Valuing Stormwater as a Resource

Results from the Los Angeles Basin Water Augmentation Study

Presentation to the Los Angeles Regional Water Quality Control Board Salt & Nutrient Management Planning Workshop Research Manager Mike Antos - November 15, 2012

The region's hub for watershed research and analysis

- Working at the intersection of research and policy
- Driving applied research to improve policy and practice
- Connecting diverse perspectives to address timely issues

A Vision for 2025:

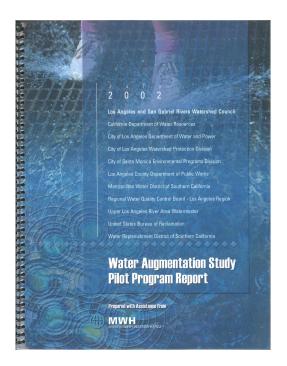
Sustainable Southern California

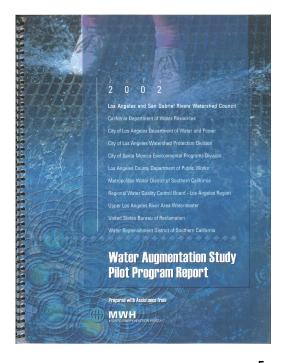
Managing at the watershed scale for economic vitality, social and environmental health

- Clean waters
- Reliable local water supplies
- Restored native habitats
- Ample parks & open spaces
- Integrated flood protection
- Revitalized rivers & communities

The Los Angeles Basin Water Augmentation Study

- Initiated in 2000
 - Led by CWH (then LASGRWC)
 - Multi-partner funding
 - Technical Advisory Committee




Can we safely and effectively infiltrate stormwater to augment our groundwater?

WAS Research & Monitoring

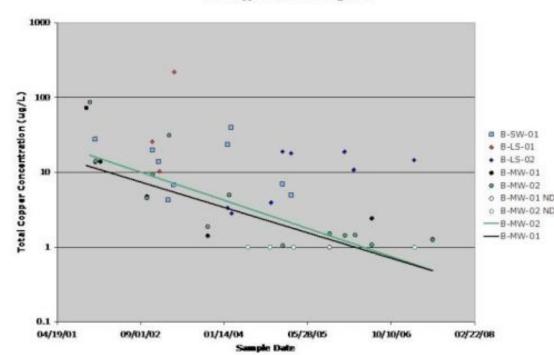
- Phase One (2000-2002)
 - Developed Monitoring Plan, initiated pilot monitoring
- Phase Two (2002 2005)
 - Installation of BMP, monitoring
- Phase Three (2005 2010)
 - Regional Assessment (GWAM)
 - Elmer Avenue Demonstration Project
 - Research, Strategy & Implementation Report

Monitoring Program

- Constituent list included pollutants of concern for stormwater/groundwater
 - Trace Metals
 - Volatile Organic Compounds
 - Bacteria

Sampling plan:

- 3-4 storm events/season for 2-5 years
- Sample site runoff during storm
- Sample lysimeters and wells after storm
- Monitor infiltration rates
- Continued subsurface monitoring
 - (2 storm events/yr for 2 years)


Trend Analyses

 Tests Whether Apparent Increasing or Decreasing Trends are Statistically Significant

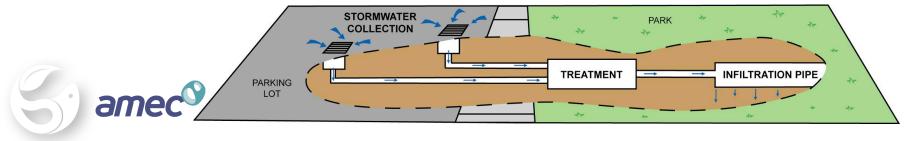
Of 600+ Tests for Trend Conducted, Less than 80 Trends were Detected in Subsurface (lysimeter and groundwater) Samples
Total Copper- Broadon: - Log Scale

Most (84%) were negative trends

 In groundwater samples, only 4 positive trends were detected

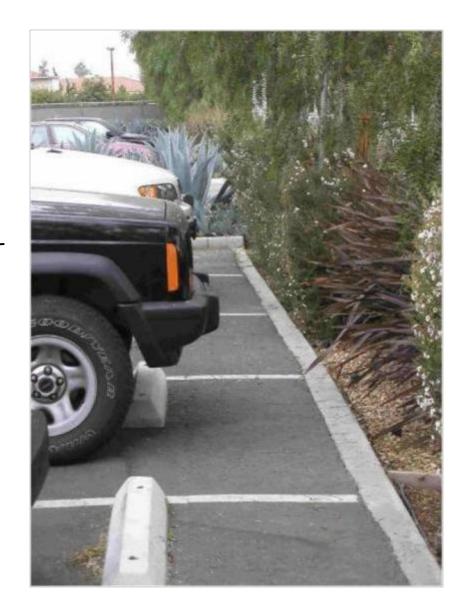
Significant Increasing Trends

- Chloride in monitoring well at scrap yard
 - Depth to groundwater >70m
 - Lysimeters at location detected no similar trend



Significant Increasing Trends

- Chloride in monitoring well at the park
 - Only one of four wells and two lysimeters
 - Trend well furthest from BMP
- Nitrate in monitoring well at the park
 - Increasing trend though at lower levels than other three wells
 - Lysimeters show decreasing trend
- Dissolved zinc in monitoring well at the park
 - Plausible as infiltration-based trend
 - Concentration never more than two orders of magnitude below drinking water MCL.



