laboratory's QA Officer. Each laboratory's QA manual details the procedures that will be followed by laboratory personnel to correct any invalid or missing data. The laboratory's QA Officer will be responsible for reporting and correcting any errors that are found in the data during the verification and validation process.

If there are any data quality problems identified, the QA Officer will try to identify whether the problem is a result of project design issues, sampling issues, analytical methodology issues, or QA/QC issues (from laboratory or non-laboratory sources). If the source of the problems can be traced to one or more of these basic activities then the person or people in charge of the areas where the issues lie will be contacted and efforts will be made to immediately resolve the problem. If the issues are too broad or severe to be easily corrected then the appropriate people involved will be assembled to discuss and try to resolve the issue(s) as a group. The QA Officer has the final authority to resolve any issues that may be identified during the verification and validation process.

22. Reconciliation with User Requirements

The purpose of the Monitoring Program is to comply with Provisions of the MRP and provide data that can be used to identify sources of PCBs to urban runoff, and to evaluate management action effectiveness in removing POCs from urban runoff in the Bay Area. The objectives of the Monitoring Program are to provide the following outcomes:

1. Satisfy MRP Provision C.8.f. requirements for POC monitoring for source identification;

- 2. Satisfy MRP Provision C.12.e.ii requirements to evaluate PCBs presence in caulks/sealants used in storm drain or roadway infrastructure in public ROWs;
- 3. Report the range of PCB concentrations observed in 20 composite samples of caulk/sealant collected from structures installed or rehabilitated during the 1970's;
- 4. Satisfy MRP Provision C.8.f. requirements for POC monitoring for management action effectiveness;
- 5. Quantify the annual mass of mercury and PCBs captured in HDS Unit sumps during maintenance; and
- 6. Identify BSM mixtures for future field testing that provide the most effective mercury and PCBs treatment in laboratory column tests.

Information from field data reports (including field activities, post sampling events, and corrective actions), laboratory data reviews (including errors involving data entry, transcriptions, omissions, and calculations and laboratory audit reports), reviews of data versus MQOs, reviews against QA/QC requirements, data verification reports, data validation reports, independent data checking reports, and error handling reports will be used to determine whether or not the Monitoring Program's objectives have been met. Descriptions of the data will be made with no extrapolation to more general cases.

Data from all monitoring measurements will be summarized in tables. Additional data may also be represented graphically when it is deemed helpful for interpretation purposes.

The above evaluations will provide a comprehensive assessment of how well the Program meets its objectives. The final project reports will reconcile results with project MQOs.

23. References

California Regional Water Quality Control Board, San Francisco Bay Region. *Municipal Regional* Stormwater NPDES Permit Order R2-2015-0049 NPDES Permit No. CAS612008. November 19, 2015.

BASMAA. 2016. BASMAA Regional Monitoring Coalition Creek Status and Toxicity and Pesticide Monitoring Standard Operating Procedures. Prepared for Bay Area Stormwater Management Agencies Association. Version 3, March 2016.

BASMAA 2017a. The Evaluation of PCBs Presence in Public Roadway and Storm Drain Infrastructure Caulk and Sealants Study Design. Prepared by EOA Inc. and the San Francisco Estuary Institute (SFEI). June 2017.

BASMAA 2017b. POC Monitoring for Management Action Effectiveness Study Design. Prepared by the Office of Water Programs, Sacramento State, CA, EOA Inc., and the San Francisco Estuary Institute (SFEI). July 2017.

BASMAA, 2017c. Clean Watershed for a Clean Bay (CW4CB) Final Report. Prepared for Bay Area Stormwater Management Agencies Association. Prepared by Geosyntec and EOA, Inc., May 2017.

Klosterhaus, S. McKee, L.J. Yee, D., Kass, J.M., and Wong, A. 2014. Polychlorinated Biphenyls in the Exterior Caulk of San Francisco Bay Area Buildings, California, USA. Environment International 66, 38-43.

Surface Water Ambient Monitoring Program Quality Assurance Team, 2013. SWAMP Quality Assurance Project Plan. Prepared for the California State Water Quality Control Board. 2013.

24. Appendix A: Field Documentation

Caulk/Sealant Sampling	Field Data She	et	Composi	ite ID:		•	Contract	or:		Pg of Pgs
Sample ID:			Date (mi	m/dd/yyyy):			Personn	el:		Failure Reason
			ArrivalTi	me:	Departure	Time:				
Photos (Y / N)										
Photo Log Identifier			Land-	Use at the Sa	mple Locat	tion:	Commercial (pre-1980; post 1980)			Open Space
			Industrial (pre-1980; post-1980)				Resid	dential (pre 1980; pos	Other:	
Description of Structure: (Do not include a	ny information on the location of the structure)					Diagram of Structure (if needed) to identify where caulk/sealants were located in/on structure			
Structure Type:	Storm Drain Catch Basin	Roadway Surf	rface Sidewalk Curb/Gutter Bridge				Bridge			
	Other:									
Structure Material:	Concrete	ete Asphalt Other:								
Condition of Structure:	Good	Fair	Poor	Other:						
Year of Strucu	tre Construction		•							
	Year of Repair									
Description of Caulk or Sea	alant Sample Col	lected:								
		caulk between adjo	oing surfa	ces of same n	naterial (e.	g., conci	rete-cond	crete); Describe:		
	Caulk	caulk between adjoining surfaces of different types of material (e.g., concrete-asphalt); Describe:								
Application or Usage		Other:								
	Sealant	Crack Repair (descr	ibe):							
	bealant	Other:								
Color		•		-						
Texture	Hard/brittle	Soft/pliabl	e	Other:						
Condition	Good (in	itact/whole)	Poor (cr	umbling/disir	ntegrating)	Other	:			
Location	Surface	Between Join	nts	Submerged	Exposed	At stre	et level	Below street level	Other:	
Amount of Caulk/Sealant	Crack dimensior					Spacing	of expar	nsion joints		
observed on structure	Length&width o	f caulk bead sample	d:					Other:		
Samples Taken										
COLLECTION DEVICE:			Equiptment type used:				used:			
SITE/SAMPLING DESCRIPTI	ON AND COMME	ENTS:								

HDS Unit Sampling	DS Unit Sampling Field Data Sheet (Sediment Chemistry)						Contractor:				Pg c	of Pgs
City:			Date (mm/dd/yyyy):		1	/	*Contractor:					
HDS Catchment ID:			ArrivalTime:		DepartureTir	ne:	*SampleTime	e (1st sample):			Failure Reas	on
			Personnel:									
Photos (Y / N)			*GPS/DGPS	Lat (dd	l.ddddd)	Long (do	d.dddd)	Add	ress, Locatio	n, and Ske	etches (if nee	ded)
Photo Log Identifier			Target (if known):									
			*Actual:									
			GPS Device:									
Estima	ate of Volu	me of Sedime	ent in the HDS unit s	ump prior	to cleanout:							
Estimate of Volume of	Sediment	REMOVED fro	m the HDS unit sum	np during tl	ne cleanout:							
Env. Conditions					WIND DIRECTION (from):	N ₩ 4∯ ►E S						
SITE ODOR:	None,Sulfi	des,Sewage,Pe	etroleum,Smoke,Other		(monij).							
SKY CODE:	Clear, Part	ly Cloudy, Over	cast, Fog, Smoky, Ha	zy								
PRECIP:	None, Fog	, Drizzle, Rain										
PRECIP (last 24 hrs):	Unknow n,	<1", >1", None										
SOILODOR:	None, Sulf	ides, Sew age,	Petroleum, Mixed, Oth	er								
SOILCOLOR:	Colorless,	Green, Yellow,	Brown									
SOILCOMPOSITION:	Silt/Clay, S	and, Gravel, Co	obble, Mixed, Debris									
SOILPOSITION	Submerge	d, Exposed										
Samples Taken (3	digit ID n	os. of conta	iners filled)		Field Dup at Site? YES / NO: (create separate datasheet for FDs, with unique IDs (i.e., blind samples)							⇒s)
COLLECTION DE	VICE:	Equiptment t	ype used: Scoop (SS	/ PC / PE), C	ore (SS / PC /	PE), Grab (V	an Veen / Ecl	kman / Petite P	onar), Broom	(nylon, na	atural fiber)	
Sample ID (City- Catchment ID-Sample	Depth	Collec (cm)	Composite / Gra	b (C / G)	Grain Size	PCBs	Hg	Bulk Density	тос	OTHER		
SITE/SAMPLING DESCRIP	TION AND C	OMMENTS:			•		9	•	a			

Stormwater	nwater Field Data Sheet (Water Chemistry)							Entered in d-base (initial/date) Pg of Pgs						
*Station Code	:			*Date (mm/do	d/yyyy):	1	/			*PurposeFail	ure:	*Agency:		
Personnel:				ArrivalTime:		DepartureTir	me:					*Protocol:		
				*GPS/DGPS	Lat (dd	.ddddd)	Long (dd	ld.dddd)				544		č
GPS Device:				Target:			-		OCCUPA NO	N METHOD: V	vaik-in Bridg	je R∕V		_ Other
Datum: NAD83		Accuracy(ft/m):	*Actual:			-		Sampling	Location (e.g	., gutter at SV	N corner of	10th Str	eet)
Habitat Obse	ervations (CollectionN	lethod = l	Habitat_ge	neric)	WADEABILITY:	BEAUFORT							
SITE OI	DOR:	None,Sulfides	,Sew age,Pe	troleum,Smok	e,Other	Y/N/Unk	SCALE (see attachment)							
SKY CO	ODE:	Clear, Partly C	Cloudy, Over	cast, Fog, Sm	oky, Hazy	WIND DIRECTION	N ₩ 4 ⊕►E	,	B & LB assigne	•				
OTHER PR	OTHER PRESENCE: Vascular, Nonvascular		vascular,Oily	ySheen,Foam	,Trash,Other_) ► S		downstream; RENAME to StationCode_yyyy_mm_dd_uniquecode):		1: (RB / LB /	BB / US / D	S / ##)	
DOMINANT SI	UBSTRATE:	Bedrock, Con	crete, Cobble	e, Boulder, Gr	avel, Sand, M	/ud, Unk, Oth	er							
WATERCL	_ARITY:	Clear (see bot	ttom), Cloudy	/ (>4" vis), Mu	urky (<4" vis)	PRECIP	ITATION:	None, Fog, D	rizzle, Rain, S	Snow	2: (RB / LB /	BB/US/D	S / ##)	
WATER	ODOR:	None, Sulfides	s, Sew age, I	Petroleum, Mix	ked, Other	PRECIP	ITATION (last	24 hrs):	Unknow n, <	1", >1", None				
WATERC	OLOR:	Colorless, Gre	een, Yellow ,	Brow n			_				3: (RB / LB /	BB/US/D	S / ##)	
OVERLAND	RUNOFF (La	st 24 hrs): r	none, light, r	moderate / he	avy, unknow	n								
OBSERVE	D FLOW:	NA, Dry Wat	erbody Bed,	No Obs Flo	w, Isolated	Pool, Trickle	e (<0.1cfs), ().1-1cfs, 1-5	icfs, 5-20cf	s, 20-50cfs,	50-200cfs,	>200cfs		
Field Sampl	les (Recor	d Time Sam	ple Colle	cted)										
Carboy ID #	Start Sa	mple Time	End Sam	nple Time		be (Grab=G; ited = I)	Collection Depth (m)	Field Dup	(Yes/No)		e (by hand, by g; Kemmer; P			
COMMENTS:	1				4		<u>[</u>	8		8				

