Section One Monitoring and Reporting Program (MRP)

1.0 **Summary**

The Los Angeles County MS4 Permit (Order R4-2012-0175) includes compliance with a **Monitoring and Report Program** (MRP) [No. CI 6948]. The MRP addresses the several types of monitoring tasks required by the Permit. The City intends to meet these requirements through its **Integrated Monitoring Program** (IMP) submittal.

In addition to the above monitoring tasks, the City is also subject to monitoring tasks required by the Stormwater Management Program (SWMP), which is not referenced in the MRP section. Essentially, these provisions require monitoring of stormwater discharges against water quality standards that are not TMDLs either contained in the basin plan or based on federal regulations. The purpose of the monitoring is to facilitate an evaluation of the adequacy of control measures in meeting the specified limitations. The problem, however, is that the Permit, under the WMP section, does not specify which pollutants and water quality standards must be monitored for or met. Discussions with Regional Board staff revealed that the water quality standards are mandated by federal regulations. They can be taken from the current MS4 Permit's MRP under Attachment E.

All pollutants subject to monitoring will be loaded into the RAA/Water Quality Model to evaluate to what extent the City is persistently exceeding TMDLs and other water quality standards and identify BMPs that are necessary to preventing such exceedances.

As is explained in the IMP, there are several provisions of the Permit reflected in the MRP and IMP that the City cannot comply with because the City has challenged them in its administrative petition. These include,

most notably, non-storm water action levels. The City expects these issues to be resolved though a State Board Order in response to an administrative petition it filed challenging this and other MS4 Permit requirements.

1.1 Integrated Monitoring Program

The City has opted for an IMP to comply with monitoring and SWMP/WMP requirements under the MS4 Permit. In accordance with the MRP, the IMP includes the following elements: (1) receiving water monitoring; (2) storm water outfall based monitoring; (3) non-storm water outfall based monitoring; and new development/re-development effectiveness tracking; (4) compliance with municipal action level (MAL) parameters; and (5) certain regional studies.

It is important to note that the City has complained in its administrative petition about the Permit's excessive monitoring requirements which it argues are arbitrary and capricious and exceed federal stormwater regulations. These include any monitoring activity that is located outside an MS4 [toxicity, wet weather TMDL WLAs, regional studies, toxic investigation evaluation (TIE), etc.]; and dry weather monitoring (dry weather minimum levels, non-stormwater outfall monitoring, and non-stormwater action levels). In the alternative, the City will comply with federal field screening requirements for non-stormwater discharges, the purpose of which are to detect and eliminate illicit discharges and illicit connections.

1.2 IMP Requirements

Through the Integrated Monitoring Program (IMP) the City proposes to consolidate applicable monitoring program requirements as specified in

attachment E of the MS4, which provides flexibility to allow Permittees to coordinate monitoring efforts on a watershed or sub-watershed basis to leverage monitoring resources in an effort to increase cost-efficiency and effectiveness and to closely align monitoring with TMDL monitoring requirements and Watershed Management Programs.

Though the SWAMP should be responsible for performing ambient monitoring, it is not known when, if ever, it intends to conduct ambient monitoring in these reaches. In the meantime, the City recognizes that the ambient monitoring approach will yield accurate data needed to evaluate the beneficial uses and facilitate compliance with ambient TMDL WLAs and other water quality standards.

The City does not plan to use a collaborative approach to pay for monitoring in the receiving water to determine compliance with wet weather TMDLs. This is because it opposes having to comply with wet weather standards in the receiving water. TMDLs are ambient, dry weather standards, not wet weather standards, the latter of which are not required to determine compliance under federal and state law.

GIS maps have been developed to depict the geographic boundaries of the monitoring plan including the receiving waters, the MS4 catchment drainages and outfalls, sub-watershed boundaries, political boundaries, land use, and the proposed receiving water monitoring stations for both dry weather and wet weather receiving water monitoring (see **Appendix A, Maps**).

Table II – Land Use Breakdown

Land Use Category	Area (Acre)	Percentage
Agriculture	278.5	4.3 %
Commercial/Institutional	977.3	15.1 %
Industrial	803.1	12.4 %
Residential	2946.9	45.5 %
Transportation	1392.5	21.5 %
Vacant	77.7	1.2 %
Total	6476	100%

1.3 Receiving Water Monitoring

The MS4 Permit requires receiving water monitoring to be performed at in-stream mass emissions stations; additional receiving water compliance points approved by the Regional Board's Executive Officer; and additional locations that are representative of impacts from MS4 discharges. The objectives of receiving water monitoring are: (1) determine if receiving water limitations are being achieved; (2) assess trends in pollutant concentrations over time; and (3) determine whether the designated beneficial uses are fully supported based on water chemistry, as aquatic toxicity and bio-assessment monitoring.

The City's receiving water monitoring plan shall be limited to utilizing existing ambient water quality data developed by the Regional Board's Surface Water Ambient Monitoring Program (SWAMP) and data generated by other agencies including, but not limited to, the Council for Watershed Health (CWH) and the Sanitation Districts of Los Angeles County (SDLAC).

The City cannot participate in any receiving water monitoring activity or action outside of its MS4. As the City's administrative petition and Writ of Mandate effectively argues, the receiving water is not part of the MS4. The City's responsibility for monitoring ends at the discharge from the outfall before it reaches the receiving water.

The City has also argued in its petition and writ that. Federal storm water regulations and judicial decisions affirm that MS4 Permit compliance with water quality standards (WQS) is determined at the outfall – not in the receiving water. In other words, the regulatory "range" of an MS4 Permit ends in storm water discharge from the outfall before it reaches the receiving water.

It should be noted that the 9th Circuit Court of Appeals in NRDC v. LACFCD made it very clear that the compliance determinant for MS4 discharges is at the outfall – not the receiving water. The 9th Circuit agreed with a lower federal court ruling that held violations cannot be determined in the receiving water because of evidentiary challenges -- how can one prove that a Permittee caused exceedances in receiving waters which also receive stormwater discharges from other sources? The 9th Circuit also said if a violation is to be determined it must be based on discharges from the outfall.

Further, there is nothing in federal law or USEPA guidance, or state law that authorizes compliance with TMDL WLAs or other water quality standards based on wet weather monitoring of receiving waters. According to State Water Quality Order 2001-0015: There is no provision in state or federal law that mandates the adoption of separate water quality standards for wet weather conditions. TMDLS and water quality standards are not and cannot be wet weather standards --- they can only be, by definition, ambient (dry weather) standards. Sampling a wet weather discharge from receiving water (not to be confused with an outfall) against a wet weather standard is unrealistic and serves no purpose.

There is also no benefit to performing receiving water monitoring to determine compliance with wet weather TMDL WLAs or to assess the health of the receiving water. Pollutants during a storm event emanate

from a variety sources including but not limited to: Permitted facilities such as industrial and construction sites; various municipal point sources; nonmunicipal point sources (e.g., sewage treatment plants); and non-point sources including atmospheric deposition. It would be impossible to determine which of these dischargers was responsible for exceeding a wet weather WLA, which again is not legally valid in any case. It should be clear that monitoring during a significant storm event would be of no value in assessing the health of the receiving water. In fact, it is the worst time to monitor. The City will, nevertheless, rely on in-stream ambient monitoring to assess the impact of the SWMP/WMP on the beneficial uses of the receiving waters into which it discharges.

The City of Compton drains into the Compton Creek, tributary to Los Angeles River Watershed. Most part of the City drains into Compton Creek. A small portion of the City, about 15% 5% drains into Dominguez Channel. Partial area of City, about 4%, drains in to LA River reach 2.

Permittee's have been directed to utilize previously designated mass emission stations for receiving water sampling. However, the closest station is located above the City of Carson at Atresia Boulevard. and Dominguez Channel in the City of Torrance, which does not cover the City's drainage jurisdictional area. Therefore the City chose monitoring location located at E. Artesia Blvd. and Compton Creek (over bridge) and another monitoring location for LAR Reach 2 at West Atlantic Avenue. and LAR Reach 2 (over the bridge). The City will use the grab sampling method for ambient monitoring in the receiving water. Table below summarizes each of the monitoring location. A GIS map of receiving water location is provided in Attachment A.

Table III- Receiving Water Monitoring Program Location

MRP: 06/28/14

Site ID	Water Body	Station Name	Coordinates	
			Latitude	Longitude
R1	Compton Creek	E. Artesia Blvd.	33.847301	-118.195896
R2	LAR Reach 2	Atlantic Ave	33.883339	-118.188429

1.4 Storm Water Outfall-Based Monitoring

The City is committed to stormwater monitoring at the outfall in accordance with federal stormwater regulations. Outfall monitoring will be limited to: (1) aiding in determining compliance with WQBELs (TMDL WLAs and other water quality standards measured against ambient standards); and (2) evaluating stormwater discharges against Municipal Action Levels (MALs). Outfall monitoring, however, will not serve to determine compliance with wet weather TMDL WLAs in the receiving water. Once again, there is no support for the legitimate existence of a wet weather TMDL or any water quality standard; and the purpose of the MALs is unclear and appears to be superfluous. However, the City would be willing to comply with MAL monitoring if offered as an alternative to conventional monitoring for compliance purposes.

The City has identified one outfall from which discharges are released to Dominguez Channel; eight to Compton Creek, and one to Los Angeles River, Reach 1. However, the City cannot sample directly from outfalls because: (1) they are located on property owned and operated by County of Los Angeles Flood Control District (LACFCD); and (2) it would be physically impossible to draw a grab sample from them. Nevertheless, federal regulations allow monitoring to be conducted at representative field screening points which, along with outfalls, are illustrated on **Appendix A**-

1.

