Irrigation and Nutrient Management Reporting

- A brief introduction
 - Dr. Lowell Zelinski
 - PhD UC Davis 1995 Soil Science "Soil-Plant-Water Relations"
 - Owner, Precision Ag Consulting
 - Help farmers throughout the central coast comply with Regional Board ILRP requirements
 - Central coast member of Statewide Expert Panel on Nitrates
 - Suggestions for INMP Reporting Requirements

Nitrogen Applied and Removed

- Applied is fairly straight forward Use #'s from Total Nitrogen Applied (TNA) Reports
- Removed much more of a challenge
 - Requires "accurate" estimates of yield and concentration of N in harvested portion of crop.
 - **Yield** is considered a closely guarded trade secret by most growers major push back here
 - Methodology to estimate of concentration of N is not established and plant analysis labs are unwilling or reluctant to perform this task

Nitrogen Removed – an alternative approach

- Removed = Yield x Concentration
 - For many cool season vegetable (CSV), yields are similar from grower to grower
 - N Concentration is unknown for the dozens of crops grown
- The concentration problem
 - Need to sample and analyze EVERY harvest
 - There are 10,000's of harvests
 - Sampling methodology is unknown
 - Should sample numerous times per harvest to get statistically valid results
 - Personnel and Labs are not available

The Standard Deduction

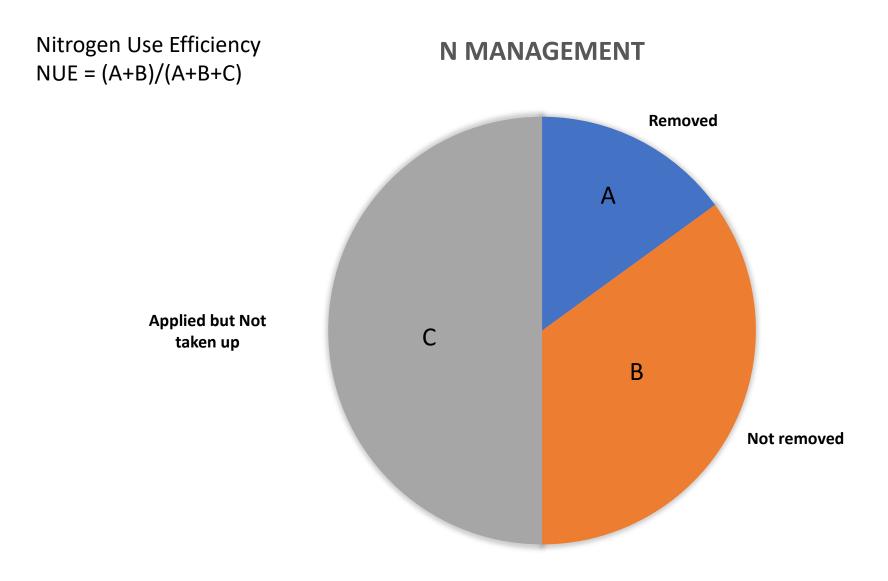
- I propose that the Regional Board develop a "standard deduction" of N removed
- Survey growers as to what is a good, average yield of the CSV that they grow
- Next slide has methodology of concentration estimation

Concentration estimation

Nutrition Facts				
For a Serving Size of 1				
Serving (100g)				
	Calories			
Calories 10	from Fat			
	0 (0%)			
	% Daily			
	Value *			
Total Fat Og				
	40/			
Sodium 10mg	1%			
Carbohydrates	1 70			
	-			
Carbohydrates	-			
Carbohydrates	0%			
Carbohydrates 1g Net carbs 1g	-			

- Most CSV are "food" crops
- Nutritional information exists for all CSV
- When determining "protein" content "protein" is not measured.
- Nitrogen is measured, and a conversion factor is applied
- If you know "protein" (from nutritional information) you can go backwards to get to nitrogen
- We can now estimate Removed: (Yield(survey) x Concentration(protein)

Applied vs Removed


- East San Joaquin WDR indicates that A/R and A-R should be reported
- We now have a methodology for reporting these values, that only requires some minor arithmetic to report
- The reporting of these values is NOT the best indicator of the effectiveness of changes in nitrogen management
- Why Not?

The fate of N in CSV systems

- N applied simple enough
- N removed also if previous methodology is adopted – simple enough
- This does not capture the "effectiveness" of nitrogen management changes
- Nitrogen Use Efficiency (NUE) is proposed

Nitrogen Use Efficiency (NUE)

- NUE = N taken up / total N applied
- Not a new concept been around in agronomic crops for decades
- N taken up = N removed + N taken up but not removed
- Total N applied from TNA forms

Example Table

Applied	Applied but not taken up	Removed	Taken up but not removed	NUE
350	250	25	75	28.6%
300	200	25	75	33.3%
250	150	25	75	40.0%
225	125	25	75	44.4%
200	100	25	75	50.0%
175	75	25	75	57.1%
150	50	25	75	66.7%

Note that increasing N Applied does not change removed or taken up but not removed

But how is it done?

The Four R's of Fertilizer Management

- Right Rate (100 lbs vs 200 lbs)
- Right Timing (Before Planting vs During Growth)
- Right Placement (Broadcast vs Fertigation)
- Right Form (Ammonium vs Nitrate vs Compost)

Farmers can control these things – They can not control N removed or N required

Summary

- A/R and A-R are good but not as sensitive as NUE
- Farmers can not control A/R or A-R but can NUE
- Don't forget Standard Deduction concept
- No additional data collection is required with these proposals
- Works for Irrigation Management also Irrigation Use Efficiency (IUE)