Proposed Amendment to the Water Quality Control Plan – Los Angeles Region

to Incorporate the

Total Maximum Daily Load for Metals and Selenium in the Calleguas Creek, its Tributaries and Mugu Lagoon

Adopted by the California Regional Water Quality Control Board, Los Angeles Region on June 8, 2006

Amendments

Table of Contents

Add:

Chapter 7. Total Maximum Daily Loads (TMDLs)

7- 19 Calleguas Creek Watershed Metals and Selenium TMDL

List of Figures, Tables, and Inserts

Add:

Chapter 7. Total Maximum Daily Loads (TMDLs) Tables

- 7-19 Calleguas Creek Watershed Metals and Selenium TMDL
- 7-19.1. Calleguas Creek Watershed Metals and Selenium TMDL: Elements
- 7-19.2. Calleguas Creek Watershed Metals and Selenium TMDL: Implementation Schedule

Chapter 7. Total Maximum Daily Loads (TMDLs) Calleguas Creek Watershed Metals and Selenium TMDL

This TMDL was adopted by:

The Regional Water Quality Control Board on June 8, 2006.

This TMDL was approved by:

The State Water Resources Control Board on October 25, 2006.

The Office of Administrative Law on February 2, 2007.

The U.S. Environmental Protection Agency on March 26, 2007.

The elements of the TMDL are presented in Table 7-19.1 and the Implementation Plan in Table 7-19.2

Table 7-19.1. Calleguas Creek Watershed Metals and Selenium TMDL: Elements

TMDL Element	Calleguas Cree	k Watershed	Metals and S	Selenium TMDL	1
Problem	Three of fourteen reac	thes in the Cal	leguas Creek	Watershed (CCW	7)
Statement	including Revolon Slo		•		,
	Mugu Lagoon are idea	-	-		
	303(d) list of water-qu				
	elevated levels of met	•	-	-	s,
	which were approved			_	
	February 2003, require	•			
	Loads (TMDLs) to est				water
	body can receive with				
	for listed metals and s				
	because, as a class of	-			
	chemical properties th	-	• -		
	in the environment.		1	, , ,	
Numeric Targets	This TMDL established	es four types o	f numeric tar	gets: (1) Californi	a
S	Toxics Rule (40 CFR				
	copper, nickel, and zir				
	selenium; (2) fish tiss				
	mercury and selenium				
	nickel, and zinc for 30				,
	quality targets will be				city
	-				
	data, if available.				
	data, if available.				
	data, if available. Copper Targets				
	,	Water Oua	lity Target		
	Copper Targets	Water Qua		Sediment Target ³	
	,	Water Qua (ug dissolved Dry Weather		(SQuiRTs, ERL)	
	Copper Targets	(ug dissolved	d Copper/L)		
	Copper Targets Subwatershed Mugu Lagoon	(ug dissolved Dry Weather CCC 3.1*WER ¹	d Copper/L) Wet Weather CMC 4.8*WER¹	(SQuiRTs, ERL) (ppb dry weight) 34000	
	Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2	(ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹	d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹	(SQuiRTs, ERL) (ppb dry weight) 34000 34000	
	Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3	(ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9	d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA ²	
	Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley	(ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹	d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA ² NA ²	
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo	(ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9	d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA ² NA ² NA ²	
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas	(ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9 29.3	d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6 29.8	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA ² NA ² NA ² NA ²	eria from
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for the federal California Toxics	(ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL Rule (CTR). Those c	d Copper/L) Wet Weather	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA² NA² NA² NA² NA² copper water quality crite perical threshold multiplied	d by a
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for the federal California Toxics water-effect ratio (WER). The subwater of the subwat	(ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL Rule (CTR). Those c	d Copper/L) Wet Weather	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA² NA² NA² NA² copper water quality crite derical threshold multiplied a site-specific WER is approximated to the site of	d by a roved.
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for the federal California Toxics water-effect ratio (WER). The To use a WER other than the guidance and adopted by the	(ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL Rule (CTR). Those c we Were has a default default of 1.0, a stud Regional Board throu	d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6 29.8 are expressed as the riteria include a nun value of 1.0 unless y must be conducted ugh the state's basin	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA² NA² NA² NA² vopper water quality crite perical threshold multiplied a site-specific WER is applead to consistent with USEPA's plan amendment process.	d by a roved. WER A WER
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for the federal California Toxics water-effect ratio (WER). The To use a WER other than the	(ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL Rule (CTR). Those c we Were has a default default of 1.0, a stud Regional Board throt ch 1), lower Callegua	Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6 29.8 are expressed as the riteria include a nunvalue of 1.0 unless y must be conducted igh the state's basin as Creek (Reach 2), 1	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA² NA² NA² NA² vopper water quality crite perical threshold multiplied a site-specific WER is approximated to the specific with USEPA's plan amendment process. Revolon Slough (Reach 4)	d by a proved. WER A WER and
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for the federal California Toxics water-effect ratio (WER). The To use a WER other than the guidance and adopted by the study for Mugu Lagoon (Rea Beardsley Wash (Reach 5) has site-specific WERs for coppe	(ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL Rule (CTR). Those cone WER has a default default of 1.0, a study Regional Board through 1), lower Callegua as been submitted to ter in these waterbodies.	d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6 29.8 are expressed as the riteria include a nunvalue of 1.0 unless y must be conducted upth the state's basin as Creek (Reach 2), I he Regional Board. s, the TMDL targets	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA² NA² NA² NA² copper water quality crite the serical threshold multiplied as site-specific WER is appleant to the specific WER is appleant.	d by a proved. WER A WER and roves dance
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for the federal California Toxics water-effect ratio (WER). The To use a WER other than the guidance and adopted by the study for Mugu Lagoon (Rea Beardsley Wash (Reach 5) has site-specific WERs for coppe with all legal and regulatory in the subwater of the subw	(ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL Rule (CTR). Those c we WER has a default default of 1.0, a stud, Regional Board throt ch 1), lower Callegua as been submitted to t er in these waterbodie.	d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6 29.8 are expressed as the riteria include a nunvalue of 1.0 unless y must be conducted upth the state's basin as Creek (Reach 2), I he Regional Board. s, the TMDL targets	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA² NA² NA² NA² copper water quality crite the serical threshold multiplied as site-specific WER is appleant to the specific WER is appleant.	d by a proved. WER A WER and roves dance
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for the federal California Toxics water-effect ratio (WER). The To use a WER other than the guidance and adopted by the study for Mugu Lagoon (Rea Beardsley Wash (Reach 5) has site-specific WERs for coppe with all legal and regulatory rusing the equations set forth a Sediment targets were not selection.	(ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL Rule (CTR). Those cone WER has a default default of 1.0, a study Regional Board through 1), lower Callegua as been submitted to the rin these waterbodies are rin these waterbodies requirements and improbabove.	Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6 29.8 are expressed as the riteria include a nunvalue of 1.0 unless y must be conducted igh the state's basin is Creek (Reach 2), I he Regional Board. s, the TMDL targets elemented in accordance of the reach as the riterial include and the riterial include a nunvalue of 1.0 unless y must be conducted ight the state's basin is Creek (Reach 2), I he Regional Board. s, the TMDL targets elemented in accordance of the riterial includes a significant the riterial includes a si	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA² NA² NA² NA² NA² copper water quality crite a site-specific WER is apple consistent with USEPA's plan amendment process. Revolon Slough (Reach 4) If the Regional Board appression will be modified in accordance with the approved WE is it is not on the 303(d) list	d by a proved. WER A WER and roves dance ERs
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for the federal California Toxics water-effect ratio (WER). The To use a WER other than the guidance and adopted by the study for Mugu Lagoon (Reach 5) has site-specific WERs for coppe with all legal and regulatory rusing the equations set forth a Sediment targets were not selessed iment targets are based on	(ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL Rule (CTR). Those c ne WER has a default default of 1.0, a stud Regional Board throu ch 1), lower Callegua as been submitted to t re in these waterbodies requirements and imp above. ected as alternative ta	Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 4.8*WER¹ 41.6 29.8 are expressed as the riteria include a nunvalue of 1.0 unless y must be conducted ugh the state's basin is Creek (Reach 2), I he Regional Board. s, the TMDL targets elemented in accordance of this reach as orsed by the National	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA² NA² NA² NA² NA² copper water quality crite the the site specific WER is appleaded to some state of the site specific WER is appleaded to some steel with USEPA's plan amendment process. According to the Regional Board appropriate be modified in according to the site is not on the 303(d) list all Oceanic and Atmospherical state of the site is not on the 303(d) list all Oceanic and Atmospherical state of the site is not on the 303(d) list all Oceanic and Atmospherical state of the site is not on the 303(d) list all Oceanic and Atmospherical state of the site is not on the 303(d) list all Oceanic and Atmospherical state of the site is not on the 303(d) list all Oceanic and Atmospherical state of the site is not on the site is not	d by a proved. WER A WER and roves dance ERs
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for the federal California Toxics water-effect ratio (WER). The To use a WER other than the guidance and adopted by the study for Mugu Lagoon (Rea Beardsley Wash (Reach 5) has site-specific WERs for coppe with all legal and regulatory rusing the equations set forth a Sediment targets were not selection.	(ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL Rule (CTR). Those c ne WER has a default default of 1.0, a stud Regional Board throu ch 1), lower Callegua as been submitted to t re in these waterbodies requirements and imp above. ected as alternative ta	Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 4.8*WER¹ 41.6 29.8 are expressed as the riteria include a nunvalue of 1.0 unless y must be conducted ugh the state's basin is Creek (Reach 2), I he Regional Board. s, the TMDL targets elemented in accordance of this reach as orsed by the National	(SQuiRTs, ERL) (ppb dry weight) 34000 34000 NA² NA² NA² NA² NA² copper water quality crite the the site specific WER is appleaded to some state of the site specific WER is appleaded to some steel with USEPA's plan amendment process. According to the Regional Board appropriate be modified in according to the site is not on the 303(d) list all Oceanic and Atmospherical state of the site is not on the 303(d) list all Oceanic and Atmospherical state of the site is not on the 303(d) list all Oceanic and Atmospherical state of the site is not on the 303(d) list all Oceanic and Atmospherical state of the site is not on the 303(d) list all Oceanic and Atmospherical state of the site is not on the 303(d) list all Oceanic and Atmospherical state of the site is not on the site is not	d by a proved. WER A WER and roves dance ERs