Outfall Discharging into Receiving Water

A total of five field screening points have been chosen, each of which is located upstream of an outfall. There are a total of 10 outfalls located in the City that discharge from the following sub-watersheds: Compton Creek (8), Dominguez Channel (1), and Los Angeles River, Reach 2 (1). Field screening points have been selected for each of the outfalls, with the exception of those outfalls from which field screening points (viz., manhole points) either do not exist or are inappropriate infeasible because of safety issues. The screening points are representative of stormwater discharges from the entire City. The screening points for these sub-watersheds are representative of a mix of residential, industrial and commercial areas. Instead of collecting three samples for each screening point per year, the City intends to sample three times a year from one of the five field screening points on a rotating basis. Since each of these field screening locations are in residential, commercial, and industrial areas, the samples are expected to yield representative results. At the end of the 5 year term of the Permit the City will be able characterize each of the sub-watersheds for pollution issues. If persistent exceedances of TMDLs and other water quality standards are recorded, the City will propose adjustments to BMPs and other actions in its Report of Waste Discharge (ROWD) -- the MS4 Permit reapplication

that is due to the Regional Board 180 days prior to the expiration of the current Permit (May of 2017).

In addition to using the data to determine compliance with WQBELs, the City will also measure stormwater discharges against municipal action levels (MALs). However, as mentioned previously, the City cannot sanction the use of the data to determine compliance with TMDL WLAs or other water quality standards in the receiving water. Once again, the City is not responsible for conducting any monitoring or any activity outside the realm of its MS4. As also mentioned, the City is opposed to measuring stormwater discharges from the outfall against wet weather water quality standards because they are not legally valid. Nevertheless, the City shall report outfall monitoring results against wet weather standards along with ambient standards.

The table below summarizes the MS4 outfall locations and field screening point locations. The City will be taking samples only from field screening points, not from the outfall due to inaccessible entry to county permitted restricted areas. There is no outfall discharging storm water into LAR Reach 2 or Dominguez Channel Watershed within the City's jurisdictional area. The City chose a total 6 infield screening points for sampling purpose. Field Screening point 5 and 6 drains into LAR Reach 2 and Dominguez channel respectively and will be sampled three times a year every year. Field screening point 1 is represents the industrial area of the City, which will be sampled three times a year every year. The remaining field screening points 2, 3 and 4 will be sampled three times a year on a rotating basis. There is no field screening point chosen for LA Harbor because less than 1% of area of the City falls into a LA harbor HUC -12.

Table IV – Summary of Outfall and Field Screening Points

Outfall	Outfall	Outfall	Owners	Size	Outfall	Picture
#	Coordinates	Location	hip	(in)	material	
1	33.910869, -118.24759	W Sprague St.	LACFCD	78	Reinforced Concrete Pipe (RCP)	
2	33.904342, -118.241913	W. Cressey St.	LACFCD	60	Reinforced Concrete Box(RCB)	
3	33.903314, -118.143063	W. Rosecrans Ave.	LACFCD	51	Reinforced Concrete Cement (RCC)	
4	33.898659, -118.238958	W. Compton Blvd.	LACFCD	84	Reinforced Concrete Box(RCB)	
5	33.895933, - 118.235664	N. Paulsen Ave.	LACFCD	66	Reinforced Concrete Pipe (RCP)	K
6	33.883333, -118.229601	W. Laurel St.	LACFCD	54	Reinforced Concrete Cement (RCC)	
7	33.88106, -118.224363	W. Greenleaf Blvd	LACFCD	81	Reinforced Concrete Pipe (RCP)	
8	33.885236, -118.219832	S. Willow brook Ave.	LACFCD	108	Reinforced Concrete Pipe (RCP)	
9	33.88496, -118.211513	S. Santa Fe Ave.	LACFCD	144	Reinforced Concrete Cement (RCC)	2/3/2014

10	33.903314, -118.143063	Paramount (LAR)	LACFCD	81	Reinforced Concrete Box(RCB)	
Field Scree ning #	Field Screening Coordinates	Field Screening Location	Owners hip	Size (in)	Field Screening material	Picture
1	33.846661, -118.208983	Artesia Blvd.	LACFCD	36	Manhole pipe to pipe	
2	33.886325, -118.212389	S. Willow brook Ave. (CC)	LACFCD	33	Manhole pipe to pipe	
3	33.880565, -118.228958	East Greenleaf Blvd (CC)	LACFCD	36	Manhole – Concrete Box Storm Drain	ta.
4	33.831749, -118.257564	W. Cressey St. (CC)	LACFCD	36	Manhole pipe to pipe	0
5	33.800446, -118.275579	E. Alondra Blvd. (LAR)	LACFCD	33	Manhole – Concrete Box Storm Drain	0
6	33.8887, -118.223825	S. Wilmington Ave. (DC)	LACFCD	36	Manhole pipe to pipe	

Table V – Land Use Breakdowns for HUC 12 Drainage Areas

	Drainage Area (Acres & Percentage)							
Land Use Type	Lower Dominguez Channel	Long Beach Harbor	Compton Creek					
	352 Acre	8 Acre	6116 Acre					
Agriculture	0	0	278.5 (4.3%)					
Commercial/Institutional	0	0	977.3 (15.1%)					
Industrial	0	8 (0.9%)	795.1 (11.5%)					
Residential	352 (11.9%)	0	2594.9 (40.1%)					
Transportation	0	0	1392.5 (21.5%)					

Vacant	0	0	77.7 (1.2%)

Land Use Type	Drainage	Drainage Area (Acres & Percentage)							
Field Screening points	1 2 3		3	3 4		6			
Residential	0	852.0	1004.2	506.8	802.12	608.78			
Commercial	22.8	195.5	204.3	200.6	154.5	199.5			
Industrial	379.9	178.2	85.3	160.2	0	0			
Agriculture	0	55.7	48.9	62.1	78.3	33.5			
Vacant	0	0	0	0	30.5	47.2			
Transportation	313.4	278.5	224.6	289.2	98.6	88.2			
Total	716.1	1559.9	1567.3	1218.9	1164.02	977.18			
	(11.5%)	(24.08%)	(24.1%)	(18.8%)	(17.9%)	(15.08%)			

Table VI – Land use drainage area breakdown for each monitoring location

1.5 Non-Storm Water Outfall-Based Monitoring

The City will not perform non-stormwater outfall monitoring to determine compliance with TMDLs, other water quality standards, and action levels. Such requirements exceed federal stormwater regulations. As already explained, MS4 Permittees are required to control pollutants in stormwater discharges from the outfall through BMPs and other actions. For non-stormwater discharges no such requirement is mandated. MS4 Permittees are required only to prohibit impermissible (i.e., non-exempt) non-stormwater discharges into the MS4. If a Permittee does not succeed in persuading the discharger to prohibit a non-stormwater discharge, it must require the discharger to obtain a separate discharge Permit. This is an argument that was raised in the City's administrative petition and writ of mandate and is supported by federal statute and State Board water quality Nevertheless, the City shall conduct non-stormwater outfall orders. monitoring, not for compliance purposes, but to characterize the quality of non-stormwater discharges from the outfall. The City does not anticipate

being able to take many non-stormwater outfall samples because of sufficient flow during dry weather.

The City will perform outfall visual and sampling monitoring in connection with illicit connection and discharge elimination requirements in keeping with federal stormwater regulations and USEPA guidance. Non-stormwater discharge monitoring will conform to 122.26(d)(1)(D) for the purpose of screening for illicit connections and dumping, which specifies visual monitoring at outfalls for dry weather (non-stormwater discharges). Visual monitoring shall be performed twice a year during dry periods. If flow is observed samples for the outfall (or field screening points):

...samples shall be collected during a 24 hour period with a minimum period of four hours between samples. For all such samples, a narrative description of the color, odor, turbidity, the presence of an oil sheen or surface scum as well as any other relevant observations regarding the potential presence of nonstorm water discharges or illegal dumping shall be provided.

In addition, regulations require a narrative description of the results from sampling for fecal coliform, fecal streptococcus, surfactants (MBAS), residual chlorine, fluorides and potassium; pH, total chlorine, total copper, total phenol, and detergents (or surfactants) shall be provided along with a description of the flow rate. These analytes will be used as potential indicators of illicit discharges, which would trigger an up-stream investigation to identify the source of the suspected illicit discharge or connection. If the source of the illicit discharge/connection and discharger is identified, the City shall notify the discharge that it will need to halt the discharge and, if not feasible, will require the discharger to obtain a discharge Permit.

As per the LA County MS4 Permit, non-stormwater outfall based monitoring must be included in the IMP as outlined in Part IX of

Attachment E. The City's non-stormwater outfall based screening and monitoring process is outlined below:

- <u>Field Screening</u> Outfalls greater than or equal to 36 inches or for MS4 that receives storm water from lands zoned for industrial activity and an outfall that discharges from a single pipe with an inside diameter of 12 inches or more or from its equivalent in diameter will be located and mapped using GIS. Field screening events will take place during dry weather, i.e., on days with <0.1 inch of rain and no less than 72 hours after a rain event. An observation will be conducted during working hours. During observations staff will complete an **Outfall Screening Form** containing information such as date, time, weather, flow amount, visual turbidity, trash, and odor. Photographs also are taken during inspection.
- Inventory of Screening Points: An inventory will be developed of major MS4 outfalls with known significant non-stormwater discharges and those requiring no further assessment. This inventory will be updated annually.
- <u>No further Assessment</u>: No further Assessment will be reported in the inventory database if no flow is observed.
- Prioritization Criteria & Source Investigation: Based on data collected during the screening process, the City will identify screening points with significant non-stormwater discharges and those requiring no further action. The data collected as part of the outfall screening process will be used to prioritize outfalls for source investigation. The City will complete 25% of source identification inventory by December 28th, 2015 and 100% by December 28, 2017.
- Implement Source Identification: If necessary, the City will implement source identification in prioritized order, consistent with the City's IC/ID

Program. The City's contribution will be quantified if the discharge is comprised of multiple sources. Upstream jurisdictions and the Regional Board will be notified if the source originates outside The City's jurisdiction.

