DESIGN EXAMPLES—SECTION 2

CONTENTS

Section

2.0	CASE	STUDY—STAPLETON REDEVELOPMENT	2
	2.1	Project Setting	2
	2.2	Project Objectives	2
	2.3	Hydrologic Evaluation For Detention Pond Sizing	5
		2.3.1 CUHP and UDSWM	
		2.3.2 Rational Method Hydrology	7
		2.3.3 FAA Method	10
		2.3.4 Denver Regression Equation	
		2.3.5 Comparison of the Sizing Methodologies	
	2.4	Detention Pond Outlet Configuration	
		2.4.1 Stage-Storage Relationships	
		2.4.2 Water Quality Volume Requirements	15
		2.4.3 Final Pond Outlet Configuration	15
	2.5	Hydraulic Analysis And Capacity Verification Of The Existing Outfall	
	2.6	Local Storm Sewer Design	27
		2.6.1 Determination of Allowable Street Capacity	
		2.6.2 Determination of Inlet Hydrology	
		2.6.3 Inlet Capacity Calculations	
		2.6.4 Street and Storm Sewer Conveyance Computations	

Tables for Section 2

Table 1—CUHP and UDSWM Input	6
Table 2—CUHP and UDSWM Modeling Results	7
Table 3—FAA Method Input Data	10
Table 4—Detention Volume	10
Table 5—Summary Comparison of Sizing Methodologies	13
Table 6—Stapleton East-West Detention Pond Cumulative Volume Analysis	15

Figures for Section 2

Figure 1—Stapleton Redevelopment Drainage Map	. 3
Figure 2—Stapleton Redevelopment Drainage Catchment Map	. 4
Figure 3—Detention Pond Inflow/Outflow Hydrographs	. 7
Figures 4 & 5—Area-Weighting for Runoff Coefficient Calculation	. 8
Figures 6 and 7—Calculation of a Peak Runoff Using Rational Method	. 9
Figures 8 and 9—Detention Volume by Modified FAA Method	11
Figure 10—10-Year Modified FAA Method	12
Figure 11—100-Year Modified FAA	12
Figure 12—Stapleton Redevelopment Detention Pond Detail	14
Figure 13—Stage-Storage Curve Stapleton East-West Linear Park Detention Pond	16

Figure 14—Design Procedure For Extended Detention Basin Sedimentation Facility	. 17
Figure 15—Flow Capacity of a Riser (Inlet Control)	. 20
Figure 16—Collection Capacity of Vertical Orifice (Inlet Control)	. 21
Figure 17—Collection Capacity of Horizontal Orifice (Inlet Control)	. 22
Figure 18—Detention Pond Outlet	. 23
Figure 19—54" Pipe Outfall Profile	. 25
Figure 20—Hydraulic Design of Storm Sewer Systems	. 26
Figure 21—Normal Flow Analysis - Trapezoidal Channel	. 27
Figure 22—Sub-Basin Hydrology Analysis Detail	. 29
Figure 23—Storm Infrastructure Detail	. 30
Figure 24—Gutter Stormwater Conveyance Capacity for Initial Event	. 31
Figure 25—Gutter Stormwater Conveyance Capacity for Major Event	. 32
Figure 26—Determination Of Design Peak Flow On The Street	. 33
Figure 27—Gutter Conveyance Capacity	. 34
Figure 28—Curb Opening Inlet In A Sump	. 35
Figure 29—Storm Drainage System Computation Form—2 Year	. 36
Figure 30—Storm Drainage System Computation Form—100 Year	. 37

2.0 CASE STUDY—STAPLETON REDEVELOPMENT

2.1 Project Setting

The following example illustrates application of this *Manual* for the design of conveyance and detention facilities, including use of computational spreadsheets described in pertinent sections of the *Manual*. Redevelopment of the former Stapleton International Airport in Denver poses significant opportunities and challenges for stormwater management. Like many airports, the site was graded to create gentle grades for runway operations. A formal storm sewer system was installed to control minor storm events, while major 100-year storms were conveyed via sheet flow or by overflow open channels. Consequently, significant drainage infrastructure improvements were needed. The challenge was to strike a balance between conveyance and detention to optimize the reuse of the existing system and minimize grading and demolition.

Figure 1 shows the project location and hydrologic setting for the *Stapleton East-West Linear Park Flood Control Project.* As indicated on Figure 2, the project incorporates a watershed of 104.0 acres that has been delineated into Sub-Basins "031" and "032". The mixture of residential, park, and school uses represents an average surface imperviousness of 44%. This assignment involved providing preliminary-level engineering for a sub-regional detention pond and associated outfall sewer and overflow channel. It is expected to be constructed by 2002 to support redevelopment of the Stapleton site near Yosemite Boulevard and 26th Avenue. The pond had to be designed to meet both detention volume requirements and enable reuse of an existing 54-inch storm sewer that outfalls to Westerly Creek. As a result, the detention volume had to be computed by V=KA, the modified Federal Aviation Administration (FAA) Method and a synthetic unit hydrograph to determine the controlling criteria.

2.2 Project Objectives

A multi-disciplinary team of engineers, landscape architects, planners, and scientists was formed to plan and design facilities to achieve the following objectives:

Provide a detention facility that offers multiple benefits, including park and recreation uses, flood control, water quality enhancement, and educational benefits.

Minimize demolition in and grading of the sub-basin by designing detention facilities to enable a retrofit and reuse of an existing 54-inch storm sewer.

Perform hydraulic engineering to determine the capacity of the existing outfall system and preliminarily size new collection and conveyance systems required to support land development at Stapleton.

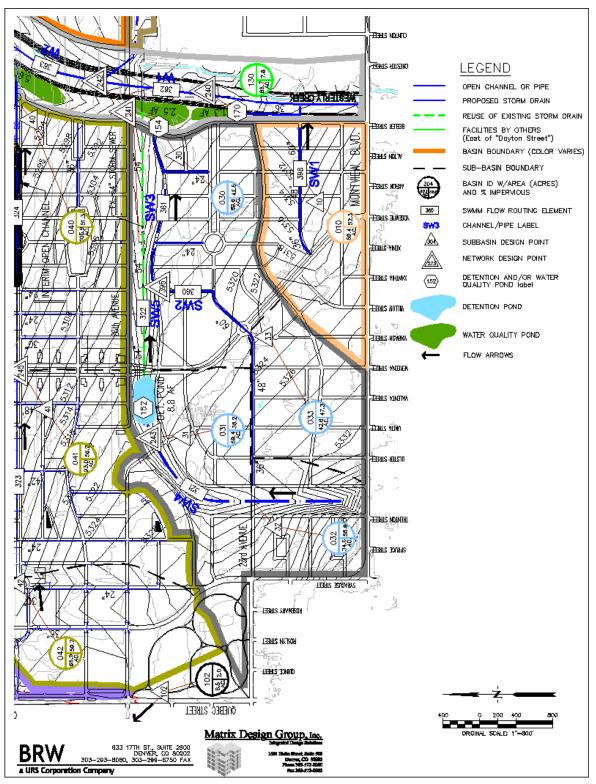


Figure 1—Stapleton Redevelopment Drainage Map

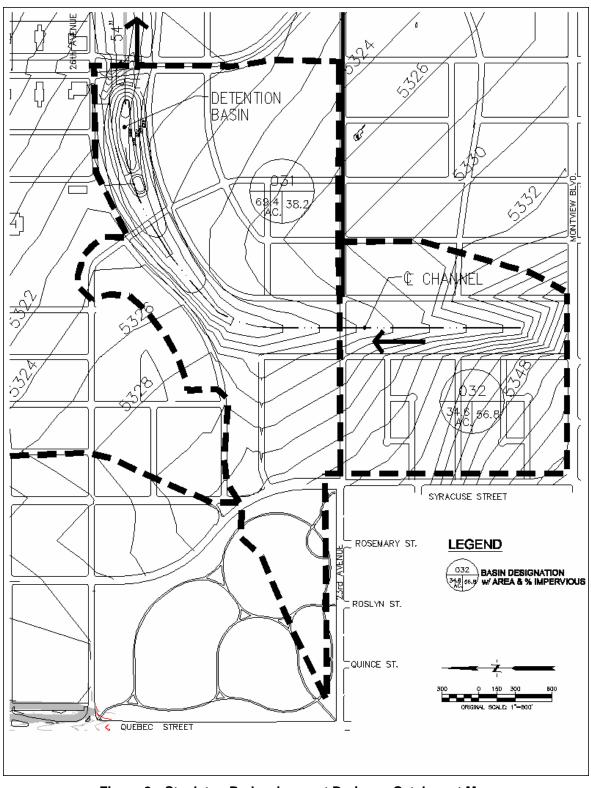


Figure 2—Stapleton Redevelopment Drainage Catchment Map

2.3 Hydrologic Evaluation For Detention Pond Sizing

Three hydrologic methods were used to establish the required detention pond size:

- 1. The Colorado Urban Hydrograph Procedure (CUHP) and UDSWM
- 2. The modified FAA Method
- 3. The V=KA approach

Because of the basin area (greater than 90 acres) and the need to match discharges with the established capacity of an outfall system, the utilization of a more detailed assessment with a synthetic hydrograph generated by CUHP and UDSWM was required. All three methods were used to verify reasonableness of the results and to ensure that appropriate local detention sizing criteria were satisfied.

2.3.1 CUHP and UDSWM

Input data for CUHP and UDSWM are shown in Table 1. Two discharge rates were considered for the pond routing: the allowable release rate and the flow capacity of the 54-inch storm sewer. The allowable release for the 104-acre basin was 88.4 cfs, relating to 0.85 cfs per acre for Type B Soils. The capacity of the 54-inch RCP (n=0.013, slope=0.38%) was 121 cfs and, consequently, the allowable release rate governed the design of the detention volume. Storage characteristics were developed with a preliminary grading plan to enable stage-storage-discharge data to be used in UDSWM routing.

Table 2 presents the modeling results with the required storage volumes for attenuation of flows to the allowable release rate. Figure 3 graphs the inflow and pond discharge hydrographs for the 100-year storm and shows the required minimum detention volume of 8.8 acre-feet.

	CUHP Basin Data									
Basin	Area (acres)	Imperviousness	Slope	Length (ft)	Time of Concentration (min)	Centroid Length (ft)				
031	69.4	38.2%	0.8%	3820	31.2	1600				
032	34.6	56.8%	2.0%	1240	16.9	590				

Table 1—CUHP and UDSWM Input

Note: Hydrologic Soil Group B Soils are used in this example.

Elevation (Feet)	Depth (Feet)	Storage (Acre-feet)	Discharge (cfs)
5308.7	0.0	0.00	0.0
5310.0	1.3	1.99	0.1
5310.0	1.3	2.00	20.0
5312.2	3.5	4.50	23.9
5312.3	3.6	4.60	88.4
5314.0	5.3	8.78	88.4
5314.1	5.4	8.80	90.0
5316.0	7.3	20.00	5000.0

UDSWM Pond Routing Data

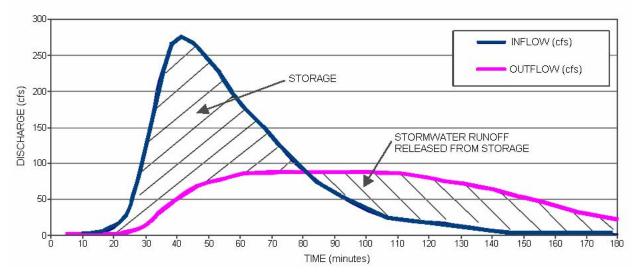
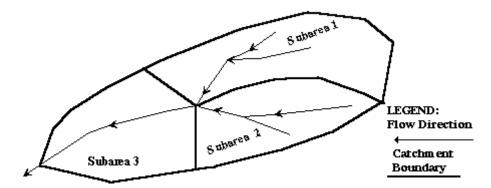


Figure 3—Detention Pond Inflow/Outflow Hydrographs

Return	n Period	Q _{in} (cfs)	Q _{out} (cfs)	Detention Storage Volume (acre-feet)
2		44	20	2.1
5		83	22	3.3
10		106	24	4.3
50		222	88	7.0
100		273	88	8.8


Table 2—CUHP and UDSWM Modeling Results

2.3.2 Rational Method Hydrology

For purposes of this design example, the basin was also analyzed using the Rational Method. Figures 4 and 5 are spreadsheets used to determine the composite runoff coefficients for the basin; they show the 10-year composite runoff coefficient to be 0.55 and the 100-year composite runoff coefficient to be 0.65. By evaluating the basin runoff coefficients, overland flow path, and concentrated flow path, the resulting time of concentration is 35 minutes.

The time of concentration is related to rainfall intensity for use in the Rational Method. By inputting the basin area, runoff coefficients, and rainfall intensity into the Rational Method equation, Q=CIA. Figures 6 and 7 show the 10-year and 100-year peak discharges into the detention pond from the 104-acre drainage basin to be 131 cfs and 250 cfs, respectively.

Project Title =	Stapleton Redevelopment Area
Catchment ID =	31.1, 31 and 32
Return Period =	10yr (initial event), 100yr (major event)
Illustration	

Instructions: For each catchment Sub area, enter values for A and C.

(10-yr Event)					(100-yr Event)			
Subarea	Area	Runoff	Product	Subarea	Area	Runoff	Product	
ID	acres	Coeff		ID	acres	Coeff		
	Α	С	CA		А	С	СА	
input	input	input	output	input	input	input	output	
31.1A	5.23	0.50	2.62	31.1A	5.23	0.60	3.14	
31.1B	1.10	0.60	0.66	31.1B	1.10	0.70	0.77	
31.1C	1.19	0.50	0.60	31.1C	1.19	0.60	0.71	
31.1D	0.26	0.50	0.13	31.1D	0.26	0.60	0.16	
31.1E	0.42	0.50	0.21	31.1E	0.42	0.60	0.25	
31	61.20	0.50	30.60	31	61.20	0.60	36.72	
32	34.60	0.65	22.49	32	34.60	0.75	25.95	
Sum:	104.00	Sum:	57.30	Sum:	104.00	Sum:	67.70	