I MDL Element	Calleguas Creek Watersned Metals and Selenium TMDL				
	Mercury Targets				
	Media	Target			
	Fish Tissue (Human Health)	0.3 mg methylmercury/kg wet weight			
	Fish Tissue (Wildlife)				
	* Trophic Level (TL) 3 ¹ <50 mm	n 0.03 mg methylmercury/kg wet weight			
	* TL3 50-150 mm	0.05 mg methylmercury/kg wet weight			
	* TL3 150-350 mm	0.1 mg methylmercury/kg wet weight			
	Bird Egg (Wildlife)	less than 0.5 mg total mercury/kg wet weight			
	Water Column	0.051 ug total mercury/L			
	Tropic Level 3: Predators (e.g., minnows, fleas)	sunfish) on tropic level 2 organism (e.g., copepods and water			

Nickel Targets

Subwatershed	Water Qua	Sediment Target ¹ (SQuiRTs, ERL)	
	Dry Weather CCC	Wet Weather CMC	(ppb dry weight)
Mugu Lagoon	8.2	74	20900
Calleguas Creek 2	8.2	74	NA^2
Calleguas Creek 3	149	856	NA^2
Revolon/Beardsley	8.2	74	NA^2
Conejo	160	1292	NA^2
Arroyo Simi/Las Posas	168	958	NA^2

Callaguas Creak Watershad Metals and Calerium TMDI

A study to support a site specific objective (SSO) for nickel has been submitted to the Regional Board and is currently under reviewed by the Regional Board and U.S. EPA staff. If a SSO for nickel is approved, the Regional Board will consider revision to the numeric targets for nickel based on the approved SSO.

Selenium Targets

Subwatershed	Water Qua	Bird Egg	
Subwatersneu	Dry Weather CCC	Wet Weather CMC	(ug/g)
Mugu Lagoon	71	290	6
Calleguas Creek 2	5	290	6
Calleguas Creek 3	5	NA ¹	6
Revolon/Beardsley	5	290	6
Conejo	5	NA ¹	6
Arroyo Simi/Las Posas	5	NA ¹	6

¹ "NA" indicates that a target is not available for this constituent because criterion for fresh water is not defined in the CTR.

Sediment targets are based on screening levels endorsed by the National Oceanic and Atmospheric Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1999)

² Sediment targets were not selected as alternative target for this reach as it is not listed on the 303(d) list.

