	RAA Subcommittee
Representative	Email Sign-in
TJ Moon	TMOON@dpw.lacounty.gov
Desi Alvarez	mcm_management@verizon.net
Kirsten James	kjames@healthebay.org
Alfredo Magallanes	alfredo.magallanes@lacity.org
Mike Antos	mike@watershedhealth.org
Renee Purdy	Renee.Purdy@waterboards.ca.gov
David Smith	smith.davidw@epa.gov
Liz Crosson lizalawater Keeper.org	liz@smbaykeeper.org te
Noah Garrison	ngarrison@nrdc.org
Ivar Ridgeway	iridgeway@waterboards.ca.gov J.Sm K. Kudgeway
Thanhloan Nguyen	tnguyen@waterboards.ca.gov Thenklos
John Dettle	jdettle@TorranceCA.gov fiztur
Bruce Hamamoto	BHAMAMO@dpw.lacounty.gov B
Hamid Tadayon	hamid.Tadayon@lacity.org Hand Com
C.P. Lai	clai@waterboards.ca.gov C.P. / a
Heather Merenda	hmerenda@santa-clarita.com
Rich Horner - aphone	on behalf of environmental orgs /
Anthony Arevalo	anthony.arevalo@longbeach.gov
Jason Wen	Jwen@downeyca.org
Cameron McCullough	cmccullough@jlha.net Cm McCullA

Modeling Presentation and RAA Subcommittee

September 17, 2013 at 12:30 PM

Los Angeles County Department of Public Works, Conference Room B 900 S. Fremont Ave, Alhambra, CA 91803

- I. Introductions (5 minutes)
- II. SBPAT Ken Susilo, Geosyntec
 - a. Presentation (30 minutes)
 - b. Q & A (15 minutes)
- III. WMMS TJ Moon, LA County
 - a. Presentation (30 minutes)
 - b. Q&A(15 minutes)
- IV. RAA Subcommittee Discussion
- V. Action items

September 17, 2013 RAA Subcommittee Meeting

RAA Subcommi	ttee				
9.17.2013	12:30 PM	Los Angeles County D	PW		
Type of meeting	RAA Subcommittee				
Facilitator	Ivar K. Ridgeway	Ivar K. Ridgeway			
Note taker	Ivar K. Ridgeway				
Attendees	RAA Subcommittee (Sign-In Sheet available upon r	equest)			
[Agenda Topic]					
Discussion					
The question was po	sed to the group asking for input on what is the appropr	iate format for RAA meetin	igs.		
Conclusions	The Group's consensus was the format of the Septer	nber 24, 2013 was appropri	ate where ther		
are technical present	ations with a question/answer and group discussion foll	owing.			
Action Items		Person Responsible	Deadline		
Finalize technical pr	esentations/case studies for next RAA meeting.	IR w/group input			
[Agenda Topic]					
Conclusions	Meeting Frequency The Group's consensus was that meetings should be	held monthly to allow part	icipants		
Discussion Conclusions		· · · · · ·	icipants		
Discussion Conclusions	The Group's consensus was that meetings should be	· · · · · ·	icipants Deadline		
Discussion Conclusions sufficient time to rep	The Group's consensus was that meetings should be	ntities/groups.	-		
Discussion Conclusions sufficient time to rep Action Items	The Group's consensus was that meetings should be	ntities/groups.	-		
Discussion Conclusions sufficient time to rep Action Items	The Group's consensus was that meetings should be	ntities/groups.	-		
Discussion Conclusions sufficient time to rep Action Items None	The Group's consensus was that meetings should be	Person Responsible	-		
Discussion Conclusions sufficient time to rep Action Items None [Agenda Topic]	The Group's consensus was that meetings should be port back to Watershed Management Groups and other e	Person Responsible	-		
Discussion Conclusions sufficient time to rep Action Items None [Agenda Topic]	The Group's consensus was that meetings should be port back to Watershed Management Groups and other e	Person Responsible	-		
Discussion Conclusions sufficient time to rep Action Items None [Agenda Topic]	The Group's consensus was that meetings should be port back to Watershed Management Groups and other e	Person Responsible	-		
Discussion Conclusions sufficient time to rep Action Items None [Agenda Topic] Discussion Conclusions	The Group's consensus was that meetings should be port back to Watershed Management Groups and other e The RAA Group was asked to come up with issues/t	Person Responsible	-		
Discussion Conclusions sufficient time to rep Action Items None [Agenda Topic] Discussion Conclusions 1. Modeling I	The Group's consensus was that meetings should be port back to Watershed Management Groups and other e The RAA Group was asked to come up with issues/t The Group came up with the following topics for fu	Person Responsible opics to address ture RAA meetings:	-		
Discussion Conclusions sufficient time to rep Action Items None [Agenda Topic] Discussion Conclusions 1. Modeling I 2. Non-Structure	The Group's consensus was that meetings should be port back to Watershed Management Groups and other e The RAA Group was asked to come up with issues/t The Group came up with the following topics for fu mplementation.	ntities/groups. Person Responsible opics to address ture RAA meetings: lucation)	-		
Discussion Conclusions sufficient time to rep Action Items None [Agenda Topic] Discussion Conclusions 1. Modeling I 2. Non-Structu 3. Incorporation	The Group's consensus was that meetings should be port back to Watershed Management Groups and other e The RAA Group was asked to come up with issues/t The Group came up with the following topics for fu mplementation. ural BMP Effectiveness (ex. Street sweeping, Public Ec	ntities/groups. Person Responsible opics to address ture RAA meetings: lucation)	-		
Discussion Conclusions sufficient time to rep Action Items None [Agenda Topic] Discussion Conclusions 1. Modeling I 2. Non-Structu 3. Incorporation	The Group's consensus was that meetings should be port back to Watershed Management Groups and other e The RAA Group was asked to come up with issues/t The Group came up with the following topics for fu mplementation. ural BMP Effectiveness (ex. Street sweeping, Public Ec on of New Develoopment/Redevelopment BMP Implem- er Flow, how it is addressed?	ntities/groups. Person Responsible opics to address ture RAA meetings: lucation)	-		
Discussion Conclusions sufficient time to rep Action Items None [Agenda Topic] Discussion Conclusions 1. Modeling I 2. Non-Structt 3. Incorporatio 4. Dry Weather	The Group's consensus was that meetings should be port back to Watershed Management Groups and other e The RAA Group was asked to come up with issues/t The Group came up with the following topics for fu mplementation. ural BMP Effectiveness (ex. Street sweeping, Public Ec on of New Develoopment/Redevelopment BMP Implem- er Flow, how it is addressed?	ntities/groups. Person Responsible opics to address ture RAA meetings: lucation)	-		

Los Angeles County Watershed Management Modeling System

TAC Presentation

September 17, 2013

Components of the WMMS

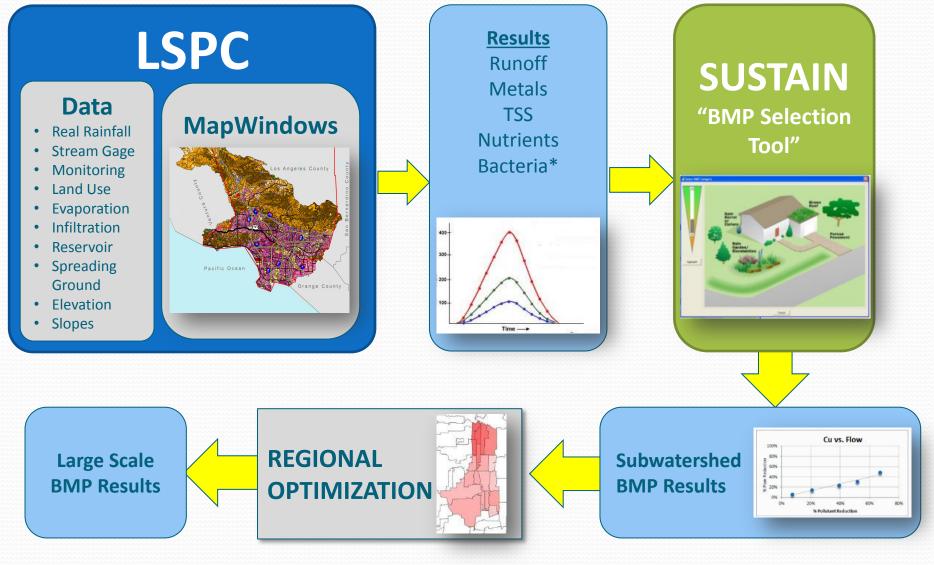
Watershed Management Modeling System (WMMS)

LSPC

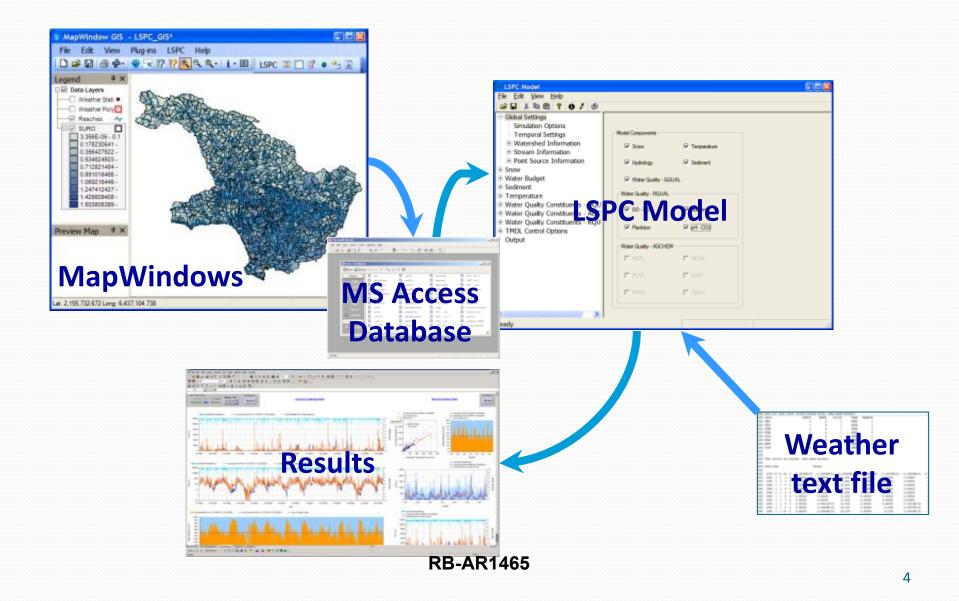
Loading Simulation Program C++

"Model"

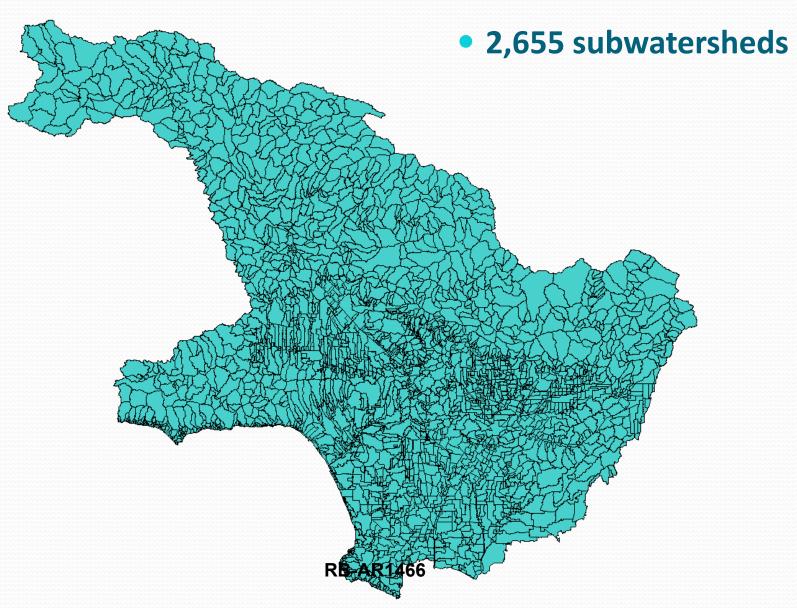
SUSTAIN


System for Urban Stormwater Treatment and Analysis Integration

> "BMP Selection Tool"


NIMS

Regional Optimization

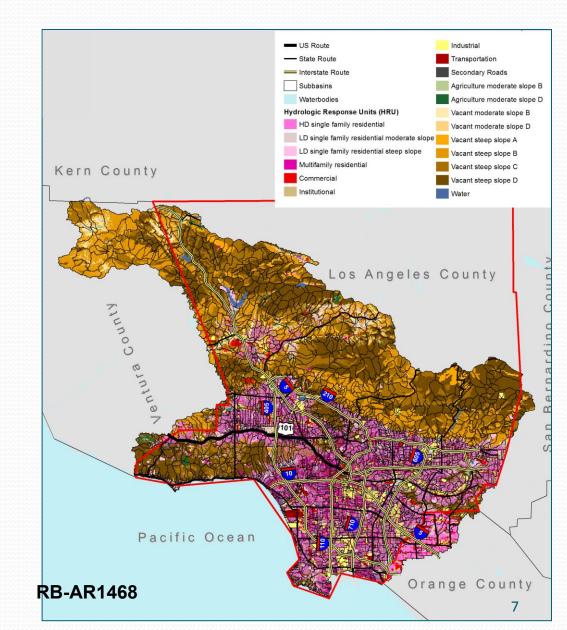

Components of the WMMS

Loading Simulation Program C++ Components of LSPC

Subwatershed and Reach Representation WMMS Resolution

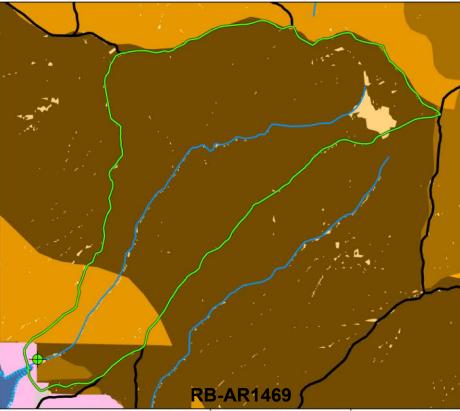
Land Use Determination Parcel Level Land Use Resolution

2005 SCAG Land Use

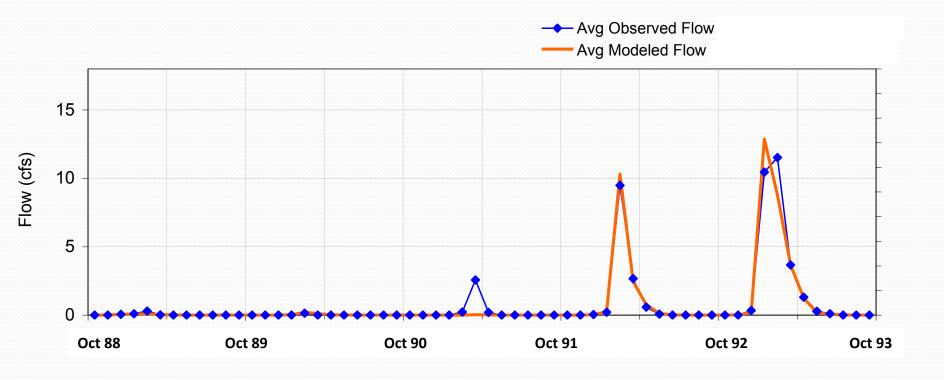

2008 WMMS Update Land Use

Hydrologic Response Unit (HRU)

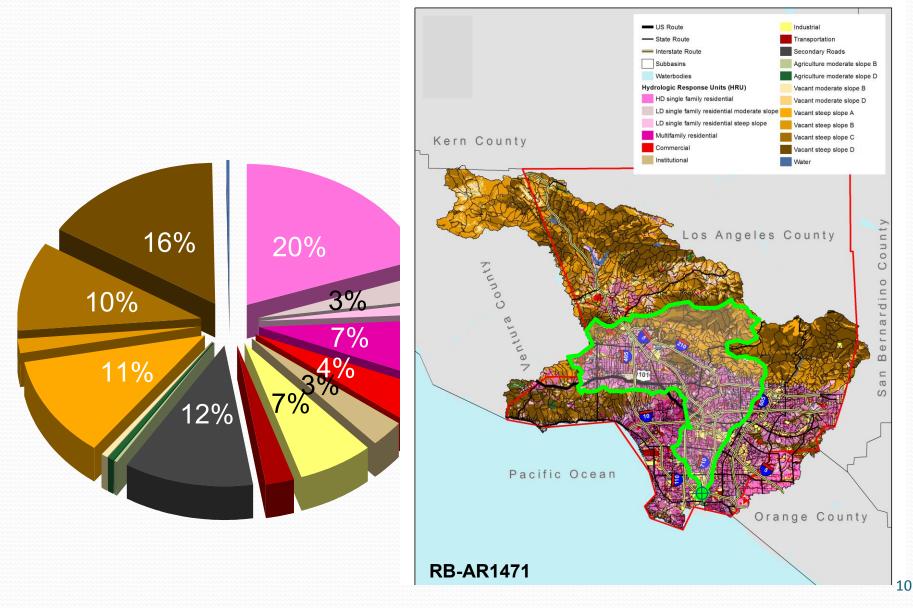
HRU is the "C" in Q = CIA which incorporates


- Land Use
- Slope (elevation)
- Soil Type

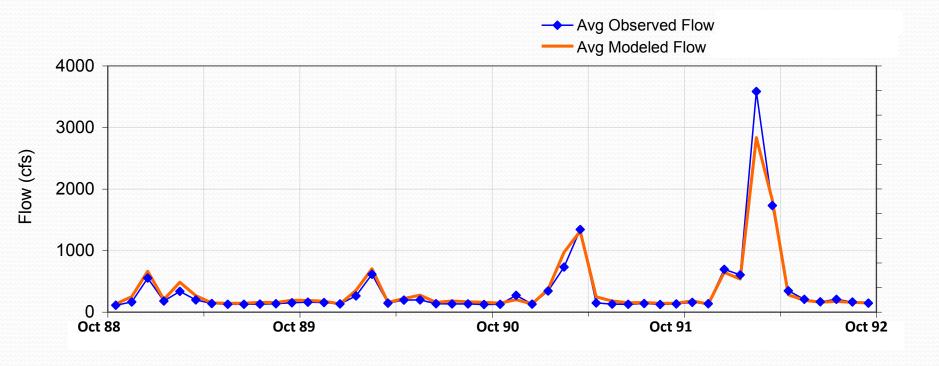
21 Different HRU



Hydrological Calibration Location Vacant Steep Slope D



Hydrological Calibration Location Vacant Steep Slope D



Observed vs. Modeled Flow

Hydrological Validation Location Los Angeles River above Long Beach

Hydrological Validation Location Los Angeles River above Long Beach

Modeled Flow vs. Observed Flow

Components of the WMMS

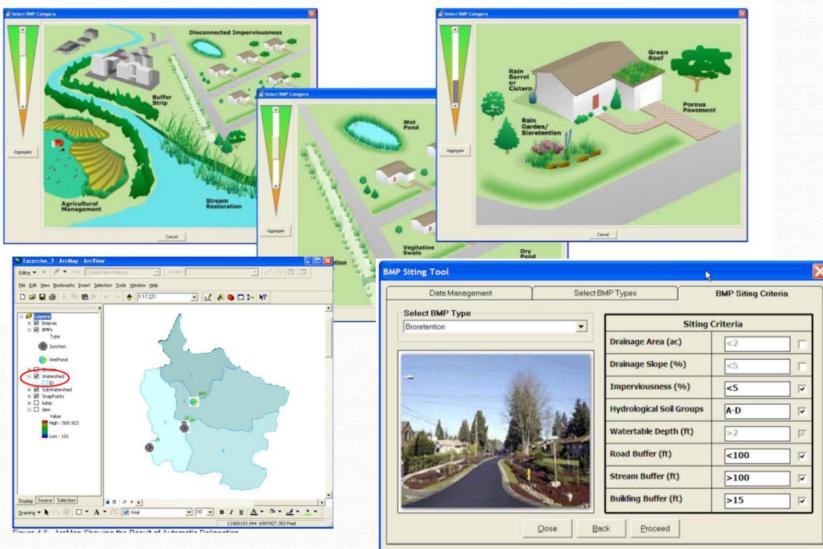
Watershed Management Modeling System (WMMS)

