Amendment to the Water Quality Control Plan – Los Angeles Region

to Incorporate a Total Maximum Daily Loads (TMDLs) for Organochlorine (OC) Pesticides, Polychlorinated Biphenyls (PCBs) and Siltation in Calleguas Creek, Its Tributaries, and Mugu Lagoon

Adopted by the California Regional Water Quality Control Board, Los Angeles Region on July 7, 2005.

Amendments

Table of Contents

Add:

Chapter 7. Total Maximum Daily Loads (TMDLs)

<u>7- 17 Calleguas Creek Organochlorine Pesticides, Polychlorinated Biphenyls, and Siltation TMDL</u>

List of Figures, Tables, and Inserts

Add:

Chapter 7. Total Maximum Daily Loads (TMDLs)

Tables

- 7-17 Calleguas <u>Creek Organochlorine Pesticides</u>, <u>Polychlorinated Biphenyls</u>, and <u>Siltation TMDL</u>
- 7-17.1 Calleguas <u>Creek Organochlorine Pesticides</u>, <u>Polychlorinated Biphenyls</u>, and <u>Siltation TMDL</u>:

Elements

7-17.2 Calleguas <u>Creek Organochlorine Pesticides</u>, <u>Polychlorinated Biphenyls</u>, and <u>Siltation TMDL</u>:

Implementation Schedule

Chapter 7. Total Maximum Daily Loads (TMDLs)

Calleguas Creek Organochlorine Pesticides, Polychlorinated Biphenyls, and Siltation TMDL

Add:

This TMDL was adopted by the Regional Water Quality Control Board on July 7, 2005.

This TMDL was approved by:

The State Water Resources Control Board on September 22, 2005.

The Office of Administrative Law on January 20, 2006.

The U.S. Environmental Protection Agency on March 14, 2006.

The following table includes the elements of the TMDL:

Table 7-17.1. Calleguas Creek Watershed OC Pesticides, PCBs, and Siltation TMDL: Elements

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation TMDL			
Problem				
	Eleven of fourteen reaches in the Calleguas Creek Watershed			
Statement	(CCW) were identified on the 2002 303(d) list of water-quality			
	limited segments as impaired due to elevated levels of			
	organochlorine (OC) pesticides and/or polychlorinated biphenyls			
	(PCBs) in water, se	diment, and/or fish tis	ssue. Additionally, Mugu	
	Lagoon was listed a	as impaired for sedime	entation/siltation. OC	
	_	-	n fish tissue and cause	
			land waters. Siltation may	
			face waters and impair	
	-		race waters and impair	
NT •	aquatic life and wile		C	
Numeric			for water, fish tissue, and	
Targets			targets were derived from	
	the California Toxic Rule (CTR) water quality criteria for			
	protection of aquatic life. Chronic criteria (Criteria Continuous			
	Concentration, or CCC) were applied unless otherwise noted in the			
	table below:			
		Water Quality Tar	gets (ng/L) ¹	
	Constituent	Freshwater Marine ²		
	Aldrin	300.0	130.0	
	Chlordane	4.3	4.0	
	Dacthal	3,500,000.0	$\left(a\right)^{3}$	
	$(a)^{3}$ $(a)^{3}$			
	4,4'-DDE ⁵	$(a)^3$	$(a)^3$	
	4,4'-DDT ⁶ 1.0 1.0			
	Dieldrin 56.0 1.9 Endosulfan I 56.0 8.7		8.7	
			8.7	
			2.3	
	HCH (alpha-BHC ⁷)	$(a)^3$	$(a)^3$	
	HCH (beta-BHC)	$(a)^3$	$(a)^3$	
	HCH (delta-BHC)	$(a)^3$	$(a)^3$	