Weighted Runoff Coeffecient

(sum CA / sum A) =

0.55

0.65

Figures 4 & 5—Area-Weighting for Runoff Coefficient Calculation

	Catchment Hydro	nlogic Det	а					
_	Saterinent nyun	(10-yr		f)		(100-	yr Ever	nt')
	Catchment ID =	31,32	-	(input)		Catchment ID	31,32	
	Area (A) =	104.00		(input) (input)		Area (A) =	<u> </u>	
	17							
	Runoff Coeff (C)=	0.55		(input)		Runoff Coeff (C	0.65	
	Rainfall Informa	tion Líine	:h/hrì =	C1 * P1 /(0	C2 + Td)^	C3		
_	Tr =		years	(input)	,	Tr =	100	years
	C1 =	28.50		(input)		C1 =	28.50	- -
	C2=	10.00		(input)		C2=	10.00	
	C3=	0.786		(input)		C3=	0.786	
	P1=		inches			P1=		inches
			9					
١.	Analysis of Flow	Time (Tin	ne of Co	oncentratio	on) for a (Catchment		
	Illustration							
			_					
		/			overland)		
			\square	Reach 1	flow /	LEGEND		
		Reach 2	ರೆ		J	O Beginning		
			0			Flow Direction		
					-	Catchment		
	Reach 3					Catchment Boundary		
	Reach 3							
		Heaw	Tillage	Forest	Short	Boundary	Grass	Paved
	SCS Type	Heavy Meadow	Tillage Field	Forest Woods	Short Pasture	Boundary Bare	Grass Swale	Paved
	SCS Type	Meadow	Tillage Field 5.00	Forest Woods 5.00	Short Pasture 7.00	Boundary Bare Soil	Swale	Flow
			Field	Woods	Pasture	Boundary Bare		
	SCS Type	Meadow	Field	Woods 5.00	Pasture	Boundary Bare Soil	Swale	Flow
	SCS Type Conveyance	Meadow 2.50	Field 5.00	Woods	Pasture 7.00	Boundary Bare Soil 10.00	Swale 15.00	Flow 20.00
	SCS Type Conveyance	Meadow 2.50	Field 5.00	Woods 5.00	Pasture 7.00 5-yr	Boundary Bare Soil 10.00 SCS	Swale 15.00 Flow	Flow 20.00 Flow
	SCS Type Conveyance	Meadow 2.50	Field 5.00 Slope	Woods 5.00 Length	Pasture 7.00 5-yr Runoff	Boundary Bare Soil 10.00 SCS Convey-	Swale 15.00 Flow Velocity	Flow 20.00 Flow Time
	SCS Type Conveyance	Meadow 2.50 Reach	Field 5.00 Slope S	Woods 5.00 Length L	Pasture 7.00 5-yr Runoff Coeff	Boundary Bare Soil 10.00 SCS Convey-	Swale 15.00 Flow Velocity V	Flow 20.00 Flow Time Tf
	SCS Type Conveyance	Meadow 2.50 Reach	Field 5.00 Slope S ft/ft	Woods 5.00 Length L ft input	Pasture 7.00 5-yr Runoff Coeff C-5	Boundary Bare Soil 10.00 SCS Convey- ance input	Swale 15.00 Flow Velocity V fps	Flow 20.00 Flow Time Tf minutes
	SCS Type Conveyance	Meadow 2.50 Reach ID Overland	Field 5.00 Slope S ft/ft input	Woods 5.00 Length L ft input 60.00	Pasture 7.00 5-yr Runoff Coeff C-5 input	Boundary Bare Soil 10.00 SCS Convey- ance	Swale 15.00 Flow Velocity V fps output	Flow 20.00 Flow Time Tf minutes output
	SCS Type Conveyance	Meadow 2.50 Reach ID Overland	Field 5.00 Slope S ft/ft input 0.0050	Woods 5.00 Length L ft input 60.00	Pasture 7.00 5-yr Runoff Coeff C-5 input	Boundary Bare Soil 10.00 SCS Convey- ance input	Swale 15.00 Flow Velocity V fps output 0.09	Flow 20.00 Flow Time Tf minutes output 11.43
	SCS Type Conveyance	Meadow 2.50 Reach ID Overland 1	Field 5.00 Slope S ft/ft input 0.0050 0.0060	Woods 5.00 Length L ft input 60.00 550.00	Pasture 7.00 5-yr Runoff Coeff C-5 input	Boundary Bare Soil 10.00 SCS Convey- ance input 20.00	Swale 15.00 Flow Velocity V fps output 0.09 1.55	Flow 20.00 Flow Time Tf minutes output 11.43 5.92
	SCS Type Conveyance	Meadow 2.50 Reach ID Overland 1 2	Field 5.00 Slope S ft/ft input 0.0050 0.0060 0.0200	Woods 5.00 Length L ft input 60.00 550.00 1000.00	Pasture 7.00 5-yr Runoff Coeff C-5 input	Boundary Bare Soil 10.00 SCS Convey- ance input 20.00 20.00	Swale 15.00 Flow Velocity V fps output 0.09 1.55 2.83	Flow 20.00 Flow Time Tf minutes output 11.43 5.92 5.89
	SCS Type Conveyance	Meadow 2.50 Reach ID Overland 1 2 3	Field 5.00 Slope S ft/ft input 0.0050 0.0060 0.0200	Woods 5.00 Length L ft input 60.00 550.00 1000.00	Pasture 7.00 5-yr Runoff Coeff C-5 input	Boundary Bare Soil 10.00 SCS Convey- ance input 20.00 20.00	Swale 15.00 Flow Velocity V fps output 0.09 1.55 2.83	Flow 20.00 Flow Time Tf minutes output 11.43 5.92 5.89
	SCS Type Conveyance	Meadow 2.50 Reach ID Overland 1 2 3 4	Field 5.00 Slope S ft/ft input 0.0050 0.0060 0.0200	Woods 5.00 Length L ft input 60.00 550.00 1000.00	Pasture 7.00 5-yr Runoff Coeff C-5 input	Boundary Bare Soil 10.00 SCS Convey- ance input 20.00 20.00	Swale 15.00 Flow Velocity V fps output 0.09 1.55 2.83	Flow 20.00 Flow Time Tf minutes output 11.43 5.92 5.89
	SCS Type Conveyance	Meadow 2.50 Reach ID Overland 1 2 3 4 5	Field 5.00 Slope S ft/ft input 0.0050 0.0060 0.0200	Woods 5.00 Length L ft input 60.00 550.00 1000.00 3000.00	Pasture 7.00 5-yr Runoff Coeff C-5 input	Boundary Bare Soil 10.00 SCS Convey- ance input 20.00 20.00	Swale 15.00 Flow Velocity V fps output 0.09 1.55 2.83	Flow 20.00 Flow Time Tf minutes output 11.43 5.92 5.89 27.28
	SCS Type Conveyance	Meadow 2.50 Reach ID Overland 1 2 3 4 5 Sum	Field 5.00 Slope S ft/ft input 0.0050 0.0060 0.0060 0.0084	Woods 5.00 Length L ft input 60.00 550.00 1000.00 3000.00 4610.00	Pasture 7.00 5-yr Runoff C-5 input 0.45	Boundary Bare Soil 10.00 SCS Convey- ance input 20.00 20.00	Swale 15.00 Flow Velocity V fps output 0.09 1.55 2.83 1.83 gional Tc =	Flow 20.00 Flow Time Tf minutes output 11.43 5.92 5.89 27.28 27.28
	SCS Type Conveyance Calculations:	Meadow 2.50 Reach ID Overland 1 2 3 4 5 5 5 Sum Min valu	Field 5.00 Slope S ft/ft input 0.0050 0.0060 0.0060 0.0084	Woods 5.00 Length L ft input 60.00 550.00 1000.00 3000.00 4610.00	Pasture 7.00 5-yr Runoff C-5 input 0.45	Boundary Bare Soil 10.00 SCS Convey- ance input 20.00 20.00 20.00	Swale 15.00 Flow Velocity V fps output 0.09 1.55 2.83 1.83 gional Tc =	Flow 20.00 Flow Time Tf minutes output 11.43 5.92 5.89 27.28 27.28 50.51 35.61
	SCS Type Conveyance Calculations:	Meadow 2.50 Reach ID Overland 1 2 3 4 5 Sum Min valu	Field 5.00 Slope S ft/ft input 0.0050 0.0060 0.0200 0.0084	Woods 5.00 Length L ft input 60.00 550.00 1000.00 3000.00 4610.00	Pasture 7.00 5-yr Runoff C-5 input 0.45	Boundary Bare Soil 10.00 SCS Convey- ance input 20.00 20.00 20.00 20.00 Convey- ance Reme is Recommon	Swale 15.00 Flow Velocity V fps output 0.09 1.55 2.83 1.83 	Flow 20.00 Flow Time Tf minutes output 11.43 5.92 5.89 27.28 27.28 50.51 35.61 35.61
	SCS Type Conveyance Calculations:	Meadow 2.50 Reach ID Overland 1 2 3 4 5 5 5 Sum Min valu	Field 5.00 Slope S ft/ft input 0.0050 0.0060 0.0200 0.0084	Woods 5.00 Length L ft input 60.00 550.00 1000.00 3000.00 4610.00	Pasture 7.00 5-yr Runoff C-5 input 0.45	Boundary Bare Soil 10.00 SCS Convey- ance input 20.00 20.00 20.00 20.00 Convey- ance Reme is Recommon	Swale 15.00 Flow Velocity V fps output 0.09 1.55 2.83 1.83 gional Tc = ended Tc =	Flow 20.00 Flow Time Tf minutes output 11.43 5.92 5.89 27.28 27.28 50.51 35.61 35.61

Figures 6 and 7—Calculation of a Peak Runoff Using Rational Method

2.3.3 FAA Method

The modified FAA Method utilizes the Rational Method to estimate detention volumes using a mass diagram. It is appropriate for basins smaller than 160 acres without multiple detention ponds or unusual watershed storage characteristics. Table 3 highlights key input data for use of the FAA Method.

	Area (acres)	Runoff Coefficient C	SCS Soil Type	T _c (min)	Release Rate (cfs/acre)	1-Hour Precip. (in)
10-Year	104	0.55	В	35	0.23	1.60
100-Year	104	0.65	В	35	0.85	2.60

Table 3—FAA Method Input Data

Figure 8 shows the computation of the 10-year storage volume using the FAA method. The plot of mass inflow versus mass outflow is depicted on Figure 9. Figures 10 and 11 show the corresponding information for the 100-year storage volume. The vertical difference between the plots of the 100-year inflow and modified outflow relates to a minimum detention volume of 382,399 cubic feet (8.8 acre-feet).

2.3.4 Denver Regression Equation

For checking purposes, the use of the formula V=KA is required in the Denver Metropolitan area. The formulae for the coefficient, K, for initial and major storm events are stated below.

 $K_{10} = (0.95I - 1.90)/1000$

 $K_{100} = (1.78I - 0.002[I]^2 - 3.56)/1000$

where I = Basin Imperviousness (%)

For a 104-acre basin with an imperviousness of 44%, the corresponding detention volumes are as shown below in Table 4.

	BASIN 031		BASIN 032		TOT	FAL
Area =	69.40	acres	34.60	acres	104.00	acres
Imp. =	38%		57%		44.4%	
K ₁₀ =	0.034		0.052		0.040	
K ₁₀₀ =	0.062		0.091		0.072	
VOL ₁₀ =	2.387	acre-feet	1.801	acre-feet	4.188	acre-feet
VOL ₁₀₀ =	4.269	acre-feet	3.152	acre-feet	7.421	acre-feet

Table	4—Detention	Volume
IUNIC		V Oranic

Desian In		10	-YEAR						10	0-YEA	R		
	formation (npuť)					Design Ir	nformatio	n (Input)				
otokmont [Drainage Area		A =	104.00			Catchment	Dreinege A		A =	104.00		
Runoff Coeffi			C =	0.55			Runoff Coef		ea	C =	0.65		
	nent NRCS Soi	Group	Type =	В	в 💌		Predevelopr		Soil Group	Type =	В	в 💌	
	d for Detention		T =		10 💌				tion Control	T =	100		
	centration of W		Tc =		minutes Default				f Watershed Rate (See T			minutes Default	
One-hour Pr	nit Release Rat ecipitation	e (See Table A) q= P1=	0.23	inches		One-hour P		Rate (See 1	q = P1 =		inches	
	nfall IDF Form	ula I=C1*P			Click Here to				ormula I=			Click Here to	
Coefficient o Coefficient tv			C1 = C2 =	28.50	Accept Denver		Coefficient of Coefficient t			C1 = C2 =	28.50	Accept Denver	
Coefficient th			C3 =	0.79			Coefficient t			C3 =	0.79	Area Default Values	
Determin	ation of Ave	rage Outflo	w from th	e Basin (Calculated	2	Determin	nation of	Average (Dutflow fr	om the B	asin (Calc	ulate
nflow Peak	Runoff		Qp-in =	128.92	cfs		Inflow Peak	Runoff		Qp-in =	247.59	cfs	
	eak Outflow Ra	te	Qp-out =	23.92			Allowable P		/Rate	Qp-out =	88.40		
Ratio of Qp-	out/Qp-in		Ratio =	0.19			Ratio of Qp-	out/Qp-in		Ratio =	0.36		
							-						
		d Unit Flow Rel	lease Rate in	cfs/acre of	tributary catc	hment			ided Unit Flo		Rate in cfs/a	cre of tributa	ry catc
	within UDFCD		INDOS (SO	2) Hudeole -	o Soil Orour				CD boundari) Hudeolo-i	c Soil Group	
	⊔esign i	requency	A NRCS (SC	S) Hydrolog B	ic Soil Group C & D			Design F	requency	A NRCS (SCS	3) Hydrologi B	C & D	
		year	0.02	0.03	0.04				/ear	0.02	0.03	0.04	
	5-	year	0.07	0.13	0.17			5-3	(ear	0.07	0.13	0.17	
		year	0.13	0.23	0.30				year	0.13	0.23	0.30	
		year year	0.24	0.56	0.52				year year	0.24	0.41	0.68	
		year -year	0.50	0.85	1.00				year -year	0.50	0.85	1.00	
Determi	ination of	Detentior	n Volume	Using	Modified	FAA Me	thod						
Rainfall du	ration must be										_		
Rainfall	Rainfall	10 Inflow	-YEAR Adjustment	Average	Outflow	Storage	Rainfall	Rainfall	1C Inflow	00-YEA	Average	Outflow	Stora
Duration	Intensity	Volume	Factor	Outflow	Volume	Volume	Duration	Intensity	Volume	Factor	Outflow	Volume	Volur
minutes	inch/hr	cubic feet		cfs	cubic feet	cubic feet	minutes	inch/hr	cubic feet		cfs	cubic feet	cubic
(input) 5.00	(output) 5.37	(output) 92,123	(output) 1.00	(output) 23.92	(output) 7,176	(output) 84,947	(input) 5.00	(output) 8.72	(output) 176,919	(output) 1.00	(output) 88.40	(output) 26,520	(outp 150,3
10.00	4.28	146,791	1.00	23.92	14,352	132,439	10.00	6.95	281,905	1.00	88.40	53,040	228,8
15.00	3.59	184,600	1.00	23.92	21,528	163,072	15.00	5.83	354,515	1.00	88.40	79,560	274,9
20.00	3.10	213,116	1.00	23.92	28,704	184,412	20.00	5.05	409,280	1.00	88.40	106,080	303,2
25.00 30.00	2.75	235 851 254 687	1.00	23.92 23.92	35,880 43,056	199,971 211,631	25.00	4.47	452,942 489,114	1.00	88.40 88.40	132,600 159,120	320,3 329,9
35.00	2.47	254,667	1.00	23.92	43,066 50,232	220,502	35.00	3.66	519,932	1.00	88.40	185,640	329,9
40.00	2.07	284,699	0.94	22.43	53,820	230,879	40.00	3.37	546,751	0.94	82.88	198,900	347,8
45.00	1.92	297,056	0.89	21.26	57,408	239,648	45.00	3.13	570,482	0.89	78.58	212,160	358,3
50.00 55.00	1.80 1.69	308,136 318,180	0.85	20.33 19.57	60,996 64,584	247,140 253,596	50.00 55.00	2.92 2.74	591,761 611,051	0.85	75.14 72.33	225,420 238,680	366,3 372,3
60.00	1.65	327,368	0.82	18.94	68,172	253,596	60.00	2.74	628,695	0.82	69.98	250,660	372,3
65.00	1.51	335,836	0.77	18.40	71,760	264,076	65.00	2.45	644,958	0.77	68.00	265,200	379,7
70.00 75.00	1.43	343,692	0.75	17.94	75,348	268,344	70.00	2.32	660,044	0.75	66.30	278,460	381,5
	1.36 1.30	351,020 357,891	0.73	17.54 17.19	78,936 82,524	272,084 275,367	75.00	2.22 2.12	674,119 687,313	0.73	64.83 63.54	291,720 304.980	382,3 382,3
	1.30	364,359	0.72	16.88	86,112	278,247	85.00	2.12	699,735	0.72	62.40	318,240	381,4
80.00 85.00	1.20	370,471	0.69	16.61	89,700	280,771	90.00	1.95	711,473	0.69	61.39	331,500	379,9
80.00 85.00 90.00	1.15	376,267	0.68	16.37	93,288	282,979	95.00	1.88	722,604	0.68	60.48	344,760	377,8
80.00 85.00 90.00 95.00	1.11	381,779 387,035	0.68	16.15 15.95	96,876 100,464	284,903 286,571	100.00	1.81	733,189 743,283	0.68	59.67 58.93	358,020 371,280	375,1
80.00 85.00 90.00 95.00 100.00	1.07	392,059	0.66	15.77	100,464	288,007	110.00	1.69	752,932	0.66	58.26	384,540	368,3
80.00 85.00 90.00 95.00	1.07 1.04	392,059		15.60	107,640	289,233	115.00	1.63	762,176	0.65	57.65	397,800	364,3
80.00 85.00 90.00 95.00 100.00 105.00 110.00 115.00	1.04 1.01	396,873	0.65		111,228	290,265	120.00	1.58	771,049	0.65	57.09	411,060	359,9
80.00 85.00 90.00 95.00 100.00 105.00 110.00 115.00 115.00 120.00	1.04 1.01 0.97	396,873 401,493	0.65	15.45			125.00	1.54	779,583 787,804	0.64	56.58 56.10	424,320 437,580	355,2
80.00 85.00 90.00 95.00 100.00 105.00 110.00 115.00 120.00 125.00	1.04 1.01 0.97 0.95	396 873 401 493 405 937	0.65	15.31	114,816	291,121 291,814	130000						344,8
80.00 85.00 90.00 95.00 100.00 105.00 110.00 110.00 115.00 120.00	1.04 1.01 0.97	396,873 401,493	0.65			291,121 291,814 292,356	130.00	1.49	795,736	0.63	55.66	450,840	
80.00 85.00 90.00 95.00 100.00 105.00 115.00 115.00 120.00 130.00 135.00 140.00	1.04 1.01 0.97 0.95 0.92 0.89 0.87	396 873 401 493 405 937 410 218 414 348 418 339	0.65 0.64 0.63 0.63 0.63	15.31 15.18 15.06 14.95	114,816 118,404 121,992 125,580	291,814 292,356 292,759	135.00 140.00	1.45 1.41	795,736 803,400	0.63 0.63	55.66 55.25	464,100	339,3
80.00 85.00 90.00 95.00 100.00 110.00 115.00 120.00 125.00 130.00 135.00 140.00 145.00	1.04 1.01 0.97 0.95 0.92 0.89 0.87 0.85	396.873 401.493 405.937 410.218 414.348 418.339 422.200	0.65 0.64 0.63 0.63 0.63 0.63 0.62	15.31 15.18 15.06 14.95 14.85	114,816 118,404 121,992 125,580 129,168	291,814 292,356 292,759 293,032	135.00 140.00 145.00	1.45 1.41 1.38	795,736 803,400 810,816	0.63 0.63 0.62	55.66 55.25 54.87	464 100 477 360	333,4
80.00 85.00 90.00 95.00 100.00 105.00 115.00 115.00 125.00 135.00 135.00 140.00 145.00 150.00	1.04 1.01 0.97 0.95 0.92 0.89 0.87 0.87 0.85 0.83	396,873 401,493 405,937 410,218 414,348 418,339 422,200 425,940	0.65 0.64 0.63 0.63 0.63 0.63 0.62 0.62	15.31 15.18 15.06 14.95 14.85 14.75	114,816 118,404 121,992 125,580 129,168 132,756	291,814 292,356 292,759 293,032 293,184	135.00 140.00 145.00 150.00	1.45 1.41 1.38 1.34	795,736 803,400 810,816 817,999	0.63 0.63 0.62 0.62	55.66 55.25 54.87 54.51	464 100 477 360 490 620	333,4 327,3
80.00 85.00 90.00 95.00 100.00 105.00 115.00 125.00 130.00 135.00 136.00 145.00 145.00 155.00	1.04 1.01 0.97 0.95 0.89 0.89 0.87 0.85 0.83 0.83 0.81	396.873 401.493 405.937 410.218 414.348 418.339 422.200 425.940 429.568	0.65 0.64 0.63 0.63 0.63 0.63 0.62 0.62 0.62 0.61	15.31 15.18 15.06 14.95 14.85 14.75 14.66	114,816 118,404 121,992 125,580 129,168 132,756 136,344	291,814 292,356 292,759 293,032 293,184 293,224	135.00 140.00 145.00 150.00 155.00	1.45 1.41 1.38 1.34 1.31	795,736 803,400 810,816 817,999 824,965	0.63 0.63 0.62 0.62 0.62 0.61	55.66 55.25 54.87 54.51 54.18	464 100 477 360 490 620 503 880	333,4 327,3 321,0
80.00 85.00 90.00 95.00 100.00 105.00 115.00 115.00 125.00 135.00 135.00 140.00 145.00 150.00	1.04 1.01 0.97 0.95 0.92 0.89 0.87 0.87 0.85 0.83	396,873 401,493 405,937 410,218 414,348 418,339 422,200 425,940	0.65 0.64 0.63 0.63 0.63 0.63 0.62 0.62	15.31 15.18 15.06 14.95 14.85 14.75	114,816 118,404 121,992 125,580 129,168 132,756	291,814 292,356 292,759 293,032 293,184	135.00 140.00 145.00 150.00	1.45 1.41 1.38 1.34	795,736 803,400 810,816 817,999	0.63 0.63 0.62 0.62	55.66 55.25 54.87 54.51	464 100 477 360 490 620	333,4 327,3 321,0 314,5
80.00 85.00 90.00 95.00 100.00 105.00 115.00 120.00 125.00 135.00 135.00 140.00 145.00 155.00 155.00 160.00 185.00	1.04 1.01 0.97 0.92 0.89 0.87 0.85 0.83 0.83 0.81 0.79 0.77 0.75	396.873 401.493 405.937 410.218 414.348 414.348 418.339 422.200 425.940 429.568 433.089 435.512 439.841	0.65 0.64 0.63 0.63 0.63 0.62 0.62 0.61 0.61 0.61 0.60	15.31 15.18 15.06 14.95 14.85 14.75 14.66 14.58 14.50 14.42	114,816 118,404 121,992 125,580 129,168 132,756 136,344 139,932 143,520 147,108	291,814 292,356 292,759 293,032 293,184 293,224 293,157 292,992 292,733	135.00 140.00 145.00 150.00 155.00 160.00 165.00 170.00	1.45 1.41 1.38 1.34 1.31 1.28 1.25 1.23	795,736 803,400 810,816 817,999 824,965 831,728 838,301 844,695	0.63 0.62 0.62 0.61 0.61 0.61 0.61 0.60	55.66 55.25 54.87 54.51 54.18 53.87 53.58 53.30	464 100 477 360 490 620 503 880 517 140 530 400 543 660	333,4 327,3 321,0 314,5 307,9 301,0
80.00 85.00 90.00 95.00 100.00 105.00 110.00 120.00 125.00 130.00 140.00 145.00 145.00 145.00 165.00 165.00 165.00 175.00	1.04 1.01 0.97 0.95 0.92 0.89 0.87 0.86 0.83 0.81 0.79 0.77 0.75 0.74	396.873 401.493 405.937 410.218 414.348 414.348 418.339 422.200 425.940 429.568 433.089 436.512 439.841 443.082	0.65 0.64 0.63 0.63 0.62 0.62 0.61 0.61 0.61 0.60 0.60	15.31 15.18 15.06 14.95 14.85 14.75 14.66 14.58 14.50 14.50 14.42 14.35	114,816 118,404 121,992 125,580 129,168 132,756 136,344 139,932 143,520 147,108 150,696	291,814 292,356 292,759 293,032 293,184 293,224 293,157 292,992 292,733 292,386	135.00 140.00 145.00 155.00 160.00 165.00 165.00 170.00 175.00	1.45 1.41 1.38 1.34 1.31 1.28 1.25 1.23 1.20	795,736 803,400 810,816 817,999 824,965 831,728 838,301 844,695 850,920	0.63 0.62 0.62 0.61 0.61 0.61 0.61 0.60 0.60	55.66 55.25 54.87 54.51 54.18 53.87 53.58 53.30 53.04	464 100 477 360 503 880 517 140 530 400 543 660 556 920	333,4 327,3 321,0 314,5 307,9 301,0 294,0
80.00 85.00 90.00 95.00 100.00 105.00 115.00 120.00 125.00 135.00 135.00 140.00 145.00 155.00 160.00 165.00 165.00	1.04 1.01 0.97 0.92 0.89 0.87 0.85 0.83 0.83 0.81 0.79 0.77 0.75	396.873 401.493 405.937 410.218 414.348 414.348 418.339 422.200 425.940 429.568 433.089 435.512 439.841	0.65 0.64 0.63 0.63 0.63 0.62 0.62 0.61 0.61 0.61 0.60	15.31 15.18 15.06 14.95 14.85 14.75 14.66 14.58 14.50 14.42	114,816 118,404 121,992 125,580 129,168 132,756 136,344 139,932 143,520 147,108	291,814 292,356 292,759 293,032 293,184 293,224 293,157 292,992 292,733	135.00 140.00 145.00 150.00 155.00 160.00 165.00 170.00	1.45 1.41 1.38 1.34 1.31 1.28 1.25 1.23	795,736 803,400 810,816 817,999 824,965 831,728 838,301 844,695	0.63 0.62 0.62 0.61 0.61 0.61 0.61 0.60	55.66 55.25 54.87 54.51 54.18 53.87 53.58 53.30	464 100 477 360 490 620 503 880 517 140 530 400 543 660	333,4
80.00 85.00 90.00 95.00 100.00 105.00 115.00 125.00 135.00 136.00 140.00 150.00 155.00 160.00 165.00 165.00 165.00 165.00 175.00 175.00 180.00 175.00 180.00 190.00 19	1.04 1.01 0.97 0.96 0.92 0.89 0.87 0.85 0.83 0.81 0.79 0.77 0.75 0.74 0.72 0.71	396.873 401,493 405,937 410,218 414,348 418,339 422,200 425,940 425,940 429,568 433,089 436,512 439,841 443,082 446,241	0.65 0.64 0.63 0.63 0.62 0.62 0.61 0.61 0.61 0.61 0.60 0.60 0.60 0.59	15.31 15.18 15.06 14.95 14.85 14.75 14.66 14.58 14.50 14.50 14.42 14.35 14.29 14.29	114,816 118,404 121,992 125,580 129,168 132,756 136,344 139,932 143,520 147,108 150,696 154,284 157,872	291,814 292,356 292,759 293,032 293,184 293,224 293,157 292,992 292,733 292,386 291,957 291,449	135.00 140.00 145.00 155.00 160.00 165.00 170.00 175.00 180.00	1.45 1.41 1.38 1.34 1.31 1.28 1.25 1.23 1.20 1.17 1.15	795,736 803,400 810,816 817,999 824,965 831,728 838,301 844,695 850,920 856,985	0.63 0.62 0.62 0.61 0.61 0.61 0.60 0.60 0.60 0.60 0.59	55.66 55.25 54.87 54.51 54.18 53.87 53.58 53.30 53.04 52.79 52.56	464,100 477,360 490,620 503,880 517,140 530,400 543,660 556,920 570,180 583,440	333, 327, 321, 314, 307, 301, 294, 286, 279,