LSPC

Loading Simulation Program C++

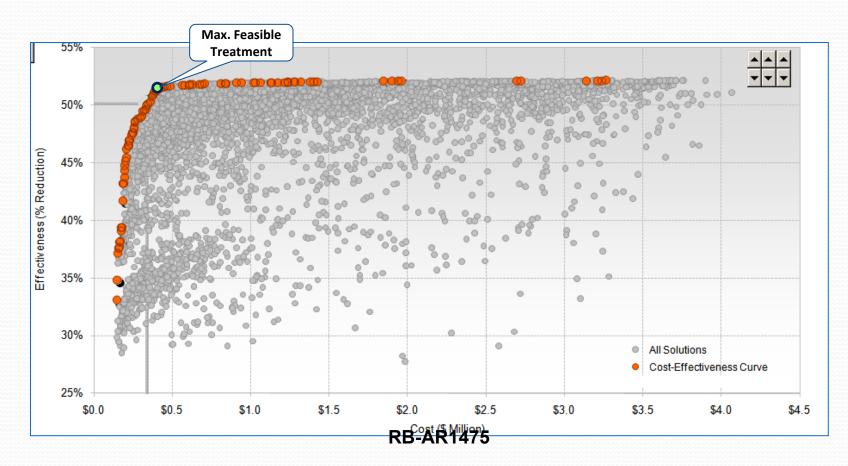
"Model"

SUSTAIN

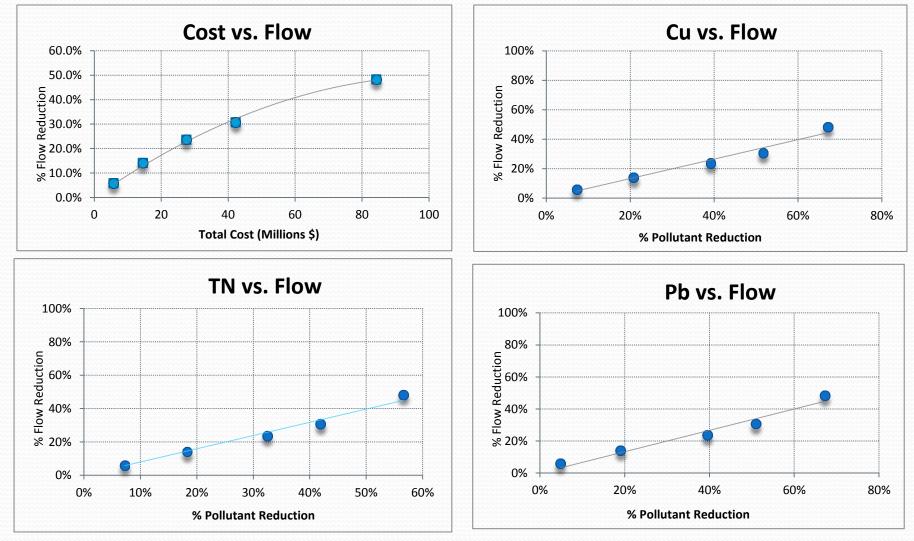

System for Urban Stormwater Treatment and Analysis Integration

> "BMP Selection Tool"

NIMS


Regional Optimization

SUSTAIN BMP Selection Tool


SUSTAIN Cost-Effectiveness Curve

 The WMMS Post Processor calculates the most cost-effective set of BMPs for all possible BMP scenarios for each subwatershed

WMMS

Sample Reduction Results – BMP Selection Tool

WMMS

Sample Reduction Results – BMP Selection Tool

Subwatershed				
Land Use	Impervious Area (ac)	BMP Type	# of Units	Capacity (ac-ft)
Residential	238.41	Rain Barrel	0	0.00
		Bioretention	214	11.98
Commercial Industrial Institutional	276.31	Porous Pavement Bioretention	142 41	8.03 2.16
Transportation	159.07	Bioretention	158	8.72
Total Treatment Capacity (acre-ft) 30.89				

Components of the WMMS

Watershed Management Modeling System (WMMS)

LSPC

Loading Simulation Program C++

"Model"

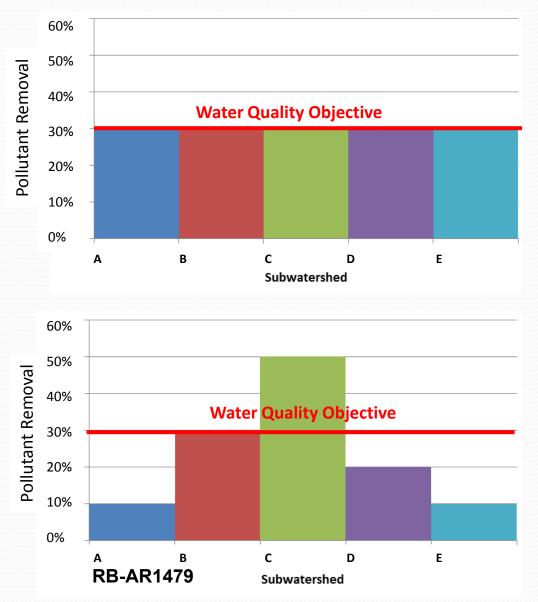
SUSTAIN

System for Urban Stormwater Treatment and Analysis Integration

> "BMP Selection Tool"

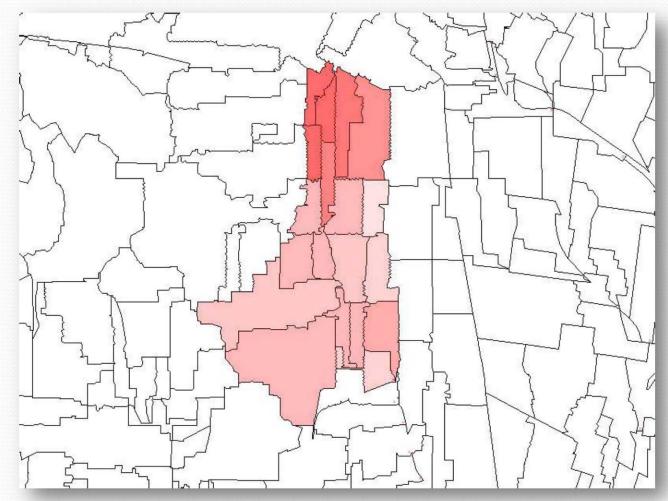
NIMS

Regional Optimization


Regional Optimization

Proportional

Attain Water Quality Objective


Targeted

Attain Water Quality Objective At Lower Total Cost

Regional Optimization

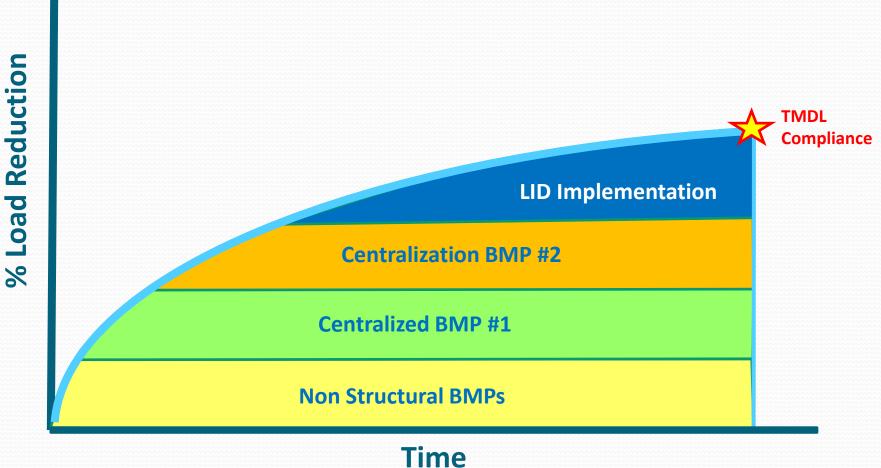
Management Level Optimization Results

WMMS

Customization & Updates

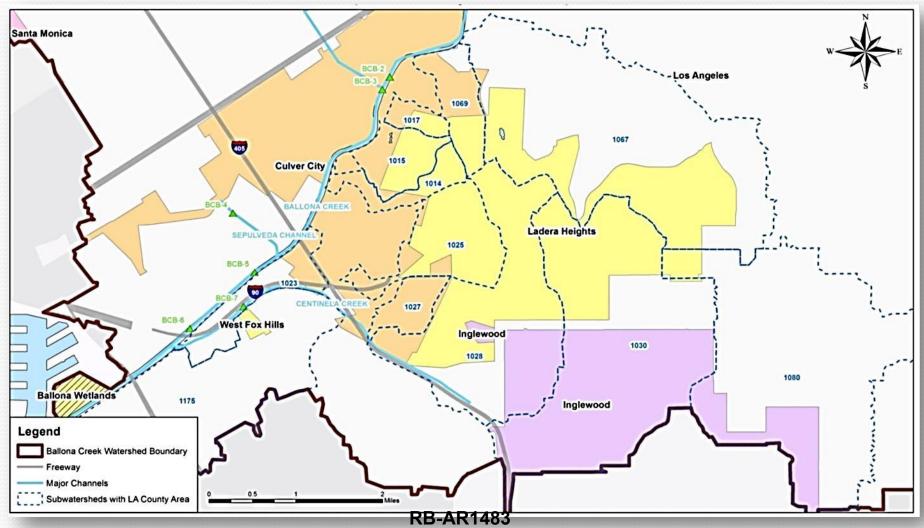
LSPC

- Updating Weather Data
- Updating Land Use
- Jurisdictional Based / Non-Regional Project Modeling
- Hydrology/Water Quality Calibration

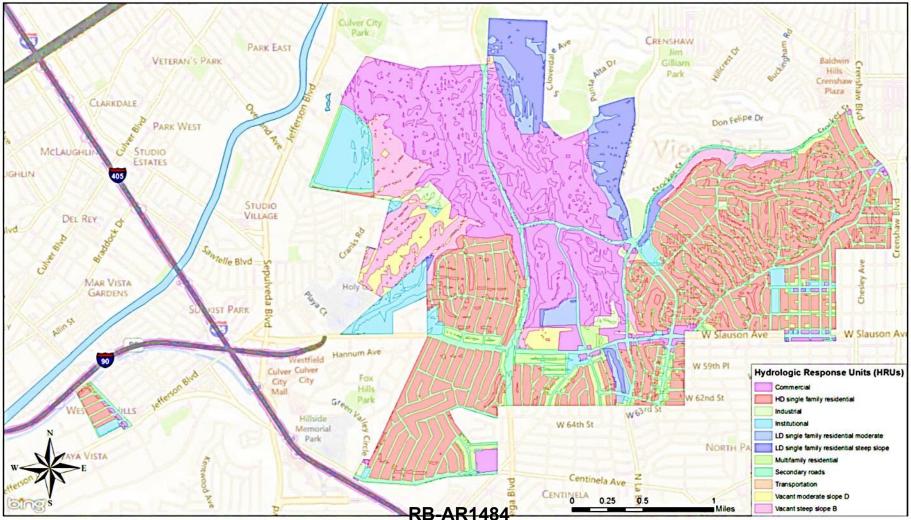

SUSTAIN

- BMP Assumptions (Effectiveness, Cost, Type)
- Cost Effectiveness Analysis

Regional Optimization


- Adjusting Compliance Targets
- Adding additional pollutants

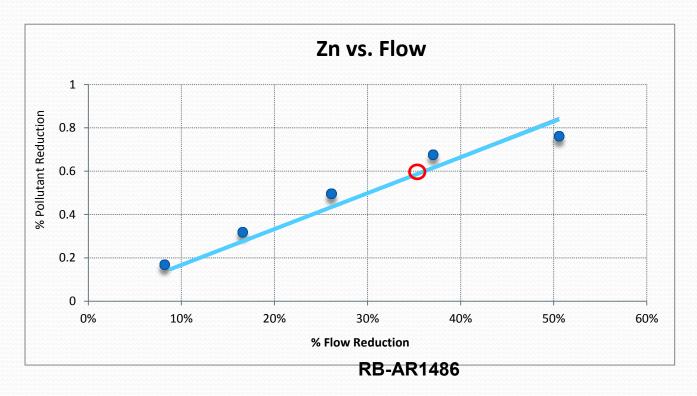
Reasonable Assurance Analysis Example Timeline



WMMS - LSPC

Sample Reasonable Assurance Analysis Ballona Creek – County of Los Angeles

WMMS - LSPC Sample Reasonable Assurance Analysis Ballona Creek – County of Los Angeles


WMMS - LSPC Sample Reasonable Assurance Analysis Ballona Creek – County of Los Angeles

Ballona Creek Watershed	78,442 acres
County of Los Angeles	3,109 acres
County Percent of Watershed	4%
Ballona Creek Watershed	Zinc
TMDL Allowable Load	1003 kg/yr
TMDL Allowable County Load	40 kg/yr
County Modeled Load	270 kg/yr
Required Percentile Reduction	85%

WMMS – BMP Selection Tool

Sample Reasonable Assurance Analysis Ballona Creek – County of Los Angeles

County Required Reduction	85%
Non-Structural Reduction*	25%
Remaining Reduction Required	60%

WMMS – BMP Selection Tool Sample Reasonable Assurance Analysis Ballona Creek – County of Los Angeles

BMPs associated with 60% Reduction from BMP Selection Tool

Land Use	ВМР Туре	Total Volume (ac-ft)
Residential	Rain Barrel	0.98
Residential	Bioretention	28.9
Commercial/Industrial/Institutional	Bioretention	10.8
Commercial/Industrial/Institutional	Porous Pavement	7.5
Transportation	Bioretention	16.9

WMMS – Regional Optimization

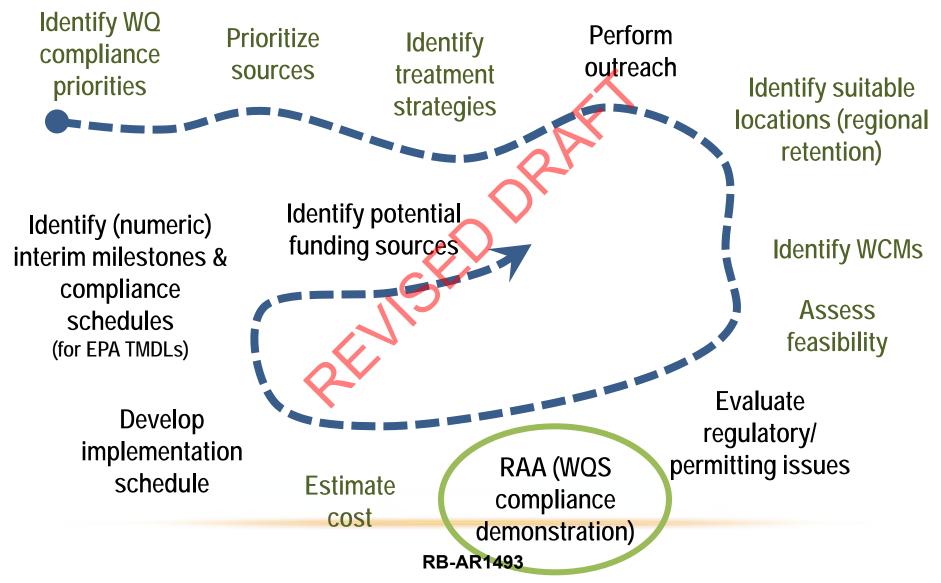
Sample Reasonable Assurance Analysis Targeted Method

Sample Watershed	А	В	С
Required Percentile Reduction to Meet Compliance	70%	40%	20%
BMPs	Percentile Reduction		
Non Structural BMPs	20%	20%	20%
BMP Selection Tool	50%	20%	0%

Questions www.LACountyWMMS.com wmms@dpw.lacounty.gov

SBPAT: MODELING OPTIONS IN SUPPORT OF REASONABLE ASSURANCE ANALYSES (RAA) COMPLIANT WITH R4-2012-0175 (LOS ANGELES MS4 PERMIT)

September 17, 2013 (Presented at the request of the City of Los Angeles)

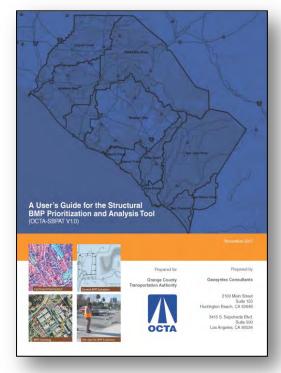

DISCLAIMER

This presentation is provided for informational purposes, and does not advocate or promote a specific approach to conducting Reasonable Assurance Analyses (RAAs). No warranty is implied or expressed. Geosyntec shall not be held responsible for any unauthorized use or redistribution. Note that the information presented herein is subject to change.

AGENDA

- Introduction to SBPAT for RAA
- Input types and inputting processes
- Target loading estimates/other implicit assumptions
- Format for information sharing, presentation, and use for decision support
- Quantified results
- Use of SBPAT results
- Target load reduction discussion
- Examples
- Potential Integration of multiple models

(ENHANCED) WATERSHED MANAGEMENT PROGRAM



PERMIT PROVISION C.5.B.IV(5)

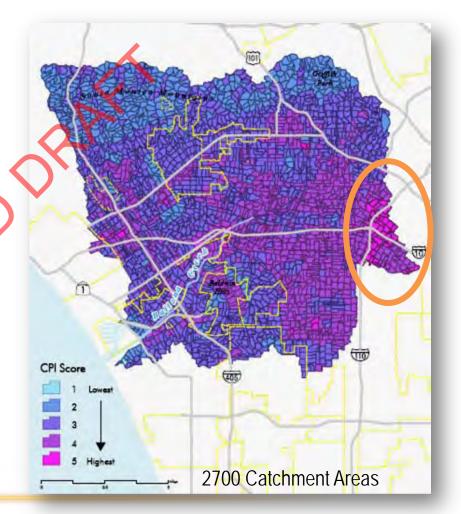
(5) Permittees shall conduct a Reasonable Assurance Analysis for each water body-pollutant combination addressed by the WatershedManagement Program, A Reasonable Assurance Analysis (RAA) shall be quantitative and performed using a peer-reviewed model in the public domain. Models to be considered for the RAA, without exclusion, are the Watershed Management Modeling System (WMMS), Hydrologic Simulation Program-FORTRAN (HSPF), and the Structural BMP Prioritization and Analysis Tool (SBPAT). The RAA shall commence with assembly of all available, relevant subwatershed data collected within the last 10 years, including land use and pollutant loading data, establishment of quality assurance/quality control (QA/QC) criteria, QA/QC checks of the data, and identification of the data set meeting the criteria for use in the analysis. Data on performance of watershed control measures needed as model input shall be drawn only from peer-reviewed sources. These data shall be statistically analyzed to determine the best estimate of performance and the confidence limits on that estimate for the pollutants to be evaluated. The objective of the RAA shall be to demonstrate the ability of Watershed Management Programs and EWMPs to ensure that Permittees' MS4 discharges achieve applicable water quality based effluent limitations and do not cause or contribute to exceedances of receiving water limitations.