Monitor Non-storm Water Discharge Exceedance Criteria: The City will monitor outfall screening points conveying significant discharges comprised of unknown or conditionally exempt non-stormwater discharges, or continuing illicit discharges. In addition, an outfall subject to an approved dry weather TMDL will be monitored per the TMDL Monitoring Plan. Monitoring frequency will be reduced to twice per year beginning the second year of monitoring if pollutant concentration during the first year do not exceed WQBELs or water quality standards on the 303(d) list or non-stormwater Action Levels for the receiving water. City may submit written request to the Executive Officer of the Regional Water Board to reduce or eliminate monitoring of specified pollutants, based on an evaluation of the monitoring data. Outfall(s) will be monitored for the flow, constituents identified in Attachment N of MS4 Permit, and other pollutants identified in 303(d) list. Pollutants identified in a TIE conducted in response to observed aquatic toxicity during dry weather at the nearest downstream receiving water monitoring station or, where the TIE conducted on the receiving water sample was inconclusive that non-stormwater outfall monitoring will include aquatic toxicity monitoring. If the discharge exhibits aquatic toxicity, then a TIE shall be conducted.

1.6 Municipal Action Levels

The purpose of municipal action levels (MALs) is not clear and appears to be superfluous given the Permit's other monitoring

requirements. All of the MAL constituents are already addressed by TMDLs and federally mandated monitoring for certain constituents¹. The MS4 Permit's fact sheet mentions that the purpose of MAL monitoring is to evaluate the effectiveness of a Permittee's stormwater management program in reducing pollutant loads from drainage areas as a means of determining compliance with the maximum extent practical (MEP) standard. There is no guidance in the Permit to explain how this task is to be accomplished. MAL monitoring is also intended to evaluate the effectiveness of post-construction BMPs. It is not clear, however, how MALs can evaluate post-construction BMPs. One basic question is where would MAL monitoring be performed, at the development or new development site, for which post-construction BMPs have been prescribed, or down stream from it? The City has challenged the MAL monitoring requirement in its administrative petition, based on these and other concerns. MAL monitoring represents an unnecessary cost that accomplishes nothing beneficial. Nevertheless, because MAL constituents are included in other stormwater monitoring requirements, the City will effectively be meeting this task. The permit's monitoring program also requires non-stormwater Action Levels (NSAL) applied to non stormwater discharges for compliance. As mentioned, the City has challenged all nonstormwater monitoring tasks that are intended to determine compliance with TMDLs and other water quality standards.

1.7 New Development/Redevelopment Tracking

The PLDP requires tracking new development and redevelopment projects within 60 days of the Permit's adoption (unless a Permittee

¹Total nitrogen, total phosphorous, Ammonia N, TKN, Total PCBs, Chlordane, Dieldrin, 4,4 – DDD, 4,4 – DDE, 4,4 – DDT, Cadmium, Chromium, copper, lead, zinc, E-Coli, fecal coliform.

chooses to participate in Watershed Management Program). Although not a monitoring requirement per se, Permittees are nevertheless required to maintain a database containing the following information:

- name of the project and developer
- project location and map (preferably linked to the GIS storm drain map)
- date of Certificate of Occupancy
- 85th percentile storm event for the project design (inches per 24 hours)
- 95th percentile storm event for projects draining to natural water bodies (inches per 24 hours), related to hydromodification
- other design criteria required to meet hydromodification requirements for drainages to natural water bodies,
- project design storm (inches per 24-hours)
- project design storm volume (gallons or MGD)
- percent of design storm volume to be retained on site
- design volume for water quality mitigation treatment BMPs, if any
- If flow through, water quality treatment BMPs are approved, provide the one year, one-hour storm intensity as depicted on the most recently issued isohyetal map published by the Los Angeles County Hydrologist
- percent of design storm volume to be infiltrated at an off-site mitigation or groundwater replenishment project site
- percent of design storm volume to be retained or treated with biofiltration at an off-site retrofit project
- location and maps (preferably linked to the GIS storm drain map required in Part VII.A of this MRP) of off-site mitigation, groundwater

replenishment, or retrofit sites documentation of issuance of requirements to the developer

The City intends to meet the foregoing tracking tasks through a revised SUSMP evaluation form (see **Section Two, SUSMP Appendix B-4**).

1.8 Regional/Special Studies

The Southern California Stormwater Monitoring Coalition (SMC) Regional Watershed Monitoring Program was initiated in 2008. This program is conducted in collaboration with the Southern California Coastal Water Research Project (SCCWRP), State Water Board's Surface Water Ambient Monitoring Program, three Southern California Regional Water Quality Control Boards (Los Angeles, Santa Ana, and San Diego) and several county storm water agencies (Los Angeles, Ventura, Orange, Riverside, San Bernardino and San Diego). SCCWRP acts as the facilitator to organize the program and completes data analysis and report preparation. The SMC monitoring program seeks to coordinate and leverage existing monitoring efforts to produce regional estimates of condition, improve data comparability and quality assurance, and maximize data availability, while conserving monitoring expenditures. The primary goal of this program is to implement an ongoing, large-scale Regional monitoring program for southern California's coastal streams and rivers. The monitoring program addresses three main questions:

- What is the condition of streams in southern California?
- What are the stressors that affect stream condition?; and
- Are conditions getting better or worse?

In order to continue the implementation efforts of the SMC monitoring program, the City will support or provide monitoring data as described at

the SMC sites within the watershed management area(s) that overlap within the City's jurisdictional area.

1.9 Toxicity Monitoring

The MRP of the MS4 Permit requires toxicity testing at the outfall and in the receiving water. The City will collect and analyze grab samples taken from receiving water monitoring locations to evaluate the extent and cause of toxicity in the receiving water. If toxicity is present in the receiving water the City will perform toxicity testing on water samples taken from field screening points to make sure that the toxicity is coming from the City's jurisdictional area. A sufficient number of samples specified in the MRP shall be collected to perform both the required toxicity test and TIE studies.

1.9.1 Sensitive Species Selection

The MRP states that a sensitivity screening is required to select the most sensitive test species unless "a sensitive test species has already been determined, or if there is prior knowledge of potential toxicant(s) and a test species is sensitive to such toxicant(s), then monitoring shall be conducted using only that test species." Previous relevant studies conducted in the watershed should be considered. Such studies may have been completed via previous MS4 sampling, wastewater NPDES sampling, or special studies conducted within the watershed. The following sub-sections discuss the species section process for assessing aquatic toxicity in receiving waters.

1.9.2 Freshwater Sensitive Species Selection

As described in the MRP, if samples are collected in receiving waters with salinity less than 1 part per thousand (ppt), or from outfalls discharging to receiving waters with salinity less than 1 ppt, toxicity tests should be

conducted on the most sensitive test species in accordance with species and short-term test methods in *Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. Salinity of both dry and wet weather discharges from the LAR reach 2, Compton Creek and Dominguez Channel are considered to meet the freshwater criteria.* The freshwater test species identified in the MRP are:

- A static renewal toxicity test with the fathead minnow, Pimephales promelas (Larval Survival and Growth Test Method 1000.04).
- A static renewal toxicity test with the daphnid, Ceriodaphnia dubia (Survival and Reproduction Test Method 1002.05).
- A static non-renewal toxicity test with the green alga, Selenastrum capricornutum (also named Raphidocelis subcapitata) (Growth Test Method 1003.0).

The three test species were evaluated to determine if either a sensitive test species had already been determined, or if there is prior knowledge of potential toxicant(s) and a test species is sensitive to such toxicant(s). In reviewing the available data in the Dominguez Channel watershed, metals, historical organics, and pyrethroids have been identified as problematic and are generally considered the primary aquatic life toxicants of concern found in urban runoff. Given the knowledge of the presence of these potential toxicants in the watershed, the sensitivities of each of the three species were considered to evaluate which is the most sensitive to the potential toxicants in the watersheds.

As C. dubia is identified as the most sensitive to known potential toxicant(s) typically found in receiving waters and urban runoff in the freshwater portions of the watershed, C. dubia is selected as the most sensitive species. The species also has the advantage of being easily maintained by means of in-house mass cultures. The simplicity of the test, the

ease of interpreting results, and the smaller volume necessary to run the test, make the test a valuable screening tool. The ease of sample collection and higher sensitivity will support assessing the presence of ambient receiving water toxicity or long term effects of toxic storm water over time.

As such, toxicity testing in the freshwater portions of the watershed will be conducted using C. dubia. However, C. dubia test organisms are typically cultured in moderately hard waters and can have increased sensitivity to elevated water hardness greater than 400 mg/L CaCO3, which is beyond their typical habitat range. Because of this, in instances where hardness in site waters exceeds 400 mg/L (CaCO3), an alternative test species may be used. Daphnia magna is more tolerant to high hardness levels and is a suitable substitution for C. dubia in these instances.