¹ ng/L: nanogram per litter

Page 2 July 7, 2005

 $^{^{2}\,\}mathrm{Marine}$ numeric targets applied to Mugu Lagoon

³ Numeric targets have not been established for these constituents

⁴ DDD: Dichlorodiphenyldichloroethane

⁵ DDE: Dichlorodiphenyldichloroethylene

⁶ DDT: Dichlorodiphenyltrichloroethane

⁷ BHC: Hexachlorocyclohexane

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation			
	TMDL			
	HCH (gamma BHC)	950.0	160.0	
	Heptachlor	3.8	3.6	
	Heptachlor Epoxide	3.8	3.6	
	PCBs	140.0^{1}	30.0^{7}	
	Toxaphene	0.2	0.2	
	Fish tissue targets are d	erived from CTR hum	nan health criteria for	
	consumption of organis			
	Fish Tis	ssue Targets (ng/Kg)		
	Constituent	suc rangets (ng/ng/		
	Aldrin	50.0		
	Chlordane	830.0		
	Dacthal	$(a)^2$		
	4,4'-DDD	45,000.0		
	4,4'-DDE	32,000.0		
	4,4'-DDT	32,000.0		
	Dieldrin	650.0		
	Endosulfan I	65,000,000.0		
	Endosulfan II	65,000,000.0		
	Endrin	3,200,000.0		
	HCH (alpha-BHC)	1,700.00		
	HCH (beta-BHC)	6,000.0		
	HCH (delta-BHC)	$(a)^1$		
	HCH (gamma BHC)	8,200.		
	Heptachlor	2,400.0		
	Heptachlor Epoxide	1,200.0		
	PCBs	$5,300.0^3$		
	Toxaphene	9,800.0		
	Sediment targets were of	lerived from sediment	quality guidelines	
	contained in National C			
		C 1		
	Administration (NOAA	, – –	eterence Tables	
	(SQuiRT, Buchman, 1999).			
	Sediment Quality Targets (ng/dry Kg)			
			Marine ⁵ , ERL ⁶	
	Aldrin	$(a)^1$	$(a)^1$	
	Chlordane	4,500.0	500.0	
	Dacthal	$(a)^1$	$(a)^1$	
	4,4'-DDD	3,500.0	2,000.0	

¹ Applies to sum of all congener or isomer or homolog or Aroclor analyses

Page 3 July 7, 2005

² Numeric targets have not been established for these constituents

³ Applies to sum of all congener or isomer or homolog or Aroclor analyses

⁴ TEL = Threshold Effects Level

⁵ Marine numeric targets applied to Mugu Lagoon

⁶ ERL = Effects Range-Low.

TMDL Element	Calleguas Creek W	atershed OC Pes	ticide, PCBs, and Siltation	
Tivib E Element	TMDL			
	4,4'-DDE	1,400.0	2,200.0	
	4,4'-DDT	$(a)^{1}$	1,000.0	
	Dieldrin	2,900.0	20.0	
	Endosulfan I	$(a)^1$	$(a)^1$	
	Endosulfan II Endrin	$(a)^1$	$(a)^1$	
		2,700.0 (a) ¹	$(a)^1$ $(a)^1$	
	HCH (alpha-BHC) HCH (beta-BHC)	(a) $(a)^1$	(a) $(a)^1$	
	HCH (delta-BHC)	$(a)^1$	(a) (a) ¹	
	HCH (gamma BHC)	940.0	$(a)^1$	
	Heptachlor	$(a)^1$	$(a)^1$	
	Heptachlor Epoxide	600.0	$(a)^1$	
	PCBs	$34,000.0^2$	23,000.0	
	Toxaphene	$(a)^1$	$(a)^1$	
	S	iltation Targets		
	 This TMDL includes two numeric targets for siltation reduction and maintenance of existing habitat in Mugu Lagoon which are listed below: Siltation reduction Annual average reduction in the import of silt of 5,200 tons/year, which will be measured at the US Naval Base total suspended sediment gauge at the entrance to Mugu Lagoon. Maintenance of existing habitat in Mugu Lagoon Preservation of the existing 1400 acres of aquatic habitat in Mugu Lagoon. 			
Source Analysis	Monitoring data from major NPDES discharges and land use runoff were analyzed to estimate the magnitude of OC pesticides and PCBs loads to Calleguas Creek, its tributaries and Mugu Lagoon. The largest source of OC pesticides in the listed waters is agricultural runoff. Most PCB residues are due to past use of PCBs as coolants and lubricants in transformers, capacitors, and other electrical equipment. Atmospheric deposition is also a potential source of PCBs. Urban runoff and POTWs are minor sources of OC pesticides and PCBs. Data analysis suggests that groundwater, atmospheric deposition, and imported water are not significant sources of OC pesticides, PCBs, or sediment. Further evaluation of these sources is set forth in the Implementation Plan.			
Linkage Analysis	transformation, and u balance model that co to their fate and trans	akage analysis is based on a conceptual model for the fate, armation, and uptake of OC pesticides and PCBs and a masse model that connects the sources of OC pesticides and PCBs are fate and transport in Calleguas Creek, its tributaries, and Lagoon. The linkage analysis indicates: 1) OC pesticides		