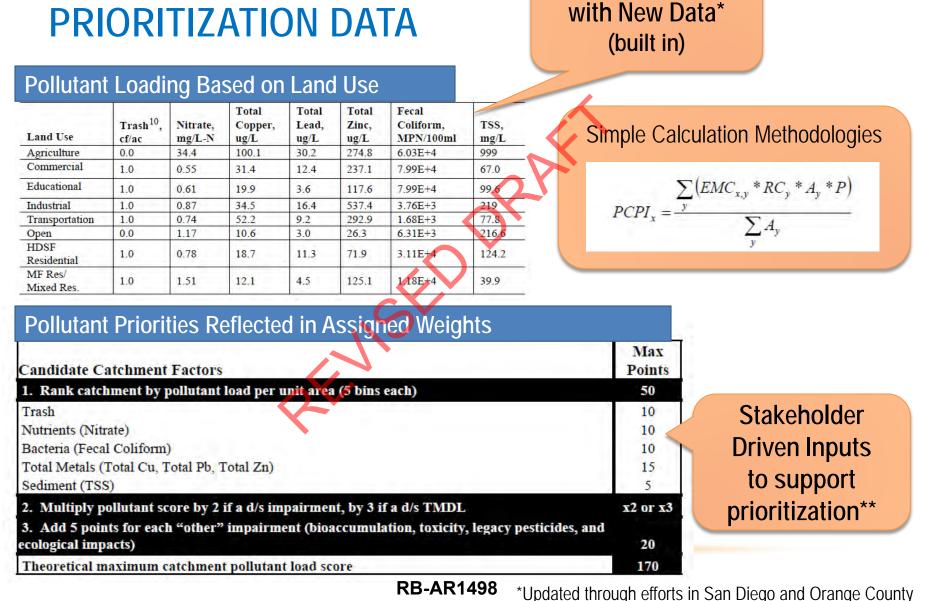
STRUCTURAL BMP PRIORITIZATION AND ANALYSIS TOOL (SBPAT)

- SBPAT is:
 - Public domain, "open source" GIS-based water quality analysis tool
- Two major components:
 - Selection and Siting of BMPs
 - user-defined priorities
 - multiple pollutants
 - Quantification of pollutant reduction
 - Establishment of target load reductions (TLR)
 - Land use storm event pollutant concentrations
 - EPA-SWMM
 - USEPA/ASCE International BMP Database
 - Site and watershed-specific data
 - Monte Carlo approach

©Geosyntec Consultants 2013

1. IDENTIFY PRIORITY AREAS FOR BMP IMPLEMENTATION


Permit Requirement


Based On

- Defined catchment areas
- Pollutant loading from catchments
- Pollutant priorities
 - severity and cause of impairments of receiving waters
 - TMDLs/303(d) listings
 - Stakeholder input

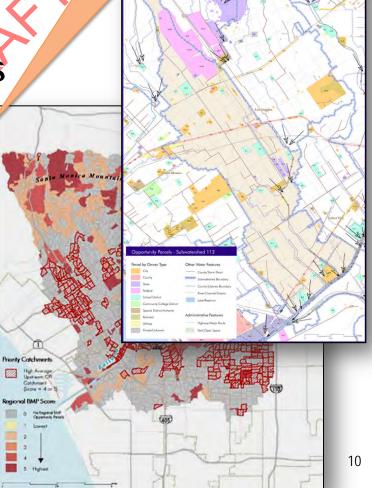
Result

 Catchment Priority Index (CPI) built from multiple pollutant loading model analyses

Regularly Updated

**TMDL = Category 1; 303(d) = Category 2; etc.

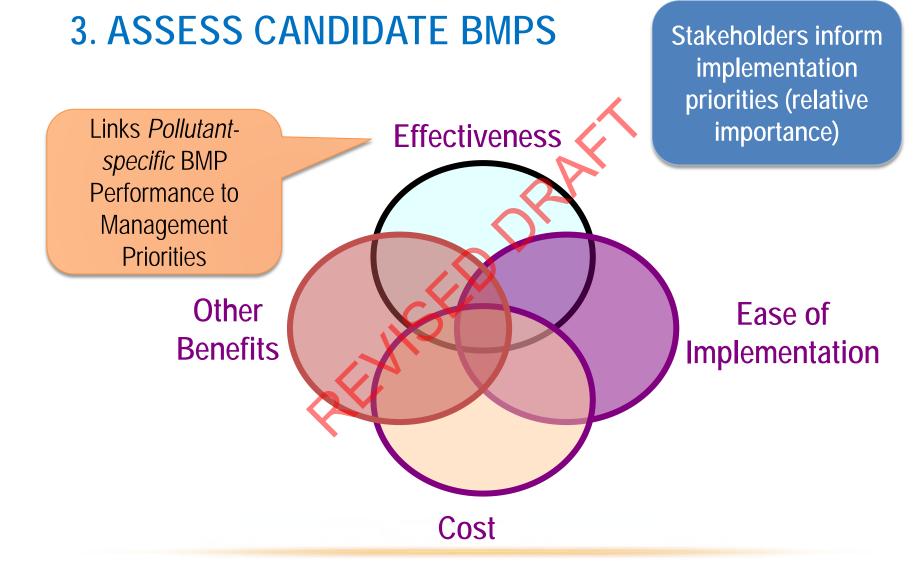
PRIORITIZATION DATA

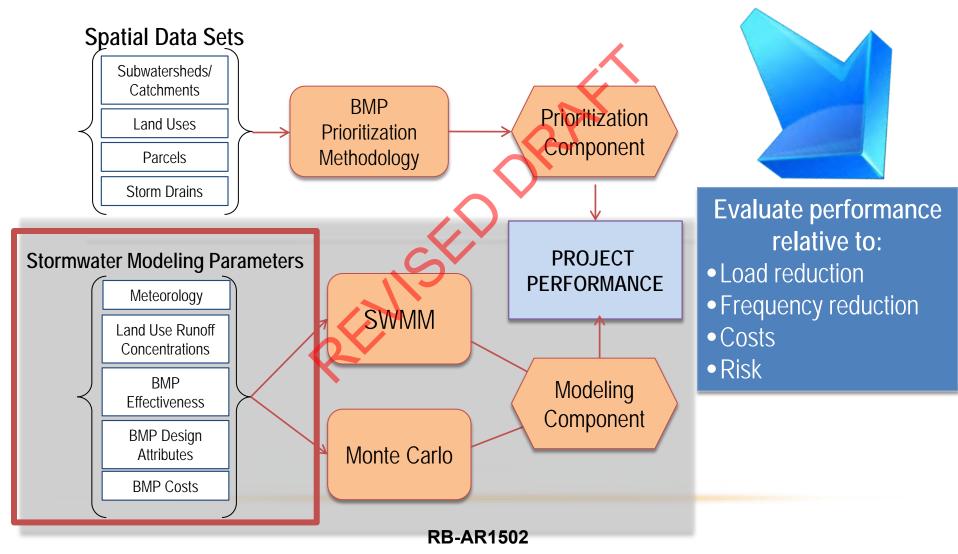

©Geosyntec Consultants 2013

⁹

2. IDENTIFY OPPORTUNITIES

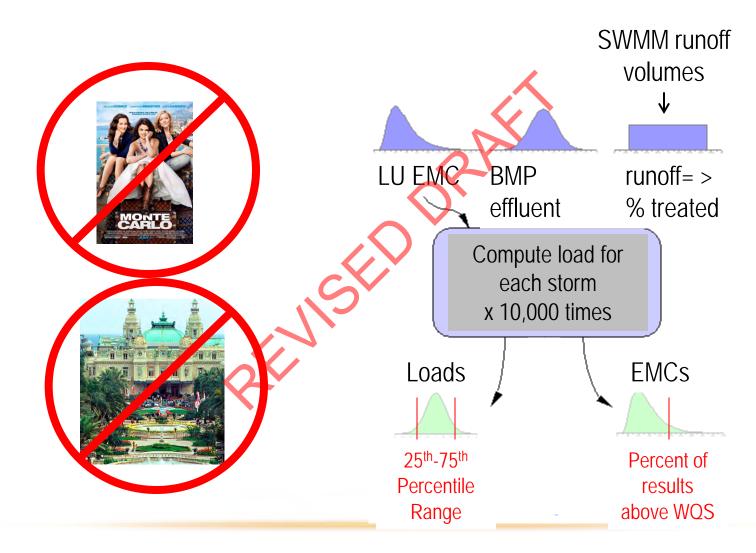
- BMP Types (Regional, Distributed, Institutional)
- Opportunity Screening Process
 - Parcels, Roadways, Storm Drains
 - BMP Opportunity Maps
 - Available Space
 - Ownership
 - Slopes, Liquefaction Zones
 - Environmental Priority
 - Link Priority to Opportunity


Stakeholder Driven Inputs (Supports Opportunity Development)


REGIONAL BMPS

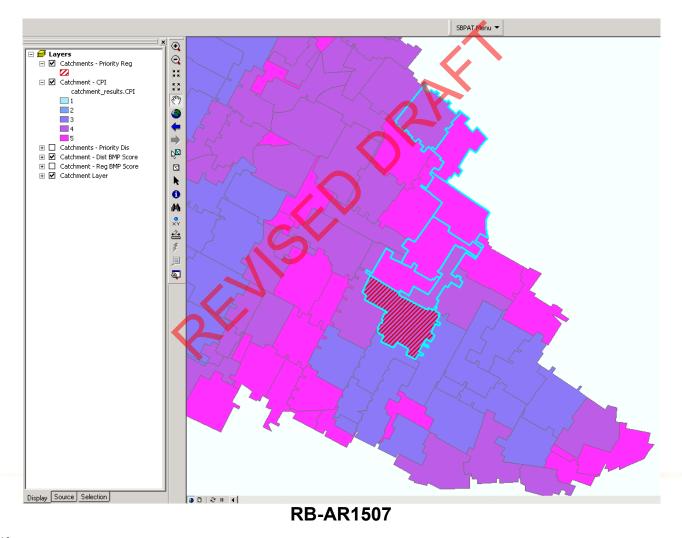
Different Infrastructure/Retrofit Conditions than Distributed BMPs Multiple Types of Regional BMPs (such as Wetlands) Analyzed

4. EVALUATE BMP EFFECTIVENESS FOR REASONABLE ASSURANCE ANALYSIS


BMP DATABASE STATISTICS (2012 UPDATE)

STORMWATER MODELING ELEMENTS

- EPA SWMM4.4h (modified) accounts for:
 - Continuous hydrologic response and hydrologic performance of BMPs
 - Antecedent moisture conditions
 - Transient storage conditions
- Monte Carlo event simulation accounts for:
 - Tributary area properties
 - Interdependence of selected distributed/regional BMP types
 - Antecedent conditions
 - BMP volume, treatment rates, volume reduction processes and transient storage conditions
 - Observed variability in runoff quality
 - Observed variability in BMP effluent quality


WHAT IS MONTE CARLO?

HOW TO USE SBPAT OUTPUT

- Establish target load reductions
- Build menu of structural BMPs
 - Performance, costs, uncertainties quantified
 - Provide transparent understanding of role" of each menu item in phased compliance strategy
- Demonstrate target load reductions have been met (event, annual, and long term basis)
 - Describe variability and associated uncertainty

EXAMPLE SELECTED STUDY AREA

EXAMPLE CATCHMENT LAND USES

Land Use Group	Acreage
Commercial	55.4
Education	20.9
Industrial	103.2
MF Residential	39.4
Transportation	16.1
Vacant/Open Space	2.7
Total	237.6

EXAMPLE DISTRIBUTED BMP ASSIGNMENTS

			Perm.		Media					
Land Use Group	Cisterns	Bioretention	Paveme	nt	Filters		Defau	lt, but can		
Commercial	0%	0%	0% 20%		20%		20%		be mo	odified for
Education	20%	30%	0%	0%			site-specific			
Industrial	0%	0%	30%		50%			straints		
MF Residential	30%	20%	% 0%		0%			Strumto		
Transportation	0%	0%	0% 0%		80%	80%				
				Α	creage	I	Default 🗸			
Distributed BMP				Τι	reated	De	esign Size			
Cisterns	Cisterns				10.8		0.75 in			
Bioretention				10.0			0.75 in			
Permeable Pavement					38.6	38	8.6 acres			
Media Filters					69.1	0).2 in/hr			
Total Impervious Area Treated By Distributed BMPs				-	118.1					
% of Total Impervious Area in Study Area					58%					

EXAMPLE REGIONAL BMP* SIZING

- Infiltration basin
- Total study area properties:
 - 7 catchments,
 - 238 acres,

Total Runoff from

Study Area (includes effect of distributed BMPs

if applied)

• 85% impervious

Diversion Structure Online or offline?

If offline: Diversion Q is

specified

Total Runoff

 Example design storm sizing approach:

- 0.75-inch storm runoff
- 7.9 ac-ft
- 4 ft storage depth @ 1.2 in/hr design infiltration rate = 40 hour drawdown

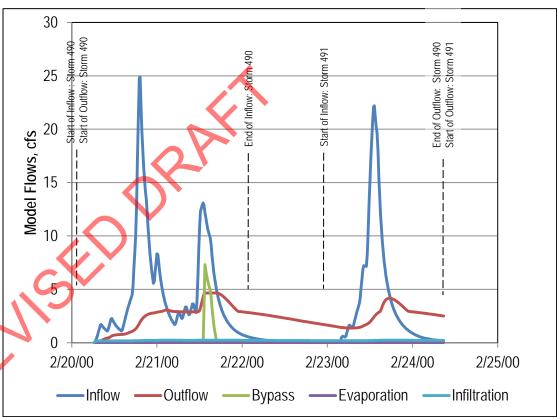
<u>Underlying Infiltation Rate</u> user-specified or adjusted from study area average, computed per area computed in stage-area relationships 85th Percentile to meet regional proj. def'n.*

Flexible inputs to analyze surface or sub-surface infiltration system

* Could include functionally regional projects that do not meet regulatory definition at time of construction

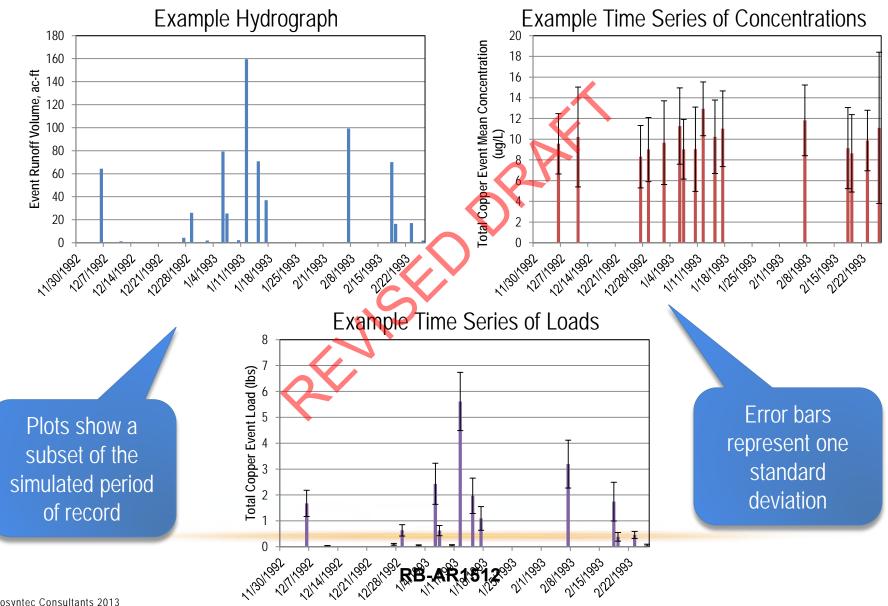
RB-AR1510

nfiltration Basin


Bypass Flow

Overflow Structure

Depth above bottom


EXAMPLE SWMM CONTINUOUS SIMULATION AND STORM EVENT TRACKING

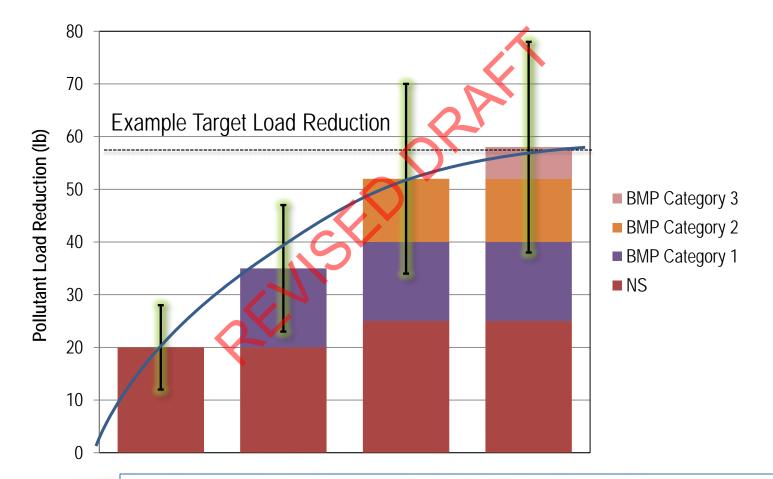
- Tracks inflow, treated discharge, bypass, evaporation and infiltration at each 10 minute time step
- Discretizes runoff events by 6 hour minimum interevent time in rainfall record
- Tracks volume through BMP; summarizes by storm event
- Produces table of BMP hydrologic performance by storm event

	Storm Event Volumes, cu-ft							
	Event No.	Inflow	Infiltration	Evaporation	Bypass	Outflow	% Capture	% Lost
Input to	486	48,600	16,300	136	0	34,000	100	33.5
Monte Carlo	487	185,000	28,500	237	0	157,000	100	15.4
	488	34,700	15,400	129	0	19,200	100	44.3
WQ Analysis	489	54,600	17,900	AR1511	0	36,500	100	32.8
	490	774,000	_{59,50} 88-	AR15,11	52,700	663,000	93.2	7.7
©Geosyntec Consultants 2013	491	444,000	42,600	568	0	399,000	100	9.6

EXAMPLE DETAILED MONTE CARLO RESULTS (EVENT TIME STEP)

EXAMPLE MODEL OUTPUT – ANNUAL AVERAGES

Average Annual Volume and Load Summary for Entire Study Area						
		Avera	ge Annual I Volumes	% Removed		
Pollutant	Units	Pre-BMP	w/ Dist. BMPs	w/ Dist. + Reg. BMPs	M/Dist. DMPs	w/ Dist. + Reg. BMP
Total Runoff Volume	ac-ft	220	172	172	22%	
DCu	lbs	8.8	6.9	6.8	22%	23%
DP	lbs	170	125	118	27%	30%
DZn	lbs	163	73	63	55%	62%
FC	10^12MPN	52.8	35.4	24.3	33%	54%
NH3	lbs	435	276	190	37%	56%
NO3	lbs	500	384	378	23%	25%
TCu	lbs	18.9	10.7	8.1	43%	57%
тки	lbs	1645	1257	1194	24%	27%
ТРЬ	lbs	7.63	4.18	3.54	45%	54%
ТР	lbs	235	140	98	41%	58%
TSS	Tons	42	19	12	54%	71%
TZn	lbs	218	101	66	54%	70%


Compare to Target Load Reductions to Establish RAA

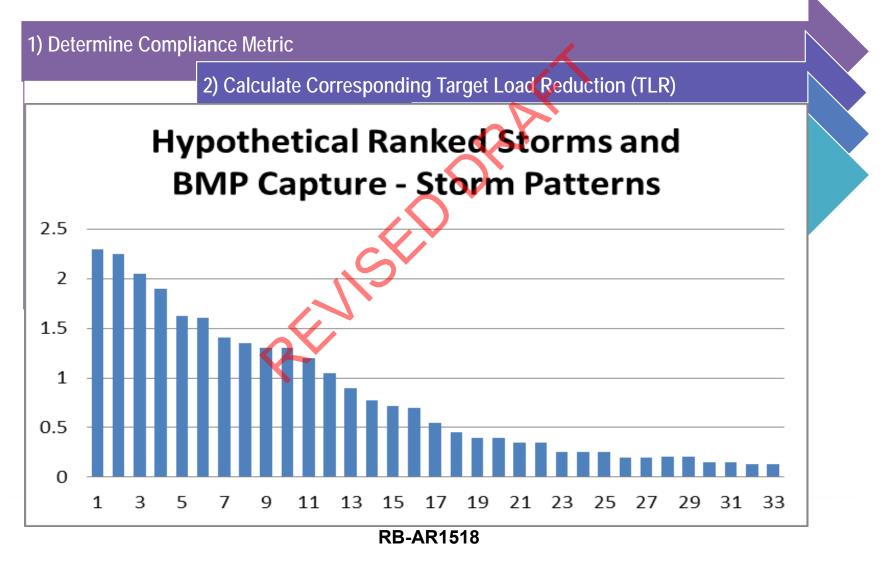
EXAMPLE MODEL OUTPUT - PLANNING LEVEL COST ESTIMATES*

BMP Capital, I	Maintenan	ce and La	and Costs			
	Capital Costs (\$)		Maintenance	Costs (\$/yr)	Land Cost (\$)	
BMPs	Low	High	Low	High	Low	High
Dry Detention Basin	586,874	981,207	3,036	5,058	3,718,940	4,648,676
Perm. Pavement	3,150,968	5,251,617	5,253	9,454	0	0
Media Filters	781,309	1,296,637	108,053	181,196	0	0
Cisterns	100,317	167,556	1,154	1,898	0	0
Bioretention	125,741	208,466	2,480	4,136	1,699,490	2,124,363

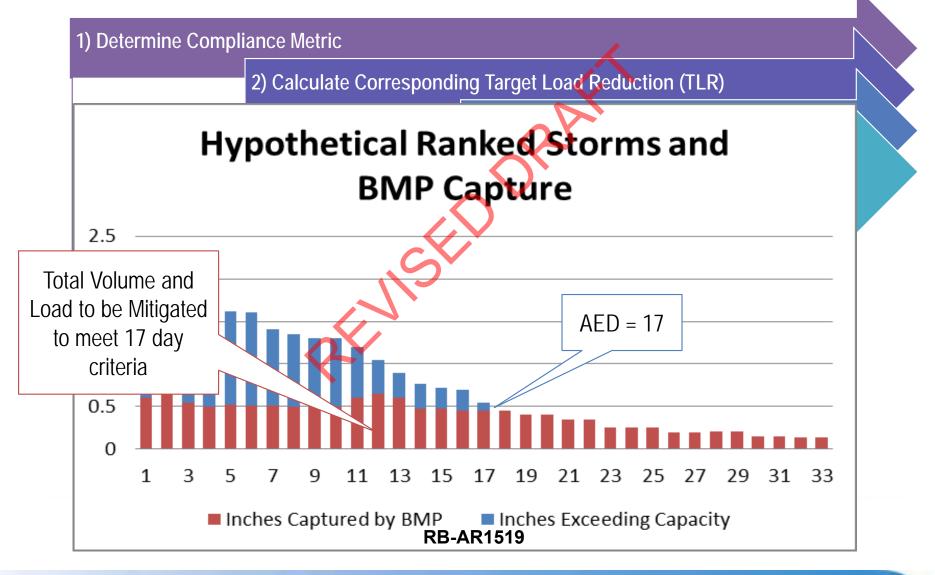
*Includes Retrofit Factor

EXAMPLE PHASED IMPLEMENTATION APPROACH

Demonstration that selected control measures have reasonable assurance to meet interim and final WQBELs and RWL milestones.