Figures 8 and 9—Detention Volume by Modified FAA Method

(See Chapter 5-Runoff of this Manual for description of method)

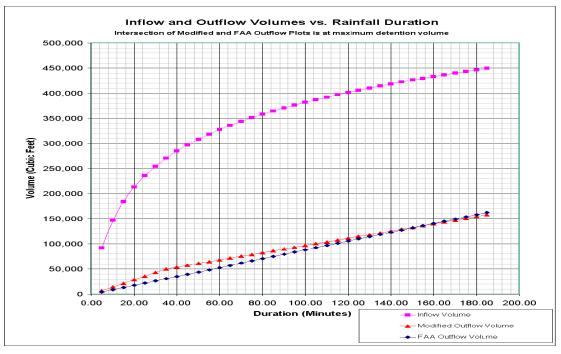


Figure 10—10-Year Modified FAA Method

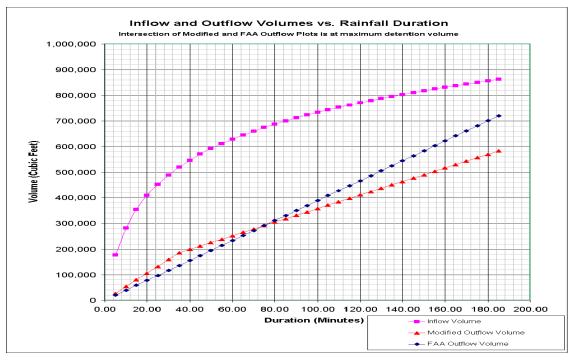


Figure 11—100-Year Modified FAA

2.3.5 Comparison of the Sizing Methodologies

Table 5 offers a comparison of the modeling results for detention sizing.

Та	able 5—Summary	Comparison of Sizing	g Methodologies
	V=KA (Acre-Feet)	FAA Method (Acre-Feet)	CUHP/SWM (Acre-Feet)
10-Year	4.2	6.7	4.3
100-Year	7.4	8.8	8.8

For the purposes of this design, the results of the CUHP/UDSWM analysis were used with a required storage volume of 8.8 acre-feet.

2.4 Detention Pond Outlet Configuration

A more detailed grading plan and storm sewer layouts for the detention pond area and adjacent roadways are illustrated on Figure 12. In order to prepare a design for the detention pond, it was necessary to confirm the adequacy of pond volume and establish related water surface depths. The outlet had to be designed to restrict discharges to the design criteria for each storm event and corresponding depth (and hydraulic head) condition. Additionally, the water quality capture volume (WQCV) had to be computed and included in the design volume.

Other objectives of the pond design included:

- For aesthetic purposes, the landscape architect determined that a more elongated and contoured shape was desirable.
- In order to provide for safety and to address the potential risk associated with the adjacent elementary school site, a dry detention pond scheme was selected. A maximum depth of 6 ft was provided and a more flatly graded perimeter area was chosen as a safety shelf.
- A multi-stage outlet was designed to control discharges of the WQCV, 10-year, and 100-year events.
- An overflow spillway and overland channel to Westerly Creek had to be provided for events greater than the 100-year storm and emergency operations.
- Due to the embankment height of less than 10 feet, the Colorado State Engineer did not regulate the pond and a Probable Maximum Flood (PMF) analysis was not required. However, in final design the emergency spillway must be designed for the un-attenuated inflow peak 100-year flow rate of 273 cfs or more and the embankment stability checked for a total flow of 273 cfs.

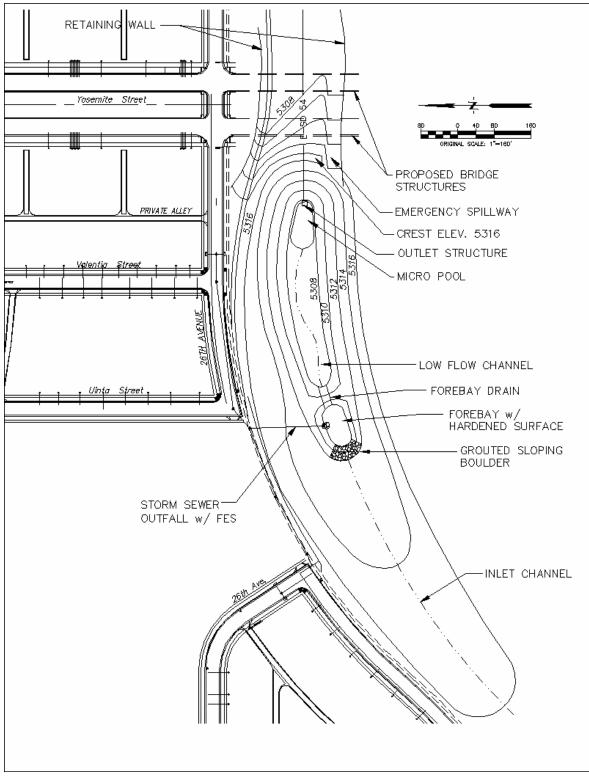
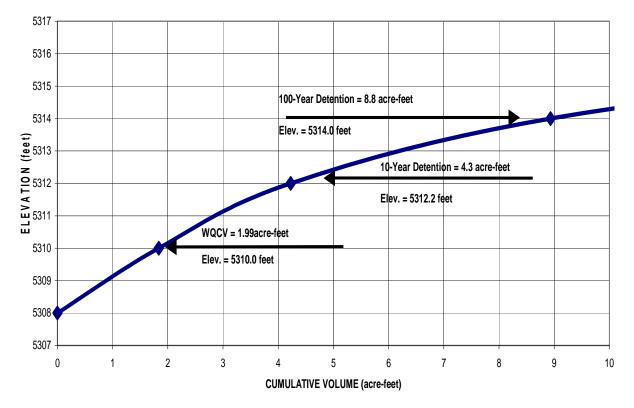


Figure 12—Stapleton Redevelopment Detention Pond Detail

2.4.1 Stage-Storage Relationships

To properly size the outlet works, it is important to develop depth versus cumulative storage volume relationships for the final detention pond configuration, as shown on Table 6. Figure 13 graphically shows the rating curve for the pond.

Table 0-		ist-west Deter		uniulative volu	me Analysis
Contour (feet)	Area (sq. ft.)	Avg Area (sq. ft.)	Volume (cu. ft.)	Cum. Vol. (cu. ft.)	Cum. Vol. (ac-ft)
5306	2,788				
		10,992	21,984	21,984	0.50
5308	22,303				
		28,992	57,983	79,967	1.84
5310	36,242				
		52,065	104,131	184,098	4.23
5312	69,696				
		102,551	205,102	389,200	8.93
5314	139,392				
		188,602	377,203	766,403	17.59
5316	242,542				


Table 6—Stapleton East-West Detention Pond Cumulative Volume Analysis

2.4.2 Water Quality Volume Requirements

The WQCV must also be determined and incorporated into the pond design. Figure 14 (3 pages) shows the computation of the WQCV from the **Extended Dry Detention Spreadsheet** of Volume 3 of this *Manual.* This computation includes the analysis of the perforated plate, trash rack, forebay, micro-pool and outlet structure components for proper operation. As indicated on line 1(D), a volume of 1.99 acrefeet will be required. Figure 15 is the same analysis of the perforated plate for WQCV using the newly developed spreadsheet from Volumes 1 and 2 of this *Manual.* This computation shows a total of 20 holes (1.50-inch diameter with 5 columns and 4 rows) that will release runoff at the appropriate rate for water quality treatment. Figure 16 is the analysis of the 10-year pond outlet orifice to accomplish the desired release rate of 0.23 cfs/acre (Type B soils), or 24 cfs for a 104-acre drainage basin. Figure 17 is the computation form for the 100-year release rate of 0.80 cfs/acre (Type B soils), or 88 cfs for the drainage catchment area.

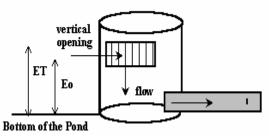
2.4.3 Final Pond Outlet Configuration

The final recommended outlet configuration is shown in plan and section view in Figure 18. As shown the WQCV of 2.0 acre-feet will require a ponded depth of 1.3 feet. The 100-year detention volume of 8.8 acre-feet will pond to a depth of 5.3 feet (excluding the micro-pond). These include the WQCV released over a 40-hour period. A horizontal grate at elevation 5313 controls the 100-year event.