TMDL Element	Calleguas Cree	k Watershed	Metals and	Selenium TMDL				
	Zinc Targets							
	Subwatershed	(ug dissolv Dry Weather		Sediment Target ¹ (SQuiRTs, ERL) (ppb dry weight)				
	3.6 T	CCC	CMC					
	Mugu Lagoon	81	90	150000				
	Calleguas Creek 2	81	90	NA ² NA ²				
	Calleguas Creek 3	338	214	NA NA ²				
	Revolon/Beardsley	81	90 324	NA ²				
	Conejo	365						
	Arroyo Simi/Las Posas Sediment targets are based on	382	240	NA ²				
Source Analysis	Administration (NOAA) in the	heir Screening Quic ected as alternative t	k Reference Tables (target for this reach l	(SQuiRTs) (Buchman, 1999) because it is not on the 303(d) list.				
	between metals and p The source analysis ir be a significant source and selenium in soil n occurring selenium in TMDL Implementatio natural sources of met	was also a sign of wet and deveather for all articulate material articulates naturate, and that name are groundwater on Plan includitals in soil.	nificant source lry weather. He constituents tter. ally occurring turally occurring tributing source may be a sigules special stu	te. Sources were also Higher loads were, due to the association g mercury in soil maying nickel, copper, zinc, te, and that naturally nificant source. The adies to further assess				
Linkage Analysis	Linkage between sources and instream pollutant concentrations was established through a dynamic water quality Hydrologic Simulation Program – FORTRAN (HSPF). The model output generally resulted in a conservative estimate of receiving water concentrations for metals. The model was used to calculate load reductions necessary to meet the numeric targets. The load reductions were used to calculate the load and waste load allocations.							
Waste Load Allocations	WLAs apply to days of percentile flow rate for days when flows in the each reach. Annual n	bed for both when flows in each reach. se stream excenses loads of	vet and dry-wanthe stream and the stream and the wet-weathe 86 th parties of the summercury in sumercury in	eather. The dry-weather re less than the 86 th ther WLAs apply to				

TMDL Element	Callegua	as Creek V	Watershe	d Metals	and Selen	ium TMDI	
	Publicly Own	ed Treatr	nent Wo	rks (POT	Ws)		
	Concentratic copper, and POTWs during developed for because curattained. The State Board for selenium to reaches litime for disconcessary to the selection of t	on-based a nickel, in ring both vor mercury rent informe TMDL data to sun are not seasted for seachargers to achieve find monthl	and mass- total recover and dr y for POT mation incomplement pport deliget for POT elenium. o put in planting put in planting waste	based WL overable for y weather Ws. Zinc dicate that nation Pla asting of zin FWs because Interim line ace implesed to allow	As are est orms, and a . Mass-ba allocation numeric ta in includes inc. Waste use POTW mits are inc mentation cations. T	The daily et equal to th	nc are ovide tions charge ow
	Interim and	d Final W	LAs for '	Total Rec	overable (Copper in V	Vater
		Inte	rim		Final ¹		1
	POTW	Daily Maximum (ug/L)	Monthly Average (ug/L)	Daily Maximum (ug/L) ²	Monthly Average (ug/L) ²	lb/day	
	Hill Canyon WWTP	20.0	16.0	(a)	(a)	0.11*WER - 0.04	
	Simi Valley WQCP Moorpark	(b)	(b)	31.0	30.5	(c)	
	WTP	(b)	(b)	31.0	30.5	(d)	
	Camarillo WRP	57.0	20.0	(a)	(a)	0.12*WER - 0.04	
	Camrosa WRP	(b)	(b)	27.4	27.0	(d)	
	implemented in of the final WE concentrations ² Concentration-t default translat (a) Concentrationand requirement (b) Interim limits a (c) Discharges frou dry weather. Met in Arroyo (d) Discharger does wet weather with the state of	n accordance w ERs, total coppe shall not excee pased targets ha or of 0.96 based final lim hits, but are not are not required m Simi Valley Monitoring will Simi/Las Posas es not contribute	ith the approver loading shall depend the performative been convertible will be included as publication as the dependent of the conducted or downstreame loading during occur. Monito	ed WERs using I not exceed curance standards or ted to total recounted in the person of the TME ischarger is me reach lower Carand mass-based meaches. In gray weather, bring will be co	the equations of the equations of current loading. It of current treats coverable allocates in accordants in accordants in accordants of the final It of the equations are the equations of the e	imits. and Mugu lagoon of evaluated if target based WLAs applyass-based WLAs w	egardless t TR guidance during ts are not y during

ent Callegua	as Creek W	atershed N	Metals and	Selenium '	TMDL			
Interim and Column								
	Interim Final							
POTW	Daily Maximum (ug/L)	Monthly Average (ug/L)	Daily Maximum (ug/L)1	Monthly Average (ug/L)2	lb/day			
Hill Canyon WWTP	8.3	6.4	(a)	(a)	0.3			
Simi Valley WQCP	(b)	(b)	960.0	169.0	(c)			
Moorpark WTP	(b)	(b)	960.0	169.0	(d)			
Camarillo WRP	16.0	6.2	(a)	(a)	0.2			
Camrosa WRP	(b)	(b)	858.0	149.0	(d)			
default transle (a) Concentration guidance and (b) Interim limits (c) Discharges fr dry weather. not met in Ar (d) Discharger de during wet we	-based targets have ator of 0.997. In-based final limit requirements, but are not required loom Simi Valley V. Monitoring will be royo Simi/Las Pooses not contribute eather when disch	s will be include are not calculate because the discle VQCP do not rea- be conducted and sas or downstrea- loading during of arges occur. Mo	ed as part of the T harger is meeting ach lower Callegua I mass-based WLA m reaches.	n accordance with MDL. the final limits. as Creek and Mu As will be evaluatentration-based wonducted and ma	h NPDES gu lagoon d ted if targets WLAs apply ass-based W			
1								

Interims and Final WLAs for Mercury in Suspended Sediment

POTW	Interim (lb/month)	Final (lb/month)
Hill Canyon WWTP	0.23	0.022
Simi Valley WQCP	0.18	0.031
Moorpark WTP	N/A	N/A
Camarillo WRP	0.03	0.015
Camrosa WRP	N/A	N/A

Waste load allocations for POTWs are based on the median monthly mercury effluent concentrations multiplied by the design flow where the total load in water is assumed equal to the suspended sediment load. Interim WLAs for mercury are based on the 90th percentile concentration observed in effluent discharge and multiplied by the design flow, and apply to all flow conditions.