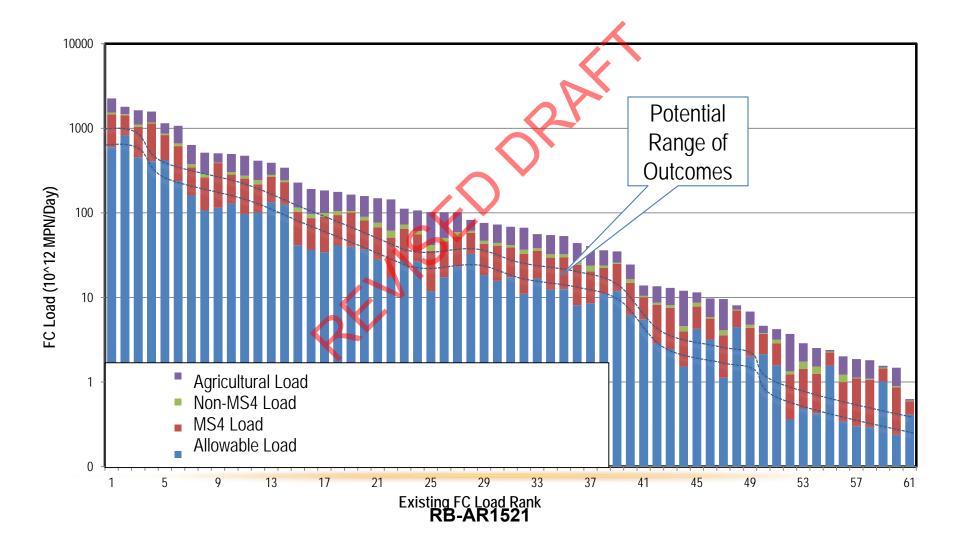

TARGET LOAD REDUCTION DISCUSSION (BACTERIA)

Note: The following method assumes utilization of SBPAT to establish the target load reductions; other methods include utilizing monitoring data to establish ultimate objectives.

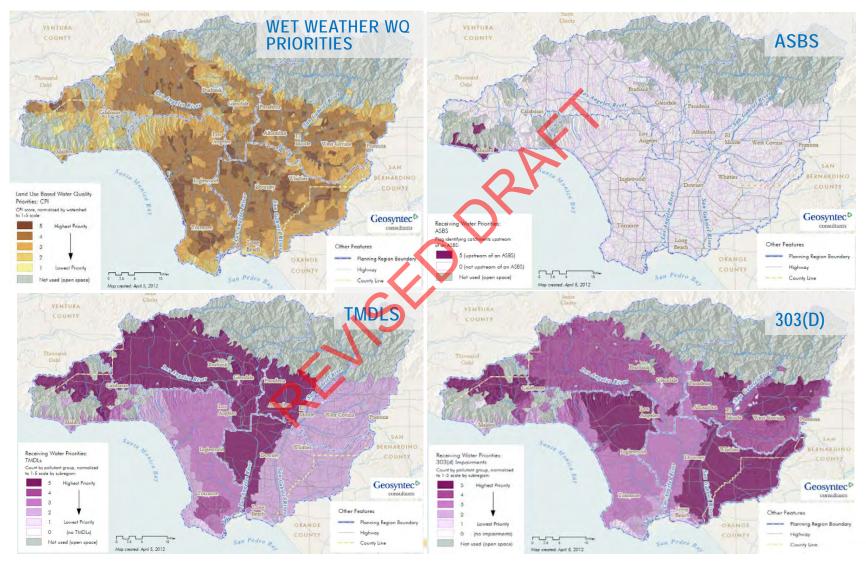

SBPAT-BASED METHOD FOR BMP QUANTITATIVE ASSESSMENT (BACTERIA)

7 Annual	2) Calculate Correspond	ling Target Load Reduc	ction (TLR)
Exceedance Days AED) FIB concentration criteria	 Pick target year = assume "average" is reasonable Estimate FIB Loads all events: Total and MS4 Estimate MS4 load reduction needed so that small storm days are compliant with TMDL Numeric Targets Conduct storm-by-storm analysis Determine load reduction to achieve AED 	 3) Analyze Proposed I Calculate total load reduction range Evaluate BMP performance Remove overlapping benefits Determine percentage of total BMP load reduction that is considered effective for AED compliance 	BMPs 4) Compare Effective Load Reduction to TLR Calculate total load reduction that is considered effective for bringing smaller storms into compliance Compare this effective load reduction to TLR developed in Step 2

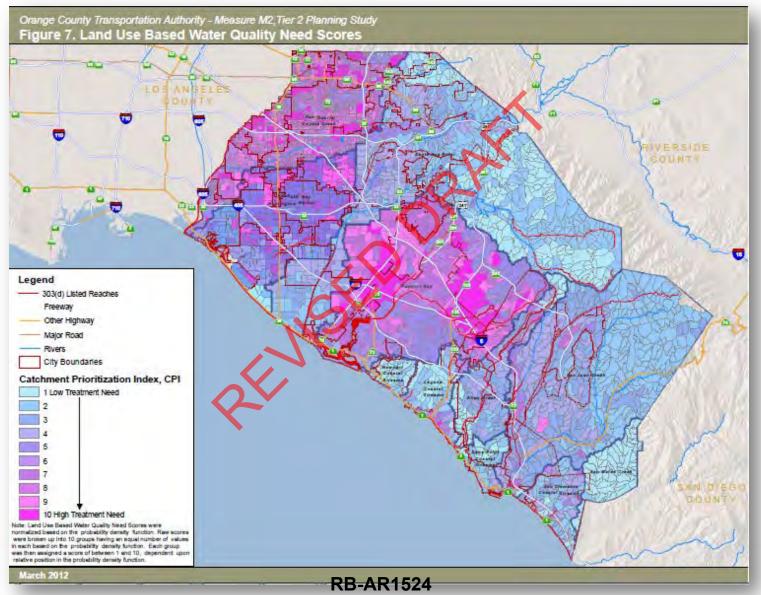
SBPAT-BASED METHOD FOR BMP QUANTITATIVE ASSESSMENT


SBPAT-BASED METHOD FOR BMP QUANTITATIVE ASSESSMENT

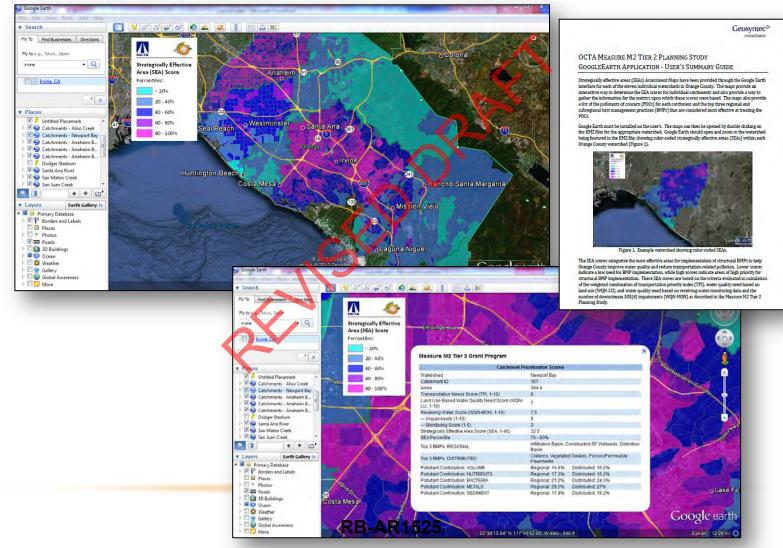
SBPAT-BASED METHOD FOR BMP QUANTITATIVE ASSESSMENT

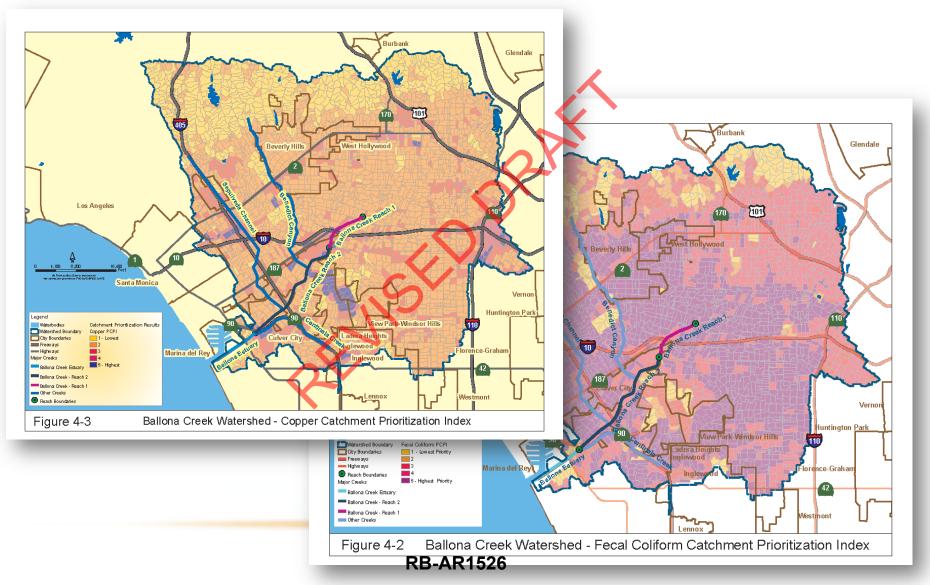

1) Determine Complia	2) Calculate Corresponding T	Target Load Reduction (TLR) Analyze Proposed BMPs				
CALCULATE TOTAL I FROM E	LOAD REDUCTION	4) Compare Effective Load Reduction to TLR				
 SBPAT Structural BMPs Regional Distributed Institutional 	Non- Structural BMPs Street Cleaning LID Ordinances Incentive Programs True Source Control 	Ŭ				
RB-AR1520						

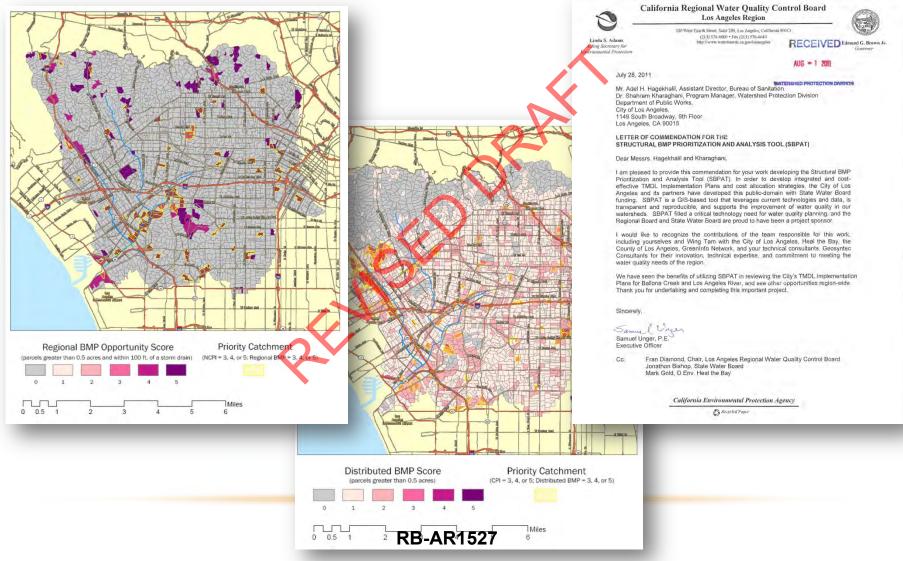
SAMPLE RESULTS DEMONSTRATING REASONABLE ASSURANCE



EXAMPLES OF USES


GLAC IRWMP DATA DEVELOPED COUNTY-WIDE


OCTA MEASURE M2


OCTA MEASURE M2 GOOGLE EARTH APPLICATIONS DEVELOPED

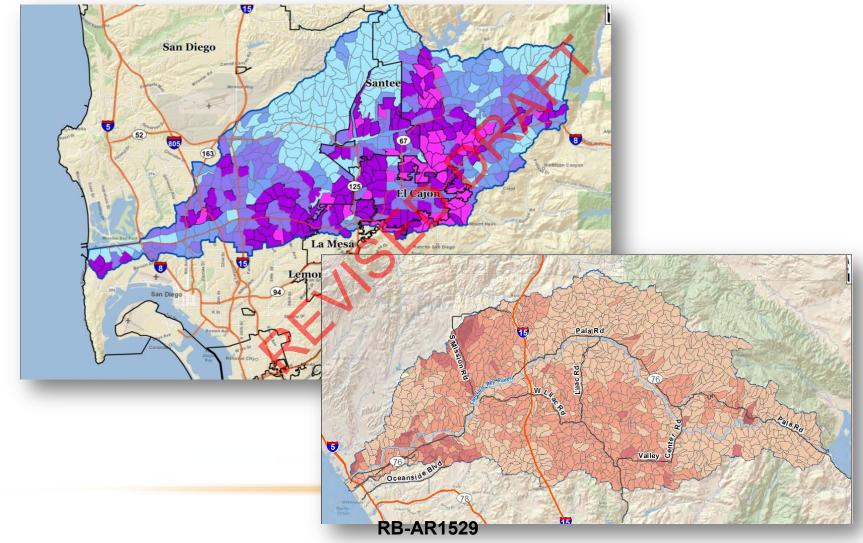
BALLONA CREEK (LOS ANGELES COUNTY)

BALLONA CREEK (LOS ANGELES COUNTY)

EXAMPLE: SAN DIEGO COUNTY COMPREHENSIVE LOAD REDUCTION PLANS (CLRPS)

New land use and receiving water monitoring data considered in both models

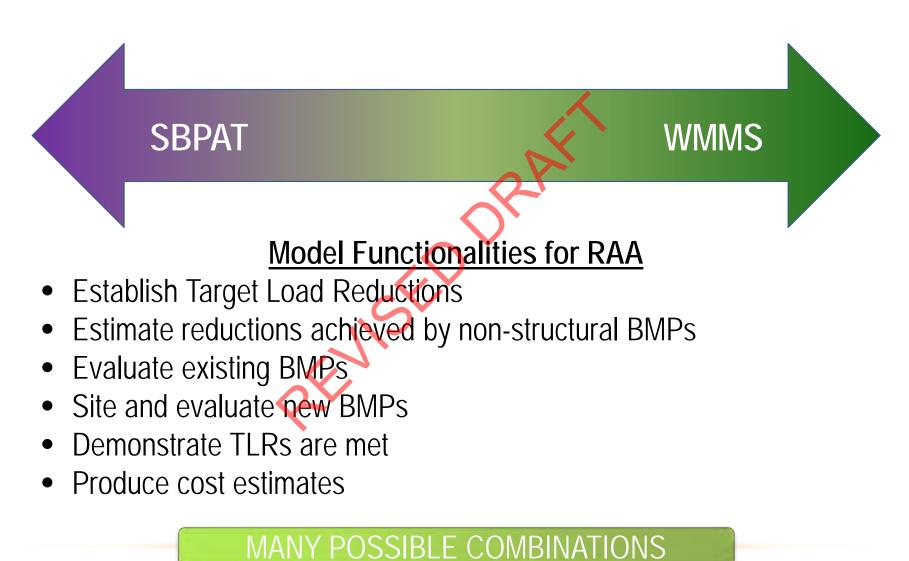
San Luis Rey River


- Area downstream of reservoir analyzed
- Larger Land Area Studied (~350 sq. miles study area)
- More Agriculture LU
- More Rural Residential LU
- More Septic Influence
- 3 Jurisdictions + Caltrans

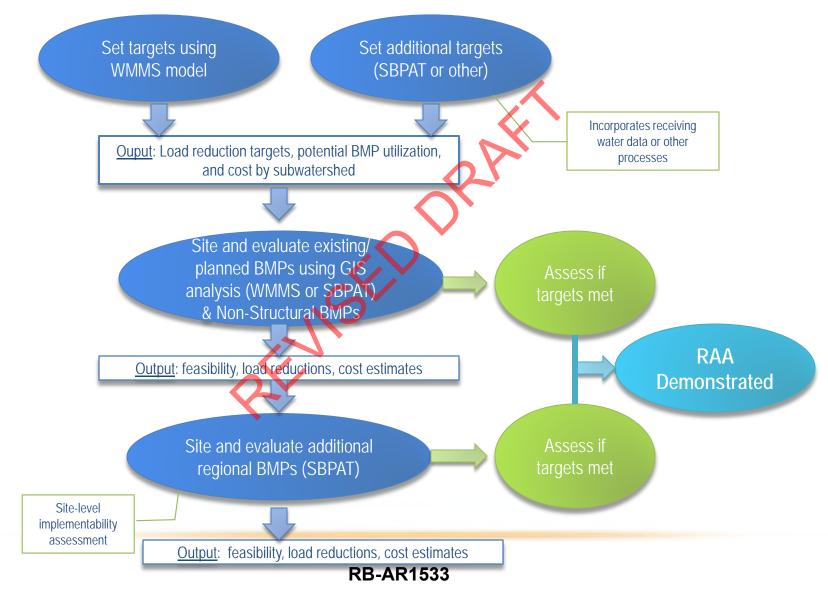
San Diego River

- Area downstream of reservoirs analyzed (~180 sq. miles total study area)
- More Urban Area
- Larger Population
- Large Homeless
 Population
- 5 Jurisdictions + Caltrans
- More 303(d) Listings

SAN DIEGO RIVER & SAN LUIS REY CATCHMENT PRIORITIZATION INDICES (CPI)


SAN LUIS REY WATERSHED PRELIMINARY PLANNING LEVEL – RANGE OF EFFECTIVENESS

BMP CATEGORY	FC Load Reduction (10 ¹² MPN/YEAR) 1993 WY Load ¹ [Low-High Range]
Non-Structural BMPs	1,000 [260 – 1,700]
Regional Structural BMPs	700 [550 -790]
Wetland Mitigation Projects	100 [0 -240]
Distributed Structural BMPs	370 [200 – 430]
Subtotal	2,200 <u>-3 200</u>
Load Reduction Adjustment	-210 [-633 Analyzed by
Load Reduction Effective Fraction	0.35 SBPAT
Load Reduction Sum	690 [330 - 990]
TARGET LOAD REDUCTION	670


CONSIDERATION OF MODELS TOGETHER

(provided for information an discussion only)

MODELING CONTINUUM

INFORMATION FLOW (DEPENDS ON CONDITIONS)

SUMMARY

- Introduction to SBPAT for RAA
- Input types and inputting processes
- Target loading estimates/other implicit assumptions
- Format for information sharing, presentation, and use for decision support
- Final quantified and presented results
- Use of SBPAT results
- Target load reduction discussion
- Examples
- Potential Integration of multiple models

ksusilo@geosyntec.com

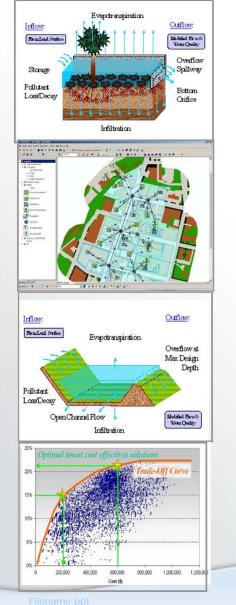
QUESTIONS

Watershed Management Modeling with PLAT: Pollutant Loading Analysis Tool

City of Torrance

Carollo Engineers

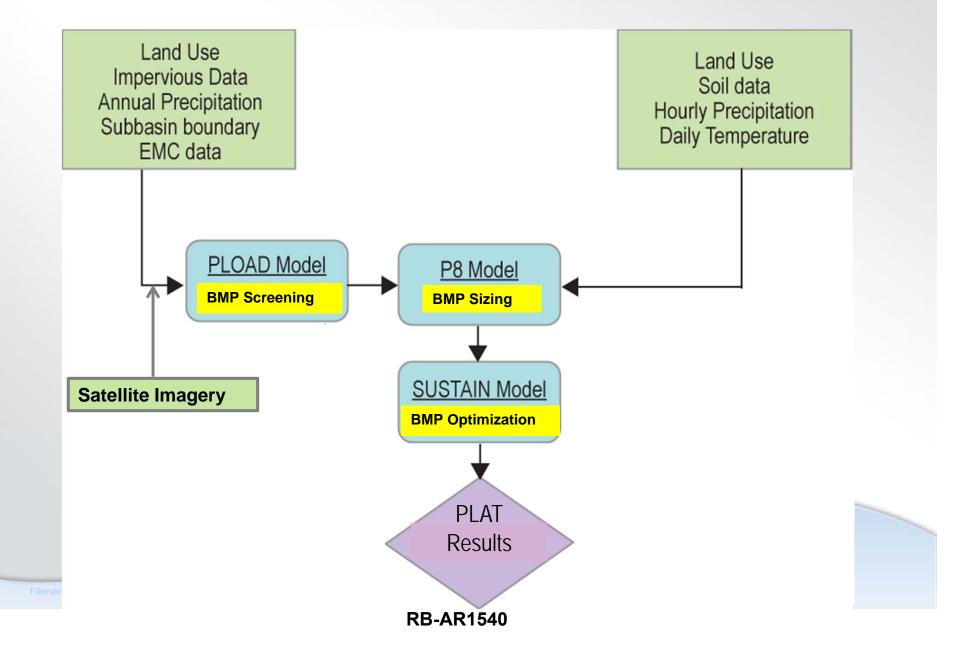
Engineers...Working Wonders With Water®


Presentation Outline

- Project Background
- Water Quality Modeling with PLAT

- Satellite Imagery
- PLOAD
- P8
- SUSTAIN
- Conclusions

The first step involves the evaluation and selection of the appropriate modeling tool(s)



Model	Management Practice Evaluation Techniques	Water Quality Constituents				
AnnAGNPS	 Sediment - RUSLE factors Runoff curve number changes Storage routing Particle settling 	 Sediment Nutrients Organic carbon 				
STEPL	 Sediment - RUSLE factors Runoff curve number changes Simple percent reduction 	SedimentNutrients				
GWLF	 Sediment - USLE factors Runoff curve number changes User-specified removal rate 	SedimentNutrients				
HSPF	 HSPF infiltration and accumulation factors HSPF erosion factors Storage routing Particle settling First-order decay 	SedimentNutrients				
SWMM	 Infiltration Second-order decay Particle removal scale factor Sediment - USLE (limited) 	 Sediment User-defined pollutants 				
P8-UCM	 Infiltration - Green-Ampt method Second-order decay Particle removal scale factor 	 Sediment User-defined pollutants 				
SWAT	 Sediment - MUSLE parameters Infiltration - Curve number parameters Storage routing Particle settling Flow routing Redistribution of pollutants/nutrients in soil profile related to tillage and biological activities 	 Sediment Nutrients Pesticides 				
	Modified Universal Soil Loss Equation; RUSLE = Re = Universal Soil Loss Equation.	evised Universal Soil Loss				

What is PLAT

- PLAT Pollutant Loading and Analysis Tool
- Comprises of commonly used pubic domain models
- Designed to support decision-making
 - How effective are BMPs and GI in reducing runoff and pollutant load
 - What are the most cost-effective BMP options
 - ✓ Where to implement
 - ✓ What type
 - ✓ How large

The PLAT method efficiently screens BMPs prior to detailed modeling

Where It Applies?