Stormwater Influent Samples – Office of Water Programs

Sample Receiving						
Date (mm/dd/yy):		Time (24 hr):			Team Member's Initial:	
Carboy	Temperatur e	рН	Obs	ervati	ons	
1						
	T		r			
2						
3						
4						
	•					
5						
6						
7						

Stormwater Column Tests – Office of Water Programs

Sampling Run			
Date (mm/dd/yy):	Time (24 hr) :	Team Member's Initials:	Column ID:

During Test - Timed Measurements

Time	Water Depth	Media Condition	Other Observations

Grab Sample - Beginning of Run

Time	Water Depth	Turbidity (NTU)	Temp	рΗ	Other Observations

Grab Sample - Middle of Run

Time	Water Depth	Turbidity (NTU)	Тетр	рΗ	Other Observations

Grab Sample - End of

Run

Time	Water Depth Turbidity (NT		Temp	рН	Other Observations		

Grab Sample -

Mercury

Time	Water Depth	Turbidity (NTU)	Temp	рΗ	Other Observations

25. Appendix B: Laboratory Standard Operating Procedures (SOPs)

APPENDIX C: QA SUMMARY REPORTS

QA Summary Report for ALS Analysis of PCBs in Sediment and Tissue HDS samples for the Pollutants of Concern Monitoring for Source Identification and Management Action Effectiveness Study, 2017-2018

Prepared By Don Yee, SFEI QA Officer, for BASMAA Regional Monitoring Coalition

November 12, 2018

QA Iss<u>ues for Project Manager to Review</u> None.

Reporting Issues for Lab to Review None.

Hold time review (especially desired by stormwater programs) One sample was analyzed ~1week past the 1 year recommended hold times for PCBs, and flagged VH, but it is unlikely to affect results severely.

QA Review

Completeness

Data were reported for 8 field samples, 3 as sediment and 5 as tissue, analyzed for the RMP 40 PCBs with 38 unique analytes (including coeluters). 3 lab blanks, and 5 LCS samples were also reported, for the 38 target analyte individual congeners or coeluter groups.

Percent usable (non-reject) field data

98% of the data were reportable, with 2% of the data (one analyte) rejected for poor recovery issues.

Overall acceptability

Overall the data were acceptable, with one sample flagged for hold time about 1 week too long, and one analyte (PCB 183/185) with poor LCS recovery. Several other PCB congeners/groups were flagged for recovery deviations >35%, or for detection in blank samples, but none of them were severe enough to be censored.

MDLs sensitivity

Overall about 5% of the analyte results were non-detect, with another 3% flagged as estimated due to being under the reporting limit.

QB averages (procedural, field blank)

8 analytes/coeluting groups were detected in blanks. Field sample concentrations were always at least 3x higher, so no results were censored.

Average precision from replicate field sample

Precision was calculated using the LCS replicates, with only PCB 183/185 showing RSDs averaging 53%, which was flagged but not censored.

Accuracy (using a variety of SRMs or Matrix spike QRECs)

However, PCB 183/185 recovery averaged 75% error, so was censored for being over 2x outside the target range (>70%, with a target of 35% error). PCB 158 and 105 were also flagged for marginal recovery but not censored.

Comparison of dissolved and total phases Not applicable.

Summary paragraph for report:

The HDS sediment/tissue dataset included 8 field samples, with 3 blanks, and 5 LCSs (some in duplicate), meeting the minimum number of QC samples required, reported for the RMP 40 PCB analytes (with their coeluters, yielding 38 unique analytes). All but 1 Sample was analyzed within the recommended hold time of 1 year (the last ~1 week late). 8 of the analytes were detected in blanks, but field sample concentrations were over 3x higher, so no results were censored. Two of the analytes had recovery with average >35% deviation from target values in the LCS, and one (PCB 183/185) had average error >70%, so was censored. PCB 183/185 was also flagged for poor precision (RSD 53%), but that analyte was already rejected for poor recovery, so the precision flag is largely moot.

QA Summary Report for ALS Analysis of Hg, TOC, TS and Density in HDS Sediment and Tissue samples for the Pollutants of Concern Monitoring for Source Identification and Management Action Effectiveness Study, 2017-2018

Prepared By Don Yee, SFEI QA Officer, for BASMAA Regional Monitoring Coalition

November 14, 2018

QA Issues for Project Manager to Review None.

Reporting Issues for Lab to Review

Review with lab formatting convention for lab reps - increment lab replicate not replicate if using CEDEN conventions.

Hold time review (especially desired by stormwater programs)

Nearly all samples were past the 1 week QAPP listed hold times for density and total solids, and flagged VH. However, so long as initial masses were recorded well, it is unlikely to affect results severely.

QA Review

Completeness

Eight field samples were reported for density and Hg as 3 sediment and 5 tissue samples. TOC was reported for 7 samples, with 2 field replicates, and no result for SJC-604. Total solids was reported twice for all the sediment samples and once each for the tissue ones, and total volatile solids was reported for 4 of the tissue samples (skipping SJ-604). MS/D pairs were reported for 2 sites for TOC, and 2 for Hg. 9 lab blanks were reported for mercury, and 6 for TOC, meeting the 1 per batch requirement. 3 LCSs were also reported for TOC.

Percent usable (non-reject) field data

All of the data were reportable, with none rejected/censored.

Overall acceptability

Overall the data were acceptable, with all but 1 density and total solids samples flagged for hold time beyond the 1 week listed in the BASMAA POC QAPP. If initial sample weights are recorded well though, dessication in storage or other artifacts of extended storage can be corrected for/will be minor.

MDLs sensitivity

No results were non-detect.

QB averages (procedural, field blank)

Only Hg was occasionally detected in the blanks, but concentrations averaged <MDL so results were not flagged.

Average precision from replicate field sample

Precision on the field sample replicates for TOC and total solids, averaged <5% RPD. RPD on the MS/Ds for mercury averaged <10%, well within the target 25%, so no precision flags were added.

Accuracy (using a variety of SRMs or Matrix spike QRECs)

Recovery errors on MS/Ds averaged 2% for TOC and 15% for Hg, well within their respective $\pm 20\%$ and $\pm 25\%$ QAPP targets, so no recovery flags were added.

Comparison of dissolved and total phases Not applicable.

Summary paragraph for report:

The HDS sediment/tissue dataset included 8 field samples reported for Hg, total solids, and density, but only 7 for TOC and 4 tissue ones for total volatile solids (missing SJC-604). MS/D pairs were reported for 2 sites for TOC, and Hg. 9 lab blanks were reported for mercury, and 6 for TOC, meeting the 1 per batch requirement. 3 LCSs were also reported for TOC. Nearly all density and total solids were analyzed past the 1 week QAPP listed hold times, and flagged VH, but so long as initial masses were recorded well, it is unlikely to affect results severely. Only Hg was occasionally detected in the blanks, but averaged <MDL so results were not flagged. Precision (<25% RPD) and recovery targets ($\pm 20\%$ for conventional analytes and $\pm 25\%$ for Hg) were met for all QC samples, so no other flags were added.

QA Summary Report for ALS Analysis of Grain Size in Sediment HDS samples for the Pollutants of Concern Monitoring for Source Identification and Management Action Effectiveness Study, 2017-2018

Prepared By Don Yee, SFEI QA Officer, for BASMAA Regional Monitoring Coalition

November 19, 2018

QA Issues for Project Manager to Review

ALS Lab reported all grainsize by their usual convention relative to dw estimated from separate moisture measurement (rather than summed fraction weights of processed sample), yielding sums of fractions not 100%. Results were recalculated to normalize to a sum of 100%. The smaller size fractions approximately match the Wentworth cutoffs (powers of 2 below 31.3, 15.6, etc), but the next size fraction up is 75um rather than 62.5, and the coarser fractions are listed just by analytename (e.g. Sand, Very Fine) without any indication of size range, which could differ between Wentworth and ASTM scales.

Reporting Issues for Lab to Review

Review with lab formatting convention for lab reps - increment lab replicate not replicate if using CEDEN conventions.

Hold time review (especially desired by stormwater programs) All samples were analyzed within the project QAPP specified 28 days.

<u>QA Review</u> Completeness Three field samples were reported analyzed in replicate for 14 grainsize fractions.

Percent usable (non-reject) field data

All of the data were reportable, with none rejected/censored.

Overall acceptability

Overall the data were acceptable. Many fractions are only a few percent of total mass, so comparing replicates based on RPD (relative percent difference) of a small percentage to start with is inappropriate. Replicates are thus compared on raw differences in reported percentage per fraction. Percent difference in replicates <5% for all fractions, so no results were qualified...

MDLs sensitivity No results were non-detect.

QB averages (procedural, field blank) No blanks were run, which is common for grainsize analysis.

Average precision from replicate field sample

Differences on the sample replicates for grainsize were all nominally <5%. so no precision flags were added. Many fractions are only a few percent of total mass, so comparing replicates based on RPD (relative percent difference) of a small percentage to start with would be inappropriate.

Accuracy (using a variety of SRMs or Matrix spike QRECs) No recovery samples were run, which is common for grainsize analysis.

Comparison of dissolved and total phases Not applicable.

Comparison to previous years Not applicable

Ratio Checking Summary Not applicable

Sums Summary

All grainsize fractions summed to 100% for each sample and within each lab replicate analysis (after normalization).

Summary paragraph for report:

The HDS sediment dataset included 3 field samples reported for grainsize, all analyzed in replicate. No blanks or recovery samples were reported, which is common for grainsize analysis. Fourteen size fractions were reported, with results normalized from the raw lab reported percentages to yield sums of 100% for each analysis. Nominal percent differences in lab replicates for any given sample were always <5%, so no qualifier flags were added.