1.9.3 Toxicity Identification Evaluation (TIE)

A toxicity test sample is immediately subject to TIE procedures to identify the toxic chemical(s), if either the survival or sub-lethal endpoint demonstrates a Percent Effect value equal to or greater than 50% at the IWC. Percent Effect is defined as the effect value denoted as the difference between the mean control response and the mean IWC response, divided by the mean control response - multiplied by 100. A TIE shall be performed to identify the causes of toxicity using the same species and test method and, as guidance, U.S. EPA manuals: Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I (EPA/600/6 - 91/005F, 1992); Methods for Aquatic Toxicity Identification *Evaluations, Phase III* Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity (EPA/600/R - 92/081, 1993); *Phase II* Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity (EPA/600/R - 92/081, 1993); and Marine

Toxicity Identification Evaluation (TIE): Phase I Guidance Document (EPA/600/R - 96 - 054, 1996).

The TIE should be conducted on the test species demonstrating the most sensitive toxicity response at a sampling station. A TIE may be conducted on a different test species demonstrating a toxicity response with the caveat that once the toxicant(s) are identified, the most sensitive test species triggering the TIE shall be further tested to verify that the toxicant has been identified and addressed. A TIE Prioritization Metric (see Appendix 5 in SMC Model Monitoring Program) may be utilized to rank sites for TIEs.

1.9.4 Toxicity Reduction Evaluation (TRE)

If a toxicant or class of toxicants could not be conclusively identified through a TIE conducted on the receiving water sample, the City will conduct toxicity testing at the outfall at the next sampling event during the same condition (i.e., either wet weather or dry weather) in which the toxicity was observed in the receiving water. When a toxicant or class of toxicants is identified through a TIE conducted at a receiving water monitoring station, Permittees shall analyze for the toxicant(s)during the next scheduled sampling event in the discharge from the outfall(s) upstream of the receiving water location. If the toxicant is present in the discharge from the outfall at levels above the applicable receiving water limitation, a TRE shall be performed for that toxicant. The TRE shall include all reasonable steps to identify the source(s) of toxicity and discuss appropriate BMPs are identified, the Permittee(s) shall submit a **TRE Corrective Action Plan** to the Regional Water Board Executive Officer for approval. At minimum, the plan shall include a discussion of the following:

• The potential sources of pollutant(s) causing toxicity.

- A list of municipalities and agencies that may have jurisdiction over sources of pollutant(s) causing toxicity.
- Recommended BMPs to reduce the pollutants(s) causing toxicity.
- Proposed post construction control measures to reduce the pollutant(s) causing toxicity.
- Follow up monitoring to demonstrate that the toxicants have been reduced or eliminated.

1.10 Chemical Monitoring and Compliance Schedule

Chemical sampling will be performed at field screening points from stormwater discharges at least three times a year. Sampling and analysis will be in keeping with USEPA guidance. The tables VII to XII specifies interim and final TMDL WLAs and compliance deadline dates to which the City is subject. Table VI shows the list of constituents that City will be monitoring from receiving water, non-storm water outfall based and outfall based monitoring which also includes 303(d) list pollutants which are not covered in TMDL.

	Table VII – List of Constituents						
LA Harbor	Dominguez Channel	Compton Creek / LAR					
Flow, hardness, pH, dissolved	Flow, hardness, pH, dissolved	Flow, hardness, pH, dissolved					
oxygen, temperature, specific	oxygen, temperature, specific	oxygen, temperature, specific					
conductivity, TSS & SSC	conductivity, TSS & SSC	conductivity, TSS & SSC					
Table E-2 Pollutants	Table E-2 Pollutants	Table E-2 Pollutants					
Copper, Lead, Zinc	Copper, Lead, Zinc	Copper, Lead, Zinc, Cadmium					
Toxicity - Chlordane, DDT,	Toxicity - Chlordane, DDT,						
PCBs, & PAHs	PCBs, & PAHs	-					
		Ammonia as N, Nitrate-N,					
-	-	Nitrite-N, Nitrite-N + nitrate-N					
Suspended Sediment: Copper,	Suspended Sediment: Copper,						
Lead, Silver, Zinc, Chlordane,	Lead, Silver, Zinc, Chlordane,	-					
DDT, PCBs & PAHs	DDT, PCBs & PAHs						
-	-	E-coli					
-	-	Trash					
303(d) List Pollutants	303(d) List Pollutants	303(d) List Pollutants					
TIE	TIE	TIE					

Table VIII – Dominguez Channel Freshwater Toxics TMDL (Wet Weather)

Toxics TMDL	Interim WLA	Deadline	Final WLA	Deadline
 Total Copper 	207.51 μg/L	December 28, 2012	1300.3 g/day	March 23, 2032
 Total Lead 	122.88 μg/L	December 28, 2012	5733.7 g/day	March 23, 2032
 Total Zinc 	898.87 μg/L	December 28, 2012	9355.5 g/day	March 23, 2032
 Toxicity 	2 TUc	December 28, 2012	1 TUc	March 23, 2032

Table IX – Dominguez Channel Estuary Toxics TMDL (Wet Weather)

Toxics TMDL	Interim WLA	Deadline	Final WLA	Deadline
 Total Copper 	220 mg/kg	December 28, 2012	22.4 kg/yr	March 23,2032
 Total Lead 	510 mg/kg	December 28, 2012	54.2 kg/yr	March 23, 2032
 Total Zinc 	789 mg/kg	December 28, 2012	271.8 kg/yr	March 23, 2032
 Total Cadmium 	na	December 28, 2012	1.2 mg/kg	March 23, 2032
 Total DDT 	1.727 mg/kg	December 28, 2012	0.25 g/yr	March 23, 2032
• PAHs	31.6 mg/kg	December 28, 2012	0.134 kg/yr	March 23, 2032
 Total PCBs 	1.49 mg/kg	December 28, 2012	0.207 g/yr	March 23, 2032

Table X – Dry and Wet Weather TMDL WLAs for Los Angeles River Reach 2 and Compton Creek

			Wet W	Veathe	er WLAs - M	ET	ALs		
Water Body		Cop	Copper Le		Lead		Zinc		Cadmium
Los Angeles River, Reach 2 and Compton Creek					VICTOR VICTOR		WER x 1.4 daily volum		WER x 2.8 x 10 ⁻⁹ x daily volume (L) – 1.8
			Dry W	leathe	er WLAs - M	ET	ALs		
Los Angeles River Reach 2 and Compton Creek		WE	WER x 22 (R 2) WER x 19 Compton Creek) WER x 11 (R 2) WER x 8.9 (Compton Creek)		-		-		
Wet & Dry Weather WLAs- NUTRIENTs									
		NH ₃ -N	(mg/L)	NO	9 ₃ -N (mg/L)		NO ₂ –N (mg	IO ₂ –N (mg/L) NO ₃ -N + NO ₂ -N (mg/l	
Water Body	0	ne hour Ave.	Thirty-day Ave.	/ Т	hirty-day Ave.	Т	'hirty-day A	ve.	Thirty-day Ave.
LAR below LAG		8.7	2.4		8		1		8
LA Tributaries		10.1	2.3		8		1		8
			Dry and W	et Wea	ather WLAs	- B	ACTERIA		
Water Body			Daily Maximum E-coli Daily M Dry (Interim) Dry (Fir				i Geometric Mean)		
Segment A Segment B Compton Creek		518	10 ⁹ MPN/Da (10 ⁹ MPN/Da 0 ⁹ MPN/Day	V/Day) V/Day) 235/100		235/100 mL			126/100 mL
		Dry W	eather Rec	eiving	Water Limit	tati	on - BACTE	RIA	

Time Period	Annual Allowable Exceedances Days of the Single Sample Objective (days)					
	Daily Sampling	Weekly Sampling				
Dry Weather	5	1				
Non-HFS Waterbodies Wet Weather	15	2				
HFS Waterbodies Wet Weather	10(not including HSF days)	2 (not including HSF days)				

Table XI – Compton Creek & LAR Reach 2 Bacteria TMDL Compliance Schedule

Schedule Compton Creek		Los Angeles River Reach 2	
Schedule	сотрыт стеек	Segment B	Segment A
Dry Weather Interim	September 23, 2025	March 23, 2022	March 23, 2024
Dry Weather Final	September 23, 2025	March 23, 2022	March 23, 2024
Wet Weather Final	March 23, 2037	March 23, 2037	March 23, 2037

Table XII – Compton Creek & LAR Reach 2 Metals TMDL Compliance Schedule

Deadline	Total Drainage Area Served by the MS4 required to meet the water quality-based effluent limitations (%)				
	Dry Weather Wet Weather				
January 11, 2012	50	25			
January 11, 2020	75				
January 11, 2024	100	50			
January 11, 2028	100 100				

Table XIII - Compton Creek/Los Angeles River Trash TMDL Compliance Schedule

Year	Implementation Year	Waste Load Allocation	Compliance Point
9-08	Year 1	60% of Baseline Waste Load Allocations for the Municipal Permittees and Caltrans	60% of the baseline load
9-09	Year 2	50% of Baseline Waste Load Allocations for the Municipal Permittees and Caltrans	55% of the baseline load calculated as a 2- year annual average
9-10	Year 3	40% of Baseline Waste Load Allocations for the Municipal Permittees; and Caltrans	50% of the baseline load calculated as a rolling 3-year annual average
9-11	Year 4	30% of Baseline Waste Load Allocations for the Municipal Permittees; and Caltrans	40% of the baseline load calculated as a rolling 3-year annual average

9-12	Year 5	20% of Baseline Waste Load Allocations for the Municipal Permittees; and Caltrans	30% of the baseline load calculated as a rolling 3-year annual average
9-13	Year 6	10% of Baseline Waste Load Allocations for the Municipal Permittees; and Caltrans	20% of the baseline load calculated as a rolling 3-year annual average
9-14	Year 7	0% of Baseline Waste Load Allocations for the Municipal Permittees; and Caltrans	10% of the baseline load calculated as a rolling 3-year annual average
9-15	Year 8	0% of Baseline Waste Load Allocations for the Municipal Permittees; and Caltrans	3.3% of the baseline load calculated as a rolling 3-year annual average
9-16	Year 9	0% of Baseline Waste Load Allocations for the Municipal Permittees; and Caltrans	0% of the baseline load calculated as a rolling 3-year annual average

Table XIV – City of Compton WQBELs for Trash discharge to LAR Schedule (gallons of uncompressed trash)

Unit	Baseline	2012 (30%)	2013 (20%)	2014 (10%)	2015 (3.3%)	2016 (0%)
Gallons of uncompressed trash	53191	15957	10638	5319	1755	0
Pound of drip dry trash	86356	25907	17271	8636	2850	0

1.11 MAL Monitoring

Stormwater sampling against MAL analytes shall be performed at the same time stormwater monitoring is performed for other purposes and with the same frequency – three times during the wet season. The table below identifies the MAL analytes and their numeric limitations.