- Evaluate and select BMPs to achieve loading targets set by a TMDL
- Identify protective management practices and evaluate pollutant loadings for Surface Water Protection
- Develop cost-effective management options for a MS4
- Determine a cost-effective mix of green infrastructure measures to help meet optimal flow reduction goals in SSO control programs

The Pollutant Loading Analysis Tool (PLAT) is an approach that combines three models and satellite data to achieve the City's goals

PLAT Component	Function	Public Domain Data
Satellite Imagery	Impervious coverLand coverPreliminary Pollutant ranking	
PLOAD	Pollutant loading & hot spotsCalibrate P8 modelScreen BMPs	
Р8	 Simulate and route pollutants Evaluate alternatives Preliminary BMPs sizing 	
SUSTAIN	 Final BMP sizing BMP optimization Assess TMDL compliance 	

Watershed modeling requires several common input parameters

Land Use

EMC (urban)
Unit Load (Non-urban)

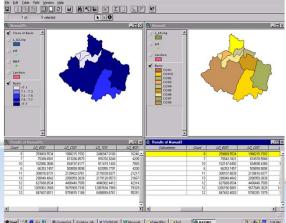
Soil & RainfallAnnual

Hourly

Pollutant LoadBeforeTreatment

Discount Factors• BMP Specific• Treatability Factor)

Pollutant Reduction
Applied to base line load


BMPs

- Performance code
- Removal Efficiency

Water Quality Modeling with PLAT – Simple Approach

- Satellite Remote Sensing
 - Impervious cover mapping
 - Land cover mapping
 - Pollutant hot-spots characterization
- PLOAD Modeling
 - Pollutant load calculation and characterization
 - Initial data for calibration P8 & SUSTAIN
 - BMP Screening

Satellite imagery is a unique input parameter used with the PLAT approach

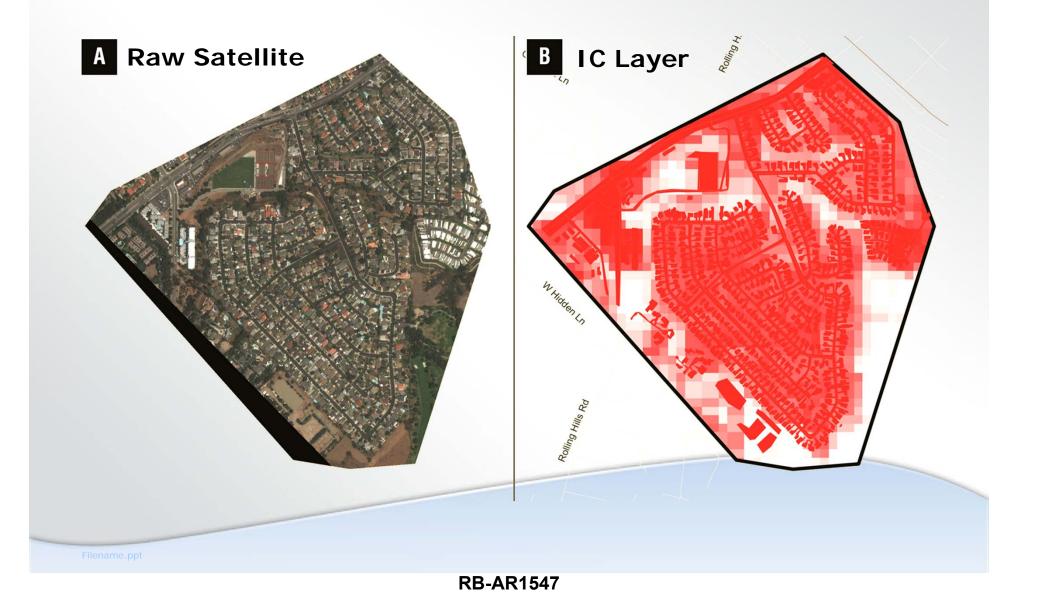
Benefits:

- Suitable for impervious mapping
 - Accurate & Recent
 - Frequently updated (every 1.5 days)
 - Cloud cover impact information
 - Site-specific
- Suitable for land cover mapping
 - Open space
 - Automated by digital image processing techniques
- Saves Time & Low Cost
 - City of Torrance (\$1000)

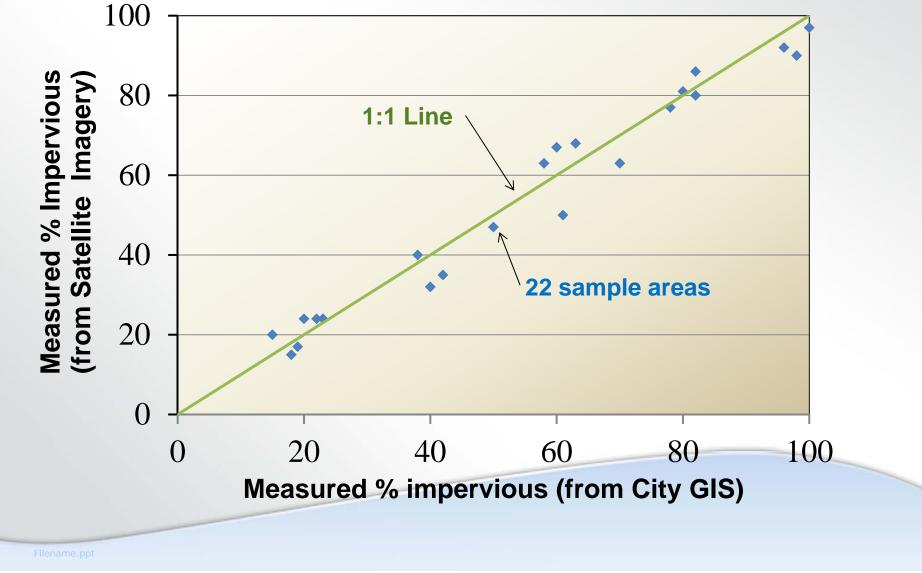
Satellite: WorldView-2 Company: DigitalGlobe's High Resolution

Impervious Surface can be readily extracted from satellite imagery

Any surface not penetrable by water


Includes streets, parking lots, sidewalks and building roof tops

Transportation elements contribute the most to impervious surface

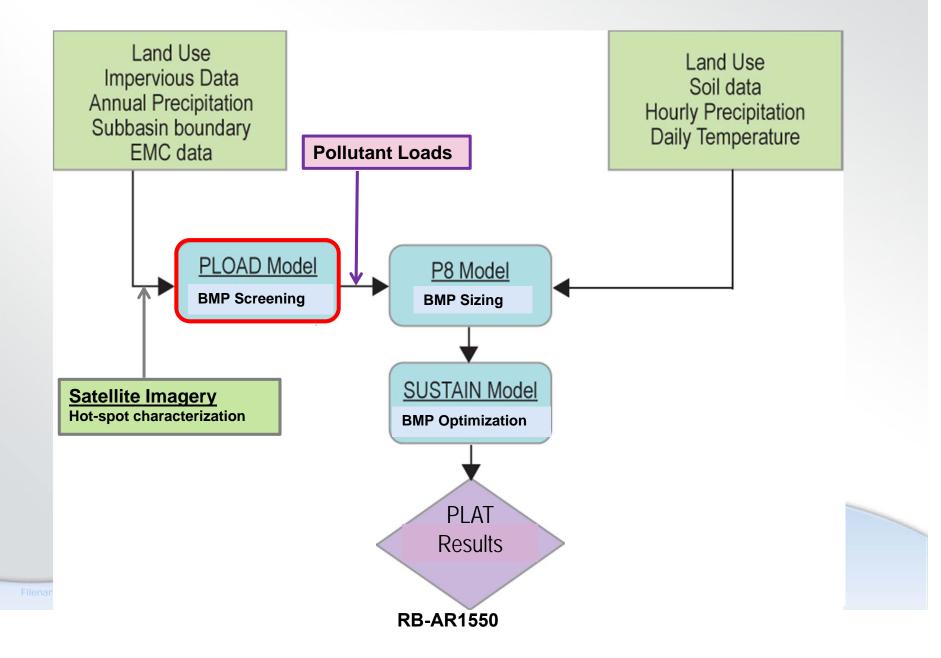

area

Filename.ppt

Satellite imagery allows accurate and quick estimation of impervious areas

Comparison of % imperviousness of sample areas confirms accuracy of satellite imagery

The same Satellite Imagery data can be used to quickly identify open space for BMP siting

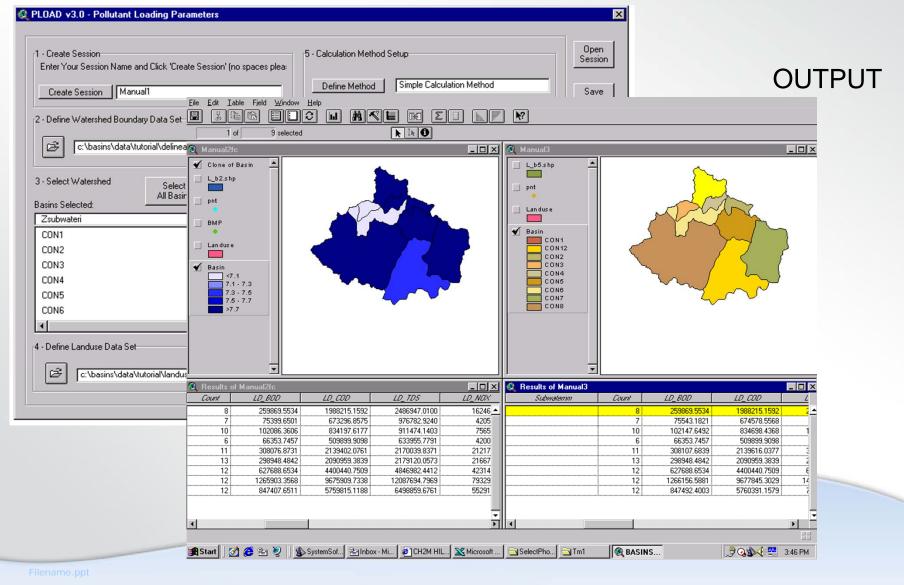

Image classification:

- GIS Image Analysis Extension
- Training set w/sun energy reflection
- Identify open spaces, buildings, etc.

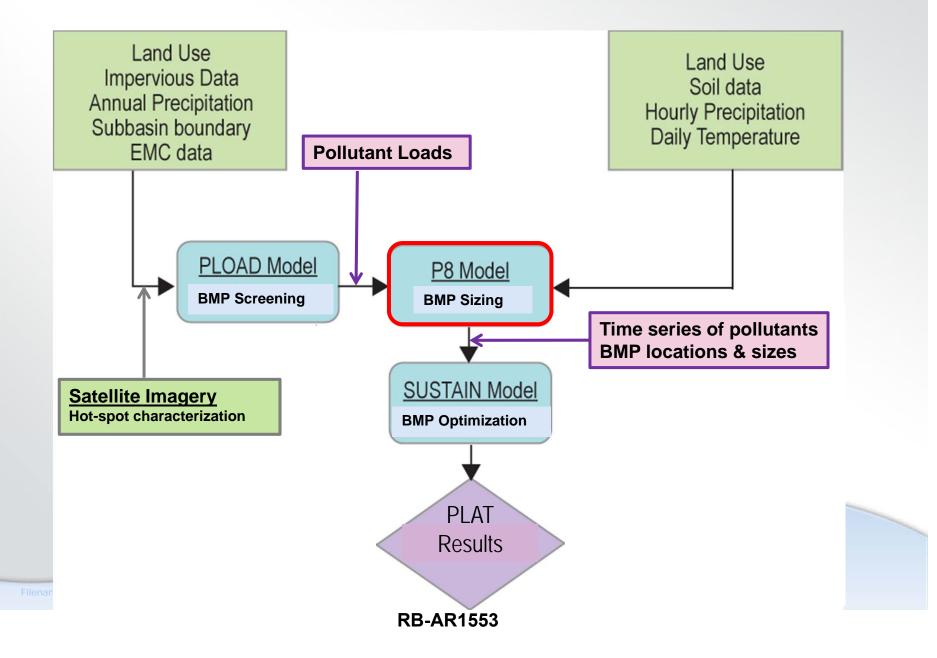
Vacant land selection:

- Prioritize city owned parcels
- General Plan Land use
- Proximity to stormdrains

PLOAD calculates pollutant loads by subbasin for BMP screening



Simple Approach – PLOAD Modeling

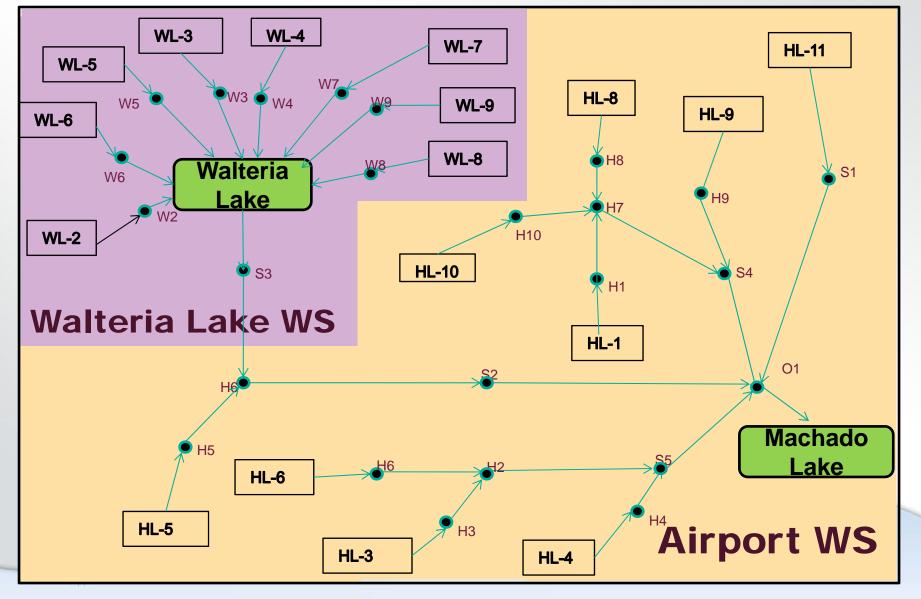

- Simple spreadsheet model
- GIS based and a module of EPA BASINS
- Computes load on long term basis
- Uses imperviousness, land use and event mean concentration
- Efficient in screening BMPs
- Output can be used to calibrate other components of PLAT

Pollutant load by subwatershed

INPUT

P8 calculates time-series pollutant loads by area for BMP sizing

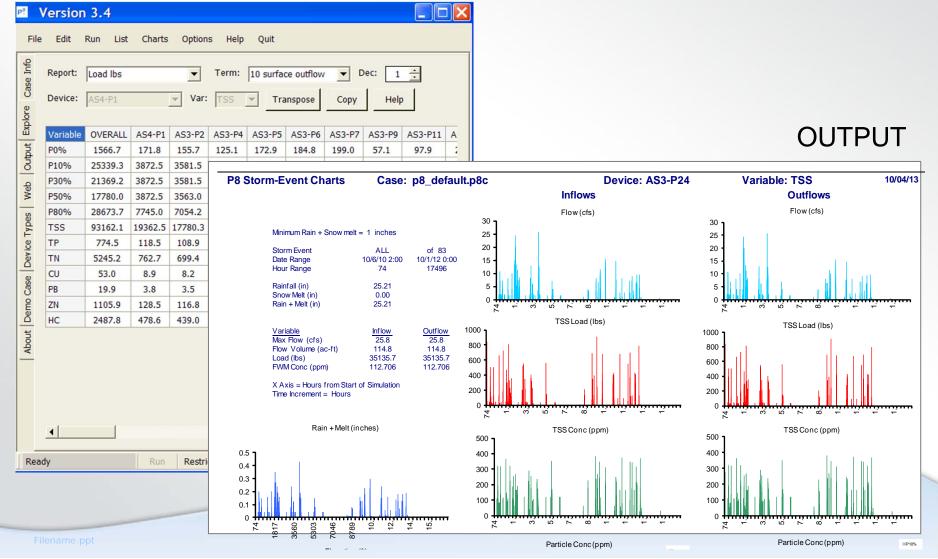
Advanced BMP Modeling with P8 (Urban Catchment Model)


Home	Backward Forward> Refresh P8 Main Online Help	
	P8 Urban Catchment Model by William W. Walker, Jr., Ph.D. Linkedim: for USEPA, Minnesota PCA, & Wisconsin DNR 06/20/2013	
	Download the Latest Version (3.4) Version Notes Installation Instructions Online Documentation P8 WebSite	
	This page appears each time you run P8 if you are connected to the Internet. Its purpose is to provide current information on model release and related matters. P8 is compatible with MS Windows XP & 7; MS Office 2003-2010. In Windows 7, the default program location specified in the setup procedure: "C:/Program Files/P8 Urban Catchment Model" must be moved outside of the "/Program Files" directory, e.g. to "C:/P8/". See installation instructions .	
	Review <u>Version Notes</u> before installing. Install the latest version using the above link if the version number does not match the one you are currently using. If you have problems with installation, try manually uninstalling previous Windows versions via the Windows Control Panel before running the setup utility. The DOS version can remain on your system if desired. The latest version supports input files from all previous versions. If your input files are stored in the default program directory for a previous version, they should be copied into the program directory for the new version. This can be done after installation.	
	P8 requires the Microsoft .Net Version 2.0 framework, which will be installed automatically when P8 is installed.	
	Version 1 (1990) documentation provides detailed descriptions of algorithms and calibrations. Updates are described in the <u>documentation for the current windows version</u> . The Windows version basically translates the DOS version with more bells/whistles and revised input/output formats. Most of the underlying algorithms and calibrations (now 15-20 years old) have not been changed. As far as I know, mass is still conserved and suspended particles still settle at about the same rate as they did in the 1980's, so the underlying concepts and calibrations are still valid. With the exception of <u>street-sweeping efficiency factors</u> , the default particle calibrations (NURP50, NURP90) based on information available as of 1990 have not been modified, users can create their own particle	
	calibrations based on more recent and/or site-specific data. If the default calibrations are used, the user (not P8) assumes that they are valid.	
	Please <u>send me an email</u> if you download the program so that I can maintain a list of users. Likewise, please report problems or suggestions . Bill	
	Email: <u>bill@wwwalker.net</u>	
	Home Page: http://www.wwwalker.net	
r.	Run Restrict Output Explore Output	