APPENDIX D: PCBs CONGENERS CONCENTRATION DATA

						РСВ
HDS Site			Collection			Concentration
ID	Station Code	Sample Date	Time	Matrix	PCB Congener(s)	(ng/kg dw)
					PCB 008	566
					PCB 018/30	1,528
					PCB 020/28	3,736
					PCB 021/33	2,043
					PCB 031	2,791
					PCB 044/47/65	2,994
					PCB 049/69	1,902
					PCB 052	3,485
					PCB 056	1,681
					PCB 060	896
					PCB 066	3,472
					PCB 070/61/74/76	4,337
					PCB 083/99	963
					PCB 086/87/97/109/119/125	1,178
					PCB 090/101/113	1,552
			9:10 AM		PCB 093/95/100	1,411
					PCB 105	632
				Sediment + Organic	PCB 110/115	2,006
1	SUN-MatCDS1	3/8/2018			PCB 118	1,190
1	JOIN-Matebor	5/6/2010		Debris	PCB 128/166	323
				Debris	PCB 129/138/163	2,883
					PCB 132	644
					PCB 135/151/154	767
					PCB 141	353
					PCB 147/149	1,564
					PCB 153/168	1,785
					PCB 156/157	249
					PCB 158	190
					PCB 170	442
					PCB 174	663
					PCB 177	340
					PCB 180/193	1,583
					PCB 183/185	554
					PCB 187	1,350
					PCB 194	491
					PCB 195	172
					PCB 201	156
					PCB 203	663

						РСВ
HDS Site			Collection			Concentration
ID	Station Code	Sample Date	Time	Matrix	PCB Congener(s)	(ng/kg dw)
		•			PCB 008	359
					PCB 018/30	583
					PCB 020/28	863
					PCB 021/33	249
					PCB 031	842
					PCB 044/47/65	1,331
					PCB 049/69	1,072
					PCB 052	2,662
					PCB 056	240
					PCB 060	142
					PCB 066	635
					PCB 070/61/74/76	1,043
					PCB 083/99	806
					PCB 086/87/97/109/119/125	971
					PCB 090/101/113	1,482
					PCB 093/95/100	1,353
					PCB 105	530
				Sediment + Organic Debris	PCB 110/115	1,691
2	SUN-MatCDS2	3/8/2018	9:45 AM		PCB 118	1,151
-	Solv Mateboz	3, 0, 2010	5.45740		PCB 128/166	396
				Debris	PCB 129/138/163	3,094
					PCB 132	748
					PCB 135/151/154	928
					PCB 141	417
					PCB 147/149	2,072
					PCB 153/168	2,266
					PCB 156/157	224
					PCB 158	201
					PCB 170	770
					PCB 174	1,410
					PCB 177	641
					PCB 180/193	3,683
					PCB 183/185	1,281
					PCB 187	3,007
					PCB 194	1,806
					PCB 195	528
					PCB 201	415
					PCB 203	2,000

						РСВ
HDS Site			Collection			Concentration
ID	Station Code	Sample Date	Time	Matrix	PCB Congener(s)	(ng/kg dw)
		·			PCB 008	394
					PCB 018/30	710
					PCB 020/28	821
					PCB 021/33	161
					PCB 031	752
					PCB 044/47/65	1,500
					PCB 049/69	900
					PCB 052	2,480
					PCB 056	548
					PCB 060	ND
					PCB 066	26
					PCB 070/61/74/76	2,500
					PCB 083/99	3,060
					PCB 086/87/97/109/119/125	4,550
					PCB 090/101/113	5,890
					PCB 093/95/100	4,150
					PCB 105	3,830
					PCB 110/115	8,890
3	OAK-5-G	10/16/2017	10:20 AM	sediment	PCB 118	8,680
5	OAK-J-C	10/10/2017	10.20 AW	seament	PCB 128/166	2,380
					PCB 129/138/163	13,000
					PCB 132	3,190
					PCB 135/151/154	2,610
					PCB 141	1,630
					PCB 147/149	4,940
					PCB 153/168	7,080
					PCB 156/157	1,720
					PCB 158	ND
					PCB 170	80
					PCB 174	1,330
					PCB 177	ND
					PCB 180/193	ND
					PCB 183/185	883
					PCB 187	1,560
					PCB 194	553
					PCB 195	211
					PCB 201	89
					PCB 203	535

						РСВ
HDS Site			Collection			Concentration
ID	Station Code	Sample Date	Time	Matrix	PCB Congener(s)	(ng/kg dw)
					PCB 008	ND
					PCB 018/30	1,150
					PCB 020/28	2,010
					PCB 021/33	1,070
					PCB 031	1,660
					PCB 044/47/65	5,590
					PCB 049/69	2,900
					PCB 052	9,710
					PCB 056	2,810
					PCB 060	739
					PCB 066	1,940
					PCB 070/61/74/76	12,300
					PCB 083/99	13,500
					PCB 086/87/97/109/119/125	22,200
					PCB 090/101/113	28,000
					PCB 093/95/100	21,200
					PCB 105	13,700
					PCB 110/115	45,800
4	OAK-5-D	2/2/2018	10:55 AM	sediment	PCB 118	25,600
-	0/11/0/0	2,2,2010	10.55744	scument	PCB 128/166	9,820
					PCB 129/138/163	54,500
					PCB 132	17,900
					PCB 135/151/154	16,000
					PCB 141	7,620
					PCB 147/149	28,600
					PCB 153/168	30,700
					PCB 156/157	5,760
					PCB 158	ND
					PCB 170	353
					PCB 174	ND
					PCB 177	6,470
					PCB 180/193	ND
					PCB 183/185	4,280
					PCB 187	7,300
					PCB 194	2,720
					PCB 195	1,060
					PCB 201	520
					PCB 203	2,740

						РСВ
HDS Site			Collection			Concentration
ID	Station Code	Sample Date	Time	Matrix	PCB Congener(s)	(ng/kg dw)
					PCB 008	139
					PCB 018/30	193
					PCB 020/28	321
					PCB 021/33	63
					PCB 031	335
					PCB 044/47/65	604
					PCB 049/69	513
					PCB 052	1,182
					PCB 056	98
					PCB 060	56
					PCB 066	287
					PCB 070/61/74/76	488
					PCB 083/99	431
					PCB 086/87/97/109/119/125	490
					PCB 090/101/113	682
					PCB 093/95/100	651
					PCB 105	307
				Sediment +	PCB 110/115	911
5	PAL-Meadow	10/25/2017	10:50 AM	Organic	PCB 118	656
5	in E meduow	10,20,201,	10.00 / 101	Debris	PCB 128/166	ND
				Debris	PCB 129/138/163	1,620
					PCB 132	339
					PCB 135/151/154	355
					PCB 141	168
					PCB 147/149	755
					PCB 153/168	953
					PCB 156/157	140
					PCB 158	113
					PCB 170	225
					PCB 174	264
					PCB 177	141
					PCB 180/193	672
					PCB 183/185	219
					PCB 187	516
					PCB 194	227
					PCB 195	56
					PCB 201	52
					PCB 203	214

						PCB
HDS Site			Collection			Concentration
ID	Station Code	Sample Date	Time	Matrix	PCB Congener(s)	(ng/kg dw)
					PCB 008	4,335
					PCB 018/30	5,822
					PCB 020/28	11,881
					PCB 021/33	3,990
					PCB 031	10,761
					PCB 044/47/65	12,893
					PCB 049/69	9,787
					PCB 052	18,317
					PCB 056	2,812
					PCB 060	1,726
					PCB 066	7,505
					PCB 070/61/74/76	12,475
					PCB 083/99	ND
					PCB 086/87/97/109/119/125	11,777
					PCB 090/101/113	15,545
					PCB 093/95/100	12,673
					PCB 105	7,492
				Sediment +	PCB 110/115	18,274
6	SJC-604	10/5/2017	10:35 AM	Organic	PCB 118	16,142
U		10/3/2017	10.55740	Debris	PCB 128/166	2,985
				Debris	PCB 129/138/163	27,208
					PCB 132	6,254
					PCB 135/151/154	7,046
					PCB 141	3,442
					PCB 147/149	15,838
					PCB 153/168	16,345
					PCB 156/157	2,366
					PCB 158	1,878
					PCB 170	3,446
					PCB 174	4,244
					PCB 177	2,518
					PCB 180/193	7,238
					PCB 183/185	3,149
					PCB 187	5,990
					PCB 194	2,327
					PCB 195	779
					PCB 201	284
					PCB 203	1,777

						РСВ
HDS Site			Collection			Concentration
ID	Station Code	Sample Date	Time	Matrix	PCB Congener(s)	(ng/kg dw)
					PCB 008	395
					PCB 018/30	401
					PCB 020/28	942
					PCB 021/33	149
					PCB 031	853
					PCB 044/47/65	1,410
					PCB 049/69	1,104
					PCB 052	2,578
					PCB 056	151
					PCB 060	78
					PCB 066	577
					PCB 070/61/74/76	989
					PCB 083/99	884
					PCB 086/87/97/109/119/125	898
					PCB 090/101/113	1,867
					PCB 093/95/100	1,458
					PCB 105	513
				Sediment +	PCB 110/115	1,795
7	SUN-27A	3/8/2018	11:15 AM	Organic	PCB 118	1,149
	5011 2111	5/6/2010	11110 / 1111	Debris	PCB 128/166	517
				Debris	PCB 129/138/163	6,614
					PCB 132	1,434
					PCB 135/151/154	1,843
					PCB 141	970
					PCB 147/149	4,229
					PCB 153/168	4,807
					PCB 156/157	317
					PCB 158	445
					PCB 170	2,024
					PCB 174	2,675
					PCB 177	1,470
					PCB 180/193	5,952
					PCB 183/185	1,952
					PCB 187	3,494
					PCB 194	1,102
					PCB 195	458
					PCB 201	213
					PCB 203	951

						РСВ
HDS Site			Collection			Concentration
ID	Station Code	Sample Date	Time	Matrix	PCB Congener(s)	(ng/kg dw)
					PCB 008	24
					PCB 018/30	36
					PCB 020/28	93
					PCB 021/33	42
					PCB 031	69
					PCB 044/47/65	175
					PCB 049/69	92
					PCB 052	295
					PCB 056	77
					PCB 060	42
					PCB 066	162
					PCB 070/61/74/76	444
					PCB 083/99	455
					PCB 086/87/97/109/119/125	683
					PCB 090/101/113	943
					PCB 093/95/100	729
					PCB 105	352
					PCB 110/115	1,270
8	SJC-612-01	9/13/2017	1:53 PM	sediment	PCB 118	879
0	550-012-01	5/15/2017	1.55 FIVI	seument	PCB 128/166	204
					PCB 129/138/163	1,330
					PCB 132	410
					PCB 135/151/154	571
					PCB 141	217
					PCB 147/149	60
					PCB 153/168	843
					PCB 156/157	133
					PCB 158	125
					PCB 170	14
					PCB 174	ND
					PCB 177	328
					PCB 180/193	ND
					PCB 183/185	211
					PCB 187	432
					PCB 194	186
					PCB 195	68
					PCB 201	33
					PCB 203	179