Table XV - Municipal Action Levels

Metals	Unit	Total
Cadmium	ug/l	2.52
Chromium	ug/l	20.2

Copper	ug/l	71.12
Lead	ug/l	102
Zinc	ug/l	641.3
Nickel	ug/l	27.43
Mercury	ug/l	0.32
Conventional Pollutants	Unit	MAL
Total Phosphorus	mg/l	0.80
Nitrate & Nitrite	mg/l	1.85
Kjedahl Nitrogen (TKN)	mg/l	4.59
COD	mg/l	247.5
TSS	mg/l	264.1
рН	-	6 -9

1.12 Action Level Monitoring

The tables below list non-stormwater action level analytes for Dominguez Channel, Compton Creek/Los Angeles River (Reach 1) and Machado Lake. As mentioned, the City does not intend to conduct action level or any other non-stormwater monitoring at the outfall. Such monitoring is not authorized under the Clean Water Act and is contrary to State Board water quality orders. Because non-stormwater discharges are not subject to an iterative process an exceedance would place a Permittee in violation. Nevertheless, the City shall conduct non-stormwater monitoring to detect and eliminated illicit discharges and connections (see below Section 1.14).

Table XVI – Action Levels (Non-Stormwater) for Dominguez Channel Estuary with
receiving water salinity greater than 10 ppt

Analyte	Units	Average Monthly	Daily Maximum
рН	Standard units	6.5-8.5 ¹	
Total Coliform bacteria	#/100 ml	1000 ^{2,3}	10,000 ^{3,4}
Fecal Coliform Bacteria	#/100 ml	200 ²	400 ⁴
Enterococcus Bacteria	#/100 ml	35 ²	104 ⁴
Cyanide, Total Recoverable	ug/L	0.5	1
Copper, Total Recoverable	ug/L	2.9	5.8

MRP: 06/28/14

Lead, Total Recoverable	ug/L	7	14
Mercury, Total Recoverable	ug/L	0.051	0.1
Selenium, Total Recoverable	ug/L	58	117

Within the range of 6.5 to 8.5 at all times. ² Total coliform density shall not exceed a geometric mean of 1,000/100 ml. Fecal coliform density shall not exceed a geometric mean of 200/100 ml. Enterococcus density shall not exceed a geometric mean of 35/100 ml. ³ In areas where shellfish may be harvested for human consumption, as determined by the Regional Water Board, the median total coliform density shall not

exceed 70/100 ml and not more than 10 percent of the samples shall exceed 230/100 ml. ⁴ Total coliform density in a single sample shall not exceed 10,000/100 ml. Fecal coliform density in a single sample shall not exceed 400/100 ml. Enterococcus density shall not exceed a geometric mean of 104/100 ml.

Table XVII – Action Levels (Non-Stormwater) for Los Angeles River

(with Receiving Water Salinity Equal to or Less than 1 ppt)

Analyte	Units	Average Monthly	Daily Maximum
рН	Standard units	6.5-8.5 ¹	
E. coli bacteria	#/100 ml	126 ²	235 ³
Chloride	mg/L	4	
Nitrite Nitrogen. Total (as N)	mg/L	1.0 ⁵	
Sulfate	mg/L	4	
Total Dissolved Solids	mg/L	4	
Turbidity	NTU	5 ⁵	
Aluminum, Total Recoverable	mg/L	1.0 ⁵	
Cyanide, Total Recoverable	ug/L	4.3	8.5
Copper, Total Recoverable	ug/L	6	6
Mercury, Total Recoverable	ug/L	0.051	0.1
Selenium, Total Recoverable	ug/L	4.1	8.2

Within the range of 6.5 to 8.5 at all times.

² Total coliform density shall not exceed a geometric mean of 1,000/100 ml. Fecal coliform density shall not exceed a geometric mean of 200/100 ml.

Enterococcus density shall not exceed a geometric mean of 35/100 ml. ³ In areas where shellfish may be harvested for human consumption, as determined by the Regional Water Board, the median total coliform density shall not exceed 70/100 ml and not more than 10 percent of the samples shall exceed 230/100 ml. ⁴ Total coliform density in a single sample shall not exceed 10,000/100 ml. Fecal coliform density in a single sample shall not exceed 400/100 ml. Enterococcus

⁵ Applicable only to discharges to receiving waters or receiving waters with underlying groundwater designated for Municipal and Domestic Supply (MUN) use as specified in Tables 2-1 and 2-2 of the Basin Plan.

1.13 Additional Monitoring Required for SWMP Compliance

MRP section VI.C.2.a.i and ii requires additional outfall monitoring tasks for Permittees that opt for the SWMP. They include pollutants that are currently not TMDLs but are nevertheless 303(d) listed (e.g., cyanide). Regional Board staff has suggested that other water quality standards be

density shall not exceed a geometric mean of 104/100 ml.

included that can found in the previous MS4 in attachment U of the Monitoring Program. They were used as reference and, together with CTR and TMDLs formed a comprehensive list of constituents to be sampled and analyzed.

The purpose of this monitoring task is to identify non-TMDL pollutants that are causing impairments to beneficial uses of receiving waters and to evaluate the effectiveness of BMPs implemented through the SWMP/WMP. They are also included to determine if non-TMDL pollutants are causing or contributing to exceedances of receiving water limitations. The City takes the position that the detection of an exceedance does not constitute a violation. Any persistent exceedance of a TMDL or water quality standard monitored over the term of the Permit would not constitute a violation provided that (1) the SWMP/WMP is being implemented in a timely and complete manner; and (2) complies with the iterative process described in MS4 Permit section V.A.1-4.

Monitoring for all the constituents that will be tested will be conducted according to test procedures approved under 40 CFR Part 136 for the analysis of pollutants unless another test procedure is required under 40 CFR subchapters N or O or is otherwise specified in the Los Angeles County MS4 Permit for such pollutants.

Resulting data generated from WMP-related monitoring will be, along with TMDL monitoring, loaded into the water quality model. These pollutants will be added to the stormwater outfall sampling list.

CONSTITUENTS	USEPA METHOD	MLs
CONVENTIONAL POLLUTANTS		mg/L
Oil and Grease	EPA 1664	5
Total Phenols	EPA 420.1	0.1
Cyanide	EPA 4500-CNC	0.005

Table XVIII - WMP Monitoring for Non-TMDL Water Quality Standards

MRP: 06/28/14

рН	EPA 150.1	0 – 14
Temperature	NA	None
Dissolved Oxygen	NA	Sensitivity to 5 mg/L
BACTERIA (single sample limits)		MPN/100ml
Total Coliform (marine waters)	SM 9221B	10,000
Fecal Coliform (marine & fresh waters)	SM 9222 B	400
Enterococcus (marine waters)	SM 9230 B	104
E-Coli	SM 9230 B	235
GENERAL		mg/L
Dissolved Phosphorus	SM 4500-PC	0.05
Total Phosphorus	SM 4500-PC	0.05
Turbidity	EPA 180.1	0.1NTU
Total Suspended Solids	EPA 160.2	2
Total Dissolved Solids	EPA 160.1	2
Volatile Suspended Solids	EPA 160.4	2
Total Organic Carbon	SM 5310 B	1
Total Petroleum Hydrocarbon	EPA 1664	5
Biochemical Oxygen Demand	SMOL-5210	2
Chemical Oxygen Demand	SM 5220D	20-900
Total Ammonia-Nitrogen	EPA 350.2	0.1
Total Kjeldahl Nitrogen	EPA 351.2	0.1
Nitrate-Nitrite	EPA 4110	0.1
Alkalinity	EPA 310.1	2
Specific Conductance	EPA 120.1	1umho/cm
Total Hardness	EPA 130.2	2
MBAS	SM 5540 C	0.5
Chloride	EPA 300	2
Fluoride	EPA 300	0.1
Methyl tertiary butyl ether (MTBE)	EPA 4110	1
Perchlorate	EPA 314.0	4
METALS(Dissolved & Total)		μg/L
Aluminum	EPA 200.8	100
Antimony	EPA 200.8	0.5
Arsenic	EPA 200.8	1
Beryllium	EPA 200.8	0.5
Cadmium	EPA 200.8	0.25
Chromium (total)	EPA 200.8	0.5
Chromium (Hexavalent)	EPA 200.8	5
Copper	EPA 200.8	0.5
Iron	EPA 200.8	100
Lead	EPA 200.8	0.5
Mercury	EPA 1631	0.5
Nickel	EPA 200.8	1
Selenium	EPA 200.8	1
Silver	EPA 200.8	0.25
Thallium	EPA 200.8	1
zinc	EPA 200.8	1
SEMIVOLATILE ORGANIC COMPOUNDS		· ·

