Groundwater Quality Conditions and Agricultural Discharges

Current Nitrogen Loading

Item 8 May 11, 2018

Arwen Wyatt-Mair Senior Water Resources Control Engineer

Outline

- 1. Groundwater Quality Conditions Review
- 2. Key Messages
- 3. Current Nitrogen Waste Discharge
 - Sometimes referred to as "residual" or "loading"
- 4. Methods to Reduce Nitrogen Waste Discharge

Groundwater Quality Conditions Review

Groundwater contamination by nitrate is widespread and severe

Nitrate concentrations are increasing in many basins

Key Messages

- Nitrogen application data, reported by a subset of ranches largely located in impaired and worsening basins show
 - The average current nitrogen waste discharge is 10x greater than what would be protective of water quality
 - The overall amount of current nitrogen waste discharge is causing and contributing to increasing groundwater degradation
- Significant reductions in nitrogen waste discharge are possible

Current Nitrogen Waste Discharge

Nitrogen Waste Discharge in Agricultural Systems

*This is not meant to be representative of the full nitrogen cycle; it is meant to convey the concept of nitrogen Applied - Removed, or A-R Current Annual Nitrogen Waste Discharge Nitrogen Applied minus Nitrogen Removed

Total Nitrogen Applied Reporting

- Reported annually since 2014
- Over 600 ranches representing over 117,000 acres
 - Expanded in Ag Order 3.0 to ~1800 ranches
- Reports have covered primarily high risk crops
 - Lettuce, broccoli, cauliflower, spinach, celery, strawberries, etc.
- Grower-reported information on fertilizer, compost, amendments, irrigation water
- Harvest removal values not reported

Total Nitrogen Applied Analyses

- Comparison of N applied versus crop uptake
 - Research-based values for uptake ranges
 - Crop-specific
 - Nitrogen applied from all sources
- Comparison of N applied versus harvest removal
 - Calculation of waste discharge
 - Research-based values for harvest removal
 - Calculated for entire ranch
 - Nitrogen applied from all sources

Lettuce 2014-2016 Nitrogen from Fertilizers & Amendments and Irrigation Water

Irrigation Water Nitrogen

- Michael Cahn presentation from December 2017
 - "The 2015 trials clearly demonstrated that irrigation water NO3-N was at least as effectively used by the crop as fertilizer N."
 - Irrigation water nitrogen is bioavailable
- Pump and fertilize is feasible
 - Feasibility depends on irrigation water nitrate concentration

Irrigation Water Nitrogen

Mass of Nitrogen Applied (Ibs/ac)			
	Volume		
Conc.	1 ac-ft	2 ac-ft	3 ac-ft
10 mg/l	27	54	82
20 mg/l	54	82	163
30 mg/l	82	163	245
50 mg/l	136	272	408
100 mg/l	272	544	816

Calculation of Applied - Removed

- A-R: Nitrogen Applied minus Nitrogen Removed
 - Basic calculation based on the State Board metric
 - Nitrogen applied (A) is reported through TNA
 - Removal (R) is not currently reported
 - Use maximum research-based values for harvest removal
- Example: lettuce crop
 - 170 lbs/ac is applied in fertilizers, 100 lbs/ac is applied in irrigation water
 - Applied (A) = 170 + 100 = **270 lbs/ac**
 - 80 lbs/ac is removed during harvest
 - Removed (R) = 80 lbs/ac
 - A-R = 270 80 = <u>190 lbs/ac</u> nitrogen waste discharge

Operational Benchmark

- 2012 UC Davis Nitrate Report "Operational Benchmark"
 - Identified loading value protective of water quality
 - 31 lbs/ac nitrogen waste discharge
 - Provides context for understanding nitrogen waste discharge
- From lettuce example, 190 lbs/ac is about 6x operational benchmark

Current Annual Nitrogen Waste Discharge Nitrogen Applied minus Nitrogen Removed

Methods to Reduce Nitrogen Waste Discharge

- 1. Match nitrogen application with crop uptake
- 2. Pump and fertilize
- 3. Account for residual nitrogen left in the field after previous crop
- 4. Manage irrigation water scheduling to minimize nitrogen lost through leaching
- 5. Other site-specific management practices

Conclusion

- Groundwater nitrate contamination is widespread and severe, and degradation is increasing in many areas
- Nitrogen application data, reported by a subset of ranches largely located in impaired and worsening basins show
 - The average current nitrogen waste discharge is 10x greater than what would be protective of water quality
 - The overall amount of current nitrogen waste discharge is causing and contributing to increasing groundwater degradation
 - Significant reductions in nitrogen waste discharge are possible
- Developing regulatory options for Ag Order 4.0