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL									
	Permitted St	<u>ormwate</u>	r Discha	rgers (PS	(Ds)					
	PSDs include mass-based WLAs established for copper, nickel, and selenium in total recoverable forms. Mass-based WLAs are developed for mercury in suspended sediment. Interim limits are included to allow time for dischargers to put in place implementation measures necessary to achieve final waste load allocations. The daily maximum and monthly average interim limits are set equal to the 99 th and 95 th percentile of available discharge data. Interim Limits and Final WLAs for Total Recoverable Copper,									
	Nickel, and				1 0001 110	00 / 01 41.0	то соррс	,		
	Interim lim	its and wa	aste load	allocation	ıs are app	olied to r	receiving			
	water.									
	A. Interi	m Limits	}							
			as and Cone	jo Creek		Revolon S				
	Constituents	Dry CMC	Dry CCC	Wet CMC	1 '					
	Copper*	(ug/L) 23	(ug/L) 19	(ug/L) 204	(ug/L) 23	(ug/L 19	.) (ug/l 204			
	Nickel	15	13	(a)	15	13	(a)			
	Selenium	(b)	(b)	(b)	14	13	(a)	_		
	(a) The current load (b) Selenium alloca (c) Attainment of in B. Final Selenium Dry-Wea	ntions have no nterim limits www. WLAs fo	t been develop will be evaluater Total F As in W	ped for this readed in consider Recoveral ater Colu	ach as it is no ration of back	t on the 303(ground load	d) list. ing data, if av			
	Flow	Callegua	as and Cone		Re	volon Slou				
	Range	Low Flow	Average Flow	Elevated Flow	Low Flow	Average Flow	Elevated Flow]		
	Copper1	0.04*WER	0.12*WER			0.06*WER	0.13*WER			
	(lbs/day) Nickel	0.02	0.02	0.03	- 0.01	- 0.03	0.02			
	(lbs/day)	0.100	0.120	0.440	0.050	0.069	0.116			
	Selenium (Ibs/day) (a) (a) (a) 0.004 0.003 0.004									
	implemen	ted in accorda s of the final V	unce with the a	the Regional approved WEF opper loading eveloped for the	As using the each	quations set eed current lo	forth above. oading.	nall be		

TMDL Element	Calleguas C	Creek Water	shed Met	als and S	elenium	TMDL
	Wet-Weathe	r WLAs in	Water Co	olumn		
	Constituent	Callegua	s Creek		Revolon Sic	ough
		00054*Q^2*0.032		ER - (0.0002	2*Q2+0.0005	
	Nickel ² (lbs/day) 0.0)14*Q^2+0.82*Q		0.027*(Q^2+0.47*Q	
	Selenium ²					
	(lbs/day) (a)		by the Perion		Q^2+0.47*Q	allocations shall be
		in the table tions have not been ume. ts and Final re set at 80% for mercury i load within	wLAs for reduction suspende each flow	r Mercur of HSPF led sedim	r. Sum of all let is not on the servery in Suspersional estimates are servery.	oads cannot exceed 303(d) list. pended mates. t equal to the
			as Creek	Revolor	n Slough	1
	Flow Range	Interim (Ibs/yr)	Final (lbs/yr)	Interim (Ibs/yr)	Final (lbs/yr)	
	0-15,000 MGY	3.3	0.4	1.7	0.1	
	15,000-25,000 MG	Y 10.5	1.6	4	0.7	
	Above 25,000 MG	Y 64.6	9.3	10.2	1.8	
	MGY: million gallon	is per year.				

TMDL Element		Calleguas (Creek Wa	tershed Me	etals and S	Selenium T	CMDL					
	Final	WLAs for	Other NP	DES Disch	argers							
	Tillai	VV L/AS TOT	Other IVI	DES DISCH	argers							
	Final WLAs for Total Recoverable Copper, Nickel, and Selenium Copper Nickel Selenium											
		Сор	per ¹	Nic	kel	Seler	nium					
	Reach	Dry Monthly Everage	Wet Daily Maximum	Dry Monthly Average	Wet Daily Maximum	Dry Monthly Average	Wet Daily Maximum					
		$\left(\text{ug/L}\right)^2 \qquad \left(\text{ug/L}\right)^2 \qquad \left(\text{ug/L}\right)^3 \qquad \left(\text{ug/L}\right)^3 \qquad \left(\text{ug/L}\right)$										
	1	3.7*WER	5.8*WER	8.2	74	(b)	(b)					
	2	3.7*WER	5.8*WER	8.2	74	(b)	(b)					
	3	27.0 3.7*WER	27.4 5.8*WER	149 8.3	859 75	(b) 5	(b) 290					
	5	3.7 WER 3.7*WER	5.8*WER	8.3	75 75	5	290					
	6	(a)	31.0	(a)	958	(b)	(b)					
	7	(a)	31.0	(a)	958	(b)	(b)					
	8	(a)	31.0	(a)	958	(b)	(b)					
	9	29.1	43.3	160	1296	(b)	(b)					
	10	29.1	43.3	160	1296	(b)	(b)					
	11 12	29.1 29.1	43.3 43.3	160 160	1296 1296	(b)	(b)					
	13	29.1	43.3	160	1296	(b)	(b)					
				the Regional Bo		/						
							e. Regardless of					
				shall not exceed c erformance standa								
				converted to tot								
				es and 0.83 for sa a converted to total			ha CTD default					
	Conce			thes and 0.99 for			ile CTK default					
				reach lower Calle		l Mugu Lagoon d	luring dry					
				for these reaches not been develop		h as it is not on t	he 303(d) list.					
	Final	WLAs for	Mercury									
	source equal water	es. Therefo to 0.051 ug	re concent /L for othe	ation to assi ration-based or NPDES d tection of h	d waste loa lischargers	nds allocation based on the	ons are set ne CTR					
Load Allocation	develo Open natura ground ambie agricu weath are less LAs a	sped for copspace repred soil concerts dwater seepont sources to the dry so than 86th pply to day	oper, nicke sents back entrations, page) disch that are dis urban areas weather L percentile s when flo	s (LAs) for el, and selen ground load atmospheric arged from scharged from charged from charged from charged from the start of the star	ium in totals from amed deposition undeveloped to days when the cach ream exceeds	al recoverable abient source, and natured open spreed land, such for both we for flows in tech. The weter 86 th percent	ole forms. ees (i.e. ral ace, but not ch as t and dry- he stream t-weather eentile flow					