ACIDS		μg/L
2-Chlorophenol	EPA 625	2
4-Chloro-3-methylphenol	EPA 625	1
2,4-Dichlorophenol	EPA 625	1
2,4-Dimethylphenol	EPA 625	2
2,4-Dinitrophenol	EPA 625	5
2-Nitrophenol	EPA 625	10
4-Nitrophenol	EPA 625	5
Pentachlorophenol	EPA 625	2
Phenol	EPA 625	1
2,4,6-Trichlorophenol	EPA 625	10
BASE/NEUTRAL		μg/L
Acenaphthene	EPA 625	1
Acenaphthylene	EPA 625	2
Anthracene	EPA 625	2
Benzedine	EPA 625	5
1,2 Benzanthracene	EPA 625	5
Benzo(a)pyrene	EPA 625	2
Benzo(g,h,i)perylene	EPA 625	5
3,4 Benzoflouranthene	EPA 625	10
Benzo(k)flouranthene	EPA 625	2
Bis(2-Chloroethoxy) methane	EPA 625	5
Bis(2-Chloroisoproply) ether	EPA 625	2
Bis(2-Chloroethyl) ether	EPA 625	1
Bis(2-Ethylhexl) phthalate	EPA 625	5
4-Bromophenyl Phenyl ether	EPA 625	5
Butyl benzyl phthalate	EPA 625	10
2-Chloroethyl vinyl ether	EPA 625	1
2-Chloronaphthalene	EPA 625	10
4-Chlorophenyl phenyl ether	EPA 625	5
Chrysene	EPA 625	5
Dibenzo(a,h)anthracene	EPA 625	0.1
1,3-Dichlorobenzene	EPA 625	1
1,4-Dichlorobenzene	EPA 625	1
1,2-Dichlorobenzene	EPA 625	1
3,3-Dichlorobenzidine	EPA 625	5
Diethyl phthalate	EPA 625	2
Dimethyl phthalate	EPA 625	2
di-n-Butyl phthalate	EPA 625	10
2,4-Dinitrotoluene	EPA 625	5
2,6-Dinitrotoluene	EPA 625	5
4,6 Dinitro-2-methylphenol	EPA 625	5
1,2-Diphenylhydrazine	EPA 625	1
di-n-Octyl phthalate	EPA 625	10
Fluoranthene	EPA 625	0.05
Fluorene	EPA 625	0.1
Hexachlorobenzene	EPA 625	1
Hexachlorobutadiene	EPA 625	1

MRP: 06/28/14

Hexachloro-cyclopentadiene	EPA 625	5
Hexachloroethane	EPA 625	1
Indeno(1,2,3-cd)pyrene	EPA 625	0.05
Isophorone	EPA 625	1
Naphthalene	EPA 625	0.2
Nitrobenzene	EPA 625	1
N-Nitroso-dimethyl amine	EPA 625	5
N-Nitroso-diphenyl amine	EPA 625	1
N-Nitroso-di-n-propyl amine	EPA 625	5
Phenanthrene	EPA 625	0.05
Pyrene	EPA 625	0.05
1,2,4-Trichlorobenzene	EPA 625	1
CHLORINATED PESTICIDES		μg/L
Aldrin	EPA 608	0.005
alpha-BHC	EPA 608	0.01
beta-BHC	EPA 608	0.005
delta-BHC	EPA 608	0.005
gamma-BHC (lindane)	EPA 608	0.02
alpha-chlordane	EPA 8270	0.1
gamma-chlordane	EPA 8270	0.1
4,4'-DDD	EPA 8270	0.05
4,4'-DDE	EPA 8270	0.05
4,4'-DDT	EPA 8270	0.01
Dieldrin	EPA 608	0.01
alpha-Endosulfan	EPA 608	0.02
beta-Endosulfan	EPA 608	0.01
Endosulfan sulfate	EPA 608	0.05
Endrin	EPA 608	0.01
Endrin aldehyde	EPA 608	0.01
Heptachlor	EPA 608	0.01
Heptachlor epoxide	EPA 608	0.01
Toxaphene	EPA 608	0.5
POLYCHLORINATED BIPHENYLS		μg/L
Aroclor-1016	EPA 608	0.5
Aroclor-1221	EPA 608	0.5
Aroclor-1232	EPA 608	0.5
Aroclor-1242	EPA 608	0.5
Aroclor-1248	EPA 608	0.5
Aroclor-1254	EPA 608	0.5
Aroclor-1260	EPA 608	0.5
ORGANOPHOSPHATE PESTICIDES		μg/L
Atrazine	EPA 8141A/B	2
Chlorpyrifos	EPA 8141A/B	0.05
Cyanazine	EPA 8141A/B	2
Diazinon	EPA 8141A/B	0.01
Malathion	EPA 8141A/B	1
Prometryn	EPA 8141A/B	2
Simazine	EPA 8141A/B	2
OIIIIdZIIIE		۷

MRP: 06/28/14

HERBICIDES		µg/L
2,4-D	EPA 8151A	10
Glyphosate	EPA 8151A	5
2,4,5-TP-SILVEX	EPA 8151A	0.5
SOLIDS		mg/L
Total Suspended Solids (TSS)	SM 2540D	2
Suspended Sediment Concentration (SSC)	ASTM D3977-97C	NA
Volatile Suspended Solids	EPA 1684	2

1.14 Non-stormwater Monitoring for IC/ID

As mentioned above, the City proposes to perform non-stormwater monitoring to detect and eliminate illicit connections and discharges in accordance with 40 CFR 122.26(d)(1)(D). Monitoring will consist of dry weather visual observations at outfalls or field screening points, which shall be conducted monthly during the dry season (May 1 to September 30) -- see **Appendix A-2** for field screening locations. If flow is detected, grab samples are to be taken within a 24 hour period and measured against fecal coliform, fecal streptococcus, surfactants (MBAS), residual chlorine, fluorides, and potassium. Other constituents may be added later based on USEPA's ICID-DE guidance manual.

1.15 Reporting Requirements

The City shall comply with all reporting requirements specified in the MRP. Results will be reported to the Regional Board on or before December 15, 2015. By this time, it is expected that the County of Los Angeles will have developed a standardized annual report form that will include reporting criteria for the MS4 Permit, TMDLs, MALs and certain water quality standards.

1.15 Monitoring Protocols

The MRP requires a variety of monitoring requirements that are governed by monitoring protocols established by USEPA, which are summarized below.

I. Receiving Monitoring Protocol

Minimum required receiving water monitoring frequencies are defined in section VI.C of Attachment E in the MS4 Permit. Wet weather is defined as when the flow with the receiving water is at least 20% greater that the base flow. For Compton Creek and Los Angeles River Reach 2 wet weather is defined as any day when the maximum daily flow in the Los Angeles River is equal to or greater than 500 cfs measured at the Wardlow Gage Station. In an effort to simplify the wet weather definition the City will utilize the definition in Attachment A of the MS4 Permit, which defines the wet weather as the time period between October 1st and April 15th unless a storm event that is qualified to be targeted as the first event of the year is forecasted within a reasonable amount of time prior to October 1st. Wet weather monitoring will occur at least three times per year for all applicable parameters with the exception for aquatic toxicity. The City will comply with ambient monitoring which will be conducted during the wet season after 48 to 72 hours of storm period. Ambient monitoring will occur at least three times per year of the wet season for all applicable parameters with the exception for aquatic toxicity. The first ambient monitoring event will occur after 48 to 72 hours of a predicted rainfall of .25 inches with a 70% probability of rain fall will be targeted for monitoring. At a minimum, two additional ambient events within the same wet weather season with a minimum separation of three dry days between monitoring will be monitored to meet the minimum requirement of three storm events per

year. TMDL WLA, 303(d) List parameter will be sampled during monitoring events. Parameters in Table E-2 (Table – XIII) of the LA County MS4 Permit will be monitored in the first year of monitoring during the first ambient monitoring event of the storm year.

Dry weather monitoring requirements are defined in section VI.D of Attachment E in the MS4 Permit. Monitoring shall take place a minimum of two times per year for all parameters, or more if required by a TMDL monitoring plan. Dry weather is defined as when the flow is less than 20% of the base flow or as define by effective TMDLs within the watershed. At least one of the monitoring events shall take place during the historically driest month of the year, which will be utilized for the time period of which at least one of the monitoring events occurs. Table E-2 of the LA County MS4 Permit shall be monitored in the first year during the critical dry weather event.