STAGE -STORAGE CURVE STAPLETON EAST-WEST LINEAR PARK DETENTION POND

Figure 13—Stage-Storage Curve Stapleton East-West Linear Park Detention Pond

Desimen				Sheet 1
Designer:		Figuro	4.4	
Company:		Figure	14	
Date:	February 9, 2001			
Project:	UDFCD Example			
Location:	Stapleton Redevelopment			
1. Basin St	orage Volume			
		la=	44.40	%
A) Tribut	ary Area's Imperviousness Ratio (i = I _a / 100)	i =	0.44	
D) Cont	ibuting Watershed Area (Area)	Area =	104.00	20100
B) Conu	Ibuling Watershed Area (Area)	Area =	104.00	acres
C) Wate	r Quality Capture Volume (WQCV)	WQCV=	0.19	watershed inches
	V =1.0 * (0.91 * 1 ³ - 1.19 * 1 ² + 0.78 * 1))			
	gn Volume: Vol = (WQCV / 12) * Area * 1.2	Vol =	1.990	acre-feet
2. Outlet W	orks			
0.0.2			0.464 - 51	
A) Outle	t Type (Check One)	×	Orifice Pla	
			Other:	d Riser Pipe
			outer.	
D. Davit			4.00	61
B) Dept	n at Outlet Above Lowest Perforation (H)	H=	1.30	feet
C) Requ	ired Maximum Outlet Area per Row, (A _o)	A _o =	9.57	square inches
D) D- 4				
	ration Dimensions (enter one only): rcular Perforation Diameter OR	D=	1.5000	inches, OR
	Height Rectangular Perforation Width	W=	1.5000	inches
19.2				
E) Num	ber of Columns (nc, See Table 6a-1 For Maximum)	nc =	5	number
E) 0 at 1 a	Design Outlet (man and Devu (0.)	0 -	0.04	
F) Actua	I Design Outlet Area per Row (A ₀)	A _o =	8.84	square inches
G) Num	ber of Rows (nr)	nr=	4	number
LD. Total			24.40	anuara inches
H) TUtai	Outlet Area (A _{ot})	A _{ot} =	34.46	square inches
0 Tech D				
3. Trash Ra				
A) Need	ed Open Area: A _t = 0.5 * (Figure 7 Value) * A _{ot}	A _t =	1,102	square inches
B) Type	of Outlet Opening (Check One)	×	< 2" Diam	eter Round
by type				ectangular
			Other:	
C) For 2	", or Smaller, <u>Round Opening</u> (Ref.: Figure 6a):			
0 M62	Ith of Trash Rack and Concrete Opening (W _{conc})			
	m Table 6a-1	W _{conc} =	60	inches
		**colic		
	ight of Trash Rack Screen (H _{TR})	H _{TR} =	40	inches


Figure 14—Design Procedure For Extended Detention Basin Sedimentation Facility

				Sheet 2
Designer:				
Company:		Figure	: 14	
Date:	February 9, 2001			
Project:	UDFCD Example			
Location:	Stapleton Redevelopment			
iii) Typ	e of Screen (Based on Depth H), Describe if "Other"	X	S.S. #93 V Other:	'EE Wire (US Filter)
iv) Scre	een Opening Slot Dimension, Describe if "Other"	X	0.139" (US Other:	3 Filter)
	cing of Support Rod (O.C.)	1.00	inches	
Тур	e and Size of Support Rod (Ref.: Table 6a-2)	TE 0.074 in	n. x 1.00 in.	
vi) Typ	e and Size of Holding Frame (Ref.: Table 6a-2)	1.25 in. x 1	l.50 in. angl	e
D) For 2	High Rectangular Opening (Refer to Figure 6b):			
l) Wid	th of Rectangular Opening (VV)	W =		inches
ii) Wid	th of Perforated Plate Opening (W _{conc} = W + 12")	W _{conc} =		inches
iii) Wid	th of Trashrack Opening (W _{opening}) from Table 6b-1	Wopening =		inches
iv) Hei	ght of Trash Rack Screen (H _{TR})	H _{TR} =		inches
v) Type	e of Screen (based on depth H) (Describe if "Other")			<pp aluminu<="" series="" td=""></pp>
			Other:	
vi) Cro	oss-bar Spacing (Based on Table 6b-1, Klemp [™] KPP		inches	
Gra	ating). Describe if "Other"		Other:	
vii) Mir	imum Bearing Bar Size (Klemp [™] Series, Table 6b-2) (Based on depth of WQCV surcharge)			
4. Detention	n Basin length to width ratio		4.00	(LM)
5 Pre-sedi	nentation Forebay Basin - Enter design values			
A) Volum	e (5 to 10% of the Design Volume in 1D)		0.199	acre-feet
B) Surfa	ce Area		0.199	acres
	ector Pipe Diameter to drain this volume in 5-minutes under inlet control)		24	inches
(Size				
D) Paver	I/Hard Bottom and Sides		Y	yes/no

	3	edure Form: Ex			· · · · · · ·			
							St	neet 3 d
De	signer:							
Coi	mpany:				Figure	14		
Dat	te:	February 9, 2001						
Pro	iject:	UDFCD Example						
	ation:	Stapleton Redevelo	nmont					
	auon.	Stapleton Redevelo						
6	Two-Stage	Design						
0.	Two otage	Design						
_	A) Top Sta	ge (D _{wo} = 2' Minimun	n)		D ₀₀₂ =	2.00	feet	
_					Storage=	1.493	acre-feet	
	B) Bottom	Stage (D _{BS} = D _{WQ} + 1	5' Minimum, D _w	2 + 3.0' Maximum,	D _{8S} =	3.50	feet	
	Storage	e = 5% to 15% of Tota	i WQCV)		Storage=	0.299	acre-feet	
					Surf. Area=	0.085	acres	
_	C) Micro P	 ool (Minimum Depth	- the Larger of		Depth=	2.50	feet	
_		op Stage Depth or 2.5			Storage=	0.214	acre-feet	
_	0.0 10				Surf. Area=		acres	
		olume: Vol _{tot} = Storag		· 6B	Vol _{tot} =	1.990	acre-feet	
	Mustb	e ≥ Design Volume i	n 1D					
7	Bacin Cida	Slopes (Z, horizonta	dictance per un	it vortical)	Z=	4.00	(horizontal/	vortical
		= 4, Flatter Preferred		ni venical)	2=	4.00	(nonzontal/	vertical)
	Daws Freeho	nime and Oida Olanaa	(7. b. a. viera urba I. ali			4.00	(la a vizza v A a lA	
0.		ankment Side Slopes tical) Minimum Z = 4			Z=	4.00	(horizontal/	venical)
9.	Vegetation	Check the method o	r describe "Othe	er")	x	Native Gra	iss	
	_					Irrigated T	urf Grass	
						Other:		
	Notes:							

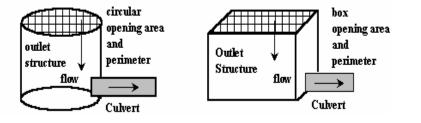
				_	- 4				4 D			
	Flow Capacity of a Riser (Inlet Control)											
				. F	~ ~ ~	000						
				ayer 4	N N N		\$ a					
			La	ayer 3			Number of l					
			_ L	ayer 2	000	000	in each laye	r				
			L	ayer 1	ÕÕÕ.	ŌŌŌ						
			_	Ľ								
			_									
			_		V F	low						
1	Description of	f Riser										
	Diameter of h					d =	1.500	lin				
	Number of ho	les per lay	er			n =	5					
	Vertical Distar					h =		in				
	Orifice Discha	irge Coeffi	cient			C _o =	0.60					
	Total opening	area at ea	ich layer			A ₀ =	8.8358	sqin				
							0.0614	sqft				
2	Calculation of	f Collection	n Capacity									
	The starting e	elevation o	f water su	rface mus	t be >= ce	intral eleva	tion of the	first laye	r .			
	Starting with								ers) to cale	culate flow	rates.	
	Elevations o	f water s	urface m	ust be en	tered in a	an increa	sing orde	r.				
	Water	Lavand				f Holes in f e		1 7	L avrau O	L avra a O	Lauran 4.0	Flow
	Surface Elevation	Layer 1	Layer 2 5309.09	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8	Layer 9	Layer 10	Flow Rate
	ft	0308.70				Lever of Hole	n in efe					cfs
	(input)		Conection	i Capacity I					1			
start	5308.80	0.06	0.00	0.00	0.00							0.06
- oran	5308.90	0.00	0.00	0.00	0.00							0.00
	5309.00	0.14	0.00	0.00	0.00							0.14
	5309.10	0.17	0.02	0.00	0.00							0.20
	5309.20	0.20	0.10	0.00	0.00							0.29
	5309.30	0.22	0.13	0.00	0.00							0.35
	5309.40	0.24	0.16	0.00	0.00							0.40
	5309.50	0.25	0.19	0.08	0.00							0.52
	5309.60		0.21	0.12	0.00							0.60
	5309.70		0.23	0.15	0.00							0.67
	5309.80		0.25	0.18	0.06							0.79
	5309.90	0.32	0.27	0.20	0.11							0.89
	5310.00	0.33	0.28	0.22	0.14							0.98
	5311.00	0.44	0.41	0.37	0.33							1.55
	5312.00	0.53	0.50	0.47	0.44							1.95
	5313.00 5314.00		0.58	0.56	0.53							2.28
	5314.00	0.68	0.65	0.63	0.61							2.57
	00.000	0.74	0.72	0.70	0.68							2.83
	5316.00	0.79	0.78	0.76	0.74							3.07

Figure 15—Flow Capacity of a Riser (Inlet Control)

1 Description of Vertical Orifice

Net Opening Area	$A_{o} =$	4.2	sq ft
Orifice Coefficient	C _o =	0.65	
Top Elevation of Orifice Opening Area	$E_t =$	5312.00	ft
Center Elevation of Orifice Opening	$E_{o} =$	5311.00	ft

2 Calculation of Collection Capacity


The starting elevation of water surface >= top of the orifice opening. Elevations of water surface must be entered in an increasing order.

Water	Collection
Surface	Capacity
Elevation	cfs
ft	
(input)	(output)
5312.00	21.91
5312.10	22.98
5312.20	24.00
5312.30	24.98
5312.40	25.92
5312.50	26.83
5312.60	27.71
5312.70	28.56
5312.80	29.39
5312.90	30.20
5313.00	30.98

Figure 16—Collection Capacity of Vertical Orifice (Inlet Control)

start

1

Description of Horizontal Orifice

Net Opening Area (after Trash Rack Redu	$ction)A_o =$	50.0	sq ft
Net Perimeter as Weir Length	$L_w =$	30.0	ft
Orifice Coefficient	C _o =	0.560	
Weir Coefficient	C _w =	3.000	
Center Elevation of Orifice Opening	$E_{o} =$	5313.00	ft

2 Calculation of Collection Capacity

The starting elevation of water surface must be >= Eo Elevations of water surface must be entered in an increasing order.

	Water	Weir	Orifice	Collection
	Surface	Flow	Flow	Capacity
	Elevation	cfs	cfs	cfs
	ft	0.0	0.0	
	(input)	(output)	(output)	(output)
start	5313.00	0.00	0.00	0.00
	5313.10	2.85	71.06	2.85
	5313.20	8.05	100.49	8.05
	5313.30	14.79	123.07	14.79
	5313.40	22.77	142.11	22.77
	5313.50	31.82	158.89	31.82
	5313.60	41.83	174.05	41.83
	5313.70	52.71	188.00	52.71
	5313.80	<mark>64.40</mark>	200.98	64.40
	5313.90	76.84	213.17	76.84
	5314.00	90.00	224.70	90.00

Figure 17—Collection Capacity of Horizontal Orifice (Inlet Control)

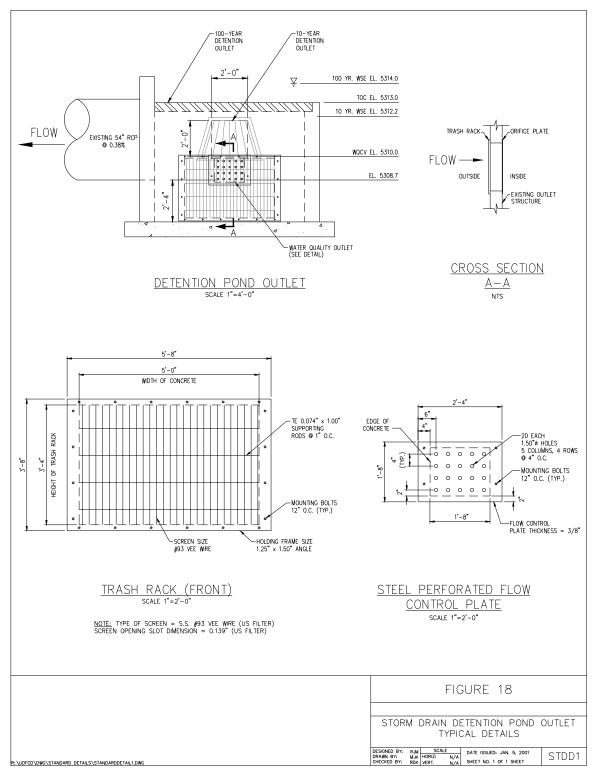


Figure 18—Detention Pond Outlet

2.5 Hydraulic Analysis And Capacity Verification Of The Existing Outfall

The capacity of the existing 54-inch storm sewer is a critical consideration in the design of the East-West Linear Park drainage system. Because the system outfalls to a major drainageway (Westerly Creek) that may create a tailwater control during peak flood flow conditions, a more detailed standard-step backwater analysis was performed. Figure 19 presents the profile of the existing pipeline.

The standard-step backwater is based on Manning's Equation to compute friction losses. Minor (form) losses should also be accounted for using the equations and factors described in the STREETS/INLETS/ STORM SEWERS chapter of this *Manual*. Figure 20 tabulates the computational process for the 100-year storm and a discharge rate of 88.4 cfs. The 100-year Westerly Creek floodplain elevation at the outfall of 5,304 ft is used as the beginning water surface elevation. Figure 21 provides a plot of the computed hydraulic grade line (HGL) and energy grade line (EGL) for the system. As indicated by an HGL above the crown of the pipe, a pressure flow condition exists for the 100-year storm. Because the 100-year HGL at the inlet is below the crown of pipe (outlet controlled), the allowable release rate of 88.4 cfs was used in the design of a multi-stage outlet (versus a restricting pipe capacity).

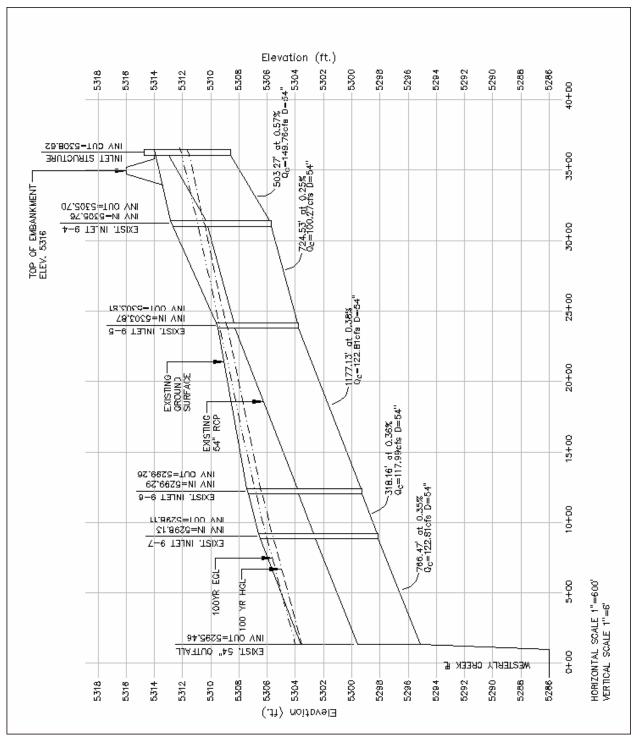
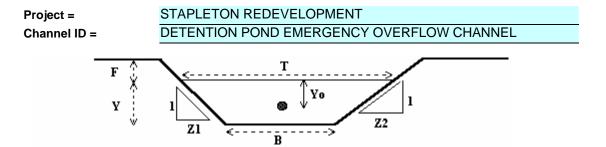