Appendix F

RMP STLS POC Reconnaissance Monitoring Progress Report, Water Years 2015 - 2018

Appendix G

PCBs from Electrical Utilities in San Francisco Bay Area Watersheds, Stressor/Source Identification (SSID) Project Work Plan

PCBs from Electrical Utilities in San Francisco Bay Area Watersheds Stressor/Source Identification (SSID)

Prepared in support of provision C.8.e.iii of NPDES Permit # CAS612008

Project Work Plan

Bay Area Stormwater Management Agencies Association

Prepared for: Bay Area Stormwater Management Agencies Association (BASMAA)

Prepared by:

EOA, Inc. 1410 Jackson St. Oakland, CA 94612

FINAL March 2019

Table of Contents

Table	of Contents	i
List of	f Tables	ii
List of	f Figures	ii
1.0	Introduction	1
1.1	Overview of SSID Project Requirements	1
1.2	SSID Work Plan Organization	2
2.0	Problem Definition, Study Objectives, and Regulatory Background	
2.1	Problem Definition	
2.2	SSID Project Objectives	
2.3	Management Questions	5
2.4	Regulatory Context of PCBs WQOs	5
3.0	Study Area, Existing Data, and Potential Causes of Water Quality Problem	6
3.1	Study Area	6
3.2	Existing Data	8
3.	.2.1 Regulatory Controls on PCBs in Electrical Utility Equipment	8
3.	.2.2 PCBs Remaining in Electrical Utility Equipment	8
3.	.2.3 Estimated Loadings of PCBs from Electrical Utility Equipment to MS4s	10
3.	.2.4 Ongoing Release of PCBs from Electrical Utility Equipment	10
3.	.2.5 Cleanup Methods and Actions Taken in Response to OFEE Releases	15
3.3	Potential Causes of Water Quality Problem	16
4.0	SSID Investigation Approach and Schedule	17
4.1	Task 1: Desktop Analysis	17
4.2	Task 2: Develop Source Control Framework	18
4.3 con	Task 3: Develop methodologies to account for PCB load reductions from new atrol measures	
4.4	Task 3: Develop SSID Project Report	19
4.5		
5.0	References	21

List of Tables

Table 1	Examples of Information Reported on Releases of PCBs to Bay Area Storm Dra	ins
	and Creeks.	13
Table 2	Tasks, Anticipated Outcomes, and Schedule	20

List of Figures

Figure 1	Oil-filled electric equipment spills reported to the California Office of Emergency
	Services (Cal OES) and/or identified through internal Pacific Gas & Electric (PG&E)
	reports between 1993 and 201711
Figure 2	Total reported gallons of oil released each year (1994 – 2017) from spills from PG&E
	electrical utility equipment in the Bay Area12
Figure 3	PCB Concentration data reported for releases from PG&E electrical equipment
•	between 1993 and 2016

1.0 Introduction

This work plan supports the requirement to implement a Stressor/Source Identification (SSID) Project as required by Provision C.8.e.iii of the San Francisco Bay (Bay) Region Municipal Regional Stormwater National Pollutant Discharge Elimination System (NPDES) Stormwater Permit (MRP) (Order No. R2-2015-0049, SFRWQCB 2015). Per MRP Provision C.8.e.ii, the Bay Area Stormwater Management Agencies Association (BASMAA) Regional Monitoring Coalition (RMC)¹ members are working to initiate eight SSID projects during the five-year term of the MRP (i.e., 2016 - 2020). The RMC programs have agreed that seven SSID projects will be conducted to address local needs (for Santa Clara, Alameda, San Mateo, Contra Costa, Fairfield/Suisun and Vallejo counties), and one project (this project) will be conducted regionally (on behalf of all RMC members). SSID projects follow-up on monitoring conducted in compliance with MRP Provision C.8 (or monitoring conducted through other programs) with results that exceed trigger thresholds identified in the MRP. Trigger thresholds are not necessarily equivalent to Water Quality Objectives (WQOs) established in the San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan) (SFRWQCB, 2017) by the San Francisco Bay Regional Water Quality Control Board (SF Bay Water Board); however, sites where triggers are exceeded may indicate potential impacts to aquatic life or other beneficial uses.

This SSID work plan describes the steps that will be taken to investigate sources of polychlorinated biphenyls (PCBs) from electrical utility equipment in watersheds draining to the San Francisco Bay Basin. BASMAA will implement the work plan as a regional project. BASMAA retained EOA, Inc., of Oakland, CA to develop this work plan and implement the SSID project under the direction of a BASMAA Project Management Team (PMT). All work on this project is supported by funding provided by BASMAA.

1.1 Overview of SSID Project Requirements

SSID projects focus on taking action(s) to identify and reduce sources of pollutants, alleviate stressors, and address water quality problems. MRP Provision C.8.e.iii requires SSID projects to be conducted in a stepwise process, as described below.

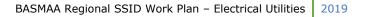
Step 1: Develop a work plan that includes the following elements:

- Define the water quality problem (e.g., magnitude, temporal extent, and geographic extent) to the extent known;
- Describe the SSID project objectives, including the management context within which the results of the investigation will be used;
- Consider the problem within a watershed context and examine multiple types of related indicators, where possible (e.g., basic water quality data and biological assessment results);

¹ The BASMAA RMC is a consortium of San Francisco Bay Area municipal stormwater programs that joined together to coordinate and oversee water quality monitoring and several other requirements of the MRP. Participating BASMAA members include the Alameda Countywide Clean Water Program (ACCWP), Contra Costa Clean Water Program (CCCWP), Fairfield-Suisun Urban Runoff Management Program (FSURMP), San Mateo Countywide Water Pollution Prevention Program (SMCWPPP), Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP), and City of Vallejo and Vallejo Flood and Wastewater District (formerly Vallejo Sanitation and Flood Control District).

- List potential causes of the problem (e.g., biological stressors, pollutant sources, and physical stressors);
- Establish a schedule for investigating the cause(s) of the trigger stressor/source which begins upon completion of the work plan. Investigations may include evaluation of existing data, desktop analyses of land uses and management actions, and/or collection of new data; and
- Establish the methods and plan for conducting a site-specific study (or non-site specific if the problem is widespread) in a stepwise process to identify and isolate the cause(s) of the trigger stressor/source.

Step 2: Conduct SSID investigations according to the schedule in the work plan and report on the status of the SSID investigation annually in the Urban Creeks Monitoring Report (UCMR) that is submitted to the SF Bay Water Board on March 31 of each year.


Step 3: Follow-up actions:

- If it is determined that discharges to the municipal separate storm sewer system (MS4) contribute to an exceedance of a water quality standard (WQS) or an exceedance of a trigger threshold such that the water body's beneficial uses are not supported, submit a report in the UCMR that describes Best Management Practices (BMPs) that are currently being implemented and additional BMPs that will be implemented to prevent or reduce the discharge of pollutants that are causing or contributing to the exceedance of WQS. The report must include an implementation schedule.
- If it is determined that MS4 discharges are not contributing to an exceedance of a WQS, the SSID project may end. The Executive Officer must concur in writing before an SSID project is determined to be completed.
- If the SSID investigation is inconclusive (e.g., the trigger threshold exceedance is episodic or reasonable investigations do not reveal a stressor/source), the Permittee may request that the Executive Officer consider the SSID project complete.

1.2 SSID Work Plan Organization

This work plan fulfills **Step 1** of the SSID process described above in Section 1.1. It describes the steps that will be conducted to investigate electrical utility equipment as a source of PCBs to the MS4 in watersheds draining to the Bay. The remainder of this work plan is organized according to the required elements described in Step 1:

- Section 2.0 Problem Definition, Study Objectives, and Regulatory Background
- Section 3.0 Study Area, Existing Data, and Potential Causes of Water Quality Problem
- Section 4.0 SSID Investigation Approach and Schedule
- Section 5.0 References

2.0 Problem Definition, Study Objectives, and Regulatory Background

2.1 Problem Definition

Fish tissue monitoring in the Bay has revealed the bioaccumulation of PCBs in Bay sportfish at levels thought to pose a health risk to people consuming these fish. As a result, in 1994, the state of California issued a sport fish consumption advisory cautioning people to limit their consumption of fish caught in the Bay. The advisory led to the Bay being designated as an impaired water body on the Clean Water Act (CWA) "Section 303(d) list" due to elevated levels of PCBs. In response, in 2008, the SF Bay Water Board adopted a Total Maximum Daily Load (TMDL) water quality restoration program targeting PCBs in the Bay². The general goals of the TMDL are to identify sources of PCBs to the Bay, implement actions to control the sources, restore water quality, and protect beneficial uses. The PCBs TMDL estimates baseline loads to the Bay from various source categories. The largest source category, at 20 kilograms (kg) per vear. was estimated to be stormwater runoff. This category includes all sources to small tributaries draining to the Bay. The PCBs TMDL indicates that a 90% reduction in PCBs from stormwater runoff to the Bay is needed to achieve water quality standards and restore beneficial uses. The TMDL states that the wasteload allocation for stormwater runoff of 2 kg per year shall be achieved within 20 years (i.e., by March 2030). The PCBs TMDL is being implemented through NPDES permits to discharge stormwater issued to municipalities and industrial facilities in the Bay Area (e.g. the MRP).

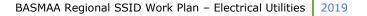
This SSID project was triggered by monitoring conducted over the past 15+ years by BASMAA members that demonstrates municipal stormwater runoff is a source of PCBs to the Bay. PCBs are a group of persistent organic pollutants that were historically used in many applications, including electrical utility equipment and caulks and sealants used in building materials. However, the greatest use by far was in electrical equipment such as transformers and capacitors (McKee et al. 2006). Existing electrical utility equipment, which is often located in public rights-of-way (ROWs), may still contain PCBs that can be released to the MS4 when spills and leaks occur. Due to past leaks or spills of PCBs oil from electrical equipment, properties owned and operated by electrical utilities may potentially have elevated concentrations of PCBs in surrounding surface soils that can be released to the MS4. Because the cumulative releases of PCBs-laden soils from these properties, and spills or leaks of PCBs oils from electrical equipment to MS4s across the Bay Area may occur at levels that exceed the 2 kg per year TMDL waste load allocation (see Section 3.2.3), this potential source of PCBs may limit the ability of municipalities to meet the goals of the PCBs TMDL for the Bay. Therefore, this potential source warrants further investigation.

Electrical utility applications present special challenges for source identification and abatement³ due to the quantity of equipment and facilities, their dispersed nature, and difficulty in sampling discharges when they occur. In addition, municipalities lack control over these properties and

² The PCBs TMDL was approved by the US Environmental Protection Agency (USEPA) on March 29, 2010 and became effective on March 1, 2010.