II. Non-storm water outfall based sampling Protocol

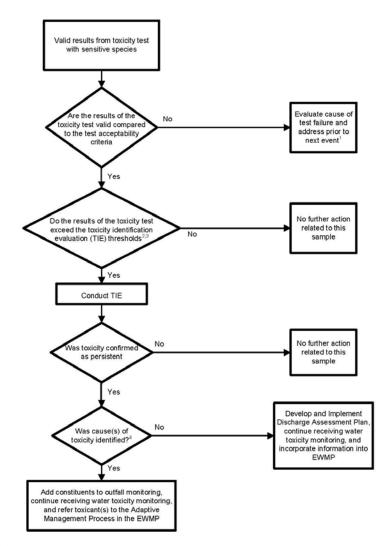
Dry weather samples will be collected on days there has be no measurable precipitation within the last three days. Flow-weighted composite samples shall be taken for a non-stormwater discharge using a continuous sampler or it shall be taken as a combination of a minimum of 3 sample aliquots, taken in each hour during a 24-hour period. Grab samples will be taken for constituents that are required to be collected by grab sampling. If the City cannot install an automated sampler then an alternate protocol (grab sampling) will be proposed with justification and ultimately approved by the Regional Board. Non-stormwater outfall monitoring of significant non-stormwater discharges that cannot be eliminated will occur 4 times during the year following source identification, at the frequency identified in a TMDL Monitoring Plan if an outfall is subject to dry weather

TMDLs. However, if the non-stormwater discharge has been identified as an exempted non-stormwater discharge or is covered under a separate discharge no further monitoring shall be conducted. Flow will be estimated for storm water outfall monitoring sites based on drainage area, impervious cover, and precipitation data.

III. Outfall Based sampling protocol

For each field screening point, sample shall be collected of storm water discharge from three storm events occurring at least one month apart in accordance with the requirements indicated below:

For storm water discharges, all samples shall be collected from the discharge resulting flow with the receiving water is at least 20% greater that the base flow. For Dominguez channel wet weather is defined as any day when the maximum daily flow measured at a location within the Dominguez Channel is equal to or greater than 62.7 cfs, a flow-weighted composite shall be taken in each hour of discharge for the first 24 hours of the discharge or for the entire discharge if the storm event is less than 24 hours. The flow-weighted composite sample for a storm water discharge may be taken with a continuous sampler or as a combination of a minimum of three sample aliquots taken in each hour of discharge for the first 24 hours of the discharge or for the entire discharge if the storm event is less than 24 hours., with each aliquot being separated by a minimum period of twenty minutes. In addition the City will target the first storm event of the storm year with a predicted rainfall of at least 0.25 inch at a 70% probability of rainfall at least 24 hours prior to the event start time. Another two wet weather monitoring events will be



determined when predicted rain is equal to or more than 0.1 inches and minimum 3 consecutive days of dry weather.

IV. Toxicity Monitoring/Testing Protocol

The approach to conducting aquatic toxicity monitoring is presented in Figure C-1, which describes a general evaluation process for each sample collected as part of routine sampling conducted twice per year in wet weather and once per year in dry weather. Monitoring begins in the receiving water and the information gained is used to identify constituents for monitoring at outfalls to support the identification of pollutants.

Footnotes

1. Test failure includes pathogen or epibont interference, which should be addressed prior to the next toxicity sampling event. Additionally, lab control organisms may fail to meet test standards. As a result of test failure, toxicity samples will be collected during the next wet weather event, or as soon as possible following notification of test failure for dry event samples.

2. For freshwater, the TIE threshold is equal to or greater than 50% (≥50%) mortality in an acute (wet weather) or chronic (dry weather) test. If a ≥50% effect in a sub-lethal endpoint for chronic test is observed during dry weather, a follow up sample will be collected within two weeks of the completion of the initial sample collection. If the follow up sample exhibits a ≥50% effect, a TIE will be initiated.

3. For marine waters and estuarine waters, the TIE threshold is the percent effect value ≥50%. If a ≥50% or greater effect is observed during dry weather a follow up sample will be collected within two weeks of the initial sample collection and if the follow up sample exhibits a ≥50% effect, a TIE will be initiated.

4. The goal of conducting Phase I TIEs is to identify the cause of toxicity so that outfall monitoring can incorporate the toxicant(s) into the list of constituents monitored during outfall monitoring. Thus, if specific toxicant(s) or the analytical class of toxicants (i.e., metals that are analyzed via EPA Method 200.8) are identified, sufficient information is available to inform the addition of pollutants to the list of pollutants monitored during outfall monitoring.

1.17 Implementation Schedule (Milestones)

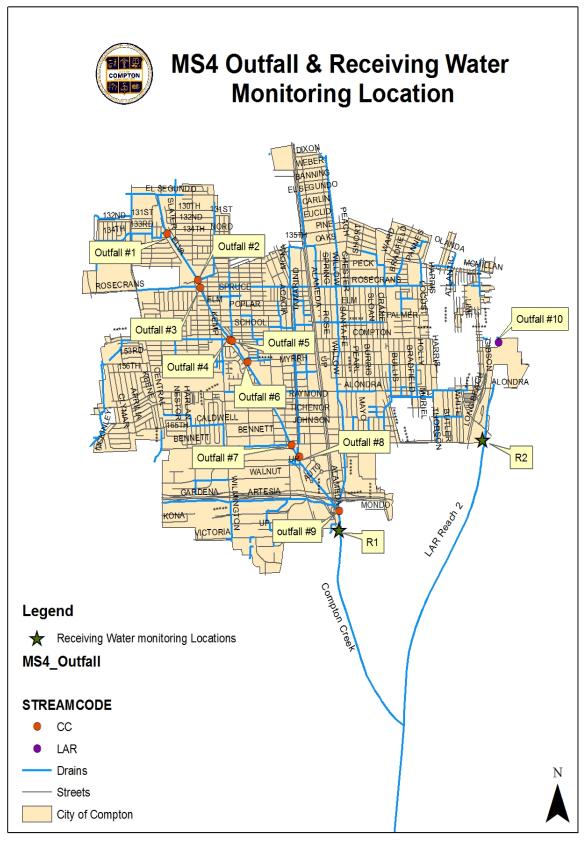
The table below provides a schedule for implementing MRP/IMP

tasks.

Table XIX– Implementation Schedule

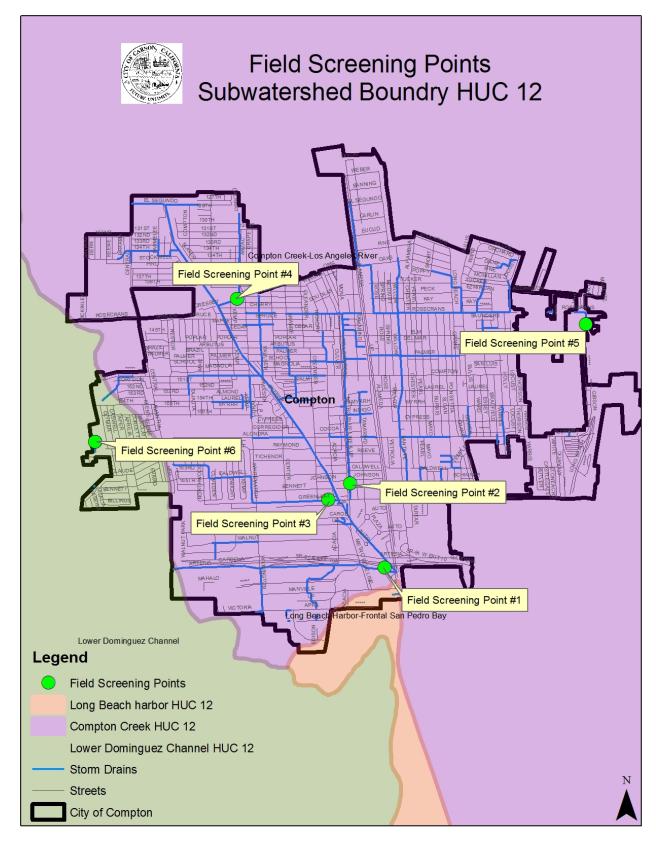
	Task	Deadline Date				
•	Using GIS mapping, provide land use overlay of City's storm drain system	No later than June 28, 2014				
•	Using GIS mapping, show City's storm drain system including catch basins and connections to receiving waters	No later than June 28, 2014				
•	Using GIS mapping, identify watershed and sub- watershed based on Los Angeles County's HUC 12 equivalent boundaries	No later than June 28, 2014				
•	Using GIS mapping, identify: stormwater outfalls and field screening points; mass emission and other in- stream monitoring points/stations; and ambient monitoring locations established by the Regional Board's Surface Water Ambient Monitoring Program (SWAMP); and locations established by the Council for Watershed Health.	No later than June 28, 2014				
•	Conduct outfall monitoring for stormwater discharges for TMDLs, other water quality standards, MALs, and toxicity three times beginning during 2015-2016 wet season and annually thereafter.	Beginning no later than October 1, 2015				
•	During the dry season, conduct monthly non- stormwater visual observations and grab sampling if flow is detected.	No later than May 1, 2016				
•	Review available ambient monitoring data and studies to assess the health of the Dominguez at both reaches (above and below Vermont Avenue)	No later than June 28, 2014				
•	Submit annual monitoring reports to the Regional Board of any available TMDL or other water quality standards data generated through outfall monitoring.	Beginning no later than December of 2014				
•	Submit new development/redevelopment tracking form.	No later than two months following the Regional Board's approval of the IMP				