Figure 19—54" Pipe Outfall Profile

							HY	DRAUL	IC DES	SIGN OF STO	ORM SEV	VER SY	STEM	S						
					5	STAND	ARD S	TEP B.	ACKW	ATER ANAL	YSIS FOF	R FULL	PIPE 0	GEOME	TRY					
		PROJECT	: Staplet	on East-W	est Line	ar Park	Outfall													
				lanning's N						III Flow Factor =	0.9									<u> </u>
	NOTES:			ted values s					are requi	red input										l
		2	Freeboa	ard criteria:	HGL at	or below	rim or g	grnd.												
		3	Starting	EGL set a	t Wester	y Creek	100-Yea	ar floodpl	lain eleva	ation, assuming	velocity hea	ad in Wes	sterly Cr	eek is ne	gligible a	t culver	t entran	ce		
Desire Deint	Rim or	las.	Sewer	E.G.L.	U/S	A	Q	1/-1	Vel.		Friction	Pipe	Frict.	lune ette		Exit/	Form	Tatali		F
Design Point	Grnd. Elev.	Inv.	Grade	E.G.L.	pipe	Area	Q	Vel.	Hd.	H.G.L	Slope	Length	Loss	Junctio	on Loss	Lo	oss	Total I	losses	Free
			_		dia.				Hv		Sf	-	Hf	Km	Hm	Ke	He	frict.	other	HGL
	(ft)	(ft)	%	(ft)	(in)	(sq.ft)	(cfs)	(fps)	(ft)	(ft)	(ft/ft)	 (ft)	(ft)	NIII	(ft)	Re	(ft)	(ft)	(ft)	(ft)
	(11)	(11)	70	(11)	(11)	(34.11)	(013)	(103)	(11)	(11)	(1011)	(11)	(11)		(11)		(11)	(11)	(11)	(11)
Westerly Creek	5305.0	5295.45		5304.00	54	15.90	88.4	5.6	0.48	5303.52										1.5
Webbiny ereer		0200.10	0.35	0001.00		10.00	00.4	0.0	0.40	0000.02	0.00201	766.5	1.54	0	0.00	1	0.48	1.54	0.48	1.0
Inlet #9-7, d/s	5306.6	5298.11	0.00	5306.02	54	15.90	88.4	5.6	0.48	5305.54	0.00201				0.00		00		0.10	1.0
,			n/a								0.00201	0.1	0.00	0.75	0.12	0.05	0.02	0.00	0.14	
Inlet #9-7, u/s	5306.6	5298.13		5306.17	54	15.90	88.4	5.6	0.48	5305.69										0.9
			0.36								0.00201	318.2	0.64	1	0.00		0.00	0.64	0.00	
Inlet #9-6, d/s	5307.4	5299.26		5306.80	54	15.90	88.4	5.6	0.48	5306.33										1.1
			n/a								0.00201	0.1	0.00	0.75	0.12	0.05	0.02	0.00	0.14	
Inlet #9-6, u/s	5307.4	5299.29		5306.95	54	15.90	88.4	5.6	0.48	5306.47										0.9
			0.38								0.00201	1177.1	2.37	1	0.00		0.00	2.37	0.00	
Inlet #9-5, d/s	5309.5	5303.81		5309.32	54	15.90	88.4	5.6	0.48	5308.84										0.7
			n/a					L			0.00201	0.1	0.00	0.75	0.12	0.05	0.02	0.00	0.14	L
Inlet #9-5, u/s	5309.5	5303.87		5309.46	54	15.90	88.4	5.6	0.48	5308.98	0.000¢ :									0.5
			0.25			15.00				5010.11	0.00201	724.5	1.46	1	0.00		0.00	1.46	0.00	
Inlet #9-4, d/s	5312.8	5305.70		5310.92	54	15.90	88.4	5.6	0.48	5310.44	0.00001	0.4	0.00	0.75	0.40	0.05	0.00	0.00	0.14	2.4
Julat #0.4/a	5040.0	5005 70	n/a	5044.00	54	45.00	00.4	50	0.40	5040 50	0.00201	0.1	0.00	0.75	0.12	0.05	0.02	0.00	0.14	
Inlet #9-4, u/s	5312.8	5305.76	0.57	5311.06	54	15.90	88.4	5.6	0.48	5310.58	0.00201	503.3	1.01	1	0.00		0.00	1.01	0.00	2.2
Inlet #9-3, d/s	5314.0	5308.62	0.57	5312.07	54	15.90	88.4	5.6	0.48	5311.59	0.00201	503.3	1.01	1	0.00		0.00	1.01	0.00	2.4
1116t #3-3, U/S	5514.0	JJU0.02	n/a	0012.07	J4	10.90	00.4	5.0	0.40	5511.58	0.00201	0.1	0.00	0.75	0.12	0.05	0.02	0.00	0.14	2.4
Inlet #9-3. u/s	5314.0	5308.77	1//4	5312.22	54	15.90	88.4	5.6	0.48	5311.74	0.00201	0.1	0.00	0.75	0.12	0.05	0.02	0.00	0.14	2.2
1110t #0 0, U/S	0017.0	5000.11		0012.22		10.30	00.4	0.0	0.40	0011.74						1	<u> </u>			2.2

Figure 20—Hydraulic Design of Storm Sewer Systems

Design overflow channel for 100-year peak inflow without attenuation (273 cfs).

Design Information (Input)			
Channel Invert Slope	So =	0.0030	ft/ft
Channel Manning's N	N =	0.038	
Bottom Width	B =	30.0	ft
Left Side Slope	Z1 =	4.0	ft/ft
Right Side Slope	Z2 =	4.0	ft/ft
Freeboard Height	F =	1.0	ft
Design Water Depth	Y =	2.25	ft
Normal Flow Condition (Calculated)			
Discharge	Q =	<mark>279.6</mark>	cfs
Froude Number	Fr =	<mark>0.42</mark>	
Flow Velocity	V =	3.2	ft
Flow Area	A =	87.8	ft
Top Width	Τ=	48.0	sq ft
	T = P =	48.0 48.6	sq ft ft
Wetted Perimeter	. –		-
Wetted Perimeter Hydraulic Radius	P =	48.6	ft
Top Width Wetted Perimeter Hydraulic Radius Hydraulic Depth Specific Energy	P = R =	48.6 1.8 1.8	ft fps
Wetted Perimeter Hydraulic Radius Hydraulic Depth	P = R = D =	48.6 1.8 1.8	ft fps ft

Figure 21—Normal Flow Analysis - Trapezoidal Channel

2.6 Local Storm Sewer Design

The detention facility will adequately provide subregional storage for sub-basins 031 and 032 to protect downstream structures and control discharges to Westerly Creek. It will be essential to provide a conveyance system within the local sub-basins to collect and safely transport stormwater to the detention pond. Similar to most drainage systems, the Stapleton East-West Linear Park Flood Control Project utilizes a combination of roadway, open channel, and formal storm sewers for these purposes.

Figure 22 illustrates local basin 031 with further delineation of tributary areas (031.1A through 031.1E) to allow computation of hydrologic and hydraulic conditions at major intersections and inlet locations. An enlarged view of the storm sewer layout is shown on Figure 23, including an initial set of inlets at the intersection of 24th and 26th Avenues and installation of 24-inch RCP for conveyance to the detention pond.

2.6.1 Determination of Allowable Street Capacity

Inlets are provided to drain intersections without excessive encroachment and at street locations where needed to maintain allowable inundation depths for the initial and major storm events. Figure 24 shows computation of street capacity for the initial storm (2-year) with a normal depth, Y, to the top of curb. The corresponding capacity, Q_{max} , is 7.06 cfs. A similar calculation is performed in Figure 25 for the major storm for the specific roadway cross-section being constructed using Manning's Equation and the allowable depths indicated in this *Manual*. The corresponding capacity, Q_{max} , is 87.5 cfs.

2.6.2 Determination of Inlet Hydrology

The Rational Method is used to determine peak discharges for the local tributary area to each inlet. Figure 26 shows computation of the 2-year discharge for sub-basin 0.31.1B and the corresponding flow rate of 1.06 cfs. A check of the flow conditions in the street is provided on Figure 27 for 1.1 cfs and computation of the V_sD (velocity times depth product) to be 0.61 ft²/sec.

2.6.3 Inlet Capacity Calculations

Figure 28 demonstrates use of the **UDINLET** spreadsheet for a **Curb Opening Inlet in a Sump** for inlet 26-5A. For the 2-year discharge of 1.1 cfs, a 6-foot curb opening in a sump condition will provide full capture (with a maximum capacity of 6.8 cfs).

2.6.4 Street and Storm Sewer Conveyance Computations

To determine the appropriate combination of inlet, storm sewer, and street conveyance capacity, a detailed hydrologic and hydraulic analysis must be performed for each tributary area under initial (2-year) and major (100-year) conditions. The computational spreadsheets shown on Figures 29 and 30 present these analyses for the local street and storm sewer system.

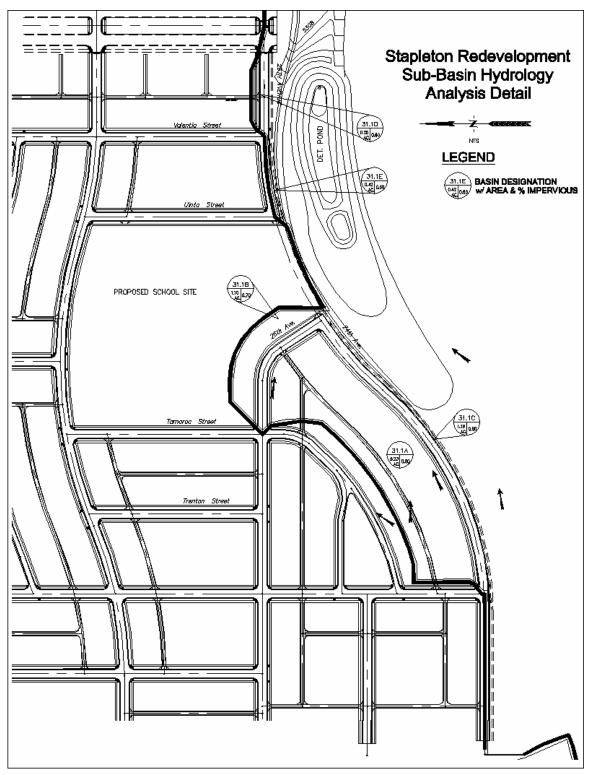


Figure 22—Sub-Basin Hydrology Analysis Detail

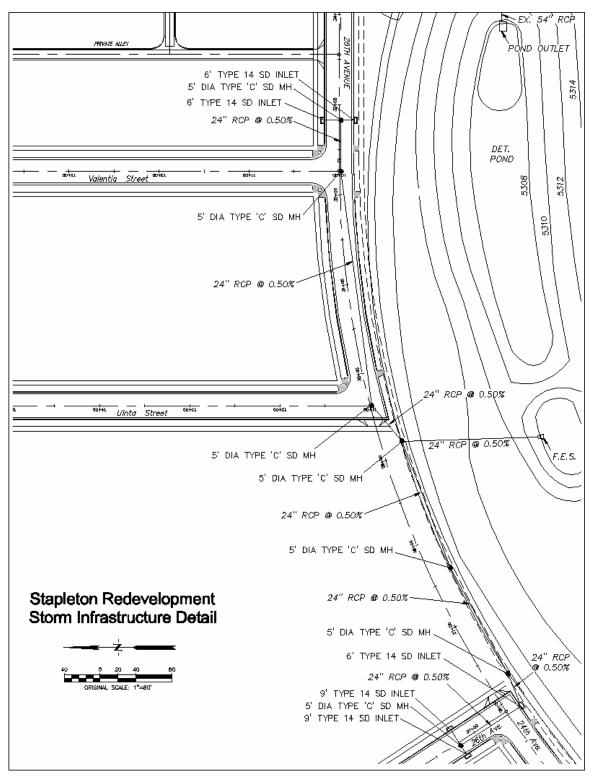


Figure 23—Storm Infrastructure Detail

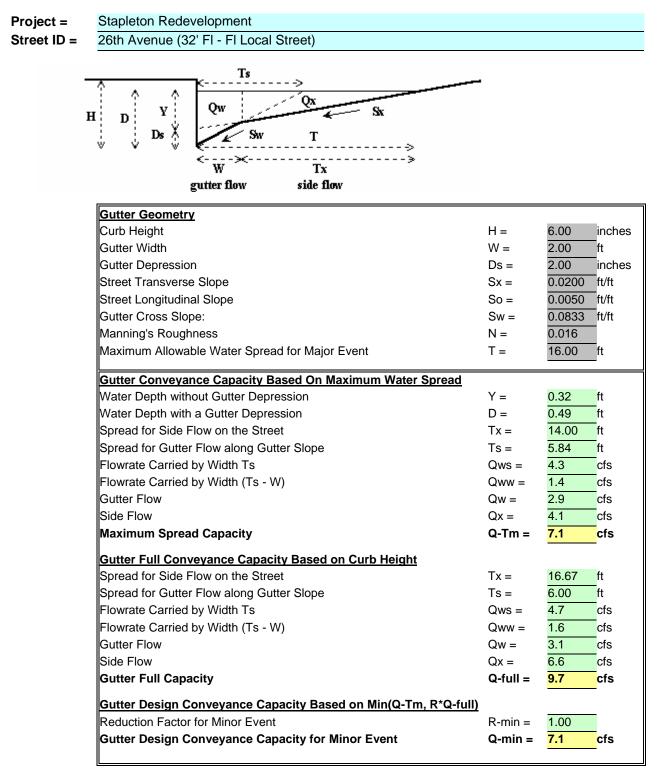
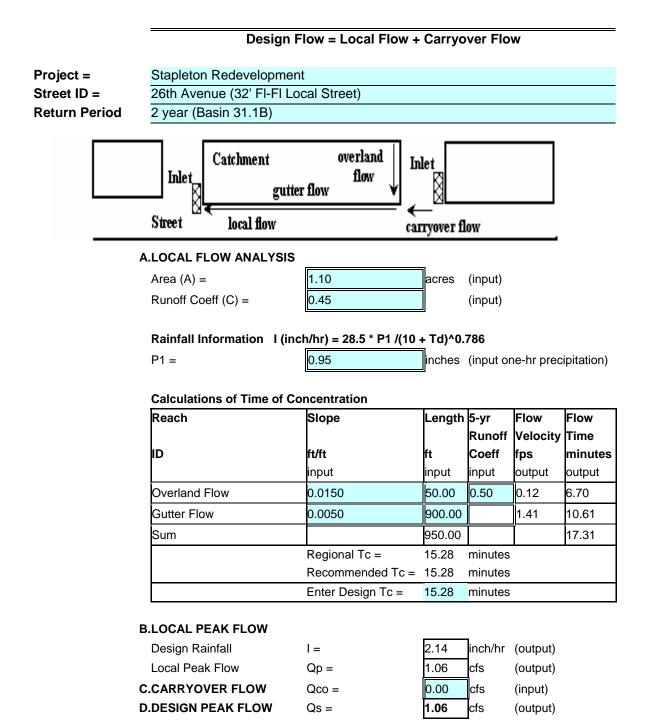
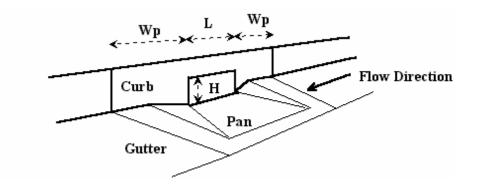