TMDL Element Calleguas Creek Watershed Metals and Selenium TMDL sediment were developed according to low, medium, and high annual flow categories. **Interim and Final Load Allocations for Total Recoverable Copper,** Nickel, and Selenium Interim limits are included to allow time for dischargers to put in place implementation measures necessary to achieve final load allocations. The daily maximum and monthly average interim limits are set equal to the 99th and 95th percentile of available discharge data. Interim limits and final load allocations are applied in receiving water at the compliance points. **A. Interim Limits** Calleguas and Conejo Creek Revolon Slough Constituents Dry CMC Dry CCC Wet CMC Dry CMC Dry CCC Wet CMC (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) Copper* 24 19 1390 24 1390 19 Nickel 43 42 43 42 (a) (a) 6.7 Selenium (b) (b) (b) 6 (a) The current loads do not exceed the TMDL under wet conditions, interim limits are not required. Selenium allocations have not been developed for this reach as it is not on the 303(d) list. Implementation actions includes consideration of watershed-wide selenium impacts. Attainment of interim limits will be evaluated in consideration of background loading data, if **B. Final Load Allocation Dry Weather LAs in Water Column** Calleguas Creek **Revolon Slough** Constituent Average **Elevated** Low **Average Elevated** Low Flow Flow Flow Flow Flow Flow 0.07* WER 0.12* WER 0.31*WER 0.07*WER 0.14*WER-0.35*WER Agriculture Copper¹ 0.03 0.02 0.05 0.07 0.03 0.07 (lbs/day) 0.150 0.080 0.050 0.120 0.110 Open Space 0.130 Nickel 0.420 0.260 0.970 0.390 1.600 Agriculture 0.690 (lbs/day) 0.450 0.420 0.560 0.010 0.020 0.020 Open Space Selenium Agriculture (a) (a) (a) 800.0 0.007 0.018 (lbs/day) 0.180 0.310 0.490 Open Space (a) (a) (a) If site-specific WERs are approved by the Regional Board, TMDL load allocations shall be implemented in accordance with the approved WERs using the equations set forth above. (a) Selenium allocations have not been developed for this reach as it is not on the 303(d) list. Implementation actions include consideration of the watershed-wide selenium impacts.

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL									
	Wet Weather LAs in Water Column									
	Constituent Calleguas Creek Revolon Slough								ıh	
	Copper ¹			017*Q^2*0			(0.00123*Q^2+0.0034*Q)*			
	(lbs/day)	Agricultur		WER - 0.0			/ER			
	Nickel ²	" Open Space 0.0000537"Q^2+0.00321"Q 0.000						Q^2+0.000	765*Q	
	(lbs/day)	_	riculture 0.014*Q^2+0.82*Q 0.027*0 en Space 0.014*Q^2+0.82*Q 0.027*0							
	Selenium ²	2 Agriculture (a) 0.1*Q^2+1.8*Q								
	(lbs/day)									
	in accordanc Current loads presented in (a) Selenium all Q Daily storm Interim ar	e with the ap do not excee the table ocations have volume	proved WE ed loading ce not been d	Rs using the capacity dur	e equations ing wet we or this reach	set forth a eather. Sur	bove. n of all load t on the 303	s cannot ex	•	
	Final I Interin the hig	As are so the second in the se	et at 80 or merc	% reduction reduction reduction within	ction of uspende each fle	HSPF ed sedi	load est nent are	imates.		
			Callegua	s Creek			Revolor	n Slough		
		Agric	ulture		Space	Agricult			Space	
	Flow Range		Final (lbs/yr)	Interim (Ibs/yr)	Final (lbs/yr)	Interim (lbs/yr)	Final (lbs/yr)	Interim (Ibs/yr)	Final (lbs/yr)	
	0-15,000 MGY	3.9	0.5	5.5	0.7	2		2.9	0.2	
	15,000-25,000 MGY	12.6	1.9	17.6	2 .7	4.8	0.8	6.7	1.1	
	Above 25,000 MGY	77.5	11.2	108.4	17.9	12.2	2.2	17.1	2	
	MGY: million g	allons per yea	ar.				1			
Margin of Safety	A margin of uncertainty in the wate this TMDL assumption ensure suff methods en assigned to implement reductions	in the are bodies. The in smade of icient property the TMD action of the small results.	nalysis to Both in plicit Muring dotection in developed and the TMI	that coumplicit MOS stellevelopr under alloping the assume DL. Thi	ld resul and exp ms from ment of all cond he TMI d to ren is result	t in tary olicit M m 1) the multip litions, DL. Banain co as in hig	gets not OS are e use of le nume and 2) c ackgrou nstant the	being a included conservation target target and loads aroughoused	chieved d for rative ets to ative s are out	

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	Calleguas Creek and Revolon Slough (without any dilution provided by tidal flushing), which over predicts actual concentrations in the Lagoon. A 15% explicit MOS is also included for copper and nickel to account for the uncertainty resulting from the calculation of the allowable load based on the median flow rate and translator of each flow category. The 15% explicit MOS is determined sufficient to address the elevated flow category, but still account for the more conservative nature of low and average category.
Future Growth	Ventura County accounts for slightly more than 2% of the state's residents with a population of 753,197 (US Census Bureau, 2000). GIS analysis of the 2000 census data yields a population estimate of 334,000 for the CCW, which equals about 44% of the county population. According to the Southern California Association of Governments (SCAG), growth in Ventura County averaged about 51% per decade from 1900-2000; with growth exceeding 70% in the 1920s, 1950s, and 1960s. Significant population growth is expected to occur within and near present city limits until at least 2020. Future growth may initially increase loadings as construction activities expose bare soil and increase erosion-related discharges to receiving water. However, once development has been completed the presence of impermeable land surface and landscaped areas may reduce the amount of natural soils that are eroded and carried to the stream. For copper, future growth could increase loadings from urban areas and POTWs due to increased traffic (i.e., brake pad residues), architectural copper use and corrosion of copper pipes. Selenium loading may increase if increased irrigation raises the groundwater table and increases high selenium groundwater seepage to surface waters. However, if increased growth results in increased water demand and high selenium groundwater is pumped and treated to supply this demand, the selenium could decrease.
Seasonal Variations and Critical Conditions	Seasonal variations are addressed for copper, nickel, and selenium by developing separate allocations for wet and dry weather. Critical conditions for copper, nickel, and selenium were developed using model results to calculate the maximum observed 4-day average dry weather concentration and the associated flow condition. Wet weather, as a whole, is defined as a critical condition. For mercury, there is no indication that mercury contamination in Mugu Lagoon is consistently exacerbated at any particular time of the year. Since the potential effects of mercury are related to bioaccumulation in the food chain over a long period time, any other short term variations in concentration which might occur are not likely to cause significant impacts upon beneficial uses. Therefore, seasonal variations do not affect critical conditions for the Calleguas Creek watershed mercury TMDL.