³ Source identification and abatement is one type of stormwater control measure that Permittees use to reduce loads of PCBs in urban runoff. This control measure involves investigations of properties with elevated PCBs in stormwater or sediment to identify sources that contribute a disproportionate amount of PCBs to the MS4, and cause the properties to be abated, or refer the properties to the SF Bay Water Board or other regulatory authority for follow-up investigation and abatement. This control measure is described in more detail in the BASMAA Interim Accounting Methodology for TMDL Loads Reduced (BASMAA 2017).

equipment. Permittees have no jurisdiction over many large electrical utilities and therefore no control over the cleanup of PCBs-containing spills (e.g., dielectric fluids from transformers), or prompt notification when they happen. Release of PCBs from electrical utility applications has proved particularly difficult to document, quantify or control when private utility companies such as Pacific Gas and Electric, (PG&E) are involved. To date, neither Permittees nor the Region 2 Water Board have been able to verify that a sound and transparent cleanup protocol is used consistently by PG&E for PCBs spills from their electrical utility equipment and properties across Bay Area cities. Moreover, current state and federal regulatory levels for reporting and cleanup of PCBs spills (e.g., cleanup goals for soils) are higher than cleanup levels recommended by the SF Bay Water Board to meet the objectives of the PCBs TMDL (SFBRWQCB 2016). These differences create potential missed opportunities to cleanup spills to the more stringent levels that are more consistent with the PCBs TMDL requirements, and for Permittees to report the associated PCBs load reductions via the MRP load reduction tracking and reporting processes.


Due to these constraints, it is not feasible or appropriate for municipalities to develop and implement PCBs control and reporting programs for electrical utility companies. Therefore, municipalities will need to work with the SF Bay Water Board to investigate electrical utility operations. The overall goal of this project is to gather the information needed and provide justification for the SF Bay Water Board to compel the utilities to develop and implement improved procedures and practices that will reduce releases of PCBs to stormwater runoff.

2.2 SSID Project Objectives

The overall goal of this SSID project is to investigate electrical utility equipment as a source of PCBs to urban stormwater runoff and identify appropriate actions and control measures to reduce this source. Building on the information presented by SCVURPPP (2018), this project is designed to achieve the following three objectives:

- Gather information from Bay Area utility companies to improve estimates of current PCBs loadings to MS4s from electrical utility equipment, and document current actions conducted by utility companies to reduce or prevent release of PCBs from their equipment;
- Identify opportunities to improve spill response, cleanup protocols, or other programs designed to reduce or prevent releases of PCBs from electrical utility equipment to MS4s;
- Develop an appropriate mechanism for municipalities to ensure adequate clean-up, reporting and control measure implementation to reduce urban stormwater loadings of PCBs from electrical utility equipment.

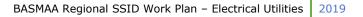
A possible outcome of this SSID project is a recommendation that Bay Area municipalities submit a referral to designate electrical utility equipment and properties as a *Categorical Source*, which is a type of source property as described in more detail in the BASMAA Interim Accounting Methodology for TMDL Loads Reduced (BASMAA, 2017). A *Categorical Source* designation would facilitate development of a regional approach to abate this source under the regulatory authority of the SF Bay Water Board. The *Categorical Source* designation was developed specifically to address potential sources of PCBs that are widespread and distributed across multiple jurisdictions, such as electrical utility applications. MRP Permittees, as a group, can refer an entire source category to the SF Bay Water Board. Although local agencies may still identify and refer individual electrical utility properties to the Water Board for abatement, addressing these facilities and equipment as a *Categorical Source* may prove to be a more effective and efficient way to reduce PCBs loads from this source category. The information gained during this project will also provide data that municipalities can use to develop a

methodology to account for PCBs load reductions that can be achieved through implementation of a regional control measure program for electrical utilities.

2.3 Management Questions

This SSID project will address a number of key management questions regarding electrical utility applications as sources of PCBs to MS4s, including:

- 1. What is the current magnitude and extent of PCBs stormwater loadings from electrical utility equipment and operations in the San Francisco Bay Area region?
- 2. What aspects of equipment or operational procedures should electrical utilities be required to report to the SF Bay Water Board?
- 3. Are improvements to spill and cleanup control measures needed to reduce water quality impacts from the release of PCBs in electrical utility equipment?
- 4. Are additional proactive management practices needed to reduce releases of PCBs from electrical utility equipment?
- 5. What are the PCBs load reductions that can be achieved through implementation of a regional reporting and control measure program?


2.4 Regulatory Context of PCBs WQOs

To better understand the issues of PCBs in the Bay, it is important to understand the regulatory context of the PCBs WQOs and human health risks associated with PCBs. The State Water Resources Control Board (SWRCB) is part of the California Environmental Protection Agency and administers water rights, water pollution control, and water quality functions for the state. It shares authority for implementation of the federal CWA and the state Porter-Cologne Act with the nine Regional Water Quality Control Boards. The Regional Water Boards regulate surface water and groundwater quality through development and enforcement of WQOs and implementation of Basin Plans that will protect the beneficial uses of the State's waters. These plans designate beneficial uses, WQOs that ensure the protection of those uses, and programs of implementation to achieve the WQOs.

The Basin Plan for the San Francisco Bay region (SFRWQCB 2017) provides the basis for water quality regulation in the San Francisco Bay region. It is implemented by the SWRCB and the SF Bay Water Board. The Basin Plan identifies beneficial uses of Bay waters, establishes narrative and numerical WQOs protective of those beneficial uses, identifies areas where discharges are prohibited, and sets forth a program of implementation to ensure that the Bay WQOs are achieved and beneficial uses are protected. Several beneficial uses are designated in the San Francisco Bay region including commercial and sport fishing (COMM), defined in the Basin Plan as:

 COMM: "Uses of water for commercial or recreational collection of fish, shellfish, or other organisms, including, but not limited to, uses involving organisms intended for human consumption or bait purposes."

To protect this beneficial use, the narrative WQO for PCBs in the Bay states that "controllable water quality factors shall not cause a detrimental increase in toxic substances found in bottom sediments or aquatic life". PCBs in Bay sportfish have been found at levels thought to pose a health risk to people consuming these fish. As a result, the COMM beneficial use of the Bay is not currently supported and the narrative WQO for PCBs has not been achieved.

3.0 Study Area, Existing Data, and Potential Causes of Water Quality Problem

3.1 Study Area

The study area for this SSID project is the portion of the San Francisco Bay Area region subject to the MRP. This section provides an overview of electrical utility systems and companies currently operating in the study area, and describes how and where PCBs are used within those systems.

Electrical utilities produce or buy electricity from generating sources, and then distribute that electricity to users through two networks: the transmission system and the distribution system. The **transmission system** carries bulk electricity at high voltages, often across long distances, directly from generation sources to substations via high voltage power lines. Substations connect the transmission and distribution systems. Substations may increase the voltage from nearby generating facilities for more efficient transmission over long distances or lower the voltage for transfer to the distribution system. Electricity at a typical substation flows from incoming transmission lines, to circuit breakers, to transformers (which step down the voltage), to voltage regulators and cut out switches (which protect the system from overvoltage), and finally to outgoing distribution lines.

The **distribution system** delivers lower voltage electricity from substations directly to homes and businesses over shorter distances. This system includes pole-mounted equipment, equipment in underground vaults, and aboveground equipment on cement pads that are often in green boxes in the public right-of-way (ROW). This equipment is smaller, but more numerous in terms of the number of units.

Electrical utility equipment and facilities in both the transmission and distribution systems are distributed across the entire Bay Area region. In the past, PCBs were routinely used in electrical utility equipment that contained dielectric fluid as an insulator. This is because prior to the 1979 PCBs ban, dielectric fluid was typically formulated with PCBs due to a number of desirable properties they have (e.g., high dielectric strength, thermal stability, chemical inertness, and non-flammability). Electrical equipment containing dielectric fluid is typically identified as Oil-Filled Electrical Equipment (OFEE). Any OFEE that contained PCBs in the past could still potentially be in use and contain PCBs today. The most common types of OFEE that may contain PCBs are transformers, capacitors, circuit breakers, reclosers, switches in vaults, substation insulators, voltage regulators, load tap changers, and synchronous condensers (PG&E 2000).

In the Bay Area, there are eight electric utility companies operating as of February 2015 (State Energy Commission 2015):

Investor-Owned Utilities (IOUs)

 Pacific Gas and Electric Company (PG&E) 77 Beale Street San Francisco, CA 94105 (415) 973-7000 (tel)

Publicly Owned Load Serving Entities (LSEs) and Publicly Owned Utilities (POUs)

- 2. Alameda Municipal Power 2000 Grand Street Alameda, CA 94501-0263 510.748.3905 (tel)
- CCSF (also called the Power Enterprise of the San Francisco Public Utilities Commission) 1155 Market Street, 4th Floor San Francisco, CA 94103 209.989.2063 (tel)
- 4. City of Palo Alto, Utilities Department P.O. Box 10250 Palo Alto, CA 94303 650.329.2161 (tel)
- Pittsburg Power Company Island Energy-City of Pittsburg, 65 Civic Drive Pittsburg, CA 94565-3814 925.252.4180 (tel)
- Port of Oakland
 530 Water Street, Ste 3
 Oakland, CA 94607-3814
 510.627.1100 (tel)
- Silicon Valley Power (SVP) City of Santa Clara 1500 Warburton Avenue Santa Clara, CA 95050 408.615.2300 (tel)

Community Choice Aggregators

 Marin Clean Energy (MCE) 781 Lincoln Ave Ste 320 San Rafael, CA 94901-3379 888.632.3674 (tel)

PG&E is by far the largest electrical utility company in the Bay Area. PG&E is an investor-owned company that is not under the jurisdiction of any Bay Area municipality⁴. Three small publicly-owned utilities in the Bay Area (Alameda Municipal Power, City of Palo Alto Utilities Department, and Silicon Valley Power owned by the City of Santa Clara) maintain their own substations and distribution lines. The other public utilities partner with PG&E to deliver energy through PG&E's equipment. PG&E owns and operates several hundred electrical substations in the Bay Area, in addition to the smaller electrical utility equipment that is widely disbursed throughout urbanized areas and along rural corridors (e.g., small transformers on utility poles or in utility boxes). The total number of pieces of equipment that is in use across the Bay Area and that contains PCBs is not known but is likely in the range of tens to hundreds of thousands (see Section 3.2.2).

⁴ PG&E is regulated by the California Public Utilities Commission (CPUC) and the Federal Energy Regulatory Commission (FERC).