END SECTION ONE MRP-IMP



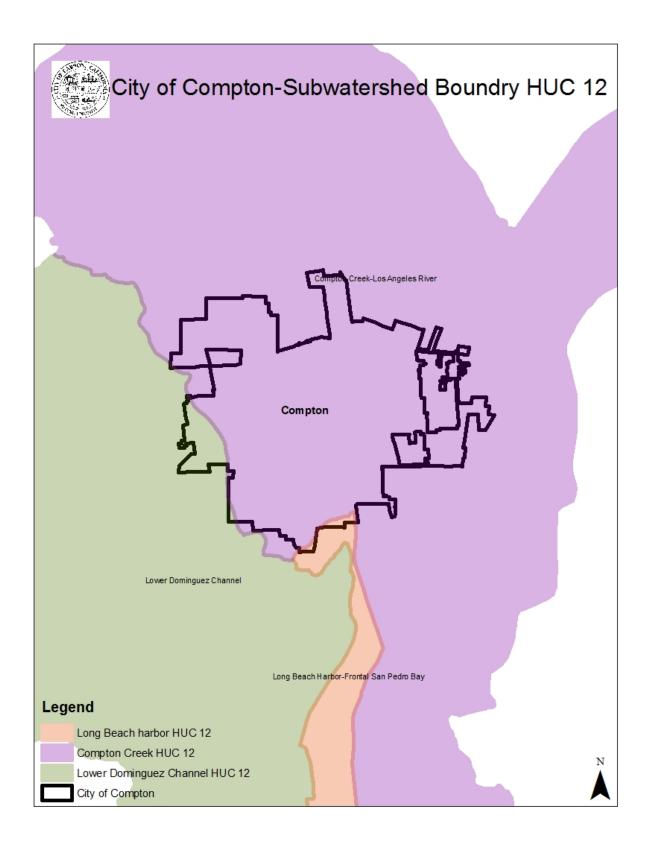
Appendix A Maps

Outfall and Receiving Water Location Map

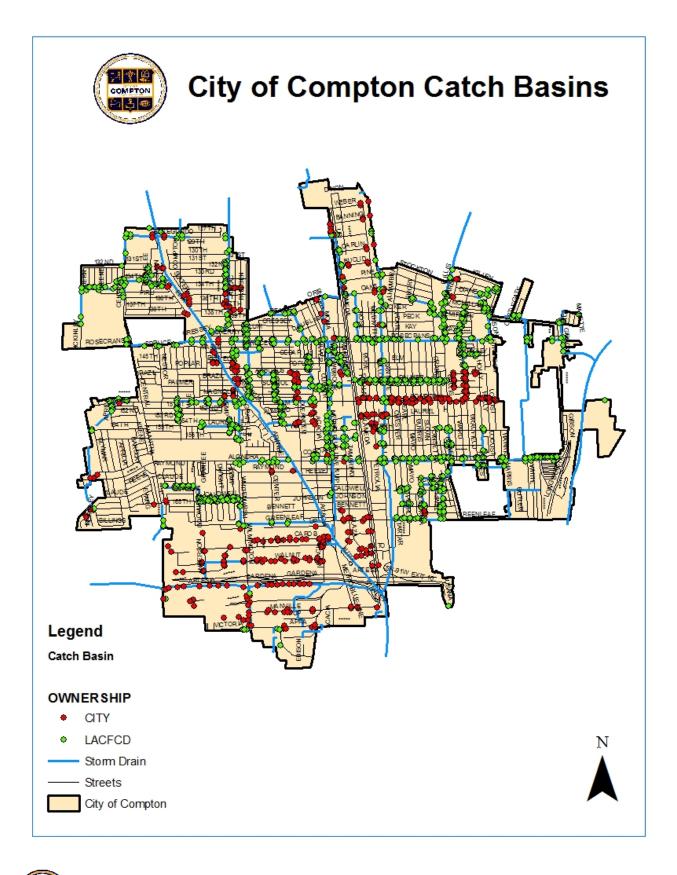


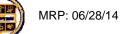
MRP: 06/28/14

Field Screening Points

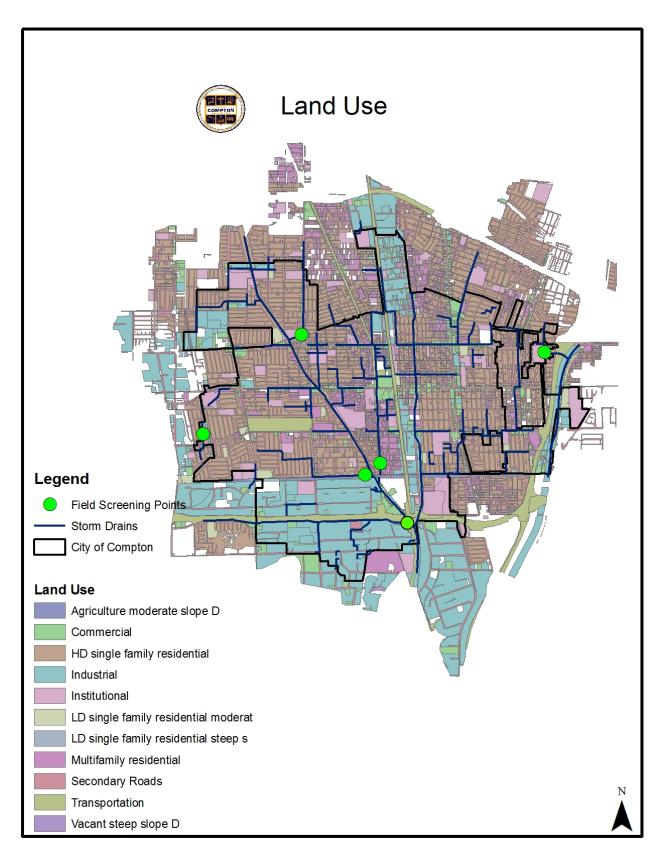


Watershed/Sub-watershed & City Boundary Map





Storm Drain/Catch Basin Map



Appendix A-5 City Land Use Map

Appendix B

2010 303(d) List for Dominguez Channel and Los Angeles River (Reach 2) and Compton Creek)

Appendix B

Table I – 303(d) List – Dominguez Channel

2010 303 (d) List				
Water Body	Parameter	TMDL Status Date	Source	Pollutant Category
Dominguez Channel	Ammonia	2019	Nonpoint/Point Source	TMDL Require List
(below Vermont Avenue)	BMB	2019	Nonpoint/Point Source	TMDL Require List
	Benzo Pyrene (PAHs)	2019	Source Unknown	TMDL Require List
	Benzo Anthracene (PAHs)	2019	Source Unknown	TMDL Require List
	Chlordane (tissue)	2019	Source Unknown	TMDL Require List
	Chrysene (C1-C4)	2019	Source Unknown	TMDL Require List
	Coliform Bacteria	2007	Nonpoint/Point Source	TMDL Require List
	DDT (tissue & Sediment)	2019	Nonpoint/Point Source	TMDL Require List
	Dieldrin (tissue)	2019	Nonpoint/Point Source	TMDL Require List
	Lead (tissue)	2019	Nonpoint/Point Source	TMDL Require List
	PCBs	2019	Source Unknown	TMDL Require List
	Phenanthrene	2019	Source Unknown	TMDL Require List
	Pyrene	2019	Source Unknown	TMDL Require List
	Zinc (sediment)	2019	Nonpoint/Point Source	TMDL Require List
	Sediment Toxicity	2021	Nonpoint Source	TMDL Require List
Dominguez Channel	Ammonia	2019	Point Source	TMDL Require List
(Above Vermont Avenue)	Copper	2019	Nonpoint/Point Source	TMDL Require List
,	Indicator Bacteria	2007	Nonpoint/Point Source	TMDL Require List

Lead	2019	Nonpoint/Point Source	TMDL Require List
Toxicity	2021	Nonpoint/Point Source	TMDL Require List
Zinc	2019	Nonpoint/Point Source	TMDL Require List
Diazinon	2019	Source Unknown	TMDL Require List

Table II – 303(d) List – Los Angeles River (Reach 1) and Compton Creek

2010 303 (d) List				
Water Body	Parameter	TMDL Status Date	Source	
Los Angeles River Reach 2 and Compton Creek	Coliform Bacteria	2009	Nonpoint/Point Source	
	Trash	2005	Nonpoint/Surface Runoff	
	Oil	2019	Nonpoint Source	
	Copper	2005	Source Unknown	
	Lead	2005	Nonpoint/Point Source	
	Ammonia	2004	Nonpoint/Point Source	
	Nutrients (Algae)	2004	Nonpoint/Point Source	

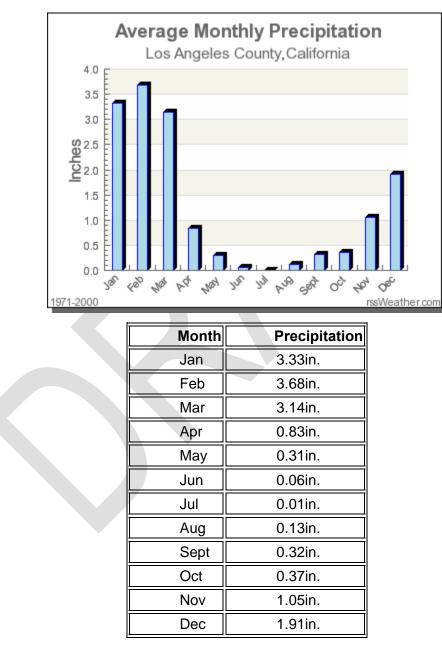

Water Body	Parameter	TMDL Status Date	Source
Los Angeles River - Compton Creek	Coliform Bacteria	2009	Nonpoint/Point Source
	Trash	2005	Nonpoint/Surface Runoff
	Copper, Dissolved	2005	Nonpoint/Point Source
	Lead, Dissolved	2005	Nonpoint/Point Source
	рН	2004	Nonpoint/Point Source
	Benthic Macroinvertabrate Bioassessments	2021	Source Unknown

Table II – 303(d) List –Compton Creek - Los Angeles River

Appendix C

LA County Precipitation Data

The driest month in Los Angeles County is <u>July</u> with 0.01 inches of precipitation.

MRP: 06/28/14