Page 4 July 7, 2005

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation TMDL				
	and PCBs concentrations in tissue are proportional to OC pesticides and PCBs concentrations in sediments; 2) OC pesticides and PCBs concentrations in water are a function of OC pesticides and PCBs concentrations in sediment; and 3) OC pesticides and PCBs concentrations in sediment are a function of OC pesticides and PCBs loading and sediment transport. Because sediments store, convey and serve as a source of OC pesticides and PCBs, a reduction of OC pesticides and PCBs concentrations in sediment will result in a reduction of OC pesticides and PCBs concentration in the water column and fish tissue. In this linkage analysis, DDE is used as a representative constituent, because DDE is consistently detected in monitoring and exceeds numeric targets in water, sediment, and tissue samples. Also, other OC Pesticides and PCBs possess similar physical and chemical properties to DDE.				
Wasteload Allocations	1. Interim and Final WLAs* for Pollutants in Effluent for POTWs. The interim wasteload allocations for POTWs will be reconsidered by the Regional Board on a 5-year basis. This reconsideration will be based on sufficient data to calculate Interim Wasteload Allocations in accordance with SIP procedures.				
	a) Interim WLAs (ng/L) Constituent POTW				
	Constituent POTW Hill Canyon Simi Valley Moorpark Camarillo Camrosa Daily Daily Daily Daily Daily Chlordane 1.2 100.0 100.0 100.0 100.0 4,4-DDD 20.0 50.0 50.0 6.0 50.0 4,4-DDE 260.0 1.2 1.2 188.0 50.0 4,4-DDT 10.0 10.0 10.0 10.0 10.0 Dieldrin 10.0 10.0 10.0 10.0 10.0 PCBs 500.0 500.0 500.0 31.0 500.0 Toxaphene 500.0 500.0 500.0 500.0 500.0				
	* WLAs shall be applied to POTWs'effluent				
	b) Final WLAs (ng/L)				
	Constituent POTW Hill Canyon Simi Valley Moorpark Camarillo Camrosa Daily Monthly Daily Monthly Daily Monthly Daily Monthly Chlordane 1.2 0.59				

Page 5 July 7, 2005

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation TMDL			
	PCBs 0.34 0.17 0.34 0.17 0.34 0.17 0.34 0.17 0.34 0.17	17		
	Toxaphene 0.33 0.16 0.33 0.16 0.33 0.16 0.33 0.16 0.33 0.	16		
	The final WLAs will be included in NPDES permits in accordance with schedule in the implementation plan. The Regional Board may revise final WLAs prior to the dates they are placed into permits and/or prior to the dates of final WLA achievement based on special studies and monitoring of this TMDL.			
	2. Interim and Final WLAs for Pollutants in Sediment for Stormwater Permittees			
	a) Interim WLAs (ng/g)			
	Constituent Subwatershed			
	Mugu Calleguas Revolon Arroyo Arroyo Conejo Chlordane 25.0 17.0 48.0 3.3 3.3 3.4 4,4-DDD 69.0 66.0 400.0 290.0 14.0 5.3 4,4-DDE 300.0 470.0 1,600.0 950.0 170.0 20.0 4,4-DDT 39.0 110.0 690.0 670.0 25.0 2.0 Dieldrin 19.0 3.0 5.7 1.1 1.1 3.0 PCBs 180.0 3,800.0 7,600.0 25,700.0 25,700.0 3,800.0 Toxaphene 22,900.0 260.0 790.0 230.0 230.0 230.0 260.0	0.0		
	Compliance with sediment based WLAs is measured as an instream annual average at the base of each subwatershed where the discharges are located. b) Final WLAs (ng/g)			
	Constituent Subwatershed			
	Mugu Calleguas Revolon Arroyo Arroyo Conejo Creek Slough Las Posas Simi Creek Chlordane 3.3			
	WLAs for pollutants in water column are allocated below to			