3.2 Existing Data

This section presents an overview of the current state of knowledge about PCBs used by electrical utility companies in the Bay Area, the potential mass of PCBs released into the environment from this source over the past 50+ years, and the regulatory programs currently available for the purposes of managing PCBs and reporting and cleaning up spills. This information focuses on PG&E because this private company owns and operates the vast majority of electrical utility properties and equipment in the Bay Area. This information was originally reported by SCVURPPP (2018).

3.2.1 Regulatory Controls on PCBs in Electrical Utility Equipment

Existing federal and state regulations are primarily focused on controlling the management and handling of in-use PCBs and PCB-containing equipment when the concentrations are above the thresholds for hazardous waste. Under federal regulations, the hazardous waste threshold for PCBs is \geq 50 parts per million (ppm). Under California regulations, the hazardous waste threshold for PCBs is \geq 5 ppm in liquids (using the Waste Extraction Test, WET), and \geq 50 ppm in solids. The allowable post-cleanup concentrations of remaining soils and other surface materials typically range from 10 to 25 ppm, depending on site-specific evaluations of human health risk. As a result, current efforts to control and cleanup PCB releases from electrical utility equipment are focused on these thresholds.

By comparison, Bay Area municipalities are concerned with much lower concentrations of PCBs. For example, currently Bay Area municipalities generally designate a site as a *potential* PCBs source to stormwater runoff if soil or sediment concentrations are ≥ 0.5 ppm and designate a site as a *confirmed* PCBs source to stormwater runoff if soil or sediment concentrations are ≥ 1.0 ppm. Control of PCBs sources at these substantially lower concentrations has been deemed necessary to make progress towards meeting the stringent stormwater runoff wasteload allocations called for in the PCBs TMDL.

3.2.2 PCBs Remaining in Electrical Utility Equipment

Although use of PCBs is highly restricted currently, McKee et al. (2006) estimated that 12.3 million kilograms of PCBs were used in the San Francisco Bay Area between 1950 and 1990. Roughly 65% (8 million kg) was used in electrical transformers and large capacitors (McKee et al. 2006). How much of this mass was released to the environment and how much remains in electrical equipment distributed across the Bay Area today is unknown. While the 1979 ban of PCBs did not require the immediate removal of PCBs from current applications, electrical utilities have made substantial efforts over the past 35+ years to reduce the amount of PCBs still used in their applications in the Bay Area. According to PG&E, the majority of OFEE containing PCBs in the Bay Area has already been removed or refurbished with dielectric fluids that do not contain PCBs through the following actions:

- Voluntary replacement programs;
- Ongoing removal of PCBs from OFEE as units are serviced or replaced due to routine maintenance programs; and
- OFEE replacement due to unplanned actions (e.g., transformer leaks and fires).

Voluntary actions conducted by PG&E, primarily in the mid-1980s, included the PCBs Distribution Capacitor Replacement Program and the PCBs Network Transformer Replacement Program (PG&E 2000). In addition, in the 1990s, PG&E implemented a program to remove oilfilled circuit breakers and replace them with equipment that contains sulfur hexafluoride gas

(PG&E 2000). Current ongoing PG&E efforts to remove PCBs-containing equipment are conducted primarily through maintenance programs. Past maintenance of older equipment may have included draining PCBs-containing oils and refilling the equipment with oils that did not contain PCBs. These refurbished OFEE may still contain PCBs at levels of concern to municipalities due to residual contamination from the original PCB-oil. Currently, as maintenance staff identify older equipment in-use, it is scheduled for replacement. However, PG&E has provided limited documentation of their past and current PCBs removal efforts. There remains much uncertainty on where PCBs transformers, PCBs capacitors, oil-filled circuit breakers, and PCBs-containing distribution system equipment were originally located, and which ones have already been removed or replaced.

Despite the removal efforts described above, PCBs may still be found in older and refurbished OFEE, and particularly OFEE located throughout the distribution system. In a recent meeting with SF Bay Water Board Staff, PG&E noted that any equipment installed prior to 1985 could contain PCBs, as it would have come from equipment stockpiled prior to the 1979 ban and was installed prior to the voluntary replacement programs (*personal communication*, Sanchez 2016). Because OFEE are not typically tested for PCBs until the fluid is removed during servicing or disposal, or in the event of a spill, the total number of PCBs-containing OFEE that remain in use is unknown. However, in a letter to the SF Bay Water Board in 2000, PG&E provided information that can be used to make some preliminary estimates, including the following (PG&E 2000):

- There are over 900,000 pieces of OFEE in service in the distribution system;
- In 1999, 22,000 pieces of equipment were serviced at the main PCBs-handling facilities in Emeryville;
- Approximately 10 percent of the units serviced and tested annually contain PCBs at concentrations of 50 parts per million (ppm) or greater, and fewer than 1 percent contained PCBs at concentrations of 500 ppm or greater; and
- The number of pieces of equipment containing PCBs concentrations > 50 ppm has declined over time.

The information above was used to calculate the following:

- Assuming the count of equipment processed in 1999 in Emeryville represents an average annual processing rate throughout the region and that there are at least 900,000 pieces of equipment in PG&E's distribution system it would take over 40 years at a minimum for all of this equipment to be replaced;
- Assuming the 1999 processing rate and 900,000 pieces of equipment in the distribution system in 1985, approximately 175,000 pieces would not yet have been serviced or replaced as of 2018; and
- Of the approximately 175,000 pieces of equipment remaining in-use in 2018, approximately 17,500 (10%) may contain PCBs concentrations > 50 ppm.

Although based on limited information, the above estimates demonstrate that a potentially large number of pieces of equipment containing PCBs over 50 ppm (i.e., 17,500 as of 2018) may remain in-use in the electrical utility distribution system. And the remaining 90% (roughly 157,000 pieces of equipment) may contain lower concentrations of PCBs that could still be of concern to Permittees in their efforts to meet TMDL requirements.

3.2.3 Estimated Loadings of PCBs from Electrical Utility Equipment to MS4s

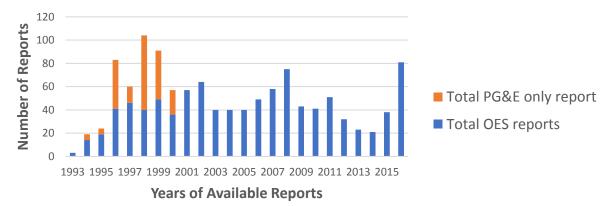
Building upon their estimates of the total mass of PCBs used historically in the Bay Area, McKee et al. (2006) developed a transport and fate conceptual model that identified the major sources of PCBs to stormwater conveyances and described mass movement from these sources or source areas into the stormwater conveyance system. McKee et al. (2006) estimated the net mass input of PCBs to MS4s in the Bay Area in 2005 was approximately 28 kg per year.⁵ Of this total, roughly 29% (8 kg/yr) was estimated to have originated from controlled closed systems (transformers and large capacitors) and 71% (20 kg/yr) was from dissipative uses (e.g., release of PCBs-containing building materials such as caulks and sealants during demolition and renovation). This includes both current and legacy uses that resulted in widespread distribution of PCBs across watershed surfaces. In other words, these estimates suggest that because of both current and past use, transformers and large capacitors, which are both electrical utility applications, may continue to contribute nearly one-third of the net PCBs mass to MS4s in the Bay Area. As noted earlier, such loadings would exceed the 2 kg per year TMDL waste load allocation for stormwater runoff (see Section 2.3.2) and limit the ability of municipalities to meet the goals of the PCBs TMDL for the Bay. Conversely, reduction of PCBs released to MS4s from electrical utility equipment may support attainment of TMDL goals.

3.2.4 Ongoing Release of PCBs from Electrical Utility Equipment

Although the bulk of PCBs remain contained within OFEE until the equipment is removed from use and transported to proper hazardous waste disposal facilities, releases of PCBs to the environment can and do occur. In order to document current spills, publicly available data in the California Office of Emergency Services (Cal OES) spill report database (Cal OES 2016), as well as internal spill records (PG&E 2000) supplied by PG&E to the SF Bay Water Board in September 2000 (that were provided pursuant to a California Water Code §13267 request for information) were reviewed. The Cal OES database and available PG&E spill records were searched for reports of spill releases related to OFEE in the Bay Area between 1994 and 2017. Over 1,200⁶ reported release incidents from PG&E OFEE in the Bay Area were identified. The information provided by these records and a summary of the important issues identified for water quality concerns are summarized in the remainder of this section. It is important to note that current regulations do not require reporting of all releases from OFEE. The information provided below is based only on the reported releases for which records were available, and likely represents an underestimate of actual OFEE releases during the time period of review. However, these reports clearly demonstrate that PCBs may still be present in the electrical transmission and distribution systems in the Bay Area, and that releases from these systems can and do continue to occur.

Generally, the publicly available spill release records provide information about the spill release date, time, location, chemical, quantity released, actions taken, known or anticipated risks posed by the release, and additional comments. Other information that is sometimes reported for OFEE releases includes a description of the causes of the release and the equipment affected, and the concentrations of PCBs in that equipment (if known). Concentration information reported is likely assumed from equipment labels, as ranges are most often provided rather than specific values. Typically, the reports are limited to the information that was

⁵ The PCBs TMDL estimates a PCBs loading of 20 kg per year from stormwater runoff (see Section 2.1).


⁶ The records span 24 years of spill reports, and include PG&E's own record of releases from 1994 thru 1999 and a portion of 2000. The number of reports PG&E submitted in 2000 represents less than half the number of reports for that year. Records did not include all the districts in the Bay Area. District documents submitted reported releases prior to June of 2000, with the exception of one district that submitted a June report. As a result, the number of additional reports from PG&E's records are assumed to be less than half the number of incidents for 2000.

available at the time the spill was initially reported. In some cases, follow-up information such as the results of analytical testing of the spilled materials is also provided, but this is not typical.

3.2.4.1 Number of Reported OFEE Releases

Between 1994 and 2017, over 1,000 spills from PG&E electrical equipment were reported to Cal OES. PG&E records contain information about 200 additional releases that were not reported to Cal OES between 1994 and 2000. A count of these reports by year is presented in Figure 1.

Figure 1. Oil-filled electric equipment spills reported to the California Office of Emergency Services (Cal OES) and/or identified through internal Pacific Gas & Electric (PG&E) reports between 1993 and 2017.

3.2.4.2 Volume of OFEE Releases

The total volume of material released from all reported OFEE spills in a given year in the Bay Area is presented in Figure 2. Mineral oil or transformer oil are the substances identified in over 99% of reported releases from OFEE in the Cal OES spill report database. In a phone conference with SF Bay Water Board staff in 2012, PG&E said they submit written reports to Cal OES for all PCBs spills that meet or exceed the mineral oil federal reportable quantities (RQ) of 42 gallons (*personal communication*, Jan O'Hara 2012). However, the reports reviewed indicate written reports are sometimes submitted for spills that are much less than 42 gallons.