Watershed input data sheet

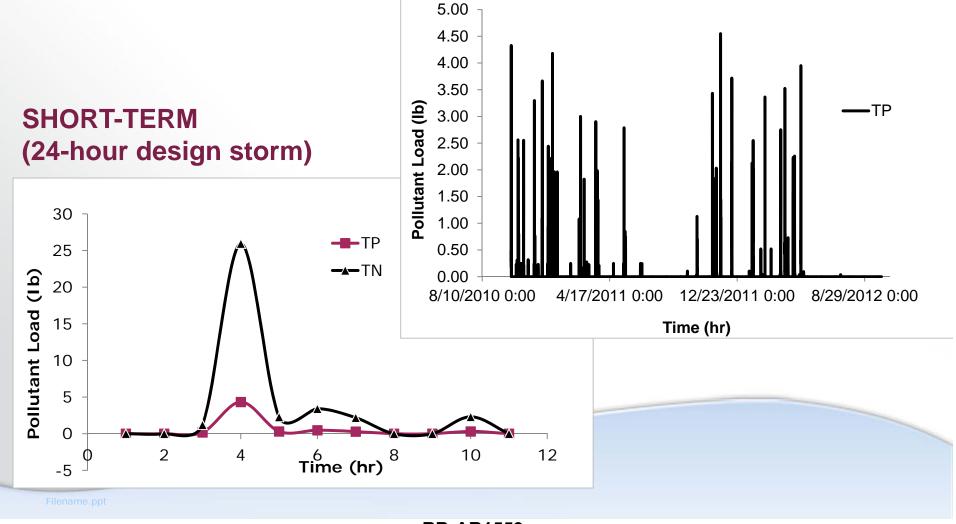
Help SLAMM Calib List	Add Duplicate Delete Clear Check	Cancel OK	
Color a Westernahood			
Select Watershed	Watershed Name	AS3-1	
AS3-1	Outflow Device for Surface Runoff	AS3-P23	-
AS3-3 AS3-2	Outlow Device for Surface Rullon	1100120	
AS3-2 AS3-4	Outflow Davies for Develotion	None	
AS3-5	Outflow Device for Percolation	INONE	•
AS3-6			
AS3-7			
AS3-8	Total Area (acres)	39.212	
AS3-9 AS4-1			
AS3-10	Pervious Area Curve Number	78	
AS3-11			
AS3-12	Indirectly Connected Imperv. Fraction	0.25	
AS3-13	and an and a particle band		
AS3-14	Scale Fractor for Particle Loads	1	
AS3-15 AS3-17			
AS3-18	Directly Connected Impervious Area Type	Vacuum Swept	Not Swept
AS3-19			
AS3-20	Connected Impervious Fraction	0.315	0.315
AS3-21			
AS2-1	Depression Storage (inches)	0.01	0.01
AS2-2 AS2-3			
AS2-4	Impervious Runoff Coef	1	1
AS2-5		,	
100 0	Scale Factor for Particle Loads	1	1
AS2-6			-
AS1-1			
AS1-1 AS1-2		0.5	
AS1-1 AS1-2 AS1-3	Impervious Sweep Frequency (1/wk)	0.5	
AS1-1 AS1-2	Impervious Sweep Frequency (1/wk)		
AS1-1 AS1-2 AS1-3 AS1-4		0.5	
AS1-1 AS1-2 AS1-3 AS1-4 AS1-5 AS1-6 AS1-7	Impervious Sweep Frequency (1/wk)		Stop
AS1-1 AS1-2 AS1-3 AS1-4 AS1-5 AS1-6	Impervious Sweep Frequency (1/wk)	1	Stop 1231

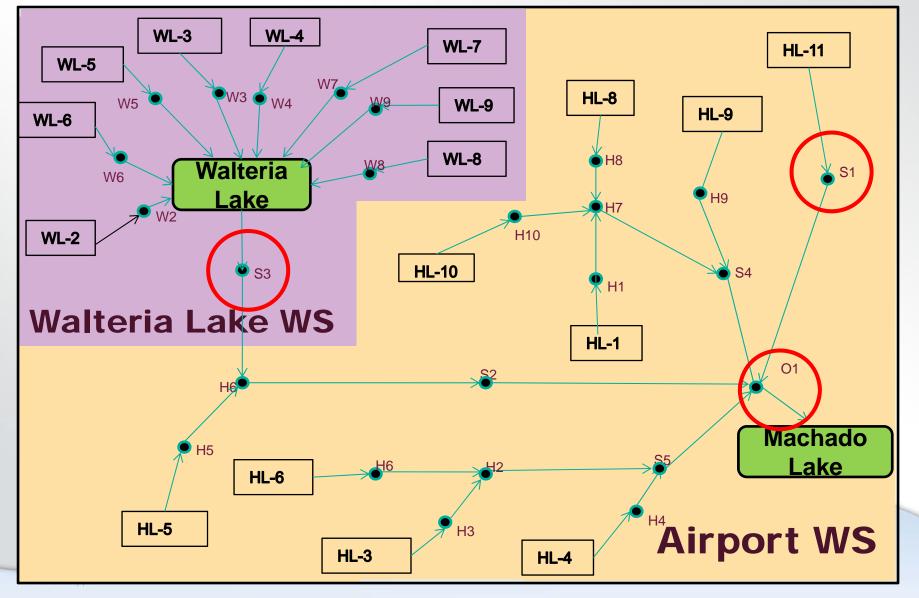
Help Read File Save File Check Cancel OK Particle File nurp50.p8p Description NURP Particle Composition WQ Variable 1 2 3 4 5 6 7 8 9 10 Name ISS TP TN CU PB ZN HC 10 Particle Fraction ISS TP TN CU PB ZN HC 10 10 100000 13600 2000 640000 250000 10 10 10 100000 13600 2000 640000 250000 10 1	° W	/ater Qua	lity Com	ponen	ts							
Description NURP Particle Composition WQ Variable 1 2 3 4 5 6 7 8 9 10 Name ISS TP TN CU PB ZN HC 1 0 9000 60000 13600 2000 640000 25000 1 0 99000 600000 13600 2000 640000 25000 2 1000000 3850 15000 340 180 1600 22500 3 1000000 3850 15000 340 180 1600 22500 4 1000000 3850 15000 340 180 1600 22500 5 1000000 0 340 180 0 22500 Level Water Quality Criteria (ppm)	Help	Read File	Save File	Check (Cancel OK							
Description NURP Particle Composition WQ Variable 1 2 3 4 5 6 7 8 9 10 Name ISS TP TN CU PB ZN HC 6 7 8 9 10 Particle Fraction Particle Composition (mg/kg) 1 0 99000 600000 13600 2000 640000 250000												
Description NURP Particle Composition WQ Variable 1 2 3 4 5 6 7 8 9 10 Name TSS TP TN CU PB ZN HC 7 8 9 10 Particle Fraction Particle Composition (mg/kg) 1 0 99000 600000 13600 2000 640000 250000		Particle File	nurp50.p8	3p		_						
WQ Variable 1 2 3 4 5 6 7 8 9 10 Name TSS TP TN CU PB ZN HC 1<			Indi baorbob									
Name I <thi< th=""> <thi< th=""></thi<></thi<>		Description	NURP Particle Composition									
Name I <thi< th=""> <thi< th=""></thi<></thi<>		WQ Variable	1	2	3	4	5	6	7	9	0	10
Particle Fraction Particle Composition (mg/kg) 1 0 99000 600000 13600 2000 640000 250000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>,</td><td></td></td<>										•	,	
1 0 99000 600000 13600 2000 640000 250000 2 1000000 3850 15000 340 180 1600 22500 3 1000000 3850 15000 340 180 1600 22500 4 100000 3850 15000 340 180 1600 22500 5 100000 0 0 340 180 1600 22500				1	1	1	1	1	1	1		
2 1000000 3850 15000 340 180 1600 22500 3 1000000 3850 15000 340 180 1600 22500	Par	ticle Fraction				Particle	Composition	(mg/kg)				
3 1000000 3850 15000 340 180 1600 22500 4 1000000 3850 15000 340 180 1600 22500 5 1000000 0 0 340 180 0 22500 5 1000000 0 0 340 180 0 22500 5 1000000 0 0 340 180 0 22500 <		1	0	99000	600000	13600	2000	640000	250000			
4 1000000 3850 15000 340 180 1600 22500 5 1000000 0 0 340 180 0 22500 5 100000 0 0 340 180 0 22500 5 100000 0 0 340 180 0 22500 Scale Factor 1 1.92 2.75 1 1 1 1		2	1000000	3850	15000	340	180	1600	22500			
5 1000000 0 0 340 180 0 22500 Scale Factor 1 1.92 2.75 1 1 1 1 Level Water Quality Criteria (ppm) A 5 0.025 2 2 0.02 5 0.1 B 10 0.05 1 0.0048 0.014 0.0362 0.5		3	1000000	3850	15000	340	180	1600	22500			
Scale Factor 1 1.92 2.75 1 1 1 1 1 1 Level Water Quality Criteria (ppm) A 5 0.025 2 2 0.02 5 0.1 1 B 10 0.05 1 0.0048 0.014 0.0362 0.5 1 1		4	1000000	3850	15000	340	180	1600	22500			
Water Quality Criteria (ppm) A 5 0.025 2 2 0.02 5 0.1 Image: Colspan="5">Image: Colspan="5" Image: Colspa="5" Image: Colspan="5" Image: Colspan="5" Image: Col		5	1000000	0	0	340	180	0	22500			
A 5 0.025 2 2 0.02 5 0.1 Image: Second s		Scale Factor	1	1.92	2.75	1	1	1	1			
A 5 0.025 2 2 0.02 5 0.1 B 10 0.05 1 0.0048 0.014 0.0362 0.5												
B 10 0.05 1 0.0048 0.014 0.0362 0.5		Level				Water Q	uality Criteria	a (ppm)				
		A	5	0.025	2	2	0.02	5	0.1			
		В	10	0.05	1	0.0048	0.014	0.0362	0.5			
C 20 0.1 0.5 0.02 0.15 0.38 1		С	20	0.1	0.5	0.02	0.15	0.38	1			


The P8 Model of Machado Lake contains 17 subareas for detailed BMP modeling

RB-AR1557

P8 Model produces time-series pollutant loads for BMP sizing and siting

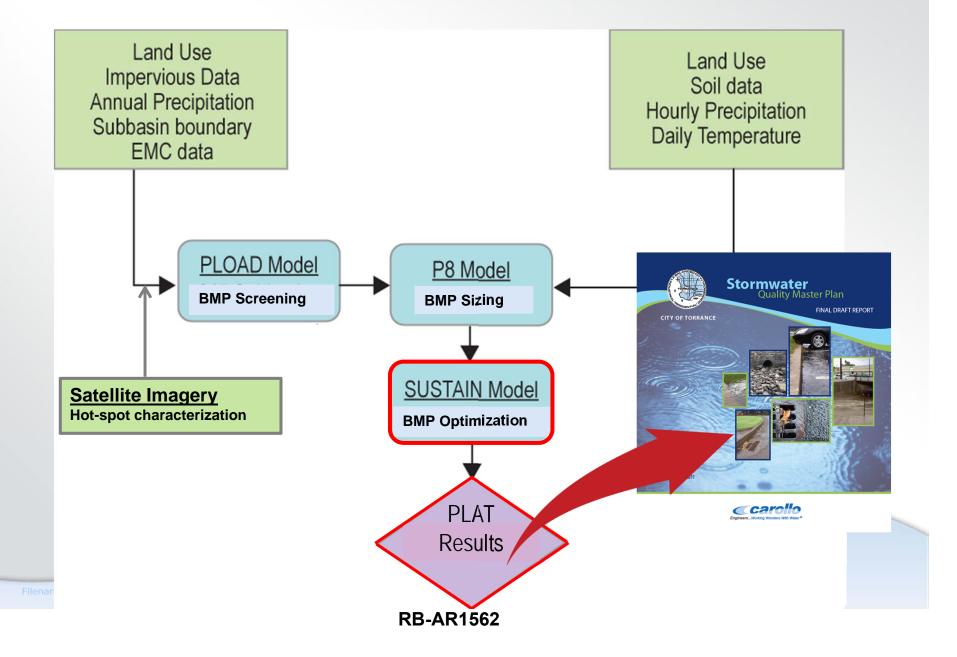

INPUT


The P8 model can simulate both short-term storm events and long-term hydrology

LONG-TERM

(from multiple storms to 30-yr hydrology)

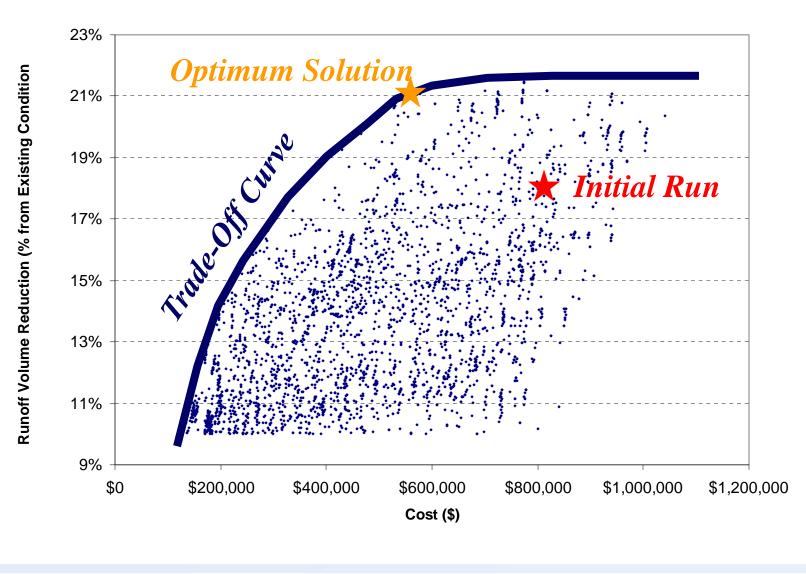
The P8 model allows for quick comparison of model and monitoring sampling data


RB-AR1560

The P8 model allows for quick comparison of model and monitoring sampling data

Stormwater Sampling Location - Tor-S1

Machado Lake Nutrient TMDL **Monitoring Plan** Machado Lake **Toxics TMDL** Monitoring Plan MACHADO LAKE NUTRIENT TOTAL MAXIMUM DAILY LOAD SPECIAL STUDY WORK PLAN May 18, 2011 CCamil City of Torrance, California MACHADO LAKE NUTRIENT TOTAL MAXIMUM DAILY LOAD SPECIAL STUDY WORK PLAN May 18, 2011 Comil Torrance Boulevand - Torrance, California 90503 - Phone: 310.618.5680 - Fax: 310.618.569 ScinnersClerCAT recoder SAXCelandre/Sect204/Vio/Ter - Tamer 140, with tho Sampling Location Storm Drain City Limit **SAMPLING SITE TOR-S1**


The last step of PLAT is BMP selection and optimization in SUSTAIN

The SUSTAIN Model is used to optimize sizing and minimize cost

INPUT					5		TAIN Mul		Output
SitingTool.mxd - ArcMa	ap - ArcView			_ID×	Condition	21%		A Link	Section 1
Eile Edit View Insert Sel	ection Iools Window Help				Existing Condition	19%	. we		Initial Run
0 📽 🖬 🎒 🖇 🖻	8 🕲 X 🗠 🔿 😽 🛛	1:29,583 •	8 🌒 🗖	▶? BMP Siting Tool ▼	from Ex	17%	e Officiane		
×	Define Data Path	100007 III 102 IEA -			(% f	2	e la la		
E Stayers	The second	e buttons to browse and select	the Datasets.						
Streams UrbanLanduse	Select the DEM grid Select Soil shapefile	DEM Soil	•		Runof	**			· ·
OrbanLanduse	Select Road shapefile Select UrbanLanduse shape	Roads file UrbanLanduse	-	a 🖏 🗍	Ľ.	9%	200,000 \$400,000	\$600,000 \$ Cost (\$)	300,000 \$1,000,000 \$1,200,000
E DEM Value	Select Stream BMP Siting T	ool - Point BMPs	-/	Lator, 527					OUTPU
High : 505	Select Bi	Contraction of the Contraction o		Siting (Criteria				
Low : 116	Dry pond			Drainage Area (ac)	>25				
	Infiltration to Infiltration to Bioretentio	basin Irench		Drainage Slope (%)	<15				
	Sand filter	(suiface) (non-suiface)	-	Infiltration Rate (in/hr)					
Display Source Selection	Stormwate	r wetland	-	Hydrological Soil Groups	A-D				
yrawing - 🖡 🔿 🖓	- A			Watertable Depth (ft)	>4				
				Road Buffer (ft)	NA				
	The at		al and the	Stream Buffer (ft)	100				
				Building Buffer (ft)	NA				
			Cancel	Proceed					
Filename.ppt									

SUSTAIN identifies optimum solution by finding point of diminishing return on trade-off curve

Conclusions

PLAT Modeling Benefits

- Efficient due to initial BMP screening prior to detailed modeling process
- Utilization of highly accurate satellite data
- Applicable for both watershed and site-scale
- Allows both short- and long-term durations
- Utilizes non-proprietary tools for RWQCB approval

Satellite Imagery Benefits

- Recent data readily available
- Accurate source to determine imperviousness
- Cost-effective source to calculate imperviousness and pollutant loads
- Accurate source for land characterization, including vacant land for BMP siting

Satellite Remote Sensing Based Watershed Modeling for TMDL Implementation

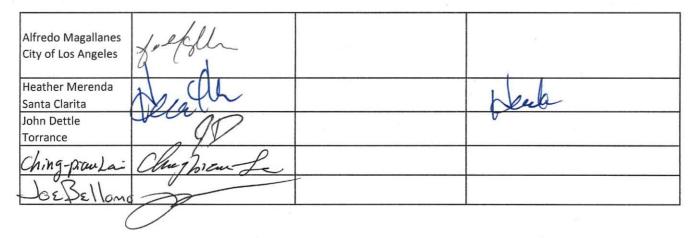
John Dettle, P.E.

City of Torrance jdetttle@torranceCA.gov (310) 618-309

Samuel Darkwah, Ph.D., P.E.

sdarkwah@carollo.com (816) 853-2909

Inge Wiersema P.E.


Carollo Engineers iwiersema@carollo.com (626) 393-7427

RAA Sub-Commitee November 14, 2013

Representative	Sign In	Alternate	Sign In
TJ Moon			
County	Tap,		
Cindy Lin USEPA	Cord/ F		
David Smith USEPA		1	
Anthoney Arevalo		Ana De Anda	
Mike Antos			
Vijay Desai, City of Los Angeles			
Kirsten James	via Phone		
Richard Horner			
Liz Crosson	via Phone		
Desi Alvarez Huntington Park	1/Alto		5
Cameron McCullough	C Mil	>	
Bruce Hamamoto County	BUT		
Noah Garrison			
Thanhloan Nguyen	via Phone		
Renee Purdy			
Ivar Ridgeway	Joon K Kidgewy	4	
Hamid Tadayon City of Los Angeles	U		

RAA Sub-Commitee November 14, 2013

RAA Sub-Commitee December 4, 2013

Representative	Sign In	Alternate	Sign In
TJ Moon County	ta	÷.	
Cindy Lin USEPA			
David Smith USEPA			
Anthony Arevalo		Ana De Anda	
Mike Antos	Me		
Vijay Desai, City of Los Angeles			
Kirsten James	KCX		
Richard Horner	0		т. Т
Liz Crosson	Λ	. ¹	
Desi Alvarez Huntington Park	unil		
Cameron McCullough	C mills		
Bruce Hamamoto County	BAT		
Noah Garrison			
C.P. Lai	C.P. frei		
Thanhloan Nguyen	Whanklorngrups	-	
Renee Purdy	m / 0		
Ivar Ridgeway	Ivan K Kielgen) ×	
	()		

RAA Sub-Commitee December 4, 2013

Hamid Tadayon City of Los Angeles			
Alfredo Magallanes City of Los Angeles	5-6		
Heather Merenda Santa Clarita	de		
John Dettle Torrance	- AD	20	
Kon Susilo Geosyntee	1200		
	C		

RAA Subcommittee Meeting

January 9, 2014 at 1:00 PM

Los Angeles County Department of Public Works HQ

Conference Room D

- I. Introductions
- II. RAA Guidance Document Discussion
- III. 2014 Meeting Schedule Discussion
- IV. Action items and next meeting

GUIDELINES FOR CONDUCTING REASONABLE ASSURANCE ANALYSIS IN A WATERSHED MANAGEMENT PROGRAM, INCLUDING AN ENHANCED WATERSHED MANAGEMENT PROGRAM

The Regional Board adopted Waste Discharge Requirements for Municipal Separate Storm Sewer System (MS4) Discharges within the Coastal Watersheds of Los Angeles County, Order No. R4-2012-0175 (NPDES Permit No. CAS004001). As required in the permit, Part VI.C.5.b.iv.(5), permittees electing to develop a watershed management program (WMP) or enhanced watershed management program (EWMP) are required to submit a Reasonable Assurance Analysis (RAA) as part of their draft E/WMP to demonstrate that applicable water quality based effluent limitations and receiving water limitations shall be achieved through implementation of the watershed control measures proposed in the E/WMP. This guidance document is prepared to provide information and guidance to assist permittees in development of the RAA. This document provides clarification of the regulatory requirements of the RAA along with recommended criteria for the permittees to follow to prepare an appropriate RAA for Regional Board approval.

