

HEALTH, SAFETY AND PERFORMANCE... SIREM BIOAUGMENTATION CULTURES

Presented by: Phil Dennis, SiREM, Guelph, Ontario To: LARWQCB, WDR Working Group

> Los Angeles, CA October 17th, 2013

SiREM Bioremediation Focused Service Areas

Molecular Genetic Testing

gene (trace)

Biotreatability Studies

Bioaugmentation Products

Where we are Located

SiREM is located in the University of
Guelph Research Park in Ontario, Canada
45 minutes west of Toronto International
Airport, allowing efficient overnight
shipping to/from international
destinations

University of Guelph Research Park

Bioaugmentation

Injection of KB-1® at a site in Florida

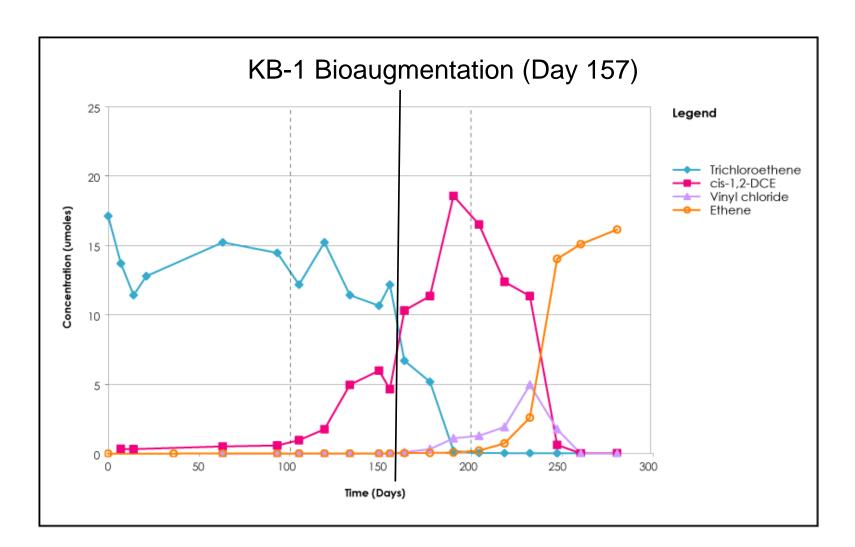
- Bioaugmentation:
 the addition of beneficial microorganisms to improve the rate or extent of biodegradation
- KB-1® and KB-1® Plus: commercial bioaugmentation cultures used to introduce beneficial organisms to sites where they are absent or at low concentrations/poorly distributed

Premeasured KB-1® ready for application at Coastal site in Southern California

SiREM Bioaugmentation Cultures

 Chlorinated ethenes (PCE, TCE, cDCE and VC) degrading culture + 1,2-DCA
 Primarily Dehalococcoides (Dhc)

B1 plus®


Custom blended from source cultures degrades:

- Chlorinated ethanes (tetrachloroethane, 1,1,2-TCA and 1,1,1-TCA, 1,1-DCA)
- Chlorinated methanes (CT/CF/DCM)

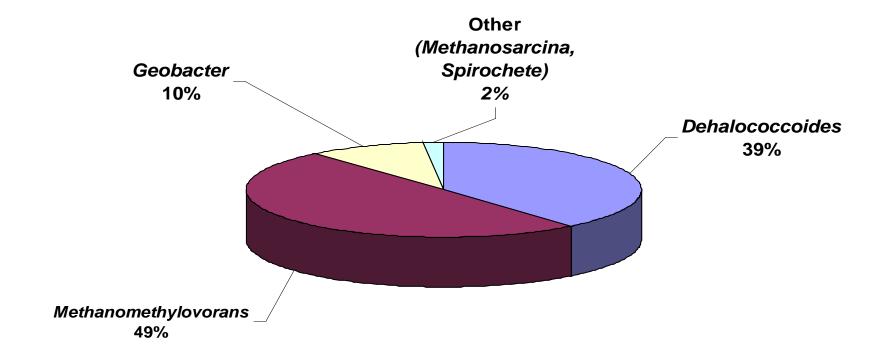
Primarily Dehalobacter (Dhb) and Dehalogenimonas (Dhg)