Conclusions from WAS Phase 1 & 2

- It is safe to infiltrate Urban stormwater to augment groundwater supplies
 - Constituents of concern for groundwater generally occur at low concentrations or are "nondetect" in stormwater runoff
 - No clear evidence linking stormwater flow quality to groundwater quality at any of the monitored locations.
 - No evidence of metals accumulation in post-project soil samples

Elmer Avenue Neighborhood Retrofit Demonstration Project

Elmer Avenue: Performance Monitoring 2010-2012

- Water Quality
- Water Quantity
- Soil Quality
- Vegetation Success
- Watershed Relationships
- Maintenance Needs
- Habitat Value

Elmer Avenue: Performance Monitoring 2010-2012

Constituent	Urban Runoff (mg/L)					
	Elmer Infiltr	ation Gallery	Separate Sewers			
	Range	Average	Range	Typical		
COD	158-251	190	200-275	75		
TSS	84.5-150	117	20-2,890	150		
Total P	0.98-1.33	1.15	0.02-4.30	0.36		
Total N	0.97-1.53	1.23	0.4-20.0	2		
Lead	0.013-0.03	0.018	0.01-1.20	0.18		
Copper	0.038-0.073	0.051	0.01-0.40	0.05		
Zinc	0.153-0.293	0.203	0.01-2.90	0.02		

Research, Strategy & Implementation Report

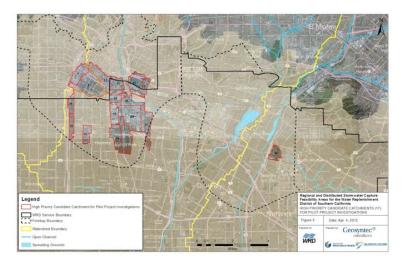
Future Initiatives:

- Stormwater infiltration design, operation and maintenance procedures
- Determination of the value of benefits and costs
- Identifying the fate of pollutants
- Siting decentralized infiltration strategies

Research, Strategy & Implementation Report

Future Initiatives:

- Stormwater infiltration design,
 operation and maintenance
 procedures
- Determination of the value of benefits and costs
- Identifying the fate of pollutants
- Siting decentralized infiltration strategies


CWH Projects / Efforts:

- Elmer Ave monitoring, Elmer Paseo retrofit, Gl Stewardship Study
- Quantifying value of infiltration projects, Valuing Green Infrastructure Project
- **SWRCB Prop 84 Monitoring & Research**
- Stormwater Recharge Feasibility Studies

Findings: West Coast & Central Basins

 Seventeen catchments (approx. 470 acres/catchment) show greater feasibility for stormwater capture to augment Central and West Coast Basins

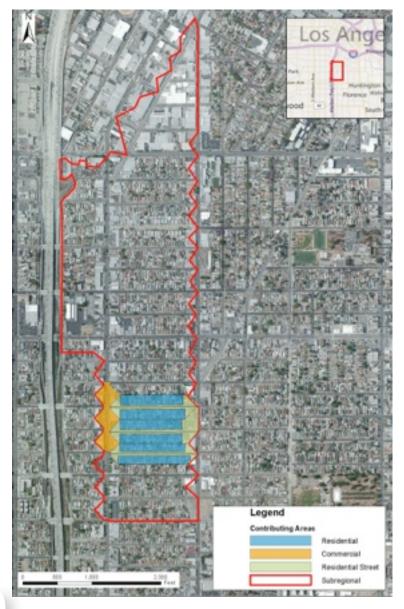
- Implementation of distributed and subregional BMP could capture
 4,300 AF during an average rainfall year
- Thirty-two additional opportunity catchments show potential for another 12,700 acre-feet/yr of stormwater capture with appropriate projects

A theory of Phased Implementation

- Design reflects catchment-wide system of component green infrastructure elements
- Single elements can be implemented alone without fear of degradation
- System tuned to theoretical fullimplementation
- Implementation can be opportunistic
- Full-implementation realizes peak efficiency of all included elements