A. APPLICABLE INTERIM AND FINAL REQUIREMENTS:

Per Part VI.C.5.a of the permit, and based on an evaluation of existing water quality conditions, permittees shall classify and list water body-pollutant combinations into one of the following three categories within their draft E/WMP:

- Category 1 (Highest Priority): Water body-pollutant combinations for which water quality-based effluent limitations and/or receiving water limitations are established in Part VI.E TMDL Provisions and Attachments L through R of the MS4 Permit.
- Category 2 (High Priority): Pollutants for which data indicate water quality impairment in the receiving water according to the State Board's Water Quality Control Policy for Developing California's Clean Water Act Section 303(d) List (State Listing Policy) and for which MS4 discharges may be causing or contributing to the impairment.
- Category 3 (Medium Priority): Pollutants for which there are insufficient data to indicate water quality impairment in the receiving water according to the State's Listing Policy, but which exceed applicable receiving water limitations contained in this Order and for which MS4 discharges may be causing or contributing to the exceedance.

Permittees shall identify the water quality priorities within each watershed management area (WMA) that will be addressed by the E/WMP in order to achieve applicable water quality limitations (i.e., WQBELs and RWLs) within the timeframes established by the corresponding compliance schedules set forth in Attachments L-R, or where there is no specific compliance schedule contained in Attachments L-R, the compliance schedule set forth in the E/WMP. For watershed priorities related to addressing exceedances of RWLs in Part V.A and not otherwise addressed by Part VI.E, proposed compliance schedules must adhere to the requirements of Part VI.C.5.c.iii.(3). For watershed priorities related to achieving WLAs in USEPA established TMDLs, proposed compliance schedules must adhere to the requirements of Part VI.E.3.c.iii-v.

Permittees may choose to further subcategorize water body-pollutant combinations within the three main categories above for purposes of sequencing implementation of watershed control measures in the most effective manner possible, taking into consideration compliance deadlines and opportunities to address multiple pollutants within a water body with similar watershed control measures. This is consistent with the

permit provisions in Parts VI.C.2 and VI.C.3, which group pollutants for purposes of complying with the RWLs Provisions according to whether the pollutant is being addressed by a TMDL, is similar in its fate/transport characteristics and effective implementation measures to a pollutant being addressed by a TMDL, is currently listed on the 303(d) list, or exhibits only occasional exceedances in the receiving water. For example, permittees may wish to identify which water body-pollutant combinations in Categories 2 and 3 above are similar to a water body-pollutant combination in Category 1, and could therefore be addressed simultaneously with the water body-pollutant combination in Category 1. Permittees are invited to discuss with Regional Board staff, and solicit early input on, approaches to further subcategorization of water body-pollutant combinations.

B. CURRENT/EXISTING POLLUTANT LOADING ASSOCIATED WITH CURRENT BEST MANAGEMENT PRACTICES (BMPs)/MINIMUM CONTROL MEASURES (MCMs)

- Permittees shall provide a list and map of known and suspected storm water and non-storm water pollutant sources discharging to MS4 and from the MS4 to receiving waters and any other stressors related to MS4 discharges causing or contributing to the impairments. The map must include all MS4 "major outfalls"¹, major structural controls of storm and non-storm water² (including, but not limited to, low flow diversions, urban runoff treatment facilities, detention and retention basins used for storm water treatment, VSS devices, other catch basin inserts/screens) that discharge to receiving waters within the watershed management area. A separate tabular list of major structural controls should also be provided. Permittees shall also provide list of non-structural controls that are currently implemented within the area(s), the results of which will be assumed to be reflected in the baseline pollutant loading.³
- Permittees shall provide an initial assessment of current/baseline pollutant loading for water bodypollutant combinations identified in Section A. Current/baseline pollutant loading shall based on relevant subwatershed data and the best available representative land use and pollutant loading data collected within the last 10 years. Appropriate data sources for use in assessment of baseline pollutant loading are identified in the tables below. At a minimum, baseline pollutant loadings shall be assessed and reported considering variability in pollutant loading at a spatial and temporal (including critical condition) scale consistent with that used in the TMDL and in the approved monitoring plan (i.e., for each subwatershed that was identified/analyzed/modeled in the TMDL and for each compliance monitoring location identified in the approved monitoring plan).
- Baseline loading shall be estimated using metrics derived from long-term historical data (e.g., annual rainfall, flow/runoff volume, pollutant loading, pollutant concentrations over the past 10 years) using calibrated dynamic model results for each subwatershed area. Such baseline loading estimates shall be generated for both (1) critical conditions (consistent with applicable TMDLs) and (2) average conditions for metrics related to quantity and quality (see examples of metrics, above). Critical conditions for baseline estimates shall be based on:
 - I. Baseline flow rates/runoff volumes shall be based on one of the following:
 - a) 90th percentile of long term estimated/modeled flow rates; or
 - b) Other established critical condition in the applicable TMDL; or
 - c) Runoff volume from the 85th percentile, 24-hour rainfall event (for modeled drainage areas where retention based BMPs will capture 100% of the required volume).

¹ Per definition in federal regulations.

² Spatial metadata must include delineation of drainage area treated where available, maximum volume of non-stormwater/stormwater treated, type of control, pollutants addressed, name and contact information of owner and, if different, operator in charge of O&M.

³ It is assumed that these BMPs include full implementation of the 2001 Permit Storm Water Management Program elements as well as the structural BMPs identified in the first bullet.

- II. Baseline pollutant loading shall be based on one of the following:
 - a) 90th percentile of long term pollutant loading/concentration (considering at least the most recent 10 years of available data); or
 - b) Long term average pollutant loading/concentration (considering at least the most recent 10 years of available data) that also incorporates the coefficient of variation so as to take the variability of pollutant loading into account. Consideration of variability must be sufficient to capture the baseline condition and required pollutant reductions under the critical condition. Where long-term average pollutant loading/concentration is used, critical conditions may be described using the long-term average loading with a coefficient of variation (CV) to take the variability of pollutant loading into account. For this type of critical condition, the reported pollutant loading in each subwatershed should be established by using a variability factor (VF) for model-predicted volumes, concentrations, and/or loads obtained from the long-term average and CV with the selected probability distribution of the pollutant loading. Procedures for the detailed calculation of variability factors for different probability distributions are described in Appendix E of the Technical Support Document for Water Quality-based Toxics Control (EPA/505/2-90-001, March 1991). It is anticipated that log-normal distributions will be assumed. If a different type of critical condition is applied (e.g. 90th percentile wet year), then CV and VF calculations are not required.
 - c) Pollutant event mean concentrations (EMCs) based on land use types from recommended data sources as referenced in table below may be used to estimate baseline pollutant loading; however, they must be used in combination with one of the critical conditions for flow rate/runoff volume identified in Part I, above.
- The estimated pollutant loading and/or concentrations shall be consistent with event mean concentrations (EMCs) obtained from different land use site as referenced in dependable sources, some of which are listed below:

Source No.	Reference
1.	Sources, patterns and mechanisms of storm water pollutant loadingfrom watersheds and land uses of the greater Los Angeles area,California, USA. 2007. ED Stein, LL Tiefenthaler, KC Schiff.Technical Report 510. Southern California Coastal Water ResearchProject. Costa Mesa
2.	Levels and patterns of fecal indicator bacteria in stormwater runoff from homogenous land use sites and urban watersheds. Request Only. 2011. LL Tiefenthaler, ED Stein, KC Schiff. Journal of Water and Health 9:279-290
3.	Los Angeles County 2006 EMC Report

If a permittee(s) selects to use other independent sources of pollutant loading data in the RAA, the permittee(s) shall assure that the source(s) selected has appropriate documentation, is current, and is publicly available. The permittee(s) shall be required to provide the rationale used to support their

selection of baseline pollutant loading data as well as the raw data and all associated QA/QC information for Regional Board review and approval.

Baseline pollutant loading should be expressed on a pollutant-by-pollutant basis consistent with the relevant averaging period(s) / duration as expressed in the TMDL and Attachments L-Q. If the pollutant is not addressed by a TMDL, but TMDLs for that pollutant exist for other water bodies, permittees should express pollutant loading in terms of averaging period(s) / duration consistent with those other TMDLs.

C. ESTIMATED REQUIRED POLLUTANT REDUCTIONS TO MEET THE INTERIM AND/OR FINAL ALLOWABLE POLLUTANT LOADING(S)

- Permittees shall provide estimated allowable loadings from MS4 discharges expressed as concentrationbased or mass-based in consideration of critical conditions. Mass-based allowable loading will be calculated based on a permittee's proportion of the watershed management area for required WQBELs. Mass-based allowable loading should be calculated for each subwatershed area identified in Section B, above.
- The difference between the current and allowable pollutant loading at each implementation deadline is
 the required pollutant reduction at each implementation deadline. The required pollutant reduction
 should be calculated based on both long-term average annual condition and the selected critical
 condition (as described in Section B). For modeled drainage areas where 100% of the runoff volume
 from the 85th percentile, 24-hour storm event is not retained, the required pollutant reduction shall be
 used to set targets/goals for BMPs/watershed control measures within that subwatershed area. The
 percent reductions to be used to set targets/goals will be dependent on the phase(s) of implementation
 to be addressed, as described in Section E.
- Estimated allowable loading and required reductions should be expressed on a pollutant-by-pollutant basis consistent with the relevant averaging period(s)/duration (including the selected critical condition) consistent with the TMDL and Attachments L-Q. Where a TMDL has not been developed for the water body-pollutant combination, permittees should select an averaging period/duration/critical condition consistent with that used in other TMDLs that have been developed for the pollutant in other water bodies within the region.

D. SELECTED IMPLEMENTATION/BMPs OPTIONS

Permittees shall identify strategies, control measures, and BMPs to implement through their selected storm water management programs as listed below. As a starting point, selected control measurements should be designed and maintained to treat storm water runoff from the 85th percentile, 24-hour storm where feasible and necessary to achieve applicable WQBELs and receiving water limitations.

I. ENHANCED WATERSHED MANAGEMENT PROGRAM (EWMP)

a) DETAILED DESCRIPTION OF DRAINAGE AND RETENTION SYSTEMS

If the permittees select to develop a EWMP that includes projects that retain all non-storm water runoff and all storm water runoff from the 85th percentile, 24-hour storm event for the drainage areas tributary to the projects, the permittees are required to provide a detailed description of each regional multi-benefit retention system including type (bioretention system, sub-surface chamber, etc.), drainage area addressed, storage volume, and approximate system size as well as a description and quantification, where possible, of other benefits (e.g., amount of water recharged to groundwater for water supply, etc.).

b) PROPOSED WATERSHED CONTROL MEASURES TO CONTROL STORM AND NON-STORM WATER DISCHARGES

In drainage areas within the EWMP area where retention of 85th percentile, 24-hour storm event is not pursued, the permittees are required to identify watershed control measures that will be implemented in addition to existing BMPs to prevent or eliminate non-storm water discharges that are a source of pollutants to receiving waters, and to achieve all applicable interim and final water quality-based effluent limitations and all receiving water limitations. Watershed control measures may include:

- Structural and/or non-structural controls and operation and maintenance procedures that are designed to achieve applicable water quality-based effluent limitations and receiving water limitations;
- **ii.** Retrofitting areas of existing development known or suspected to contribute to the highest water quality priorities with regional or sub-regional controls or management measures; and
- **iii.** Stream and/or habitat rehabilitation or restoration projects where stream and/or habitat rehabilitation or restoration are necessary for, or will contribute to, demonstrable improvements in the physical, chemical, and biological receiving water conditions and restoration and/or protection of water quality standards in receiving waters.

c) STORM WATER MANAGEMENT PROGRAM MINIMUM CONTROL MEASURES (MCMs), NON-STORM WATER DISCHARGE CONTROLS, AND OTHER STRUCTURAL CONTROL MEASURES

Per Part VI.C.5.b.iv.(1), permittees shall assess the MCMs as defined in Part VI.D.4, Part VI.D.5, Part VI.D.6, Part VI.D.8, Part VI.D.9 and Part VI.D.10 of the MS4 Permit and potential modifications that will most effectively address priority issues in each watershed. Based on this assessment, permittees may choose to propose customized actions and corresponding schedules within each of the abovementioned minimum control measure categories. (Alternatively, permittees may choose to implement the baseline provisions within one or more of the abovementioned MCM categories.)

Per Part VI.C.5.b.iv.(2), where non-storm water discharges from the MS4 are identified as source of pollutants, permittees shall identify and list control measures, BMPs, and other strategies to effectively eliminate the source of pollutants consistent with the requirements of Part III.A and Part VI.D.4.d (for the LACFCD) and Part VI.D.10 (for all other permittees).

For TMDL related control measures, per Part VI.C.5.b.iv.(3), permittees shall also compile a list of control measures that have been identified in TMDLs and corresponding implementation plans, and identify those control measures within these TMDLs/implementation plans to be modified, if any, to most effectively address TMDL requirements in Part VI.E and Attachments L-Q. If actions identified in the E/WMP are wholly replacing the control measures identified in the TMDL implementation plan, it can be noted as such and this list is not necessary. If not sufficiently identified in previous documents (TMDLs/implementation plans), the permittees shall evaluate and identify the control measures that will be implemented to achieve the applicable WQBELs/WLAs/RWLs associated with these TMDLs. Initially, control measures should be designed to address the volume within the drainage area associated with the 85th percentile, 24-hour storm event at the correspondence compliance point.

II. WATERSHED MANAGEMENT PROGRAM (WMP)/INDIVIDUAL WMP

- a) PROPOSED WATERSHED CONTROL MEASURES TO ADDRESS CONTRIBUTIONS OF STROM WATER DISCHARGES TO RECEIVING WATER
 The permittees are required to identify watershed control measures that will be implemented in addition to existing BMPs to prevent or eliminate non-storm water discharges that are a source of pollutants to receiving waters, and to achieve all applicable interim and final water quality-based effluent limitations and all receiving water limitations. (See section D.I.b. for detail.)
- b) STORM WATER MANAGEMENT PROGRAM MINIMUM CONTROL MEASURES (MCMs) See section D.I.c. for detail.

E. SPECIFIED SCHEDULE OF SELECTED WATERSHED MANAGEMENT STRATEGIES

Permittees shall translate corresponding schedules for selected BMPs into a combined schedule for achievement of the applicable interim and final water quality-based effluent limitations and/or receiving water limitations per the water body classification/prioritization above. Permittees shall align the combined schedule with interim milestones and interim and final compliance deadlines specified in the permit and demonstrate that the required loading reduction and timeline specified are expected to be achieved.

- Permittees shall identify interim milestones and dates for their achievement to ensure adequate progress toward achieving interim and final water quality-based effluent limitations and/or receiving water limitations deadlines identified in TMDL provisions in Part VI.E and attachments L - Q. If selected BMPs will address multiple pollutants then BMPs must be implemented within time frame that is consistent with the most critical/closest deadline.
- Where the TMDL does not include interim or final water quality-based effluent limitations and/or receiving
 water limitations with compliance deadlines *during the permit term*, Permittees shall identify interim
 milestones and dates for their achievement to ensure adequate progress toward achieving interim and final
 water quality-based effluent limitations and/or receiving water limitations with deadlines beyond the permit
 term.
- For interim WQBELs and/or receiving water limitations, the percent reduction based on annual average baseline loading may be used to set targets/goals for BMPs/watershed control measures where such percent reduction based on the annual average baseline loading is consistent with interim requirements as set forth in Part VI.E and Attachments L-Q. A gradual phasing of percent load reduction for interim WQBELs/RWLs to final WQBELs/RWLs shall be applied over the course of the implementation schedule. For areas to be addressed through retention of the runoff volume from the 85th percentile, 24-hour storm, volume reductions over time shall be related to the interim and final deadlines.
- Permittees shall demonstrate that the activities and control measures identified in the Watershed Control Measures will achieve applicable receiving water limitations for water body-pollutant combinations not addressed by TMDLs as soon as possible. Per Part VI.C.5.c.ii and Part VI.C.4.c.iii.(3), Permittees must propose milestones based on measurable criteria and a schedule with dates for achieving the milestones that will allow progress to be measured once every two years.

F. POLLUTANT REDUCTION PLAN

a) COMPLIANCE DETERMINATION

- Compliance points shall be located at all compliance points required in the TMDLs that are within the area covered by the E/WMP.
- For a Permittee implementing an individual WMP, appropriate compliance point(s) within their jurisdiction shall be identified for Regional Board approval.

• Permittees shall include an appropriate compliance point(s) to assess the MS4 discharge(s) from the area covered by the Watershed Management Program to the Receiving Water(s)

b) EVALUATION OF SELECTED MANAGEMENT PROGRAM/BMPs PERFORMANCE

- Permittees shall provide a detailed description of individual BMPs performance and /or suite of selected BMPs performance to reduce pollutant loadings that are used as model inputs. Data on performance of watershed control measures shall be drawn only from peer-reviewed sources.
- The estimated effectiveness of BMPs in pollutant removal and/or reduction will served as a default value that can be updated through the adaptive management process with BMP monitoring data and outfall monitoring data when they become available.
- c) ANALYSIS TO DEMONSTRATE SELECTED BMPs HAVE REASONABLE ASSURANCE TO MEET INTERIM/FINAL REQUIREMENTS

Based on the analysis of BMP performance using the selected modeling system, Permittees shall demonstrate that:

• Implementation of current/selected activities and control measures identified in section D above will achieve applicable water quality-based effluent limitations and/or receiving water limitations in Part VI.E and Attachments L-Q.

Although the Permit only requires the RAA to consider WQBELs and receiving water limitations with interim and final deadlines/milestones that fall within the Permit term, it is strongly recommended that the RAA assess WQBELs and RWLs with deadlines occurring between program approval and December 28, 2022. Additionally, Where the TMDL does not include interim or final water quality-based effluent limitations and/or receiving water limitations with compliance deadlines *during the permit term*, Permittees must identify interim milestones and dates for their achievement to ensure adequate progress toward achieving interim and final water quality-based effluent limitations and/or receiving water limitations with compliance deadlines to ensure adequate progress toward achieving interim and final water quality-based effluent limitations and/or receiving water limitations with compliance deadlines to ensure adequate progress toward achieving interim and final water quality-based effluent limitations and/or receiving water limitations with compliance deadlines to ensure adequate progress toward achieving interim and final water quality-based effluent limitations and/or receiving water limitations with deadlines beyond the permit term and must include these in the RAA.

• For water-body pollutant combinations not addressed by TMDLs, the activities and control measures identified in the Watershed Control Measures will achieve applicable receiving water limitations per Part V.A.

Permittees shall provide model output for each deadline specified in Attachments L-Q within the permit term to demonstrate compliance with each deadline will be achieved.

d) PROCESS OF INCORPORATING ADDITIONAL BMPs IF MILESTONE ARE NOT MET AS SCHEDULED

- Permittees in each WMA shall develop an integrated monitoring program or coordinated integrated monitoring program to assess progress toward achieving the water quality-based effluent limitations and/or receiving water limitations per the compliance schedules, and progress toward addressing the water quality priorities for each WMA.
- Permittees in each WMA shall implement an adaptive management process every two years after program approval to assess progress toward (i) achieving interim and/or final water quality-based effluent limitations and/or receiving water limitations; (ii) achievement of interim milestones; (iii) re-evaluation of the water quality priorities identified for the WMA based on more recent water quality data and reassessment of sources of pollutants in MS4 discharges; and (iv) evaluation of effectiveness of the control measures based on new information and data.

• Permittees shall report and then implement any modifications to the WMP or EWMP based on the results of the adaptive management process to improve the effectiveness of WMP or EWMP in reducing pollutant loading upon approval by the Regional Executive Officer, or within 60 days of submittal if the Regional Water Board Executive Officer expresses no objections.

G. MODELING REQUIREMENTS FOR REASONABLE ASSURANCE ANALYSIS TO SUPPORT ESTIMATION OF CURRENT LOADINGS, REQUIRED LOAD REDUCTIONS AND ANALYSIS OF WATER QUALITY OUTCOMES OF SELECTED BMPs OPTIONS

Permittees shall provide a modeling system to support the estimation of baseline loadings, required load reductions that are used to set targets/goals for selected BMPs/watershed control measures, and to demonstrate that the activities and watershed control measures identified/selected in the E/WMP will achieve applicable water quality-based effluent limitations and receiving water limitations.