The reported volumes of oil released during a single incident range from less than one gallon up to 5,000 gallons. Nearly half of all OFEE spill reports identify the volume of oil spilled as 5 gallons or less, and more than 90% of all spill reports identify the volume of fluid spilled as less than 100 gallons. Releases as large as 500 gallons from the distribution system and 5,000 gallons from the transmission system have been reported. Only five incidents reported releases that exceeded 1,000 gallons of oil. Nearly all (~99%) of reports provided information on the volume of oil released.

The reported volumes released do not necessarily equate to the volume of the oil that may have reached storm drains or local creeks. Estimates of those volumes were not available.

3.2.4.3 Location of OFEE Releases

Cal OES and PG&E records show releases occurred in all Bay Area counties. Leaks and spills of PCBs from electrical equipment have occurred onto roads, sidewalks, pervious areas, vegetation, structures, vehicles, and even people (Cal OES 2016). Most releases occurred in

the distribution system, often from equipment installed in public ROWs such as pole-mounted transformers installed along roadways.

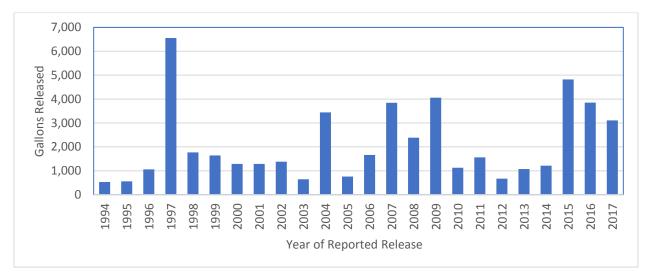


Figure 2. Total reported gallons of oil released each year (1994 – 2017) from spills from PG&E electrical utility equipment in the Bay Area.

A number of reports document direct releases from OFEE to the MS4, and potentially a downstream waterbody (e.g., creek). There are at least 17 incidents identified during the past 15 years that involved direct releases from PG&E OFEE directly to a waterbody or to storm drains that discharge to local creeks (Table 1). The majority of these releases were reported as having unknown PCBs concentrations, and no reports provide any follow-up information on the concentration of PCBs in the spilled materials based on chemical analysis.

It is important to note that in addition to the incidents identified in Table 1, materials spilled during any of the numerous other incidents may (or may not) have entered the MS4 and/or receiving waters such as local creeks directly or been washed into the MS4 and/or creeks by stormwater or irrigation runoff. Generally, the spill reports lack any details regarding this type of information.

Table 1. Examples of Information Reported on Releases of PCBs to Bay Area Storm Drains and Creeks.

Date	Gallons	Reported Concentration	Water Body	Municipality
1/24/2016	Unknown	<50 ppm	Coyote Creek	San José
2/17/2016	Up to 18	Unknown	Los Gatos Creek	Los Gatos
3/7/2016	10	Unknown	Culvert	Concord
8/16/2016	Unknown	<50 ppm	Guadalupe River	San José
11/17/2015	Unknown	Unknown	Cerrito Creek	Richmond
10/4/2015	5	Unknown	Creek	Los Gatos
5/3/2015	30	<2 ppm	Cerrito Creek	Richmond
3/2/2011	30	Unknown	Unknown Marsh	Menlo Park
6/2/2007	40	Unknown	Pond, Marsh Area	Vallejo
2/28/2006	20	<50 ppm	Calara Creek	Pacifica
5/27/2006	1	Unknown	Unknown Creek	Orinda
10/10/2005	Unknown	Unknown	Coyote Creek	San José
7/23/2005	<15	Unknown	Nearby Creek	Walnut Creek
12/8/2004	Small amount	<50 ppm	Moraga Creek	Orinda
3/7/2004	Unknown	Unknown	Blossom Creek	Calistoga
7/14/2003	8	< 50 ppm	Coyote Creek	San José
2/16/2002	15	Unknown	Napa River	Napa

3.2.4.4 Causes of OFEE Releases

Cal OES release reports and PG&E records document a number of causes of PCBs releases from OFEE. Most releases can be attributed to one of the following:

• Equipment Failure. This is the cause of the majority of the reported releases. Equipment failure in utility vaults has additional potential as an important source of PCBs because OFEE in these vaults may contain more than 100 gallons of oil. More than 50 release incidents were reported for equipment contained in electrical utility vaults during the time period reviewed. A number of these reports noted the presence of water in the vaults in addition to the PCBs oil released. Releases from equipment failure in utility vaults are mostly contained, but Cal OES spill reports document releases of PCBs oil that breached containment, including discharges that reached water bodies.

- <u>Accidents</u>. Approximately 20% of reported releases resulted from equipment knocked over by accident. In the distribution system, reports document 50 to 500 gallons released from poles knocked over during car accidents, by construction equipment, and during tree trimming. On rare occasion PCBs releases have occurred during accidents while equipment is in transport.
- <u>Storms, Fires, and Overheating from High Summer Temperatures</u>. These factors are the reported cause of more than 10% of the releases from the distribution system.
- <u>Field Repairs and Fluid Replacement</u>. The Cal OES database contains records that indicate draining fluids in the field may have been ongoing as recently as 2007, when a report documented that a valve left open from draining a transformer in the field caused a release. In 2016, Daniel Sanchez, who at the time was PG&E's Manager of Hazardous Materials and Water Quality Environmental Management Programs, informed SF Bay Water Board staff that PG&E does not drain and refill pole mounted PCB transformers in the field any longer; however, it is unclear when this practice ceased, and/or if it still occurs with equipment not mounted on poles.
- <u>Vandalism</u>. Between 1997 and 2015, there were at least 25 separate reported incidents of vandalism that resulted in PCBs releases. For example:
 - In 1997, gunshot damage caused the release of 5,000 gallons of oil from a substation transformer and regulators in San Mateo County;
 - In 2011, copper theft at a substation released 750 gallons of oil in Contra Costa County;
 - In 2013, vandalism of pad-mounted transformers resulted in the release of possibly 1,000s of gallons of oil before discovery in San José.

3.2.4.5 PCBs Concentrations in OFEE Releases

Of the more than 1,200 spill reports that were reviewed, approximately one-third identified the PCBs concentration as unknown or did not provide any information on the PCBs concentration of the spilled material (Figure 3). Releases with high PCBs concentrations (> 500 ppm) were infrequently reported, accounting for only 1% of reported spills. Concentrations above 50 ppm represent about 8% of the reported spills. As recently as 2016, failure of a PG&E pole-mounted transformer resulted in release of mineral oil with 280 ppm PCBs to surrounding soils and brick structures. For approximately 44% of the reported releases, the PCBs concentration was identified as less than 50 ppm, based primarily on assumptions associated with a "Non-PCB" label. According to labeling requirements, a "Non-PCB" label indicates the PCBs concentrations in the oil are assumed to be below hazardous waste thresholds of 50 ppm (federal regulations, see Section 3.2.1). However, in most cases, no additional information was provided in the spill reports to indicate how the "Non-PCB" category was arrived at, or whether the federal (> 50 ppm) or state (> 5 ppm in liquid) "Non-PCB" category was assumed. For the vast majority of these reports, no follow-up chemical analysis results were provided that confirmed the "Non-PCB" designations. In a limited number of reports, follow-up PCBs analysis results were provided for materials that were identified as "Non-PCB" during initial reporting. Generally, these results found PCBs concentrations between 5 and 49 ppm, suggesting that the labels were correctly applied. However, any concentration of PCBs in electrical equipment oils is potentially significant in terms of water quality impacts and implementation of the PCBs TMDL. These results clearly demonstrate that the "Non-PCB" designation represents a threshold that is far too high to necessarily be protective of water quality.

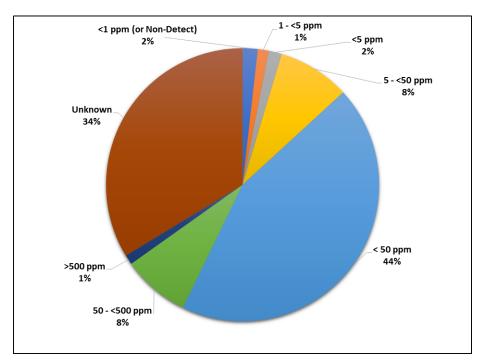


Figure 3. PCB Concentration data reported for releases from PG&E electrical equipment between 1993 and 2016.

Only 1% of the reported releases identified the PCBs concentrations as either below 1 ppm, or below detection limits. Although the quality of the PCBs concentration data in the release reports varies widely, these results clearly demonstrate that PG&E's electrical equipment in the Bay Area can still contain PCBs at concentrations of concern for water quality protection programs.

3.2.5 Cleanup Methods and Actions Taken in Response to OFEE Releases

Limited information is available on the spill response protocols used by electrical utility companies during cleanups. Based on information publicly available, electrical utility companies typically address spills or leaks from their equipment with Standard Operating Procedures (SOPs) that should conform to both State and Federal requirements. According to information provided to the SF Bay Water Board (PG&E 2000), PG&E spill response is guided by internal documents, including:

- Utility Operations Standard D-2320 for PCBs spills in the distribution system;
- **PCB Management at Substations -** for PCBs spills in the transmission system.

However, these documents are not publicly available for review.

The Cal OES reports provide almost no information on actions taken to stop active spills, or the methods used to cleanup spilled materials from surrounding surfaces, storm drain infrastructure, or creeks. Municipalities need this type of information to better understand any potential risks that remain following initial cleanup. Because of the challenges with achieving the stormwater runoff wasteload allocation in the PCBs TMDL, additional remedial actions may be warranted in some cases.

3.3 Potential Causes of Water Quality Problem

Given the history of PCBs use in electrical utility equipment, the current estimates of electrical equipment still in use that contain PCBs, and existing documentation that spills of PCBs from electrical utility equipment continue to occur, electrical utility equipment is likely a significant source of PCBs to stormwater runoff, and ultimately to the Bay. PG&E, the largest electric utility company in the Bay Area, was likely the largest single user of PCBs in the Bay Area, and as such, likely remains the largest current source of PCBs releases to MS4s from electrical utility equipment.