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
Special Studies	Special Studies
and Monitoring Plan	Several special studies are planned to improve understanding of key aspects related to achievement of WLAs and LAs for the Metals and Selenium TMDL
	1. Special Study #1 (Optional) – Evaluation and Initiation of Natural Sources Exclusion
	The TMDL technical report has identified ambient sources as the primary significant selenium and mercury loadings in the watershed and as potentially significant sources of copper and nickel. The portion of all ambient sources associated with open space runoff and natural groundwater seepage is accounted for in this TMDL as "background load." This special study will evaluate whether or not background loads for each constituent qualify for natural source exclusion. This study will also consider whether any portion of the ambient source contribution for agricultural or urban runoff loads qualify for natural source exclusions and/or provide a basis for site specific objectives. The presence of natural sources makes achievement of selenium and mercury targets during all conditions unlikely. For copper, achievement of the CTR targets or the WER based targets (if approved) in Revolon Slough may not be feasible due to the magnitude of background loads. Completion of site specific objectives and/or a use attainability analysis shall be required to review any potential change to water quality objectives for these constituents. This special study will be used to develop the necessary information to revise the water quality objectives for selenium and mercury and possibly for copper and nickel.
	2. Special Study #2 – Identification of selenium contaminated Groundwater Sources
	The purpose of this special study will be to identify groundwater with high concentrations of selenium that is either being discharged directly to the stream or used as irrigation water. The investigation will focus on areas where groundwater has a high probability of reaching the stream and identify practical actions to reduce the discharge of the groundwater to the stream. The analysis will include an assessment of the availability of alternative water supplies for irrigation water, the costs of the alternative water supplies and the costs of reducing groundwater discharges.
	3. Special Study #3– Investigation of Soil Concentrations and Identification of "Hot Spots"

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	The purpose of this special study will be to identify terrestrial areas with high concentrations of metals and/or selenium, either due to anthropogenic sources or resulting from high natural concentrations in soils. Use of detailed soil maps for the watershed in combination with field survey and soil sampling may lead to identification of areas important for reducing overall loads reaching the stream. Identification of any areas with elevated soil concentrations of metals and/or selenium would create an opportunity for efficient and targeted implementation actions, such as remediation or erosion control.
	4. Special Study #4 (Optional) – Determination of Water Effect Ratio for Copper in Revolon Slough
	The purpose of this optional special study would be to calculate a WER for copper that is specific to Revolon Slough. A WER was not previously developed for Revolon Slough because it was not listed for copper. Subsequent monitoring demonstrated that the saltwater copper CTR criterion was exceeded in Revolon Slough. This Study would parallel the developed WER for Mugu Lagoon and Calleguas Creek. This is an optional special study to be conducted if desired by the stakeholders or determined necessary by the Executive Officer.
	5. Special Study #5 (Optional) – Determination of Site-Specific Objectives for Mercury and Selenium
	Special Study #1 will evaluate whether a natural source exclusion is appropriate for background loads of mercury and selenium or any portion of the ambient source contributions to non-background loads in the Calleguas Creek watershed. This special study will develop any SSOs deemed necessary to account for the background conditions and/or site-specific impacts of mercury and selenium (and possibly for copper and nickel) on wildlife and humans in the watershed. This is an optional special study to be conducted if desired by the stakeholders or determined necessary for establishing a natural source exclusion.
	Monitoring Plan
	The Calleguas Creek Watershed TMDL Monitoring Plan (CCWTMP) is designed to monitor and evaluate the implementation of this TMDL and refine the understanding of metal and selenium loads. CCWTMP is intended to parallel efforts of the Calleguas Creek Watershed Nutrients TMDL, Toxicity TMDL, and OC Pesticide, PCBs, and Sediment TMDL monitoring programs. The proposed CCWTMP shall be made available for public review before approval by the Executive Officer.

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	The goals of the CCWTMP include: (1) to determine compliance with copper, mercury, nickel, and selenium numeric targets at receiving water monitoring stations and at POTWs discharges; (2) to determine compliance with waste load and load allocations for copper, mercury, nickel, and selenium at receiving water monitoring stations and at POTWs discharges; (3) to monitor the effect of implementation action by PSDs, POTW, agricultural dischargers, and other NPDES permittees on in-stream water quality; and (4) to implement the CCWTMP in a manner consistent with other TMDL implementation plans and regulatory actions within the Calleguas Creek watershed.
	Monitoring conducted through the Conditional Waiver for Disharges from Irrigated Lands (Conditional Waiver Program) may meet part of the needs of the CCWTMP. To the extent monitoring required by the Metals and Selenium TMDL Implementation Plan parallels monitoring required by the Conditional Waiver Program, monitoring shall be coordinated with monitoring conducted by individuals and groups subject to the term and conditions of the Conditional Waiver Program.
	Monitoring will begin within one year of the effective date of the TMDL. For the first year, in-stream water column samples will be collected monthly for analysis of general water quality constituents (GWQC), copper, mercury, nickel, selenium, and zinc. After the first year, the Executive Officer will review the monitoring report and revise the monitoring frequency as appropriate. In-stream water column samples will be generally be collected at the base of Revolon Slough and Calleguas Creek, and in Mugu Lagoon (collection of flow-based samples will occur above the tidal prism). Additionally, sediment samples will be collected semi-annually in Mugu Lagoon and analyzed for sediment toxicity resulting from copper, mercury, nickel, selenium, and zinc. At such a time as numeric targets are consistently met at these points, an additional site or sites will be considered for monitoring to ensure numeric targets are met throughout the lower watershed.
	Additional samples will be collected concurrently at stations that are representative of agricultural and urban runoff as well as at POTWs in each of the subwatersheds and analyzed for GWQCs, copper, mercury, nickel, selenium, and zinc. The location of these stations will be determined before initiation of the CCWTMP. Environmentally relevant detection limits will be used for metals and selenium (i.e. detection limits lower than applicable target), if available at a commercial laboratory.