Effect of KB-1 At Site Northern California

SiREM Bioaugmentation: Safe/Dependable/Approved/Guaranteed

- SiREM cultures are proven performers used for over 10 years
- Regulatory approval obtained in many jurisdictions based on excellent quality control and extensive culture characterization
- Delivered in high quality stainless steel pressure vessels
- SiREM has the only cultures with performance guarantees
- High level of technical support through the planning, injection and data analysis stages

KB-1® (101)

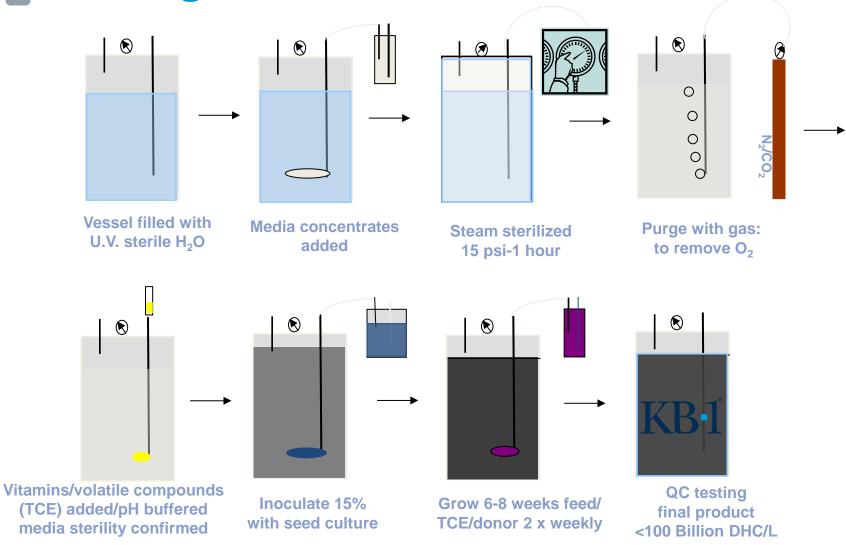

- Anaerobic liquid bioaugmentation culture enriched from TCE site
- Contains > 100 billion Dhc/Liter
- Not genetically engineered
- Pathogen free

Microbial Characterization of KB-1 by qPCR

Media Composition

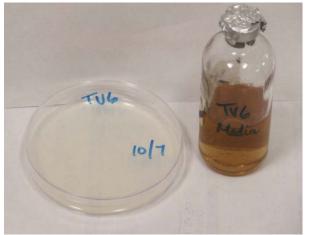
Chemical Name	Formula	CAS#	Concentration
			grams/Liter
Potassium Phosphate Dibasic	KH ₂ PO ₄	7758-11-4	0.27
Potassium Phosphate Monobasic	K ₂ HPO ₄	7778-77-0	0.34
Ammonium Chloride	NH ₄ CI	12125-02-9	0.535
Calcium Chloride	CaCl ₂	10035-04-8	0.07
Magnesium Sulfate	MgSO ₄	10034-99-8	0.125
Ferrous Chloride	FeCl ₂	13478	0.02
Sodium bicarbonate	NaHCO ₃	144-55-8	2.0
Ferrous Ammonium Sulfate	(NH ₄) ₂ Fe(SO ₄) ₂	7783-85-9	0.4
Sodium sulfide	Na ₂ S	1313-84-4	0.12
Resazurin	C ₁₂ H ₆ NNaO ₄	62758-13-8	0.001
Boric Acid	НзВОз	10043-35-3	0.0006
Zinc Chloride	ZnCl	7646-85-7	0.0002
Sodium Molybdate	Na ₂ MoO ₄	10102-40-6	0.0002
Nickel II Chloride	NiCl ₂	7791-20-0	0.0015
Manganese Chloride	MnCl ₂	13446-34-9	0.002
Copper II Chloride	CuCl ₂	10125-13-0	0.0002
Cobalt Chloride	CoCl ₂	7791-13-1	0.003
Disodium Selenite	Na ₂ SeO ₃	10102-18-8	0.00004
Aluminum Trisulfate	Al ₂ (SO ₄) ₃	10043-01-3	0.0002
Vitamins	∨arious	Various	0.01 maximum