Figure 24—Gutter Stormwater Conveyance Capacity for Initial Event

Gutter With $W =$ 2.00 ftGutter DepressionDs = 2.00 incStreet Transverse SlopeSx = 0.0200 ft/ftStreet Longitudinal SlopeSo = 0.0050 ft/ftGutter Cross SlopeSw = 0.0833 ft/ftManning's RoughnessN = 0.016 Maximum Water Spread for Major EventT = 16.00 Gutter Conveyance Capacity Based On Maximum Water SpreadWater Depth without Gutter DepressionD =Water Depth with a Gutter DepressionD = 0.49 ftSpread for Side Flow on the StreetT = 14.00 ftSpread for Gutter Flow along Gutter SlopeT s = 5.84 ftFlowrate Carried by Width TsQws = 4.3 cfsGutter FlowQw = 2.9 cfsSide FlowQx = 4.1 cfsMaximum Spread CapacityQ-Tm = 7.1 CfsGutter Flow along Gutter SlopeT s =Spread for Side Flow on the StreetT s = 12.00 Flowrate Carried by Width TsQws = 2.9 cfsSpread for Gutter Flow along Gutter SlopeT s = 12.00 ftFlowrate Carried by Width TsQws = $2.9.7$ cfsFlowrate Carried by Width TsQws = $2.9.7$ cfsFlowrate Carried by Width TsQws = $2.9.7$ cfsGutter FlowQw = 11.4 cfsGutter FlowQw = 11.4 cfsGutter FlowQw = 11.4	roject =	Stapleton Redevelopment		
Image: Second State	treet ID =	26th Avenue (32' FI - FI Local Street)		
Curb Height $H =$ 12.00incGutter Width $W =$ 2.00ftGutter Depression $Ds =$ 2.00incStreet Transverse Slope $Sx =$ 0.0020ft/fGutter Cross Slope $Sw =$ 0.0833ft/fManning's Roughness $N =$ 0.016Maximum Water Spread for Major Event $T =$ 16.00Gutter Conveyance Capacity Based On Maximum Water SpreadWWater Depth without Gutter Depression $D =$ 0.49Water Depth with a Gutter Depression $D =$ 0.49Spread for Side Flow on the Street $Tx =$ 14.00Spread for Gutter Flow along Gutter Slope $Ts =$ 5.84Flowrate Carried by Width TsQws =4.3Flowrate Carried by Width (Ts - W)Qww =1.4Gutter FlowQw =2.9cfsSide FlowQx =4.1cfsSpread for Side Flow on the StreetTx =11.67Ruximum Spread CapacityQ-Tm =7.1CrtsGutter FlowQws =2.9.7Gutter FlowSide FlowQw =12.00Flowrate Carried by Width TsQws =2.9.7Spread for Side Flow on the StreetTs =12.00Flowrate Carried by Width TsQws =2.9.7Spread for Side Flow on the StreetTs =12.00Flowrate Carried by Width TsQws =2.9.7Spread for Gutter Flow along Gutter SlopeTs =12.00Flowrate Carried by Width TsQws =14.d		H D D W Qw Qx Sx $Qw Tx$		
Gutter Width $W =$ 2.00 ftGutter DepressionDs = 2.00 incStreet Transverse SlopeSx = 0.0200 ft/ftStreet Longitudinal SlopeSo = 0.0050 ft/ftGutter Cross SlopeSw = 0.0833 ft/ftManning's RoughnessN = 0.016 Maximum Water Spread for Major EventT = 16.00 Gutter Conveyance Capacity Based On Maximum Water SpreadWater Depth without Gutter DepressionD = 0.49 Water Depth with a Gutter DepressionD = 0.49 Spread for Side Flow on the StreetT x = 14.00 Flowrate Carried by Width TsQws = 4.3 Gutter FlowQw = 2.9 Gide FlowQx = 4.1 Gutter Flow along Gutter SlopeT s =Spread for Side Flow on the StreetT s =Spread for Gutter Flow along Gutter SlopeT s =Flowrate Carried by Width TsQws =Qure The FlowQw =Gutter FlowQ		Gutter Geometry		
Gutter DepressionDs = 2.00 incStreet Transverse SlopeSx = 0.0200 ft/ffStreet Longitudinal SlopeSo = 0.0050 ft/ffGutter Cross SlopeSw = 0.0833 ft/ffManning's RoughnessN = 0.016 Maximum Water Spread for Major EventT = 16.00 ftGutter Conveyance Capacity Based On Maximum Water SpreadWater Depth without Gutter DepressionD = 0.49 ftSpread for Side Flow on the StreetTx = 14.00 ftSpread for Gutter Flow along Gutter SlopeTs = 5.84 ftFlowrate Carried by Width TsQws = 2.9 cfsSide FlowQx = 4.1 cfsMaximum Spread CapacityQ-Tm = 7.1 cfsGutter FlowGutter SlopeTs =Spread for Side Flow on the StreetTx =Side FlowQx = 4.1 cfsMaximum Spread CapacityQ-Tm =Spread for Side Flow on the StreetTx =Spread for Side Flow on the StreetTs =Spread for Side Flow on the StreetTs =Spread for Gutter Flow along Gutter SlopeTs =Flowrate Carried by Width TsQws =Spread for Gutter Flow along Gutter SlopeTs =Flowrate Carried by Width TsQws =Spread for Gutter Flow along Gutter SlopeTs =Flowrate Carried by Width TsQws =Qure 11.4 cfsGutter FlowGutter FlowQw =Gutter FlowQw =Gutter FlowQw =Gutter Flow <td< th=""><th></th><th>Curb Height</th><th>H =</th><th>12.00 inches</th></td<>		Curb Height	H =	12.00 inches
Street Transverse Slope $Sx =$ 0.0200 ft/ftStreet Longitudinal Slope $So =$ 0.0050 ft/ftGutter Cross Slope $Sw =$ 0.0833 ft/ftManning's Roughness $N =$ 0.016 Maximum Water Spread for Major Event $T =$ Gutter Conveyance Capacity Based On Maximum Water SpreadWater Depth without Gutter Depression $D =$ Water Depth with a Gutter Depression $D =$ 0.49 ftSpread for Side Flow on the Street $Tx =$ Flowrate Carried by Width Ts $Cws =$ Flowrate Carried by Width (Ts - W) $Qww =$ Gutter Flow $Qx =$ Side Flow $Qx =$ Maximum Spread Capacity $Q-Tm =$ Spread for Side Flow on the Street $Tx =$ Side Flow $Qx =$ Maximum Spread Capacity $Q-Tm =$ Spread for Side Flow on the Street $Ts =$ Side Flow $Qx =$ Maximum Spread Capacity Based on Curb HeightSpread for Side Flow on the Street $Ts =$ Spread for Side Flow on the Street $Ts =$ Spread for Side Flow on the Street $Ts =$ Spread for Gutter Flow along Gutter Slope $Ts =$ Spread for Gutter Flow along Gutter Slope $Ts =$ Spread for Gutter Flow along Gutter Slope $Ts =$ Spread for Gutter Flow along Gutter Slope $Ts =$ Spread for Gutter Flow along Gutter Slope $Ts =$ Spread for Gutter Flow along Gutter Slope $Ts =$ Spread for Gutter Flow along Gutter Slope $Ts =$ Spread for Gutter Flow a		Gutter Width	W =	2.00 ft
Street Longitudinal SlopeSo = 0.0050 ft/ftGutter Cross SlopeSw = 0.0833 ft/ftManning's RoughnessN = 0.016 Maximum Water Spread for Major EventT = 16.00 ftGutter Conveyance Capacity Based On Maximum Water SpreadWater Depth without Gutter DepressionY = 0.32 ftWater Depth with a Gutter DepressionD = 0.49 ftSpread for Side Flow on the StreetTx = 14.00 ftSpread for Gutter Flow along Gutter SlopeTs = 5.84 ftFlowrate Carried by Width TsQws = 4.3 cfsGutter FlowQw = 2.9 cfsSide FlowQx = 4.1 cfsMaximum Spread Capacity Based on Curb HeightSpread for Side Flow on the StreetSpread for Side Flow on the StreetTs = 12.00 ftSpread for Side Flow along Gutter SlopeTs = 12.00 ftGutter Full Conveyance Capacity Based on Curb HeightSpread for Side Flow along Gutter SlopeSpread for Side Flow on the StreetTs = 12.00 ftFlowrate Carried by Width TsQws = 29.7 cfsFlowrate Carried by Width TsQws = 29.7 cfsGutter FlowQw = 11.4 cfsGutter FlowQx = 76.1		Gutter Depression	Ds =	2.00 inches
Gutter Cross SlopeSw = 0.0833 ft/ftManning's RoughnessN = 0.016 Maximum Water Spread for Major EventT = 16.00 Gutter Conveyance Capacity Based On Maximum Water SpreadWater Depth without Gutter DepressionY = 0.32 Water Depth with a Gutter DepressionD = 0.49 Spread for Side Flow on the StreetTx = 14.00 Spread for Gutter Flow along Gutter SlopeTs = 5.84 Flowrate Carried by Width TsQws = 4.3 Gutter FlowQw = 2.9 Gide FlowQw = 2.9 Side FlowQx = 4.1 Christ FlowQx = 4.1 Spread for Side Flow on the StreetTx = 41.67 Spread for Side Flow on the StreetTs = 12.00 Spread for Side Flow on the StreetTs = 12.00 Spread for Gutter Flow along Gutter SlopeTs = 12.00 Flowrate Carried by Width TsQws = 29.7 CfsGutter Flow along Gutter SlopeTs =Spread for Gutter Flow along Gutter SlopeTs =Slowrate Carried by Width TsQws =Slowrate Carried by Width (Ts - W)Qws =Qutre FlowQw =Gutter FlowQw =Side FlowQx =Gutter Fl		Street Transverse Slope	Sx =	0.0200 ft/ft
Manning's RoughnessN = 0.016 16.00Maximum Water Spread for Major EventT = 16.00 Gutter Conveyance Capacity Based On Maximum Water SpreadWater Depth without Gutter Depression $Y = 0.32$ Water Depth with a Gutter DepressionD =Spread for Side Flow on the Street $Tx = 14.00$ Flowrate Carried by Width TsQws =Flowrate Carried by Width (Ts - W)Qww =Gutter FlowQw =Gutter FlowQx =Side FlowQx =Maximum Spread Capacity Based on Curb HeightSpread for Gutter Flow along Gutter SlopeTs =Side FlowQx =Qutter Full Conveyance Capacity Based on Curb HeightSpread for Gutter Flow along Gutter SlopeTs =Spread for Gutter Flow along Gutter SlopeTs =Image: Spread for Gutter Flow along Gutter SlopeTs =Spread for Side Flow on the StreetTx =Spread for Gutter Flow along Gutter SlopeTs =Spread for Gutter FlowQws =Qutter FlowQw =			So =	0.0050 ft/ft
Maximum Water Spread for Major EventT =16.00ftGutter Conveyance Capacity Based On Maximum Water SpreadY0.32ftWater Depth without Gutter DepressionD =0.49ftSpread for Side Flow on the StreetTx =14.00ftSpread for Gutter Flow along Gutter SlopeTs =5.84ftFlowrate Carried by Width TsQws =4.3cfsGutter FlowQws =4.3cfsGutter FlowQw =2.9cfsSide FlowQx =4.1cfsMaximum Spread CapacityQ-Tm =7.1cfsGutter Full Conveyance Capacity Based on Curb HeightSpread for Gutter Flow along Gutter SlopeTs =12.00Spread for Gutter Flow along Gutter SlopeTs =12.00ftSpread for Gutter Flow along Gutter SlopeTs =12.00ftSpread for Gutter Flow along Gutter SlopeTs =12.00ftFlowrate Carried by Width TsQws =29.7cfsGutter FlowQws =29.7cfsGutter FlowQws =11.4cfsGutter FlowQw =11.4cfsGutter FlowQw =11.4cfsGutter FlowQx =76.1cfsGutter Full CapacityQ-full =87.5cfs		Gutter Cross Slope	Sw =	0.0833 ft/ft
Gutter Conveyance Capacity Based On Maximum Water SpreadWater Depth without Gutter Depression $Y = 0.32$ ftWater Depth with a Gutter Depression $D = 0.49$ ftSpread for Side Flow on the Street $Tx = 14.00$ ftSpread for Gutter Flow along Gutter Slope $Ts = 5.84$ ftFlowrate Carried by Width Ts $Qws = 4.3$ cfsGutter Flow $Qww = 1.4$ cfsGutter Flow $Qww = 2.9$ cfsSide Flow $Qx = 4.1$ cfsMaximum Spread Capacity $Q-Tm = 7.1$ cfsSpread for Side Flow on the Street $Ts = 12.00$ ftSpread for Side Flow on the Street $Ts = 12.00$ ftSpread for Gutter Flow along Gutter Slope $Ts = 12.00$ ftFlowrate Carried by Width (Ts - W) $Qww = 18.3$ cfsGutter Flow $Qww = 11.4$ cfsSpread for Gutter Flow along Gutter Slope $Ts = 12.00$ ftFlowrate Carried by Width (Ts - W) $Qww = 18.3$ cfsGutter Flow $Qww = 11.4$ cfsSide Flow $Qw = 11.4$ cfsGutter Flow $Qx = 76.1$ cfsGutter Flow $Qx = 76.1$ cfsGutter Full Capacity $Q-full = 87.5$ cfs			N =	0.016
Water Depth without Gutter Depression $Y = 0.32$ ftWater Depth with a Gutter Depression $D = 0.49$ ftSpread for Side Flow on the Street $Tx = 14.00$ ftSpread for Gutter Flow along Gutter Slope $Ts = 5.84$ ftFlowrate Carried by Width Ts $Qws = 4.3$ cfsGutter Flow $Qww = 1.4$ cfsGutter Flow $Qw = 2.9$ cfsSide Flow $Qx = 4.1$ cfsMaximum Spread Capacity $Q-Tm = 7.1$ cfsSpread for Side Flow on the Street $Ts = 12.00$ ftSpread for Side Flow on the Street $Ts = 12.00$ ftFlowrate Carried by Width Ts $Qws = 29.7$ cfsGutter Flow $Qww = 18.3$ cfsGutter Flow $Qww = 11.4$ cfsGutter Flow $Qww = 11.4$ cfsGutter Flow $Qww = 11.4$ cfsGutter Flow $Qww = 16.3$ cfs		Maximum Water Spread for Major Event	Τ=	<u>16.00</u> ft
Water Depth with a Gutter DepressionD = 0.49 ftSpread for Side Flow on the StreetTx = 14.00 ftSpread for Gutter Flow along Gutter SlopeTs = 5.84 ftFlowrate Carried by Width TsQws = 4.3 cfsFlowrate Carried by Width (Ts - W)Qww = 1.4 cfsGutter FlowQw = 2.9 cfsSide FlowQx = 4.1 cfsMaximum Spread CapacityQ-Tm = 7.1 cfsGutter Full Conveyance Capacity Based on Curb HeightSpread for Side Flow on the StreetTx =Spread for Side Flow on the StreetTs = 12.00 ftFlowrate Carried by Width TsQws = 29.7 cfsFlowrate Carried by Width (Ts - W)Qww = 18.3 cfsGutter FlowQw = 11.4 cfsSide FlowQw = 11.4 cfsGutter FlowQw = 12.00 ftFlowrate Carried by Width (Ts - W)Qww = 18.3 cfsGutter FlowQw = 11.4 cfsSide FlowQw = 11.4 cfsGutter FlowQw = 11.4 cfsGutter FlowQw = 11.4 cfsGutter FlowQw = 11.4 cfsSide FlowQx = 76.1 cfsGutter Full CapacityQr = 16.1 cfsGutter Full CapacityQr = 76.1 cfsGutter Full CapacityQr = 76.1 cfsGutter Full CapacityQr = 76.1 cfs		Gutter Conveyance Capacity Based On Maximum Water Spread		
Spread for Side Flow on the Street $Tx =$ 14.00 ftSpread for Gutter Flow along Gutter Slope $Ts =$ 5.84 ftFlowrate Carried by Width Ts $Qws =$ 4.3 cfs Flowrate Carried by Width (Ts - W) $Qww =$ 1.4 cfs Gutter Flow $Qw =$ 2.9 cfs Side Flow $Qx =$ 4.1 cfs Maximum Spread Capacity $Q-Tm =$ 7.1 cfs Gutter Full Conveyance Capacity Based on Curb Height $Ts =$ 12.00 Spread for Side Flow on the Street $Ts =$ 12.00 ftFlowrate Carried by Width Ts $Qws =$ 29.7 cfs Flowrate Carried by Width (Ts - W) $Qww =$ 18.3 cfs Gutter Flow $Qw =$ 11.4 cfs Side Flow $Qw =$ 11.4 cfs Gutter Flow $Qx =$ 76.1 cfs Gutter Full Capacity $Q-full =$ 87.5 cfs		Water Depth without Gutter Depression	Y =	0.32 ft
Spread for Gutter Flow along Gutter SlopeTs = 5.84 ftFlowrate Carried by Width TsQws = 4.3 cfsFlowrate Carried by Width (Ts - W)Qww = 1.4 cfsGutter FlowQw = 2.9 cfsSide FlowQx = 4.1 cfsMaximum Spread CapacityQ-Tm = 7.1 cfsGutter Full Conveyance Capacity Based on Curb HeightTx = 41.67 ftSpread for Side Flow on the StreetTx = 41.67 ftSpread for Gutter Flow along Gutter SlopeTs = 12.00 ftFlowrate Carried by Width TsQws = 29.7 cfsFlowrate Carried by Width (Ts - W)Qww = 18.3 cfsGutter FlowQw = 11.4 cfsSide FlowQx = 76.1 cfsGutter Full CapacityQx = 76.1 cfsGutter FlowQw = 11.4 cfsGutter FlowQx = 76.1 cfsGutter FlowQx = 76.1 cfsGutter FlowQx = 76.1 cfsGutter Full CapacityQ-full = 87.5 cfs		Water Depth with a Gutter Depression	D =	0.49 ft
Flowrate Carried by Width Ts $Qws =$ 4.3 cfsFlowrate Carried by Width (Ts - W) $Qww =$ 1.4 cfsGutter Flow $Qw =$ 2.9 cfsSide Flow $Qw =$ 2.9 cfsMaximum Spread Capacity $Q - Tm =$ 7.1 cfsGutter Full Conveyance Capacity Based on Curb Height $Qw =$ 4.3 cfsSpread for Side Flow on the Street $Tx =$ 41.67 ftSpread for Gutter Flow along Gutter Slope $Ts =$ 12.00 ftFlowrate Carried by Width Ts $Qws =$ 29.7 cfsFlowrate Carried by Width (Ts - W) $Qww =$ 18.3 cfsGutter Flow $Qx =$ 76.1 cfsGutter Flow $Qx =$ 76.1 cfsGutter Full Capacity $Q-full =$ 87.5 cfs		Spread for Side Flow on the Street	Tx =	14.00 ft
Flowrate Carried by Width (Ts - W) $Qww = 1.4$ cfsGutter Flow $Qw = 2.9$ cfsSide Flow $Qx = 4.1$ cfsMaximum Spread Capacity $Q-Tm = 7.1$ cfsGutter Full Conveyance Capacity Based on Curb Height $Spread$ for Side Flow on the StreetSpread for Side Flow on the Street $Tx = 41.67$ ftSpread for Gutter Flow along Gutter Slope $Ts = 12.00$ ftFlowrate Carried by Width Ts $Qws = 29.7$ cfsFlowrate Carried by Width (Ts - W) $Qww = 18.3$ cfsGutter Flow $Qw = 11.4$ cfsSide Flow $Qx = 76.1$ cfsGutter Full Capacity $Q-full = 87.5$ cfs		Spread for Gutter Flow along Gutter Slope	Ts =	5.84 ft
Gutter Flow $Qw =$ 2.9 cfsSide Flow $Qx =$ 4.1 cfsMaximum Spread Capacity $Q-Tm =$ 7.1 cfsGutter Full Conveyance Capacity Based on Curb Height $Tx =$ 41.67 ftSpread for Side Flow on the Street $Ts =$ 12.00 ftSpread for Gutter Flow along Gutter Slope $Ts =$ 12.00 ftFlowrate Carried by Width Ts $Qws =$ 29.7 cfsFlowrate Carried by Width (Ts - W) $Qww =$ 18.3 cfsGutter Flow $Qw =$ 11.4 cfsSide Flow $Qx =$ 76.1 cfsGutter Full Capacity $Q-full =$ 87.5 cfs		Flowrate Carried by Width Ts	Qws =	4.3 cfs
Side Flow $Qx =$ 4.1cfsMaximum Spread Capacity $Q-Tm =$ 7.1cfsGutter Full Conveyance Capacity Based on Curb Height $Tx =$ 41.67ftSpread for Side Flow on the Street $Tx =$ 41.67ftSpread for Gutter Flow along Gutter Slope $Ts =$ 12.00ftFlowrate Carried by Width Ts $Qws =$ 29.7cfsFlowrate Carried by Width (Ts - W) $Qww =$ 18.3cfsGutter Flow $Qw =$ 11.4cfsSide Flow $Qx =$ 76.1cfsGutter Full Capacity $Q-full =$ 87.5cfs		Flowrate Carried by Width (Ts - W)	Qww =	1.4 cfs
Maximum Spread CapacityQ-Tm = 7.1 cfsGutter Full Conveyance Capacity Based on Curb HeightSpread for Side Flow on the Street $Tx =$ 41.67 ftSpread for Gutter Flow along Gutter Slope $Ts =$ 12.00 ftFlowrate Carried by Width Ts $Qws =$ 29.7 cfsFlowrate Carried by Width (Ts - W) $Qww =$ 18.3 cfsGutter Flow $Qw =$ 11.4 cfsSide Flow $Qx =$ 76.1 cfsGutter Full Capacity $Q-full =$ 87.5 cfs		Gutter Flow	Qw =	2.9 cfs
Gutter Full Conveyance Capacity Based on Curb HeightSpread for Side Flow on the Street $Tx = 41.67$ ftSpread for Gutter Flow along Gutter Slope $Ts = 12.00$ ftFlowrate Carried by Width Ts $Qws = 29.7$ cfsFlowrate Carried by Width (Ts - W) $Qww = 18.3$ cfsGutter Flow $Qw = 11.4$ cfsSide Flow $Qx = 76.1$ cfsGutter Full Capacity $Q-full = 87.5$ cfs			Qx =	4.1 cfs
Spread for Side Flow on the Street $Tx =$ 41.67ftSpread for Gutter Flow along Gutter Slope $Ts =$ 12.00ftFlowrate Carried by Width Ts $Qws =$ 29.7cfsFlowrate Carried by Width (Ts - W) $Qww =$ 18.3cfsGutter Flow $Qw =$ 11.4cfsSide Flow $Qx =$ 76.1cfsGutter Full CapacityQ-full =87.5cfs		Maximum Spread Capacity	Q-Tm =	<mark>7.1</mark> cfs
Spread for Gutter Flow along Gutter SlopeTs =12.00 ftFlowrate Carried by Width TsQws =29.7 cfsFlowrate Carried by Width (Ts - W)Qww =18.3 cfsGutter FlowQw =11.4 cfsSide FlowQx =76.1 cfsGutter Full CapacityQ-full =87.5 cfs			-	
Flowrate Carried by Width TsQws =29.7cfsFlowrate Carried by Width (Ts - W)Qww =18.3cfsGutter FlowQw =11.4cfsSide FlowQx =76.1cfsGutter Full CapacityQ-full =87.5cfs				
Flowrate Carried by Width (Ts - W) $Qww =$ 18.3 cfsGutter Flow $Qw =$ 11.4 cfsSide Flow $Qx =$ 76.1 cfsGutter Full Capacity $Q-full =$ 87.5 cfs				
Gutter Flow $Qw =$ 11.4cfsSide Flow $Qx =$ 76.1cfsGutter Full CapacityQ-full =87.5cfs		-		
Side FlowQx =76.1cfsGutter Full CapacityQ-full =87.5cfs				
Gutter Full Capacity Q-full = 87.5 cfs			Qw =	
		Side Flow	Qx =	76.1 cfs
Gutter Design Convevance Capacity Based on Min(Q-Tm, R*Q-full)		Gutter Full Capacity	Q-full =	<mark>87.5</mark> cfs
		Gutter Design Conveyance Capacity Based on Min(Q-Tm, R*Q-full)		
Reduction Factor for Major Event R-maj = 1.00		Reduction Factor for Major Event	R-maj =	1.00
Gutter Design Conveyance Capacity for Major Event Q-maj = 7.1 cfs		Gutter Design Conveyance Capacity for Major Event	Q-maj =	<mark>7.1</mark> cfs