Findings: Pilot Design Systems

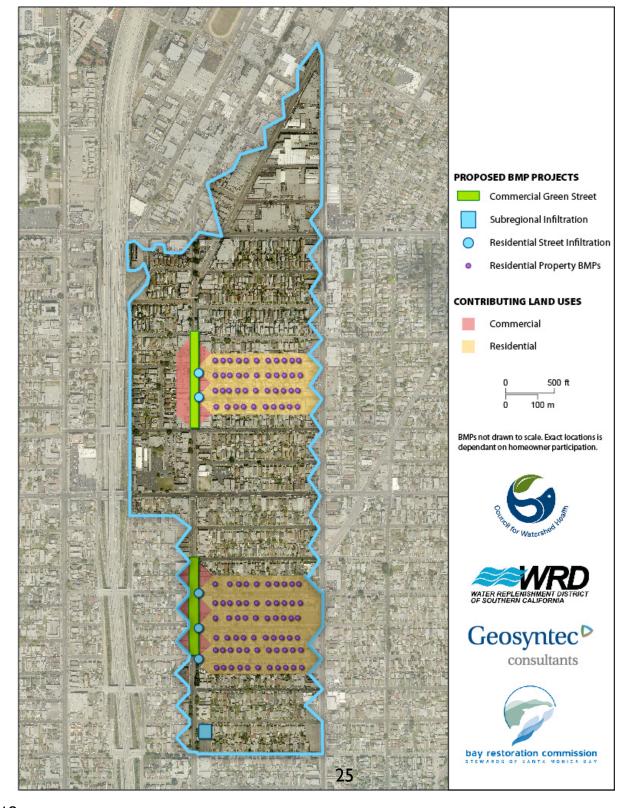
- Four BMP Locations:
 - ✓ Residential Property (capture 3/4" storms)
 - ✓ Residential Streets (capture 3/4" storms)
 - ✓ Commercial Street (capture 3/4" storms)
 - ✓ Subregional Infiltration (capture 2" storms)



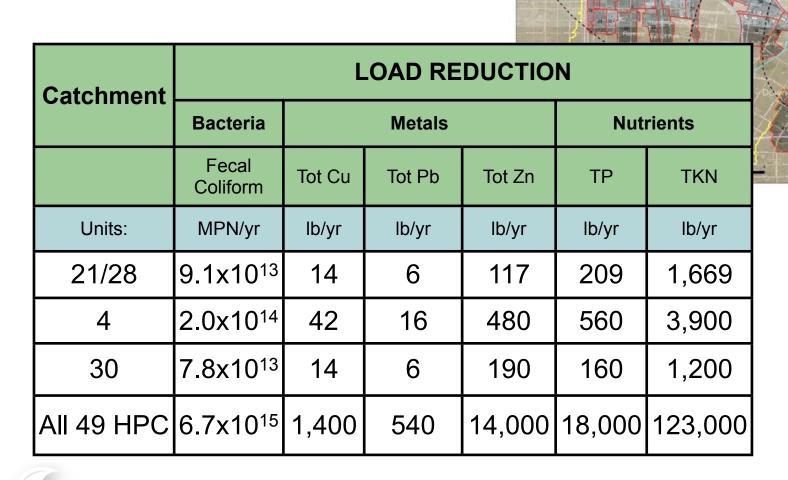
Findings: Pilot Project Design

Findings: Water Quality Benefit from Pilot Project Design

Load Reduction								
Bacteria		Metals	Nutrients					
Fecal Coliform	Tot Cu	Tot Pb	Tot Zn	TP	TKN			
MPN/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr			
6.40x10 ¹²	3	1	23	42	238			







Findings: Pilot Design Systems

Geosyntec^D

Quantifying value of infiltration projects

Grey Infrastructure

Single-purpose

Single-managed / maintained

Cost calculation <u>leverages 100+ years of</u> investment

Green Infrastructure

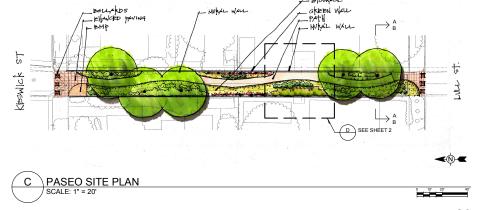
Multi-purpose

Multi-managed / maintained

Internalizes historic externalities, raising apparent costs

Quantifying value of infiltration projects

Summary Benefits


BMP Type	Pilot Design & Construction Cost Estimation	Quantity Benefit	Quality Benefit	Economic Benefit	Energy Reduction Benefit	CO2 Reduction Benefit	Total Benefit Value	Benefit - Cost Ratio
Rain Garden	\$111,600	\$60,984	\$69,912	\$222,382	\$44,476	\$644	\$398,398	3.57
Intersection Catch- basin BMP	\$425,256	\$172,788	\$188,436	\$847,397	\$169,479	\$1,824	\$1,379,924	3.24
Multiple	\$2,279,400	\$78,771	\$100,232	\$4,542,101	\$908,420	\$832	\$5,630,356	2.47
Subsurface Infiltration	\$1,432,080	\$729,267	\$1,082,506	\$2,853,669	\$570,734	\$7,700	\$5,243,876	3.66

Next Steps for WAS

- Return to Phase 2 Sites
- Elmer Paseo Retrofit
- Elmer Phase 2 Enhancements
- Elmer Projects Monitoring
- San Gabriel River Watershed LID Monitoring
- EPA Green Infrastructure Community Partners Project
- Stewardship of Green
 Infrastructure Study (currently unfunded)

Thank you

Mike Antos - Research Manager Mike@watershedhealth.org -213-229-9945