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL			
	Compliance sampling station locations:			
	Subwatershed	Station ID	Station Location	Constituent
				Water Column: Cu, Ni, Hg, Se, Zn
	Mugu Lagoon	01-11-BR	11th Street Bridge	Bird Egg: Hg, Se
	liwugu Lagoon	O1-11-BIT	Trui Sueet Bridge	Fish Tisue: Hg, Se
				Sediment: Cu, Ni, Hg, Se, Zn
	Revolon Slough	04-WOOD	Revolon Slough East Side of Wood Road	Water Column: Cu, Ni, Hg, Se, Zn
				Fish Tisue: Hg, Se
		03-CAMAR	Calleguas Creek at University Drive	Water Column: Cu, Ni, Hg, Se, Zn
	Calleguas Creek	03D-CAMR	Camrosa Water Reclamation Plant	Water Column: Cu, Ni, Hg, Se, Zn
		9AD-CAMA	Camarillo Water Reclamation Plant	Water Column: Cu, Ni, Hg, Se, Zn
	Conejo Creek	10D-HILL	Hill Canyon Wastewater Treatment Plant	Water Column: Cu, Ni, Hg, Se, Zn
	The final WLAs will be included for permitted stormwater discharges, POTWs, and other NPDES discharges in accordance with the compliance schedules provided in Table 7-19.2. The Regional Board may revise these WLAs based on additional information developed through special studies and/or monitoring conducted as part of this TMDL. In addition, the implementation schedule was developed with the assumption that a WER for copper and a SSO for nickel will proceed following the TMDL. Should adoption and approvals of the WER and SSO not proceed, additional implementation actions could be required. The implementation plan includes discussion of implementation actions to address these conditions. WLAs established for Simi Valley WQCP, Camrosa WRP, and Moorpark WTP in this TMDL will be implemented through NPDES permit limits. Compliance will be determined through monitoring of final effluent discharge as defined in the NPDES permit. The Hill Canyon and Camarillo WRPs are working towards discontinuing the discharge of effluent to Conejo Creek. If this plan is implemented, the POTW allocations for the watershed will be achieved by reduction of effluent discharges to the stream. The implementation plan includes sufficient time for this plan to be implemented. However, if this plan is altered, the POTWs will need to meet allocations through other methods such as source control activities. The Regional Board will need to ensure that permit conditions are consistent with the assumptions of the WLAs. Should federal, state, or regional guidance or practice for implementing WLAs into permits be revised, the Regional Board may reevaluate the TMDL to incorporate such guidance.			

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	In accordance with current practice, a group concentration-based WLA has been developed for all permitted stormwater discharges, including municipal separate storm sewer systems (MS4s), Caltrans, general industrial and construction stormwater permits, and Naval Air Weapons Station Point Mugu. MS4 WLAs will be incorporated into the NPDES permit as receiving water limits measured in-stream at the base of Revolon Slough and Calleguas Creek, and in Mugu Lagoon and will be achieved through the implementation of BMPs as outlined in the implementation plan. The Regional Board will need to ensure that permit conditions are consistent with the assumptions of the WLAs. If BMPs are to be used, the Regional Board will need to detail its findings and conclusions supporting the use of BMPs in the NPDES permit fact sheets. Should federal, state, or regional guidance or practice for implementing WLAs into permits be revised, the Regional Board may reevaluate the TMDL to incorporate such guidance. The Regional Board may revise these WLAs based on the collection of additional information developed through special studies and/or monitoring conducted as part of this TMDL.
	LAs will be implemented through the State's Nonpoint Source Pollution Control Program (NPSPCP) and Conditional Waiver for Discharges from Irrigated Lands adopted by the Los Angeles Regional Water Quality Control Board on November 3, 2005. Compliance with LAs will be measured in-stream at the base of Revolon Slough and Calleguas Creek and in Mugu Lagoon and will be achieved through the implementation of BMPs consistent with the NPSPCP and the Conditional Waiver Program.
	The Conditional Waiver Program requires the development of an agricultural water quality management plan (AWQMP) to address pollutants that are exceeding receiving water quality objectives as a result of agricultural discharges. Therefore, implementation of the load allocations will be through the development of an AWQMP for metals and selenium. Implementation of the load allocations will also include the coordination of BMPs being implemented under other required programs to ensure metal discharges are considered in the implementation. Additionally, agricultural dischargers will participate in educational seminars on the implementation of BMPs as required under the Conditional Waiver Program. Studies are currently being conducted to assess the extent of BMP implementation and provide information on the effectiveness of BMPs for agriculture. This information will be integrated into the AWQMP that will guide the implementation of agricultural BMPs in the Calleguas Creek watershed. After implementation of these actions, compliance with the allocations and TMDL will be evaluated and the allocations reconsidered if

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	necessary based on the special studies and monitoring plan section of the implementation plan
	Agricultural and PSDs dischargers will have a required 25%, 50% and 100% reduction in the difference between the current loadings and the load allocations at 5, 10 and 15 years after the effective date, respectively. Achievement of required reductions will be evaluated based on progress towards BMP implementation as outlined in the UWQMPs, AWQMP, Conditional Waiver Program, and in consideration of background loading information, if available. If the interim reductions are not met, the dischargers will submit a report to the Executive Officer detailing why the reductions were not met and the steps that will be taken to meet the required reductions.
	As shown in Table 7-19.2, implementation of LAs will be conducted over a period of time to allow for implementation of the BMPs, as well as coordination with special studies and implementation actions resulting from other TMDL Implementation Plans for the Calleguas Creek watershed. The Regional Board may revise the LAs based on the collection of additional information developed through special studies and/or monitoring conducted as part of this TMDL.

Table 7-19.2 Calleguas Creek Watershed Metals and Selenium TMDL: Implementation Schedule

Implementation Schedule						
Item	Implementation Action ¹	Responsible Party	Completion Date			
1	Effective date of interim Metals and Selenium TMDL waste load allocation (WLAs), and final WLAs for other NPDES permittees	POTWs, Permitted Stormwater Dischargers ² (PSD), Other NPDES Permittees	Effective date of the amendment			
2	Effective date of interim Metals and Selenium TMDL load allocation (LAs)	Agricultural Dischargers	Effective date of the amendment			
3a	Submit Calleguas Creek Watershed Metals and Selenium Monitoring Program	POTWs, PSD, Agricultural Dischargers	Within 3 months after the effective date of the amendment			
3b	Implement Calleguas Creek Watershed Metals and Selenium Monitoring Program	POTWs, PSD, Agricultural Dischargers	Within 3 months of Executive Officer approval of the monitoring program			
3c	Re-calibrate HSPF water quality model based on first year of monitoring data	POTWs, PSD, Agricultural Dischargers	1 year after submittal of first annual monitoring report			
4a	Conduct a source control study, develop and submit an Urban Water Quality Management Program (UWQMP) for copper, mercury, nickel, and selenium	MS4s	Within 2 years after the effective date of the amendment			
4b	Conduct a source control study, develop and submit an UWQMP for copper, mercury, nickel, and selenium	Caltrans	Within 2 years after the effective date of the amendment			
4c	Conduct a source control study, develop and submit an UWQMP for copper, mercury, nickel, and selenium	NAWS point Mugu (US Navy)	Within 2 years after the effective date of the amendment			
5	Implement UWQMP	PSD	Within 1 year of approval of UWQMP by the Executive Officer			
6	Develop and submit an Agricultural Water Quality Management Program (AWQMP) as described in the Conditional Waiver Program	Agricultural Dischargers	Within 2 years after the effective date of the amendment			
7	Implement AWQMP	Agricultural Dischargers	Within 1 year of approval of AWQMP by the Executive Officer			
8	Develop WLAs and LAs for zinc if impairment for Mugu Lagoon is maintained on the final 2006 303(d) list	Regional Board or USEPA	Within 1 year of the final 2006 303(d) list			
9	Submit progress report on salinity management plan, including status of reducing WRP effluent discharges to Conejo and Calleguas Creek reaches of the watershed	POTWs	Within 3 years after the effective date of the amendment			
10	If progress report identifies the effluent discharges reduction is not progressing, develop and	POTWs	Within 4 years after the effective date of the			