The models appropriate for conducting the required RAA described above are listed in **Table 1.** These models are selected based on the following model capabilities:

- (1) Dynamic continuous long-term simulation for modeling pollutant loadings, flows, and concentrations in receiving water from lands in a watershed system.
- (2) Can represent rainfall and runoff processes above soil surface, and baseflow contributions in subsurfaces of urban and natural watershed systems.
- (3) Can represent variability in pollutant loadings, based on land use, soil hydrologic group, and slope.
- (4) BMP process based approach or empirically based BMP approach.
- (5) Decision support to evaluate BMP performance Permittees may select a combination of the models listed in model type 1.1-1.3 of Table 1 for land/watershed, receiving water, and BMP performance models, or select one of the modeling systems from integrated modeling systems listed in model type 1.4 of Table 1.

Model Type	Available Models
1.1 Land/Watershed Models	
	HSPF, LSPC, SWMM, WARMF
1.2 Receiving Water Models	
	EFDC, CE-QUAL-ICM/TOXI, QUAL2K,
	WASP, HSPF, LSPC, SWMM
1.3 BMP Performance Models	
* Process based models	SWMM BMP model
	BASINS BMP model
	EPA SUSTAIN model
* Empirically based models	International Stormwater BMP Database

Table 1. List of Available Models

Model Type	Available Models	
1.4 Integrated BMP Modeling Systems		
* Process based models	EPA SUSTAIN model	
	Los Angeles County WMMS model	
	EPA TMDL Modeling Toolbox	
* Empirical based models	City of Los Angeles SBPAT model	

The modeling requirements consist of four primary components which are described as in the following Tables. The four components of modeling requirements are general model input data (Table 2), model parameters (Tables 3.1-3.3), BMP performance parameters (Tables 4.1-4.2), and model output (Table 5). For model parameters and BMP performance parameters, two separate tables are provided for a process based BMP model and an empirically based BMP model. It should be noted that the model requirements are the minimum requirements for a BMP performance evaluation since the specific performance measures vary depending on the designated use of the water body and the condition of the water body. Permittees shall cover all necessary requirements for a BMP performance evaluation based on input and recommendations from the TAC as approved by the Regional Board. With regard to the spatial scale, the highest resolution GIS layers should be used to satisfy the homogeneous assumption in a computational/modeled subwatershed. For temporal scale, the model should use varying time steps with a minimum 1-hour or shorter time step during rainfall events to capture peak flow and a daily or shorter time step between rainfall events.

The RAA associated with the permittee(s) draft E/WMP should include a detailed description/itemization of model inputs and outputs as indicated in Table 2 through Table 5 and should include model input files (in an electronic format that can be manipulated) as part of the draft E/WMP package submitted to Regional Board for review and approval.

For General Model	Data	Data
	Source	Period
2.1 Geometric Data		
• GIS Data Layer	State of California GeoPortal, Cal-Atlas Geospatial Data Library (previously CalSIL – California Spatial Information Library)/CERES and other public agencies	Most recent
Topography Layer (DEM Data)	USGS National Elevation Dataset (NED) or	Most recent

Table 2. General Model Input Data for Both Process Based BMP Models and Empirically Based BMP Models

For General Model	Data	Data
	Source	Period
	locally derived data	
• Land Use/Land Cover Layer ⁵	SCAG Land use data; Multi- Resolution Land Characteristics Consortium (MRLC) National Land Cover Database (NLCD) or locally derived data	SCAG Land use data (2005 or most recent); NLCD (2006 or most recent)
Stream Network	USGS National Hydrography Dataset (NHD) or	Most recent
	locally derived data	
Drainage areas	USGS Watershed Boundary Dataset (WBD) or locally derived data	Most recent
2.2 Meteorological Data		
Precipitation	NOAA National Climatic Data Center (NCDC) or locally derived data	at least 10 years hourly
Evaporation	NCDC or locally derived data	at least 10 years daily/monthly
2.3 Soil Hydrologic Data		
Hydrologic soil groups	USDA/NRCS - Soil Survey Geographic Database (SSURGO)/ STATSGO2 or locally derived data	Most recent
Percent of area distribution for different soil groups.	SSURGO or locally derived data	Most recent
• Fraction of sand, silt, and clay for different soil groups.	SSURGO or locally derived data	Most recent
Average Slope	SSURGO or locally derived data	Most recent
Vegetative cover for different soil groups.	SSURGO or locally derived data	Most recent

⁵ Satellite imagery may be utilized but is not required.

For General Model	Data	Data
	Source	Period
2.4 Hydrologic Data		
• In-stream Flow	USGS and locally derived data	Daily/monthly/hourly based on availability
• In-stream Depth	USGS and locally derived data	Daily/monthly/hourly based on availability
2.5 Point Source Data		
Point Source Location	EPA STORET data CIWQS/SMARTS or local sampling	All available data
Point Source Discharge	EPA STORET data CIWQS/SMARTS or local sampling	Daily/monthly
Point Source Concentration	EPA STORET data CIWQS/SMARTS or local sampling	Daily/monthly

To demonstrate the ability to predict the effect of watershed processes and management on land, soil, and receiving water body, model calibration and validation are necessary and critical steps in model application. The acceptable model calibration criteria as listed in Table 3.0 are provided to ensure the calibrated model properly assesses all the model parameters and modeling conditions that can affect model results. In addition, some valuable sources of initial starting values for many of the key calibration parameters are provided in Table 3.1 through Table 4.2 to facilitate model calibration efforts.

Table 3.0 Model Calibration Criteria

Model calibration is necessary to ensure that the calibrated model properly assesses all the variables and conditions in a watershed system. Calibration should result in model parameter values that produce the best overall agreement between simulated and observed values throughout the calibration period. Table 3.0 is a list of model calibration tolerances for different levels of agreement or accuracy based on extensive past experience with the HSPF model. The lower bound of "fair" level of agreement listed in Table 3.0 is considered a target tolerance for the model calibration process. If model calibration results do not satisfy the target tolerances, additional efforts should be completed to investigate possible errors in, and the accuracy of, input data, model formulations, and field observations. The findings of this investigation should be presented in the RAA description, along with any immediate remedial actions to address the issues and/or recommended approaches to improve the calibration in the future. Permittees are strongly encouraged to engage Regional Board staff prior to the draft E/WMP submittal, in order to facilitate review and approval.

Model parameters	% Difference between simulated and observed values			
	Very Good	Good	Fair (lower bound, upper bound)	
Hydrology/Flow	<10	10-15	15-25	
Sediment	<20	20-30	30-45	
Water Temperature	<7	8-12	13-18	
Water Quality/Nutrients	<15	15-25	25-35	
Pesticides/Toxics	<20	20-30	30-40	

Based on HSPF experience by A.S. Donigian, Jr., prepared for USEPA (2000)

Table 3.1 Model Parameters for Process Based BMP Models

Model Parameters	Data	Range of Initial Values
	Source ⁶	
3.1.1 Hydrology Parameters		
Fraction forest cover	EPA BTN#6	0-0.95
• Interception storage capacity (in)	EPA BTN#6	0.01-0.40
Retention storage capacity (in)	EPA BTN#6	0.01-0.30
Manning's n for overland flow	EPA BTN#6	0.01-0.15
Upper zone nominal soil moisture storage (in)	EPA BTN#6	0.05-2.0
• Saturated hydraulic conductivity (in/hr)	Green-Ampt Parameters	0.01-4.74
• Wetting front suction head (in)	Green-Ampt Parameters	1.93-12.6
• Upper zone soil porosity (fraction)	Green-Ampt Parameters	0.398-0.501
Field capacity (fraction)	Green-Ampt Parameters	0.062-0.378

⁶ EPA BTN # : EPA Basins Technical Note #

• Wilting point	Green-Ampt Parameters	0.024-0.265
(fraction)		
• Temp below which ET is reduced by half (°F)	EPA BTN#6	32.0-48.0
• Temp below which ET is set to zero (°F)	EPA BTN#6	30.0-40.0
• Fraction of GW inflow to deep recharge	EPA BTN#6	0.0-0.50
• Fraction of remaining ET from baseflow	EPA BTN#6	0.0-0.20
• Fraction of remaining ET from active GW	EPA BTN#6	0.0-0.20
• Lower zone nominal soil moisture storage (in)	EPA BTN#6	2.0-15.0
• Interflow inflow parameter	EPA BTN#6	1.0-10.0
• Interflow recession parameter	EPA BTN#6	0.3-0.85
• Lower zone ET parameter	EPA BTN#6	0.1-0.9
3.1.2 Water Quality Parameters		
• Initial storage of water quality constituent on land surface (lb)	LA County Report ⁷	0.0-0.0005
• Wash-off potency factor for sediment associated constituent (lb/ton)	EPA BTN#6	0.0-10.0
• Scour potency factor for sediment associated constituent (lb/ton)	EPA BTN#6	NA
• Accumulation rate of water quality constituent of land surface(lb/acre/day)	EPA BTN#6	0.0-0.0005
 Maximum storage of water quality constituent on land surface(lb/acre/day) 	EPA BTN#6	0.0-0.0005
• Rate of surface runoff that removes 90% of stored water quality constituent (in/hr)	EPA BTN#6	0.0-0.5
• General first order in-stream loss rate of constituent (1/day)	SUSTAIN manual	0.2-0.2
3.1.3 Sediment Parameters		

⁷ LA County Report^{*}: "Evaluation of Existing Watershed Models for the County of Los Angeles", August 29, 2008 **RB-AR1584**

• For pervious land		
• Coefficient in the soil detachment equation	EPA BTN#8	0.05-0.75
• Exponent in the soil detachment equation	EPA BTN#8	1.0-3.0
• Coefficient in the sediment wash-off equation	EPA BTN#8	0.1-10.0
• Exponent in the sediment wash-off equation	EPA BTN#8	1.0-3.0
• Coefficient in the sediment scour equation	EPA BTN#8	0.0-10.0
• Exponent in the sediment scour equation	EPA BTN#8	1.0-5.0
• For impervious land		
• Coefficient in the solids wash-off equation	EPA BTN#8	0.1-10.0
• Exponent in the solids wash-off equation	EPA BTN#8	1.0-3.0
• Solids accumulation rate on the land surface (lb/ac-day)	EPA BTN#8	0.0-30.0
• Fraction of solids removed from land surface per day (1/day)	EPA BTN#8	0.01-1.0

Table 3.2 Model Parameters for Empirically Based BMP Models

Model Parameters	Data	Range of Values
	Source	
3.2.1 Hydrology Parameters		
• Interception storage capacity (in)	EPA BTN#6	0.01-0.40
• Retention storage capacity (in)	EPA BTN#6	0.01-0.30
• Manning's n for overland flow	EPA BTN#6	0.05-0.5
• Upper zone nominal soil moisture storage (in)	EPA BTN#6	0.05-2.0
• Saturated hydraulic conductivity (in/hr)	Green-Ampt Parameters	0.01-4.74
• Wetting front suction head (in)	Green-Ampt Parameters	1.93-12.6
• Upper zone soil porosity (fraction)	Green-Ampt Parameters	0.398-0.501
• Field capacity (fraction)	Green-Ampt Parameters	0.062-0.378
• Wilting point (fraction)	Green-Ampt Parameters	0.024-0.265
• Temp below which ET is reduced by half (°F)	EPA BTN#6	32.0-48.0
• Temp below which ET is set to zero (°F)	EPA BTN#6	30.0-40.0
• Fraction of remaining ET from baseflow	EPA BTN#6	0.0-0.20
• Lower zone nominal soil moisture Storage (in)	EPA BTN#6	2.0-15.0
• Interflow inflow parameter	EPA BTN#6	1.0-10.0
Interflow recession parameter	EPA BTN#6	0.3-0.85
Lower zone ET parameter	EPA BTN#6	0.1-0.9
B.3.2.2 Water Quality Parameters		
Event Mean Concentration (EMC)	SBPAT User's Guide t	See Table 3.3
B3.2.3 Sediment Parameters		
For pervious land		
	-	

• Coefficient in the soil detachment equation	EPA BTN#8	0.05-0.75
• Exponent in the soil detachment equation	EPA BTN#8	1.0-3.0
• Coefficient in the sediment wash off equation	EPA BTN#8	0.1-10.0
• Exponent in the sediment wash-off equation	EPA BTN#8	1.0-3.0
• Coefficient in the sediment scour equation	EPA BTN#8	0.0-10.0
• Exponent in the sediment scour equation	EPA BTN#8	1.0-5.0
For impervious land		
• Coefficient in the solids wash-off equation	EPA BTN#8	0.1-10.0
• Exponent in the solids wash-off equation	EPA BTN#8	1.0-3.0
• Solids accumulation rate on the land surface (lb/ac-day)	EPA BTN#8	0.0-30.0
• Fraction of solids removed from land surface per day (1/day)	EPA BTN#8	0.01-1.0

Table 3.3 Suggested Averageⁱ EMC by land use for selected pollutants

Land Use	Nitrate (mg/L)	Total Copper	Total Lead	Total Zinc	Fecal Coliform (MPN/100ml)	TSS (mg/L)
		(µg/L)	(µg/L)	(µg/L)		
Agriculture	34.4	100.1	30.2	274.8	6.03E+4	999
Commercial	0.55	31.4	12.4	237.1	7.99E+4	67.0
Educational	0.61	19.9	3.6	117.6	7.99E+4	99.6
Industrial	0.87	34.5	16.4	537.6	3.76E+3	219
Transportation	0.74	52.2	9.2	292.9	1.68E+3	77.8
Open Space	1.17	10.6	3.0	26.3	6.31E+3	216.6
SF Residential	0.78	18.7	11.3	71.9	3.11E+4	124.2
MF Residential	1.51	12.1	4.5	125.1	1.18E+4	39.9

Source: Technical Appendices "A User's Guide for the Structural BMP Prioritization and Analysis Tool (SBPAT v1.0)" for Los Angeles City, County, and Heal the Bay, December 2008 Note: These suggested average EMC values can be adjusted based on calibration studies by using more recently collected Southern California data.

4.1 BMP Performance Parameters	Rain Barrel	Bio- Retention	Porous Pavement	Dry Infiltration Basin
• Media final constant infiltration rate (in/h)	NA	0.5-0.5	0.5-1.0	1.0-1.0
Substrate layer porosity	NA	0.4-0.5	0.45-0.5	0.3-0.4
Substrate layer field capacity	NA	0.25-0.3	0.055-0.2	0.06-0.3
• Substrate layer wilting point	NA	0.1-0.15	0.05-0.05	0.02-0.15
• Underdrain gravel layer porosity	NA	0.5	0.5	0.5
• Vegetative parameter, A	NA	0.6-1.0	1.0	0.6
• Underdrain background infiltration Rate (in/hr)	NA	0.1-0.3	0.1	0.25-0.3
• TSS 1 st order decay rate (1/day)	0.2-0.8	0.2-0.8	0.2-0.8	0.2-0.8
• Fecal Coliform 1 st order decay rate (1/day)	0.5	0.5	0.5	0.5
• TSS Filtration removal rate (%)	NA	85	60	85

Table 4.1 Suggested BMP Performance Parameters for Process Based BMP Model

* Source: PA Report "SUSTAIN-A Framework for Placement of Best Management Practices in Urban Watersheds to Protect Water Quality, September 2009, EPA/600/R-09/095

Note that values in this Table can be adjusted based on calibration studies with recently collected Southern California data.

 Table 4-2: Suggested BMP Performance Parameters for Empirically Based BMP Model

Median (95% Conf. Interval) Statistics of BMP Effluent Concen.	Bio- Retenti on	Bio- Swale	Detention Basin	Filter Strip	Manu- fractured Device	Media Filter	Porous Pavement	Retentio n Pond	Wetland Basin	Wetland Channel
Fecal Coliform # Per 100 mL	NA	2600- 6200	500-1900	300- 39600	(10,20)- D (200- 3000)-F (1400- 5000)-P	200- 625	NA	200-1160	230- 11800	NA
Enterococcus # Per 100 mL	58-437	NA	NA	NA	(10,10)- D (1750- 12000)-F NA-P	NA	NA	NA	56-300	NA
E. Coli # Per 100 mL	6-137	1200- 5900	82-720	NA	NA	NA	NA	31-387	199- 1160	NA
TSS (mg/L)	5.0-9.0	11.8- 15.3	19.0-26.0	16.0- 21.5	15.0-19.9	7.4- 10.0	11.0-14.4	12.0-15.0	7.0-10.9	10.0- 16.0
Total Phosphorus	0.07-	0.17-	0.19-0.24	0.15-	0.10-0.13	0.08-	0.08-0.09	0.12-0.14	0.07-	0.13-

Median (95% Conf. Interval) Statistics of BMP Effluent Concen.	Bio- Retenti on	Bio- Swale	Detention Basin	Filter Strip	Manu- fractured Device	Media Filter	Porous Pavement	Retentio n Pond	Wetland Basin	Wetland Channel
(mg/L)	0.1	0.20		0.20		0.10			0.09	0.17
Dissolved	0.05-	0.05-	0.08-012	0.16-	0.04-0.07	0.06-	0.04-0.05	0.06-0.07	0.03-	0.07-
Phosphorus (mg/L)	0.18	0.11		0.26		0.09			0.06	0.10
Total Nitrogen	0.74-	0.63-	1.75-2.69	1.0-1.23	1.90-2.41	0.68-	1.28-1.65	1.19-1.36	1.04-	1.05-
	0.99	0.82				0.99			1.21	1.56
(mg/L)										
Total Kjeldahl	0.46-	0.50-	1.16-1.78	0.97-	1.32-1.55	0.50-	0.74-0.90	0.98-1.10	0.92-	1.10-
Nitrogen (mg/L)	0.72	0.70		1.12		0.61			1.09	1.30
NOx(NO2+NO3,a	0.19-	0.20-	0.24-0.45	0.24-	0.35-0.44	0.46-	0.59-0.77	0.15-0.20	0.05-	0.15-
ndNO3)	0.25	0.28		0.31		0.57			0.11	0.22
(mg/L)										
Total Copper	4.6-	5.7-	4.0-6.80	6.4-7.9	7.94-11.0	5.1-6.6	6.8-8.1	4.06-5.0	3.0-4.0	3.61-
(µg/L)	9.85	7.7								5.20
Total Lead	2.5-2.5	1.8- 2.29	2.15-4.3	1.3-2.2	3.8-5.16	1.3-2.0	1.38-2.21	2.0-3.0	1.0-1.55	1.40- 3.11
(µg/L)										
Total Zinc	7.7-	20-	17.1-38.2	16.0-	52.8-63.5	15.0-	12.5-16.8	20.0-23.0	16.7-	11.0-
	25.0	26.6		26.0		20.0			24.3	20.0
(µg/L)										
Total Arsenic	NA	0.95-	1.29-1.80	0.55-	1.0-2.4	0.61-	2.5-2.5	0.54-1.15	NA	NA
(7)		1.30		1.20		1.0				
(µg/L)									0.40	0.10
Total Cadmium	0.25-	0.27-	0.25-0.35	0.09-	0.20-0.31	0.1-0.2	0.25-0.25	0.20-0.29	0.10-	0.19-
	1.0	0.34		0.20					0.20	0.50
(µg/L)										
Total Nickel	NA	2.3- 4.2	2.2-3.75	2.4-3.1	3.11-5.0	2.0-2.6	1.40-1.80	2.0-2.60	NA	2.0-2.40
(µg/L)										

Source: International Stormwater BMP Database (BMPDB), July 2012

Note that for bacteria, manufactured devices are broken down into three subcategories: disinfection devices (Manufactured Device – D), inlet insert/filtration devices (Manufactured Device – F), and physical settling/straining devices (Manufactured Device – P).

Note that values in this Table can be adjusted based on calibration studies with recently collected Southern California data.

Table 5: Model Output for both Process Based BMP Models and Empirically Based BMP Models

Model Output	Output Content	Output Format
5.1 Current/Existing Pollutant Loadings		
	Current pollutant loadings at each modeled sub-watershed and each land use, under range of temporal conditions (i.e., average and critical conditions)	Tables
5.2 Load Reduction Output		
	Pollutant load reduction at each modeled sub-watershed for each BMP scenario (corresponding to applicable compliance deadlines) in dry and wet weather conditions (i.e., average and critical conditions)	Tables
	Time series plots of pollutant load reduction for each BMP scenario at compliance points	Graphics
5.3 Surface Runoff Output		

Model Output	Output Content	Output Format
	Surface runoff volume at each modeled subwatershed for each BMP scenario in dry and wet weather conditions (i.e., average and critical conditions)	Tables
	Absolute and percent reduction in runoff volume at each modeled subwatershed for each BMP scenario	Tables
5.4 Hydrographs and Pollutographs		
	Flow hydrographs at compliance points within the EWMP/WMP for each BMP scenario	Graphics
	Pollutographs at compliance points within the EWMP/WMP for each BMP scenario	Graphics
5.5 BMP Performance Summary		
	Load comparison for with and without BMPs and graphs for each BMP scenario	Tables and Graphics
	BMP storage distribution for each BMP scenario	Tables and Graphics

ⁱ Log-transformed arithmetic mean values shown