Figure 25—Gutter Stormwater Conveyance Capacity for Major Event



Project = Stapleton Redevelopment Street ID = 26th Avenue (32' FI-FI Local Street)		
		_
H D Y Qw Sx		
$\downarrow \qquad D_{S} \downarrow \qquad Sw \qquad T$		
W Tx gutter flow side flow		
Earth Tou and Tou		
Street Geometry (Input)		
Design Discharge in the Gutter	Qo =	1.1 cfs
Curb Height	H =	6.00 inches
Gutter Width	W =	2.00 ft
Gutter Depression	Ds = Sx =	2.00 inches
Street Transverse Slope Street Longitudinal Slope	Sx = So =	0.0200 ft/ft 0.0100 ft/ft
Gutter Cross Slope	S0 =	0.0833 ft/ft
Manning's Roughness	N =	0.016
		0.010
Gutter Conveyance Capacity		
Water Spread Width	Τ=	4.32 ft
Water Depth without Gutter Depression	Y =	0.09 ft
Water Depth with a Gutter Depression	D =	0.25 ft
Spread for Side Flow on the Street	Tx =	2.32 ft
Spread for Gutter Flow along Gutter Slope	Ts =	3.04 ft
Flowrate Carried by Width Ts	Qws =	
Flowrate Carried by Width (Ts - W)	Qww =	
Gutter Flow	Qw =	1.01 cfs
Side Flow	Qx =	0.05 cfs
Total Flow (Check against Qo)	Qs =	<u>1.1</u> cfs
Gutter Flow to Design Flow Ratio	Eo =	0.95
Equivalent Slope for the Street	Se =	0.10
Flow Area	As =	0.35 sq ft
Flow Velocity	Vs =	3.00 fps
VsD product	VsD =	0.76 ft²/s

Figure 27—Gutter Conveyance Capacity

Project = Stapleton Redevelopment

Inlet ID = 6' Type 14 (Basin 31.1B)

Design Information (Input)			
Design discharge on the street (from Street Hy)	Qo =	1.1	cfs
Length of a unit inlet	Lu =	6.00	ft
Side Width for Depression Pan	Wp =	2.00	ft
Clogging Factor for a Single Unit	Co =	0.20	
Height of Curb Opening	H =	0.50	ft
Orifice Coefficient	Cd =	0.65	
Weir Coefficient	Cw =	2.30	
Water Depth for the Design Condition	Yd =	0.55	ft
Angle of Throat	Theta =	1.05	rad
Number of Curb Opening Inlets	N =	1	
Curb Opening Inlet Capacity in a Sump			
As a Weir			
Total Length of Curb Opening Inlet	L =	6.00	ft
Capacity as a Weir without Clogging	Qwi =	9.0	cfs
Clogging Coefficient for Multiple Units	Clog-Coeff =	1.00	
Clogging Factor for Multiple Units	Clog =	0.20	
Capacity as a Weir with Clogging	Qwa =	7.9	cfs
As an Orifice			-
Capacity as an Orifice without Clogging	Qoi =	9.0	cfs
Capacity as an Orifice with Clogging	Qoa =	7.2	cfs
Capacity for Design with Clogging	Qa =	7.2	cfs
Capture %age for this inlet = Qa/Qs =	C% =	<mark>682.80</mark>	%

Figure 28—Curb Opening Inlet In A Sump

	1 DRAIN	AGE S				ATION	I FORI	М										gn St		2	yr
cation:			Stapleton	Filing No	2													Computed Checked b			
									Overlan	d Time (ti)		Travel T	ime íttì				tc Check		Runoff		
	26-508 26-50 26-50 26-108 26-108	acres 5.23 1.10 1.19 0.26 0.42	6.33 7.52 7.52 7.52	Coefficient "C2" Coefficient "C2" Coefficient "C2"	0.45 0.45 0.50 0.89 0.45 0.89	Coefficient "C100" 0.60 0.70 0.91	0.50	V 2.59 3.62 3.62 3.62	50	0.5%	ti min. 11.4 2.3 	fig. usg 1017 1017 1017 220 810	ed or 0.5% 0.5% 0.5% 0.5%	다. (1) [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	tt min 3.6 11.3 11.3 2.4 9.0	# min 15.0 22.7 13.6 12.9 12.9	1087 1067 270	(01+088//)) = 3 min 12.1 16.0 15.9 11.5 114.8	16.0 16.0 13.6 16.0 16.0 16.0 11.5	in/hr 2.37 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09	1.0 5.4 2.3 7.6 7.6 7.6 7.6 0.3
E	26-10A	U.42	0.68	0.87	0.89	0.91	0.37	0.47		0.5%	3.3	810	0.5%	1.5	9.0	12.3	860	14.8	12.3	2.36	
=			0.68	0.69				0.47											12.3	2.36	1.1
E			8.20	0.50				4.09											16.0	2.09	8.5
			8.20	0.50				4.09											16.0	2.09	8.5
b-Basin	Data		Str	eet		In	let	Sys	tem	Pipe											
Basin ID	k Slope	Allowable Capacity (half of street)	Bypassed Flow	New Flow	Total Street Flow	Length	Allowable Capacity	Intercepted Flow	Street Flow	Pipe Identification (Upstream - Downstream)) Length	2 Slope	Size	Allowable Capacity (0.80 Capacity)	, Pipe Flow	q/Q(0.8 Full)	v/V(Full) (from Fig 8-1)	Velocity	Pipe Flow Time	Enough Capacity?	Remarks
1A	% 0.50%	cfs 5.8	cfs 0.0	cfs 5.0	cfs 5.0	ft 9	cfs 8.6	 5.0	cfs 0.0	26-5A 26-5	(ft) 20	% 0.50%	in 18	cfs 5.9	cfs 5.0	0.84	1.00	fps 3.4	min 0.1	no	
1A 1B	0.63%	8.1		1.0	1.0	9	8.6	1.0	0.0	26-5B + 26-5	12	0.83%	18	7.7	1.0	0.14	0.58	2.5	0.1	no	
E IC E	0.50%	5.8	0.0	2.3	2.3	6	2.9	5.4 2.3 7.6	0.0	26-5 + 26-5C 26-5C + 26-6	79 35	0.50%	24	12.8 12.8	5.4 2.3	0.42	0.63	3.3	0.2	no	
E								7.6	0.0	26-6 + 26-7 26-7 + 26-8	117 150	0.50%	24 24	12.8 12.8	7.6 7.6	0.59	0.89	3.6 3.6	0.7	no no	
E ID	0.53%	6.5	0.0	0.3	0.3	6	5.8	7.6		26-8 + 26-9 26-11B + 26-11	54 18	0.50%	24 18	12.8 6.5	7.6 0.3	0.59	0.89	3.6 1.7		no no	
E	0.53%	6.5		0.9	0.9		5.8	0.9	0.0	26-11A + 26-11	14	0.79%	18	7.5	0.9	0.12	0.56	2.4	0.1	no	
			1			1		1.1	0.0	26-11 + 26-10	262	0.50%	24	12.8	1.1	0.09	0.52	2.1	2.1	no	1
E								1.1							1.1	0.09			04		
E								1.1 8.5	0.0	26-10 + 26-9 26-9 + OUTLET	57 180	0.50% 0.61%	24 30	12.8 25.6	1.1 8.5		0.52	2.1 3.9		no no	