Page 6 July 7, 2005

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation TMDL					
	minor point sources enrolled under NPDES permits or WDRs, which discharge to Calleguas Creek.					
	Constituent Chlordane 4,4-DDD 4,4- DDE 4,4-DDT Dieldrin PCBs Toxaphene	Daily Maximu 1.2 1.7 1.2 1.2 0.28 0.34 0.33	m (ng/L)	Monthly Ave 0.59 0.84 0.59 0.59 0.14 0.17 0.16	erage (ng/L)	
	4. Siltation WLA for MS4 MS4 dischargers will receive an allocation of 2,496-tons/yr. reduction in sediment yield to Mugu Lagoon. The baseline from which the load reduction will be evaluated will be determined by a special study of this TMDL. The load allocation will apply after the baseline is established, as described in the Implementation Plan.					line from mined by
Load Allocations	Compliance with sediment based LAs listed below is measured as an in-stream annual average at the base of each subwatershed. 1. Interim and Final Load Allocations					
	a) Interim Sediment LAs (ng/g)					
	Constituent Mugu Lagoo Chlordane 25.0 4,4-DDD 69.0 4,4-DDT 39.0 Dieldrin 19.0 PCBs 180.0 Toxaphene 2290 The Mugu Lagoo Drain #2. b) Final Sedi	n ¹ Creek 17.0 66.0 0 470.0 110.0 3.0 0 3,800.0 00.0 260.0 on subwatershed i		Arroyo Las Posas 3.3 290.0 950.0 670.0 1.1 25,700.0 230.0	Arroyo Simi 3.3 14.0 170.0 25.0 1.1 25,700.0 230.0	260.0
	Constituent Mugu Lagoo		Subwaters Revolon Slough		Arroyo Simi	Conejo Creek

Page 7 July 7, 2005

Page 8 July 7, 2005

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation TMDL		
	2020. Since most of the listed OCs and PCBs in the CCW are banned, this growth is not expected to increase current loads. Urban application of those OC pesticides which are still legal (dacthal and endosulfan) may increase, but overall use may decrease because urban expansion tends to reduce total acreage of agricultural land.		
	Population growth may result in greater OC loading to POTW influent from washing food products containing OC residues. This loading may be proportional to the increase in population, if per capita domestic water use and pesticide load per household remain constant. Increased flow from POTWs should not result in impairment of the CCW as long as effluent concentration standards are met for each POTW.		
	As urban development occurs, construction activities may have a range of effects on OC loading to the CCW. Exposure of previously vegetated or deeply buried soil might lead to increased rates of transportation and volatilization. Conversely, urbanization of open space and/or agriculture areas may cover OC pesticides bound to sediments.		
	Future growth in the CCW may result in increased groundwater concentrations of currently used OC pesticides. This is a potential concern for dacthal, which is still used and has been found in groundwater (although current levels of dacthal are significantly lower than all available targets). The effects of future growth upon PCB loads are unknown, but not likely to prove significant, since atmospheric deposition and accidental spills are the primary loading pathways. Any increase in OCs due to population growth may be offset by decreased inputs from banned OCs, as their presence attenuates due to fate and transport processes.		
Critical Conditions	The linkage analysis found correlation between concentrations of OC pesticides and PCBs in water and total suspended solids (TSS), and a potential correlation between OC pesticides and PCBs concentrations in water and seasonality (wet vs. dry season). A similar correlation between sediment loading and wet weather is also noted.		
	OC pesticides and PCB pollutants are of potential concern in the Calleguas Creek Watershed due to possible long-term loading and food chain bioaccumulation effects. There is no evidence of short-term effects. However, pollutant loads and transport within the		