¹ The Regional Board regulatory programs addressing all discharges in effect at the time this implementation task is due may contain requirements substantially similar to the requirements of these implementation tasks. If such requirements are in place in another regulatory program including other TMDLs, the Executive Officer may revise or eliminate this implementation task to coordinate this TMDL implementation plan with other regulatory programs.

Permitted Stormwater Dischargers (PSD) include MS4s, Caltrans, the Naval Air Weapons Station at Point Mugu, and general

industrial and construction permittees.

Item	Implementation Action ¹	Responsible Party	Completion Date
	implement source control activities for copper, mercury, nickel, and selenium		amendment
11	Re-evaluation of POTW interim waste load allocations for copper, mercury, and nickel	POTWs	Within 5 years after the effective date of the amendment
12a	Evaluate the results of the OCs TMDL, Special Study – Calculation of sediment transport rates in the Calleguas Creek watershed for applicability to the metals and selenium TMDL	Agricultural Dischargers, PSD	Within 6 months of completion of the study
12b	Include monitoring for copper, mercury, nickel, and selenium in the OC pesticides TMDL, special Study – Monitoring of sediment by source and land use type	Agricultural Dischargers, PSD	Within 2 years after the effective date of the amendment
12c	Expand scope of the OC Pesticide TMDL, Special Study – Examination of food webs and accumulation in the Calleguas Creek watershed to ensure protection of wildlife to include mercury	Interested parties	If necessary, prior to end of the implementation period
12d	Evaluate the results of the OC Pesticides TMDL, Special Study – Effects of BMPs on Sediment and Siltation to determine the impacts on metals and selenium	Agricultural Dischargers, PSD	Within 6 months of completion of the study
13a	Submit work plan for Special Study #1 (Optional) – Identification of Natural Sources Exclusion	Agricultural Dischargers, PSD	Within 1 year after the effective date of the amendment
13b	Submit results of Special Study #1 (Optional) – Identification of Natural Sources Exclusion	Agricultural Dischargers, PSD	Within 3 years of approval of workplan by Executive Officer
14a	Submit work plan for Special Study #2 – Identification of selenium Contaminated Groundwater Sources	POTWs, PSD, and Agricultural Dischargers	Within 1 year after the effective date of the amendment
14b	Submit results of Special Study #2 – Identification of selenium Contaminated Groundwater Sources	POTWs, PSD, and Agricultural Dischargers	Within 1 year of approval of workplan by Executive Officer
15a	Submit work plan for Special Study #3 – Investigation of Metals' "Hot Spot" and Natural Soil	PSD and Agricultural Discharger	Within 1 year after the effective date of the amendment
15b	Submit results of Special Study #3 – Investigation of metals' "Hot Spot" and Natural Soil	PSD and Agricultural Discharger	Within 2 years of approval of workplan by Executive Officer
16	Special Study #4 (Optional) – Determination of WER for copper in Revolon Slough	PSD and Agricultural Dischargers	If necessary, prior to end of the implementation period
17	Special Study #5 (Optional) – Determination of Site Specific Objective for Mercury and Selenium	PSD and Agricultural Dischargers	If necessary, prior to end of the implementation period
18	Evaluate effectiveness of BMPs implemented under the AWQMP and UWQMP in controlling metals and selenium discharges	PSD and Agricultural Dischargers	6 years after the effective date of the amendment
19	Evaluate the results of implementation actions 14 and 15 (Special Study #2 & #3) and implement actions identified by the studies	POTWs, PSD, and Agricultural Dischargers	Within 1 year after the completion of the studies
20	If needed, implement additional BMPs or revise existing BMPs to address any issues not covered by	Agricultural Dischargers	7 years after the effective date of the amendment

Item	Implementation Action ¹	Responsible Party	Completion Date
	implementation efforts of related Calleguas Creek watershed TMDLs (Nutrients, Toxicity, OC Pesticides, PCBs, and Siltation) and the Conditional Waiver Program		
21	Consider nickel SSO proposed by stakeholders	Regional Board	1 years after the effective date of the amendment
22	Publicly notice tentative copper water effects ratio for Regional Board consideration, if deemed appropriate based on peer review	Regional Board Staff	Within 2 months of receipt of peer review comments
23	Based on the result from items 1-23, Regional Board will consider re-evaluation of the TMDLs, WLAs, and LAs if necessary	Regional Board	2 years from submittal of information necessary for re-evaluation
24	POTWs will be required to reduce loadings by 50%, and 100% of the difference between the current loading and the WLAs at 8 and 10 years after the effective date, respectively.	POTWs	8 and 10 years after the effective date of the amendment
25	Re-evaluation of Agricultural and Urban load and waste load allocations for copper, mercury, nickel, and selenium based on the evaluation of BMP effectiveness. Agricultural and urban dischargers will have a required 25%, 50%, and 100% reduction in the difference between the current loadings and the load allocations at 5, 10, and 15 years after the effective date, respectively.	Agricultural and PSDs	5, 10, and 15 years after the effective date of the amendment
26	Stakeholders and Regional Board staff will provide information items to the Regional Board, including: progress toward meeting TMDL load reductions, water quality data, and a summary of implementation activities completed to date	Regional Board	2 years after the effective date, and every 2 years following
27	Achievement of Final WLAs and attainment of water quality standards for copper, mercury, nickel, and selenium	POTWs	Within 10 years after the effective date of the amendment ³
28	Achievement of Final WLAs and LAs and attainment of water quality standards for copper, nickel, mercury and selenium	Agricultural Dischargers, PSD	Within 15 years after the effective date of the amendment ³

-

³ Date of achievement of WLAs and LAs based on the estimated timeframe for educational programs, special studies, and implementation of appropriate BMPs and associated monitoring. The Conditional Waiver Program will set timeframes for the BMP management plans.