Figure 29—Storm Drainage System Computation Form—2 Year

	1 DRAIN	AGE S				ATION	I FOR	м										gn St		100	yr
ocation:			Stapleton	Filing No	2													Computed	by:		
ıb-Basin	Data								Overlan	l Time (ti)		Travel T	ime (tt)				tc Check	Checked b	y: Runoff		
	Data								ovenan			maveri					te eneek		rtanon		
Basin ID	Inlet No.	Area	Cumulative Area	Coefficient "C2"	Coefficient "C5"	Coefficient "C100"	CA	Cumulative CA	Length (300' max)	Slope		Length	Slope	Velocity (Fig. 3-2)		tc=ti+tt	Total length	; = (1/180+10)	Final tc	Intensity "I"	Total Peak Discharge "Q"
	느	⊲ acres	acres			<u>ں</u>	<u>ں</u>	<u>ں</u>	ft	ں %	ti min.	ft	ں *	> fps	tt min	 min	ft –	알 min	min	in/hr	⊢ cfs
	26-5A	5.23	40,00	0.40	0.45	0.60	3.14			0.5%	11.4	325	0.5%	1.5	3.6	15.0		12.1	12.1	6.49	
	26-5B	1.10		0.45	0.50	0.70	0.77		70	0.5%	11.4	1017	0.5%	1.5	11.3	22.7	1087	16.0	16.0	5.72	4.4
IPE	26-5C	1.19	6.33	0.87	0.89	0.62	1.08	3.91	50	1.5%	2.3	1017	0.5%	1.5	11.3	13.6	1067	15.9	16.0 13.6	5.72 6.17	22.3 6.7
PE	20-00	1.15	7.52	0.07	0.03	0.66	1.00	4.99	50	1.576	2.J	1017	0.576	1.0	11.3	13.0	1007	10.5	16.0	5.72	28.5
PE			7.52			0.66		4.99											16.0	5.72	28.5
PE .1D	20.400	0.00	7.52	0.40	0.45	0.66	0.40	4.99	50	0.5%	10.1	220	0.50(4.5		40.0	270	44.5	16.0	5.72	
	26-10B 26-10A	0.26		0.40	0.45	0.60	0.16		50 50	0.5%	10.4 3.3	220 810	0.5%	1.5 1.5	2.4	12.9 12.3	270 860	11.5 14.8	11.5 12.3	6.65 6.45	
PE	20-10/5	0.42	0.68	0.07	0.00	0.79	0.50	0.54		0.570	0.0	010	0.070	1.5	5.0	12.5	000	14.0	12.3	6.45	
PE			0.68			0.79		0.54											12.3	6.45	
PE			8.2			0.67		5.53											16.0	5.72	31.6
			8.20			0.67		5.53											16.04	5.72	31.6
Sub-Bas	ain Data																				
	sin Data		Stre	et		In	et					Pipe									
Basin ID	Slope	Allowable Capacity*	Bypassed Flow (Negative flows indicates bypass flow to another DP system (See Remarks))	New Flow	Total Street Flow	Length	Allowable Capacity	Intercepted Flow (if inlet is in series, less intercepted flow is possible see remarks)	Bypassed Street Flow	Pipe Identification (Upstream- Downstream)	Length	Slope	Size	Allowable Capacity	Pipe Flow	q/Q(Ful)	v/V(Full)	Velocity	Pipe Flow Time	Enough Capacity (Street + Storm Sewer)?	Remarks
Basin ID	% Slope	cfs	Bypassed Flow (Negative flows indicates bypass flow to another DP system (See Remarks))	New Flow	cfs	њ Length	용 Allowable Capacity	Intercepted Flow (if inlet is in serie places intercepted flow is possible remarks)	्र छ Bypassed		(ft)	% Slope	in	cfs	cfs			fps	(min)	Enough Capacity (Street + Sewer)?	Remarks
CI Date of the second s	Slope		Bypassed Flow (Negative flows indicates bypass flow to another DP system (See Remarks))	New Flow		Length	Allowable Capacity	Intercepted Flow (if inlet is in serie less intercepted flow is possible remarks)	Bypassed Bypassed 13:0	90, 95 84 2 49 84 0 49 아 아 Pipe Identification (Upstream- 오 Downstream)		Slope				(Ins.)o,/b 1.0 1.0	1.1 1.1 1.1 1.1	fps 4.3 5.5		Capacity (Street +	Remarks
HID Basin ID	ed by % 0.50% 0.63%	cfs 23.3 32.1	Bypassed Flow (Negative flows By indicates bypass flow to another DP Bystem (See Remarks))	Mol L Men N ers 2004 4.4 22.3	cfs 20.4 17.4	a ico ⊨ Length	Allowable Capacity	Difference pred Flow (if inlet is in serie 1.0, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Bassed Bassed A B B B B B B B B B B B B B B B B B B	26-5A 26-5 26-5B + 26-5 26-5 + 26-5C	(ft) 20 12 79	8006 8 0.5% 0.5% 0.5%	in 18 18 24	cfs 7.4 9.6 16.0	cfs 7.4 9.6 16.0	1.0 1.0 1.0	1.01 1.01 1.01	fps 4.3 5.5 5.2	(min) 0.1 0.0	Section (Street + Sever)?	Remarks
0 III 18 18 10 10 10	ad or 8 0.50%	cfs 23.3	Bypassed Flow (Negative flows indicates bypass flow to another DP system (See Remarks))	Mol L 20.4 22.4 22.3 6.7	cfs 20.4	a⊨ ∞	3. 3. 151 / Allowable Capacity	1 Intercepted Flow (if inlet is in serie 2 9 less intercepted flow is possible 2 9 termarks)	Abasseq B 13.0 7.8 6.3 0.8	26-5A 26-5 26-5B + 26-5 26-5 + 26-5C 26-5C + 26-6	(ft) 20 12 79 35	8005 8005 0.5% 0.8% 0.5%	in 18 18 24 24	cfs 7.4 9.6 16.0 16.0	cfs 7.4 9.6 16.0 12.2	1.0 1.0 1.0 0.8	1.01 1.01 1.01 0.98	fps 4.3 5.5 5.2 3.8	(min) 0.1 0.0 0.3 0.2	sak sak sak sek sek sek Sewer)?	Remarks
0 1A 1B 1C 1C 1C	ed by % 0.50% 0.63%	cfs 23.3 32.1	Bypassed Flow (Negative flows By indicates bypass flow to another DP Bystem (See Remarks))	×00 Cfs 20.4 4.4 22.3 6.7 28.5	cfs 20.4 17.4	a ico ⊨ Length	Allowable Capacity	1 Intercepted Flow (if inlet is in serie a less intercepted flow is possible 0 (b) 0 9) + 2 0 10 11 0 10 11	2015 2017 2017 2017 2017 2017 2017 2017 2017	26-5A 26-5 26-5B + 26-5 26-5 + 26-5C 26-5C + 26-6 26-6 + 26-7	(ft) 20 12 79 35 117	8000 8000 0.5% 0.5% 0.5% 0.5%	in 18 18 24 24 24	cfs 7.4 9.6 16.0 16.0 16.0	cfs 7.4 9.6 16.0 12.2 16.0	1.0 1.0 1.0 0.8 1.0	1.01 1.01 1.01 0.98 1.01	fps 4.3 5.5 5.2 3.8 5.2	(min) 0.1 0.3 0.2 0.4	sak sak sak Sewen)?	Remarks
0 III 18 18 10 10 10	ed by % 0.50% 0.63%	cfs 23.3 32.1	Bypassed Flow (Negative flows Bypassed Flow to another DP CD system (See Remarks))	Mol L 20.4 22.4 22.3 6.7	cfs 20.4 17.4	a ico ⊨ Length	Allowable Capacity	1 Intercepted Flow (if inlet is in serie 2 9 less intercepted flow is possible 2 9 termarks)	Passed/A cfs 13.0 7.8 6.3 0.8 12.5 12.5	26-5A 26-5 26-5B + 26-5 26-5 + 26-5C 26-5C + 26-6	(ft) 20 12 79 35	8005 8005 0.5% 0.8% 0.5%	in 18 18 24 24	cfs 7.4 9.6 16.0 16.0	cfs 7.4 9.6 16.0 12.2	1.0 1.0 1.0 0.8	1.01 1.01 1.01 0.98	fps 4.3 5.5 5.2 3.8	(min) 0.1 0.0 0.3 0.2	sak sak sak sek sek sek Sewer)?	Remarks
미 10 10 10 10 10 10 10	8 8 0.50% 0.63% 0.50%	23.3 32.1 23.3 23.3 25.8	Bypassed Flow (Negative flows Bypassed Flows </td <td>^{Mo}LL efs 20.4 4.4 22.3 6.7 28.5 28.5 28.5 28.5 1.0</td> <td>cfs 20.4 17.4 13.0</td> <td>9) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2</td> <td>Killowaple Capacity 2:51 12:52 12:52 2</td> <td>는 1000 1000 1000 1000 1000 1000 1000 10</td> <td>Passed/8 cfs 13.0 7.8 6.3 0.8 12.5 12.5 12.5 0.0</td> <td>26-5A 26-5 26-5B + 26-5 26-5 + 26-5C 26-5C + 26-6 26-6 + 26-7 26-7 + 26-8 26-8 + 26-9 26-11B + 26-17</td> <td>(ft) 20 12 79 35 117 150 54 18</td> <td>8405 % 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5%</td> <td>in 18 18 24 24 24 24 24 24 24 18</td> <td>cfs 7.4 9.6 16.0 16.0 16.0 16.0 16.0 16.0 8.1</td> <td>cfs 7.4 9.6 16.0 12.2 16.0 16.0 16.0 1.0</td> <td>1.0 1.0 0.8 1.0 1.0 1.0 1.0 0.1</td> <td>1.01 1.01 1.01 0.98 1.01 1.01 1.01 1.01 0.57</td> <td>fps 4.3 5.5 5.2 3.8 5.2 5.2 5.2 5.2 0.3</td> <td>(min) 0.1 0.3 0.2 0.4 0.5 0.5 0.2 0.9</td> <td>sak sak sak sak sak Sewer)?</td> <td>Remarks</td>	^{Mo} LL efs 20.4 4.4 22.3 6.7 28.5 28.5 28.5 28.5 1.0	cfs 20.4 17.4 13.0	9) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Killowaple Capacity 2:51 12:52 12:52 2	는 1000 1000 1000 1000 1000 1000 1000 10	Passed/8 cfs 13.0 7.8 6.3 0.8 12.5 12.5 12.5 0.0	26-5A 26-5 26-5B + 26-5 26-5 + 26-5C 26-5C + 26-6 26-6 + 26-7 26-7 + 26-8 26-8 + 26-9 26-11B + 26-17	(ft) 20 12 79 35 117 150 54 18	8405 % 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5%	in 18 18 24 24 24 24 24 24 24 18	cfs 7.4 9.6 16.0 16.0 16.0 16.0 16.0 16.0 8.1	cfs 7.4 9.6 16.0 12.2 16.0 16.0 16.0 1.0	1.0 1.0 0.8 1.0 1.0 1.0 1.0 0.1	1.01 1.01 1.01 0.98 1.01 1.01 1.01 1.01 0.57	fps 4.3 5.5 5.2 3.8 5.2 5.2 5.2 5.2 0.3	(min) 0.1 0.3 0.2 0.4 0.5 0.5 0.2 0.9	sak sak sak sak sak Sewer)?	Remarks
日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	8 57 0.50% 0.63%	cfs 23.3 32.1 23.3	Bypassed Flow (Negative flows D D D D D D D D D D D D D D D D D D D	Mo Ju Ang 20.4 4.4 22.3 6.7 28.5 28.5 28.5 28.5 1.0 2.5	cfs 20.4 17.4 13.0	ອງ ເຊັ່ອງໄກ່	Allowable Capacity 5.21 12.22 12.22	Intercepted Flow (if inlet is in serie of the s	Passedka cfs 13.0 7.8 0.8 12.5 12.5 12.5 12.5 0.0 0.0	26-5A 26-5 26-5B + 26-5 26-5 + 26-5 26-5 + 26-6 26-6 + 26-7 26-7 + 26-8 26-8 + 26-9 26-11B + 26-1 26-11A + 26-1	(ft) 20 12 79 35 117 150 54 18 14	800 800 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.	in 18 18 24 24 24 24 24 24 24 18 18	cfs 7.4 9.6 16.0 16.0 16.0 16.0 16.0 16.0 16.0 8.1 9.3	cfs 7.4 9.6 16.0 12.2 16.0 16.0 16.0 1.0	1.0 1.0 0.8 1.0 1.0 1.0 0.1 0.1	1.01 1.01 1.01 0.98 1.01 1.01 1.01 1.01 0.57 0.70	fps 4.3 5.5 5.2 3.8 5.2 5.2 5.2 5.2 0.3 1.0	(min) 0.1 0.3 0.2 0.4 0.5 0.2 0.2 0.9 0.2	sak sak sak sak sak sak sak sak sak sak	Remarks
日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	8 8 0.50% 0.63% 0.50%	23.3 32.1 23.3 23.3 25.8	Bypassed Flow (Negative flows Bypassed Flows </td <td>^{Mo}LL efs 20.4 4.4 22.3 6.7 28.5 28.5 28.5 28.5 1.0</td> <td>cfs 20.4 17.4 13.0</td> <td>9) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2</td> <td>Killowaple Capacity 2:51 12:52 12:52 2</td> <td>는 1000 1000 1000 1000 1000 1000 1000 10</td> <td>Passedka cfs 13.0 7.8 0.8 12.5 12.5 12.5 12.5 0.0 0.0</td> <td>26-5A 26-5 26-5B + 26-5 26-5 + 26-5C 26-5C + 26-6 26-6 + 26-7 26-7 + 26-8 26-8 + 26-9 26-11B + 26-17</td> <td>(ft) 20 12 79 35 117 150 54 18</td> <td>8405 % 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5%</td> <td>in 18 18 24 24 24 24 24 24 24 18</td> <td>cfs 7.4 9.6 16.0 16.0 16.0 16.0 16.0 16.0 8.1</td> <td>cfs 7.4 9.6 16.0 12.2 16.0 16.0 16.0</td> <td>1.0 1.0 0.8 1.0 1.0 1.0 1.0 0.1</td> <td>1.01 1.01 1.01 0.98 1.01 1.01 1.01 1.01 0.57</td> <td>fps 4.3 5.5 5.2 3.8 5.2 5.2 5.2 5.2 0.3</td> <td>(min) 0.1 0.3 0.2 0.4 0.5 0.5 0.2 0.9</td> <td>sak sak sak sak sak sak sak sak sak sak</td> <td></td>	^{Mo} LL efs 20.4 4.4 22.3 6.7 28.5 28.5 28.5 28.5 1.0	cfs 20.4 17.4 13.0	9) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Killowaple Capacity 2:51 12:52 12:52 2	는 1000 1000 1000 1000 1000 1000 1000 10	Passedka cfs 13.0 7.8 0.8 12.5 12.5 12.5 12.5 0.0 0.0	26-5A 26-5 26-5B + 26-5 26-5 + 26-5C 26-5C + 26-6 26-6 + 26-7 26-7 + 26-8 26-8 + 26-9 26-11B + 26-17	(ft) 20 12 79 35 117 150 54 18	8405 % 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5%	in 18 18 24 24 24 24 24 24 24 18	cfs 7.4 9.6 16.0 16.0 16.0 16.0 16.0 16.0 8.1	cfs 7.4 9.6 16.0 12.2 16.0 16.0 16.0	1.0 1.0 0.8 1.0 1.0 1.0 1.0 0.1	1.01 1.01 1.01 0.98 1.01 1.01 1.01 1.01 0.57	fps 4.3 5.5 5.2 3.8 5.2 5.2 5.2 5.2 0.3	(min) 0.1 0.3 0.2 0.4 0.5 0.5 0.2 0.9	sak sak sak sak sak sak sak sak sak sak	
	8 8 0.50% 0.63% 0.50%	23.3 32.1 23.3 23.3 25.8	Bypassed Flow (Negative flows Bypassed Flows </td <td>**************************************</td> <td>cfs 20.4 17.4 13.0</td> <td>9) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2</td> <td>Killowaple Capacity 2:51 12:52 12:52 2</td> <td>1000 10000 1000 <t< td=""><td>passed AG cfs 13.0 7.83 0.8 12.5 12.5 12.5 12.5 0.0 0.0 0.0 0.0 0.0</td><td>26-5A 26-5 26-5B + 26-5 26-5C + 26-5C 26-5C + 26-6 26-7 26-7 26-7 + 26-8 26-8 + 26-9 26-11B + 26-12 26-11A + 26-10 26-11 + 26-10 26-10 + 26-9</td><td>(ft) 20 12 79 35 117 150 54 18 14 262 57</td><td>800 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.</td><td>in 18 18 24 24 24 24 24 24 18 18 18 24 24</td><td>cfs 7.4 9.6 16.0 16.0 16.0 16.0 8.1 9.3 16.0 16.0</td><td>cfs 7.4 9.6 16.0 12.2 16.0 16.0 16.0 1.0 2.5 3.5 3.5</td><td>1.0 1.0 0.8 1.0 1.0 1.0 0.1 0.1 0.3 0.2 0.2</td><td>1.01 1.01 0.98 1.01 1.01 1.01 0.57 0.70 0.66 0.66</td><td>fps 4.3 5.5 5.2 3.8 5.2 5.2 5.2 5.2 0.3 1.0 0.7 0.7</td><td>(min) 0.1 0.2 0.2 0.4 0.5 0.2 0.9 0.2 0.9 0.2 5.9 1.3</td><td>sak sak sak sak sak sak sak sak sak sak</td><td>Remarks</td></t<></td>	**************************************	cfs 20.4 17.4 13.0	9) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Killowaple Capacity 2:51 12:52 12:52 2	1000 10000 1000 <t< td=""><td>passed AG cfs 13.0 7.83 0.8 12.5 12.5 12.5 12.5 0.0 0.0 0.0 0.0 0.0</td><td>26-5A 26-5 26-5B + 26-5 26-5C + 26-5C 26-5C + 26-6 26-7 26-7 26-7 + 26-8 26-8 + 26-9 26-11B + 26-12 26-11A + 26-10 26-11 + 26-10 26-10 + 26-9</td><td>(ft) 20 12 79 35 117 150 54 18 14 262 57</td><td>800 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.</td><td>in 18 18 24 24 24 24 24 24 18 18 18 24 24</td><td>cfs 7.4 9.6 16.0 16.0 16.0 16.0 8.1 9.3 16.0 16.0</td><td>cfs 7.4 9.6 16.0 12.2 16.0 16.0 16.0 1.0 2.5 3.5 3.5</td><td>1.0 1.0 0.8 1.0 1.0 1.0 0.1 0.1 0.3 0.2 0.2</td><td>1.01 1.01 0.98 1.01 1.01 1.01 0.57 0.70 0.66 0.66</td><td>fps 4.3 5.5 5.2 3.8 5.2 5.2 5.2 5.2 0.3 1.0 0.7 0.7</td><td>(min) 0.1 0.2 0.2 0.4 0.5 0.2 0.9 0.2 0.9 0.2 5.9 1.3</td><td>sak sak sak sak sak sak sak sak sak sak</td><td>Remarks</td></t<>	passed AG cfs 13.0 7.83 0.8 12.5 12.5 12.5 12.5 0.0 0.0 0.0 0.0 0.0	26-5A 26-5 26-5B + 26-5 26-5C + 26-5C 26-5C + 26-6 26-7 26-7 26-7 + 26-8 26-8 + 26-9 26-11B + 26-12 26-11A + 26-10 26-11 + 26-10 26-10 + 26-9	(ft) 20 12 79 35 117 150 54 18 14 262 57	800 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.	in 18 18 24 24 24 24 24 24 18 18 18 24 24	cfs 7.4 9.6 16.0 16.0 16.0 16.0 8.1 9.3 16.0 16.0	cfs 7.4 9.6 16.0 12.2 16.0 16.0 16.0 1.0 2.5 3.5 3.5	1.0 1.0 0.8 1.0 1.0 1.0 0.1 0.1 0.3 0.2 0.2	1.01 1.01 0.98 1.01 1.01 1.01 0.57 0.70 0.66 0.66	fps 4.3 5.5 5.2 3.8 5.2 5.2 5.2 5.2 0.3 1.0 0.7 0.7	(min) 0.1 0.2 0.2 0.4 0.5 0.2 0.9 0.2 0.9 0.2 5.9 1.3	sak sak sak sak sak sak sak sak sak sak	Remarks
0 1A 1B 10 10 10 10 10 11 10 11 10 10 10 10 10	8 8 0.50% 0.63% 0.50%	23.3 32.1 23.3 23.3 25.8	Bypassed Flow (Negative flows Bypassed Flows </td <td>M0 L 20.4 4.4 22.3 6.7 28.5 28.5 28.5 28.5 1.0 2.5 3.5</td> <td>cfs 20.4 17.4 13.0</td> <td>9) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2</td> <td>Killowaple Capacity 2:51 12:52 12:52 2</td> <td>All Intercepted Flow (if inlet is in serie all line responses) 10</td> <td>passed AG cfs 13.0 7.83 0.8 12.5 12.5 12.5 12.5 0.0 0.0 0.0 0.0 0.0</td> <td>26-5A 26-5 26-5B + 26-5 26-5 + 26-5C 26-5 + 26-6 26-6 + 26-7 26-7 + 26-8 26-8 + 26-9 26-11B + 26-11 26-11A + 26-11 26-11 + 26-10</td> <td>(ft) 20 12 79 35 117 150 54 18 14 262</td> <td>865 % 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0</td> <td>in 18 18 24 24 24 24 24 24 18 18 18 24</td> <td>cfs 7.4 9.6 16.0 16.0 16.0 16.0 8.1 9.3 16.0</td> <td>cfs 7.4 9.6 16.0 12.2 16.0 16.0 16.0 1.0 2.5 3.5</td> <td>1.0 1.0 0.8 1.0 1.0 1.0 0.1 0.3 0.2</td> <td>1.01 1.01 1.01 0.98 1.01 1.01 1.01 1.01 0.57 0.70 0.66</td> <td>fps 4.3 5.5 5.2 3.8 5.2 5.2 5.2 0.3 1.0 0.7</td> <td>(min) 0.1 0.2 0.2 0.4 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 5.9</td> <td>sak sak sak sak sak sak sak sak sak sak</td> <td>EYPASSFLOW TO LOW</td>	M0 L 20.4 4.4 22.3 6.7 28.5 28.5 28.5 28.5 1.0 2.5 3.5	cfs 20.4 17.4 13.0	9) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Killowaple Capacity 2:51 12:52 12:52 2	All Intercepted Flow (if inlet is in serie all line responses) 10	passed AG cfs 13.0 7.83 0.8 12.5 12.5 12.5 12.5 0.0 0.0 0.0 0.0 0.0	26-5A 26-5 26-5B + 26-5 26-5 + 26-5C 26-5 + 26-6 26-6 + 26-7 26-7 + 26-8 26-8 + 26-9 26-11B + 26-11 26-11A + 26-11 26-11 + 26-10	(ft) 20 12 79 35 117 150 54 18 14 262	865 % 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0	in 18 18 24 24 24 24 24 24 18 18 18 24	cfs 7.4 9.6 16.0 16.0 16.0 16.0 8.1 9.3 16.0	cfs 7.4 9.6 16.0 12.2 16.0 16.0 16.0 1.0 2.5 3.5	1.0 1.0 0.8 1.0 1.0 1.0 0.1 0.3 0.2	1.01 1.01 1.01 0.98 1.01 1.01 1.01 1.01 0.57 0.70 0.66	fps 4.3 5.5 5.2 3.8 5.2 5.2 5.2 0.3 1.0 0.7	(min) 0.1 0.2 0.2 0.4 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 5.9	sak sak sak sak sak sak sak sak sak sak	EYPASSFLOW TO LOW

Figure 30—Storm Drainage System Computation Form—100 Year