Page 9 July 7, 2005

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation TMDL		
	watershed may vary under different flow and runoff conditions. Therefore the TMDLs consider seasonal variations in loads and flows but are established in a manner which accounts for the longer time horizon in which ecological effects may occur.		
	Wet weather events, which may occur at any time of the year, produce extensive sediment redistribution and transport downstream. This would be considered the critical condition for loading. However, the effects of organochlorine compounds are manifested over long time periods in response to bioaccumulation in the food chain. Therefore, short-term loading variations (within the time scale of wet and dry seasons each year) are not likely to cause significant variations in beneficial use effects. Therefore, although seasonal variations in loads and flows were considered, the TMDL was established in a manner which accounts for the longer time horizon in which ecological effects may occur		
Implementation Plan	The final WLAs will be included in NPDES permits in accordance with the compliance schedules provided in Table 7-17.2. The Regional Board may revise these WLAs based on additional information developed through Special Studies and/or Monitoring of this TMDL.		
	WLAs established for the five major POTWs in this TMDL will be implemented through NPDES permit limits. The proposed permit limits will be applied as end-of-pipe concentration-based effluent limits for POTWs. Compliance will be determined through monitoring of final effluent discharge as defined in the NPDES permit. The implementation plan for POTWs focuses on implementation of source control activities. Consideration of annual averaging of compliance data will be evaluated at the time of permit renewal based on available information, Regional Board policies, and US EPA approval.		
	In accordance with current practice, a group concentration-based WLA has been developed for MS4s, including the Caltrans MS4. The grouped allocation will apply to all NPDES-regulated municipal stormwater discharges in the CCW. Other NPDES-regulated stormwater permittees will be assigned a concentration-based WLA consistent with the interim and final WLAs set forth above. Stormwater WLAs will be incorporated into the NPDES permit as receiving water limits measured at the downstream points of each subwatershed and are expected to be achieved through the implementation of BMPs as outlined in the implementation plan.		

Page 10 July 7, 2005

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation TMDL		
	The Regional Board will need to ensure that permit conditions are consistent with the assumptions of the WLAs. If BMPs are to be used, the Regional Board will need to detail its findings and conclusions supporting the use of BMPs in the NPDES permit fact sheets. Should federal, state, or regional guidance or practice for implementing WLAs into permits be revised, the Regional Board may reevaluated the TMDL to incorporate such guidance.		
	LAs will be implemented through the State's Nonpoint Source Pollution Control Program (NPSPCP). The LARWQCB is developing a Conditional Waiver for Irrigated Lands, which includes monitoring at sites subject to approval by the Executive Officer of the Regional Board. Should adoption of the Conditional Waiver be delayed, monitoring will be required as part of this TMDL.		
	Studies are currently being conducted to assess the effectiveness of BMPs for reduction of pollutants from agricultural operations. Results will be used to develop Agricultural Water Quality Management Plans, including the implementation of agricultural BMPs. Additionally, an agricultural education program will be developed to inform growers of the recommended BMPs and the Management Plan.		
	As shown in Table 7-17.2, implementation actions will be taken by agricultural dischargers located in the CCW. The implementation of agricultural BMPs will be based on a comprehensive approach to address pollutant loads discharged from agricultural operations. The Regional Board may revise these LAs based on the collection of additional information developed through special studies and/or monitoring conducted as part of this TMDL.		
	A number of provisions in this TMDL might provide information that could result in revisions to the TMDL. Additionally, the development of sediment quality criteria and other water quality criteria revisions may require the reevaluation of this TMDL. Finally, the use of OC pesticides in other countries which may be present in imported food products, compounded with the persistence of OC pesticides and PCBs in the environment, indicate that efforts to control sources and transport of OCs to receiving waters may not result in attainment of targets and allocations due to activities that are outside the control of local agencies and agriculture. For these reasons, the Implementation Plan includes		
	agriculture. For these reasons, the Implementation Plan includes this provision for reevaluating the TMDL to consider revised water		