4.0 SSID Investigation Approach and Schedule

The overall approach for this SSID Investigation is to (1) conduct a desktop analysis and (2) propose a source control framework for electrical utility equipment to reduce ongoing PCBs loads to the Bay in stormwater runoff. The purpose of the desktop analysis is to better understand the extent and magnitude of electrical utility equipment as a source of PCBs to urban stormwater runoff, document past and current efforts to reduce PCBs releases from electrical utility equipment during spills or other accidental releases, and document measures already taken or underway to remove PCBs-containing oils and electrical equipment from active service across the Bay Area. The results of the desktop analysis will inform identifying new or improved control measures to avoid/reduce the release of PCBs from this source. This information may also be used to update the estimated PCBs loads to stormwater from this source, and inform development of a load reduction accounting methodology. This project will request the assistance and support of the SF Bay Water Board to gather the information needed from electrical utility companies to conduct the desktop analysis. Based on the outcomes of the desktop analysis, this project will then propose a framework for addressing PCBs from electrical utility equipment. The framework may include a recommendation to designate electrical utilities as a Categorical Source of PCBs to stormwater in order to facilitate the development of a comprehensive, regional control measure program to address this source.

This SSID Project is a BASMAA Regional Project. The BASMAA Monitoring and Pollutants of Concern Committee (BASMAA MPC) will oversee implementation of the project. Implementation of this work plan will contribute to fulfillment of MRP Provision C.8.e requirements for all BASMAA co-permittees.

4.1 Task 1: Desktop Analysis

The desktop analysis is designed to gather and evaluate information on electrical utility equipment in the Bay Area to determine if a *Categorical Source* referral is warranted, and to provide the foundation for development of a comprehensive regional control measure program to reduce PCBs loads from this source. The desktop analysis will include the following five subtasks:

• Subtask 1.1 Request information from electrical utility companies.

This task will seek the assistance and support of the SF Bay Water Board to: obtain information from private utility companies that is not publicly available but is needed to better understand the extent and magnitude of PCBs releases from OFEE; identify the most appropriate actions to prevent or reduce releases from this source; and develop and implement effective reporting and control measures. For this task, the SF Bay Water Board will be asked to assist BASMAA in compelling electrical utility companies (e.g., PG&E) to provide the necessary information. A preliminary list of information that will be requested includes the following:

- Spill reporting and notification procedures (both company-wide and locationspecific);
- Spill records NOT reported in Cal OES;
- SOPs and other documentation used by electrical utilities and their contractors to guide spill response and cleanup actions when releases from OFEE occur;
- SOPs and documentation, including analytical methods for PCBs used by electrical utilities and their contractors to identify and clean up regular leaks from OFEE during regular maintenance activities

- Measurement data on concentrations of PCBs in OFEE;
- Maintenance records that document when and where PCBs-containing OFEE are removed from the system and how often PCBs containing equipment is inspected for leaks or spills;
- Documentation of past programs to voluntarily remove PCBs-containing oils or OFEE – including what equipment was removed, and the locations from which it was removed; and
- Documentation of where PCBs-containing OFEE were located in the past, and where they are currently located across the Bay Area.

This list will be reviewed prior to making any data requests. Additional data gaps may also be identified and added to the data request based on discussions with SF Bay Water Board staff and/or preliminary information provided by utility companies.

• Subtask 1.2 Assess current electrical utility data.

This task will review, tabulate and analyze the information provided by electrical utility companies as a result of the SF Bay Water Board's request for information, in order to document the following:

- Measurement data on PCBs concentrations and/or mass in OFEE;
- Locations of PCBs-containing OFEE;
- Quantity of PCBs-containing OFEE removed from service annually;
- Occurrences of spills or releases from OFEE;
- Current PCBs spill and cleanup reporting requirements; and
- Current PCBs cleanup protocols.
- Subtask 1.3 Improve estimates of PCBs loadings.

This task will combine the information provided in Subtask 1.2 with all existing data in order to develop improved estimates of current PCBs loadings from electrical utility equipment to MS4s in the study area. The quality of these estimates will partly depend on the quality of the data received from the utility companies.

• Subtask 1.4 Refine PCBs reporting requirements

This task will review all current reporting and notification requirements to identify any improvements or clarifications that the SF Bay Water Board could require of electrical utilities to provide the type of data needed to better quantify the amount of PCBs released from OFEE spills, and to help ensure that adequate cleanup actions are being implemented.

• Subtask 1.5 Evaluate PCBs cleanup protocols

This task will review all documented cleanup protocols that are currently used by electrical utility companies in order to identify any changes or improvements that could be recommended to further reduce the discharge of PCBs to the MS4 when releases occur.

4.2 Task 2: Develop Source Control Framework

Based on the results of the desktop analysis, this task will propose an appropriate framework for managing and implementing control measures to reduce PCBs from electrical utility equipment. The framework should include prescribed methods and procedures for unplanned spills and

releases from OFEE, as well as a plan for continued reduction of PCBs from in-use OFEE, and potentially further identification and cleanup of historic release sites. The framework will likely include the following elements:

- Summary of the outcomes of the desktop analysis results, including:
 - a. Summary of information provided by electrical utility companies as a result of the SF Bay Water Board's request for information from electrical utilities;
 - b. Improved estimates of current PCBs loadings from electrical utility equipment based on information received;
 - c. Documentation of current spill clean-up and reporting actions, and existing programs for proactive removal of PCBs-containing oils and equipment conducted by electrical utility companies;
 - d. Recommended PCBs spill and cleanup reporting requirements that the SF Bay Water Board could require of electrical utilities;
 - e. Recommended improvements to PCBs spill cleanup protocol(s) that would reduce the discharge of PCBs to MS4s that the SF Bay Water Board could require of electrical utilities.
- A recommendation (based on the results of the Task 1 desktop analysis) about designation of electrical utility equipment as a *Categorical Source*.
- Recommended approach to manage and control releases of PCBs from electrical utility companies. For example, if a *Categorical Source* referral is submitted, the recommended approach will focus on development of a comprehensive regional control measure program. The program would include requirements the SF Bay Water Board could impose on electrical utility companies in the Bay Area, such as new spill reporting and cleanup protocols.

4.3 Task 3: Develop methodologies to account for PCB load reductions from new source control measures

BASMAA will further apply the results of the desktop analysis to develop methodologies to account for the PCBs load reductions that can be achieved via the new clean-up and reporting protocols identified above in Task 2.

4.4 Task 3: Develop SSID Project Report

BASMAA will prepare a report describing the desktop analysis and outcomes. The report will summarize the information provided by electrical utility companies and identify recommendations to modify or improve current control measures or management actions that will reduce PCBs released to MS4s. The Management Questions described in Section 2.3 will be addressed:

- 1. What is the current magnitude and extent of PCBs stormwater loadings from electrical utility equipment and operations in the San Francisco Bay Area region?
- 2. Are there aspects of equipment or operational procedures that electrical utilities should be required to report to the SF Bay Water Board?
- 3. Are there additional spill and clean-up controls needed to reduce water quality impacts from the release of PCBs in electrical utility equipment?

- 4. Are there additional proactive activities needed to avoid releases of PCBs from electrical utility equipment?
- 5. What are the PCBs load reductions that can be achieved through implementation of a regional reporting and control measure program?

4.5 Project Schedule

Table 2 summarizes the tasks and anticipated outcomes described in this work plan, and the proposed schedule for each task. This is an approximately one-year effort to be conducted primarily in Fiscal Year 2019-2020. However, Task 1 (information request) will likely be made before the end of Fiscal Year 2018-2019. It is anticipated that the SSID project report will be completed in June 2020. The schedule in Table 2 is dependent upon the timing, extent, and format of the data that are received from electrical utility companies based on the SF Bay Water Board's request for information.

Task De	escription	Anticipated Outcome(s)	Anticipated Completion Date
Task 1:	Desktop Analysis		
1.1	Request information from electrical utility companies	Language for information request provided to SF Bay Water Board.	Apr-2019
1.2	Assess current electrical utility data	Summary tables of information and analyses of the data received from electrical utility companies.	Oct-2019
1.3	Improve estimates of PCBs loadings	Tables with estimated annual PCBs loads to MS4s from electrical utility equipment.	Nov-2019
1.4	Refine PCBs reporting requirements	Recommended improved PCBs spill and cleanup reporting requirements for electrical utility companies.	Dec-2019
1.5	Evaluate PCBs clean-up protocols	Recommended improved PCBs cleanup protocols for electrical utilities companies.	Dec-2019
	Develop Source Control Framework	Recommended source control framework for electrical utility equipment.	Jan-2020
	Develop PCBs Load Reduction Accounting Methodology	Recommended methodology to account for PCBs load reductions achieved through implementation of new source controls.	Jan-2020
Task 4:	Reporting	Regional SSID Project Report	Jun-2020

Table 2. Tasks, Anticipated Outcomes, and Schedule.

5.0 References

Bay Area Stormwater Management Agencies Association (BASMAA) 2017. Interim Accounting Methodology for TMDL Loads Reduced. Prepared by Geosyntec Consultants and EOA, Inc. March 2017.

Cal OES 2016. Hazardous Materials Spill Release Reporting Archive 1993-2016 review. Governor's Office of Emergency Services, Sacramento, CA. http://www.caloes.ca.gov/cal-oesdivisions/fire-rescue/hazardous-materials/spill-release-reporting Date?

McKee, L., Mangarella, P., Williamson, B., Hayworth, J., and Austin, L., 2006. Review of methods used to reduce urban stormwater loads: Task 3.4. A Technical Report of the Regional Watershed Program: SFEI Contribution #429. San Francisco Estuary Institute, Oakland, CA.

O'Hara, Jan 2012. San Francisco Bay Regional Water Quality Control Board PCBs TMDL Manager. *Personal communication*. August 6, 2012.

Pacific Gas & Electric Company (PG&E) 2000. Correspondence from Robert Doss, PG&E's Environmental Support and Service Principal in response to San Francisco Regional Water Quality Control Board information request on historic and current PCB use. Pacific Gas and Electric Company, San Francisco, CA. September 1, 2000.

San Francisco Regional Water Quality Control Board (SFRWQCB) 2015. *Municipal Regional Stormwater NPDES Permit, Order R2-2015-0049. NPDES Permit No. CAS612008.* California Regional Water Quality Control Board, San Francisco Bay Region. November 19, 2015.

San Francisco Regional Water Quality Control Board (SFRWQCB). 2016. Fact Sheet: San Francisco Bay PCBs TMDL – Implementation at Cleanup & Spill Sites. March 2016. Available at https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/TMDLs/sfbaypcbs.

San Francisco Regional Water Quality Control Board (SFRWQCB). 2017. San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan). California Regional Water Quality Control Board, San Francisco Bay Region. Oakland, CA.

Sanchez, Daniel 2016. Manager of HazMat and Water Quality Environmental Management Programs, Pacific Gas & Electric Company (PG&E). *Personal communication*. February 25, 2016.

Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP) 2018. Potential Contributions of PCBs to Stormwater from Electrical Utilities in the San Francisco Bay Area. Overview and Information Needs. Prepared by EOA, Inc. September 2018.

State Energy Commission 2015. http://www.energy.ca.gov/almanac/electricity_data/utilities.html