Bioaugmentation Culture Production


Steam in place methods used for growth media and vessel sterilization

SiREM has facilities for growing thousands of liters of bioaugmentation cultures

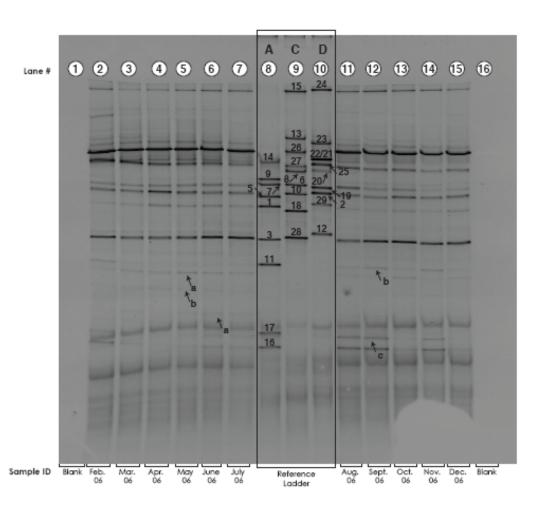
Bioaugmentation Culture Production



Preventing and Detecting Pathogens

- Pathogen free initial inoculum
- Sterile production methods
- Pre-sterilization of growth vessels
 - Filtration of purge gases
 - Sterilized hoses etc.
- Media Sterility Checks (e.g., plate counts)
- Regular stability and pathogen screening
- High quality stainless steel delivery vessels

KB-1/KB-1 Plus Non-Detect for Pathogenic Microorganisms in over 10 years of Commercial Production

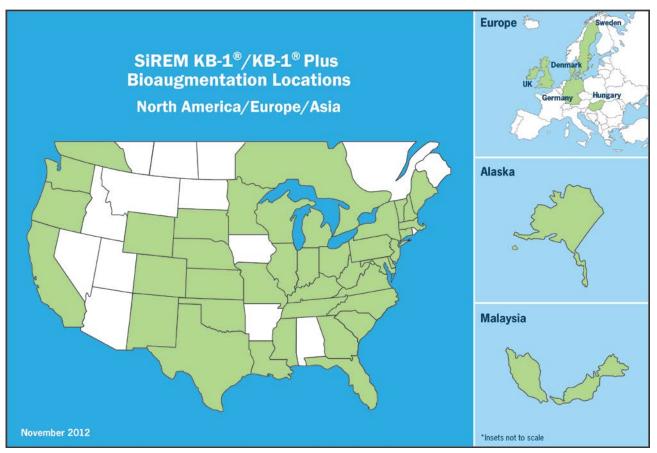

Organism*	Status in KB-1 / KB-1 Plus	
Salmonella sp.	Not Detected	
Listeria monocytogenes	Not Detected	
Vibrio sp.	Not Detected	
Campylobacter sp.	Not Detected	
Hemolytic Clostridia sp.	Not Detected	
Bacillus anthracis	Not Detected	
Pseudomonas aeruginosa	Not Detected	
Yersinia sp.	Not Detected	
Pathogenic Yeast and Mold	Not Detected	
Fecal coliforms	Not Detected	
Enterococci	Not Detected	

^{*}Environment /Health Canada-Recommendations for Testing of Microbial Consortia under New Substances Notification Guidelines

Assessing Stability and Composition of Bioaugmentation Culture KB-1 using DGGE

Reference Ladder Identification Key			
Ladder #	Identification		
1	OTU-1 Desulfovibrio		
2	OTU-2 Pelobacter		
3	OTU-3 Geobacter 3		
4	OTU-4 Anaerolinea 2		
(5)	OTU-5 Geobacter 4		
6	OTU-8 Cryptanaerobacter		
7	OTU-7 Aminobacterium		
8	OTU-8 Anaerolinea 1		
9	OTU-9 Unidentified bacterium 1		
100	OTU-10 Acetivibrio 1		
111	OTU-11 Aminomonas		
12	OTU-12 Spirochaetaceae 2		
13	OTU-13 Bacteroldetes KB-1 1		
(4)	OTU-14 Bacteroldetes 4		
19	OTU-15 Unidentified bacterium 2		
•	OTU-16 Bacteroldetes KB-1 3		
17	OTU-17 Bacteroldetes KB-1 3		
18	OTU-18 Candidate Division WS-3		
19	OTU-19 Spirochaetaceae		
20	OTU-20 Unidentified bacterium 4		
20	OTU-21 Acetivibrio		
22	OTU-22 Syntrophomones		
23	OTU-23 Clostridiales 4		
29	OTU-24 Not defined (Chimeric)		
29	OTU-25 Unidentified bacterium 3		
26	OTU-26 Dehalococcoides		
27	OTU-27 Geobacter		
28	OTU-28 Spirochaetes KB-1		
29	OTU-29 Syntrophus KB-1		