Page 11 July 7, 2005

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation TMDL		
	quality objectives and the results of implementation studies, if appropriate.		
	The siltation portion of the TMDL includes wasteload and load allocations set as an annual mass reduction from a baseline value of sediment and silt deposited in Mugu Lagoon. The baseline value of sediment and silt conveyed to Mugu Lagoon is to be determined by a TMDL Special Study and established by the Regional Board through an amendment to the TMDL. The Special Study is eight years in duration to ensure that the full range of current conditions that affect loading of sediment and siltation to Mugu Lagoon are considered. If appropriate, the Special Study may also result in a revision to the mass load reduction. The Special Study will be overseen by a Science Advisory Panel consisting of local, regional, and/or national experts in estuarine habitat biology, hydrology, and engineering. At the conclusion of the special study, the Regional Board will reconsider the TMDL to establish sustainable wasteload and load allocations recommended by the Special Study to support aquatic life and wetland habitat beneficial uses.		
	In implementing this TMDL, staff recognize that dischargers may be implementing management measures and management practices to reduce sediment and Siltation loads through permit and waiver programs during the special studies. Further, since the effective date of the Consent Decree, reaches of Calleguas Creek have been listed due to sediment, and another TMDL may be initiated during the Special Study of this TMDL. Staff's intent is to coordinate the requirements of this TMDL with other programs that reduce sedimentation and siltation. The Special Study can consider sediment and silt load reductions through existing permits and the forthcoming conditional waiver for irrigated lands. Load and wasteload allocations become effective after the Regional Board actions based on the Special Study, nine years after the effective date of the TMDL.		

Page 12 July 7, 2005

Table 7-17.2 Implementation Schedule

Item	Implementation Action ¹	Responsible Party	Completion Date
1	Interim organochlorine pesticide and polychlorinated biphenyls wasteload allocations apply.	NPDES Permittees	Effective date of the amendment
2	Interim organochlorine pesticide and polychlorinated biphenyls load allocations apply.	Agricultural Dischargers	Effective date of the amendment
3	Finalize and submit workplan for organochlorine pesticide and polychlorinated biphenyls TMDL monitoring, or finalize and submit a workplan for an Integrated Calleguas Creek Watershed organochlorine pesticide and polychlorinated biphenyls Monitoring Program for approval by the Executive Officer. The monitoring workplan will include, but not be limited to, appropriate water, biota, and sediment loading and monitoring to verify attainment of targets and protection of beneficial uses.	POTW Permittees, MS4 Permittees, Agricultural Dischargers, US Navy	6 months after effective date of the amendment
4	Initiate Calleguas Creek Watershed organochlorine pesticide, polychlorinated biphenyls, and siltation Monitoring Program developed under the Task 3 workplan approved by the Executive Officer.	POTW Permittees, MS4 Permittees, Agricultural Dischargers, US Navy	6 months after Executive Officer approval of Monitoring Program (Task 3) workplan
5	Submit a workplan for approval by the Executive Officer to identify urban, industrial and domestic sources of organochlorine pesticides and polychlorinated biphenyls and control methods and to implement a collection and disposal program for organochlorine pesticides and polychlorinated biphenyls.	POTW Permittees, MS4 Permittees, US Navy	1 year after effective date of the amendment
6	Submit a workplan for approval by the Executive Officer to identify agricultural sources and methods to implement a collection and disposal program for organochlorine pesticides and polychlorinated biphenyls.	Agricultural Dischargers	1 year after effective date of the amendment
7	Special Study #1 – Submit a workplan and convene a Science Advisory Panel to quantify sedimentation in Mugu Lagoon and sediment transport throughout the Calleguas Creek Watershed. Evaluate management methods to control siltation and contaminated sediment transport to Calleguas Creek, identify appropriate BMPs to reduce sediment loadings, evaluate numeric targets and wasteload and load allocations for siltation/sedimentation to support habitat related beneficial uses in Mugu Lagoon, evaluate the effect of sediment on habitat preservation in Mugu Lagoon, and evaluate appropriate habitat baseline, effectiveness of sediment and siltation load allocations on a subwatershed basis, and methods to restore habitat for approval by the Executive Officer. Additionally, this special study will evaluate the concentration of organochlorine pesticides and polychlorinated biphenyls in sediments from various sources/land use types. ²	POTW Permittees, MS4 Permittees, Agricultural Dischargers, and US Navy	1 year after effective date of the amendment
8	Special study #2 – Conduct a study to identify land areas with high organochlorine pesticide and polychlorinated biphenyls concentrations, and submit a workplan including milestones and an implementation period that is as short as possible, but not to exceed 6 years, for removal to mitigate the effects of flood control practices on organochlorine pesticides, polychlorinated biphenyls, and sediment loadings to Calleguas Creek waterbodies from any high	Agricultural Dischargers, MS4 Permittees, US Navy	1 years after effective date of the amendment