SiREM Cultures: Regulatory Approvals


- SiREM cultures have been applied in ~50 jurisdictions in North America, Europe and Asia
- Permission to apply SiREM cultures has never been denied by a regulator
- KB-1 is approved for:
 - Use in Canada under Environment Canada NSN
 - Mobile Injection Certificate Ontario Ministry of Environment for all Ontario, Canada
 - North Carolina DWQ approved injectables list
 - Approved for import into Australia

KB-1®/KB-1® Plus Bioaugmentation Locations

With over 300 hundred sites bioaugmented with KB-1® & KB-1® Plus, our ability to understand the performance and conditions under which these cultures are effective continues to increase

SiREM Cultures: Bioaugmentation In California

GREEN OC Living green in Orange County

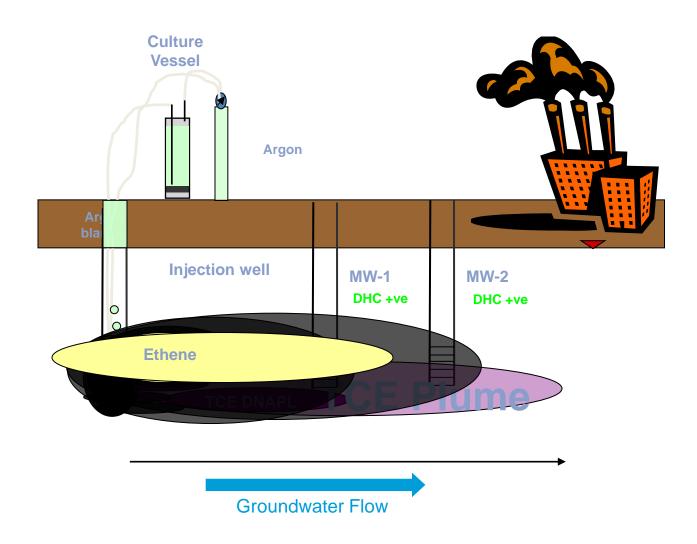
Pollution-gobbling bacteria set loose in Seal Beach
December 16th, 2008, 4:38 pm · 2 Comments · posted by Pat Brennan,
green living, environment editor

The creatures released this week on the Seal Beach Naval Weapons
Station were chosen for a special talent: their ability to breathe chlorine, and
to make harmful chemicals harmless.

Navy contractor Span Carrioner adjusts microho

- KB-1 and KB-1 Plus applied at over 60 sites in California over past 10 years
- Over 5,000 liters of KB-1 applied in California
- 7 of 9 RWQCB regions have granted WDRs for SiREM cultures
- Largest volume injection
 ~800 injection locations

Bioaugmentation Field Kit



Materials Shipped to Site

Bioaugmentation Culture Field Application

Minimizing any Potential Risks Associated withBioaugmentation

- Culture source with low likelihood of pathogens (e.g., groundwater)
- Sterile production methods-prevent pathogen introduction
- Contained growth and application process
- Pathogen screening of seed cultures

Conclusions

- KB-1 and KB-1 Plus are produced from naturally occurring North American microorganisms that are pathogen free and not GMO
- QA/QC protocols and high quality injection vessels ensure the safety and performance of each batch
- KB-1 and KB-1 Plus have been approved for injection in 50 jurisdictions
- KB-1 and KB-1 Plus have history of safe use at over 60 sites in California

Thank you! Questions? Comments! Further Information

siremlab.com

1-866-251-1747

- Phil Dennis, Senior Manager <u>pdennis@siremlab.com</u>
- Sandra Dworatzek, Senior Manager <u>sdworatzek@siremlab.com</u>
- Jeff Roberts, Laboratory Manager <u>jroberts@siremlab.com</u>