Page 13 July 7, 2005

Item	Implementation Action ¹	Responsible Party	Completion Date
	concentration areas identified. Milestones shall include proposed percentages of reductions achieved by removal. Such practices include but are not limited to management of agricultural runoff, sediment reduction practices and structures, streambank stabilization, and other projects related to stormwater conveyance and flood control improvements in the Calleguas Creek watershed. ²		
9	Develop an Agricultural Water Quality Management Plan in consideration of the forthcoming Conditional Waiver for Irrigated Lands, or, if the Conditional Waiver for Irrigated Lands is not adopted in a timely manner, develop an Agricultural Water Quality Management Plan as part of the Calleguas Creek WMP. Implement an educational program on BMPs identified in the Agricultural Water Quality Management Plan.	Agricultural Dischargers	3 years after effective date of the amendment
10	Based on results of the Task 5 workplan approved by Executive Officer, implement a collection and disposal program for organochlorine pesticides and polychlorinated biphenyls.	POTW Permittees, MS4 Permittees, US Navy	5 years after effective of the amendment
11	Based on results of the Task 6 workplan approved by Executive Officer implement a collection and disposal program for organochlorine pesticides and polychlorinated biphenyls.	Agricultural Dischargers	5 years after effective of the amendment
12	Re-evaluation of POTW Interim wasteload allocations for organochlorine pesticides and polychlorinated biphenyls based on State Implementation Plan procedures.	Regional Board	5 years, 10 years and 15 years after the effective date of the amendment
13	Special Study #1 – Submit results of Special Study #1, including recommendations for refining the siltation load and wasteload allocations.	POTW Permittees, MS4 Permittees, Agricultural Dischargers, and US Navy	8 years after effective date of the amendment
14	Re-evaluation of siltation and sediment load and wasteload allocations based on Special Study #1.	Regional Board	9 years after effective date of the amendment
15	Effective date of siltation load allocation and wasteload allocation.	Agricultural dischargers, US Navy, MS4 permittees	9 years after effective date of the amendment
16	Special Study #3 – Evaluate natural attenuation rates and evaluate methods to accelerate organochlorine pesticide and polychlorinated biphenyl attenuation and examine the attainability of wasteload and load allocations in the Calleguas Creek Watershed. ^{2, 3}	POTW Permittees , Agricultural Dischargers, MS4 Permittees, and US Navy	10 years after effective date of the amendment
17	Special Study #4 (optional) – Examine of the food web and bioconcentration relationships throughout the watershed to evaluate assumptions contained in the Linkage Analysis and ensure that protection of beneficial uses is achieved. ²	Interested Parties	12 years after effective date of the amendment
18	Based on the results of Implementation Items 1-17, if sediment guidelines are promulgated or water quality criteria are revised, and/or if fish tissue and water column targets are achieved without attainment of WLAs or LAs, the Regional Board will consider revisions to the TMDL targets, allocations, and schedule for expiration of Interim Wasteload and Interim Load Allocations. ³	Regional Board	10 years after effective date of the amendment
19	Achieve Final WLAs and LAs	Agricultural Dischargers, POTW Permittees, and MS4 Permittees	20 years after effective date of the amendment

Page 14 July 7, 2005

Page 15 July 7, 2005

¹ The Regional Board regulatory programs addressing all discharges in effect at the time an implementation task is due may contain requirements substantially similar to the requirements of an implementation task. If such a requirement is in place in another regulatory program including other TMDLs, the Executive Officer may determine that such other requirements satisfy the requirements of an implementation task of this TMDL and thereby coordinate this TMDL implementation plan with other regulatory programs.

 ² Special studies included in the Implementation Plan are based on the TMDL Technical Documents.
 ³ After completion of this special study, the TMDL will be reopened in order to enable the Regional Board to evaluate whether a shorter time period is appropriate for the achievement of the final WLAs and LAs.